323 research outputs found

    Automatisation du processus de construction des structures de données floues

    Get PDF
    Notion de base sur la logique floue -- Problématique et motivation de la recherche -- Systèmes à base de connaissances -- Génération automatique de bases de connaissances floues -- Généralités sur les algorithmes génétiques -- Généralités sur le procédé de pâtes thermomécanique -- Recherche proposée -- algorithmes génétiques hybride et binaire pour la génération automatique de bases de connaissances -- Stratégies multicombinatoires pour éviter la convergence prématurée dans les algorithmes génétiques -- Prédiction en ligne de la blancheur ISO de la pâte thermomécanique -- Real/binary-like coded versus binary coded genetic algorithms to automatically generate fuzzy knowledge bases : a comparative study -- Fuzzy decision support system -- Automatic generation of fuzzy knowledge bases using GAs -- Learning process -- Validation results -- Multi-combinative strategy to avoid premature convergence in genetically-generated fuzzy knowledge bases -- Introduction and problem definition -- Real/binary like coded genetic algorithm -- Performance criteria -- Evolutionary strategy -- Application to experimental data -- Online prediction of pulp brightness using fuzzy logic models -- The Chips management system -- Experiment plan for data collection -- Selection of the influencing variables -- Genetic-based learning process -- Performance criterion -- Evolutionary strategy -- Learning the FKBs for brightness prediction -- Learning the FKBs using laboratory variables

    Modern approaches to control of a multiple hearth furnace in kaolin production

    Get PDF
    The aim of this thesis is to improve the overall efficiency of the multiple hearth furnace (MHF) in kaolin calcination by developing control strategies which incorporate machine learning based soft sensors to estimate mineralogy related constraints in the control strategy. The objective of the control strategy is to maximize the capacity of the furnace and minimize energy consumption while maintaining the product quality of the calcined kaolin. First, the description of the process of interest is given, highlighting the control strategy currently implemented at the calciner studied in this work. Next, the state of the art on control of calcination furnaces is presented and discussed. Then, the description of the mechanistic model of the MHF, which plays a key role in the testing environment, is provided and an analysis of the MHF dynamic behavior based on the industrial and simulated data is presented. The design of the mineralogy-driven control strategy for the multiple hearth furnace and its implementation in the simulation environment are also outlined. The analysis of the results is then presented. Furthermore, the extensive sampling campaign for testing the soft sensors and the control strategy logic of the industrial MHF is reported, and the results are analyzed and discussed. Finally, an introduction to Model Predictive Control (MPC) is presented, the design of the Linear MPC framework for the MHF in kaolin calcination is described and discussed, and future research is outlined

    Dilemma of mathematics

    Get PDF
    The pursuit of knowledge and the use of reason, based on sense and observation is a key ingredient for research. Mathematics is a creation of human mind concerned chiefly with ideas, processes and reasoning. In this paper, we will try to give a new comprehensive definition of mathematics to understand “what is mathematics”. We will discuss the controversial nature and position of mathematics and its scientific status. We will highlight the position of mathematics in different civilizations. We will highlight the mythical issues about Mathematics. We will also discuss the current state of mathematics i.e. mathematics in crises, especially pure mathematics and will put forward the remedial suggestions. We have gathered together some of these impressions; these are all tentative, nothing final about them, but these are here nonetheless

    Instrumentation and control of anaerobic digestion processes: a review and some research challenges

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11157-015-9382-6[EN] To enhance energy production from methane or resource recovery from digestate, anaerobic digestion processes require advanced instrumentation and control tools. Over the years, research on these topics has evolved and followed the main fields of application of anaerobic digestion processes: from municipal sewage sludge to liquid mainly industrial then municipal organic fraction of solid waste and agricultural residues. Time constants of the processes have also changed with respect to the treated waste from minutes or hours to weeks or months. Since fast closed loop control is needed for short time constant processes, human operator is now included in the loop when taking decisions to optimize anaerobic digestion plants dealing with complex solid waste over a long retention time. Control objectives have also moved from the regulation of key variables measured online to the prediction of overall process perfor- mance based on global off-line measurements to optimize the feeding of the processes. Additionally, the need for more accurate prediction of methane production and organic matter biodegradation has impacted the complexity of instrumentation and should include a more detailed characterization of the waste (e.g., biochemical fractions like proteins, lipids and carbohydrates)andtheirbioaccessibility andbiodegradability characteristics. However, even if in the literature several methodologies have been developed to determine biodegradability based on organic matter characterization, only a few papers deal with bioaccessibility assessment. In this review, we emphasize the high potential of some promising techniques, such as spectral analysis, and we discuss issues that could appear in the near future concerning control of AD processes.The authors acknowledge the financial support of INRA (the French National Institute for Agricultural Research), the French National Research Agency (ANR) for the "Phycover" project (project ANR-14-CE04-0011) and ADEME for Inter-laboratory assay financial support.Jimenez, J.; Latrille, E.; Harmand, J.; Robles Martínez, Á.; Ferrer Polo, J.; Gaida, D.; Wolf, C.... (2015). Instrumentation and control of anaerobic digestion processes: a review and some research challenges. Reviews in Environmental Science and Biotechnology. 14(4):615-648. doi:10.1007/s11157-015-9382-6S615648144Aceves-Lara CA, Latrille E, Steyer JP (2010) Optimal control of hydrogen production in a continuous anaerobic fermentation bioreactor. Int J Hydrogen Energ 35:10710–10718Aguado D, Montoya T, Ferrer J, Seco A (2006) Relating ions concentration variations to conductivity variations in a sequencing batch reactor operated for enhanced biological phosphorus removal. Environ Modell Softw 21:845–851Aguilar-Garnica E, Dochain D, Alcaraz-González V, González-Álvarez V (2009) A multivariable control scheme in a two-stage anaerobic digestion system described by partial differential equations. J Process Contr 19:1324–1332Ahring BK, Angelidaki I, Johansen K (1992) Anaerobic treatment of manure together with industrial waste. Water Sci Technol 25:311–318Ajeej A, Thanikal JV, Narayanan CM, Senthil Kumar R (2015) An overview of bio augmentation of methane by anaerobic co-digestion of municipal sludge along with microalgae and waste paper. Renew Sustain Energy Rev 50:270–276Alcaraz-González V, González-Álvarez V (2007) Selected topics in dynamics and control of chemical and biological processes. Springer, BerlinAlcaraz-González V, Harmand J, Rapaport A, Steyer JP, González-Álvarez V, Pelayo-Ortiz C (2005a) Robust interval-based regulation for anaerobic digestion processes. Water Sci Technol 52:449–456Alcaraz-González V, Salazar-Peña R, González-Alvarez V, Gouzé JL, Steyer JP (2005b) A tunable multivariable nonlinear robust observer for biological systems. C R Biol 328:317–325Alferes J, Irizar I (2010) Combination of extremum-seeking algorithms with effective hydraulic handling of equalization tanks to control anaerobic digesters. Water Sci Technol 61:2825–2834Alferes J, García-Heras JL, Roca E, García C, Irizar I (2008) Integration of equalisation tanks within control strategies for anaerobic reactors. Validation based on ADM1 simulations. Water Sci Technol 57:747–752Alimahmoodi M, Mulligan CN (2008) Anaerobic bioconversion of carbon dioxide to biogas in an upflow anaerobic sludge blanket reactor. J Air Waste Manage Assoc 58:95–103Alvarez JA, Otero L, Lema JM (2010) A methodology for optimising feed composition for anaerobic co-digestion of agro-industrial wastes. Bioresour Technol 101:1153–1158Alvarez-Ramirez J, Meraz M, Monroy O, Velasco A (2002) Feedback control design for an anaerobic digestion process. J Chem Technol Biotechnol 77:725–734Anderson GK, Yang G (1992) Determination of bicarbonate and total volatile acid concentration in anaerobic digesters using a simple titration. Water Environ Res 64:53–59Andrews JF, Graef SP (1971) Dynamic modelling and simulation of the AD process. Advances in chemistry series no. 105, Anaerobic Biological Treatment Processes. American Chemical Society, Washington, DC, p 126Andrews JF, Pearson EA (1965) Kinetics and characteristics of volatile acid production in anaerobic fermentation processes. Air Water Pollut 9:439–461Angelidaki I, Sanders W (2004) Assessment of the anaerobic biodegradability of macropllutants. Rev Environ Sci Biotechnol 3:117–129Antila J, Tuohiniemi M, Rissanen A, Kantojärvi U, Lahti M, Viherkanto K, Kaarre M, Malinen J (2014) MEMS- and MOEMS-based near-infrared spectrometers. Encycl Anal Chem 1–36. doi: 10.1002/9780470027318.a9376Antoniades CD, Christofides P (2001) Integrating nonlinear output feedback control and optimal actuator/sensor placement for transport-reaction processes. Chem Eng Sci 56:4517–4535APHA (2005) American Public Health Association/American Water Works Association/Water Environmental Federation, Standard methods for the Examination of Water and Wastewater, 21st edn. Washington, DC, USAAppels L, Baeyens J, Degrève J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energ Combust 34:755–781Appels L, Lauwers J, Gins G, Degreve J, Van Impe J, Dewil R (2011) Parameter identification and modeling of the biochemical methane potential of waste activated sludge. Environ Sci Technol 45:4173–4178Aquino SF, Chernicharo CAL, Soares H, Takemoto SY, Vazoller RF (2008) Methodologies for determining the bioavailability and biodegradability of sludges. Environ Technol 29:855–862Astals S, Esteban-Gutiérrez M, Fernández-Arévalo T, Aymerich E, García-Heras JL, Mata-Alvarez J (2013a) Anaerobic digestion of seven different sewage sludges: a biodegradability and modelling study. Water Res 47:6033–6043Astals S, Nolla-Ardèvol V, Mata-Alvarez J (2013b) Thermophilic co-digestion of pig manure and crude glycerol: process performance and digestate stability. J Biotechnol 166:97–104Babary JP, Julien S, Nihtilä MT et al (1999) New boundary conditions and adaptive control of fixed-bed bioreactors. Chem Eng Process Process Intensif 38:35–44Barat R, Serralta J, Ruano MV, Jiménez E, Ribes J, Seco A, Ferrer J (2012) Biological nutrient removal model No 2 (BNRM2): a general model for wastewater treatment plants. Water Sci Technol 67:1481–1489Bastin G, Dochain D (1990) On-line estimation and adaptive control of bioreactors. Elsevier Science, AmsterdamBatstone DJ (2013) Modelling and control in anaerobic digestion: achievements and challenges. 13th IWA World Congress on Anaerobic Digestion (AD 13), pp 1–6Batstone DJ, Keller J, Angelidaki I et al (2002) Anaerobic digestion model No. 1. (ADM1). IWA Scientific and Technical Report No. 13. IWABatstone DJ, Tait S, Starrenburg D (2009) Estimation of hydrolysis parameters in full-scale anaerobic digesters. Biotechnol Bioeng 102:1513–1520Batstone DJ, Amerlinck Y, Ekama G et al (2012) Towards a generalized physicochemical framework. Water Sci Technol 66:1147–1161Baumann WT, Rugh WJ (1986) Feedback control of nonlinear systems by extended linearization. IEEE Trans Automat Contr AC-31:40–46Benyahia B, Campillo F, Cherki B, Harmand J (2012) Particle filtring for the chemostat. In: MED’12, Barcelone, SpainBernard O (2011) Hurdles and challenges for modelling and control of microalgae for CO2 mitigation and biofuel production. J Process Control 21:1378–1389Bernard O, Gouzé JL (2004) Closed loop observers bundle for uncertain biotechnological models. J Process Control 14:765–774Bernard O, Hadj-Sadok Z, Dochain D et al (2001a) Dynamical model development and parameter identification for an anaerobic wastewater treatment process. Biotechnol Bioeng 75:424–438Bernard O, Polit M, Hadj-Sadok Z, Pengov M, Dochain D, Estaben M, Labat P (2001b) Advanced monitoring and control of anaerobic wastewater treatment plants: software sensors and controllers for an anaerobic digester. Water Sci Technol 43:175–182Bernard O, Chachuat B, Hélias A, Rodriguez J (2005a) Can we assess the model complexity for a bioprocess? Theory and example of the anaerobic digestion process. Water Sci Technol 53:85–92Bernard O, Chachuat B, Hélias A, Le Dantec B, Sialve B, Steyer JP, Lavigne JF (2005b) An integrated system to remote monitor and control anaerobic wastewater treatment plants through the internet. Water Sci Technol 52:457–464Björnsson L, Hörnsten EG, Mattiasson B (2001a) Utilization of a palladium–metal oxide semiconductor (Pd-MOS) sensor for on-line monitoring of dissolved hydrogen in anaerobic digestion. Biotechnol Bioeng 73:35–43Björnsson L, Murto M, Jantsch TG, Mattiasson B (2001b) Evaluation of new methods for the monitoring of alkalinity, dissolved hydrogen and the microbial community in anaerobic digestion. Water Res 35:2833–2840Boe K (2006) Online monitoring and control of the biogas process. Technical University of DenmarkBoe K, Batstone D, Angelidaki I (2007) An innovative online VFA monitoring system for the anerobic process, based on headspace gas chromatography. Biotechnol Bioeng 96:712–721Boe K, Steyer JP, Angelidaki I (2008) Monitoring and control of the biogas process based on propionate concentration using online VFA measurement. Water Sci Technol 57:661–766Boe K, Batstone DJ, Steyer JP, Angelidaki I (2010) State indicators for monitoring the anaerobic digestion process. Water Res 44:5973–5980Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254Brinkmann K, Blaschke L, Polle A (2002) Comparison of different methods for lignin determination as a basis for calibration of near-infrared reflectance spectroscopy and implications of lignoproteins. J Chem Ecol 28:2483–2501Buendía IM, Fernández FJ, Villaseñor J, Rodríguez L (2008) Biodegradability of meat industry wastes under anaerobic and aerobic conditions. Water Res 42:3767–3774Buffiere P, Loisel D, Bernet N, Delgenes JP (2006) Towards new indicators for the prediction of solid waste anaerobic digestion properties. Water Sci Technol 53:233–241Cao Y, Pawlowski A (2012) Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: brief overview and energy efficiency assessment. Renew Sust Energ Rev 16:1657–1665Carballa M, Regueiro L, Lema JM (2015) Microbial management of anaerobic digestion: exploiting the microbiome-functionality nexus. Curr Opin Biotechnol 33:103–111Carlos-Hernandez S, Beteau JF, Sanchez EN (2007) Intelligent control strategy for an anaerobic fluidized bed reactor. In: Michel P (ed) Computer applications in biotechnology, vol 1. Cancun, Mexico, pp 73–78Carlos-Hernandez S, Sanchez EN, Bueno JA (2010) Neurofuzzy control strategy for an abattoir wastewater treatment process. In: Banga JR, Bogaerts P, Van Impe J, Dochain D, Smets I (eds) 11th International symposium on computer applications in biotechnology. Leuven, Belgium, pp 84–89Chandler JA, Jewell WJ, Gossett JM (1980) Predicting methane fermentation biodegradability. Biotechnol Bioeng Symp 10:93–107Chen YH (1990) Adaptive robust observers for non-linear uncertain systems. Int J Syst Sci 21:803–814Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064Chynoweth DP, Turick CE, Owens JM, Jerger DE, Peck MW (1993) Biochemical methane potential of biomass and waste feedstocks. Biomass Bioenerg 5:95–111Cirne DG, van der Zee FP, Fernandez-Polanco M, Fernandez-Polanco F (2008) Control of sulphide during anaerobic treatment of S-containing wastewaters by adding limited amounts of oxygen or nitrate. Rev Environ Sci Biotechnol 7:93–105Colombié S, Latrille E, Sablayrolles JM (2007) Online estimation of assimilable nitrogen by electrical conductivity measurement during alcoholic fermentation in enological conditions. J Biosci Bioeng 103:229–235Cord-Ruwisch R, Mercz TI, Hoh CY, Strong GE (1997) Dissolved hydrogen concentration as an on-line control parameter for the automated operation and optimization of anaerobic digesters. Biotechnol Bioeng 56:626–634Cossu R, Raga R (2008) Test methods for assessing the biological stability of biodegradable waste. Waste Manage 28:381–388Cresson R, Pommier S, Béline F et al (2014) Etude interlaboratoires pour l’harmonisation des protocoles de mesure du potentiel bio-méthanogène des matrices solides hétérogènes—Final report (in French) ADEMEDalmau J, Comas J, Rodríguez-Roda I, Pagilla K, Steyer JP (2010) Model development and simulation for predicting risk of foaming in anaerobic digestion systems. Bioresour Technol 101:4306–4314Davidsson A, Gruvberger C, Christensen TH, Hansen TL, Jansen J (2007) Methane yield in source-sorted organic fraction of municipal solid waste. Waste Manage 27:406–414De Baere L (2000) Anaerobic digestion of solid waste: state-of-the-art. Water Sci Technol 41:283–290De Baere L (2008) Partial stream digestion of residual municipal solid waste. Water Sci Technol 57:1073–1077De Gracia M, Grau P, Huete E et al (2009) New generic mathematical model for WWTP sludge digesters operating under aerobic and anaerobic conditions: model building and experimental verification. Water Res 43:4626–4642De Vrieze J, Verstraete W, Boon N (2013) Repeated pulse feeding induces functional stability in anaerobic digestion. Microb Biotechnol 6:414–424Delattre C, Dochain D, Winkin J (2004) Observability analysis of nonlinear tubular (bio)reactor models: a case study. J Process Control 14:661–669Di Pinto AC, Limoni N, Passino R, Rozzi A, Tomei MC (1990) Instrumentation, control and automation of water and wastewater treatment and transport systems. In: Proceedings of the 5th IAWPRC workshop, pp 51–58Díaz I, Pérez C, Alfaro N, Fdz-Polanco F (2015) A feasibility study on the bioconversion of CO2 and H2 to biomethane by gas sparging through polymeric membranes. Bioresour Technol 185:246–253Dochain D (2003) State and parameter estimation in chemical and biochemical processes: a tutorial. J Process Control 13:801–818Dochain D, Tali-Maamar N, Babary JP (1997) On modelling, monitoring and control of fixed bed bioreactors. Comput Chem Eng 21:1255–1266Dochain D, Perrier M, Guay M (2011) Extremum seeking control and its application to process and reaction systems: a survey. Math Comput Simulat 82:369–380Donoso-Bravo A, Garcia G, Pérez-Elvira S, Fernandez-Polanco F (2011) Initial rates technique as a procedure to predict the anaerobic digester operation. Biochem Eng J 53(3):275–280Doublet J, Boulanger A, Ponthieux A, Laroche C, Poitrenaud M, Cacho Rivero JA (2013) Predicting the biochemical methane potential of wide range of organic substrates by near infrared spectroscopy. Bioresour Technol 128:252–258Dreywood R (1946) Qualitative test for carbohydrate material. Industrial & Engineering Chemistry Analytical Edition. Am Chem Soc 18:499Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356Ekama GA, Sotemann SW, Wentzel MC (2007) Biodegradability of activated sludge organics under anaerobic conditions. Water Res 41:244–252Ellison WJ, Pedarros-Caubet F, Caubet R (2007) Automatic and rapid measurement of microbial suspension growth parameters: application to the evaluation of effector agents. J Rapid Meth Aut Mic 15:369–410Fang HHP (2012) Bioenergy production from waste and wastewater in China. In: Technical proceedings of the 2012 NSTI nanotechnology conference and expo, NSTI-nanotech 2012, pp 381–383Fannin KF, Chynoweth DP, Isaacson R (1987) Start-up, operation, stability, and control. Anaerob Dig Biomass 171–196Fdz-Polanco M, Díaz I, Pérez SI, Lopes AC, Fdz-Polanco F (2009a) Hydrogen sulphide removal in the anaerobic digestion of sludge by micro-aerobic processes: pilot plant experience. Water Sci Technol 60:3045–3050Fdz-Polanco M, Pérez-Elvira SI, Díaz I, García L, Torío R, Acevedo AF (2009b) Eliminación de H2S en digestión anaerobia de lodos por procesos microaerofílicos: experiencia en planta piloto. Tecnol del Agua 29:58–64Feitkenhauer H, von Sachs J, Meyer U (2002) On-line titration of volatile fatty acids for the process control of anaerobic digestion plants. Water Res 36:212–218Fernández YB, Soares A, Villa R, Vale P, Cartmell E (2014) Carbon capture and biogas enhancement by carbon dioxide enrichment of anaerobic digesters treating sewage sludge or food waste. Bioresour Technol 159:1–7Fountoulakis MS, Stamatelatou K, Lyberatos G (2008) The effect of pharmaceuticals on the kinetics of methanogenesis and acetogenesis. Bioresour Technol 99:7083–7090Francioso O, Rodriguez-Estrada MT, Montecchio D, Salomoni C, Caputo A, Palenzona D (2010) Chemical characterization of municipal wastewater sludges produced by two-phase anaerobic digestion for biogas production. J Hazard Mater 175:740–746Frigon JC, Roy C, Guiot SR (2012) Anaerobic co-digestion of dairy manure with mulched switchgrass for improvement of the methane yield. Bioprocess Biosyst Eng 35:341–349Frings CS, Dunn RT (1970) A colorimetric method for determination of total serum lipids based on the sulfo-phospho-vanillin reaction. Am J Clin Pathol 53:89–91Frølund B, Palmgren R, Keiding K, Nielsen PH (1996) Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res 30:1749–1758Gaida D, Wolf C, Meyer C, Stuhlsatz A, Lippel J, Bäck T, Bongards M, McLoone S (2012) State estimation for anaerobic digesters using the ADM1. Water Sci Technol 66:1088–1095Ganesh R, Torrijos M, Sousbie P et al (2013) Anaerobic co-digestion of solid waste: effect of increasing organic loading rates and characterization of the solubilised organic matter. Bioresource Technol 130:559–569García-Diéguez C, Molina F, Roca E (2011) Multi-objective cascade controller for an anaerobic digester. Process Biochem 46:900–909García-Gen (2015) Modelling, optimisation and control of anaerobic co-digestion processes (2015), Ph.D. Thesis, Universidad de Santiago de Compostela, Departamento de Ingeniería QuímicaGarcía-Gen S, Sousbie P, Rangaraj G et al (2015) Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes. Waste Manag 35:96–104Gauthier JP, Kupka IAK (1994) Observability and observers for nonlinear systems. SIAM J Control Optim 32:975–994Gauthier JP, Hammouri H, Othman S (1992) A simple observer for nonlinear systems applications to bioreactors. Autom Control IEEE Trans 37:875–880Ge H, Jensen PD, Batstone DJ (2011) Increased temperature in the thermophilic stage in temperature phased anaerobic digestion (TPAD) improves degradability of waste activated sludge. J Hazard Mater 187:355–361Gendron S, Perrier M, Barrett J, Legault N (1993) Adaptive control of brightness: the model weighting approach. Annual meeting—technical section, Canadian Pulp and Paper Association, Preprints. Publ by Canadian Pulp & Paper AssocGhosh S, Conrad JR, Klass DL (1975) Anaerobic acidogenesis of waste activated sludge, WPCF 47Goffaux G, Van de Wouwer A (2005) Bioprocess state estimation: some classical and less classical approaches. Springer, BerlinGornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biochem Chem 177:751–766Gouzé JL, Rapaport A, Hadj-Sadok MZ (2000) Interval observers for uncertain biological systems. Ecol Model 133:45–56Grau P, de Gracia M, Vanrolleghem PA, Ayesa E (2007) A new plant-wide modelling methodology for WWTPs. Water Res 41:4357–4372Gregersen KH (2003) Økonomien i biogasfællesanlæg, Udvikling og status medio (2002) Report no. 150. Institute of Food and Resource Economic, Rolighedsvej 25, DK 1958, Frederiksberg C, DenmarkGrepmeier M (2002) Experimentelle Untersuchungen an einer zweistufigen fuzzy-geregelten anaeroben Abwasserreinigungsanlage mit neuartigem Festbettmaterial. TU MunichGuay M, Dochain D, Perrier M (2004) Adaptive extremum seeking control of continuous stirred tank bioreactors with unknown growth kinetics. Automatica 40:881–888Gunaseelan VN (2007) Regression models of ultimate methane yields of fruits and vegetable solid wastes, sorghum and napiergrass on chemical composition. Bioresour Technol 98:1270–1277Gunaseelan VN (2009) Predicting ultimate methane yields of Jatropha curcus and Morus indica from their chemical composition. Bioresour Technol 100:3426–3429Guwy AJ, Hawkes FR, Wilcox SJ, Hawkes DL (1997) Neural network and on-off control of bicarbonate alkalinity in a fluidised-bed anaerobic digester. Water Res 31:2019–2025Guwy AJ, Dinsdale RM, Kim JR et al (2011) Fermentative biohydrogen production systems integration. Bioresour Technol 102:8534–8542Hao OJ (2003) Sulphate-reducing bacteria. In: Mara D, Horan N (eds) Handbook of water and wastewater microbiology. Academic Press Inc, London, pp 459–468Harremoës P, Capodaglio AG, H

    Combustion monitoring for biomass boilers using multivariate image analysis

    Get PDF
    Les procédés de combustion sont utilisés dans la plupart des industries chimiques, métallurgiques et manufacturières, pour produire de la vapeur (chaudières), pour sécher des solides ou les transformer dans des fours rotatifs (ou autres). Or, les combustibles fossiles qui les alimentent (ex. : gaz naturel) sont de plus en plus dispendieux, ce qui incite plusieurs compagnies à utiliser d’autres sources de combustibles tels que de la biomasse, des rejets inflammables produits par le procédé lui-même ou des combustibles fossiles de moindre qualité. Ces alternatives sont moins coûteuses, mais de composition, et donc de pouvoir calorifique, plus variable. De telles variations dans la chaleur dégagée par la combustion perturbent l’opération des procédés et la qualité des produits qui dépendent de ces installations. De nouvelles stratégies de contrôle de la combustion doivent donc être élaborées afin de tenir compte de cette nouvelle réalité. Il a été récemment démontré que l’énergie dégagée par la combustion est corrélée à l’aspect visuel de la flamme, principalement sa couleur, ce qui permet d’en quantifier les variations par imagerie numérique. L’objectif de ce projet industriel consiste à faire la démonstration que l’analyse d’images multivariées peut servir à l’identification du comportement d’une chaudière à biomasse. La chaudière à biomasse opérée par Irving Pulp & Paper Ltd (Saint-John, Nouveau-Brunswick) fera office d’exemple. Les résultats montrent qu’un modèle bâtit à partir des informations fournies par les images ainsi que les données de procédé donne de bonnes prédictions de la quantité de vapeur produite (R2modèle=93.6%, R2validation=70.1%) et ce, 2,5 minutes à l’avance. Ce projet est la première étape du développement d’une nouvelle stratégie de contrôle automatique de la combustion de biomasse, capable de stabiliser l’énergie dégagée, malgré les variations imprévisibles dans le pouvoir calorifique et les proportions des combustibles utilisés provenant de différentes sources.Biomass is increasingly used in the process industry, particularly in utility boilers, as a low cost source of renewable, carbon neutral energy. It is, however, a solid fuel with some degree of moisture which feed rate and heat of combustion is often highly variable and difficult to control. Indeed, the variable bark properties such as its carbon content or its moisture content have an influence on heat released. Moreover, the uncertain and unsteady bark flow rate increases the level of difficulty for predicting heat released. The traditional 3-element boiler control strategy normally used needs to be improved to make sure the resulting heat released remains as steady as possible, thus leading to a more widespread use biomass as a combustible. It has been shown in the past that the flame digital images can be used to estimate the heat released by combustion processes. Therefore, this work investigates the use of Multivariate Image Analysis (MIA) of biomass combustion images for early detection of combustion disturbances. Applied to a bark boiler operated by Irving Pulp & Paper Ltd, it was shown to provide good predictions, 2.5 minutes in advance, of variations in steam flow rate (R2fit=93.6%, R2val=70.1%) when information extracted from images were combined with relevant process data. This project is the first step in the development of a new automatic control scheme for biomass boilers, which would have the ability to take proactive control actions before such disturbances in the manipulated variable (i.e. bark flow and bark properties) could affect steam production and steam header pressure

    Design, modelling, simulation and integration of cyber physical systems: Methods and applications

    Get PDF
    The main drivers for the development and evolution of Cyber Physical Systems (CPS) are the reduction of development costs and time along with the enhancement of the designed products. The aim of this survey paper is to provide an overview of different types of system and the associated transition process from mechatronics to CPS and cloud-based (IoT) systems. It will further consider the requirement that methodologies for CPS-design should be part of a multi-disciplinary development process within which designers should focus not only on the separate physical and computational components, but also on their integration and interaction. Challenges related to CPS-design are therefore considered in the paper from the perspectives of the physical processes, computation and integration respectively. Illustrative case studies are selected from different system levels starting with the description of the overlaying concept of Cyber Physical Production Systems (CPPSs). The analysis and evaluation of the specific properties of a sub-system using a condition monitoring system, important for the maintenance purposes, is then given for a wind turbine

    Neural network modelling and prediction of the flotation deinking behaviour of complex recycled paper mixes.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2011.In the absence of any significant legislation, paper recycling in South Africa has grown to a respectable recovery rate of 43% in 2008, driven mainly by the major paper manufacturers. Recently introduced legislation will further boost the recovery rate of recycled paper. Domestic household waste represents the major remaining source of recycled paper. This source will introduce greater variability into the paper streams entering the recycling mills, which will result in greater process variability and operating difficulties. This process variability manifests itself as lower average brightness or increased bleaching costs. Deinking plants will require new techniques to adapt to the increasingly uncertain composition of incoming recycled paper streams. As a developing country, South Africa is still showing growth in the publication paper and hygiene paper markets, for which recycled fibre is an important source of raw material. General deinking conditions pertaining to the South African tissue and newsprint deinking industry were obtained through field surveys of the local industry and assessment of the current and future requirements for deinking of differing quality materials. A large number of operating parameters ranging from waste mixes, process variables and process chemical additions, typically affect the recycled paper deinking process. In this study, typical newsprint and fine paper deinking processes were investigated using the techniques of experimental design to determine the relative effects of process chemical additions, pH, pulping and flotation times, pulping and flotation consistencies and pulping and flotation temperatures on the final deinked pulp properties. Samples of recycled newsprint, magazines and fine papers were pulped and deinked by flotation in the laboratory. Handsheets were formed and the brightness, residual ink concentration and the yield were measured. It was determined that the type of recycled paper had the greatest influence on final brightness, followed by bleaching conditions, flotation cell residence time and flotation consistency. The residual ink concentration and yield were largely determined by residence time and consistency in the flotation cell. The laboratory data generated was used to train artificial neural networks which described the laboratory data as a multi-dimensional mathematical model. It was found that regressions of approximately 0.95, 0.84 and 0.72 were obtained for brightness, residual ink concentration and yield respectively. Actual process data from three different deinking plants manufacturing seven different grades of recycled pulp was gathered. The data was aligned to the laboratory conditions to take into account the different process layouts and efficiencies and to compensate for the differences between laboratory and plant performance. This data was used to validate the neural networks and select the models which best described the overall deinking performances across all of the plants. It was found that the brightness and residual ink concentration could be predicted in a commercial operation with correlations in excess of 0.9. Lower correlations of ca. 0.5 were obtained for yield. It is intended to use the data and models to develop a predictive model to facilitate the management and optimization of a commercial flotation deinking processes with respect to waste input and process conditions

    Intelligent Monitoring of Advanced Control and Optimization

    Get PDF
    An optimal performance of process controllers and control loops is essential for process economy as well as process quality. The increased cost of energy and raw material as well as customer demand for quality requirements are forcing the control engineers to develop and provide solutions, which can operate in ever changing process conditions cost efficiently without compromising safety. Based on statistics, only a fraction of used control loops are performing at optimum level. In a multivariate process there can be dozens control loops to be monitored, which makes manual inspection difficult. Therefore, a system that automatically evaluates the process state and helps predicting future outcomes using real time optimization and offline data analysis is in order. A control loop performance monitoring system is often used as a support for control optimization. It can also be used for inspection of process actuator condition. A process performance monitoring tools usually makes use of statistical and mathematical methods with a visual user interface to provide adequate amount of data. In this thesis, two process performance monitoring tools for advanced control and opti-mization were implemented. The tools are used to monitor selected control methods, providing essential information about their status. The usefulness of a process perfor-mance monitoring system is demonstrated at a site using real process data. The tools were included into an existing process monitoring system that was already in place at a process site

    Design revolutions: IASDR 2019 Conference Proceedings. Volume 2: Living, Making, Value

    Get PDF
    In September 2019 Manchester School of Art at Manchester Metropolitan University was honoured to host the bi-annual conference of the International Association of Societies of Design Research (IASDR) under the unifying theme of DESIGN REVOLUTIONS. This was the first time the conference had been held in the UK. Through key research themes across nine conference tracks – Change, Learning, Living, Making, People, Technology, Thinking, Value and Voices – the conference opened up compelling, meaningful and radical dialogue of the role of design in addressing societal and organisational challenges. This Volume 2 includes papers from Living, Making and Value tracks of the conference

    Effect of curing conditions and harvesting stage of maturity on Ethiopian onion bulb drying properties

    Get PDF
    The study was conducted to investigate the impact of curing conditions and harvesting stageson the drying quality of onion bulbs. The onion bulbs (Bombay Red cultivar) were harvested at three harvesting stages (early, optimum, and late maturity) and cured at three different temperatures (30, 40 and 50 oC) and relative humidity (30, 50 and 70%). The results revealed that curing temperature, RH, and maturity stage had significant effects on all measuredattributesexcept total soluble solids
    corecore