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Prosessiteollisuudessa säätöpiirien optimisuorituskyvyn saavuttaminen on ensiarvoisen 
tärkeää sekä taloudellisuuden että laadun kannalta. Korkeat raaka-aineiden ja energian 
hinnat, sekä laatuvaatimukset asettavat säätösovellukselle haasteita toimimaan 
kustannustehokkaasti vaarantamatta henkilöstön turvallisuutta. Tilastollisesti vain osa 
säätöpiireistä toimii optimaalisella tasolla. 
 
Monimuuttujaprosessissa on tyypillisesti useita kymmeniä säätöpiirejä, joten niiden 
manuaalinen seuranta on haastavaa. Tästä syystä monimuuttujaprosessien automaattinen 
monitorointi on erittäin hyödyllinen ratkaisu. Säätöpiirien suorituskykyä monitoroivan 
järjestelmän ensisijaisina tehtävinä on analysoida prosessin tilaa sekä tukea säädön 
optimointia. 
 
Tässä työssä tavoitteena oli selvittää menetelmiä laadukkaan säädön suorituskyvyn 
monitoroinnin toteuttamiseen ja luoda tarkoitukseen soveltuva työkalu. Suorituskyvyn 
monitoroinnin käyttökelpoisuutta osoitettiin hyödyntämällä dataa oikeista prosesseista. 
Työkalut sisällytettiin osaksi olemassaolevaa prosessin monitorointijärjestelmää. 
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ABSTRACT 
 
TAMPERE UNIVERSITY OF TECHNOLOGY 
Master’s Degree Programme in Automation Technology 
LÄÄPERI, TUOMAS: Intelligent Monitoring of Advanced Control and Optimization 
Master of Science Thesis, 71 pages 
November 2014 
Major: Process Automation 
Examiners: Prof. Matti Vilkko and University Teacher Mikko Laurikkala 
Keywords: Control Loop Performance Monitoring, Model Predictive Control, Model 
Reference Adaptive Control, Deinking, Causticizing 
 
An optimal performance of process controllers and control loops is essential for process 
economy as well as process quality. The increased cost of energy and raw material as 
well as customer demand for quality requirements are forcing the control engineers to 
develop and provide solutions, which can operate in ever changing process conditions 
cost efficiently without compromising safety. Based on statistics, only a fraction of used 
control loops are performing at optimum level. 
 
In a multivariate process there can be dozens control loops to be monitored, which 
makes manual inspection difficult. Therefore, a system that automatically evaluates the 
process state and helps predicting future outcomes using real time optimization and of-
fline data analysis is in order. A control loop performance monitoring system is often 
used as a support for control optimization. It can also be used for inspection of process 
actuator condition. A process performance monitoring tools usually makes use of statis-
tical and mathematical methods with a visual user interface to provide adequate amount 
of data. 
 
In this thesis, two process performance monitoring tools for advanced control and opti-
mization were implemented. The tools are used to monitor selected control methods, 
providing essential information about their status. The usefulness of a process perfor-
mance monitoring system is demonstrated at a site using real process data. The tools 
were included into an existing process monitoring system that was already in place at a 
process site.  



 III 

FOREWORD 
 
This thesis was done for Metso Automation with an intention to provide a profitable 
solution for control system performance monitoring. The thesis was funded by Metso 
Corporation. 
 
I wish to express my gratitude to Prof. Matti Vilkko and DSc. Mikko Laurikkala at the 
Tampere University of Technology for their guidance and advice throughout the work.  
 
I would like to Thank’s my supervisors MSc. Johanna Newcomb, MSc. Emilia Torttila-
Miettinen, and Greg Fralic from Metso for their outstanding support during the process.  
In addition, I express my gratitude also to all my colleagues at Metso Automation’s Per-
formance Solutions team, whom I’ve had the privilege to work with during the last two 
years. 
 
Last but not least, I thank my family, friends and especially my girlfriend Milla who has 
encouraged me to push through and finalize my work. 



 IV 

Table of contents 
1 Introduction........................................................................................................... 1 
2 Control Loop Performance Monitoring .................................................................. 4 

2.1 Process Monitoring, Fault Detections and Diagnostics ................................... 5 
2.2 Benefits of Control Loop Performance Monitoring ........................................ 5 
2.3 Process Characteristics Analysis .................................................................... 6 
2.4 Solutions for Control Loop Performance Monitoring ................................... 11 
2.5 Expertune PlantTriage Control Loop Monitoring ......................................... 11 
2.6 Control Performance Monitor by Matrikon .................................................. 14 
2.7 Optimal Process Performance Monitoring ................................................... 14 

3 Process Introduction ............................................................................................ 15 
3.1 Recycled Fiber Process ................................................................................ 15 
3.2 Causticizing Process .................................................................................... 18 

4 Recycled Fiber Deinking Process Control ........................................................... 20 
4.1 Model Predictive Control............................................................................. 21 
4.2 Performance Solutions RCF Process Control ............................................... 29 
4.3 RCF Process Monitoring and Control .......................................................... 33 

5 Causticizing Process Control ............................................................................... 34 
5.2 Model Reference Advanced Causticizing Control ........................................ 35 
5.3 Causticizing Process Control ....................................................................... 36 
5.4 Causticizing Process Control and Monitoring .............................................. 40 

6 Intelligent Control Loop Performance Monitoring Solution ................................. 42 
6.1 Existing Performance Monitoring Tools ...................................................... 42 
6.2 Intelligent Control Loop Performance Monitoring Tool for MPC ................ 43 
6.3 Intelligent Control Loop Performance Monitoring Tool for MRAC ............. 61 

7 Future Work ........................................................................................................ 64 
7.1 Future Improvements and Product Development for MPC ........................... 64 
7.2 Future Improvements and Product Development for MRAC ........................ 66 

8 Summary ............................................................................................................. 67 
References .................................................................................................................. 69 

 
  



 V 

ABBREVIATIONS 
 
CLPM Control Loop Performance Monitoring 
SISO Single Input Single Output 
DCS Distributed Control System 
MIS Mill Information System 
MPC Model Predictive Control 
MRAC Model Reference Adaptive Control 
MES Manufacturing Executing System 
KPI Key Performance Indices 
GUI Graphical User Interface 
SP Set Point 

u “Delta u” Control change 
y “Delta y” Output change 

OS-% Overshoot percentage 
Ts Time constant 
Tsettle Settling time 
Td Dead time 
ODE Ordinary Differential Equation 
EWMA Exponential Weighted Moving Average 
STD Standard Deviation 
R2 “R squared” value 
rxy Cross-correlation 
PID Proportional Integral Derivative 
ASYM Asymptotic Method of Identification 
RCF Recycled Fiber 
NaOH Sodium Hydroxide 
H2O2 Hydrogen Peroxide 
CaO Calcium Oxide 
H2O Hydrogen Dioxide 
Ca(OH)2 Calcium Hydroxide 
Na2CO3 Sodium Carbonate 
CaCO3 Calcium Carbonate 
Na2SO4 Sodium Sulfate 
CE-% Causticizing efficiency 
PCDS Process Control Data Server 
MIMO Multi Input Multi Output 
CV Controlled Variable 
MV Manipulated Variable 
FF Feed Forward 
DV Disturbance Variables 
SS Steady state 



 VI 

FPM First Principal Model 
ERIC Effective Residual Ink Concentration 
J Cost function 
e Control error 

 “Delta " Predicted control change 
LP Linear Programming 
QP Quadratic Programming 
DMC Dynamic Matrix Control 
OPC OLE  for  Process  Control;  OLE=  Object  Linking  and  Em-

bedding 
GL Green Liquor 
WL White Liquor 
TTA Total Titrative Alkali 
MRAS Model Reference Adaptive System 
NumPy Numerical Python 
MIT Massachusetts Institute of Technology  
VPN Virtual Private Network 
Kmodel coefficient Model coefficient 
MVhigh limit Manipulated variable high limit 
MVlow limit Manipulated variable low limit 
Kp Process gain 
CaCl2 Calcium chloride 
PV Process Value 
MM Model Mismatch 
IAE Integrated Average Error 
CO Controller Output 
 



 1 

1 INTRODUCTION 

Nowadays, in the pulp and paper industry one challenge is the continuous optimization 
of manufacturing processes in terms of production, quality and cost. Global competition 
combined with high costs of raw material as well as energy pricing are driving compa-
nies to improve their  process performance in order to reach their  goals and meet end-
user demands. 

Most processes are multivariate, which means that there are more than one input and 
output variable that might all have a relationship with one another. A multivariate pro-
cess requires an advanced control solution. An advanced control solution can manage 
several entities instead of single control loop. It is also unnecessary to try to control the-
se kinds of processes manually. With the increased level of automation monitoring sys-
tems are connected to more equipment and process more data at the same time. A mul-
tivariate process also requires that a control engineer needs to be aware of more than 
one process variable at a time. A control loop performance monitoring (CLPM) pro-
vides real time awareness of the process, thus allowing high process performance. The 
methods used for single input and single output processes are applicable for multivariate 
processes as well. Since there are more than one variable that needs to be considered of, 
process monitoring has to be evaluated differently. Lynch (1992) studied control loop 
performance monitoring for single input, single output (SISO) industrial processes, us-
ing mathematical analysis methods and simulation. Studies regarding control loop per-
formance monitoring usually include expert systems, pattern recognition, or quantative 
time-series analysis approaches (Kraus & Myron, 1984;Hägglund, 1992). 
  



 2 

 
An effective process control loop performance monitoring system should comprise 

at least four elements (Fig. 1) 

           

 
 

         
          
          
          
          
          
          
          
          
          
          
          
          
          
          
           

Figure 1.Actions for performance monitoring.  

Performance monitoring can be viewed on a four step set. First step is data collec-
tion using different kinds of sensor and scanners. The second step is to separate mean-
ingful data from the less significant, and store it in the right place. The third step, data 
analysis, is performed by a control specialist. Based on the data analysis, actions are 
made for the process control. Last step of performance monitoring is data display using 
informative style methods. The benefit of installing an efficient real time control loop 
performance monitoring system is the immediate access to all required production relat-
ed information by the correct personnel. There should be enough data to clearly identify 
the reasons of production stops,  time loss,  etc.  At the same time, presenting too much 
information can confuse or even distract operators. 

The thesis was conducted in association with Metso Automation. Metso provides its 
customers solutions that combine advanced control and optimization, measurements and 
analyzers, as well as consulting services to help them reach top performance. In order to 
provide a sustained performance improvement it is important to measure and track pro-
cess performance continuously. For this purpose, a comprehensive infrastructure, Per-
formance Management Suite, is already in place today. The existing tools allow contin-
uous real time performance monitoring and offline data analysis. Data is collected from 
the mill distributed control system (DCS), mill information system (MIS), and laborato-
ry quality database and stored to a history database at a server at customer site, called 
Analysis Server. Analysis Server data is used to generate automated daily, weekly, and 
monthly reports, alarms and notifications of process, control and measurement condi-
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tions,  and trends.  Both Metso’s control specialists and customers are users of the Per-
formance Management Suite. The Analysis Server is accessible for both local and re-
mote users, which allows the specialists to provide off-site support for customers. 

The  aim of  this  thesis  is  to  provide  a  solution  that  demonstrates  controller  perfor-
mance effectively and informatively. The tools that are used today project the overall 
performance and final quality well but they fail to unveil the dependencies between pro-
cess parameters. For complex, multivariate and highly interactive processes it is im-
portant to understand these dependencies in order to achieve a highest possible control 
performance. The aim of this thesis is to find solutions for the following questions: 

 
 Which analysis method gives the most information of process state, and will 

it provide a solution for effective performance monitoring? 
 Which are the necessary key elements for indicating control performance? 

 
Two control solutions, model predictive control (MPC) and model reference adap-

tive control (MRAC), were used as case examples for testing the selected study method. 
MPC is a control solution that predicts the change in the dependent variables of the 
modeled systems caused by changes in the independent variables. The use of MPC 
started to increase in 1970’s (Richalet et al 1978; Cutler & Ramaker 1979) in the petro-
chemical  industry.  MRAC  is  a  control  solution,  where  the  closed  system  output  at-
tempts to follow a given process model. Whitaker studied the design of MRAC for air-
craft control already in 1959 (Whitaker 1959). 

In this thesis, mathematical and statistical analyzing methods combined with visual 
analyses were used as study methods to detect how the controller is performing. Based 
on the study, an intelligent control loop performance monitoring tools for both of the 
control solutions were implemented. The implemented control loop performance moni-
toring tools were applied to ongoing processes, thus giving a more realistic outcome. 
The tool is primarily targeted for Metso’s control specialists. A control loop perfor-
mance monitoring software can also perform as a major asset guiding a young engineer 
through the process control interactions as well as providing a useful tool for training. 

This thesis work is structured so that public domain information of the commercially 
available solutions is studied in chapter 2. In chapter 3 the studied processes are intro-
duced. Chapters 4 and 5 focus on the concepts of the two control methods. Conclusions 
made based on the public domain information in chapter 2 and the review of process 
requirements in chapters 3 to 5, will guideline the implementation of the intelligent con-
trol loop performance monitoring solution design. Design and implementation of the 
intelligent monitoring application for MPC and MRAC is described in chapter 6. Final-
ly, chapter 7 reviews the achieved results and discusses the future work for improving 
the performance tools. 
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2 CONTROL LOOP PERFORMANCE MONI-
TORING  

Real-time performance monitoring has an integral part of efficient process use. 
Among others, rising energy costs and increasing demand for improved product quality 
are driving forces.  Although, process measurements usually indicate process perfor-
mance, it is equally important to understand the purpose and limitations of the various 
performance assessment techniques since each measurement signifies very specific in-
formation about the nature of the process.  

Performance monitoring can be used not only for preventative maintenance, but also 
identifying poorly or under-performing loops. Automatic process control solutions with 
real time monitoring and performance analysis are fulfilling this market need. The prob-
lem with controller performance monitoring is not the lack of techniques and methods, 
but the lack of guidance as to how to turn statistics into meaningful and actionable in-
formation that can be applied to improve performance.  

Monitored data should help the engineers and process operators to respond faster to 
the events that may affect the desired result. A system should also alarm and inform the 
respective department concerning all recognized faults. The monitoring system is not 
just a display of tables that show production data, it also has a reporting and administra-
tion module, where stored data can be analyzed to find trends, estimations and projec-
tions for knowledge-based decision making and production planning. Proactively de-
tected faults will decrease wasted time and improve overall equipment effectiveness. 
Production monitoring and machine data collection is one of the manufacturing execu-
tion systems (MES) functions.  

There are many helpful analyzing tools, which help understanding process charac-
teristics, and moreover, variable interactions. Most of the used analyzing tools base on 
statistics. Statistics provides tools for prediction and forecasting the dynamics of the 
process through statistical models. In addition, data patterns may be modeled in a way 
that accounts for randomness and uncertainty in the observations. 

In this chapter, two existing control loop performance monitoring systems are dis-
cussed and their features are described. A model used to describe an industrial process 
is given, which is followed by a discussion of the importance of process monitoring, 
and why and how the specific properties are monitored using different types of analyses. 
Based on the existing CLPM systems a foundation for the research is set,  providing a 
starting point for the tools. 
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2.1 Process Monitoring, Fault Detections and Diagnos-
tics 

Fault diagnosis has a primary importance in modern process automation. It provides 
the bases for fault tolerance, reliability or security, which constitutes fundamental de-
sign features in complex engineering systems. The system under consideration is moni-
tored and the data is passed to fault detection algorithms or procedures. The most basic 
form of fault detection is to register an alarm when an abnormal condition develops in 
the monitored system. Once a fault is detected, procedures may also be used to identify 
or diagnose the cause of the abnormal situation. Comparing the monitored data to previ-
ous estimates will provide a good evaluation of model quality.  If there are inconsisten-
cies, it might be an indication that at least one fault has occurred. Detecting the faults 
and their causes, thus making adjustments to the process models is crucial preparing for 
future exceptions. 

2.2 Benefits of Control Loop Performance Monitoring 

There are multiple benefits for implementing a control loop performance monitoring 
(CLPM) software,  and it  is  helpful for both the control system provider as well  as the 
customer. First, CLPM software provides the engineers and technicians a tool to identi-
fy the good and poor performing control loops. Further analysis allows diagnostics for 
the causes of poorly performing control loops. A control loop may be performing poor-
ly, but if it is not an important control loop it can be ignored if higher prioritized control 
loops are performing poorly as well. CLPM software considers both the performance 
and the importance of control loops, process control tuning work can be prioritized, thus 
improving work efficiency and save time.  

A control loop performance monitoring software can maintain history on several as-
pects of control loop performance and controller tuning settings. These can be trended 
over time to see the effect of tuning changes on loop performance. It is helpful to see at 
what point in time the tuning settings were changed, what the old values were, what 
they were changed to, and what effect the changes had on for example loop perfor-
mance. 

An essential aspect of any performance improvement initiative is the reporting and 
monitoring of key performance indicators (KPI’s). A KPI is a type of measurement, 
which in process industry can be e.g. a guaranteed process value improvement due to 
the installed control solution. The parameters produced by CLPM software can be use-
ful for evaluating the success of a control optimization project or loop tuning effort 
through a before and after comparison. CLPM software not only indicates which loops 
have poor performance, but also gives a diagnosis of why the performance is poor. Off-
tuning, oscillations, and controller output running into limits are examples of diagnos-
tics which the software can present. 
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2.3 Process Characteristics Analysis 

All processes have some kind of variation. Without variation there would be no need 
for control engineering. Process variable interactions cause one part of the variation and 
some of the variation is due to natural process variation or noise. Data collection and 
visualization is crucial part of process monitoring but to actually improving the process 
and evaluate its characteristics, it is important to have powerful analyzing tools. 
 

2.3.1 Interactive Visual Analysis 

Interactive visual analysis combines a computer with the perceptive capabilities of 
humans, in order to extract knowledge from large and complex datasets. This analysis 
method relies heavily on graphical user interface (GUI), usually provided by computers. 
Interactive visual analysis well suited for analyzing high-dimensional data that has a 
large number of data points, where simple graphing and non-interactive techniques give 
an insufficient understanding of the information. 
 

2.3.2 Set Point Analysis 

Set point (SP) analysis is made by executing a step-response test. In a step-response 
test, a change is made in an input variable u, which causes a certain change in an out-
put variable y. There are a number of techniques for analyzing closed loop process 
data that is collected during a set point response experiment. These techniques allow an 
orderly comparison of process response shapes and characteristics. When analyzing a 
set point response, the criteria used to describe how well the process responds to the 
change can include for example process overshoot (OS-%), rise time and settling time.  

Process overshoot means the percentage that the process value will exceed the given 
set point. Rise time is time required for the response to reach a certain percentage of the 
given final value. In Figure 2, the rise time Ts is a time constant, which indicates the 
dynamics of the process. Settling time Tsettle tells how long period of time, it takes for a 
process to reach a new steady-state. Td is  the dead time of the process that is  used for 
controller tuning. These criteria can be used both as specifications for commissioning of 
control loops as well as for documenting changes in performance due to the adjustment 
of the controller or process parameters. Set point analysis example is presented in Fig-
ure 2. 
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Figure 2. Set Point Analysis. A set point change is performed in order to move the pro-
cess to another state. Step response test is a commonly used method to determine the 
process dynamics as well as the quality of the controller. Typical criteria used for anal-
ysis are for example process overshoot (OS-%), rise time (Ts), and settling time (Tsettle). 

Usually the process models are kept simple for better understanding. Such examples 
are the linear differential equations (Dorf & Bishop 2000). Differential equation is said 
to be linear if it can be written as a linear combination of the derivatives of a certain 
variable 

 
( ) = ( ) ( ) + ( )       (2.1) 

 
Where ( ) and ( ) are continuous functions. The variables ( ) and ( ) denote 

the derivatives, thus the order of the process. 
First order models are relatively simple and easy to create, which makes them easy 

to approach. The models are only rough estimates of the process, so they are only 
somewhat accurate. Nonlinear models describe the process more accurately, but they 
are more complex and in the past their use has been limited by low computing power. 
Currently, there are some commercial solutions available and in the future the use of 
non-linear models is expected to increase. 

A transfer function is a mathematical representation, in terms of spatial or temporal 
frequency, of the relationship between the input and output of a linear time-invariant 
system, with zero initial conditions and zero-point equilibrium. Transfer functions are 
used to model a process or a certain part of a process. A fairly commonly used transfer 
function is the Laplace first order transfer function. (James, 2006) Strictly, the Fourier 



 8 

and Laplace transforms are distinct, and neither is a generalization of the other. The 
definitions of the two are presented in equations 2.2 and 2.3. 

 

{ ( )} = ( )             (2.2) 

 

{ ( )} = ( )                (2.3) 

 
There is an obvious structural similarity between the two equations. In the Laplace 

transform definitions recall that s or “transfer s” is a complex variable, and may be writ-
ten as 

 
= +                (2.4) 

 
If  and  are real variables, it can be interpreted that the Fourier transform is a 

special case of function f(t) of the Laplace transform, when =0. A Laplace transform is 
a solution for ordinary differential equation (ODE), and it can be determined with a 
simple step-response test. Eq. 2.5 shows and example of Laplace transform for a first 
order dynamic process model. 

 

( ) =
( )

           (2.5) 

Where K is a constant process gain between two interacting variables, T is the dead 
time, and  is the time constant, or the dynamics of the process. First order transfer 
functions can be used to model quite accurately the dynamic behavior of a container, 
which is a basic component in processes throughout. The relationship between an input 
and an output can thus be written 

 
( ) = ( ) ( )          (2.6) 

Where ( ) is the process transfer function, and ( ) the control change transfer 
function. 

2.3.3 Disturbance Analysis 

A disturbance is defined as a signal that affects the measured process variable, 
which may not be fully modeled. In an interacting plant environment, each control loop 
can have many different disturbances that impact performance. By understanding the 
type of disturbance and its impact on the control loop, it is easier for engineers, opera-
tors and technicians to identify the cause and work for an appropriate solution. Auto-
correlation is one method that is used to determine how data in a time series are related 
(Box & Jenkins 1970). By comparing current process measurement patterns with those 
exhibited in the past, the nature of disturbances and how they affect a system can be 
analyzed. One case of disturbance occurs as oscillation. Oscillation is the repetitive var-
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iation, typically in time, of some measure about a central or between two or more dif-
ferent states. Oscillation is used not only to determine a disturbance, but also find the 
source variable of process variation. 

 

2.3.4 Time Series Analysis 

One of the primary objectives of building a model for a time series is to be able to 
forecast the values for that series at future times based on previous values. Equally im-
portant is the assessment of the precision of the forecasts (Cryer & Chan 
2008). Regression analysis is used to test the correlation between two or more datasets 
point by point. Time series analysis takes also account for time. In process control 
where delays are always present this can be utilized by analyzing for not only variable 
interactions but also the time offset to improve process predicting.  

The time series data is a sequence of observations. The observed phenomenon can 
be either an essentially random process or orderly process. There are different tech-
niques that can be used to help predicting process outcome based on a time series data. 
A typical way is to add a filter to the data. Intuitively, the simplest way to filter a time 
series data is to calculate an unweighted moving average. The filtered data can then be 
presented as the mean of the last k observations: 

=                     (2.10) 

 
Where  is  the  set  of  observation  points.  A  more  sophisticated  way  is  to  add  a  

weighting coefficient of choice to the calculation. The idea is to ease prediction by giv-
ing more weight to most recent terms and less weight to older data.  

Commonly used filtering technique is the exponential weighted moving average 
(EWMA). A simple form of an exponential filter can be described as 

 
= + (1 ) ,       (2.11) 

 
Where  is a smoothing factor that varies between 0 and 1. The value  depends on 

the process dynamics. In the simple moving average the past observations are weighted 
equally. Exponential filtering however, assigns exponentially decreasing weights over 
time, thus creating a more precise result. Coefficient (1- ) indicates that a new filtered 
value  depends more significantly on the previous filtered value. The precision of 
the filtered value improves over time with the amount of observations. 
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2.3.5 Bi-variate Regression and Correlation Analysis 

A linear regression is designed to find the best-fitting model for a set of data using a 
straight line. (Lane 2013). The model used to describe the relationship between a single 
dependent variable y and a single independent variable x is  

 
= + +         (2.8) 

 
Where  and  are the model parameters and e is a probabilistic error term, or bi-

as, that accounts for the variabily in y that cannot be explained fully, by the linear rela-
tionship by x. If the error term is not present, the model could be determined sufficiently 
using only one variable. There are various tests that then can be used in order to deter-
mine if the model is satisfactory. If the model is satisfactory, the estimated regression 
equation can be used to predict the value of the desired variable given values for the 
interacting variables. 

The most recognized measure of dependence between two quantities is the Pearson 
product-moment correlation coefficient (Cryer & Chan 2008), which is more commonly 
known as the correlation coefficient. It is obtained by dividing the covariance of the two 
variables by the product of their standard deviations (STD). For a series of n measure-
ments of x and y, the sample correlation coefficient can be used to estimate the popula-
tion correlation between x and y 

 

= ( )( )
( ) = ( )( )

( ) ( )
         (2.9) 

 

Where  and   are the sample means and and  are the sample standard devia-
tions of x and y. The correlation coefficient between the two datasets varies from -1 and 
+1, where positive values mean direct linear correlation, while negative values indicate 
an inverse correlation. As correlation coefficient approaches zero there is less of a rela-
tionship-. The closer the coefficient is to either 1 or 1, the stronger the correlation be-
tween variables.  

In statistical analysis, the coefficient of determination denoted R2 and pro-
nounced “R squared”, indicates how well data points fit a statistical model. There are 
several different definitions of R2 which  are  only  sometimes  equivalent.  One  class  of  
such cases includes that of simple linear regression. In this case the R2 is simply the 
square of the sample correlation coefficient between the outcomes and the predicted 
values. R2-value varies from zero to one. The closer it is to one, the more specifically 
the predicted values can be determined using the particular dataset. (Cameron & 
Windmeier 1996). 

In process control, cross correlation can determine variable interactions in general, 
but it can also be used for process model quality evaluation. For example in correlation 
time series analysis, maximum value of 1 is achieved at a time point, when variable 
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interaction is the strongest. Considering two curves with equal amplitudes and frequen-
cies illustrated in Figure 3. When evaluating over time, it is certain that there is a lag 
between the two curves. In a perfect correlation, the curves would be overlapping, and 
the maximum value of the function would be attained at time point 0.  

 
Figure 3. Time delay shift signal compared to undelayed signal. In a sinusoidal wave a 
time delay shift shows the difference between two signals. In process control time delay 
shift can be used to evaluate the predictability of a quality transmission. A case where 
time delay is longer than predicted, could be indicating a modeling error. 

Since there is time delay shift between the two signals, the maximum value is at-
tained at another time point. In this case, the time delay shift might be an indication of 
foul process model. 

2.4 Solutions for Control Loop Performance Monitoring 

 
Nowadays, most of the provided DCS solutions can be configured to communicate 

with one another. Availability is also an important thing for any performance monitor-
ing tool. Equally important for a performance monitoring tool is ease of access, mean-
ing that all the features can be accessed using a web browser. 

Currently there are a multiple solutions (Smuts et  al  2011) for control loop perfor-
mance monitoring but only few of them have been applied to existing processes. In this 
chapter two solutions are discussed. The features in the two solutions are much alike, 
but some differences do exist. The techniques are a combination of mathematical and 
statistical analyses, process knowledge, and simulation. 

2.5 Expertune PlantTriage Control Loop Monitoring 

PlantTriage control loop performance monitoring consists of three main sections: 
process monitoring, process diagnostics, and process prioritizing. 
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2.5.1 Process Monitoring 

The monitoring section supports most of the well known controllers. Like any con-
trol  loop  performance  monitoring  solution,  it  needs  to  be  real  time,  and  to  provide  an  
ongoing support. Real-time alerts allow the engineers to react to all undesirable perfor-
mance deteriorating effects. 

The monitoring section includes a variety of general features, which are recognized 
as important for any process. Commonly used monitoring is to plot the measured dots 
over time (Fig 4). 

 
Figure 4. Process variable history monitoring (History Monitoring 2014). Process his-
tory monitoring allows the evaluation of the process state over time. 

 There are also customized features for different processes, like the MPC monitoring 
facility. The MPC facility monitors the key performance indices (KPI) of the process, 
but it also evaluates the controller performance, thus help tracking undesired controller 
movement. 

2.5.2 Process Diagnostics 

The process diagnostics section includes statistical tools for process variable analy-
sis. The statistical tools are basic mathematical functions like average and standard de-
viation calculation. The functions may be simple, but they still provide significant 
amount of information about the process state in a long run. Using a correlation analysis 
(Chap. 2.3.4) helps pinpointing highly interacting control loops (Chap.2.3.5).  

Figure 5 shows diagnostics interaction map, which indicates the correlation as well 
as the time delay shift between the chosen variables. In the interaction map, the interac-
tions are represented using shades of different colors; a strong direct correlation is indi-
cated using red color, strong inverse correlation with blue color, and weak or zero corre-
lation with green color. 
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Figure 5. Process interaction map (Interaction Map 2014). Process interaction map is 
an indication process variable interactions as well as the potential time delay shift in a 
control loop. 

The interaction map allows focusing on control loops with greater interaction. This 
kind of prioritizing can help to reduce costs, if the weak correlation control loops can be 
handled with simpler control solutions like PID. 
 

2.5.3 Process Maintenance 

The diagnosis of instrument performance is quite essential feature for the process 
maintenance. In a process with any kind of flow, there is bound to be an adjustable con-
trol valve. Over time the valve position changes often, which eventually causes the 
valve to wear down, or possible even break. Thus, it is beneficial to track control chang-
es or the valve travel distance. 

Control loop tuning feature allows real time configuration by using a browser-based 
interface. The feature is practical, since a control loop performance can be evaluated, 
and if necessary, also reconfigured remotely. 

2.5.4 Process Prioritizing 

Prioritizing a process depends on the perspective of the observer. Any optimized 
control solution considers not only a proper use of single process equipment but also an 
efficient utilization of the whole process. Usually, cost-effectiveness is the most influen-
tial factor. In any active industrial process, profit usually means consistent end product, 
so it is assumed that for a customer, the highest priority is maintaining a required status 
for the end product. However, since process performance is closely related to achieving 



 14 

a desired end profit value, it is equally important to detect poorly performing control 
loops as well as the biggest payback loops. 

2.6 Control Performance Monitor by Matrikon 

As well as the control loop performance monitoring system by Expertune, the Con-
trol Performance Monitor by Matrikon is an independent solution, meaning that it can 
be applied as a part of a control system. The features are much alike the ones in 
Expertune. 

2.6.1 Process Monitoring 

As mentioned, trending a process variable over time is commonly used monitoring 
procedure. It will help to get a rough estimate of the current state as well as the progress 
of the process. Statistical analysis methods help not only identifying process difficulties 
but can also be used for monitoring purposes as well. 

2.6.2 Process Identification 

For process modeling and control loop tuning, the Expertune performance monitor-
ing solution had a PID control loop tuning feature, which was accessible remotely in 
any standard web browser, and had the ability to be configured online. The Control Per-
formance Monitor has the same feature, but unlike in PlantTriage, where the process 
was modeled using individual step response test, Control Performance Monitor uses the 
TaiJi process modeling technology, where more than one step tests are performed sim-
ultaneously.The method was originally developed for single variable processes by 
Ljung and Yuan in 1985, and extended later for multivariate cases (Zhu 1989). 

 

2.7 Optimal Process Performance Monitoring 

Classification of real time information helps understanding how the desired monitor-
ing system should be structured. The idea of a real time monitoring system is not to give 
some information simultaneously with the event but to provide the production team, as 
fast as possible, with the accurate and meaningful data. But there should be enough time 
to respond timely on these events. It will always take some time, sometimes even hours, 
to analyze monitored data and to respond to it. There are many different techniques and 
methods to analyze existing data, both online and offline. Some rely solely on statistics 
while others are more process knowledge based. An optimum solution takes account for 
both statistical and intuitive approaches. It is important to be aware of that neither one 
of two always provides the best possible solution. 

Process performance is not only an indication of the process status but also the con-
trol solution. Regardless of the point of view, process performance needs to be moni-
tored informatively, and the presentation should be easily understood. The right kind of 
well presented performance information will provide a feasible outcome. 
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3 PROCESS INTRODUCTION 

3.1 Recycled Fiber Process 

Paper recycling is the process of converting waste paper into new paper products. 
Large variations in the raw material quality and composition are typical for the recycled 
fibers processes due to the diversity of the raw material. Besides contaminants, recov-
ered paper always contains varying amount of fillers and coating pigments. Recycled 
Fiber (RCF) processing must therefore accommodate changes of the furnish quality. 
(Holik 2000) 

The complexity of the process makes it a challenging subject for control. For com-
plex multivariate processes a modern control solution like Model Predictive Control 
(MPC)  is  required.  The  complexity  of  the  RCF process  is  based  on  two issues,  when 
comparing to virgin fiber manufacturing processes. First, the recovered pulp contains 
more than one type of fiber or paper grades. More importantly, it also contains different 
contaminants and substances such as fillers, coating components, printing inks, and ad-
hesives. For mechanical and optical characteristics it is necessary for a RCF process to 
meet the requirements when it comes to fiber quality and cleanliness. Selection and 
monitoring of RCF play important roles in making the RCF process cost-efficient and 
maintaining adequate quality of the finished product. The primary tasks of RCF process 
are  contaminant  removal  and  eliminating  their  effects  in  order  to  meet  the  quality  re-
quirements. The desired savings can be achieved by monitoring proactively the entire 
process from pulper to paper machine. 

The industrial process of removing printing ink from paper fibers of recycled pa-
per is called deinking. In particular, change in the ratio between newsprint and maga-
zine affects the deinking process directly. The ash and filler content, yield as well as 
foaming ability, affect significantly on brightness, consistency, and strength properties. 
(Holik 2000). Deinking requires utilizing both chemical and mechanical techniques. The 
process has multiple interactive handles that affect final quality. To contribute the suc-
cess of deinking, the process is divided into sub processes: pulping, screening, cleaning, 
pre- and post-flotation, dispersion, and bleaching. 

Pulping 
The first step of the deinking process is to disintegrate the waste paper in water at 

relatively low consistency (5-18%), which is called pulping. Consistency is an im-
portant quality for chemical dosages, since a higher stock consistency in a pulper means 
less water and a higher concentration of chemicals. Chemicals are used to contribute the 
disintegration of fibers. Pulping is one of the key components affecting process perfor-
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mance and efficiency of RCF. The process consists of feeder, pulper, and reject screen-
ing. The feeding equipment structure is determined by the raw material. Similarly, pulp-
ing can be done in pulpers or drum pulpers depending on the condition of the feed raw 
material. 

In the pulping stage, the pH of the stock is increased with caustic soda, also known 
as Sodium Hydroxide (NaOH), to as high as approximately 9-10. Caustic soda is added 
to swell the fibers, so that the printing ink can be removed easily.  

The Hydrogen Peroxide (H2O2) is added to the pulper as a bleaching agent to reduce 
yellowing of the fibers caused by the caustic. Peroxide bleaching is also used in chemi-
cal pulp production and is most successful at high temperature and consistency. On the 
other hand, high temperature softens the thermoplastic stickies that occur in recovered 
paper as contaminants and makes their removal more difficult. Soap is also added in 
pulping stage and it is used as a collector chemical. (Lassus 2000) 

Screening 
The purpose of screening is to remove the impurities in the process as early as pos-

sible with maximum line capacity and yield. It is the primary separation method in re-
covered paper processing. Complete screening of recycled fiber in a single stage is nor-
mally not possible, and usually it is being done in numeral stages. Avoiding fiber loss 
during screening is impossible. Rescreening the first stage rejects in up to fourth stages 
can reduce such losses of the screening system. The cleanliness efficiency of a screen-
ing system increases with higher reject mass flow. It defines how effectively screening 
system performs removing undesired particles from the suspension. Since cleanliness 
efficiency and fiber losses depend on the number of stages, screen selection and system 
operation are always compromises between maximum cleanliness efficiency, minimal 
fiber losses, and investment costs. (Holik 2000) Disc and cylindrical screens are used 
for coarse screening. Depending on the quality of the suspension and the demands of 
higher accept cleanliness, the correct screening equipment is selected. 

Cleaning 
After screening, separation of reject continues in the cleaning phase. Cleaning re-

moves particles from the suspension that affect paper quality or cause excess wear in 
subsequent processing machinery such as refiners, screens, and pumps. The contami-
nants may include heavy weight particles such as sand, metal pieces, and shives or light 
weight particles including plastic foam or other plastic materials. Separation of heavy 
and light weight particles is achieved by centrifugal force, which is caused by the tan-
gential feed. (Holik 2000) 
 

Pre- and Post-Flotation 
Depending on the previous separation processes, the pulp stock still contains differ-

ent particle sizes of printing ink. Flotation is a separation method using the different 
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surface properties of particles. In flotation process, air is introduced into a diluted fiber 
suspension. The hydrophobic or water-repelling ink particles attach to the air bubbles 
and rise to the surface, forming a layer of foam. Besides ink, the process also removes 
ash and fines from the suspension. The foam can be removed mechanically, by over-
flow, or by a vacuum extraction.  

The existing technologies vary widely, primarily by the aeration system, which can 
either be air-permeable bodies or static and dynamic mixers. Other variable features of 
flotation cells are the number of aeration stages and units required for complete flota-
tion, air supply type, foam removal methods, closed or open cells, and cell design and 
arrangement of multiple cell units. (Lassus 2000) There is usually more than one section 
of flotation processes, regarding the different grades of fineness. A flotation process 
before dispersing is called pre-flotation, and after the disperser, it is called post-
flotation. 

Dispersion 
Dispersion involves application of high shear forces to the fibers and the debris par-

ticles to be dispersed. The stock is thickened so that the required amount of energy can 
be transferred.  

In deinking process there are always dirt spots, coating particles, and ink that cannot 
be fully removed from the suspension. However, they can be grinded into almost invisi-
ble pieces with dispersion process. Larger particles can be removed in a post-flotation or 
in an additional washing phase.  

Dispersion process slightly decreases the brightness of the stock; at the same time 
the reduction of particle diminishes their re-flocculation at the paper machine, which 
furthermore enhances runnability on a paper or cardboard machine. Grinding treats fi-
bers mechanically for retaining or improving their strength characteristics. Heat treat-
ment of the heating screw also increases the fibers bulk properties. Bleaching chemicals 
can be added already on the disperser, when it can be treated as a mixing chamber. After 
dispersion, the stock is transported to a bleaching tower. (Holik 2000) 

Bleaching  
The stock usually goes through bleaching and post-flotation processes before storing 

or in some cases conveying it to a paper machine. Hydrogen peroxide is commonly used 
in the bleaching stage as well as in pulping stage. Bleaching is done in bleaching towers 
with  an  agitator  inside  in  order  to  achieve  stock  with  low variation  of  quality.  At  the  
bottom of the bleaching tower, the stock is introduced with dilution water. The purpose 
of dilution water is to prepare the stock for post-flotation process. The purpose of 
bleaching is to prepare the stock for desired brightness. 
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3.2 Causticizing Process 

The target for causticizing process is to convert the inactive sodium carbonate 
(Na2CO3) into the active cooking chemical, sodium hydroxide (NaOH), as efficiently as 
possible. The process is usually divided into six unit operations: dissolving of molten 
smelt to produce green liquor, treatment of green liquor, slaking of lime, causticizing 
chambers, white liquor clarification, and lime mud dewatering. 

Dissolving and Green Liquor Treatment 
Combustion of black liquor in recovery boiler produces inorganic chemical sub-

stances (Na2CO3 and Na2SO4) which form a molten bed on the bottom of the boiler. The 
smelt is then mixed with diluted weak white liquor, and the solution is called green liq-
uor. The formed lime mud is filtered from the green liquor, and then washed with water. 
The resulting filtrate is weak white liquor, which then can be reused. 

The basic purpose of green liquor treatment is to make the green liquor coming from 
the  dissolver  into  a  proper  feed  for  causticizing.  The  treatment  consists  of  removing  
solid impurities from the liquor, adjusting the temperature, and stabilizing system flow 
and fluctuations (Arpalahti et al. 2002). 

Slaking of Lime 
Green liquor and lime (CaO) are mixed in a slaker in a certain proportion, depend-

ing on the process state. The used lime that takes part in the reaction comes either from 
lime kiln or from storage as a makeup lime (Arpalahti et al. 2002). When green liquor is 
mixed with calcium oxide, it slakes with water and form calcium hydroxide 

 
+ 0 ( )                 (3.1) 

The process continues as the formed calcium hydroxide reacts with the sodium car-
bonate of the green liquor, forming sodium hydroxide and calcium carbonate. 
 

( ) + 2 +                                (3.2) 

Causticizing Chambers 
The mixture of slaked lime and green liquor, which is fed to the causticizing cham-

ber, is sometimes called lime milk. The main purpose of causticizing chamber is to 
complete the already started reaction between calcium hydroxide and sodium carbonate. 
The reaction must proceed to completion to decrease the carbonate content in white 
liquor and to avoid any unreacted calcium hydroxide in lime mud. The amount of lime 
that passes through the causticizing chambers should be as small as possible. To mini-
mize the effect of lime shortcutting, the causticizing chambers have independent operat-
ing chambers.  Nowadays,  each tank has more than one chamber on top of each other,  
and there is more than one causticizing chamber in series, to ensure an adequate separa-
tion. The agitators in the causticizing chambers are propeller or turbine type and are 
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used to improve mixing, thus enhancing the completion of the reaction. (Arpalahti et al. 
2002) 

The degree of causticizing, or causticizing efficiency (CE-%), describes the com-
pleteness of the reaction at equilibrium. Typically, the degree of causticizing is around 
70-80%, depending on concentration and sulfidity level.  
 

White Liquor Handling 
The necessary residence time for lime milk in the causticizing chambers, depends on 

the selected method for white liquor separation. The most important goal of separation 
is to produce clear white liquor without any residual lime mud. Efficient separation 
means less carbonate content of the recirculated alkali in the causticizing plant.  

There are two principles that apply to white liquor separation: clarification and fil-
tration. Filtering is usually done by settling where the mixture is pumped to a pressure 
vessel in which liquor will pass through tube-like filter elements while lime mud settles 
on  the  bottom of  the  filter.  After  the  cake  thickness  is  sufficient  enough,  the  liquor  is  
flushed back through the filter elements to release the lime mud cake. After a short de-
lay, lime mud starts to settle towards the bottom of the filter, and a new filtration se-
quence begins. 

Lime Mud Dewatering 
Lime mud is stored between causticizing and the lime kiln to ensure stable and con-

tinuous operation of the kiln. Keeping the lime mud suspended and ready for pumping 
requires continuous agitation in the lime mud tank with compressed air or a mechanical 
agitator. The target in lime mud dewatering is to complete lime mud washing and in-
crease the dry solids so that the lime mud can be fed to the lime kiln. (Arpalahti et al. 
2002) 
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4 RECYCLED FIBER DEINKING PROCESS 
CONTROL 

Deinking process is a multivariate process with multiple process interactions. The 
process is divided into multiple unit processes (Fig. 6).  

 

 
Figure 6. RCF process layout. 1. The first section in RCF is the pulper where the feed 
suspension is disintegrated in a mixture with water and chemicals. The added chemicals 
are used to contribute the disintegration process.2. The screening processes are used to 
remove impurities from the suspension. It is usually done in multiple phases using 
screeners with different fineness abilities. The screening phase is normally followed by 
a cleaning section, where the impurity removal continues. 3. The (pre-or post-) flotation 
process is a separation process that makes use of the different surface properties of the 
particles in the fiber suspension. When Air is introduced into the diluted suspension, the 
hydrophobic ink particles attach to the air bubbles, forcing them to rise to the surface 
with a layer of foam being formed. The layer of foam can then be removed. 4. Disperser 
is a process, where the fibers and the excess particles come across a high shearing 
force. Dispersion is performed to improve the consistency of the suspension and at the 
same time, fining the remaining particles, so they can be removed more easily in the 
post-flotation process.5.-6. The stock is bleached before storing or passing it to a paper 
machine. 

The required measurements for control are performed using the mill’s existing ana-
lyzers and measuring devices, which are stored in a process control data server (PCDS) 
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and mill’s information system (MIS). Some of the data is validated, based on one or a 
set of conditions. Using a set of filters, the data can be limited to only valid points. The 
data that is conditioned or somehow computed is usually stored in another database. In 
this thesis, both measured and conditioned data are used to implement the performance 
monitoring tool.  

In deinking process, the effects of one control move to another process variable can 
sometimes take hours to detect. The complexity of a highly interactive multi input multi 
output (MIMO) process with significant process delays makes justifies the use model 
predictive control (MPC) or a general predictive control (Clarke et al 1987). 

There are also other control solutions for MIMO processes. One is to combine user 
experience to mathematical calculations using fuzzy logic control. Multivariate solu-
tions of PID controls and non-linear solutions may also be used alone or together with 
other solutions. Although, a multivariate PID control is fairly commonly used, the use 
of MPC has increased in recent years due to more powerful computers. The case proc-
ess of this thesis was controlled using MPC, so it is examined more thoroughly. 

4.1 Model Predictive Control 

In pulp and paper industry processes are typically continuous and linked with other 
processes. There are also several variable dependencies within the process itself. Many 
processes are also difficult to model and contain long and varying process delays.  

MPC is a control solution that utilizes mathematical optimization as a method for 
predicting the outcome of a controlled variable (CV) changes. The basic idea is to create 
dynamic process models between inputs and outputs, which are then used to predict the 
outcome of the process. The variables are affected by using process inputs, or manipu-
lated variables (MV). MPC is highly calculation-intensive control technique, which re-
stricted its use in the early years of its development. However, in the last 20 or so years, 
the increase of computing power and the development of calculation methods have 
made MPC applicable for faster real time process control. The biggest advantages com-
paring to traditional control methods like PID’s, is that it is easily applicable for multi-
variable  processes  such  as  RCF.  MPC  also  allows  operating  closer  to  process  con-
straints, which makes it more efficient compared to traditional control methods. 
(Maciejowski 2002) 

In real life, most of the processes are non-linear. However, they can often be consid-
ered to be approximately linear over a small operating range. Linear MPC approaches 
are used in the majority of applications with the feedback mechanism of the MPC com-
pensating for control errors due to structural mismatch between the model and the pro-
cess. In model predictive controllers that consist only of linear models (Qin & Badgwell 
2003), the superposition principle of linear algebra enables the effect of changes in mul-
tiple independent variables to be added together to predict the response of the dependent 
variables. This simplifies the control problem to a series of dynamic matrix algebra cal-
culations that are fast and robust. 

MPC is a useful control method for complex processes. In manual control the opera-
tor is accustomed to control the process at a “normal” and experiential manner. What 
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this means is that certain process variables kept at a safe distance from any process op-
eration limiting constraints. One reason for MPC success is the internal ability to handle 
constraints as part of the control algorithm. A constraint can be an actuator for example 
a valve with finite operating range. This feature has a great importance in process con-
trol since in many processes the desirable operating range is close to the limits. Moreo-
ver, the ability to add feed forward (FF) signals as part of the solution makes the use of 
MPC even more desirable. 

4.1.1 Moving Horizon Control Principle 

In a traditional MPC control solution a concept of moving horizon control principle 
(Fig. 7) is used. At a certain time point, previous process inputs and outputs are used, 
along with the process model, to predict future process and output over a period of time 
called prediction horizon. Control horizon, indicates the time given for a controller to 
design the control changes at specific time intervals in order to reach the desired level. 
If the control horizon is set long, the controller is allowed to make more moderate 
changes. Once the desired control changes are selected, time advances to the next inter-
val, and a new prediction is made. (Maciejowski 2002) 

 
Figure 7. The moving horizon principle. The moving horizon principle explains the 
function of an MPC Controller. A total of four signals are plotted for a controlled vari-
able (CV) with addition the control moves interacting manipulated variables. A predic-
tion for a CV is made for predefined period of time called a prediction horizon, and the 
corresponding control moves over another period of time called control horizon. A free 
response represents a situation what the process state is assumed to be with no control 
changes are made. Reference trajectory describes the controller’s desired outcome, and 
the predicted output is the prediction of future CV value over the prediction horizon. At 
every calculation cycle only one predicted control move is executed. 
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If no control actions are made, the output is called a free response, where the pro-
cess reaches a certain steady-state (SS) after a period of time. A common procedure is to 
generate a second mathematical model, a reference trajectory, which describes a pro-
cess’ assumed behavior. In a simple case, the length of the control horizon is one step, 
i.e. one change made inside the prediction horizon, where the process output is expected 
to reach set point value. In such case, the set point and the reference trajectory have only 
one common point inside the prediction horizon. More commonly, the reference trajec-
tory is selected so that is has several mutual points with the set point 

4.1.2 MPC Control Principle 

MPC uses the mathematical expressions of a process model to predict system behav-
ior. These predictions are used to optimize the process over a defined time period. The 
controller operates according to the following algorithm: First, a process model is de-
termined by engineers. The models are usually linear first order models, which are de-
termined using typical set point analysis (Chap.2.3.2). Based on the step-response test, 
the interactions between the process input and output variables can be determined. Quite 
often first principal models (FPM) are also used for identification (Hedengren et al 
2007). 

When process behavior is predicted according to the MPC control principle, the 
control signals that produce the predicted behavior are used to determine a desirable 
outcome for the controlled variables. An optimizer is used to find the desirable solution 
within a given time interval regarding a set of process constraints.  

4.1.3 Process Variables 

A process variable is an indication of current status of a certain part of the process. 
Accurate measurements are the basis for a successful process modeling. There are a few 
basic variables, such as pressure, temperature, level, flow, which affect the behavior of a 
chemical and physical process, and are therefore monitored. Process variables are either 
direct measurements or derived from the preceding variables. Interaction between two 
variables can be determined by using analysis methods such as the set point analysis. 

As mentioned, process monitoring is equally important to both automation special-
ists and the customer. Keeping track on process variables and performance is critical in 
analyzing and predicting the possible effects and deviations of the particular process. 
The challenge of process monitoring is to recognize the Key Performance Indices 
(KPI’s) and further, display them understandably. For multivariate processes, finding 
KPI’s is especially critical, because of the several dependencies between the variables.  

4.1.4 MPC Process Variables 

The model predictive controller uses a combination of feedback and feed forward 
signals generated by models and current plant measurements to calculate future moves 
in the independent variables that will result in operation that honors all independent and 
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dependent variable constraints. The MPC then sends this set of independent variable 
moves to the corresponding regulatory controller set-points to be implemented in the 
process. By selecting the correct controlled variables, and choosing the required manip-
ulated variables, and adding the right deviating variables, the process interactions can be 
modeled, for example in a control matrix form. MPC process variables are divided into 
three groups according to their purpose and the ability to control.  

Controlled variables (CV’s) are objects for control. Usually, in an MPC application, 
a CV is selected to be an end product quality that is of interest and cannot be controlled 
directly. In a RCF application a CV can for example be the final brightness or the ash 
content of the end product. These variables have set points or a high-low range that the 
controller will try to respect. 

The manipulated variables (MV’s) are variables that are used to control the CV’s. 
MV’s are selected according to the relevance it has on the controlled variables. These 
variables have new set points written to them by the controller in order to achieve the 
set points or regard the limits of the CVs. Usually, the selected variables are qualities 
that are easily perceived, i.e. tank levels and chemical dosages. For a RFC process such 
factors are for example peroxide and caustic dosages as well as the flotation tank levels, 
which have an instant, direct effect on the suspense, but also an indirect a more far-
reaching effect on the end product. The locations of measurements for controlled vari-
ables as well as the points of influence for manipulated variables are shown in Figure 8. 

The feed forward (FF) are variables that cause deviation to the process. Comparing 
to disturbance variables (DV) which also add variation to the process, the feed forward 
variables can be applied as a part of the controller since they can be measured. In an 
MPC solution the FF variables can be treated as measurable disturbances. 

In order for the MPC controller to fulfill the control goals with limitations on both 
manipulated inputs and controlled outputs, some degrees of freedom must exist. This 
happens when the process has no unique steady state solution, i.e. the number of MV’s 
is greater than the number CV’s. A situation like that leaves room for optimization, 
based on economics or operational objectives.  
      For the case, the CV’s and the MV’s are selected accordingly to model the process 
dynamics. Based on the step response tests and process analysis a total of 10 CV’s and 6 
MV’s were selected to describe the interactions within the process, creating a control 
matrix of 6 by 10 with an addition of one feed forward variable, which has a relation to 
some of the controlled variables. The control matrix (Fig. 8) describes interactions be-
tween the process variables. There are seven different options available to describe the 
interaction depending on the direction and intensity of the variable. 
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Figure 8. MPC control matrix. The matrix shows all the process variables (CV’s, MV’s, 
and FF’s) as well as their interactions. The intensity of the relationship is determined 
based on the relative process model gain between a certain CV to MV combination. The 
effect of the feed forward variable on the controlled variables is also displayed to im-
prove the interpretation of the process. The gains are made comparable by fitting them 
to a normal MV operation range.  

Control Matrices describe the relationship between the variables. For a simple 2 in-
put 2 output system (two CV’s and two MV’s) the dynamic matrix is 

 

=          (4.1) 

 
Where  and  are the projected Controlled Variables,  are step response coef-

ficients, which usually are continuous transfer functions, and  and  are manipu-
lated variable control moves. The objective is to contribute the process by reversing the 
process dynamics with a right kind of controller. In optimal situation the predicted out-
put matches the targeted output. This kind of control strategy applies for a traditional 
multi input multi output (MIMO) system. Model predictive control strategy includes 
weighting coefficients, which are used to prioritize certain process parameters according 
to the control strategy. 
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4.1.5 Feed Forward Variable’s Effect 

The feed forward variable, which in this case is the feed forward effective residual 
ink content (FF ERIC) affects significantly to some of the process controlled variables. 
During a normal operation the FF ERIC varies significantly depending on state of the 
process as well as the quality of the feed stock. 

4.1.6 Process Constraints 

Process constraints (Fig. 9) have a significant role in model predictive control. There 
are two types of constraint: process state and control signal restrains. An example of a 
process state constraint is the level of energy in heating process which is wanted to re-
duce due to environmental issues, but on the other, to keep it high enough in order to 
meet the requirements. For traditional PID-controllers, a certain set point is issued to 
attain a new process state. MPC-controllers are usually given certain low and high limit 
values for both the MV’s and CV’s, where the controller is allowed to operate.  

 
Figure 9. Process constraints. A multivariate process operation is usually limited by a 
set of constraints, which can be either physical or predefined quality based limitations. 
The process constrains are included to the MPC controller as parameters, allowing 
degrees of freedom to the controller. 

A controller with integrating characteristics (PID) combined with a limited actua-
tor’s control signal (e.g. valve opening), might end up in situation where error increases 
significantly. If the controller tries to increase the control signal beyond the actuator 
capabilities the actual control signal remains the same since it is saturated. A phenome-
non where control signal is saturated and the controller tries to increase output is some-
times also referred to as windup.  
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Windup complicates the use of controller and can even cause instability to the pro-
cess. To prevent wind-up, the operating range of control elements should be limited to 
the range of the devices they are driving. In PID solutions wind-up is compensated by 
using anti-wind-up mechanisms (Visioli 2003). However, MPC considers the process 
constraints, and therefore eliminates the wind-up. The optimum process operating point 
is usually close to constraint, so the use of MPC is preferred, in order to achieve the best 
possible result. 

4.1.7 Optimizer 

In a situation where there are less equations modeling the process behavior than 
process variables, there are more than one control solutions. In this case, an approximate 
solution is required. There is more than one method to determine the optimum control. 
A common method is to use either a Linear Programming (LP) or, the Quadratic Pro-
gramming (QP) techniques. 

A linear optimization model, which is also known linear programming (LP), is a 
method to achieve the best outcome in a mathematical model that involves the optimiza-
tion of a linear function subject to linear constrains on the variables (Griva et al 2009). 
Depending on whether the variables are costs or profits, the objective for a linear opti-
mization  is  to  either  minimize  or  maximize  the  function.  Eq.  3.2  is  an  example  of  a  
maximized linear programming model 

=                                         (4.2) 

Where ’s are the particular process variables, and ’s are the corresponding weight 
coefficients. For a variable that is considered to be profit, the coefficient is positive, and 
for a variable that is a cost, the coefficient is negative. 

In the Quadratic programming method, the optimizing parameters are selected so 
that, the squared value of the difference between the step-wise target and realized val-
ues, minimizes. For MPC, this means the squared difference of reference trajectory and 
predicted process output values 

 

[ ( + | ) ( + | )]                    (4.3) 
 

Where P represents the set of common points between the reference trajectory and 
the set point inside the prediction horizon, r(k) is the reference trajectory values, and 
y(k) the predicted output values. 

 

4.1.8 Cost function 

A cost function is a solution for optimization using programming method. The cost 
function is defined for all possible output and inputs vectors. For MPC application these 
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vectors represent the CV’s and the MV’s. The form of a cost function can be linear, 
quadratic, or even exponential, depending on the observed process variables. The target 
of a cost function is to maximize or minimize the function. A maximized function is 
sometimes also referred to as a profit function. 

In MPC application, the cost function usually includes the information of control 
variable control errors and the executed control changes.  The objective is to minimize 
the cost function in order to find the optimum control solution. Since the control errors 
of MV’s or the control errors of CV’s can be either positive or negative, it is common to 
use the square of errors calculating the cost function (Maciejowski 2002) 

( , ) = ( ) + ( )                      (4.4) 

Where  is the control error (Fig10.) of a CV,  the preidcted control change of 
an MV,  is a tuning weight coefficient of certain CV, and  the tuning weighting co-
efficient of an MV. The tuning weight coefficients are used to demonstrate the signifi-
cance of the variable for the process. The sign of the coefficient depends on, whether 
the variable is considered to be profit or cost. For example, if the target of optimization 
is to maximize the profit function process ( , ) chemicals considered as costs, thus 
the coefficient is negative. The cost function is feed in to the optimizer with the process 
constraints as inputs. 

 

4.1.9 MPC Algorithm 

There are many control algorithms for MPC, since in the early years it was studied 
by several people. Martin Sanchez introduced the Adaptive Predictive Control in 1974. 
Although there are many versions of MPC algorithm the basic idea is the same.  

In Dynamic Matrix Control (DMC) by Richalet  et  al,  the models are created using 
step-response tests. Combining the models and future inputs, a prediction for the output 
over a period of time (prediction horizon) can be made. This predicted output is com-
pared with the reference trajectory, or the desired output, giving the predicted future 
errors of the system. These errors are then fed into a mathematical optimizer. The opti-
mizer takes account for process constraints as well the weighting coefficient (cost func-
tion) when predicting the future inputs. The future inputs are then combined with pro-
cess dynamics, and restarting the calculation. 

As well as a PID-controller, it is possible to issue an MPC controller with a set point 
value, which the controller attempts to reach in over reasonable time window. This is 
done by setting both controller high and low limit to the same value. A more sophisti-
cated manner is to give the controller different limits, or constraints, where it is allowed 
to operate. Controlled variables have targeted high and low limits rather than set points. 

A PID-controller is updated based on an error between the set point value and a pro-
cess feedback signal, to make one change to controller setting. In MPC, the user can 
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determine the number of future moves the controller will predict. The prediction is up-
dated at specified time intervals. 

Tuning weights are used to set the importance of violating the low and high limit re-
spectively, so that a most critical controlled variable limit violation is prioritized by the 
controller. Similarly, the manipulated variables have a tuning parameter for defining 
control move suppression, meaning that the controller can make certain level of control 
changes according to the affect on the process. 

4.2 Performance Solutions RCF Process Control 

Metso’s solution (Fig.  10) for RCF process control and reduction of process varia-
bility is a combination of multiple technologies including MPC, real-time optimization, 
real-time sensor validation, and automated system monitoring.  

 
Figure 10.Metso Performance Solutions process control and monitoring. The Perfor-
mance Control Data Server (PCDS) performs as an operator for data flow. Data is col-
lected from data sources (DCS, Mill information system), and it is passed to variety of 
data analyzing and process monitoring systems. 

4.2.1 IMAS Process Control Data Server 

The key component for the process control solution is the process control data serv-
er. The IMAS PCDS integrates all advanced control and optimization applications to a 
single database for all process information resulting in reduced solution development 
and maintenance time. It operates on a master/slave technology, which means that it has 
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unidirectional control over one or more other devices or procedures. The master-slave 
communication hierarchy is demonstrated in Figure 11. 

 
Figure 11. Master-slave communication hierarchy. The Master operates with both 
reading and writing functionalities. According to priority of a process procedure, per-
missions are assigned.  

The master-slave communication operates so that the masters have reading and writ-
ing functionalities, and the slaves have only reading functionalities. Operating permis-
sion for a slave is given according to the priority of the procedure. 

PCDS collects and stores data from the DCS, mill information systems, and lab 
quality databases. The advanced control and optimization modules utilize this data and 
the results are sent back to the PCDS, which then sends the control actions back to the 
DCS. The PCDS communicates to the DCS via OPC client software with read and write 
functionality. Information from mill information systems and lab quality databases are 
directly interfaced and channeled through software called DataPipe to the PCDS. 
(IMAS 2013)  

4.2.2 IMON Performance Monitor 

IMON Performance Monitor is a real-time performance monitoring component, 
which  is  a  part  of  the  IMAS  Suite.  To  ensure  optimal  system  performance,  it  is  im-
portant to identify problems as they arise. It monitors system performance and sends 
automated email messages to support engineers, mill engineers, mill management, and 
mill operators, based on the previously configured performance index conditions. 
IMON can be configured to send intelligent messages with instructions on how to ad-
dress the problem. (IMON 2013) 
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4.2.3 Soft Sensors 

Soft sensors or inferentials are mathematical models that are used to calculate prop-
erties in places where measurements are difficult or infrequent. Even for the most mod-
ern on-line pulp quality measurement devices, some only provide discrete measure-
ments, which are not suitable for continuous control by themselves. Without the contin-
uous quality signals only heuristic control strategies can be used which are very limited 
in functionality and performance. Soft sensors allow control system to receive infor-
mation of the process between samples as well. Mechanical soft sensors are based on 
the mass and energy balance, while statistical ones rely on regression analysis (Chap. 
2.3.4). The concept of software sensor is demonstrated in Figure 12. 

 
Figure 12. Soft sensor principle. An inferential is created based another process varia-
ble, which can be measured easier. Usually, the inferential and the variable used to 
determine the inferential, have a linear dependency. The estimated value for a calculat-
ed inferential is adjusted according to the online measurement for the related process 
variable. 

 In an RCF process, soft sensors are used for example to predict the brightness of the 
stock passing to the paper machines.  

4.2.4 Sensor Validation 

In modern pulp process, quality sensors and automated laboratory measurements are 
critical achieving good control result. Preventative maintenance helps to ensure these 
measurements as accurate as possible. 

4.2.5 Signal Conditioning and Validation 

In process performance monitoring it is important to validate the data that’s been 
accepted for use in further analyses. In continuous processes the signal conditioning can 
be as simple as removing exceptions such as shut down periods. A shut down is a pro-
cess state where process isn’t running normally. There are many reasons, why shut 
down occurs. Usually, a shut down occurs in a maintenance situation, when process is 
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being fixed or updated. More often, shut down is caused by a grade change situation, 
when the characteristics of the final product are altered. 

Production level is usually a good indication for detecting abnormal situation. In 
Figure 13, production status is represented using a binary signal.  

 
Figure 13. Data filtering and validation. For a successful data analysis, the specific 
process data need to be validated according to set of conditions. The conditions are 
usually based on other variables related signals that can also be used to locate the 
source of an exception.  

When the status changed from one to zero, the production rate is abnormal, usually 
too small. This affects to other process variables as well. These observations are usually 
left out of process performance analysis, because they are inconsistent, and may lead to 
incorrect conclusion, thus jeopardizing optimal process performance. 

Figure 14 shows the same two signals. However, the “green” process variable signal 
is missing some of the observations due to data validation. 

 

 
Figure 14. Validated process data. A quality based process control is usually evaluated 
by the decrease of normal operation variation. Data validation can mean a decrease of 
tens of percentages in variation, thus evidencing the importance of defining the right set 
of data. 
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4.2.6 Calculated Process Data 

Some of the data can easily be analyzed directly from the measured signal. Mathe-
matical functions provide a good indicator for the process state, and help spotting pro-
cess interactions invisible to human eye. Usually, the functions are simple statistical 
models, like mean or standard deviation values. They are quite informative calculations, 
but the downside is that to be accurate, the data set must be normally distributed. In 
many case, the processes are assumed to be normally distributed for simplicity. 

4.3 RCF Process Monitoring and Control 

RCF is a highly complex process to control with multiple process stages and varia-
ble interactions. In order to get real time information about the status of the process, an 
online process monitoring system is required. In the RCF case, the objects for process 
monitoring are usually the controlled and manipulated variables, the status of the con-
troller, and the process condition. Monitoring can be as simple as displaying the data in 
a numerical table form, a chart, a diagram or a graphic point or line trend. 

Process performance monitoring and control requires effective solutions for data 
measuring and collection, visualization, and analyzing. Data must be filtered and vali-
dated accordingly for the controller, to avoid undesirable outcomes. 

 
 



 34 

5 CAUSTICIZING PROCESS CONTROL 

The purpose of the chemical recovery process is to recover and regenerate the pulp-
ing chemicals, and to burn organic material dissolved from wood to generate steam. An 
efficient and closed chemical recovery is a great benefit in the chemical pulping process 
that makes recirculation of cooking chemicals possible inside the process using only 
small amounts of makeup chemicals. In a continuous chemical pulping process, the fi-
ber line and the recovery line are connected to each other, so the changes in one process 
reflect to the other ones as well. The chemical recovery process consists of evaporation 
plant, recovery boiler, and causticizing plant. Closely related to the causticizing is also a 
lime kiln, which is usually considered as a separate process. A diagram of a causticizing 
plant is shown in Figure 15. Causticizing process was discussed more thoroughly in 
chapter 3.2.  

 
Figure 15. Causticizing plant structure (Arpalahti et al 2002). The causticizing consists 
of seven separate unit processes. It is closely related to three other sub-processes of 
pulp manufacturing. A substance from recovery boiler is diluted with a solution called 
weak wash liquor to produce green liquor (GL). The reactions produce a solution 
called lime mud that is filtered out and forwarded to be reused.  The green liquor is 
mixed in a unit process called a slaker with lime (CaO) coming from the lime kiln or as 
an addition lime. The mixture of slaked lime and green liquor is passed to the 
causticizing chambers where the reaction between calcium hydroxide and sodium car-
bonate is completed. After the causticizing chambers the solution is separated to two 
compounds: white liquor (WL), which is recovered to reuse in the cooking process, and 
lime mud, which is fed to the lime kiln, where it is prepared to be used again in the 
slaker. 
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5.1.1 Process Variables 

      In causticizing process, a large variation of process qualities is highly undesirable, 
thus an active process monitoring is essential. The process variables are selected accord-
ingly  to  model  the  process  dynamics.  Based  on  the  step  response  tests  and  process  
analysis the monitored variables were selected to fulfil the objective of causticizing 
which is to produce consistent alkali for cooking process. The monitored variables are 
listed in Table 1. 
Table 1. Causticizing process variables 

Process Variable Unit 
1. Causticizing chamber causticizing 
efficiency 

CE-% 

Last Causticizing chamber causticizing 
efficiency 

CE-% 

White liquor causticizing efficiency CE-% 
Green liquor to slaker flow l/s 
Green liquor temperature °C 
Slaker temperature °C 
Slaker temperature difference °C 
Dissolver Green liquor TTA g/l 
Green liquor to slaker TTA g/l 
Dissolver density kg/m3 
Green liquor density kg/m3 
      
 The quality of the end product depends highly on the composition of the green liquor; 
therefore it can be viewed as a feeding variable. The focused control objectives are 
causticizing efficiency, slaker temperature difference, and slaker TTA-control.  

5.2 Model Reference Advanced Causticizing Control  

The Model-Reference Adaptive System (MRAS) was originally proposed to solve a 
problem in which the performance specifications are given in terms of a reference mod-
el. The formulation of adaptive control as a stochastic control problem was given by 
Feldbaum (1965). While initially direct adaptive control schemes have only considered 
in continuous time, the discrete time direct adaptive schemes and applications were in-
troduced later (Landau 1971) and (Bethoux 1973). 

Much like for an MPC solution, the reference model in MRAC solution indicates the 
ideal process output created by the control change. The Model reference control param-
eters however, are updated based on the error between reference model and the actual 
output. 

Model reference adaptive controller has two control loops. The inner loop consists 
of the process and an ordinary feedback controller (Fig. 16). The outer loop adjusts the 
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controller parameters in such a way that the error, which is the difference between the 
process output and model output. 

Figure 16. Block diagram for model reference adaptive control. The model reference 
adaptive control (MRAC) solution is some way similar to model predictive control. A 
reference model is created and the control is adjusted according error between process 
output signal and the reference model. 

Mathematical techniques like the MIT rule are used to develop the required adjust-
ment factor. The MIT rule is named according to the Massachusetts Institute of Tech-
nology where it was developed. The adjustment factor is determined according to The 
objective is to minimize the error between measured process output and the reference 
model output, and the control signal is updated based on the same error. 

5.3 Causticizing Process Control 

 In causticizing control there are two main control loops; Green liquor TTA-control 
and white liquor causticizing efficiency (CE-%) control. Main target of these controls is 
a high and stable degree of causticizing, which in practice means homogenous quality, 
high strength of white liquor, higher production capacity and reduced operating costs in 
the causticizing plant and in the rest of the pulp mill.  

A successful causticizing process control requires qualitative measurements that 
usually are performed using on-line analyzers (Fig. 18). 

Usually, an automatic alkali analyzer takes samples from the incoming green liquor, 
the slaker, the first and the last causticizing chambers, and the prepared white liquor. 
The most important qualities are Total titrative alkali (TTA) and causticity CE-%. Fig-
ure  17  shows  typical  sampling  points  for  causticizing  process  control.  (Tolonen  et  al.  
2002) 
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Figure 17. Causticizing measurement points (Tolonen et al 2002). The measured quali-
ties from the green liquor are flow and temperature. An analyzer also takes samples for 
density before the slaker. Temperature is also measured from the slaker to determine 
the temperature difference, which is used in the TTA-control. Causticizing efficiency 
from the mixture of slaked lime and green liquor is evaluated before and after the 
causticizing chambers for use in white liquor causticizing efficiency control. The ana-
lyzer evaluates also the TTA values for green liquor. The white liquor causticizing effi-
ciency is evaluated to determine the maximum CE-%. 

5.3.1 Metso Causticizing Optimizer Process Control 

Metso Causticizing Optimizer -application stabilizes the green liquor density flow-
ing to the slaker. Slaker temperature control adjusts the lime feed below the boiling 
point and prevents over liming. Controls are enhanced with Metso Causticizing Analyz-
er (Metso Alkali), analyzers accurate measurements of the green and white liquor quali-
ty parameters. The high causticizing degree achieved describes the performance of the 
process. The final strength of white liquor is controlled with the green liquor dilution. 
Resulting strong white liquor decreases the dead load in chemical circulation and im-
proves the efficiency of the cooking process. (Tolonen et al. 2002) 

The solution for MRAC utilizes similar hierarchy which was used for RCF process 
control in Figure 10, but since control technique is different, the solution differs from 
MPC as  well.  The  process  data  collection  and  storage  is  handled  by  the  IMAS PCDS 
(Chap. 4.2.1). Since most of the interesting process variables are qualitative, the meas-
urements are performed using analyzers. Soft sensors are used estimate some qualities. 
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The control signal is updated at every calculation step according to the scheme in Figure 
17. Performance monitoring is equally important to the causticizing as well as in RCF. 

In process performance monitoring it is important to validate the data that’s been 
accepted for use in further analyses. In continuous processes the signal conditioning can 
be as simple as removing exceptions such as shut down periods.  

Drastic changes in feed production rate or in another input parameter are usually a 
good indication for detecting abnormal situation. The graph in Figure 18 shows the ef-
fect of an input variable to the composition of a controlled variable.  

 

 
Figure 18. Data validation for causticizing. For a successful data analysis, the specific 
process data need to be validated according to set of conditions. The conditions are 
usually based on other variables related signals that can also be used to locate the 
source of an exception. The changes in one variable’s composition are clearly visible in 
the interacting variable as well. 

There are clearly situation, where operation is abnormal. These observations are 
usually left out of process performance analysis, because they are inconsistent, and may 
lead to incorrect conclusion, thus jeopardizing optimal process performance. 

The importance of data validation can be seen in Figure 19. There are two signals 
plotted; one showing process measurement signal and one showing the same signal val-
idated according to production rate.  
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Figure 19. Data comparison. Based on visual analysis it is evident that demonstrating 
an improved performance requires data validation according to a set of conditions. In 
an optimum situation data would be consistent throughout, and validation would not be 
necessary. 

Calculating the standard deviation for both signals gives a difference about 33% in 
variation. For data analysis, this difference   

Some of the data can easily be analyzed directly from the measured signal. Mathe-
matical functions provide a good indicator for the process state, and help spotting pro-
cess interactions invisible to human eye. Usually, the functions are simple statistical 
models, like mean or standard deviation values. They are quite informative calculations, 
but the downside is that to be accurate, the data set must be normally distributed. In 
many case, the processes are assumed to be normally distributed for simplicity. 

5.3.2 Green liquor TTA-control 

The green liquor measurements and results given by the analyzer are applied to sta-
bilize the quality of the green liquor entering to slaker, for feed-forward slaker control 
and to predict and monitor white liquor quality. Green liquor density control is usually 
carried out in two steps. First the density of recovery boiler dissolving tank is adjusted 
with weak wash, water, and with secondary condensate slightly above the target density 
in the slaker. The incoming green liquor density can then be regulated by adding weak 
wash. 

Green liquor density set point is adjusted according to the TTA (Total Titrative Al-
kali) value measured by alkali analyzer. TTA analysis results are available about once 
per hour, depending on the titration sequence of the alkali analyzer. TTA and density 
are applied to calculate a conversion factor for converting the TTA values into density, 
and vice versa. The conversion factor is calculated using results from, the preceding 8 or 
24 hours, and it is constantly updated. The control maintains a stable sodium carbonate 
feed to the slaker and in combination with the alkali analyzer control it ensures stable 
quality of produced white liquor. (Tolonen et al. 2002) 
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5.3.3 CE%- control 

The CE-% control is based on feed forward calculations for lime feed to green liq-
uor flow ratio, green liquor to slaker temperature difference control, and for maximum 
theoretical CE-%. Based on the calculations, a model for the white liquor (WL) quality 
control is created. 

The temperature difference between slaker and green liquor indicates the relative 
progress of the causticizing reaction. Short-term changes in temperature difference indi-
cate changes in either quantity or quality of raw materials entering the slaker. The green 
liquor flow consistency is the single biggest cause for quality variations. In the long run 
the temperature difference control alone is not able to maintain the target causticizing 
result, as changes in lime quality and the temperature level have a significant effect on 
scaling and causticizing kinetics. For this reason, the absolute measurement results of 
the composition of green liquor, lime milk, and white liquor are extremely valuable for 
slaker controls. 

Causticizing process is an example of continuous process with multiple internal and 
external process interactions. The complexity of the process and significant process de-
lays require a modern control solution. The selected case was concluded at an ongoing 
site, so the required step response tests were already conducted, and the process models 
are in place. The required measurements are performed using the mill’s existing analyz-
ers and measuring devices, which are stored in the Process control data server (PCDS) 
and mill’s information system (MIS). The conditioned is stored in another database. 
Both untreated and computational data are used to implement the performance monitor-
ing tool for model reference adaptive control. 

Predicting the outcome of a time series can be improved by adding a weighted func-
tion as a filter (Chap. 2.3.5). A simple moving average considers all the values of a data 
set equally, thus including invalid observations as well. This of course weakens the pre-
diction. By adding a weighted coefficient, the calculation takes more significantly ac-
count for, usually, the previous values.  

As well as in the MPC performance monitoring case, the used signals need be vali-
dated, so that exceptions, like shut down periods are ruled out. 

 

5.4 Causticizing Process Control and Monitoring 

Causticizing process is one of the most critical parts of the chemical pulp plant, 
since it is one connection points between the fiber line and the recovery line. For a high-
ly interactive process much like the RCF, it is desirable to have monitoring system, 
which allows real time online evaluation. Process wise, the most interesting part in 
causticizing is the quality end product, white liquor, which is the chemical used in cook-
ing process. For a control engineer’s point of view, the topic of interest is to detect how 
well the implemented controller model responses to the process changes. 
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Comparing to traditional fixed gain PID-controllers, the adaptive controllers are 
very effective to handle the situations where process parameter and environmental vari-
ations are evident. The controller parameters are adjusted accordingly with the aim of 
minimizing the error between parameter output and the desired reference model. Adjust-
ing can be done using several techniques like the MIT rule. 

Process performance monitoring and control requires effective solutions for data 
measuring and collection, visualization, and analyzing. Data must be filtered and vali-
dated accordingly for the controller, to reach maximum process performance. 
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6 INTELLIGENT CONTROL LOOP PERFOR-
MANCE MONITORING SOLUTION  

The approach for implementing the intelligent control loop performance monitoring 
tool for was to make use of the existing performance monitoring tools but to focus more 
subtly for one variable at a time. Based on the study regarding other vendors’ control 
loop performance monitoring solutions in Chapter 2, and the process expertise provided 
by Metso’s control specialists, the framework for the intelligent control loop perfor-
mance monitoring (CLPM) solution for advanced control and optimization was created.  

In general, the application user interface needs be user-friendly and simple but at the 
same time contain sufficient amount information to unveil hidden process interactions. 
Tool configuration should also be relatively straightforward. For remote use, the most 
common way to execute the interface is to implement is as a Web browser based appli-
cation. The conducted applications are also useful material for process training. 

In Figure 21, a graphical user interface (GUI) for RCF MPC real-time performance 
monitoring, is diplayed. Critical information of the process variables are gathered in the 
interface.  The  solution  is  available  for  the  client  (site  staff)  as  well  as  all  the  users  in  
Metso internal network when connected to mill via mill VPN. 

In this chapter, features of the intelligent control loop performance monitoring tool 
for MPC are presented. Due to server connection difficulties, and calculation memory 
issues, the intelligent monitoring tool for model reference adaptive control (MRAC) is 
regarded only on conceptual level. The concept is described for causticizing efficiency 
(CE-%) control, but with some configurations, the tool is valid for TTA-control as well. 

6.1 Existing Performance Monitoring Tools 

IMON Performance Monitor 

IMON performance monitor is used to track the most critical process variable state 
real time. For example, it can be used to monitor for example the state of the process 
control, based on one or several real-time signals. The software can also be configured 
to track for example the mean value of a certain variable for a period of time, and by 
using logical operations, determine whether the process is at desired state. For RCF an 
object of interest might be a violation of controlled variable (CV) constraint and for 
causticizing process, the incoming TTA variability. 
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Performance Report 

Automated Excel-reports based on event-driven Microsoft Visual Basic program-
ming language are sent daily, weekly or monthly. IMAS Excel Add-in toolbar allows 
collecting IMAS data to Excel. The reports include both tabular and graphical data of 
the process variables. Unlike IMON, the performance reports give information about the 
process past and are therefore more suitable for offline data analysis. 

WebMon 

WebMon is a web-based monitoring tool, which allows remote access to process 
monitoring for both customers and process engineers. WebMon includes graphical pro-
cess history data similarly to the performance reports, but has also real-time user inter-
face for online process review. 

6.2 Intelligent Control Loop Performance Monitoring Tool 
for MPC 

The intelligent control loop performance monitoring tool (Fig. 21) is configured us-
ing a combination php, html, and python coding. All the basic mathematical calcula-
tions are executed using the functions of python included numerical Python (NumPy) 
library (Lutz, 2009). The signal conditioning is done using different functions provided 
by Matplotlib (Hunter, 2007) extension for NumPy. The used data is stored in a process 
control data server (PCDS), where it is updated based on the data provided by the dis-
tributed control system or mill information system. As demonstrated in Figure 11, the 
process control data server acts as a master for the system, meaning that it handles the 
activity of other sources by giving permissions for certain acts according to the priority 
of the procedure. 

6.2.1 Controlled Variable Performance Monitoring 

Performance monitoring for controlled variables includes both online process meas-
urement data, and calculated data based on the process signals. The signals are selected 
to cover the model of a certain variable, to understand control actions, and to help engi-
neers to make adjustments for the process models. The tabular values are real-time pro-
cess signals from the PCDS. The graphic display includes history data for a time period 
of  two days  as  a  default  setting.  For  history  data  evaluation,  the  time window can  be  
adjusted accordingly. 
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Figure 20. MPC real-time performance monitoring main GUI for RCF Controlled Var-
iables. The main interface is designed to support the user in figuring out the process 
problems. The interface includes both real time features as well as history trending. 

Step response tests were used to determine interactions between manipulated varia-
bles (MV) and one controlled variable (brightness), thus creating the process models. 
The process models not only allow predicting process’ future outcomes, but can also be 
used to compare the relevance of manipulated variable to the regarded controlled varia-
ble. More often than not, there are also disturbance variables (DV) in the process, which 
affect the process dynamics. If a model between the disturbance and controlled variable 
is measurable, the DV can be added to the controller model as a feed forward (FF) sig-
nal. 

A model coefficient is displayed in Figure 20 using different types of arrows. The 
model coefficients are added as auxiliary variables, and they express the intensity and 
direction that a particular manipulated variable has on a controlled variable. They are 
used to provide vital information about the process to the user. The model coefficients 
are calculated 

 

=            (6.1) 
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where  and  are the controller high and low limits for a par-
ticular manipulated variable, and  is the process gain between two interacting varia-
bles. All the model coefficients have been modified by adjusting the effect of process 
gain relatively to normal CV process operating range (Eq. 6.1) so that they are dimen-
sionless, and therefore comparable with one another. 

The case in Figure 20, a controlled variable has an interaction with four MV’s and 
one feed forward. It is most significantly affected by the feed forward variable. For ex-
ample, if the feed forward variable increases dramatically, brightness will decrease con-
trarily. The controller must then try to develop a solution to maintain a desired process 
state by using different combinations of the manipulated variables. The solution de-
pends not only on the significance of the manipulated variable to the controlled variable, 
but also how the controller is set to prevent a variable’s process value from violating a 
process  limit.  This  is  done  by  using  so  called  MPC tuning  weight  coefficients  (Chap.  
4.1.8). The weight coefficients are controller related parameters and are user defined 
significance factor which depends on how critical that certain variable is. Usually the 
weight coefficients are defined separately for both the high and low limit. When consid-
ering brightness, it is important that the quality is consistent. On the other hand, it is 
preferred that brightness can be “too bright” instead of “not bright enough”. For exam-
ple in Figure 21, it is evident that based on the process interaction model, the caustic 
ratio has relatively small effect on the particular CV (brightness), compared with for 
example CaCl2 flow.  Based  on  the  tuning  weight  coefficients,  the  caustic  ratio  has  a  
greater overall influence for the cost function (Chap. 4.1.8), and furthermore for the 
control solution. There are of course more than one reasons for a selection like this. 
More importantly, the brightness low limit violation has a greater significance for the 
process stability, than the high limit, which means that the controller is instructed to 
prioritize the low limit violation and tries to prevent it more intensely. 
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Figure 21. Controlled variable (CV) tabular section. The table shows momentary set 
point values for interacting MV’s, as well as the possible feed forward variable. A mod-
el coefficient arrow describes the direction and intensity which an MV has over the CV. 
The weight coefficients are presented using arrows as well. The direction is equal to the 
MV to CV interaction as the model coefficient. The arrow size tells the controller the 
significance of a particular CV limit violation for the process. Set point direction is used 
to enlighten the controller’s decision making in an MV limit violation situation. 

In an MV limit violation situation, the set point direction indicates where controller 
is forcing the MV set point based on the difference of the last two observation points. 
However, it is more common that the MV set point value is saturated at a high or low 
limit. A limit violation for MV usually occurs only in an exception, such as shut down 
periods. 

The data that is used to calculate the set point direction is separated from the actual 
measured signal from the process using two kinds of filters. First, the calculation is only 
valid, when the line is in a normal production state. Secondly, a more specified condi-
tion checks whether the signal violates either user defined controller high or low limit. 
If one or more conditions are invalid, the data is being filtered out. Figure 22 shows the 
filtered signal based on the two conditions. 
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Figure 22. Set point direction signal. The set point values are rarely above the given 
high limit value, with no corrective actions from the controller. The set point direction 
is only evaluated when limit violation for MV occurs. 

The direction set point will tell the user how a certain manipulated variable is con-
trolled, and furthermore, give a chance to evaluate how the process might perform in the 
future, i.e. where a particular MV is moving, and how it will affect the corresponding 
CV’s . 

During a normal operation all the control moves for a certain manipulated variable 
are registered and displayed. The intensity and directions during one control iteration 
can be observed by the user. The intensity of the control moves depends on significance 
of the manipulated variable to the more crucial controlled variables, as well as the dy-
namics of the process. Generally, the more time it takes a variable to have an effect to 
the process e.g. a longer process delay, the moderate control moves are allowed. 

The MPC status in Figure 20 shows whether the particular control loop is being con-
trolled actively. In an optimal situation all the control loops are active and the controlled 
variable is well controlled. A typical situation for what might cause an OFF-control sta-
tus is an unreliable measurement of controlled variable. 

The feed forward variable status is also displayed in the controlled variable tabular 
section. The FF variable’s momentary process value (PV) is displayed for the user as 
well as direction of where it is heading. The numerical value merely gives some kind of 
idea of the feed stock, but more important feature is the PV direction. The PV direction 
gives an estimate of where the CV is going due to the feed forward variable. 

6.2.2 Analyzing Methods 

The graph in Figure 23 contains four signals showing the status of the observed con-
trolled variable over the user defined time window. The process value is a measured 
value which indicates the process’ current state. The rest are calculated, controller based 
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values. The steady-state value is the closed-loop predicted value for the observed con-
trolled variable. The reference model value is the controllers’ view on what the output 
should be like, and it is calculated based on the integrated model control error, or model 
mismatch (MM) on the right hand side y-axis. The model control error is evaluated on 
every calculation cycle. Usually, MPC predicts several observations ahead, depending 
on the setting. In this case, the prediction is only made one step at a time. The integrated 
MM calculation is reset every time the line is down, so that the model comparison re-
mains valid. The success of the control depends on how closely the reference model and 
the process value are related. In optimum situation these two signals would follow one 
another. 

 

 
Figure 23. Controlled variable’s (CV) graphic visualization. The history trending al-
lows evaluating the CV’s progress in a period of time, and helps figuring out when er-
ror starts to accumulate between the predicted model and the realized measurement, 
thus indicating a possible model error. The desired operating range is highlighted using 
a transparent color indication. 

There is no specific rule of thumb of when the integrated MM has increased too 
much, and the controller model should be updated. However, there are some signs indi-
cating, if there is something wrong with the process model, or if the process is not accu-
rately described by the interacting manipulated variables. 

In chapter 2.3.1, the concept of interactive visual analysis was introduced. The visu-
al analysis provides a good tool for the user to evaluate the process interactions quickly 
based on history data. The comparison between MV set point values against the inte-
grated model control error for brightness over time is shown in Figure 24.  
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Figure 24. MV set point vs. integrated model control error for a CV. A visual analysis 
between MV set point and the integrated model control error reveals when the particu-
lar MV is causing the model control error. 

The interaction between a manipulated variable and controlled variables can be de-
tected using a traditional step-response test, e.g. set point analysis (Chap 2.3.2). Step 
response test can be as simple as changing flow in a tube by adjusting the actuator, for 
example the valve position.  

In a multivariate process where there are multiple affecting factors, it might be diffi-
cult to interpret, which variable is the most influence. 

The correlation coefficient is a statistical tool, used to determine interaction between 
two signals. For steady-state analysis time is irrelevant, and the focus can be on finding 
the correlation between two data sets. R2-value analysis (Chap. 2.3.4) can be used to 
find how well a certain data explains the characteristics of another set. 

When time is considered, the correlation analysis is used not only to determine the 
correlation coefficient, but also the time delay shift, which indicates how much one sig-
nal is  leading or lagging another signal.  Figure 26 shows the same two data sets as in 
Figure 25 as well as the correlation coefficient and the time delay shift for the two. 
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Figure 25. Correlation coefficient and time delay shift. A correlation analysis gives a 
statistical point of view of the relationship between the interacting variables. The lower 
graph shows correlation and the calculated correlation time delay in hours. 

The correlation coefficient and the time delay shift are evaluated inside a three hour 
time window. The time delay shift is calculated using the maximum value (Chap. 2.3.5) 
of a cross-correlation signal. The time delay shift is determined by selecting the maxi-
mum correlation value inside the time window, and evaluating the corresponding value, 
i.e. at what time point the correlation is the strongest. In Figure 25, it is presumed that 
the controlled variable is lagging, since the manipulated variable is what the controller 
is changing. The time delay shift value can then be used to determine how much unex-
plained lag there is between the compared signals, i.e., how the model needs to be 
changed, in order to a response at desired time point. If similar time delay shift occurs 
repeatedly, there might be a systematic error in the process model, and it needs to be 
updated. 

Controlled variable performance monitoring tool allows a closer inspection of a cer-
tain MV to CV interaction by clicking a reference link for desired manipulated variable 
in the main interface. The reference link is opened to a new window (Fig 26). 
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Figure 26. MV to CV interaction reference link. Graphical presentation of two interact-
ing variables (MV to CV,) and the calculated correlation coefficient over time. 

The  graph  shows  the  same  signals  as  in  Figure  25.  The  display  gives  the  user  a  
rough visual estimate of the interaction with the time series analysis which provides a 
more precise result. The window can be fixed for user defined time period. 

6.2.3 Manipulated Variables Performance Monitoring 

Performance monitoring for manipulated variables (MV) has many similar features 
as variables includes as controlled variables performance monitoring. Both include 
online process measurement data as well as calculated data based on the process signals. 
Figure 26 shows the main display of manipulated variable performance monitoring 
GUI.  
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Figure 27. MPC real-time performance monitoring GUI for RCF Manipulated Varia-
bles. The main interface gives a change for a quick evaluation of a certain MV and the 
contributed CV’s. 

The tabular values are real-time process signals from data collection. The graphic 
display  includes  history  data  for  a  time period  of  two days  as  a  default  setting.  Basic  
features include also history data evaluation, by adjusting the time window. 

Interactions between the manipulated variable and the affected controlled variables 
are determined with step response tests. The process models consisting of process gain, 
time constant, and process delay, will also be used to compare the relevance of manipu-
lated variable to the regarded controlled variable. 

The relative move suppression (Fig. 27) depicts how significant change the control-
ler is allowed to make for a certain manipulated variable, and on the other hand, how 
much the controller is penalized for a certain control move. Much like the model coeffi-
cients (Chap 6.2.1), the relative move suppressions are auxiliary variables and have 
been modified according to Eq. 6.2, so that they are dimensionless, and therefore com-
parable with one another. 

 

=
( )

 (6.2) 

  
Where  is a constant process gain between the two interacting process 

variables, and  is a user defined significance factor for an individual 



 53 

MV. The model coefficients (Chap. 6.2.1) as well as the relative move suppressions are 
only used to provide information about the process to the user in general. These coeffi-
cients differ from the MPC tuning parameters (Chap. 4.1.8), which are used for control 
optimization strategy. In Figure 28, the manipulated variable of interest is the Soap Ra-
tio, which has an interaction with seven CV’s, which makes it is a high priority process 
variable. The figure shows that the soap ratio has the strongest influence to effective 
residual ink concentration (ERIC). Since ERIC is supposedly a quality that is wanted to 
be as small as possible, it is desirable to have an influence on that particular variable.   

In an RCF process, the used chemicals are considered as costs. For economic rea-
sons it is obvious that the costs are tried to keep as minimum as possible. However, the 
chemicals are also used to obtain most of the end product qualities. Therefore it is obvi-
ous that some kind of compromise is needed. The control moves are determined using a 
cost function (Chap. 4.1.8). 

As well as controlled variables, the manipulated variables have also tuning parame-
ters working as a guideline for the controller operation (Chap. 6.2.1). In controlled vari-
able performance monitoring solution, a model coefficient was displayed using different 
types of arrows. The model coefficient is included in the manipulated variables perfor-
mance monitoring tool as well.  

For example, in a case where the predicted CV value in Figure 20 has a control error 
of 0.2 units, there is equal amount of control error. The weight coefficient for that par-
ticular CV is 10, then a set of MV control moves are made, in order to minimize the 
cost. Table 2 concludes a fictitious process variable’s control error, as well as the de-
fined control changes, and the weighting coefficient for each of the process variables. 

 
Table 2. Listed case values. 

Variable 
(CV/MV) 

Weighting Coefficient 
( / ) 

Control Error/Control 
Move ( / ) 

CV1 10 0.1 
MV1 5 -0.01 
MV2 30 -0.025 

 
According to eq. 3.2, a cost function for the case can be written as 
( , ) = ( ) + ( )      (6.3) 

 
+ +       (6.4) 

 
10 0.01 + 5 0.0001 + 30 0.000625      (6.5) 

 
Since the controller is allowed to make a limited control move in either direction, an 

equal result is not necessary achieved with one executed control change. Depending on 
the process state it is a good thing that the controller is allowed to move inside a set of 
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limits. Also, for highly interactive process it is vital that not only one variable is upset 
too greatly, resulting in changes in other variables as well. The solution with given val-
ues gives a result of 0.08, which in this case can be evaluated as a good result, depend-
ing on the significance of the process variables as well as the given limitations for the 
MV control moves. In the case example, there was only one CV with two interacting 
MV’s.  The  solution  for  the  control  problem  would  differ  significantly,  if  there  were  
multiple CV’s with several interacting MV’s. The controller must prioritize some varia-
bles over the rest, without compromising the process. 

 

 
Figure 28. Impacted controlled variables status. MC2 brightness and ash content are 
violating the accepted process variable limits. The process value direction feature indi-
cates the direction of where the CV is heading resulting in from the decisions made by 
the controller. 

In limit violation situation, the process value direction that indicates where the vari-
able is heading based on the difference of the last two observation points. This allows 
the user to predict what the controller might be doing next. In Figure 28 there are two 
variables with an undesired condition, so the user will be notified not only with the red 
indication marker, and optionally also with an e-mail notification. 

Much like the controlled variables, the data that is used to calculate the process val-
ue direction for manipulated variables is separated from the actual measured signal from 
the process using two kinds of filters. First, the calculation is only valid, when the line is 
in a normal production state. Secondly, more specified condition checks whether the 
signal violates either user defined high or low limit. If one or more conditions are inva-
lid, the data is being filtered out. Figure 29 shows the filtered signal based on the two 
conditions. 
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Figure 29. Controlled variable process value limit violation signal. The direction is 
evaluated only when the PV is violating the given limits. 

There are two different situations of limit violation signal direction in. One is above 
a high limit, and one which is below a low limit. The high limit violated process varia-
ble is increasing, which is an undesired situation. When that particular controlled varia-
ble is analyzed, there are two interacting manipulated variables. It is expected, that the 
controller will try to reach an accepted status for the controlled variable, using the two 
manipulated variables. 

In this case the process value is violating the high limit condition. Since both of the 
manipulated variables have a direct effect on the controlled variable, it is obvious, that 
the next control move must be negative. If the control for both of the interacting manip-
ulated variables is available, the controller is allowed to utilize one or both variables. 
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Figure 30. CV to MV interaction. In a limit violation situation, the controller is bound 
to make some corrective actions in order to retain a desirable state. The executed con-
trol move depends on the significance of the CV as well as the MV’s to the process.  

However, since one of the variables (Soap ratio) is already saturated at controller 
low limit  (Fig.  30),  thus  performing  at  optimum level,  it  will  more  desirable  to  make  
control changes in the other variable. 

6.2.4 Control Loop Analysis 

In the graph in Figure 31 there are five signals plotted showing the status of the ob-
served manipulated variable over the defined time window. The set point and the MPC 
status signals are stored values from the PCDS. Set point indicates the controller defined 
process variable’s current target value, and the MPC status tells whether the particular 
manipulated variable is available for control purposes. The rest are calculated signals 
describing interaction between the process variables. In Chapter 6.2.2 correlation coef-
ficients was calculated inside a time window of 3 hours for a CV. In Figure 31, only the 
correlation coefficients are plotted for a particular MV against the interacting CV’s. 
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Figure 31. Manipulated variable’s graphic visualization. The history trending allows 
evaluating the MV’s progress in a period of time, and helps figuring out possible con-
trol errors in a CV. 

There is not only direct correlation but also an indirect correlation between the par-
ticular manipulated and the interacting controlled variables. This is a good example of 
the complexity in a multivariate process. 

Control loop health is an indication of the correlation status between to variables. In 
an MPC solution it is evaluated based on the interaction between MV control moves and 
predicted model error using the correlation coefficient analysis. Highly interaction 
might be indicating an issue that the controller isn’t taking account for. Much like in the 
control loop performance monitoring solution by Matrikon (Chap 2.6), color codes are 
used to indicate process variable relationships (Fig. 32). 

 



 58 

 
Figure 32. Control loop health chart. The control loop health chart shows the relation-
ships between all the controlled and the manipulated variables. The purpose color indi-
cation is to describe the intensity of the correlation with red color indicating a strong 
correlation, yellow a medium correlation, and green a weak correlation. Black color 
indicates no correlation between two variables. A strong correlation might be denoting 
a model error between two variables. 

For both of the multivariate process cases reviewed in chapters 5.3 and 5.4, it is cru-
cial to be able to detect variable interactions for high performing control solution. Time 
series  analysis  was  used  to  find  the  most  correlated  process  variables.  The  analysis  is  
carried out over a section time that is selected accordingly for the particular process. For 
the MPC tool time window was selected to be 3 hours. For suitable monitoring purpos-
es, the data should be reviewed in time sections of 12 hours. The correlation coefficient 
would be evaluated inside the time window every three hours. 

A quantitative measure of the performance of a system, like the performance index, 
is necessary for the operation of parameter optimization, and design of the control sys-
tem. There are different types of performance indices being used, depending on the pur-
pose. The integrated average error (IAE) is calculated as the average absolute value of 
error between process variable (PV) and a set point (SP). Usually it is calculated as an 
indication of performance over a period of time, and used for computer simulation stud-
ies (Dorf & Bishop 2000) 

= | |             (Eq. 6.6) 

Where k is the number of observations used to calculate the integrated average error. 
The IAE value ranges between 0 and 100%. Obviously, a smaller value means a better 
result. The IAE value is proportional to the costs of a control loop (Chap. 4.1.8). 
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Achieving a low IAE value means that the controller is  able to drive towards new 
targets and achieve them. Integrated average error is an inferential quality variable, 
which can be used to determine how close the plant can push up against constraints. 

 

6.2.5 Constraint Analysis 

One method of evaluating the MPC performance is to determine how well the con-
troller manages to keep a desired process value for CV or set point for MV, between the 
user defined limits. The objective for MPC is to utilize the controller high and low lim-
its instead of following one set point value. The optimum performance solution is more 
often achieved when one or more process variables are close to a constraint. A con-
trolled variable performs at optimum level when the process value varies between the 
high and low limit. In Figure 33, the time window is set to 24 hours, which gives a fair-
ly good perspective of the process current state.  

 
 

 
Figure 33. Constraint analysis. The values in the upper table indicate the time percent-
ages when a controlled variable is violating the high or low limit inside a 24-hour time 
window. In the lower table, the values indicate how long a particular MV has been sat-
urated at high or low limit percent wise. 

Usually, a limit violation for manipulated variable is more undesirable status than 
for a controlled variable. However, a situation where one or more MV’s are saturated at 
controller limits is unwanted since it decreases the degrees of freedom, which means 
that the controller has fewer options to adapt to process variations. 
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6.2.6 Predicted Control Change 

In chapter 6.2.1, a concept set point direction was introduced. The set point direction 
was used to determine where the controller is forcing the particular manipulated varia-
ble to move based on the set point changes. 
 

 
Figure 34. Controller predictive action. The measured CV process value is violating the 
defined process limits. The controller has three possible solutions to affect the CV; to 
use either MV’s, or the two of them. The selection is limited by the significance of an 
MV control move as well as the current set point of the MV. 

In Figure 34, the monitored controlled variable is way below a desired level. Since 
there are two interacting manipulated variables the controller is expected to make con-
trol changes to one or both MV’s. Since both MV’s have a direct influence to the CV, 
the expected corrective action is to increase the values of one or both MV’s, so the con-
troller’s prediction would be to increase both MV’s. The executed control move de-
pends on the defined tuning parameters (move suppressions), i.e. how much penalty is 
generated for the given control move. By closer observation, it appears that one of the 
MV’s is at high limit, so it would be undesirable to increase the value of that MV. An 
improvement for the tool is to display not only the controller’s set point direction during 
a controller limit violation but also the predictive control change, or what kind of 
changes the controller would like to perform.  
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The process in Figure 34 has two similar, yet slightly different MV’s states. The con-
troller would like to increase both values, but is restricted to use only one MV, to pre-
vent a limit violation situation. 

6.3 Intelligent Control Loop Performance Monitoring Tool 
for MRAC 

6.3.1 CE-% Control Performance Monitoring 

Performance monitoring for causticizing efficiency (CE-%) includes both online 
process measurement data, and calculated data based on the process signals. The con-
ceptual graphical user interface (GUI) for model reference adaptive CE-% control is 
displayed in Figure 35. 

The tabular values indicate the current status of process variables, so all the extraor-
dinary values can be detected. The graph displays history data over 24 hours as default. 
The time window can be fixed by the user. 

The variation of process qualities is desired to be minimized, in order to maintain a 
stable production. The transmission of process qualities can be evaluated for example 
using time series analysis. In causticizing efficiency (CE-%) control, the correlation was 
determined between measured analyzer values before the first causticizing chamber, and 
after the last causticizing chamber. Since the fluid, or lime milk travels through the 
chambers, the quality variations in the inlet flow can be detected in the outlet flow after 
a delay of the causticizing chambers. The delay must be taken account for when evalu-
ating how the qualities transmit. 

 

.  
Figure 35. Conceptual model reference adaptive CE-% control graphical user inter-
face. The main interface consists of both real time process as well as history data for 
variables concerning the CE-% control. 



 62 

6.3.2 Control Analysis 

As discussed in chapter 5.3.3, the desired white liquor CE-% is achieved by using 
the slaker temperature difference, corrected with the first and the last causticizing 
chamber’s CE-% difference. The CE-% difference is evaluated using analyzer meas-
urements.  The  signals  are  then  put  through a  filter,  and  the  first  causticizing  chamber  
CE-% value is delayed, so that the two signals are evaluated at the same time. Figure 36 
shows  a  graph  of  unfiltered  and  un-delayed  signals  for  the  first  and  last  causticizing  
chamber’s CE-%. 

 

 
Figure 36. Visual analysis of the first and last causticizing chamber CE-%’s. Visually, 
the two signals seem to be correlating, but with a delay caused by the dynamics of the 
chambers. However, the quality transmission through the chambers is evident. For a 
further analysis, the time delay shift can be evaluated using the correlation analysis. 

Intuitively, it is fair to assume that the data cannot be used for proper calculations, 
since there is a distinct process lag between the signals due to process dynamics. By 
manipulating the signals, the data can be used more accurately for CE-% control. 

Graphic visualization analysis can be used to create rough estimates of the correla-
tion as well as the difference between the two signals. Correlation coefficient is used to 
evaluate the precision of the created process model. The correlation coefficient is calcu-
lated for a time period of 3 hours. The time delay shift is calculated using maximum 
argument value based on the correlation coefficient signal. The time delay shift is de-
termined by selecting the maximum correlation value inside the time window, and eval-
uating the corresponding value.  
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Figure 37. Correlation analysis for the first and last causticizing chamber CE-% differ-
ence. The time point with the strongest correlation is used to determine the signal time 
delay shift. 

In model based controlling the time delay shift can be used to evaluate the lag be-
tween  the  two  signals,  when  process  dynamics  are  considered.  In  CE-%  control,  the  
time delay shift indicates a foul residence time in the causticizing chambers. This in-
formation can be used further to determine the correct residence time for lime milk 
based on the volumes of the causticizing chambers and the inlet and outlet flows. In 
Figure 37, the maximum argument, or strongest correlation is achieved at the highlight-
ed time point. Evaluating the corresponding time delay shift indicates that there is virtu-
ally no lag between correlation, which means that the model can be considered to be 
fairly good. 
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7 FUTURE WORK 

This chapter focuses on the future work, and product development for the existing 
tools, as well as implementation of other possible control solutions. 

7.1 Future Improvements and Product Development for 
MPC 

In this thesis, the focus was creating a control loop performance monitoring (CLPM) 
tool for MPC control solution, and therefore provides a more completed solution for 
process monitoring. Future work for the MPC control loop performance monitoring 
regards enhancing the content of the tool and developing the presentation methods of 
data. Also, other study methods will be discussed, to add value for the tool. 

7.1.1 Controller Output Performance 

The condition of an actuator depends on many different issues. A controller gives 
signals to the actuators based on decisions it makes. Over time, an actuator wears out, 
which might lead to inconveniences, and therefore poor control. There are many indica-
tors that can be used to monitor the condition of an actuator, thus prevent degrading and 
reduce maintaining costs. 

One indicator is the controller output (CO) signal. The mean value of CO can be 
used to determine undersized or oversized valves or incorrectly ranged transmitters. On 
the other hand, the standard deviation of controller output signal can be used to evaluate 
the possibility to achieve the same performance with less valve movement, which re-
duces maintaining costs. Even greater effect on actuator’s wearing out is the hacking 
against a physical constraint, for example a valve completely open or closed.  

In the constraint analysis (Chap. 6.2.5) feature for MPC, the percentage of time 
when a particular MV is saturated at high or low limit was calculated. For a future im-
provement, the feature could be extended to assess the percentage calculation separately 
for high and low limit saturation. The high limit saturation could then be used to detect 
process bottlenecks. 

For controlling purposes, it is inevitable that the controller is certainly going to 
make some control changes. The size and incidence of the moves depends on the opti-
mization algorithm. The number of control moves indicates how a certain process pa-
rameter is utilized. The use of one manipulated variable can then be enhanced by using 
tuning factors accordingly. 
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7.1.2 Prediction Evaluation 

A realistic way to evaluate prediction is to calculate the error between the steady-
state (SS) value and the realized process value for a CV. The steady state value is the 
predicted value for a certain controlled variable over the prediction horizon (Chap 
4.1.1). There are two signals plotted in Figure 38. The noisier signal is a measured pro-
cess value for a CV, and the other one is the predicted value over the prediction horizon. 

 

 
Figure 38.Prediction evaluation. The prediction evaluation is reviewed over a time of 
the prediction horizon. In an ideal case, the first predicted value inside the horizon 
equals to the last measured process value of the same prediction horizon.  

In an ideal situation, the first point of the predicted value is equal to steady state sig-
nal with no noise. However, because the controller is adaptive, a prediction evaluation 
these two points aren’t comparable directly. A prediction at the beginning of the predic-
tion horizon is achieved using the predicted control moves. At every calculation cycle 
only one control move is executed, and a new prediction is made. Thus, the realized 
control moves not necessarily match to the predicted control moves. 

A more realistic approach is to compare these two variables by simulation. The 
point of reference in simulation is still the first value of prediction inside the horizon. 
The realized process value is calculated using the realized set point changes through the 
dynamics between the interacting variables. This kind of evaluation gives a fair result of 
the prediction success. 
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7.1.3 GUI Improvements 

In addition to suggested improvements in contents, some development for the tool 
user interface’s features is in order. The performance monitoring user interface for a 
controlled variable (Fig. 20) had a changing time window that could be manually ad-
justed. As well as the time window (on x-axis), the data range (y-axes) should also be 
user definable. For the correlation analysis it would be also valuable to add the maxi-
mum delay, since at the moment correlation is evaluated over a same period of time, 
though the delays vary quite significantly according to which two process variables are 
evaluated. 

7.2 Future Improvements and Product Development for 
MRAC 

Since the implementation for model reference adaptive control fell short, it is evi-
dent that the tool requires improvements. The improvements for the model reference 
adaptive control (MRAC) performance monitoring regards the content of the tool and 
developing the presentation methods of data. Other study methods would provide a use-
ful addition for the tool. 

7.2.1 Model Quality 

The model quality for model reference adaptive control was evaluated using time se-
ries analysis. One parameter of interest for monitoring is the adjustment factor (Chap 
5.2),  which  is  the  constant  value  used  to  fix  the  control  signal  based  on  the  error  be-
tween a reference model output and the process model output. Basically, an integrating 
positive or negative error between the two signals reflects that the reference model 
might be off, and needs to be updated.   

7.2.2 Residence Time Simulation 

In causticizing process, the transmission of process qualities was evaluated for ex-
ample in causticizing efficiency (CE-%) control, using time series analysis. The correla-
tion was determined between measured analyzer values before the first causticizing 
chamber,  and  after  the  last  causticizing  chamber.  A time delay  lag  (Chap.  2.3.5)  indi-
cates that model error exists, and the model needs to be updated. 

The time delay lag can be compensated by changing the residence time. The resi-
dence time is related to the flow that enters the first causticizing chamber; increasing the 
flow means a longer residence time, and a greater total volume of the causticizing 
chambers. If mixing of chambers is neglected, the total volume can be used as a variable 
to set the correct residence time. Simulating for different causticizing chamber total 
volume and the corresponding residence times, the right model can be figured out and 
update accordingly. 
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8 SUMMARY 

The final chapter of the thesis discusses the results in terms of implementing the 
control loop performance monitoring (CLPM).  

In pulp and paper industries the processes are highly interactive and the process de-
lays are quite significant. These sorts of processes are ideal for an advanced control so-
lution like the model predictive control (MPC) or model reference adaptive control 
(MRAC) solution. For a basic regulatory controller such as the PID, monitoring a single 
input single output (SISO) process is quite straightforward. However, in a multivariate, 
highly interactive processes controlled with an advanced control solution, monitoring 
not only focuses on just process equipment, but also other factors like overall perfor-
mance or economics. In this case the usefulness of an active CLPM is even preferred. 

The number of installed control loop performance monitoring (CLPM) solutions is 
relatively low at the moment, although there are multiple vendors offering the software. 
A real time CLPM solution can reduce costs and increase profit by allowing a quick 
response to process variations. Consequently, it is beneficial for both the solution pro-
vider as well as the customer. 

In a multivariate process, a quick responding to the variations can make the differ-
ence between poor and well performing process controls. It is fair to assume that a con-
trol loop performance monitoring solution will provide an asset in achieving a desired 
performance.  

The features of a CLPM solution should be relatively easy to understand. At the 
same time they should be informative enough, so that the process characteristics are 
covered. Simple configuration enables faster implementation and therefore a chance for 
earlier performance monitoring. A common widely recognized feature is ease of access. 
Thus, the solutions usually were implemented as web based service. The monitored pro-
cess related KPI’s were selected based on the process experience by control engineers. 
The used methods for analysis were selected to meet the purposes of monitoring for the 
destined process. 

The decision to apply the tools as a part of the existing monitoring system was fairly 
obvious. Like other vendor provided CLPM solutions, the tool was implemented as a 
browser based service. The main reason was that it enables accessing the tool relatively 
straightforward. The implemented control loop performance monitoring solutions were 
configured so that they can be applied to future MPC or MRAC cases with minor ad-
justments. Performance monitoring for other multivariate control solutions are a topic of 
interest for future implementation. 
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Implementing control loop performance monitoring (CLPM) tool for MPC was suc-
ceeded fairly good, although the MRAC case had issues which resulted complications 
for the implementation. The main objectives for the thesis was to determine the type of 
CLPM solution is needed, and to find the necessary key performance indicators (KPI’s), 
and the right analyzing methods, which will provide sufficient amount of information to 
increase control awareness, without making it too complex and difficult to understand. 
For future installations, the tool also needed to be relatively easy to configure. 
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