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Abstract 

The aim of this thesis is to improve the overall efficiency of the multiple hearth 
furnace (MHF) in kaolin calcination by developing control strategies which 
incorporate machine learning based soft sensors to estimate mineralogy related 
constraints in the control strategy. The objective of the control strategy is to 
maximize the capacity of the furnace and minimize energy consumption while 
maintaining the product quality of the calcined kaolin. 

 
First, the description of the process of interest is given, highlighting the control 

strategy currently implemented at the calciner studied in this work. Next, the state 
of the art on control of calcination furnaces is presented and discussed. Then, the 
description of the mechanistic model of the MHF, which plays a key role in the testing 
environment, is provided and an analysis of the MHF dynamic behavior based on the 
industrial and simulated data is presented. The design of the mineralogy-driven 
control strategy for the multiple hearth furnace and its implementation in the 
simulation environment are also outlined. The analysis of the results is then 
presented. Furthermore, the extensive sampling campaign for testing the soft 
sensors and the control strategy logic of the industrial MHF is reported, and the 
results are analyzed and discussed. Finally, an introduction to Model Predictive 
Control (MPC) is presented, the design of the Linear MPC framework for the MHF 
in kaolin calcination is described and discussed, and future research is outlined.   
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1. Introduction  

1.1 Background 

The growing complexity of modern processes and factories, increasing 

global competition, environmental regulation, and decreasing ore quality 

present important challenges to the operation and control of mineral 

processing plants. The plants must run efficiently and safely with 

minimal disturbances to the quality of their products, and operations 

must respond to constant demand to decrease costs and optimize 

production. 

 

Currently, mineral processing plants present major challenges with the 

refinement of ore with a reduced quality. Therefore, improving 

operations is of utmost importance in the mineral industry, which has 

shown a remarkable transformation with the incorporation of more 

automated processes in recent years (World Economic Forum, 2017).  

 

The mineral processing industry is a frontrunner in the notorious 

advancement of Industry 4.0. This evolution of industry unites advanced 

technologies such as automation, cyber-physical systems, big data, and 

robotics to develop smart systems and accomplish improved levels of 

process optimization (Olivier and Craig, 2017). It is a complete 

modernization of the way that minerals and metals are produced. 

 

Industrial minerals are naturally formed rocks or minerals that are 

economically valuable, excluding metallic ores and mineral fuels. 

Industrial minerals are a specialty submarket of the mining industry. 

The industrial minerals business face similar challenges as the mineral 

processing industry. Therefore, automation, use of production “big data” 



 
 

2 
 

and the Industry 4.0 concept play a key role in this sector as well, to reach 

better levels of optimization and efficiency of production. 

 

Clays are one of the most important industrial minerals as they are 

extensively used in numerous aspects of our society. An important clay is 

kaolin; it is used in multiple industrial applications including paint, 

paper, rubber, and refractory items. Some applications require the 

temperature of kaolin to be raised above 900 °C (Ptáček et al., 2010b), 

also known as calcination, to enhance its properties and increment the 

value of the raw material. Calciner furnaces such as rotary kilns and 

multiple hearth furnaces (MHF) are broadly employed in the industry to 

calcine kaolin. Generally, the furnaces are highly instrumented and are 

excellent candidates for efficient control strategy development using 

Industry 4.0 tools. The calciner control system has a vital role in ensuring 

uniform product quality while optimizing the furnace capacity and 

enhancing the furnace energy efficiency for optimal operation. 

 

An essential aspect to improve the mineral processing operations is the 

incorporation of mineralogy information into the control strategy of the 

plant. Machine learning methods offer great opportunities to utilize the 

production “big data” and mineralogy knowledge to be integrated as soft 

sensors to the plant control strategy (Hodouin, 2011; Leiviskä, 2001). 

Great improvements have been achieved in the past; researchers have 

developed expert systems based on the online categorization of ore types 

using cluster analysis and neural networks (Jämsä-Jounela et al., 1998; 

Laine et al., 1995).  

 

The multiple hearth furnace is a nonlinear multivariable system that 

requires an advanced control strategy such as Model Predictive Control 

(MPC). Several research groups have worked on the design and 

implementation of model predictive control for rotary kilns and MHF. 

Stadler et al. (2011) presented a first principle model of a cement kiln and 

used MPC to stabilize the temperature profile and maximize the 

production of the kiln. Gouveia et al. (2009) implemented MPC to a 
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multi-hearth nickel reduction roaster to reduce the variability of the 

roaster conditions and minimize the energy use.  

 

No advanced controls have been implemented for an MHF in kaolin 

calcination, however.  

1.2 Research problem and the asserted hypothesis 

 

Calciners are complex processes that require precise temperature profile 

control. Additionally, the operators need mineralogy information to run 

the calciner efficiently to attain a product with the desired properties. 

There is a need to develop a mineralogy-driven control strategy to 

optimize the efficiency of the furnace operation. Mineralogy assays, 

however, are laborious and require extended time; the number of assays 

per day is also often limited to minimize costs. Soft sensors have proven 

to be reliable tools to estimate mineralogy-related information given by 

the process data, which is otherwise unavailable through direct 

measurements. 

 

The main motivation for this thesis is to improve the overall efficiency 

of calcination by developing the advanced control strategy, which 

incorporates machine learning-based soft sensors and the production 

mineralogy data.  

 

The main benefits of a mineralogy-driven control strategy are more 

stable production, improved product quality, and minimization in energy 

use. In addition, the strategy reduces the need for operators to handle the 

changes in operating regions and to react to disturbances. 

    

The hypothesis of this thesis is: 

 

The mineralogy-driven control strategy provides an opportunity to 

improve the operation and performance of the calciner by integrating 

soft sensors based on mineralogy and process data into the optimization 

control strategy of the furnace. 
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To prove the claims of the hypothesis presented above, the following 

tasks were performed during the research: 

 

Task 1. The mineralogy-driven control strategy for the industrial MHF 

in kaolin calcination is created. The aim of the strategy is to optimize the 

capacity and use of energy consumption. The strategy is implemented 

and tested in the simulation environment with the industrial data. 

 

Task 2. The optimization control strategy is enhanced with the soft 

sensors. The testing environment (which includes the dynamic model of 

the MHF, soft sensors for reaction rate, mullite content and soluble 

alumina, and the control strategy) is programmed and implemented. The 

testing and data collection campaign are planned and performed at the 

factory. The impact of the strategy results on the process operation is 

analyzed. 

  

Task 3. The MPC framework for the MHF in kaolin calcination is 

designed and tested in the simulation environment. Finally, its 

performance is evaluated, and further developments are discussed. 

1.3 Scope and significance of the thesis 

 

This thesis focuses on the improvement of the overall efficiency of an 

MHF by incorporating mineralogy information into the control strategy. 

The enhanced control strategy of the furnace addresses the maximization 

of the capacity as well as the minimization of energy consumption. The 

main objective is the development of the advanced control strategy 

supported by the mullite content and soluble alumina soft sensors based 

on machine learning algorithms and to be used as constraints for the 

control strategy. The novelty comes from incorporating the mineralogy-

driven soft sensors into the control strategy of the furnace.   

 

The development of the mullite content soft sensor consisted of creating 

a steady-state mechanistic model based on the information from the 
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physicochemical phenomena of the kaolin calcination reactions. 

Additionally, a second mullite content model was designed based on 

artificial neural networks (ANN). Both models were validated using 

measurements obtained from the calciner laboratory data. Furthermore, 

an ANN-based soft sensor to estimate the soluble alumina content in the 

product was also engineered. This soft sensor was validated using soluble 

alumina measurements from the final product. 

 

To test the control strategy, a simulation environment was created that 

includes the mechanistic model of the MHF and soft sensors in 

conjunction with the control strategy. The testing of the enhanced control 

strategy was performed and compared with the control strategy of the 

plant. The simulation results of the enhanced control strategy were 

analyzed and discussed. 

 

An advanced control strategy such as MPC was conceived and 

implemented in the simulation environment. The MPC framework would 

consider the mullite content and soluble alumina estimations as 

constraints to drive the process and optimize the capacity and energy 

consumption of the furnace. The results of Linear MPC simulation are 

presented and discussed. The Nonlinear MPC (NMPC) and Economic 

MPC (EMPC) frameworks are left outside of the thesis, however, the 

NMPC and EMPC control strategies and further developments are 

discussed in the final chapter of the thesis. 

1.4 Outline of the thesis 

 

Chapter 2 gives a detailed description of the process of a multiple hearth 

furnace and its control strategy. The state of the art in the control of 

calcination furnaces is presented in Chapter 3. Chapter 4 describes the 

dynamic model of the multiple hearth furnace. Chapter 5 presents the 

analysis of multiple hearth furnace dynamic behaviors using various data 

analytics methods. Chapter 6 presents the advanced control strategy 

designed for the multiple hearth furnace to integrate the mineralogy 

information of the kaolin calcination process. Furthermore, Chapter 6 
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discusses the simulation results of the mineralogy-based control strategy, 

and Chapter 7 presents the testing performed at the plant. Chapter 8 

presents the model predictive control strategy for the multiple hearth 

furnace, and Chapter 9 concludes this work. 

1.5 Author’s Contribution 

 

The thesis is part of the European FP7 project, “Sustainable Technologies 

for Calcined Industrial Minerals in Europe” (STOICISM), grant 310645, 

and the EIT Raw Materials KAVA project, “Integrated System for 

Monitoring and Control of Product Quality and Flexible Energy Delivery 

in Calcination” (MONICALC), grant 15045. Professor S.-L. Jämsä-

Jounela initially outlined the design of the overall control strategy.  J. V. 

Gomez Fuentes developed, implemented, and validated the mullite 

content and reaction rate soft sensors for the strategy. J. V. Gomez 

Fuentes also developed and validated the soft sensors based on Artificial 

Neural Networks. He also implemented and tested the controllers, 

performed the simulation tests, and analyzed the results. Dr. A. Smirnov 

implemented the mechanistic model of the multiple hearth furnace into 

the simulation environment and provided advice to facilitate the 

simulations. J. Hearle from IMERYS Ltd. provided in-depth knowledge 

about the furnace and the data of the real process. Professor S.-L. Jämsä-

Jounela made the testing plan at the factory with the help of Dr. B. Sun 

and J. V. Gomez Fuentes. Dr. B. Sun designed the industrial testing 

environment with the advice of J. Kortela, who also inspected the 

instruments at the factory. J. V. Gomez Fuentes analyzed and 

documented the behavior of the furnace during the testing period. D. 

Moseley and Dr. T. Skuse from IMERYS Ltd. provided practical 

knowledge and guidance during the whole testing period. J. V. Gómez 

Fuentes designed, implemented and tested the Linear MPC for the MHF 

in kaolin calcination. Finally, J. V. Gómez Fuentes outlined the future 

research of advanced MPC methods for the MHF in kaolin calcination.  
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Summary 

 
The objective of this introductory chapter has been to provide the 

motivation for the study and to present the hypothesis and the main 

contributions of this research. Initially, an overview of the mineral 

processing plants and their challenges has been discussed, including the 

growing interest in incorporating the advancement of Industry 4.0 and 

big data into the mineral processing industry, focusing on the calcination 

of Kaolin. Furthermore, the research problem and hypothesis have been 

outlined while providing the fundamental tasks: (1) the design of the 

mineralogy-driven control strategy for the MHF; (2) the integration of 

the mineralogy-based soft sensors into the control strategy and (3) the 

design, implementation and testing of the MPC framework for the MHF. 

Finally, the scope and significance of this work have been presented along 

with the contribution of the author. The following chapters will present 

the description of the MHF and its control, a brief literature review on 

the control of calcination furnaces, an analysis of the MHF’s dynamic 

behavior, the design of the control strategy including simulation results 

and plant testing, and finally, the MPC framework and conclusions. 
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2. Process description of a multiple 
hearth furnace 

This chapter delivers a general outlook of the kaolin processing, and 

subsequently it focuses on the calcination process which is the interest of 

this work. 

 

2.1 Kaolin processing 

 

Kaolin clays are usually mined from open pits since underground 

mining requires added costs of production that may not be optimal or, in 

some instances, prohibitive for stable operation. Ore extracted from the 

deposits needs to be refined because the mineral contains numerous 

impurities, and the kaolin calcining phase requires high-quality kaolin as 

raw material for processing. The kaolin is obtained from the pits with the 

wet processing method, which allows for a more effective extraction 

compared to dry processing (Thurlow, 2005). Wet processing produces 

improved color and higher uniformity, and the mineral is fairly free of 

impurities. The processing of the clay produces sizeable quantities of by-

product, including mica, rock, and sand. In Figure 2.1, a basic view of the 

kaolin extraction, refining, and processing is presented.  

 

The flow of kaolin from the pit to the calcining stage is classified into 

three main stages: 

I. Pit operations 

II. Refining processes 

III. Drying processes 
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2.1.1 Pit operations 

Pit operations in an open pit can be separated into five different unit 

operations:  

1. Before the kaolin clay can be extracted from the soil, the 

overburden is removed. 

P
it

 

O
p

er
a

ti
o

n
s 

R
ef

in
in

g
 

P
ro

ce
ss

e
s 

D
ry

in
g

 

p
ro

ce
ss

es
 

Figure 2.1 Simplified flow diagram of kaolin production (Thurlow, 

2005). 
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2. The hard ground is broken down by drilling and blasting. Next, the 

kaolinized granite can be processed. 

3. The kaolinized granite is washed, and stones and sand are 

removed. 

4. The sand removal is done either with bucket wheel classifiers or in 

large settling pits. 

5. Fine sand and coarse mica are separated from the clay. The 

separation is done by hydrocyclones, which divide the feed 

roughly into two grades: a particle size of over 50 microns and 

particles with a diameter of less than 50 microns. 

2.1.2 Refining processes 

At the refineries, mica, sand, and other impurities contained in the clay 

suspension are removed to get a pure clay product. The refineries usually 

feature the following unit operations: 

1. Thickening. The clay suspension is pumped continuously to the 

middle of the tanks, where it settles and is shifted toward the 

underflow pipe. 

2. Mica separation. The material is separated using hydroclassifiers 

or hydrocyclones. In the hydroclassifiers, a deflocculant is added 

and a deflocculation process is used. With hydrocyclones, to 

achieve reasonable tonnage, the clay feed is divided by the number 

of hydrocyclones. 

3. Grinding. The underflow is led through a sand grinding stage to be 

ground for a short period of time to break the clay stacks but not 

to break the mica particles. 

4. Magnetic separation. Impurities in the refined kaolin such as 

mica, iron oxides, and tourmaline contain some iron. They can be 

removed with a powerful electromagnet. 

5. Bleaching. This process is used to convert the insoluble iron oxides 

to iron sulphates using sodium hydrosulphite. The clay first passes 

through a tall column to remove trapped air and then flows 

through a pipeline, where the sodium hydrosulphite is added. 
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2.1.3 Drying process 

The refined clay slurry is transported via pipes to a drying plant, where 

it is initially thickened and then filter pressed to create a cake. The cakes 

are sliced and fed into a mechanical dryer. The typical mechanical dryers 

used in the process comprise circular and square filter presses and tube 

presses. 

 

1. The clay is thickened by sedimentation and then flocculated. 

2. The dewatering is continued by filter presses, where the clay is 

pumped into chambers lined with a tightly woven nylon cloth that 

passes the water but not the clay particles. 

3. The clay can be milled with a pug mill to round the clay particles if 

necessary. 

4. Pelleting. The clay is mixed with paddles, which break down any 

lumps, and then it is conveyed to a drum. This forms the clay into 

pellets about 1.3 centimeters long.  

5. Drying. In the fluidized bed dryer, slightly pressurized hot air is 

introduced through a perforated floor in a cylindrical chamber. 

The fluidized bed combined with cooling provides lower dust 

levels outside by minimizing steam emissions from the dried 

product. 

 

After drying, the kaolin can be pulverized to acquire the required 

particle size. At this stage, the kaolin has been treated until it is ready for 

particular applications, and it can be sold. However, if higher-quality 

products are desired, the clay must be calcined to get greater brightness 

and to lessen the soluble aluminum content. 

2.2 Kaolin calcination 

 

Calcination is the process of heating a material below its melting point, 

thus removing the water contained. This process is one of the most 

notable ways of enriching the properties, and worth of kaolin. Calcination 

increases the brightness of the clay, but also intensifies the coarse 

properties of the material, which can produce handling complications 
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owing to the abrasiveness of the particles. The range on the variations of 

the properties is reliant on the duration of calcination, temperature, and 

the impurities present in the clay.  Therefore, depending on the origin of 

the kaolin, varied qualities of calcined clay will be produced.  

 

The most common methods of kaolin calcination are soak, soft and flash. 

Soak calcination comprises the exposure of kaolin high temperatures for 

extended amounts of time to assure that the calcination is fulfilled. 

Similar to the previous method, soft calcination subjects the clay to high 

temperatures but only for a limited time in order to minimize the quantity 

of abrasive particles generated. Finally, flash calcination involves a swift 

temperature rise, typically between 900 and 1000 °C within a fraction of 

a second. Calciner furnaces such as rotary kilns and MHF are widely used 

in industry for the calcination of kaolin and one the general methods used 

is the soft calcination (Thomas, 2010).  

 

The multiple hearth furnace operated for kaolin calcination, has counter-

current gas and solid currents. The furnace studied in this thesis, 

comprises eight hearths, and eight burners situated in hearths 4 and 6, 

which burn natural gas to provide the heat necessary to commence the 

calcination reactions. The amount of airflow, injected to the burners for 

gas combustion, is calculated based on the stoichiometric ratio. The 

burners are positioned in a tangential alignment. 

 

Kaolin is delivered to the first hearth placed at the top of the furnace. In 

the calciner, the material is moved by the metal edges, called blades, 

which are connected to the rotating rabble arms. The blades are designed 

to carry the material inward on odd-numbered hearths and outward on 

even-numbered hearths. The kaolin traveling the odd-numbered hearths 

falls to the next hearth through a single annulus located around the shaft 

carrying the rabble arms, while the kaolin in the even-numbered hearths 

travels outward to descend through the openings at the outside border of 

the hearth. Figure 2.2 illustrates the internal design of the calciner.  
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The temperature of the solid rises as it goes down through the furnace 

and achieves its maximum in the hearth 6. Initially, kaolinite transforms 

into metakaolin in the hearths 3, 4, and 5 at a temperature between 400–

700 °C (Ptáček et al., 2010a). The metakaolin leaves from the hearth 5 at 

a temperature of approximately 800 °C, which surges to 1000 °C in the 

hearth 6, where the reaction of metakaolin to the Al–Si “spinel phase” 

ensues (Ptáček et al., 2010c). Thus, the main objective of the hearth 6 is 

to increase the temperature to enable the absorption of aluminum into 

the silica phase. The temperature control in the hearth 6 is critical to 

circumvent overheating, which may cause undesired growth of a 

crystalline material that generates some abrasion problems. The 

temperature of the solids commences to decline in the hearths 7 and 8, 

and the product exits from the hearth 8 via two discharge holes at a 

temperature of 750 °C. 

 

Figure 2.2 Cross-sectional picture of the Herreschoff calciner with direct fire 

burners. (provided by IMERYS, Ltd). 
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Kaolin consists mainly of the mineral kaolinite; whose chemical 

formula is Al2Si2O5(OH)4. During calcination, kaolin faces four 

physicochemical transformations (Ptáček et al., 2011). 

 

1) The vaporization of free moisture occurs (T≤100 °C) 

 

2) The dehydroxylation reaction ensues, where chemically 

bound water is separated, and amorphous metakaolin is generated at 

450–700 °C (Ptáček et al., 2013). 

 

𝐴𝑙2𝑂3 ∙ 2𝑆𝑖𝑂2 ∙ 2𝐻2𝑂 → 𝐴𝑙2𝑂3 ∙ 2𝑆𝑖𝑂2 + 2𝐻2𝑂(𝑔) (2.2) 

  

3) The third process is the exothermic re-crystallization of 

metakaolin to the “spinel phase” product at 925–1050 °C (Ptáček 

et al., 2010b). 

 

2(𝐴𝑙2𝑂3 ∙ 2𝑆𝑖𝑂2) → 2𝐴𝑙2𝑂3 ∙ 3𝑆𝑖𝑂2 + 𝑆𝑖𝑂2(𝑎𝑚𝑜𝑟𝑝ℎ𝑜𝑢𝑠) (2.3) 

  

4) In the fourth physicochemical reaction, the nucleation of the 

“spinel phase” follows and the solid transforms into mullite at 

temperatures above 1050 °C (Ptáček et al., 2010b): 

 

3(2𝐴𝑙2𝑂3 ∙ 3𝑆𝑖𝑂2) → 2(3𝐴𝑙2𝑂3 ∙ 2𝑆𝑖𝑂2) + 5𝑆𝑖𝑂2 (2.4) 

 

Mullite is a hard solid that can be abrasive to the processing equipment. 

The desired final product contains minimal mullite and metakaolin. 

Figure 2.3 illustrates the thermogravimetric analysis (TGA) and 

differential scanning calorimetry (DSC) graphs of the kaolin calcination 

reactions. 

𝐻2𝑂(𝑙) → 𝐻2𝑂(𝑔) (2.1) 
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Equation (2.1) presents the first reaction, which marches forward in the 

hearths 1 and 2. From the hearth 3 onward, the temperature is suitably 

high to initiate the second reaction, Equation (2.2), where metakaolin is 

generated through the dehydroxylation process. The loss of weight due to 

the dehydroxylation process is shown, between 450 °C and 700 °C, in the 

TGA red curve of Figure 2.3. The DSC results denote that the 

dehydroxylation reaction is endothermic, as indicated by the blue line in 

Figure 2.3. The product of interest, which is the “spinel phase”, is 

produced in the hearth 6. The spinel formation process is exothermic, 

which is shown in the temperature range of 925–1050 °C.  

2.3 Control strategy of the MHF studied in this thesis 

The MHF is a highly instrumented and automated equipment due to the 

complicated nature of calcination dynamics and its safety requirements. 

The feed material is conveyed to the furnace by a weigh feeder using a 

rotary valve. The feed control programmable logic controller manages the 

feed operation via the rotary valve. The instruments installed at the 

calciner comprise orifice plate flow meters to measure the gas and air 

flows, and thermocouples are situated in every hearth of the furnace to 

monitor the temperature. The hearths 4 and 6 have additional 

thermocouples positioned in every burner quadrant to accurately 

monitor the gas temperatures. Two pressure sensors are situated in the 

central exhaust duct of the calciner.  

Figure 2.3 Thermogravimetric analysis and differential scanning calorimetry 

curves for kaolin calcination (provided by IMERYS, Ltd). The corresponding 

locations in the furnace are indicated. 
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The control objectives of the MHF in this study are:  

 

1. The quality: for a product with added value. 

2. The capacity: for mass production. 

 

 Figure 2.4 illustrates the simplified control logic of the industrial MHF 

studied in this thesis. The main objective of the control is to increase 

production and satisfy the quality requirements of the product based on 

the mineralogy information of the feed material (iron content, 

brightness, particle size, etc.). In more detail, a Proportional-Integral (PI) 

system controls the temperatures of the hearths 4 and 6 by regulating the 

gas flows to the burners and keeping the temperatures within safety 

limits. The feed rate delimits the maximum gas flow allowed in hearth 4; 

this constraint avoids the excessive use of gas. An appropriate quantity of 

air is required to ensure complete gas combustion, which is determined 

by separate PI controllers. The setpoint for the combustion air flow is 

computed based on the stoichiometric ratio between oxygen and 

methane in the combustion reaction. 

Calciner 

Objectives

Objective

Capacity

Weight target 

value

Feed Control

Production rate

yes

Quality

OP

No

Temperature

target

Setpoint 

calculation

Temperature 

controller

SP

Brightness

Specifications 

from the lab

yes

No

OP

 

Figure 2.4 Control strategy of the MHF (OP=operator). 

 

 

 

 

 



 
 

17 
 

Summary 

 
This chapter has introduced a brief description of the processing stages 

of kaolin, going from its extraction and pit operations to the refining, 

drying and, finally, the calcination, which is the main process of interest. 

Additionally, a detailed description of the calcination stages of kaolin 

occurring in the multiple hearth furnace has been provided, including the 

vaporization of moisture, dehydroxilation, the “spinel phase” reaction 

and the formation of mullite. Finally, conventional control of the MHF 

has been described, emphasizing the main control objectives: (1) the 

quality and (2) the capacity. The next chapter will deliver a brief literature 

review on the control of calcination furnaces. 
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3. State of the art on control of 
calcination furnaces 

 

 

This chapter presents the state-of-the-art on the control of calciners. A 

survey on advanced control methods of rotary kilns and multiple hearth 

furnaces is presented. 

3.1 Control strategies for rotary kilns 

3.1.1 Control strategies based on PID controllers 

 

In the study of Ciftci and Kim (1999), the authors designed and tested 

several control strategies for an industrial rotary calciner with a heat 

shield around the combustion zone. The calciner is utilized for the 

endothermic decomposition of trona ore (sodium sesquicarbonate) into 

crude soda ash (sodium carbonate). Trona ore is fed to the high end of 

the kiln and advances toward the lower discharge end because of the 

inclination and rotation of the shell. The heat of the reaction is provided 

by burning a natural gas and air mixture using a single centerline burner. 

The mathematical model for the calciner is a set of heat and mass balance 

equations based on first principles. The model predicts the dynamic 

response of the calciner with unreacted sodium sesquicarbonate content, 

and also matches qualitatively with the detected system behavior of the 

step and sinusoidal disturbances. Kim and Srivastava (1990) presented 

the necessary details of the mathematical model for this calciner. 
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In this study, the authors (Ciftci and Kim, 1999) simulated three 

different Proportional Integral Differential (PID) control schemes to 

improve calciner product quality. The basic aim behind these schemes 

was to search for appropriate controlled variables in the calciner/product 

through which the product quality can be improved by handling the 

deviations of the input variables.  In the first PID closed loop structure, 

the unreacted sesquicarbonate content of the product is the direct 

controlled variable and the natural gas flow to the burner is the 

manipulated variable. The simulations of Ciftci and Kim (1999) revealed 

that this scheme had several shortcomings, such as long dead and settling 

times, as well as high initial deviations from the steady-state values. 

Increasing the sodium sesquicarbonate content of the feed and increasing 

the feed rate both increase the quantity of reactants entering the calciner. 

Therefore, more energy should be supplied to the system in both cases. 

However, increasing the feed rate means that more insoluble material is 

also entering the system along with the reactants, and that they also 

should be heated up to the reaction temperature.  

 

In the second PID control scheme, the kiln off-gas temperature is 

chosen as the controlled variable to increase the product quality and the 

natural gas flow rate to the burner is the manipulated variable. Taking 

this controlled variable offers two advantages: (1) The kiln gas has a much 

smaller retention time compared to the solid; hence, there is less dead 

time observed in the response of the system, and (2) The gas temperature 

may easily be measured online with the help of thermocouples. This 

scheme failed to control the sodium sesquicarbonate concentration of the 

product satisfactorily. In particular, positive disturbances result in under 

calcination, whereas over calcination is observed for negative 

disturbances.  

 

In the last PID scheme, the product temperature is chosen as the 

controlled variable and the natural gas flow rate to the burner is the 

manipulated variable. With this controlled variable, the closed loop will 

exhibit a long dead time because of the long retention time of solids. 

However, this control scheme was successful in eliminating the problem 
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of over and under calcination. Moreover, this scheme has an economical 

advantage over the first scheme as the product temperature can be easily 

measured online with the help of thermocouples.  

 

The first and last PID schemes are quite successful in maintaining the 

specific product quality. However, both these schemes have a long dead 

time because these schemes rely on product output. It is worth noticing 

that the third scheme is a more cost-effective scheme than the first one. 

Subsequent to the above experiments, the authors of the study (Ciftci and 

Kim, 1999) simulated a feedforward control strategy by deriving a first 

order input/output model of the calciner, with the controlled variable 

chosen as the sodium sesquicarbonate content of the product and the 

natural gas flow rate to the burner as the manipulated variable. The 

reported results confirm that the feedforward control scheme was 

successful in handling disturbances in the feed ore rate. 

3.1.2  Advanced Control of a Rotary Dryer 

 

In a study by Yliniemi et al. (1998), two types of hybrid intelligent 

control systems were designed for a rotary dryer. The process was a pilot 

rotary dryer with direct air-heated and concurrent flows, which was 

designed and constructed at the University of Oulu. A screw conveyor 

transports the calcite (more than 98% 𝐶𝑎𝐶𝑂3) from a silo to a rotating 

drum to be dried. The drum length is 3 m with a diameter of 0.5 m. A 

blower supplies the drying air which is later heated in the burning 

chamber using propane gas as fuel. Finally, the dried calcite is 

transported back to the silo via a belt conveyor where it is wetted once 

more.  

 

The authors’ first control approach was the development of a fuzzy logic 

controller for the rotary dryer. The aim was to combine the controller 

with a PI controller and to facilitate the rotary dryer control by applying 

the operator's expert knowledge. The controlled variable is the solid 

material output moisture. The main manipulated variable is the drying 

air input temperature, which is correlated to the fuel flow. An auxiliary 
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manipulated variable is the solids velocity, which correlates to the 

rotation speed of the screw conveyor. The solids input moisture and the 

feed flow are the main disturbances. The fuzzy logic controller provides 

the setpoint information of the drying air input temperature to the PI 

controller. The fuzzy logic controller used trapezoidal membership 

functions for the three input and one output variables. The controller 

operates for the conditions when the solids input moisture is in the range 

2.5–4 wt.% and the desired quantity of the solids output moisture is 0.1 

wt.%. The fuzzy logic controller regulates the solids output moisture quite 

well when the input moisture disturbances are introduced to the system.  

 

The second control approach involves the development of a neural network 

controller. The purpose of the controller is to provide the setpoint values of 

the feed flow and the drying air input temperature to the PI controllers which 

control the fuel flow valve and the screw conveyor rotation speed. The 

primary manipulated variable is the drying air input temperature. The feed 

flow is the secondary manipulated variable while the main disturbance 

variable is the solids input moisture. The neural network controller uses an 

inverse process model, which makes it a direct inverse controller. The 

architecture of the neural network includes: the input layer with 17 

variables, two hidden layers, and one output layer. The input variables of 

the neural network controller were the present and four past values of the 

solids input moisture, present and five past values of the solids output 

moisture, present and three past values of the solid’s velocity, and present 

and past value of the drying air input temperature. The simulation results 

of the neural network controller were promising for controlling the 

drying process. The neural network controller was implemented to 

control the pilot plant dryer due to its promising performance.  

 

3.1.3 Intelligent systems control of rotary kilns 

Järvensivu et al. (2001) developed an intelligent control system for the 

industrial lime kiln at the Wisaforest pulp mill. The lime kiln is a large 

cylindrical oven divided into four zones based on the temperature profile 

of the flue gas and the solid materials in the kiln. These four zones are: 

wet mud drying, mud powder heating to the reaction temperature, 
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calcium carbonate calcination into calcium oxide, and fine powder 

agglomeration into granules.  

 

The control system is divided into three hierarchically organized levels. 

The aim of the highest level in the hierarchy is to optimize the kiln process 

operation based on the kiln energy efficiency, lime quality, and 

environmental safety by determining the best target values for the 

stabilizing level controllers. The next level in the control structure has 

been designed to guarantee steady operation of the kiln process. In 

practice, this is accomplished by proper adjustments made in the 

setpoints of the basic-level control loops, which are implemented in the 

distributed control system (DCS). The lowest level of the system includes 

a bi-directional interface to the low-level systems via a connection to the 

real-time database (RTDB) of the information system. 

 

The high-level control of the kiln process is executed by the inter-

related units of the feedforward control models, stabilizing controllers 

and constraints handling. The controlled variables of the high-level 

control system are excess oxygen, cold-end temperature and hot-end 

temperature. The manipulated variables are the draft fan speed, sawdust 

feed rate and kiln rotational speed. The constraint variables are lime mud 

drier temperature, cold-end pressure, and total reduced sulfur emissions. 

The models used for the feedforward control include a multiple linear 

regression (MLR) and several backpropagation neural network models. 

The stabilizing control features fuzzy logic principles in its design, and 

structured natural language rules jointly with procedural reasoning are 

used to detect the lime mud drier temperature for each new 

measurement. Also, the controller based on a PI-type linguistic equation 

provides improved elements for managing nonlinearity and disturbances 

(Juuso and Leiviskä, 1992). 

 

The main measurable advantage of the intelligent control system was 

the near 7% decrease in energy consumption contrasted with the manual 

operation. Furthermore, the control system improved the burnt lime 

quality. From the environmental viewpoint, the main benefits were a 
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decrease of 10% in total reduced sulfur emissions and a decrease of near 

50% in the number of high emission events. 

 

Shah et al. (2019) developed conventional and artificial intelligence 

models for operational guidance and control for a rotary kiln in sponge 

iron production  The aim was to benchmark the predictive capabilities of 

a combination of artificial intelligence and conventional models and 

pressure control in the real-life plant environment with a focus on 

minimizing accretion and improving quality control. The rotary kiln is a 

counter current furnace. The feed material (iron ore, coal, and dolomite) 

is introduced from one side of the rotary kiln, and the combustion coal is 

burned from the other side. The kiln is moderately inclined to allow the 

flow of material in a forward direction. Incomplete combustion of coal is 

backed by the air propelled through the primary air blower and root 

blower from the burning side. Additionally, a few secondary air blowers 

are appropriately located along the entire perimeter of the kiln.  

 

The models of the kiln were developed using MLR, ANN and extreme 

learning machine methods. Extreme learning machine is a learning 

algorithm for single-hidden layer feedforward neural networks which 

selects hidden nodes at random while analytically determining the output 

weights of the network (Huang et al., 2006). The variables used to 

develop the conventional and artificial intelligence models were the inlet 

and outlet pressures, primary and secondary air flow rates, ore and coal 

flow rate from the feed side, coal burning rate from the burning side, and 

temperature measured by ten thermocouples through the length of the 

furnace. The authors recommended utilizing extreme learning machine, 

in preference to ANN and MLR when the size of data is suitable; 

otherwise MLR is should be used for short time intervals (over 10 days). 

The models developed by the authors have been implemented and have 

shown improvements in accretion control and quality control. 

3.1.4 Model predictive control schemes for rotary kilns 

In Zanovello and Budman’s lime kiln application, it was desired to 

control the cold and front end temperatures at specific values while 
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allowing the oxygen level to vary between two pre-specified limits 

(Zanovello and Budman, 1999). The two manipulated variables were the 

flow of air through the kiln induced by a pump located at the cold end and 

the flowrate of natural gas used for combustion. The principal 

disturbance to the process was the change of the lime feed located at the 

cold end section of the kiln. The transfer functions used for model 

prediction were identified from a pulp mill located in Prince George, BC, 

Canada. 

 

In the control system, infeasibilities in the presence of constraints and 

issues of sensitivity to model mismatch occurred during normal 

operation of the kiln and had a clear impact on the performance of the 

control system. Constraints were imposed on manipulated, controlled or 

associated variables. When dealing with softening of constraints, a basic 

question to answer was: what degree of deviation outside the constraints 

could be allowed for each one of the controlled or constrained variables 

during process operation?  

 

A predictive control algorithm with soft constraints is presented by the 

authors for the lime kiln. The technique, finite number of weights model 

predictive control (FNWMPC) is based on the calculation of suitable 

weights in the objective function of the predictive control problem when 

the constraints are disobeyed. In their results, the calculation time is 

found to be minimal and the convergence to a global optimum is assured. 

Finally, FNWMPC was benchmarked to the FE (Feher and Erickson, 

1993) and the quadratic dynamic matrix control (QDMC) algorithms. In 

both benchmarks, the FNWMPC was evidenced to be more effective in 

allocating the amount of error among the output variables.  

 

In Allison and Ball, a cascaded MPC strategy was implemented on a 

rotary lime kiln to meet the following objectives (Allison and Ball, 2004): 

 

• Regulate the product temperature to maximize capacity while 

maintaining the quality of the lime. 
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• Minimize the use of excess oxygen to reduce combustion gas 

velocity and dust recycle. 

• Minimize the cold-end temperature to reduce energy 

consumption. 

• Maintain the stability of the process over a wide range of 

conditions while responding to disturbances. 

 

The cascaded MPC consisted of two loops. The internal loop is a 2×2 

MPC that controls the cold-end temperature and excess oxygen with 

manipulated variables: fuel flow rate and the induction draft fan speed. 

The external loop is a 2×1 MPC that controls the hot-end temperature 

while minimizing the excess oxygen using the following manipulated 

variables: the cold-end temperature and excess oxygen setpoints. Both 

the excess oxygen and the cold-end temperature setpoints are instantly 

manipulated after a setpoint change or disturbance in the hot-end 

temperature. Finally, the oxygen setpoint is directed back to its target 

value after a change in the cold end temperature setpoint. To determine 

the model of the plant, a preliminary internal loop model was identified 

from bump test data. The external loop model was identified with a 

similar procedure. Finally, the preliminary models were refined by 

closed-loop experiments to improve the performance. The cascaded MPC 

can attain improved control and better economic performance than 

conventional methods. 

 

In a cement plant the production of clinker is one of the key processes 

to optimize in order to produce high quality cement. Stadler et al. (2011) 

presented an MPC controller for a rotary cement kiln, which was installed 

on cpmPlus Expert Optimizer a commercial platform for advanced 

process control and optimization developed by ABB. The clinker 

production process can be generally divided into four consecutive zones: 

preheating, calcining, sintering, and cooling. These zones were modeled 

and integrated into the platform as separate submodels. Each submodel 

of the cement kiln was designed as a mixed logic dynamic system 

(Bemporad and Morari, 1999). The main objective of the controller was 

to maximize the capacity of the kiln; therefore, the authors considered 
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the linearization of the nonlinear expressions to implement the model in 

the controller platform. The main controlled variables were the 

temperature in the burning zone, temperature at the back end, and 

oxygen after combustion. The main manipulated variables were the feed 

rate and specific energy input. The controller was implemented on a 

cement plant located in Switzerland (Holcim Ltd., Plant Siggenthal) and 

it has shown highly satisfactory performance. The MPC presented by the 

authors has reduced the variability of the controlled and manipulated 

variables.  

 

A generalized predictive controller was designed by Hernandez, et al. to 

control the clinkerization temperature in a cement rotary kiln. The 

process studied by the authors was a cement rotary kiln located in Peru 

(Cementos Lima) (Salcedo Hernandez et al., 2018). This furnace consists 

of a cylindrical steel tube lined with refractory material, with a length of 

120 m, a diameter of 4 m, a slope with respect to the horizontal plane of 

5%, and rotation at a speed of up to 3 RPM. To obtain the mathematical 

model that describes the dynamics of the clinkerization temperature in 

the combustion zone of the rotary kiln, an experiment with a step signal 

was initially developed to determine the order and parameters of the 

model of said process. Next, these results were used in the design of a 

more informative experiment, where the flow of fuel follows a binary 

signal. Evaluation work was completed on different model structures, 

such as autoregressive moving average exogenous (ARMAX), 

autoregressive exogenous (ARX), output-error and Box-Jenkins were 

used, and the parameters of these structures were estimated to determine 

the model that best fits the data obtained experimentally. The ARMAX 

model presented the minimum prediction error compared to the other 

models. Next, the ARMAX model was converted into an autoregressive 

integrated moving average exogenous model, which was used to predict 

the dynamics of clinkerization temperature. For the generalized 

predictive controller, the burner fuel flow was considered the 

manipulated variable and the temperature in the oven combustion zone 

was considered the controlled variable. In addition, the furnace is 

affected by different disturbances, including the variation in the feed 



 
 

27 
 

material, the flow and the temperature of the air. The generalized 

predictive controller was compared to a PID control scheme. The 

comparative results of the simulations showed that the best performance 

in the control of clinkerization temperature is obtained when the GPC 

controller is implemented, which guarantees the production of consistent 

high-quality cement with lower fuel consumption. 

3.2 Control of the multiple hearth furnace 

One of the areas where the MHF has been employed is the selective 

reduction of nickel. The MHF considered by Ramírez, et al. is installed at 

the Nicaro plant in Cuba (Ramírez et al., 2004). Wet concentrates are 

charged into the upper hearth. A central rotating shaft drives the rabble 

arms, guides the concentrates charge, and transfers it via drop holes to 

the following lower hearth. The gas phase moves from lower to upper 

hearths, while the solid phase moves in the opposite direction. The dried 

ore is combined with fuel oil as a reductant, before being introduced to 

the roaster, where it is cooked under reducing conditions at 700–800 °C. 

The feed material is likewise heated by the hot reducing gas (𝐶𝑂 + 𝐻2) 

generated by the combustion of the fuel oil in an undersupplied air 

environment in nine combustion chambers located along each roaster. 

Both 𝐶𝑂 and 𝐻2 are completely burned by the addition of air at the 

hearths 4 and 6 to recover the maximum of the chemical heat value of the 

reducing gases before being released to the atmosphere. This 

postcombustion process decreases fuel intake by 50%.  

 

To achieve the control objectives, a fuzzy logic controller was designed 

and implemented (Ramírez et al., 2004). The basic motivation for using 

this advanced controller in comparison to the tradition PID controllers 

came from the existing nonlinear relationship between the temperature 

in the hearth 4 and the air flow at a steady-state. In their approach, a 

controller is designed by considering the process as a multi input/multi 

output (MIMO) system, which controls the temperature in the 

combustion process.  
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The fuzzy controller to optimize nickel recovery in the MHF is 

composed of five input variables: the error and change of the error of 

temperatures in the hearths 4 and 6, and the specific fuel consumption 

while the output variables were the change in airflow to the hearths 4 and 

6, fuel oil flow to combustion chambers, and ore flow fed to the roaster. 

A number of field tests were performed at the plant. During the tests the 

process was subjected to different disturbances and in all the cases, the 

controller maintained the temperature of the hearths 4 and 6 in the 

prescribed range.  

 

Rotary kilns or multiple hearth roasters are commonly used for the 

extraction of vanadium from steelworks slag. The slag is roasted under 

alkaline conditions, usually using 𝑁𝑎𝐶𝑙 and/or 𝑁𝑎2𝐶𝑂3 as additives. 

Assuming homogenous gas and bulk layers in every floor, a first 

principles model of the vanadium roast process in a multiple hearth 

furnace was derived in Voglauer and Jörgl (2004). This development 

yielded a nonlinear state-space model for calculating the mean values for 

mass, temperature and concentrations. In the study, the process model 

order was observed to be quite high due to several decisive states on every 

floor of the MHF. Model order reduction was then carried out by 

assuming a lower order transfer function structure.  

 

From the control-theoretic viewpoint, the maintenance of an oxidizing 

atmosphere during roasting is essential for maximum efficiency in the 

conversion of the vanadium. Furthermore, accurate temperature control 

in the roasting units is a necessity for reasonable recovery of the 

vanadium and to avoid any undesirable process behavior, such as hearth 

buildup (Geyrhofer et al., 2003). To achieve the aforementioned 

objectives, the overall controller design is divided into four parts 

(Voglauer et al., 2004). The main control loops were the following: 

 

1. 𝑝𝐻-control: The 𝑝𝐻 value of the roasted bulk is controlled by the 

mass flows of 𝑁𝑎𝐶𝑙 and/or 𝑁𝑎2𝐶𝑂3. 

2. 𝑐- control: Stationary control of a key component concentration. 
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3. 𝑇-control: The temperature of the individual floors is controlled 

by burner gas flow. 

4. 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑-control: The overhead controller provides the reference 

values to the above control loops. 

 

The main aim of designing the temperature controllers is to maintain a 

desired temperature profile over the furnace by regulating the 

temperatures of the individual furnace floors. This usually gives a 

strongly coupled multivariable system. In the preliminary work of 

Geyrhofer et al., (2003), the parameters of the controllers were chosen by 

optimizing a quadratic cost function, plus the tracking error and the 

efforts of the weighted control. 

 

For the 𝑝𝐻-control, the time delay caused by the process itself and 

consecutive offline analysis of the 𝑝𝐻 level increased significantly the 

time lag, causing a total dead time, therefore a smith predictor control 

design was implemented. In this predictive control framework, the 

information of the process model and precise data of the total dead time 

are needed to obtain an estimate of the 𝑝𝐻 value. The sampled and 

delayed 𝑝𝐻 variables are used to minimize modeling errors and the effect 

of unaccounted disturbances. Further enhancements in the controlled 

behavior can be attained by feedforward controllers. 

 

An MPC technique was used as an advanced process control method to 

control and optimize a set of nickel reduction roasters located at 

Votarantim Metais Niquel (VMN) in Niquelandia, Gioas State, Brazil 

(Gouveia et al., 2009). The physical structural properties of the 

Herreschoff roaster include 12 hearths. The reported total transit time of 

the roaster is approximately three hours. Each of the lower hearths has a 

pair of burners (12 in total) in which heavy fuel oil is burned with sub-

stochiometric conditions. This generates an atmosphere rich in carbon 

monoxide which, together with temperatures in the range 600 to 800 °C, 

causes the reduction of the oxide ore to the metalized form. 
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The main control objectives are (1) improve the stability of roaster 

temperatures; (2) reduce fuel oil consumption per ton of feed; (3) 

increase nickel metallization levels in the roaster product stream. Indeed, 

the regulation of a hearth temperature is achieved by adjustment of the 

firing rate (oil flow) of the associated burner. However, each hearth 

temperature is also strongly affected by the firing rate of the adjacent 

burners, by the ore feed rate, and the secondary air flow.  

 

The basic automation of the VMN roasters is provided by a network of 

Allen-Bradley PLCs, with a supervisory SCADA layer from Wonderware 

InTouch software. The predictive model used in the Connoisseur multi-

variable controller has a straightforward linear time-series format. In 

order to achieve the control in real-time, the dynamic process model is 

deployed within a constrained model-predictive control structure, where 

the control moves are calculated such that the value of a quadratic cost 

function is minimized subject to linear inequality constraints. This is 

known as the Quadratic Program (QP) algorithm. The cost function is 

composed of the following variables: square of the predicted controlled 

variables (CV) errors over the prediction horizon, square of the 

incremental manipulated variables (MV) moves over the control horizon, 

and the square of the predicted MV deviations from target over the 

control horizon. The results reported in Gouveia et al., (2009) confirm 

the superiority of the QP controller increases nickel recovery and reduces 

oil consumption compared with the conventional control. 

Summary 

 
A brief literature review of the calcination processes has been presented 

in this chapter. The most significant control strategies of rotary kilns have 

been described, focusing on PID, artificial intelligence and MPC. 

Additionally, several control strategies for multiple hearth furnaces have 

been summarized; these strategies have used different methods such as 

fuzzy logic and MPC. The following chapter will thoroughly describe the 

dynamic model of the MHF, which is the main focus of this research. 
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4. Dynamic model of the multiple hearth 
furnace 

This Chapter presents the dynamic model of the MHF considered in this 

research for control testing, for more details of the model please refer to 

(Eskelinen et al., 2015, 2016). In the research of Eskelinen, a first 

principles model of the MHF was created. In the work, the MHF was 

separated in six parts: the solid bed, gas phase, walls, central shaft, 

cooling air, and the rabble arms. The MHF modeled by Eskelinen, 

consists of eight hearths and it is designed with a counter-current solid 

and gas flows as described in Chapter 2. The calcination process needs 

vast amounts of heat, which is provided to the furnace through eight 

methane burners allocated in the hearths 4 and 6.  

 

A few assumptions have been considered to develop the model. First, 

the solid bed on the hearths are divided into five (hearths 1 and 2) or four 

(hearths 3 to 8) annular volumes based on the furnace rabble arm 

configuration. Second, these volumes are designed to be identical in 

magnitude regarding the mass content and the radial direction. As a third 

consideration, the mixing model assumes that one rotation of the shaft 

scatters the contents of a volume between the initial and its neighbor 

volumes (one is the subsequent and the other is the previous). Finally, 

after one rotation, the following equation defines the solid mass 

distribution: 

 

 𝑚𝑡+1
𝑗

= 𝐷𝑗 ∙ (𝑚𝑡
𝑗
− 𝑅𝑟,𝑡

𝑗
) + 𝑚𝑓𝑒𝑒𝑑,𝑡

𝑗
 (4.1) 
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where 𝑚𝑓𝑒𝑒𝑑,𝑡
𝑗

  and 𝑅𝑟,𝑡
𝑗

 represent the hearth feed and the solid phase mass 

loss in the hearth 𝑗. 𝐷 is the mass movement matrix, which defines the 

distribution of each partition 𝑚𝑡
𝑗
 after one rotation of the central shaft in 

the hearth 𝑗. Additionally, the column 𝑖 of the matrix designates the 

distribution of volume 𝑖 among the volumes of the hearth. 

The feed to the hearth is calculated as the exiting volume from the 

previous hearth as follows: 

 

 𝑚𝑓𝑒𝑒𝑑,𝑡
𝑗

= (1 − ∑𝐷𝑗−1
𝐾 ) (𝑚𝑡

𝑗−1,𝐾
− 𝑅𝑟,𝑡

𝑗−1,𝐾
) (4.2) 

   

where 𝐾 is the exiting volume of hearth 𝑗 − 1 and 𝐷𝑗−1
𝐾  is the Kth column 

of matrix 𝐷𝑗−1 .  Then, the definition of the solid bed movement matrix 

for the hearth 1 is as follows: 

 

𝐷1 = 

[
 
 
 
 
1 − 𝑎1
𝑎1 − 𝛼
0
0
0

𝑎1
1 − 2 𝑎1 + 𝛼
𝑎1 − 𝛼
0
0

0
𝑎1

1 − 2 𝑎1 + 𝛼
𝑎1 − 𝛼
0

0
0
𝑎1

1 − 2 𝑎1
𝑎1

0
0
0
𝑎1

1 − 𝑎1]
 
 
 
 

 (4.3) 

  

The parameter 𝛼 defines the net advancing flow through a hearth, this 

corresponds to the feed rate minus the mass loss due to the 

dehydroxylation reactions and evaporation. 𝑎1 represents the upper 

diagonal matrix elements and indicates the flow from the current to the 

next volume. Therefore, the lower diagonal matrix elements (𝑎1 − 𝛼) 

denotes the difference of the full forward and the net forward flows. 

The mass balance of the gas phase is determined as: 

 

 𝑛̇𝑖,𝑖𝑛 − 𝑛̇𝑖,𝑜𝑢𝑡 − 𝑅𝑖 = 0 (4.4) 

 

where 𝑛𝑖,𝑜𝑢𝑡 indicates the number of moles of component 𝑖 exiting a 

volume, 𝑅𝑖 is the component 𝑖 mass difference due to the reactions, and 

𝑛𝑖,𝑖𝑛 , denotes the arriving moles of component 𝑖, calculated as follows: 

 



 
 

33 
 

 𝑛𝑖,𝑖𝑛
𝑗
= 𝑐𝑖

𝑗+1
𝐹𝑗 (4.5) 

 

𝐹𝑗 is the gas flow circulating through the hearth, 𝑐𝑖
𝑗+1

 is the component 𝑖 

concentration in the preceding volume, and the volume number is 𝑗. 

 

For each hearth with different temperature, the real volumetric gas flow 

𝐹𝑟𝑒𝑎𝑙, can be obtained based on the ideal gas law as: 

 

 
𝐹𝑟𝑒𝑎𝑙 = 𝐹𝑁𝑇𝑃

𝑇𝑟𝑒𝑎𝑙
𝑇𝑁𝑇𝑃

 (4.6) 

 

where 𝐹𝑁𝑇𝑃 is the volumetric flow estimated from the atmospheric 

pressure and temperature. 

 

The model also considers energy balances for the walls, the central 

shaft, gas phase, cooling air, solid bed, and for the rabble arms: 

 

𝑄̇𝑔𝑎𝑠,𝑖𝑛 − 𝑄̇𝑔𝑎𝑠,𝑜𝑢𝑡 + 𝑄̇𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛 + 𝑄̇𝑔𝑠 + 𝑄̇𝑔𝑤 + 𝑄̇𝑔𝑠ℎ𝑎𝑓𝑡 + 𝑄̇𝑔𝑎𝑟𝑚𝑠 = 0 (4.7) 

 

where 𝑄𝑔𝑎𝑠,𝑖𝑛 and 𝑄𝑔𝑎𝑠,𝑜𝑢𝑡 symbolize the heat of the inward and the 

outward gas flows,  𝑄𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛 is the heat liberated by the combustion, 

and the final four terms in the left side of the equation, designate the heat 

exchange of the gas phase with the solid, walls, central shaft and the arms. 

The combustion energy is calculated as follows: 

 

 𝑄̇𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛 = 𝑏𝑖𝑛̇𝑚𝑒𝑡ℎ𝑎𝑛𝑒∆𝐻𝑐𝑜𝑚𝑏𝑢𝑠𝑡 (4.8) 

 

where bi denotes the combustion ratio, 𝑛𝑚𝑒𝑡ℎ𝑎𝑛𝑒 signifies the methane 

flow rate, and ∆𝐻𝑐𝑜𝑚𝑏𝑢𝑠𝑡 represents the combustion enthalpy of methane.  

 

Between the gas and solid phases there is heat transfer, denoted as 𝑄̇𝑔𝑠, 

which presents itself through radiation and convection as shown in the 

following equation: 
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 𝑄̇𝑔𝑠 = 𝜎𝑋𝑠𝐴𝑔𝑠𝜀𝑠𝜀𝑔(𝑇𝑔
4 − 𝑇𝑠

4) + ℎ𝑐𝑔𝑠𝑋𝑠𝐴𝑔𝑠(𝑇𝑔 − 𝑇𝑠) (4.9) 

 

where 𝐴𝑔𝑠 denotes the area of the hearth floor, 𝜎 represents the Stefan-

Boltzmann constant. The solid and gas emissivities are represented as 𝜀𝑠 

and 𝜀𝑔 respectively, and the heat transfer coefficient as ℎ𝑐𝑔𝑠. 𝑇𝑔 and 𝑇𝑠 

symbolize the temperatures of the gas and the solid phases respectively. 

𝑋𝑠 indicates a surface view factor. 

 

Heat transfer among the inner walls and the gas phase 𝑄̇𝑔𝑤 takes place 

by convection and radiation: 

 

 
𝑄̇𝑔𝑤 = 𝜎𝐴𝑔𝑤

(𝜀𝑤 + 1)

2
𝜀𝑔(𝑇𝑔

4 − 𝑇𝑤
4) + ℎ𝑐𝑔𝑤𝐴𝑔𝑤(𝑇𝑔 − 𝑇𝑤) (4.10) 

 

where 𝐴𝑔𝑤 signifies the walls area, 𝜀𝑤 and 𝜀𝑔 represent the emissivities of 

the walls and the gas phase, 𝑇𝑔 and 𝑇𝑤 indicate the temperatures of the 

gas and walls respectively, and ℎ𝑐𝑔𝑤 designate the heat transfer 

coefficient. 

 

The heat flux between the central shaft and the gas phase is denoted as 

𝑄̇𝑔𝑠ℎ𝑎𝑓𝑡, and the flux between the rabble arms and the gas phase is 

symbolized as 𝑄̇𝑔𝑎𝑟𝑚𝑠. These terms comprise the radiative and the 

convective heat transfer terms respectively, which are described as 

follows: 

 

 𝑄̇𝑔𝑠ℎ𝑎𝑓𝑡 = 𝜎𝑍𝐴𝑔𝑠ℎ𝑎𝑓𝑡𝜀𝑠ℎ𝑎𝑓𝑡𝜀𝑔(𝑇𝑔𝑎𝑠
4 − 𝑇𝑠ℎ𝑎𝑓𝑡

4 )

+ ℎ𝑐𝑔𝑠ℎ𝑎𝑓𝑡𝑍𝐴𝑔𝑠ℎ𝑎𝑓𝑡(𝑇𝑔𝑎𝑠 − 𝑇𝑠ℎ𝑎𝑓𝑡) 
(4.11) 

   

 𝑄̇𝑔𝑎𝑟𝑚𝑠 = 𝜎𝐴𝑔𝑎𝑟𝑚𝑠𝜀𝑎𝑟𝑚𝑠𝜀𝑔(𝑇𝑔𝑎𝑠
4 − 𝑇𝑎𝑟𝑚𝑠

4 )

+ ℎ𝑐𝑔𝑎𝑟𝑚𝑠𝐴𝑔𝑎𝑟𝑚𝑠(𝑇𝑔𝑎𝑠 − 𝑇𝑎𝑟𝑚𝑠) 
(4.12) 

 

where 𝐴𝑔𝑠ℎ𝑎𝑓𝑡 and 𝐴𝑔𝑎𝑟𝑚𝑠 signify the areas of the central shaft and the 

arms respectively, 𝜀𝑠ℎ𝑎𝑓𝑡, 𝜀𝑎𝑟𝑚𝑠 and 𝜀𝑔 represent the respective 

emissivities of the shaft, the arms and the gas. 𝑇𝑠ℎ𝑎𝑓𝑡, 𝑇𝑎𝑟𝑚𝑠 and 𝑇𝑔 
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symbolize the temperatures of the model sections respectively with the 

heat transfer coefficients ℎ𝑔𝑠ℎ𝑎𝑓𝑡 and ℎ𝑎𝑟𝑚𝑠. Finally, 𝑍 is a constant which 

defines the insulation of the central shaft. 

 

The energy balance equation for the walls is shown as follows: 

 𝜕𝑄𝑤
𝜕𝑡

= 𝑄̇𝑤𝑔 − 𝑄̇𝑤𝑠 − 𝑄̇𝑤𝑎 (4.13) 

 

where 𝑄𝑤 denotes the heat accumulated in the walls, and 𝑄̇𝑤𝑔 and 𝑄̇𝑤𝑎 

represent the heat transfer between the walls and the gas, and the walls 

and the ambient air. 

The radiative heat flux is obtained as follows: 

 

 𝑄̇𝑤𝑠 = 𝜎𝑋𝑠𝐴𝑠𝑤𝜀𝑠𝑤 (𝑇𝑤
4 − 𝑇𝑠

4) (4.14) 

 

where 𝑋𝑠 and 𝐴𝑠𝑤 indicate the shape factor of the solid surface and the 

area of the hearth floor respectively. The emissivity among the solid bed 

and the walls is represented as 𝜀𝑠𝑤. 

 

The next equation calculates the heat transfer between the outer wall 

and the ambient air: 

 

 𝑄̇𝑤𝑎 = ℎ𝑐𝑤𝑎𝐴𝑤𝑎(𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡 − 𝑇𝑜𝑢𝑡𝑒𝑟 𝑤𝑎𝑙𝑙) (4.15) 

 

where 𝐴𝑤𝑎 denotes the surface of the external layer of the furnace 

wall. 𝑇𝑜𝑢𝑡𝑒𝑟 𝑤𝑎𝑙𝑙  and 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡 represent the respective temperatures of the 

external wall layer and the ambient air. Finally, ℎ𝑐𝑤𝑎 indicates the heat 

transfer coefficient. In order to calculate the temperature profile, the 

furnace wall is partitioned into eight segments corresponding to the 

distribution of the hearths. 

 

The equations which describe the heat transfer in the central shaft and 

the rabble arms are respectively as follows: 
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 𝜕𝑄𝑠ℎ𝑎𝑓𝑡

𝜕𝑡
= 𝑄̇𝑔𝑠ℎ𝑎𝑓𝑡 − 𝑄̇𝑠ℎ𝑎𝑓𝑡,𝑐𝑜𝑜𝑙 (4.16) 

   

 𝜕𝑄𝑎𝑟𝑚𝑠
𝜕𝑡

= 𝑄̇𝑔𝑎𝑟𝑚𝑠 − 𝑄̇𝑎𝑟𝑚𝑠,𝑐𝑜𝑜𝑙 (4.17) 

 

where 𝑄𝑔𝑠ℎ𝑎𝑓𝑡 and 𝑄𝑔𝑎𝑟𝑚𝑠 denote the heat exchange among the central 

shaft and gas phase, and the arms and gas phase respectively.  

 

The heat transfer between cooling air and the central shaft and the 

rabble arms correspondingly are obtained: 

 

 𝑄̇𝑠ℎ𝑎𝑓𝑡,𝑐𝑜𝑜𝑙 = 𝜎𝐴𝑠ℎ𝑎𝑓𝑡,𝑐𝑜𝑜𝑙𝜀𝑠ℎ𝑎𝑓𝑡 (𝑇𝑠ℎ𝑎𝑓𝑡
4 − 𝑇𝑐𝑜𝑜𝑙

4 )

+ ℎ𝐶𝑠ℎ𝑎𝑓𝑡,𝑐𝑜𝑜𝑙𝐴𝑠ℎ𝑎𝑓𝑡,𝑐𝑜𝑜𝑙(𝑇𝑠ℎ𝑎𝑓𝑡 − 𝑇𝑐𝑜𝑜𝑙) 
(4.18) 

   

 𝑄̇𝑎𝑟𝑚𝑠,𝑐𝑜𝑜𝑙 = 𝜎𝐴𝑎𝑟𝑚𝑠,𝑐𝑜𝑜𝑙𝜀𝑎𝑟𝑚𝑠(𝑇𝑎𝑟𝑚𝑠
4 − 𝑇𝑐𝑜𝑜𝑙

4 )

+ ℎ𝐶𝑎𝑟𝑚𝑠,𝑐𝑜𝑜𝑙𝐴𝐶𝑎𝑟𝑚𝑠,𝑐𝑜𝑜𝑙(𝑇𝑎𝑟𝑚𝑠 − 𝑇𝑐𝑜𝑜𝑙) 
(4.19) 

 

where 𝐴𝑠ℎ𝑎𝑓𝑡,𝑐𝑜𝑜𝑙 and 𝐴𝑎𝑟𝑚𝑠,𝑐𝑜𝑜𝑙 denote the external areas of the central 

shaft and the arms, 𝜀𝑠ℎ𝑎𝑓𝑡and 𝜀𝑎𝑟𝑚𝑠 represent the emissivities of the shaft 

and the arms, while 𝑇𝑠ℎ𝑎𝑓𝑡, 𝑇𝑎𝑟𝑚𝑠 and 𝑇𝑐𝑜𝑜𝑙 indicate the temperatures of 

the model sections respectively. Finally, ℎ𝐶𝑠ℎ𝑎𝑓𝑡,𝑐𝑜𝑜𝑙 and ℎ𝐶𝑎𝑟𝑚𝑠,𝑐𝑜𝑜𝑙 

symbolize the heat transfer coefficients.  

 

The energy balance of the cooling air is represented as follows: 

 

𝜕𝑄𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑎𝑖𝑟

𝜕𝑡
= 𝑄̇𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑎𝑖𝑟,𝑖𝑛 + 𝑄̇𝑎𝑟𝑚𝑠,𝑐𝑜𝑜𝑙 + 𝑄̇𝑠ℎ𝑎𝑓𝑡,𝑐𝑜𝑜𝑙 − 𝑄̇𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑎𝑖𝑟,𝑜𝑢𝑡 (4.20) 

 

where 𝑄̇𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑎𝑖𝑟,𝑖𝑛 and 𝑄̇𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑎𝑖𝑟,𝑜𝑢𝑡 denote the heat of the inward and 

outward cooling air, while 𝑄̇𝑠ℎ𝑎𝑓𝑡,𝑐𝑜𝑜𝑙 and 𝑄̇𝑎𝑟𝑚𝑠,𝑐𝑜𝑜𝑙 signify the respective 

heat exchange regarding the cooling area with the central shaft and with 

the arms.  

 

The final heat equation of the solid phase energy balance is obtained as 

follows: 
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𝜕𝑄

𝜕𝑡
= 𝑄̇𝑚𝑎𝑠𝑠,𝑖𝑛 − 𝑄̇𝑚𝑎𝑠𝑠,𝑜𝑢𝑡 − 𝑄̇𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠 − 𝑄̇𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑄̇𝑠𝑤 + 𝑄̇𝑠𝑔 (4.21) 

 

where 𝑄 represents the solid phase heat of a volume, 𝑄̇𝑚𝑎𝑠𝑠,𝑖𝑛 and 

𝑄̇𝑚𝑎𝑠𝑠,𝑜𝑢𝑡 designate the inward and outward solid phase heat flow of the 

volume. 𝑄̇𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠 describes the heat of the chemical reactions ensuing in 

the solid phase and 𝑄̇𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 is the free water evaporation, while the 

final two terms denote the heat exchange regarding the solid bed and the 

walls, and the solid bed and the gas phase. Finally, the heat in each solid 

bed partition can be calculated as follows: 

 

 𝑄𝑡+1
𝑗,𝑘

= 𝐷𝑗 ∙ 𝑄𝑡
𝑗,𝑘
+ 𝑄𝑓𝑒𝑒𝑑,𝑡 (4.22) 

 

The solution for the MHF model consists of the following steps.  

Initially, the reaction rates are determined using the reaction kinetics 

retrieved from experimental data and previous studies.   Next, the solid 

mass distribution is computed according to the mixing model.   Then, the 

mass and energy balances of the gas phase are solved using the 

temperature-dependent model parameters. In the next step, the energy 

balance calculations for the central shaft, walls, cooling air, and the 

rabble arms are performed.  Finally, the mixing model is applied to solve 

the energy balance of the solid phase, which requires the heat fluxes 

estimated in the previous steps.  A summary of the model solution cycle 

is presented in Figure 4.1, which illustrates how the model states and 

computable parameters are used (Eskelinen et al., 2015). The solving 

algorithms are implemented in a MATLAB environment. 

 

 

 

 

 

 

 

 



 
 

38 
 

2. Solid mass balance
Equation: (4.1)–(4.3)

3. Gas phase mass and 
energy balance

Equation: (4.4)–(4.12)

5. Solid phase energy balance
Equation: (4.22)

Solution cycle

Temperatures of walls, 
cooling air, central 

shaft and arms

Mass & energy fluxes Model states

Heat flux from gas to walls, 
central shaft and arms

Heat flux from walls to 
solids

Water transfer to the gas 
phase

Solid mass distribution 
& composition

Gas phase composition 
& temperature

Solid bed temperature

Energy in the solid bed

Heat flux from gas to solids

Experimental reaction 
parameters EA,i, Ai

Experimental
 D-matrix

Experimental
 D-matrix

Estimated parameters bi, Xs,i, 
Z, hearth 8 extraneous air

4. Walls, cooling air, central 
shaft and arms energy balances

Equation: (4.13)–(4.21)

Reaction energy
1. Reaction rates

Equation: (2.1)–(2.4)

End

Start

 

 

The simulation studies in Eskelinen et al., (2015) show that the results 

of the designed model are qualitatively good and its performance can be 

reported to follow the dynamic behavior of the industrial testing furnace.  

Therefore, the model can be utilized in the study of the physicochemical 

phenomena arising in the interior the furnace and to predict temperature 

profile of the furnace.  

Summary 

 
This chapter has outlined a detailed description of the dynamic model 

used in this study, which has been based on first principles with counter-

current flows of the gas and solid phases. The main heat transfer 

mechanisms considered by the model have been the radiation and 

convection between the phases. The model has been reported to follow 

the dynamic behavior of the MHF with good accuracy. In Chapter 6, the 

model will be used in the simulation of the control strategy proposed in 

this work. 

 

Figure 4.1 Scheme of the solution for the MHF model (Eskelinen et al., 2015). 
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5. Analysis of the MHF dynamic 
behavior 

This Chapter presents the analysis of the MHF dynamic behavior to 

provide understanding of the operating conditions and physicochemical 

phenomena taking place in the furnace. Different machine learning 

algorithms and the physicochemical equations of the kaolin calcination 

reactions are used for the analysis. First, the setpoints for the 

temperature profile of the MHF are determined using artificial 

intelligence. Next, the “spinel phase” reaction rate is studied and 

analyzed to detect the occurrence of this phenomenon inside the furnace. 

Then, the mullite content soft sensor is developed based on first 

principles and next based on artificial intelligence. Subsequently, the 

soluble alumina soft sensor based on artificial intelligence is developed. 

Finally, the Burner-to-Burner interaction phenomenon inside the hearth 

4 is studied and analyzed. 

 

5.1 Description of the feed material and product mineralogy 

 
Natural kaolin deposits vary in quality and quantity. Therefore, in order 

to produce uniform and specific engineered kaolin products, the physical, 

chemical, and mineralogical properties of the raw kaolin ore are 

evaluated. Iron content, brightness, particle size and shape, are the most 

important properties to be measured. The physical and optical properties 

of kaolin such as particle size and shape, the particle size distribution, 

brightness, color, opacity, viscosity, surface area, dispersability, and 

hardness relate to their suitability for use as a pigment for coating paper. 
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These properties can be altered by selective processing (Murray and 

Kogel, 2005). 

 

The iron present in the feed material becomes a particularly significant 

variable if the clay is calcined.  Increasing the temperature of the clay up 

to high levels activates the iron present in the clay to be oxidized from the 

green/blue form to the red form and this causes the clay to turn slightly 

pink (Thomas, 2010). A process called beneficiation is utilized to 

eliminate iron (and other impurities) accompanying the kaolin ore before 

calcination. Beneficiation produces a kaolin comparable, in terms of 

brightness, with kaolin that naturally included low values of iron content 

once both clays had been calcined. This is a key discovery for the china 

clay industry as deposits of high-quality ore are depleting 

(Chandrasekhar and Ramaswamy, 2002). 

 

The brightness, opacity and abrasiveness of crude kaolin can be 

increased by thermal treatment. These products are utilized as coating 

pigments and functional fillers by the paper industry. The heat treated 

kaolin can be divided roughly into two grades. The first grade has 

increased brightness and improved opacity. At the temperature range of 

450 °C to 700 °C kaolinite dehydroxylates (Equation (2.2)), which breaks 

down the crystal structure of kaolinite leaving an amorphous mixture of 

alumina and silica which is called metakaolin (Murray and Kogel, 2005). 

This is a bulky product that is used as a paper coating additive to enhance 

resiliency and opacity in low basis weight sheets (Murray, 2005). 

 

Heating kaolin further up to around 980 °C the amorphous mixture of 

alumina and silica reorganizes to form the so-called ‘spinel phase’ 

(Equation (2.3)). Heating the material even more, the spinel phase’s 

crystal structure changes again, forming small crystals of mullite and 

high temperature quartz (cristobalite). The “spinel phase” and the mullite 

form the second grade, in which the relict plates aggregate to form 

particles with an open structure that have a relatively high light scattering 

coefficient. This standard calcined kaolin product has a brightness 

ranging between 92 and 94 % (Murray and Kogel, 2005). This grade’s 
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surface chemistry and physical properties are completely changed, and it 

is whiter and more abrasive than the original kaolin. The abrasiveness of 

the calcined product is caused by the mullite and the objective is to reduce 

it to acceptable levels by selecting the feed kaolin properly and carefully 

controlling the calcination and the final processing after calcination. This 

product can be used as an extender for titanium dioxide in paper coating 

and filling and in paint and plastic formulations (Murray, 2005).  

 

Pharmaceutical applications of kaolin require it to be calcined at 

temperatures around 1100 °C to make an intermediary product between 

the amorphous and crystalline “spinel phase”. This stage indicates the 

equilibrium point between low reactivity and abrasiveness, which is 

necessary for calcined kaolin products (Thomas, 2010). For the industrial 

calcination of kaolin, the indicator to determine the progress of the 

calcination reaction is the quantity of soluble alumina (𝐴𝑙2𝑂3). Therefore, 

the quantification of soluble alumina is used as the standard method to 

control the quality of the calcined kaolin. 

 

5.2 Classification of process conditions based on the furnace 
feed and product type 

 

An analysis of the historical data of the calciner was performed to identify 

the process operating conditions for different feed materials and 

products, using the self-organizing map (SOM) method (Kohonen, 1982). 

The theory of the SOM method is shortly described, and the subsection 

ends with the determination of the optimal setpoints for the temperature 

profile of the MHF. 

 

5.2.1 The self-organizing map 

 

Kohonen’s SOM belongs to the category of unsupervised learning 

networks, which signifies that the network updates the weight 

parameters without a performance feedback from a trainer. One key 
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characteristic of this network is that it uses a method known as 

competitive learning, in which the nodes self-distribute over the input 

domain to identify clusters of the related input vectors, while the output 

nodes compete between each other to be excited in sequence in response 

to a specific input vector. After suitable training, the network generates a 

representation with low dimensionality of the input domain that upholds 

the organization of the main architecture of the network. This entails that 

input vectors with comparable features stimulate the near-layer nodes. 

Therefore, the nodes of the SOM may identify clusters of similar input 

vectors. Furthermore, this creates a topographic plotting of the input 

domain to the output layer, which is based mainly on the pattern of the 

input domain and causes dimensionality reduction of the input space. A 

diagram of a SOM with a 2-D output configuration is shown in Figure 5.1.  

 

 

The learning algorithm allows the clustering of the input data into a 

reduced set of components with interconnected characteristics. The basis 

of the algorithm is the competitive learning technique. Initially, there is 

the assumption that the input data are given by vector 𝑥 and the weight 

vector linking the input components to an output node is denoted by 𝑤𝑖𝑗. 

Figure 5.1 Kohonen’s self-organizing map (Karray and De Silva, 2004). 
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The weight vector has coordinates given by subscripts 𝑖 and 𝑗. In general, 

the weight vectors are standardized to a unitary measure. 𝑁𝑐 represents 

the neighborhood nearby the selected output candidate, where its size 

decreases after every iteration of the algorithm until convergence is 

achieved. The sequence of the learning algorithm is presented as follows: 

 

1. Assign small random values to all weights. Establish a value for 

the neighborhood 𝑁𝑐 and a value for the starting learning rate 𝛼. 

2. Select an input pattern 𝑥 from the input data set. 

3. Choose the unit 𝑐 (the matching output unit index) so that the 

performance index 𝐼 minimizes the Euclidian distance from 𝑥 to 

𝑤𝑖𝑗: 

 

 𝐼 = ‖𝑥 − 𝑤𝑐‖ = min
𝑖𝑗
‖𝑥 − 𝑤𝑖𝑗‖ (5.1) 

   

4. Update the weights based on the global network from iteration 𝑘 

to iteration 𝑘 + 1 as: 

 

 
𝑤𝑖𝑗(𝑘 + 1) = {

𝑤𝑖𝑗(𝑘) + 𝛼(𝑘)[𝑥 − 𝑤𝑖𝑗(𝑘)], 𝑖𝑓 (𝑖, 𝑗) ∈ 𝑁𝑐(𝐾)

𝑤𝑖𝑗(𝑘) 𝑖𝑓 (𝑖, 𝑗) ∉ 𝑁𝑐(𝐾)
 (5.2) 

   

where 𝛼(𝑘) is the adaptive learning rate (positive value less than 

unity) and 𝑁𝑐(𝑘) is the neighborhood of 𝑐 at iteration 𝑘. 

5. The 𝛼 and 𝑁𝑐 are reduced after each iteration based on the 

appropriate scheme. For example, Kohonen recommended a 

reducing function in the form of 𝛼(𝑘) = 𝛼(0)(1 − 𝑘/ 𝑇), where 𝑇 

is the number of training iterations and 𝛼(0) the initial learning 

rate limited to a value of one. For the neighborhood, several 

researchers suggested a starting region with a half size of the 

output grid, which is reducing based on exponentially decaying 

behavior. 

6. The learning algorithm endures until a satisfactory number of 

iterations has been achieved or until all outputs attain a 

threshold of sensitivity based on a portion of the input space. 
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5.2.2 Determination of the setpoints for the temperature 
profile of the MHF 

 

The temperature profile of the MHF plays a key role in the efficient 

control of the calciner. The main aim of the process condition 

classification based on the feed and product types is to determine the 

optimal temperature setpoints for hearths 4 and 6 versus the different 

capacity levels. 

 

 The variables used to train the SOM algorithm were the feed rate, iron 

content, gas flows, temperatures of hearths 4 and 6, mullite content, 

soluble alumina of the product, and brightness of the feed and product. 

The so-called U-matrix was then used, as depicted in Figure 5.2. The U-

matrix, resulting from the SOM method for the data for June 2017, 

associates a point (hexagon) to a product and its corresponding operating 

conditions. During this period, two different products were produced (P1 

and P2). The difference between the products and their respective 

Figure 5.2 U-Matrix obtained using the SOM method for the process 

data, June 2017. 
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Product 1 

Product 2 

Figure 5.3 Examples of the look-up tables obtained from the SOM. 

process conditions were noticeable, as shown in Figure 5.2, where P1 and 

P2 are represented by the green and dark blue hexagons, respectively.  

 

The SOM technique enabled the finding of the optimal process 

operating conditions for different kinds of products based on the feed 

material and product data. The feed rate, iron content, and brightness of 

the feed and product were used to construct look-up tables to identify the 

best temperature setpoints for the hearths 4 and 6 depending on the 

product type (Figure 5.3). The temperature and capacity setpoints of the 

table were verified by the mass and energy balance equations. 

 

 

5.3 Soft sensor 1: Spinel phase reaction rate monitoring for 
energy savings 

 

The kaolin calcination in an MHF is a process that depends on the 

temperature, and the temperature profile control guarantees the quality 

of the product.  The kaolin that is calcined to the “spinel phase” is the 

product of interest and is generated by a reaction that produces a massive 

amount of heat (Equation (2.3)), which normally occurs in the hearth 6.  
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The relocation of this reaction to a different hearth disturbs the product 

quality and, therefore, the temperature profiles of the MHF have to be 

monitored and controlled. However, the required measurements to 

determine the instances when the kaolin transforms to the “spinel phase” 

are not present. To solve this problem, a soft sensor was developed to 

estimate the rate of the exothermic reaction occurring in the hearth 4, 

which is an alternative practical approach. 

 

Several occurrences when the hearth 4 gas flow fluctuated together with 

the temperature measurements in the hearth 5 were demonstrated 

through data analysis. Several ore properties (e.g. particle size, ore 

impurities), and the temperature of the solid material greatly affect the 

beginning of the reaction in Equation (2.3). The “spinel phase” 

exothermic reaction (Equation (2.3)) may take place at the hearth 4 if the 

temperature of the solid phase is suitably high (925–1050 °C). For these 

cases, a feedforward control based on the reaction indicator of the “spinel 

phase” would provide an excellent solution to maximize the energy 

savings in the furnace by sensing the reaction in the top part of the 

furnace and then controlling the temperature in the bottom part of the 

furnace. A data analysis was performed, for the cases obtained from the 

industrial data for the period of May to October 2013, to validate the 

energy savings possibilities. The results of the analysis confirmed the 

increased reaction rate events. A few examples of these occurrences are 

presented in Figure 5.4. The variation of the temperature in the hearth 5 

can be determined through the initiation and termination of the 

exothermic reaction in the hearths 4 and 5. The volumetric flow of gas 

needed to regulate the temperature in the hearth 4 lowers after the 

exothermic reaction is initiated. Near the termination of the exothermic 

reaction, a larger volumetric flow of gas is required to control the desired 

temperature. To summarize, the events of increased reaction rate are 

observed when the gas flow to the hearth 4 declines suddenly while the 

hearth 5 temperature rises.  
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A soft sensor that measures the exothermic reaction rate occurring in 

the hearth 4 is required to maximize the energy savings of the furnace. 

The law of energy conservation is used to develop the energy balances of 

the first four hearths of the furnace (Jenkins and Mullinger, 2008). The 

heat of the methane combustion occurring in the hearth 4, and the hearth 

5 cooling air flow are used as inputs. The stoichiometric ratio of the fuel 

gas and air is used to determine the quantity of air needed for complete 

combustion. The energy exits the furnace through the solid material, 

exhaust gases, and heat dissipation, which comprise the cooling air and 

heat exchange with the environment. 

 

The equations defining the energy balance for the gas and solid phases 

are presented as follows. 

 

 ∂𝑄

∂𝑡
= 𝑄s,in −𝑄s,out − 𝑄evap + 𝑄dehyd + 𝑄spin + 𝑄sg, (5.3) 

   

 𝑄g,in − 𝑄g,out + 𝑄comb − 𝑄gs = 0 (5.4) 

   

Figure 5.4 Examples of the initiation and termination of the exothermic 

reactions in hearths 4 and 5 (Jämsä-Jounela, et al., 2018). 



 
 

48 
 

where 
∂𝑄

∂𝑡
 represents the rate of energy variation with respect to time; the 

enthalpies of the entering and exiting kaolin are represented as 𝑄s,in and 

𝑄s,out, respectively; 𝑄evap symbolizes the enthalpy of evaporated water; 

𝑄dehyd represents the heat consumed as a consequence of the 

dehydroxylation reaction; 𝑄spin denotes the heat discharged during the 

“spinel phase” formation in the hearth 4; and 𝑄sg signifies the heat 

transfer between the solid phase and the gas phase. The enthalpies of the 

incoming and outgoing gases are designated as 𝑄g,in and 𝑄g,out 

respectively; 𝑄comb denotes the heat generated by the methane 

combustion occurring in the burners of the hearth 4, and 𝑄gs represents 

the heat transferred between the gas phase and the solid phases. 

Assuming steady-state conditions, the rate of energy change is zero and 

the heat discharged by the spinel formation reaction is defined as follows: 

 

 𝑄spin = −𝑄s,in + 𝑄s,out + 𝑄evap + 𝑄dehyd+𝑄g,in −𝑄g,out + 𝑄comb (5.5) 

 

Next, the rate of reaction (𝑟) is calculated as the fraction of kaolin 

transformed into the “spinel phase” in the hearth 4, as shown in the 

following equation: 

 

 
𝑟 =

𝑄spin

𝐻S𝐹𝐾
 (5.6) 

 

where 𝐻S is the product formation heat and 𝐹𝐾 is the current feed rate. 

 

Finally, the data available from May to October 2013 was used to 

calculate the reaction rate (𝑟). The initiation, termination, and duration 

of the spinel formation reaction was studied using the soft sensor. The 

average extent of the reactions for the data analyzed was 118 minutes with 

a maximum of 232 minutes and a minimum of 22 minutes. The reaction 

in Equation (2.3) affects the total gas burned, mostly diminishing it by 

nearly 1.5% per hour (Jämsä-Jounela et al., 2018). 
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5.4 Soft sensor 2: Mullite content indicator for capacity 
improvement 

During normal process conditions, the temperature within the furnace 

enables a total transformation of metakaolin to the “spinel phase” at 925 

°C (Equation (2.3)). The “spinel phase” is converted into mullite at a 

greater temperature, 1050 °C (Equation (2.4)). Therefore, the quantity of 

mullite is inversely proportional to that of the “spinel phase” as the 

reaction marches. Thus, the mullite content can be defined as an indirect 

indicator of the quantity of the final product. In other words, if the final 

product holds a substantial quantity of mullite, then the temperature 

inside the furnace was larger than the temperature range of the “spinel 

phase” reaction. Therefore, monitoring the temperature during mullite 

formation offers a way of enhancing the calcination, mostly by raising the 

feed rate and lowering the temperature (which reduces mullite 

formation), which to creates a product with optimal quality. 

 

5.4.1 Mullite content soft sensor based on mass and energy 
balances 

A measurement of mullite content is not available online. Therefore, in 

this work, a soft-sensor based on energy balances was created to calculate 

the quantity of mullite in the product. The energy balances were defined 

based on the heat transfer flow through the furnace. The equations 

describing the energy balances are as follows: 

 

 𝜕𝑄𝑡𝑜𝑡
𝜕𝑡

= 𝑄𝑐𝑜𝑚𝑏 − 𝑄𝑙𝑜𝑠𝑠 − 𝑄𝑔𝑎𝑠 −𝑄𝑎𝑖𝑟 − (𝑄𝑠𝑜𝑙𝑖𝑑 + 𝑄𝑚𝑢𝑙) =  0 (5.7) 

 

 𝑄𝑠𝑜𝑙𝑖𝑑 = 𝑄𝑤𝑎𝑡𝑒𝑟 + 𝑄𝑘𝑎𝑜 + 𝑄𝑑𝑒ℎ𝑦𝑑 + 𝑄𝑚𝑒𝑡𝑎 + 𝑄𝑠𝑝𝑖𝑛 + 𝑄𝑝𝑟𝑜𝑑 (5.8) 

 

where 
∂ 𝑄𝑡𝑜𝑡

∂𝑡
 is the rate of heat transfer, 𝑄𝑐𝑜𝑚𝑏 is the total heat generated 

by the methane combustion, and 𝑄𝑙𝑜𝑠𝑠 is the heat loss to the environment. 

𝑄𝑔𝑎𝑠 denotes the enthalpy of the energy acquired by the gas phase, the 

enthalpy difference in the central shaft cooling air is represented as 𝑄𝑎𝑖𝑟, 

the change of energy in the solid phase is represented as 𝑄𝑠𝑜𝑙𝑖𝑑, and the 
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total energy of mullite formation is denoted as 𝑄𝑚𝑢𝑙. Furthermore, 𝑄𝑠𝑜𝑙𝑖𝑑 

is described in (Equation (5.8)), where 𝑄𝑤𝑎𝑡𝑒𝑟 is the heat to evaporate free 

water, 𝑄𝑘𝑎𝑜 denotes the enthalpy to heat kaolin to 450 °C, 𝑄𝑑𝑒ℎ𝑦𝑑 

represents the heat of the dehydroxylation endothermic reaction, 𝑄𝑚𝑒𝑡𝑎 

symbolizes the enthalpy to heat metakaolin to 1000 °C, and 𝑄𝑠𝑝𝑖𝑛 denotes 

the energy discharged during the “spinel phase” reaction. Finally, 𝑄𝑝𝑟𝑜𝑑 

represents the energy discharged to lower the temperature of the final 

product to 700 °C. 

 

Assuming that all the variables of the Equation (5.7) are measurable and 

process conditions are in steady-state, then the total enthalpy of mullite 

formation (𝑄𝑚𝑢𝑙) is defined as follows: 

 

 𝑄𝑚𝑢𝑙 = 𝑄𝑐𝑜𝑚𝑏 − 𝑄𝑙𝑜𝑠𝑠 − 𝑄𝑔𝑎𝑠 − 𝑄𝑎𝑖𝑟 − 𝑄𝑠𝑜𝑙𝑖𝑑 (5.9) 

 

Subsequently, the mullite mass can be calculated as follows: 

 

 
𝑚𝑚𝑢𝑙 =

𝑄𝑚𝑢𝑙
𝐻𝑚𝑢𝑙

 (5.10) 

   

where 𝑚𝑚𝑢𝑙 is the mullite mass, and 𝐻𝑚𝑢𝑙 is the formation enthalpy of 

mullite. 

 

A soft sensor was developed to estimate the mullite content in the 

product using first principle thermochemical equations and balances. A 

sampling campaign performed in June 2017 provided the data to validate 

the estimations of the soft sensor. The data includes the process 

measurements as well as X-ray diffraction (XRD) analyses results for the 

mullite content in the product. The process data were used in the soft 

sensor to estimate the mullite content, which was compared to chemical 

analyses, as shown in Figure 5.5. The mullite content calculated using the 

soft sensor showed fairly good precision compared with the XRD results.  

.  
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5.4.2 Mullite content soft sensor based on an artificial neural 
network 

 A neural network soft sensor, based on a multi-layer architecture, was 

developed to calculate the mullite quantity in the final product. The five 

input variables included the kiln feed, hearth 4 temperature, hearth 4 gas 

flow, hearth 6 temperature and hearth 6 gas flow, and. In a typical multi 

input/single output (MISO) neural network model, the training set can 

be denoted by 𝐷 =  {𝑌, 𝑋𝑖 | 𝑖 =  1,2, . . . , 𝑚}, where 𝑌 is the output vector 

and 𝑋𝑖 is the 𝑖th input vector expressed as 𝑋𝑖 =  [𝑥1𝑖, 𝑥2𝑖 , . . . , 𝑥𝑛𝑖] (𝑚 

represents the number of input variables and 𝑛 symbolizes the number of 

training samples). 

 

Then, the test data set can be denoted by 𝑋 ∈  𝑅𝑛×𝑚. To avoid the effect 

of multiple dimensions from the process variables, it is necessary to 

standardize the data for mathematical convenience. The standardization 

equation is defined as follows: 

 

Figure 5.5 Mullite content, XRD vs the soft sensor estimation (Gómez 

Fuentes and Jämsä-Jounela, 2018a). 
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𝑋𝑏 =

𝑋 − 𝜇

𝜎
 (5.11) 

 

where 𝑋𝑏  represents the vector containing the standardized input data, 

and 𝜇 and 𝜎 represent the mean and standard deviations of 𝑋 respectively. 

The mean squared error (MSE) is considered the neural network 

performance function to train the soft sensor estimator: 

 

 
𝑀𝑆𝐸 =  ∑

(𝑌̂𝑘 − 𝑌𝑘)
2

𝑛

𝑛

𝑘=1

  (5.12) 

 

where 𝑌̂ is the estimated output of the soft sensor, 𝑌 is the vector of the 

observed data, and 𝑛 denotes the number of data points. 

 

The neural network implemented to estimate the mullite content 

contains four layers: three hidden layers and one output layer. In the soft 

sensor model, the output from the 𝑘th node in the hidden layer is obtained 

by Equation (5.13). 

 

 
𝑜𝑗 = 𝑓 (∑𝑤𝑖𝑗𝑋𝑖 − 𝑏𝑗

𝑝

𝑖=1

 )  (5.13) 

 

where 𝑝 symbolizes the number of input nodes, 𝑓 denotes the activation 

function of the node, 𝑤𝑖𝑗  represents the connection weight from the 𝑖th 

input node to the 𝑗th hidden node, and 𝑏𝑗  signifies the node’s activation 

threshold. The function 𝑓 defines the activation function of the hidden 

layer nodes, which in this case comprises a sigmoid function. Equation 

(5.13) is calculated for all the hidden layers, where the output is 

introduced to each subsequent hidden layer. Then, the data resulting 

from the output layer are obtained according to Equation (5.14). 

 
𝑦̂𝑘 = 𝑓 (∑𝑤𝑙𝑘𝑜𝑙 − 𝑏𝑘

𝑞

𝑙=1

 )  (5.14) 
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where 𝑞 is the number of nodes in the final hidden layer, 𝑤𝑙𝑘  is the weight 

related to the connection of the 𝑙th hidden node and the 𝑘th output node, 

and 𝑏𝑘  is the output node activation threshold. 

 

 

The final design of the network included three hidden layers, each with 

20 nodes, and a single node output layer as depicted in Figure 5.6. During 

the training of the model, the efficiency of different training algorithms 

was contrasted to choose the best result. The training algorithms 

included are as follows: the Levenberg–Marquardt (LM), Bayesian 

regularization (BR), and Broyden–Fletcher–Goldfarb–Shanno (BGFS) 

quasi-Newton backpropagation. In the creation of the model, the same 

data from June 2017 were used and randomly divided into three sets: 

training (70%), validation (15%), and testing (15%). Finally, the model 

was limited to a maximum of 1000 epochs, and training was performed 

using the neural network toolbox in MATLAB 2018b. 

 

From Table 5.1, the performance comparison of the training algorithms 

shows that the LM and BGFS provided similar results with an MSE of less 

than 0.4 and a correlation coefficient 𝑅2 of approximately 0.70, taking 

less than 2 minutes to train. The performance of the BR algorithm was 

quite superior compared to the other two, with an MSE of 0.2126. The 

only disadvantage of the BR algorithm was that the training time was 

almost 12 minutes. Although it took longer in comparison to the other 

algorithms, the BR algorithm was considered the best option for the final 

model training due to its performance.  

 

 

 

 

Figure 5.6 Four-layer feedforward neural network architecture. 
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Table 5.1 Performance comparison of the training algorithms for the 

mullite content soft sensor 

 

Training algorithm MSE 𝑹𝟐 Training time, min 

LM 0.3660 0.6993 0.55 
BR 0.2126 0.8936 11.55 
BGFS 0.3927 0.6647 1.41 

 

The results of the soft sensor model using the BR algorithm are 

presented in Figure 5.7. A regression correlation coefficient of 0.8936 

was obtained by the mullite content modeling. In general, the model 

prediction was fairly acceptable but could be further improved, e.g., by 

testing different architectures and including more process variables. 

Furthermore, additional process data would be useful for improving the 

reliability of the soft sensor model. 

 

 

 

Figure 5.7 Comparison of mullite content: XRD vs. the ANN soft sensor. 
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5.5 Soft sensor 3: Soluble alumina soft sensor based on an 
artificial neural network 

 

The main indicator in the industry for the quality control of some calcined 

kaolin products is the quantity of soluble alumina (𝐴𝑙2𝑂3). This indicator 

is adopted to estimate the intermediary stages between the 

transformations of metakaolin and mullite (Equations (2.2) and (2.4)). 

However, the determination of soluble alumina requires extended 

amount of time using laboratory techniques, which is counterproductive 

to the requirements of a continuous production process. A feedforward 

multi-layer perceptron neural network was considered as the basis for 

developing a soft sensor that models the soluble alumina in the final 

product. The utilized input variables were the kiln feed, hearth 4 

temperature, hearth 4 gas flow, hearth 6 temperature, and hearth 6 gas 

flow. The neural network architecture and tuning criteria including the 

selection of the training algorithm, and the training, validation, and 

testing data sets were selected equally, as described in Section 5.4.2. 

 

Table 5.2 Performance comparison of the training algorithms for the 

soluble alumina soft sensor 

Training algorithm MSE 𝑹𝟐 Training time, min 

LM 0.1497 0.8998 1.41 
BR 0.1128 0.9540 13.70 
BGFS 0.2052 0.8316 1.66 

 

Table 5.2 presents a performance comparison of the training 

algorithms, with every algorithm providing similar MSE results of less 

than 0.21 and a correlation coefficient R2 of approximately 0.90, taking 

less than 2 minutes to train for the LM and BGFS algorithms. The results 

of the BR algorithm are remarkable, with an MSE of 0.1128. As before, 

the BR algorithm training took longer than the other two algorithms, 

requiring almost 14 minutes. In this case, the BR algorithm may be the 

optimal choice because of its minimal prediction error. 

 

Figure 5.8 depicts the results of the soluble alumina soft sensor model 

trained with the BR algorithm, compared with the soluble alumina 
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measurement using inductively coupled plasma atomic emission 

spectroscopy (ICP-AES). The soft sensor presents a regression 

correlation coefficient of 0.9540, indicating that the ANN soft sensor is a 

reliable choice for estimating soluble alumina in real time. The inclusion 

of more process variables and the evaluation of various architecture 

structures provide an opportunity to improve the soft sensor estimations. 

Furthermore, the addition of extended data sets would enhance the 

accuracy of the soft sensor model.  

 

5.6 Burner-to-burner interaction effect on the basic temperature 
control 

Industry faces challenges to reduce the nitrogen oxide (NOx) emissions 

in multi-burner furnaces. Therefore, enhanced burner designs have been 

applied to tackle this issue. In general, these designs implement a kind of 

furnace gas recirculation that lowers the flame temperature, therefore 

minimizing the NOx emissions. However, to reduce the flame 

temperature, a decrease in the concentration of air is required which 

generates elongated flames. The flames in recently developed multi-

burner furnaces with enlarged flame length might lead to a phenomenon 

defined as burner-to-burner (BtoB) interaction (Fleifil et al., 2006). 

Figure 5.8 Comparison of soluble alumina: ICP-AES vs. ANN soft sensor 

(Gómez Fuentes et al., 2019). 
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The configuration of the burners inside the MHF provides a sharp view 

of the interactions occurring in the furnace. The burners are positioned 

in four equidistant points over the perimeter of the hearth. Each burner 

is positioned in one of the points and is directed to the closest burner, 

thus Burner 1 (B1) points to Burner 4 (B4), B4 points to Burner 3 (B3), 

etc., as depicted in Figure 5.9. The temperature control implemented in 

the hearths 4 and 6 comprises individually operating PI controllers for 

each burner. It is possible that a larger capacity operation may create 

difficulties to control the temperature in the MHF. These difficulties are 

most probably associated to the BtoB phenomenon, which generates 

nonlinearities and instabilities in the temperature control. 

 

The current temperature control scheme implemented in the MHF 

displays shortcomings when a BtoB phenomenon ensues during the 

process operation, generating unwanted interactions and inhibiting the 

stable control of the gas phase temperature. In this work, the BtoB 

phenomenon was simulated and is illustrated in Figure 5.10. In the initial 

170 minutes of the simulation, the controller attempted to regulate the 

temperature to 1000 °C with the corresponding manipulated gas flows. 

After 170 minutes, the controller attempted to regulate the temperature 

to 960◦C with the corresponding manipulated variables. In the initial part 

(1000 °C setpoint), only one control loop worked while the other loops 

B1 

B3 B2 

B4 

Figure 5.9 Configuration of the burners in the multiple hearth 

furnace. 
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reach a maximum gas flow. The second part of the simulation presents 

that only one temperature controller regulated the temperature partially, 

with a working control loop switch at simulation times of 220 and 290 

minutes.  

 

A more efficient control scheme is needed to enhance the stability of the 

temperature and prevent the effects of the BtoB interaction in the hearth 

4. Some alternatives are existing to enhance the temperature control in 

the hearth 4. A mean temperature control scheme can be adopted as a 

practical answer to the phenomenon. 

Summary 

This chapter has exposed the analysis of the MHF’s dynamic behavior 

and has provided understanding of the feed material and product 

mineralogy as well as the operating conditions and physicochemical 

phenomena taking place in the furnace. It has also introduced three soft 

sensors to determine different mineralogical information occurring 

inside the process, such as the “spinel phase” reaction rate, mullite 

content and soluble alumina. The soft sensors that have been developed 

will be incorporated into the control strategy of the MHF in the next 

chapter. 

Figure 5.10 Simulation results of the temperature setpoint change for the 

hearth 4 current temperature control. 
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6. Mineralogy-driven control strategy 
for the multiple hearth furnace 

In this chapter the details of the mineralogy-driven control strategy for 

the MHF are defined. Furthermore, the simulation results of the 

enhanced control strategy are presented and discussed. First, an 

overview of the simulation environment is presented. Second, the results 

of the basic temperature control simulation are shown. Next, the 

feedforward control simulation results are depicted and finally, the 

results of the optimizing control are reported and discussed. 

6.1 The enhanced control strategy for the MHF 

 

The enhanced control strategy proposed in this research aims to select 

the best operating conditions to optimize the production capacity and 

energy efficiency, while ensuring the required product quality. The 

process control system comprises the optimizing, stabilizing, and basic 

levels. 

 

The plant personnel determine the final product specifications with 

regard to the current feed mineralogy. The product quality requirements 

e.g., the soluble alumina content and brightness, are defined next to the 

selected product specifications. The look-up table provides the setpoints 

for the gas temperatures in the hearths 4 and 6 based on the current 

production capacity, iron content and brightness in the feed. As described 

in Section 5.2, the look-up table is based on the classification of the feed 

type and process conditions, and made by using the SOM technique 

(Jämsä-Jounela et al., 2018). Furthermore, the temperature setpoints 

are fine-tuned on a regular basis e.g., once a day, based on laboratory 
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measurements of the product characteristics; this is done to maintain the 

product quality within the specifications.  

 

To reach the maximum production rate, specified by the mullite content 

soft sensor, the multi-objective optimization problem is solved to raise 

the plant capacity and simultaneously minimize the total energy 

consumption of the furnace (𝐹𝐻4  + 𝐹𝐻6) by adjusting the temperature 

setpoint (𝑇6) in order to maintain the required mullite content. 

 𝑚𝑎𝑥 𝐹𝐾 

𝑚𝑖𝑛 (𝐹𝐻4  +  𝐹𝐻6) 
(6.1) 

with respect to constraints: 

 

𝑓𝑇4(𝐹𝐻4, 𝐹𝐻6, 𝑟, 𝐹𝐾) = 𝑇4, 

 𝑓𝑇6(𝐹𝐻4, 𝐹𝐻6, 𝑟, 𝐹𝐾) = 𝑇6,  

       𝑚(𝐹𝐻4, 𝐹𝐻6, 𝑇𝐻1, 𝐹𝐾)  ≤  4𝑤𝑡.%, 

                  𝑆(𝐹𝐻4, 𝐹𝐻6, 𝑟, 𝐹𝐾) ≤ 0.50𝑤𝑡.%, 

                                            T𝐻6 ≥ 𝑇𝐻6
𝑚𝑖𝑛(𝐹, 𝑟), 

                                           𝑇𝐻4
𝑚𝑖𝑛 < 𝑇𝐻4 < 𝑇𝐻4

𝑚𝑎𝑥 , 
                               𝑉𝑖𝑜 ≥ 𝑉𝑖𝑜∗ 

 

where 𝐹𝐾, 𝐹𝐻4, and 𝐹𝐻6 represent the feed rate and gas flows to the hearths 

4 and 6, respectively, r denotes the current value of the reaction soft 

sensor, 𝑇𝐻1, 𝑇𝐻4 and 𝑇𝐻6 are the temperatures in the hearths 1, 4, and 6, 

respectively and m is the mullite content of the product and its threshold. 

𝑆 represents the soluble alumina content and its threshold (if applicable). 

Finally, 𝑉𝑖𝑜 symbolizes the brightness (measured as the percentage of 

light reflected in the violet spectrum) and its threshold. The control 

strategy is presented in Figure 6.1, which first highlights the selection of 

the initial temperature setpoints for the furnace from the look-up table, 

based on the running capacity of the furnace, the iron content and the 

brightness of the feeding material and product. Additionally, the figure 

highlights the integration of the mullite content (for capacity 

maximization) and soluble alumina (quality control) soft sensors as 

constraints into the enhanced control strategy for the MHF. 
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Next, Figure 6.2 and Figure 6.3 highlight the integration of the reaction 

rate soft sensor, described in Section 5.3, into the enhanced control 

strategy as part of the stabilizing control. The stabilizing level aims to 

attenuate the variations in the calcination reaction, which occur in the 

solid phase of the furnace. In other words, the gas temperature setpoints 

of hearth 6 have to be modified based on the calcination progress in the 

solid phase. Thus, if the exothermic reaction (Equation (2.3)) is initiated 

between the hearths 4 and 5, before the material enters the hearth 6, then 

the temperature setpoints must be lowered to save fuel and to prevent 

over calcination.  

 

To assess the calcination progress of the kaolin, the soft sensor is used 

to estimate the exothermic “spinel phase” reaction rate (Equation (2.3)) 

in the hearths 4 and 5, and the feedforward control adjusts the 

temperature in the hearth 6. As a summary, a simplified block diagram 

of the algorithm designed for the feedforward control is presented in 

Figure 6.3. 

  

Figure 6.1 Enhanced control strategy highlighting the selection of the initial 

setpoints based on the look-up tables. 
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The basic level controls the temperature with a mean temperature 

control scheme (Gómez Fuentes, 2016), as highlighted in Figure 6.4. The 

mean temperature control aims to attenuate the effects of the burner-to-

burner (BtoB) (Fleifil et al., 2006) phenomenon and to homogenize the 

Figure 6.3 Feedforward control logic. 

 

Figure 6.2 Enhanced control strategy highlighting the reaction rate soft 

sensor and feedforward control. 
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gas phase temperature in the hearth 4 by operating based on the average 

temperature of the gas phase instead of manipulating each burner 

individually. 

Gas flow to 
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Feed rate,   
Gas flows, 
Air flows

Brightness OK?
No Sol. Al. 

 

 

 

A simple schematic of the mean temperature control is illustrated in 

Figure 6.5. The controller consists of the measurement of the 

temperature of the four burners and subsequently calculates the average 

temperature value. Based on this calculation, control regulation is 

implemented into the burner system by the manipulation of gas flows. 

Every gas flow is manipulated in an identical manner. 

 

  

 

 

 

 

 

Finally, the feed material is transferred to the kiln by a weight feeder via 

a rotary valve.  The operation of the rotary valve is controlled by the feed 

control via a programmable logic controller. 

 

Figure 6.4 Control strategy highlighting the basic level temperature control. 

 

Burner 1 

Burner 2 

Burner 3 

Burner 4 

𝑻𝟏 + 𝑻𝟐 + 𝑻𝟑 + 𝑻𝟒
𝟒

 

Figure 6.5 Mean temperature control scheme. 
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6.2 Simulation environment 

 
The setup environment to model and control the MHF was developed 

in the MATLAB® environment. The setup consisted of the dynamic 

model of the MHF described in Section 4 and the following controllers: 

optimizing control, stabilizing control, and basic controllers. The 

implemented soft sensors were the mullite content soft sensor for 

capacity improvement and the “spinel phase” reaction rate indicator for 

energy use minimization. To increase the computation speed, the 

mechanistic model was implemented and precompiled in the C language. 

All other functions were implemented using the functions of MATLAB® 

library. The simulation environment included an Euler solver with a step 

size of 20 seconds. An overview of the simulation environment is 

illustrated in Figure 6.6. The noise present in the gas flows and 

temperatures were calculated from the process data provided from May 

to October 2013. The focus of the testing is the incorporation of the soft 

sensors to the control strategy, which are the novel components in the 

control strategy. However, the limited accessibility to online quality 

measurements limits the testing of the control strategy in closed-loop and 

needs additional online testing at the plant.  
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6.3 Simulation results of the basic temperature controller for the 
hearth 4 

 

The hearth 4 of the MHF displays the BtoB phenomenon, which was 

discussed in Section 5.6. A recommended solution for the situation 

occurring in the hearth 4, is the implementation of a mean temperature 

controller (Gómez Fuentes, 2016). In the furnace, the current basic 

temperature control cannot regulate the temperature to 1000 °C due to 

the BtoB phenomenon, which was also discussed in Section 5.6. By using 

the total gas flow as an MV, the simulation results of the mean control are 

obtained, as illustrated in Figure 6.7. The setpoint of the mean 

temperature for the initial half of the simulation is 1000 °C; in the final 

half, the mean temperature setpoint is adjusted to 960 °C. The controlled 

variable follows the setpoint very accurately during the simulation. The 

top image of Figure 6.7 illustrates the progress of the temperatures of all 

burners during the simulation. Finally, the bottom graph of Figure 6.7 

displays how one gas flow of four is performing to attain the desired 

control. 

 

The results of Figure 6.7 differ notably with the simulation results 

displayed in Figure 5.10 of Section 5.6. The mean temperature control 

Figure 6.7 Simulation results of the temperature setpoint change for the 

hearth 4 mean temperature control. 
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delivers a steadier temperature in the hearth 4 contrasted with the 

current control scheme and also reduces the effects of the BtoB 

phenomenon. 

6.4 Simulation of feedforward control based on the reaction rate 
soft sensor 

As discussed in Section 5.3, the reaction rate soft sensor can be 

implemented in combination with a feedforward control scheme aiming 

to minimize the energy use of the furnace.  

 

The feedforward controller obtains the measurement of the reaction 

rate from the soft sensor as a conversion percentage from metakaolin to 

the “spinel phase” computed for the top part of the furnace (hearths 1–

4).  

 

Under normal operation, the spinel formation reaction happens in the 

hearth 6.  Therefore, if a change in the reaction location occurs, then it 

would be indicated when the soft sensor measurements are higher than 

40%. The feedforward control is enabled when the conversion increases 

to 40% or above, and the control is maintained active for 240 minutes in 

this simulation study. This control interval was adopted based on the 

maximum extent of the exothermic reaction, which was previously 

discussed in Section 5.3.  

 

Figure 6.8 presents a comparison between the current control strategy 

and the designed feedforward control.  The variables in the figure are as 

follows:  reaction rate, total gas flow, the hearth 6 gas temperature, and 

the hearth 6 gas temperature setpoint. At a simulation time of 150 

minutes, the rise of the disturbance on the reaction rate can be clearly 

observed, which increased from approximately 25% to 40% until the end 

of the simulation. In contrast, the reaction conversion decreased when 

the feedforward control was enabled, and the value was restored to 

approximately 20%. The current control (without feedforward) did not 

show changes from its setpoint of 1080 °C, being unable to respond to the 

increase in the reaction rate.  In comparison, the feedforward control 
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showed a control action at a simulation time of 170 minutes in due to the 

rise in conversion above 40%, thus decreasing the temperature setpoint 

to 1062 °C.  In the current control simulation, the gas consumption 

exhibited a reduction of 1.6% after the disturbances affected the process, 

whereas the feedforward control indicated that energy savings could be 

near 3.6% (Jämsä-Jounela et al., 2018). 

6.5 Simulation of feed rate optimization based on the mullite 
content soft sensor 

To evaluate the strategy presented in Chapter 6, the control scheme was 

implemented in the simulation environment. Initially, the furnace was 

operated at the designated operating conditions presented as follows:   

the feed rate was 83.33%, the hearth 6 temperature was 1100 °C, and 

mullite content was 16%. The mullite soft-sensor output used a moving 

average filter with a time window of 30 minutes. The aim was to 

maximize the capacity of the furnace and to maintain the mullite content 

at approximately 4% by reducing the temperature setpoint in the hearth 

6. The control interval in the optimization level was defined as 6 hours 

based on the time the model requires to reach the steady-state, while the 

Figure 6.8 Comparison of the plant current control strategy (blue) vs. the 

feedforward control (orange). 
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feed rate change was set to a maximum of 5% during that time. Using the 

filtered mullite content measurement, the strategy calculates the optimal 

setpoint for the capacity and the temperature in the hearth 6 (Jämsä-

Jounela et al., 2018).  

 

Figure 6.9 illustrates that the capacity optimization strategy maximized 

the feed rate in this simulation study, from 83.33% to 95.83%, and the 

hearth 6 setpoint temperature was dropped by 43 °C during the 

simulation. The top of Figure 6.9 indicates that there is a small variance 

between the MHF dynamic model output, and the soft-sensor estimate. 

However, the difference was assumed to be moderately minor and can be 

understood due to the steady-state nature of the soft-sensor calculations. 

 

Figure 6.10  presents a more comprehensive image of the furnace 

temperature profiles for the solid and gas phases.  During the simulation, 

the spinel formation reaction is repositioned to following volumes in the 

hearth 6 as time progressed. This produced a delay in the mullite 

formation reaction which decreased its quantity in the final product. 

Furthermore, the proposed strategy inhibits the unnecessary heating of 

the material. The dashed lines show the temperature range for the spinel 

formation reaction according to Equation (2.3). Moreover, the results 

Figure 6.9 Simulation of capacity optimization. 
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validate the process energy savings as the gas temperature are reduced in 

the hearths 5 and 6. In addition, the temperature of the gases varied in 

accordance to the specified hearth 6 setpoint.  An identical behavior is 

observed in the hearth 5. Consequently, the capacity optimization 

strategy maximizes the feed rate of the plant and minimizes the energy 

consumed in the calciner. 

Summary 

The mineralogy-driven control strategy of the MHF has been defined in 

this chapter. The strategy has been focused on three objectives: (1) 

capacity maximization, (2) energy use minimization and (3) quality 

regulation. The simulation results have shown promising results, 

increasing the energy savings of the furnace and maximizing the capacity 

while maintaining the desired mullite content in the product. Based on 

these results, the enhanced control will be tested in the real plant, which 

will be discussed in the next chapter. 

Figure 6.10 Temperature profiles of gas and solid phases in the furnace at 

selected time instances.   The hearth number is denoted by two numbers: the 

first is the hearth and the second is the specific volume in that hearth. 
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7. Plant testing of the soft sensors and 
the control strategy logic of the MHF 

The control logic of the multiple hearth furnace was evaluated by 

industrial testing and the economic performance reported. First, the soft 

sensors were tested online by implementing the algorithms on a 

computer connected to the plant automation system. Second, a sampling 

and data collection campaign was performed to gather measurements 

from the calciner. Finally, the logic of the control concept was evaluated 

and validated using the data collected during the sampling campaign. 

7.1 Description of the industrial testing environment 

The industrial testing environment was set up to test the soft sensor 

software and the control strategy logic. The software was installed on a 

DELL laptop (Latitude E7450), which was then connected to the local 

area network of the plant. An Open Platform Communications (OPC) 

client was developed to read the real-time process data from the OPC 

server of the site distributed control system (DCS). The computers on the 

server and client side were configured according to the Distributed 

Component Object Model (DCOM) configuration document written by 

the OPC Foundation. On the other hand, the MHF soft sensor software 

also provided a manual data input interface to record and save the 

chemical testing data of the samples from the laboratory information 

management system (LIMS) data. The overall testing setup of the 

software is shown in Figure 7.1. 
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The soft sensor algorithms ran in the background to estimate the 

reaction rate and mullite content. The MHF soft sensor software was 

developed using Microsoft Visual Studio 2017. The main interface 

included the following features: 

 

• Real-time key performance indicators: reaction rate, mullite 

content, burner flow rate, and feed rate. 

• Temperature profile of the furnace. 

• Real-time trends of the setpoints and actual values of T4 

(temperature of the hearth 4), and the gas flow of burner 4. 

• Real-time trends of the setpoints and actual values of T6 

(temperature of hearth 6), and the gas flow of burner 6. 

• Real-time trends of the feed rate, mullite content, and reaction 

rate. 

• Three day curve of brightness (𝑉𝑖𝑜) in the feed and product. 

 

The main interface integrates the essential indexes of MHF production. 

The testing improved the quality and usability of the MHF soft sensor 

Data base
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Figure 7.1 Soft sensor testing setup framework. 
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software (Figure 7.2). Furthermore, it helped the operators to better 

follow the operating conditions of the MHF.  

 

 

7.2 Sampling campaign at the plant  

The sampling campaign was performed from August 6th to 10th, 2018 at 

the factory to support the development of the MHF control strategy. The 

samples from the feed material and the calcined product of the MHF were 

collected for four days, for every hour from 10:00 to 16:00 h. 

 

The assays needed for the input of the furnace (feed material) were the 

brightness, iron content, particle size, and moisture. Furthermore, the 

analyses for the output of the furnace comprised the brightness, particle 

size, and moisture. The analyses for the final product comprised the 

brightness, particle size, mullite, and soluble alumina. The samples were 

taken hourly, by considering the process delays for the feed, furnace, and 

product. The performed analyses on the samples and equipment are 

presented in Table 7.1, including the X-ray fluorescence (XRF) for 

determining the iron content; X-ray diffraction to quantify the mullite 

content; and inductively coupled plasma atomic emission spectroscopy 

to measure the soluble alumina. 

 

Figure 7.2 Main interface of the MHF soft sensor software. 
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Table 7.1 Analysis techniques and equipment. 

Parameter Technique Equipment used 

Particle size Sedigraphy Sedigraph III Plus 

Iron content XRF X–Supreme 8000 

Brightness Spectrometer Datacolor ELREPHO 

Mullite XRD 
Panalytical Expert Pro XRD  

Spectrometer 

Soluble Alumina 
IMERYS internal 

method 
ICP-AES 

7.3  Testing results of the soft sensors and the control strategy 

The aim of this section is to study the soft sensors’ operation in real-

time, as well as the control strategy logic based on the process data and 

sampling campaign results of the plant. The logic is analyzed following 

the dynamic behavior of the furnace. Finally, a discussion of the possible 

improvements of the enhanced control logic to the process is presented. 

7.3.1 Soft sensors 

During the testing period of the soft sensors, the plant’s dynamic 

behavior was followed using online process measurements and the soft 

sensor software. Data from August 8th to 10th 2018, were used to illustrate 

the results of the reaction rate, mullite content, and soluble alumina soft 

sensors.  

 

Figure 7.3 shows the calculations of the soft sensors and laboratory 

results of the samples obtained during the sampling campaign on August 

8th, 2018. The reaction rate oscillated between 10 and 30% until 14:00 

hours, when it rose to approximately 40%. The mullite content laboratory 

results showed a significant variation during the day with a minimum of 

4% and a maximum of 13%. From the same figure, it can be seen that the 

soft sensor for mullite content followed the general trend exhibited by the 

corresponding laboratory results. The soluble alumina content was 

generally low with assays of ≤0.3 wt.% observed during the day. Finally, 

the product brightness was relatively low, but displayed an increasing 

trend in the range of 88.7–89. 
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In contrast, Figure 7.4 presents the results of the soft sensors and 

analytical laboratory assays of the samples obtained during the sampling 

campaign on August 9th, 2018. It can be observed that the reaction rate 

oscillated between 30% and 40% with a maximum attainment of 51%. 

The laboratory results for the mullite content exhibited a significant 

variation during the day with noted minimum and maximum values of 

4% and 14% respectively. The results obtained from the first principle 

mullite soft sensor were comparable to the analytical laboratory results, 

with notable deviations due to the spinel formation reaction occurring 

earlier than expected. The deviations were particularly high when the 

reaction rate reached its peak value. The ANN mullite soft sensor showed 

greater accuracy compared to the first principle soft sensor. The content 

of the soluble alumina was relatively similar to that of the previous day 

with values in the 0.27–0.32wt.% range observed with the ANN soft 

sensor exhibiting excellent estimation reliability. The product brightness 

had an average value of 88.9 and maximum value of 89. 

Figure 7.3 Soft sensors and lab results during the testing campaign on August 

8th, 2018 (Gómez Fuentes et al., 2019). 
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As illustrated in Figure 7.5, the reaction rate oscillated between 15% and 

approximately 40% with values greater than 30% for the last 2 hours of 

the day. According to the XRD results, the mullite content varied between 

4% and 14%, which was similar to the previous day. The performance of 

the first principle mullite soft sensor was moderately accurate, while the 

ANN soft sensor performed excellently. The behavior of the soluble 

alumina content was comparably similar to that of the previous days, 

with measured values in the range of 0.26–0.32wt.%. The ANN soft 

sensor performed fairly well. Finally, the product brightness for this day 

had a mean value of 89 with a maximum value of 89.2, the highest 

observed in the testing period. 

 

Figure 7.4 Soft sensors and lab results during the testing campaign on August 

9th, 2018. 
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7.3.2 Control logic 

The control logic presented in Chapter 6 was evaluated using the 

process data from August 8th to 10th 2018. On August 8th, the reaction rate 

presented a low value in general with fluctuations originating from the 

limitations of the temperature control in the hearth 4 due to the BtoB 

phenomenon, as shown in Figure 7.3. The mullite content showed a high 

value (above 5 wt.%) during most of the day, implying that the 

temperature in the furnace was higher than necessary, also indicated by 

the low soluble alumina content (below 0.50 wt.%). In this situation, the 

enhanced control strategy could drive the process to a more efficient 

operating condition by increasing the capacity at the beginning of the day 

(10:00 h) while maintaining the same energy consumption. This new 

operating condition would reduce the mullite content significantly in the 

product, while maintaining the required specifications of brightness and 

soluble alumina. The following day (August 9th), the reaction rate 

presented a few fluctuations due to the temperature control in the hearth 

4, as depicted in Figure 7.4. Similar to the previous day, the mullite 

content showed a high value (above 5 wt.%) during most of the day with 

some periods of low content, as the temperature in the furnace was above 

Figure 7.5 Soft sensors and lab results during the testing campaign on August 

10th, 2018. 
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the necessary value. Although the process was running at maximum 

capacity, by following the enhanced control strategy logic and decreasing 

the overall temperature, the mullite formation could be reduced and the 

energy efficiency improved. On the final day (August 10th), the reaction 

rate was below 40% and the mullite content presented large fluctuations 

due to the high-temperature furnace operation, as illustrated in Figure 

7.5. Similar to the previous case (August 9th), the process could be 

significantly improved based on the control logic by minimizing the 

mullite content and reducing the furnace temperature, while attaining 

the desired quality constraints. Essentially, the general operation of the 

furnace would be improved by implementing the new control concept, 

thus maximizing the capacity and reducing the energy consumption. 

Summary 

An industrial testing for validation of the enhanced control strategy has 

been documented in this chapter. The soft sensors have been 

implemented and tested online, and the control strategy’s possible 

process improvements have been studied using the collected plant data. 

The results have been positive, showing good opportunities in the real 

plant implementation. The next chapter will introduce the concept of 

model predictive control and the implementation of this advanced 

control strategy to the MHF. 
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8. Studies on Model Predictive Control for 
the multiple hearth furnace 

This Chapter studies the applicability of Linear MPC for the MHF 

control strategy presented in Chapter 6. The aim is to decrease the 

temperature interactions in the control between the burner zones of the 

furnace. First, an introduction to Model Predictive Control is presented. 

Next, the design of the MPC framework for the MHF in kaolin calcination 

is described. Furthermore, the linear model of the MHF for MPC is 

defined and the simulation environment described. Next, this chapter 

presents the simulation results, which are analyzed and discussed. 

Additionally, an analysis of the comparison between Linear MPC and PI 

control scheme for temperature control is discussed. Finally, an outline 

of the future work to implement Nonlinear MPC and Economic MPC into 

the MHF is presented. 

8.1 Introduction to MPC 

Model Predictive control is an advanced process control strategy, which 

uses a model to foresee the future response of a process and introduce the 

suitable corrective control actions that lead the process to the desired 

state. In general, the aim of MPC is to direct the selected output variables 

to their respective reference points, while violations of the input and 

output restrictions are prevented (Richalet, 1993). In addition, MPC 

focuses on preventing the unnecessary variation of the input variables 

and to control the maximum number of process variables as possible even 

when a sensor is not accessible (Rawlings and Mayne, 2009). 

 

MPC algorithms may vary from one another but comprise the following 

common essentials aspects (Camacho and Bordons, 1999): a prediction 
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model, an objective function and the algorithms to find the control law. 

Opting for different choices of these aspects, enables the design of 

different MPC implementations. 

8.1.1 Process and Disturbance Models 

 

The most important element of MPC is the process model, which 

defines the connection between the input and the output variables of a 

process. In addition, a disturbance model can be included to implement 

a state estimator or to introduce a plant model mismatch. Numerous 

MPC designs employ various types of process models (Huang and Kadali, 

2008); the most frequently used are as follows.  

 

• Impulse response model 

• Step response model 

• Transfer function model 

• State-Space model 

8.1.1.1 State-Space model 

The following equations describe the linear state-space model: 

 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 (8.1) 

  𝑦𝑡 = 𝐶𝑥𝑡 + 𝐷𝑢𝑡 (8.2) 

The state-space models include the following advantages: 

- Multivariable processes are defined in an identical way as single 

input/single output (SISO) dynamics. 

- Modern analysis methods and control theory, including the 

Kalman filter, may be applied effortlessly to state-space models. 

 

One disadvantages of state-space models is that processes with limited 

number of states may not be described adequately by a state-space model. 

8.1.1.2 Time series model for the disturbance 

A commonly employed disturbance model is the autoregressive 

integrated moving average (ARIMA) model, where the disturbance, is 

described by the following equation (Camacho and Bordons, 1995): 
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𝑑𝑡 =

𝐶(𝑧−1)

∆𝐷(𝑧−1)
𝑒𝑡 (8.3) 

where 𝑑𝑡 is the disturbance, the symbol ∆ denotes 1−𝑧−1,  𝑒𝑡 is the white 

noise, and C and D are polynomials usually designated to be 1. 

8.1.2  Multiple-step prediction 

 

In MPC, the process model is adopted as the predictor of the future 

plant behavior, and afterward the control law is formulated using the 

predictor. Based on multiple-step predictions, the future input 

movements of the process are designated to direct the process outputs to 

the desired values. In the following equations, the multiple-step 

prediction is presented in more details.  

 

The considered model for prediction is simple, which is a moderate 

alteration of the conventional ARX model. The model includes the term 

∆𝑢𝑡 instead of 𝑢𝑡: 

 𝑦𝑡 = −𝑎𝑦𝑡−1 + 𝑏∆𝑢𝑡−1 + 𝑒𝑡 (8.4) 

The one-step prediction is formulated by taking the model equation at 

time instant 𝑡 + 1 

 𝑦𝑡+1 = −𝑎𝑦𝑡 + 𝑏∆𝑢𝑡 + 𝑒𝑡+1 (8.5) 

If the white noise is omitted, then presenting the previous equation in 

prediction terms gives the following result: 

 𝑦̂(𝑡 + 1|𝑡) = −𝑎𝑦𝑡 + 𝑏∆𝑢𝑡 (8.6) 

Where 𝑦̂(𝑡 + 1|𝑡) is the expected value of 𝑦𝑡+1 with available 

information at instant 𝑡. 

 Next, to find the two-step prediction, the modeling equation is 

calculated at the time instant 𝑡 + 2:  

 𝑦𝑡+2 = −𝑎𝑦𝑡+1 + 𝑏∆𝑢𝑡+1 + 𝑒𝑡+2 (8.7) 

Substituting Equation (8.5) in (8.7): 

 𝑦𝑡+2 = −𝑎(−𝑎𝑦𝑡 + 𝑏∆𝑢𝑡 + 𝑒𝑡+1) + 𝑏∆𝑢𝑡+1 + 𝑒𝑡+2 (8.8) 

                = 𝑎2𝑦𝑡 + 𝑏∆𝑢𝑡+1 − 𝑎𝑏∆𝑢𝑡 − 𝑒𝑡+1 + 𝑒𝑡+2  

Then, the two-step prediction is found by omitting the unknown future 

noise values: 
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 𝑦̂(𝑡 + 2|𝑡) = 𝑎2𝑦𝑡 + 𝑏∆𝑢𝑡+1 − 𝑎𝑏∆𝑢𝑡 (8.9) 

Finally, combining Equations (8.6) and (8.9), the one-step and two-

steps prediction is found based on the previous input-output and the 

future input data: 

 
(
𝑦̂(𝑡 + 1|𝑡)
𝑦̂(𝑡 + 2|𝑡)

) = (
−𝑎
𝑎2
) 𝑦𝑡 + (

𝑏 0
−𝑎𝑏 𝑏

) (
∆𝑢𝑡
∆𝑢𝑡+1

) (8.10) 

The derivation of predictions over further steps may be found in a 

analogous way, which is defined in the next Section 8.1.2.1. Likewise, the 

same idea of substitution can be used on other models to find the 

multiple-step predictions. 

8.1.2.1 Prediction with the state-space models 

State-space models allow multiple-step predictions by reintroducing 

recurrently the one-step prediction equation (Rossiter, 2004): 

                               𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 

                              𝑦𝑡+1 = 𝐶𝑥𝑡+1 
(8.11) 

For 𝑡 + 2: 

                                     𝑥𝑡+2 = 𝐴𝑥𝑡+1 + 𝐵𝑢𝑡+1 

                                    𝑦𝑡+2 = 𝐶𝑥𝑡+2 
(8.12) 

Substituting Equation (8.11) into (8.12): 

              𝑥𝑡+2 = 𝐴
2𝑥𝑡 + 𝐴𝐵𝑢𝑡 + 𝐵𝑢𝑡+1 

                                    𝑦𝑡+2 = 𝐶𝑥𝑡+2 
(8.13) 

Then reiterating the substitution for 𝑡 + 3: 

                                    𝑥𝑡+3 = 𝐴
2[𝐴𝑥𝑡 + 𝐵𝑢𝑡] + 𝐴𝐵𝑢𝑡+1 + 𝐵𝑢𝑡+2 

                                    𝑦𝑡+3 = 𝐶𝑥𝑡+3 
(8.14) 

Next, for the 𝑘-step prediction: 

    𝑥̂(𝑡 + 𝑘|𝑡) = 𝐴𝑘𝑥𝑡 + 𝐴
𝑘−1𝐵𝑢𝑡 + 𝐴

𝑘−2𝐵𝑢𝑡+1 +⋯+ 𝐵𝑢𝑡+𝑘−1 

𝑦̂(𝑡 + 𝑘|𝑡) = 𝐶[𝐴𝑘𝑥𝑡 + 𝐴
𝑘−1𝐵𝑢𝑡 + 𝐴

𝑘−2𝐵𝑢𝑡+1 +⋯+𝐵𝑢𝑡+𝑘−1] 
(8.15) 

The combination of the prediction equations may be written in matrix 

form for the prediction horizon 𝑁: 

 

[
 
 
 
 
𝑥̂𝑡+1
𝑥̂𝑡+2
𝑥̂𝑡+3
⋮

𝑥̂𝑡+𝑁]
 
 
 
 

⏟  

𝑥
→𝑡+1

=

[
 
 
 
 
𝐴
𝐴2

𝐴3

⋮
𝐴𝑁]
 
 
 
 

⏟

𝐹𝑥

𝑥𝑡 +

[
 
 
 
 
𝐵
𝐴𝐵
𝐴2𝐵
⋮

𝐴𝑁−1𝐵

0
𝐵
𝐴𝐵
⋮

𝐴𝑁−2𝐵

0
0
𝐵
⋮

𝐴𝑁−1𝐵

⋯
⋯
⋯
⋮
⋯]
 
 
 
 

⏟                    

𝐻𝑥

[
 
 
 
𝑢𝑡
𝑢𝑡+1
𝑢𝑡+2
⋮

𝑢𝑡+𝑁−1]
 
 
 

⏟    

𝑢
→𝑡

 (8.16) 



 
 

83 
 

 

[
 
 
 
 
𝑦̂𝑡+1
𝑦̂𝑡+2
𝑦̂𝑡+3
⋮

𝑦̂𝑡+𝑁]
 
 
 
 

⏟  

𝑦
→𝑡+1

=

[
 
 
 
 
𝐶𝐴
𝐶𝐴2

𝐶𝐴3

⋮
𝐶𝐴𝑁]

 
 
 
 

⏟  

𝐹

𝑥𝑡 +

[
 
 
 
 
𝐶𝐵
𝐶𝐴𝐵
𝐶𝐴2𝐵
⋮

𝐶𝐴𝑁−1𝐵

0
𝐶𝐵
𝐶𝐴𝐵
⋮

𝐶𝐴𝑁−2𝐵

0
0
𝐶𝐵
⋮

𝐶𝐴𝑁−3𝐵

⋯
⋯
⋯
⋮
⋯]
 
 
 
 

⏟                      

𝐻

𝑢
→𝑡

 (8.17) 

 

Finally, the prediction for the state-space model of Equation (8.11) is 

defined as: 

    𝑥
→𝑡+1

= 𝐹𝑥𝑥𝑡 + 𝐻𝑥 𝑢
→𝑡

 

𝑦
→𝑡+1

= 𝐹𝑥𝑡 + 𝐻 𝑢
→𝑡

 
(8.18) 

8.1.2.2 The free and forced response 

The free and forced response concepts are normally employed in 

diverse MPC algorithms. The main objective is to present the control 

sequence as the summation of two signals: 

 𝑢𝑡 = 𝑢𝑓(𝑡) + 𝑢𝑐(𝑡)  

where 𝑢𝑓(𝑡) is a signal consistent with the previous inputs and is kept 

constant (identical to the preceding value) in the future: 

 𝑢𝑓(𝑡 − 𝑘) = 𝑢(𝑡 − 𝑘) for 𝑘 = 1,2, …  

 𝑢𝑓(𝑡 + 𝑘) = 𝑢(𝑡 − 𝑘) for 𝑘 = 0,1,2, …  

For 𝑢𝑐(𝑡), the previous values are made equal to zero, and the 

subsequent time instants are defined as the next control move in the 

future: 

 𝑢𝑐(𝑡 − 𝑘) = 0 for 𝑘 = 1,2, …  

 𝑢𝑐(𝑡 + 𝑘) = 𝑢(𝑡 + 𝑘) − 𝑢(𝑡 − 1) for 𝑘 = 0,1,2, …  

 

The free response 𝑦𝑓(𝑡), is the estimate of the process output when the 

manipulated variable is identical to 𝑢𝑓(𝑡); and the forced response 𝑦𝑐(𝑡) 

is the estimate of the process output when the control sequence equal to 

𝑢𝑐(𝑡). Specifically, the free response defines the behavior of the process 

if there are no variations in the manipulated variable for the current state; 

while the forced response defines the behavior of the process due to the 

future control sequence. 
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8.1.3  Objective Function and Constraints 

 

MPC algorithms employ various types of cost functions to get the 

control law (Carlson et al., 1991). These algorithms utilize the objective 

function to guarantee that the output variables follow a specified 

reference setpoint in the future until the defined prediction horizon. 

Therefore, a general equation for the objective function is shown as 

follows: 

 

𝐽 = ∑ [𝑟𝑡+𝑖 − 𝑦̂(𝑡 + 𝑖|𝑡)]
𝑇𝑄𝑖[𝑟𝑡+𝑖 − 𝑦̂(𝑡 + 𝑖|𝑡)]

𝑁𝑚𝑎𝑥

𝑖=𝑁𝑚𝑖𝑛

+ ∑ [∆𝑢𝑡+𝑖−1]
𝑇𝑅𝑖[∆𝑢𝑡+𝑖−1]

𝑁𝑐

𝑖=𝑁𝑚𝑖𝑛

 

(8.19) 

The parameters 𝑁𝑚𝑖𝑛 and 𝑁𝑚𝑎𝑥 represent the minimum and maximum 

prediction horizons. 𝑁𝑐 denotes the control horizon and may vary from 

𝑁𝑚𝑎𝑥. These parameters state the interval when the reference trajectory 

is optimal. Thus, if a high value is defined for the 𝑁𝑚𝑖𝑛, then past errors 

are less important. If the process features a dead time 𝑑, then 𝑁𝑚𝑖𝑛 must 

be a greater value than 𝑡 + 𝑑. In some cases, when the process has an 

inverse response, this behavior may be neglected from the objective 

function. 𝑄𝑖 and 𝑅𝑖 symbolize the weighting matrices. 

 

The reference trajectory  (𝑟𝑡) is the wanted direction that the process 

must follow. Although it is favored that the process output will attain the 

setpoint with no errors, there could be variances with the final process 

output due to time delays, model mismatch or some hard constraints. 

Generally, the reference trajectory is a smooth curve commencing from 

the current value of the output is used to approach the setpoint. 

 

Typically, processes are limited to physical and other types of 

constraints. For example, actuators require specific limitations that avert 

them from moving beyond their physical limits. Other constraints are 

enforced due to safety and economic reasons. For instance, a chemical 

reaction may be benefited at high temperatures, but the reactor may have 

a certain threshold which should not be exceeded, due to safety reasons 
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and material tolerance. In practice, MPC integrates constraints, which 

has proven to be successful in industry. A general definition of 

constraints is presented as follows: 

                      𝑢𝑚𝑖𝑛 ≤        𝑢𝑡        ≤ 𝑢𝑚𝑎𝑥              ∀𝑡 

                   𝑑𝑢𝑚𝑖𝑛 ≤ 𝑢𝑡 − 𝑢𝑡−1 ≤ 𝑑𝑢𝑚𝑎𝑥          ∀𝑡 

                     𝑦𝑚𝑖𝑛 ≤        𝑦𝑡         ≤ 𝑦𝑚𝑎𝑥               ∀𝑡 

(8.20) 

The inclusion of constraints to the optimization problem complicates 

the solution procedure. However, this allows MPC to control the process 

while following the restrictions existing on a specific application. 

8.1.4  Control Law 

 

The process inputs or control actions ∆𝑢𝑡+𝑖, are obtained by solving the 

optimization problem. In order to reach this goal, the output prediction 

𝑦̂(𝑡 + 1|𝑡) is estimated, for instance as defined in Equation (8.10), and 

then utilized to evaluate the objective value according to Equation (8.19). 

Then, a derivative of the cost function is calculated with respect to 

∆𝑢𝑡, ∆𝑢𝑡+1,…, ∆𝑢𝑡+𝑁𝑐−1. Finally, the solution of the optimization problem 

is obtained by setting the derivatives to zero. By following this algorithm, 

it is possible to find an analytical solution.  

 

If some constraints exist on the process variables 𝑢𝑡, ∆𝑢𝑡, or 𝑦̂(𝑡 + 1|𝑡), 

then analytical solutions are not possible to obtain, and a numerical 

minimization method is needed. It is essential to consider that all these 

computations occur within the sampling time interval of the controller.   

8.2 Linear MPC formulation for the MHF 

This subsection presents the formulation of the Linear MPC for the 

MHF. First, the definition of the transfer function model for the MHF is 

described, followed by, the simulation environment and the MPC 

framework for the MHF. Furthermore, this subsection illustrates the 

results of the simulation. Finally, the Linear MPC and the PI control 

scheme are compared, and the results are discussed.  
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8.2.1 Description of the transfer function model for the MHF  

To design the MPC controller, a linear time-invariant transfer function 

model of the process is identified from step tests from the nonlinear 

model (Eskelinen et al., 2015) described earlier in Chapter 4. MATLAB’s 

Identification Toolbox facilitated the process of identifying the transfer 

function model. The input variables for the model identification are the 

furnace feed rate and the gas flows to the hearths 4 and 6. The gas 

temperatures of the hearths 4 and 6 were selected as the output variables 

to design a simple model for the MPC framework which preserves the 

dynamic behavior of MHF. The identification variables were 

standardized using the Equation (5.11) to eliminate dimensionality 

effects while maintaining the dynamic response of the process. The 

response of the gas temperature to the step changes is illustrated in 

Figure 8.1 and the sequence of step changes to the feed rate and gas flows 

is presented in Figure 8.2. 

 

 

Figure 8.1 Responses of the Temperature in the hearth 4 and 6 to input 

changes in feed rate and gas flows. 
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The identification data was separated in training and validation sets of 

75% and 25% respectively and the result shows a correlation coefficient 

R2 of 0.9534. The structure of the identified model is presented as the 

following transfer function: 

 

 𝑦𝑐𝑣(𝑠) =  𝐺𝑝𝑢𝑚𝑣(𝑠) + 𝐺𝑑𝑢𝑑(𝑠) (8.21) 

       

where, with respect to the Laplace domain, 𝑦𝑐𝑣 represents the controlled 

variables, gas temperatures of the hearths 4 and 6  ([𝑇𝐻4(𝑠), 𝑇𝐻6(𝑠)]); 𝑢𝑚𝑣 

represents the manipulated variables, gas flows of the hearths 4 and 6 

[𝐹𝐻4(𝑠), 𝐹𝐻6(𝑠)]. The feed rate 𝑢𝑑 = 𝐹𝐾 represents the measured 

disturbance variable. The plant and disturbance models in the Laplace 

domain are:  

𝐺𝑝(𝑠) = [

1.522

101.2𝑠 + 1

0.5125

79.26𝑠 + 1
0.6928

116.1𝑠 + 1

0.9869

74.63𝑠 + 1

] ; 𝐺𝑑(𝑠) =

[
 
 
 
−1.28𝑒−30𝑠

121.8𝑠 + 1
−0.7519𝑒−62𝑠

171.7𝑠 + 1 ]
 
 
 

 (8.22) 

 

Note, the time delay between 𝐹𝐻4 and 𝑇𝐻6 or 𝐹𝐻6 and 𝑇𝐻4 is regarded as 

negligible due to the fast dynamics of the gas phase (Eskelinen et al., 

2015). 

Figure 8.2 Step input sequence. 
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8.2.2 Description of the simulation environment for the MPC 
framework  

The simulation environment developed in this section is designed in 

MathWorks™ MATLAB®. This software contains a fourth-generation 

programming language, which comprises matrix calculations, execution of 

algorithms, interconnection with other programs, and visualization of 

diverse data, among others. MATLAB is largely used in research and 

academic institutions, as well as in industry, due to its fast processing, ease 

of access, and reliability. 

 

The overview of the simulation environment is shown in Figure 8.3. The 

model presented in Equation (8.22) is used to simulate the actual process 

behavior. The model receives the gas flow rates to the hearths 4 and 6 

from the MPC controllers and the feed rate is input externally as the 

measured disturbance. The temperature profile estimated by the model 

and the gas flow rates to the hearths 4 and 6 are passed to the Kalman 

filter to approximate the current state of the furnace. The linear model is 

utilized in the MPC optimization for the prediction of the furnace 

response. 

 

The optimization problem is solved, by forecasting the states using the 

linear model and computing the optimal gas flows for the hearths 4 and 

6, through the solution of the optimization problem in Equation (8.23): 

Advanced Control 

MPC Optimization 

Linear Model  
Kalman Filter 

Constraints 

Figure 8.3. Simulation environment for the MPC framework. 

Process  
Linear Model 

Feed rate 

Gas flows to 
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min
𝑢𝑚𝑣

𝐽 =∑‖𝑦𝑡
𝑠𝑝 − 𝑦𝑡

𝑐𝑣‖
𝑄
+∑‖∆𝑢𝑡

𝑚𝑣‖𝑅

𝑁𝑐

𝑖=1

𝑁𝑝

𝑖=1

 

{
   𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵1𝑢𝑡

𝑚𝑣 + 𝐵2𝑢𝑡
𝑑

𝑦𝑡 = 𝐶𝑥𝑡 + 𝐷1𝑢𝑡
𝑚𝑣 + 𝐷2𝑢𝑡

𝑑   

𝐹𝐻4 ∈ [137, 270]𝑚𝑜𝑙/𝑚𝑖𝑛 

                            𝐹𝐻6 ∈ [65, 170] 𝑚𝑜𝑙/𝑚𝑖𝑛 

                 ∆𝐹𝐻4, ∆𝐹𝐻6 ∈ [−3.49, 3.49] 𝑚𝑜𝑙/𝑚𝑖𝑛 

(8.23) 

 

where 𝑦𝑡
𝑠𝑝

 is the controlled variable set-point trajectory, 𝑁𝑝 is the 

prediction horizon, 𝑁𝑐 is the control horizon. The prediction horizon was 

chosen such that it ranges past the residence time of the furnace, i.e., 

𝑁𝑝 = 45 minutes. A suitable balance between controller aggression and 

computational effort was obtained by tuning the control horizon to       

𝑁𝑐 = 24 minutes. 𝑢𝑡
𝑚𝑣 = [𝐹𝐻4, 𝐹𝐻6] represents the manipulated variables 

(gas flows to hearths 4 and 6), 𝑦𝑡
𝑐𝑣 = [𝑇𝐻4, 𝑇𝐻6] represents the controlled 

variables (temperatures of hearths 4 and 6), 𝑢𝑡
𝑑 = 𝐹𝑘 is the measured 

input disturbance (feed rate), ∆𝑢𝑡
𝑚𝑣 = [∆𝐹𝐻4, ∆𝐹𝐻6] is the rate of change for 

the manipulated variables. The linear model is represented in the state-

space form to facilitate the implementation of the MPC paradigm. 

Additionally, the values of the process constraints are shown in Equation 

(8.23). 

 

Matrices 𝑄 and 𝑅 in Equation (8.23) represent the weighting matrices 

for the output and input variables respectively. The output weighting 

matrix 𝑄 = 𝑑𝑖𝑎𝑔[𝑞1, 𝑞2] is a diagonal matrix calculated to place greater 

emphasis on the regulation of 𝑇𝐻6 than on 𝑇𝐻4. The reason is that the 

temperature in the hearth 6 has a greater impact on the quality of the 

final product (amount of unwanted mullite) than the temperature in the 

hearth 4. A 20% difference from the setpoint in 𝑇𝐻4 should contribute the 

same error to the cost function as a 10% deviation from the setpoint in 

𝑇𝐻6. The input weighting matrix 𝑅 = 𝑑𝑖𝑎𝑔[𝑟1, 𝑟2] is a diagonal matrix 

calculated to allow identical use of both inputs. A 10% change in half the 

ranges of 𝐹𝐻4 and 𝐹𝐻6 should give an equivalent contribution to the cost 

function. Furthermore, the contribution of 𝑅 to the cost function is scaled 
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to produce a percentage (10%) of the error in 𝐽 compared to 𝑄 (le Roux et 

al., 2016). Therefore:  

𝑞1(0.2𝑇𝐻4𝑆𝑃  )
2
= 𝑞2(0.1𝑇𝐻6𝑆𝑃)

2
= 0.1𝑟1 (

0.1𝐹𝐻4𝑟𝑛𝑔

2
)

2

= 0.1𝑟2 (
0.1𝐹𝐻6𝑟𝑛𝑔

2
)

2

 (8.24) 

 

To guarantee integral action by the controller, the state vector for the 

state-space model in Equation (8.23) is estimated using a Kalman filter 

(Simon, 2006). 

 

After solving the optimization problem, the manipulated variables are 

directed to the process to achieve the desired temperature setpoint. The 

following steps are executed at each sampling time of the simulation 

cycle: 

 

1. Estimate the current state of the process (𝑥). 

2. Solve the MPC optimization problem defined by Equation 

(8.23). 

3. Apply the optimal value of the manipulated variables (𝑢𝑚𝑣) 

obtained from the MPC to the process model. 

4. Simulate the process model for one sampling time. 

8.2.3 Simulation results 

 
This subsection presents a series of simulations to test response of the 

MPC with the MHF linear model. The tests include changes to 

temperature setpoints in the hearths 4 and 6, and variations in capacity 

levels.  The positive and negative changes in the temperature of the 

hearths were 5 °C, and the capacity change was 3.49%. These values are 

within nominal setpoint variations during the normal operation of the 

furnace. 

8.2.3.1 Setpoint changes to the temperatures in the hearths 4 and 6 

Figure 8.4 and Figure 8.5 illustrate the simulation results of the MPC, 

with a temperature (hearth 4) setpoint increase by 5 °C after 3000 

seconds. The initial temperature setpoint values are 990 and 1085 °C for 

the hearth 4 and 6 respectively, and the feed rate was kept at a value of 
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83.33%. The MPC shows excellent performance in maintaining the 

controlled variables near the setpoint values of the temperatures in the 

hearths 4 and 6. It is noticeable that the MPC controller begins to adjust 

the gas flows near simulation time of 1000 seconds due to the ability to 

track the setpoint change that occurs at 3000 seconds.  

 

 

Figure 8.4 Setpoint change (+5°C) to the hearth 4, Controlled Variables. 
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Figure 8.6 and Figure 8.7 depict the simulation results of the MPC, 

when the hearth 4 temperature setpoint was decreased by 5°C after 3000 

seconds. The initial temperature setpoint values were 990 and 1085 °C 

for the hearths 4 and 6 respectively and the feed rate was maintained at 

a value of 83.33%. The MPC exhibits remarkable execution in regulating 

the controlled variables to the setpoint values of the temperatures in the 

hearths 4 and 6. Similarly to the previous case, the MPC controller begins 

to adjust the gas flows anticipating the setpoint that occurs at 3000 

seconds.  

Figure 8.5 Setpoint change (+5°C) to the hearth 4, Feed rate and gas flows. 
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Figure 8.6 Setpoint change (-5 °C) to the hearth 4, Controlled Variables. 

Figure 8.7 Setpoint change (-5 °C) to the hearth 4, Feed rate and gas flows. 
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The next case, presented in Figure 8.8 and Figure 8.9, shows the 

increase in the hearth 6 temperature setpoint by 5 °C after 3000 seconds. 

The simulation results of the MPC comprise the initial temperature 

setpoint values of 990 and 1085 °C for the hearth 4 and 6 respectively and 

the feed rate was kept at a value of 83.33%. The MPC displays excellent 

control in maintaining the variables to the setpoint values of the 

temperatures in the hearths 4 and 6. As in previous cases, the MPC 

controller anticipates the setpoint change that occurs at 3000 seconds 

and adjusts the gas flows accordingly.  

 

 

Figure 8.8 Setpoint change (+5 °C) to the hearth 6, Controlled Variables. 
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Figure 8.10 and Figure 8.11 show the simulation results of the MPC, 

when the hearth 6 temperature setpoint was decreased by 5 °C after 3000 

seconds. The feed rate was maintained at a value of 83.33% and the initial 

temperature setpoint values were 990 and 1085 °C for the hearth 4 and 6 

respectively. The MPC displays significant results in regulating the 

controlled variables to the setpoint values of the temperatures in the 

hearths 4 and 6. The MPC controller begins to adjust the gas flows 

anticipating the setpoint that occurs at 3000 seconds.  

Figure 8.9 Setpoint change (+5 °C) to the hearth 6, Feed rate and gas flows. 
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Figure 8.10 Setpoint change (-5 °C) to the hearth 6, Controlled Variables. 

Figure 8.11 Setpoint change (-5 °C) to the hearth 6, Feed rate and gas flows. 
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8.2.3.2 Effect of the capacity variation on the control 

Figure 8.12 and Figure 8.13 display the effect, on the temperature 

control, of the feed rate increase by 4.16% at 2000 seconds. The effect of 

the feed rate increase on the controlled temperatures is minimized fairly 

well by the MPC strategy. Even though the feed rate change is an 

unexpected event, the MPC performs remarkably well in regulating the 

temperatures. A similar result is observed in Figure 8.14 and Figure 8.15, 

which present the case when the feed rate is decreased by 4.16% at 2000 

seconds. 

 

 

 

Figure 8.12 Feed rate increase (+4.16%), Controlled Variables. 
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Figure 8.13 Feed rate increase (+4.16%), Feed rate and gas flows. 

Figure 8.14 Feed rate decrease (-4.16%), Controlled Variables. 
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8.2.4 Comparison of MPC vs PI control of the furnace 
temperature 

This subsection presents a comparison between the MPC based on the 

linear model (Equation (8.22)) of the MHF and a PI control scheme for 

the same model to control the furnace temperatures in the hearths 4 and 

6. The PI controller was designed and tuned using the Ziegler-Nichols 

method (Ziegler and Nichols, 1993). The Ziegler-Nichols method offers a 

simple and classical tuning approach for the comparison of the control 

schemes; other tuning methods could be considered in future research. 

The control strategies are compared to each other on the basis of the 

mean squared error (Equation (5.12)) around the setpoints and measured 

controlled variables. Figure 8.16 illustrates the PI control scheme 

designed for the MHF. 

 

Figure 8.15 Feed rate decrease (-4.16%), Feed rate and gas flows. 
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Figure 8.17 and Figure 8.18 display the comparison between the MPC 

and PI strategies for a setpoint increase of 5 °C in the hearth 4 at 3000 

seconds. The initial temperatures of the hearths 4 and 6 are 990 and  

1085 °C respectively. The PI control presents stable control as it regulates 

fairly well the temperatures of the hearths 4 and 6. The MPC strategy also 

presents good temperature regulation but, as expected, the MPC 

anticipates the change in the temperature setpoint and adjust the gas 

flows accordingly. Due to the absence of a model in the PI scheme, the 

control presents interactions on the temperature control in the hearth 6, 

as seen in the bottom of Figure 8.17 between 3000 and 4000 seconds. 

This phenomenon is observed more clearly in Figure 8.18 where the gas 

flow of the hearth 6 is practically unaltered, provoking the interaction in 

the temperatures. Since MPC features a model of the process, the 

interactions are considered when regulating the temperatures and thus 

minimizing its effects. 

PI Temperature 
Control 

hearths 4 & 6 
Setpoints 

Process Model 

Feed rate Temperature 
profile  

Figure 8.16 PI control scheme for the MHF. 
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Figure 8.17 Comparison of MPC vs PI control, Controlled Variables. 

Figure 8.18 Comparison of MPC vs PI control, Feed rate and gas flows. 
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Table 8.1 shows the MSE performance comparison between the MPC 

and PI control strategies for an increase in the setpoint temperature of 

the hearth 4 by 5 °C at 3000 seconds. Overall, the MPC displays superior 

performance, as it dynamically minimizes the error between the 

controlled variable and the setpoint. 

 

Table 8.1 Performance comparison of the MPC vs PI scheme. 

Control  
Strategy 

MSE 
Hearth 4 temperature 

MSE 
Hearth 6 temperature 

MPC 0.9795 0.0730 
PI 1.3855 0.1214 

8.3 Future Research: NMPC and EMPC strategies for the MHF 
control 

This subsection presents the schemes of NMPC and EMPC strategies 

for the MHF. The aim is to design control strategies that automate the 

kaolin calcination process, considering the mineralogy information from 

the soft sensors as constraints, while dynamically maximizing capacity, 

minimizing energy consumption, and maintaining quality. First, the 

simplified nonlinear model of the MHF is described. Next, the definition 

of Nonlinear MPC is given, followed by, the design of the Nonlinear MPC 

strategy for the MHF. Finally, the concept of Economic MPC is 

introduced and the design of the EMPC for the MHF presented. 

8.3.1 Simplified model of the MHF 

 

For future implementation of a nonlinear model of the furnace to 

NMPC or EMPC, a simplified model based on the mechanistic model 

described in Chapter 4  was developed. A simplification of the 

mechanistic model is constructed based on its dynamic behavior and its 

nonlinearities separately. Separating the model into a nonlinear static 

block and a linear dynamic block, makes it is possible to build a model 

that preserves the performance of the original while simplifying the 

calculations. A Hammerstein model comprises the linear dynamic block 

being preceded by a static input nonlinearity while the opposite case, 
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where the static nonlinear block is placed after a linear dynamic block, 

the model is defined as a Wiener model (Zhu, 2001).  

 

The simplified model is formulated as a Hammerstein-Wiener model 

(HWM). The HWM divides the dynamic process in blocks that comprise 

the dynamics in linear form and the nonlinearities in static for. The linear 

block, which holds the dynamics of the process, is preceded and followed 

by a static nonlinear block. 

 

Figure 8.19 displays the structure of the HWM which represents the 

dynamic process by means of input and output static nonlinear blocks 

surrounding the dynamic linear block. As discussed in Eskelinen et al., 

(2015), the dynamics of the MHF include a very fast component, which is 

related to the gas phase, and a slower component, linked to the solid 

state. For the NMPC/EMPC design the temperature of the solid must be 

defined dynamically while the gas temperature profile may be modeled 

with algebraic equations.  

 

The simplified model is defined as the following Hammerstein-Wiener 

nonlinear dynamic model (Gómez Fuentes and Jämsä-Jounela, 2018b): 

 𝑥𝑡+1 = 𝛼𝑥𝑡 + (1 − 𝛼)𝐹(𝑢𝑡)
𝑦𝑡 = 𝐺(𝑢𝑡, 𝑥𝑡)                

 (8.25) 

Where 𝑢𝑡 represents the input variables to the process (kaolin feed, gas 

flows to the hearths 4 and 6), 𝑥𝑡 denotes the solid temperature in each 

volume of the furnace and the interior wall temperatures in the hearths, 

𝛼 is a parameter characteristic of the HWM, which is found through 

identification using the identification toolbox included in MATLAB®. 

𝐹(𝑢𝑡) and 𝐺(𝑢𝑡, 𝑥𝑡) are static nonlinear functions based on the 

mechanistic model response and energy balances respectively. 

 

A look-up table has been constructed, by simulating the mechanistic 

model with various process inputs, to define the first function 𝐹(𝑢𝑡), 

Static  
Nonlinear 

Linear  
Dynamic 

Static  
Nonlinear 

𝑢𝑡  𝑤𝑡  𝑥𝑡  𝑦𝑡  

𝑢𝑡  

Figure 8.19. Structure of Hammerstein-Wiener model (Zhu, 2001). 
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which describes the steady-state values of the process. The values found 

are interpolated as follows:  

where 𝑏𝑖,𝑗,𝑘 represents the values from the look-up table, and ℎ𝑖
𝑥, ℎ𝑗

𝑦
 and 

ℎ𝑘
𝑧  denotes the piecewise linear basis functions that have been used for 

the interpolation. 

 

The second function 𝐺(𝑢𝑡, 𝑥𝑡) describes the steady-state values of the 

gas temperature near the walls in the hearths (the temperature profile), 

which was implemented by calculating the energy balance for the gas 

phase.  

8.3.2 Setup of the MHF simulation environment for 
NMPC/EMPC implementation 

 

The overview of the simulation environment for the NMPC/EMPC 

framework is illustrated in Figure 8.3. The mechanistic model defined in 

Chapter 4 functions as the real process. The mechanistic model obtains 

the feed rate from the NMPC/EMPC and the gas flow rates to the hearths 

4 and 6 from the basic temperature PI controller. The gas flow rates to 

the hearths 4 and 6, and the temperature profile estimated by the model 

are sent to the state estimator, which calculates the current state of the 

furnace. Finally, the simplified model is used as the prediction model in 

the MPC/EMPC optimization.  

 

 

 
𝐹(𝑢𝑡)  =∑∑∑𝑏𝑖,𝑗,𝑘 ℎ𝑖

𝑥(𝐹𝐾)ℎ𝑗
𝑦(𝐹𝐻4)ℎ𝑘

𝑧(𝐹𝐻6)

5

𝑘=1

5

𝑗=1

5

𝑖=1

  (8.26) 
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8.3.3 Nonlinear Model Predictive Control 

 
In this subsection set theory notation is applied to define the Nonlinear 

MPC. This notation is widely used in the topic of advanced control 

strategies. 

 

Considering the discrete nonlinear process of the form: 

 𝑥𝑡+1 = 𝑓(𝑥𝑡, 𝑢𝑡), 𝑥0 = 𝑥(0) (8.27) 

where 𝑓: 𝕏 × 𝕌 → ℝ𝑛 , 𝑥𝑡 ∈ 𝕏 ⊆ ℝ
𝑛, and 𝑢𝑡 ∈ 𝕌 ⊆ ℝ

𝑚 are the process 

state and control input respectively, for time 𝑡 ∈ 𝕀≥0 = [0,1,2… ], and 

initial condition 𝑥0 ∈ 𝕏. The constraints for the process may be 

formulated as:  

 (𝑥𝑡, 𝑢𝑡) ∈ ℤ ⊆ 𝕏 × 𝕌 (8.28) 

For all 𝑡 ∈ 𝕀≥0; represent by ℤ𝕏 the projection of ℤ on 𝕏, in other words:  

ℤ𝕏 ≔ {𝑥 ∈ 𝕏: ∃𝑢 ∈ 𝕌 s. t. (𝑥, 𝑢) ∈ 𝑍}. Then, 𝑆 is considered as the set of 

all achievable state/input equilibrium sets of Equation (8.27): 

 𝑆 ≔ {(𝑥, 𝑢) ∈ ℤ: 𝑥 = 𝑓(𝑥, 𝑢)},   (8.29) 

𝑆 is considered to be non-empty. The control for the process in Equation 

(8.27) must be stabilized at a setpoint 𝑥∗, which is a point of the process, 

Advanced Control 

Basic Temperature 
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Optimization 

State estimator 

Constraints 

Figure 8.20. Simulation setup of NMPC/EMPC for the MHF. 
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where it remains in equilibrium, and the matching control input is 𝑢∗, 

this means that (𝑥∗, 𝑢∗) ∈ 𝑆. The next assumptions are considered: the set 

𝕌 is compact, the function 𝑓 is continuous, and the set ℤ ⊆ 𝕏 × 𝕌 is 

closed. 

 

Next, the optimization problem is resolved, to define the receding 

horizon control law at every instant 𝑡 ∈ 𝕀≥0, while the state 𝑥𝑡 is 

measured. 

 min
𝑢𝑡
𝐽𝑁(𝑥𝑡, 𝑢𝑡) 

𝑥̂(𝑡 + 1|𝑡) =  𝑓(𝑥𝑡, 𝑢𝑡), 𝑡 ∈ 𝕀[0,𝑁−1] 

𝑥0 = 𝑥(0) 
(𝑥𝑡, 𝑢𝑡) ∈ ℤ,     𝑡 ∈ 𝕀[0,𝑁−1] 

𝑥𝑁 = 𝑥(𝑁) ∈ 𝕏
𝑓 

(8.30) 

where: 

 
𝐽𝑁(𝑥𝑡, 𝑢𝑡) ≔ ∑ ℓ(𝑥𝑡, 𝑢𝑡) + 𝑉

𝑓(𝑥𝑁)

𝑁−1

𝑖=0

 (8.31) 

The closed terminal region is identified as 𝕏𝑓 ⊆ 𝕏, the stage cost 

function is denoted as ℓ: 𝕏 × 𝕌 → ℝ, and the terminal cost function is 

symbolized as 𝑉𝑓: 𝕏𝑓 → ℝ. These functions are considered to be 

continuous.  

 

Defining the values that minimize the cost function: 

 𝑢0
→0
≔ [𝑢0(0|𝑡),… , 𝑢0(𝑁 − 1|𝑡)] (8.32) 

with the matching state sequence:   

 𝑥0
→0
≔ [𝑥0(0|𝑡), … , 𝑥0(𝑁 − 1|𝑡)] (8.33) 

and the matching optimal value function: 

 𝐽𝑁
0(𝑥𝑡) ≔ 𝐽𝑁 (𝑥𝑡 , 𝑢

0

→0
) (8.34) 

Now the MPC may be resolved with the following algorithm: 

 

1- Consider the process of Equation (8.27) 

2- Estimate the state 𝑥𝑡 at each time 𝑡 ∈ 𝕀≥0 

3- Resolve problem of Equation (8.30) 

4- Implement control input 𝑢𝑡 ≔ 𝑢0(0|𝑡) 

 

The outcomes of the algorithm in the closed loop process are as follows: 
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 𝑥𝑡+1 = 𝑓(𝑥𝑡 , 𝑢
0(0|𝑡)),    𝑥0 = 𝑥(0)   (8.35) 

With the purpose of ensuring that  𝑥∗ is a steady equilibrium point for 

the process in Equation (8.35), a certain condition should be forced on 

the stage and terminal cost functions (ℓ, 𝑉𝑓), and terminal region 𝕏𝑓 

(Rawlings and Mayne, 2009). 

 

The stage cost function ℓ fulfills ℓ(𝑥∗, 𝑢∗) = 0, and there is a function 

𝛼1 ∈ 𝒦∞ so that ℓ(𝑥𝑡, 𝑢𝑡) ≥ 𝛼1(|𝑥 − 𝑥
∗|) for all (𝑥𝑡, 𝑢𝑡) ∈ ℤ, while the 

terminal cost function 𝑉𝑓 fulfills 𝑉𝑓(𝑥∗) = 0 and 𝑉𝑓(𝑥) ≥ 0,     ∀𝑥 ∈ 𝕏𝑓.  

 

The terminal region 𝕏𝑓 ⊆ 𝕏 is closed and 𝑥∗ ∈ 𝕏𝑓. Furthermore, there 

is a local secondary control law so that 𝑢𝑡 = 𝜅
𝑓(𝑥) and for all 𝑥 ∈ 𝕏𝑓the 

following is fulfilled: 

 

i) (𝑥, 𝜅𝑓(𝑥)) ∈ ℤ 

ii) 𝑓(𝑥, 𝜅𝑓(𝑥)) ∈ 𝕏𝑓 

iii) 𝑉𝑓(𝑓(𝑥, 𝜅𝑓(𝑥))) − 𝑉𝑓(𝑥) ≤ − ℓ(𝑥, 𝜅𝑓(𝑥)) +  ℓ(𝑥∗, 𝑢∗) 

 

The previous considerations indicate that when the local auxiliary 

controller is applied to the process in Equation (8.27), (i) input and state 

constraints are satisfied inside the terminal region and (ii) the terminal 

region is constant. Condition (iii) indicates that 𝑉𝑓 performs as a 

Lyapunov function incorporated into the terminal region (for this case 𝑉𝑓 

is nonnegative with respect to 𝑥∗). These considerations are assumed to 

be standard for stabilizing in MPC with a terminal cost/ terminal region 

formulation (Rawlings and Mayne, 2009).  

 

Defining  𝕏𝑁 as the set of all states 𝑥 ∈ 𝕏, so that the process in Equation 

(8.27), has a solution. Next, assuming that all considerations hold, then 

the process is feasible for all 𝑡 ∈ 𝕀≥0. In addition, for the closed loop 

process, the input constraints and the pointwise-in-time state are fulfilled 

for all 𝑡 ∈ 𝕀≥0, and 𝑥∗ is a balance point asymptotically stable with region 

of attraction 𝕏𝑁 (Rawlings and Mayne, 2009). 
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8.3.3.1 NMPC framework for the MHF 

The designed NMPC control focuses on optimizing the temperature 

profile in the furnace through the determination of the optimal feed rate 

and providing the setpoints to the basic temperature controllers in the 

hearths 4 and 6, as shown in Figure 8.21. The main feedbacks from the 

process to the controller are the gas consumption in the hearths 4 and 6 

and the gas temperature measured in other hearths. 
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The optimization problem is solved, by predicting the states using the 

simplified model and obtaining the optimal temperature setpoints. The 

cost function includes terms for minimizing the tracking error, rate of 

change of the manipulated variables as well as minimizing the use of 

energy. Additionally, the cost function features a term for maximizing the 

capacity of the furnace. The optimization problem is presented in 

Equation (8.36): 

 

 

 

 

Figure 8.21 NMPC framework for the MHF. 
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min
𝑢𝑚𝑣

𝐽 =∑‖𝑦𝑡
𝑠𝑝
− 𝑦𝑡

𝑐𝑣‖
𝑄
+∑‖∆𝑢𝑡

𝑚𝑣‖𝑅

𝑁𝑐

𝑖=1

𝑁𝑝

𝑖=1

+∑‖𝑢𝑡
𝑚𝑣‖𝑉

𝑁𝑐

𝑖=1

−∑‖𝐹𝐾‖𝑊

𝑁𝑐

𝑖=1

 

 

  {
 𝑥𝑡+1 = 𝛼𝑥𝑡 + (1 − 𝛼)𝐹(𝑢𝑡)
𝑦𝑡 = 𝐺(𝑢𝑡, 𝑥𝑡)                

 

𝐹𝐾 ∈ [79.17,100]% 
         𝐹𝐻4 ∈ [137, 270]𝑚𝑜𝑙/𝑚𝑖𝑛 
       𝐹𝐻6 ∈ [65, 170] 𝑚𝑜𝑙/𝑚𝑖𝑛 

                                         ∆𝐹𝐾 ∈ [−4.16, 4.16]%  
                            ∆𝐹𝐻4, ∆𝐹𝐻6 ∈ [−3.49, 3.49]𝑚𝑜𝑙/𝑚𝑖𝑛 
             𝑚(𝐹𝐻4, 𝐹𝐻6, 𝑇𝐻1, 𝐹) ≤  4 𝑤𝑡.%, 
    𝑆(𝐹𝐻4, 𝐹𝐻6, 𝑇𝐻4, 𝑇𝐻6, 𝐹𝐾) ≤ 0.50 𝑤𝑡.%, 
                                      T𝐻6 ≥ 𝑇𝐻6

𝑚𝑖𝑛(𝐹𝐾, 𝑟), 
                                       𝑇𝐻4

𝑚𝑖𝑛 < 𝑇𝐻4 < 𝑇𝐻4
𝑚𝑎𝑥, 

                                         𝑉𝑖𝑜 ≥ 𝑉𝑖𝑜∗ 

(8.36) 

where 𝑦𝑡
𝑠𝑝 is the controlled variable set-point trajectory, 𝑁𝑝 is the 

prediction horizon, 𝑁𝑐 is the control horizon. 𝑢𝑡
𝑚𝑣 = [𝐹𝐻4, 𝐹𝐻6] represents 

the manipulated variables (gas flows to hearths 4 and 6), 𝑦𝑡
𝑐𝑣 = [𝑇𝐻4, 𝑇𝐻6] 

represents the controlled variables, 𝐹𝑘 is the feed rate, [∆𝐹𝐾 , ∆𝐹𝐻4, ∆𝐹𝐻6] is 

the rate of change for the manipulated variables. The simplified model 

(Section 8.3.1) is represented in the state-space form to facilitate the 

implementation of the NMPC paradigm. 𝑟 denotes the current value of 

the reaction soft sensor, 𝑇𝐻1, 𝑇𝐻4 and 𝑇𝐻6 are the temperatures in the 

hearths 1, 4, and 6, respectively and 𝑚 is the mullite content of the 

product and its threshold. 𝑆 represents the soluble alumina content and 

its threshold (if applicable). 𝑉𝑖𝑜 symbolizes the brightness (measured as 

the percentage of light reflected in the violet spectrum) and its threshold. 

Matrices 𝑄, 𝑅, 𝑉 and 𝑊 in Equation (8.36) represent the weighting 

matrices for the output and input variables respectively. Finally, the 

values of the process constraints are shown in Equation (8.36). 

8.3.4 Economic Model Predictive Control  

 

In the past 30 years MPC has become more widespread in industry and 

academic research. The coupling of MPC with Real-Time Optimization 

(RTO) ,as depicted on the left side of Figure 8.22, has become a 

traditional control method in industries (Ellis and Christofides, 2013b). 

The RTO, which calculates the economically optimal setpoint for the 

process, is usually obtained in a period of hours at a specific steady-state 
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(Backx et al., 2000). The setpoint is directed to the second layer, in this 

example the MPC, and the controller regulates the process to the setpoint 

given by the RTO. The disadvantage of this two-layer design is that the 

RTO concentrates on the steady-state optimization, which may not be the 

economically best strategy. This is due to the possible existence of an 

unreachable setpoint given by the economic optimization (Rawlings et 

al., 2008).  

 

It was revealed that economic optimization may be significantly 

enhanced if the cost function were to be combined directly into the MPC 

(Rawlings et al., 2012; Rawlings and Amrit, 2009). Economic Model 

Predictive Control is a modification of MPC, which utilizes a general cost 

function to dynamically optimize the economic objective of the process 

(Heidarinejad et al., 2012). In this situation, no reference or target 

steady-state is given to the EMPC, and the objective function is not 

compulsorily positive definite as usually established for the standard 

MPC (Ellis and Christofides, 2013a). The control framework based on 

EMPC is depicted on the right side of Figure 8.22. 

 

 

Presently, EMPC has now become a widely accepted method with an 

extended range of implementations (Angeli et al., 2011). Analogous to the 

MPC optimization, the EMPC objective is formulated as follows: 
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Figure 8.22 Differences between MPC with RTO and EMPC (Ellis et al., 2014). 
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𝐽𝑁(𝑥𝑡, 𝑢𝑡) ≔ ∑ ℓ(𝑥𝑡, 𝑢𝑡)

𝑁−1

𝑖=0

 (8.37) 

where the stage cost function ℓ(𝑥𝑡, 𝑢𝑡) is expressed as an arbitrary cost 

function that approximates the process economics (Amrit et al., 2013). 

Similarly to traditional MPC, the stage cost function is normally convex 

for linear systems and commonly non-convex for nonlinear systems. 

 

Contrarily to traditional MPC, the stage cost function ℓ(𝑥𝑡, 𝑢𝑡) from 

Equation (8.37) may not reach its minimum at a specific equilibrium 

state. Specifically, the optimal steady-state stage cost for MPC is not 

essentially smaller contrasted with the stage cost in EMPC. Therefore, 

limit cycles may occur in EMPC because they are economically 

advantageous, which can only arise for a nonconvex economic objective 

or a nonlinear process dynamic. Therefore, it is beneficial to achieve the 

asymptotic average limit presented as follows: 

 
lim sup
𝑇→+∞

∑ ℓ(𝑥𝑡, 𝑢𝑡)
𝑇
𝑡=1

𝑇
≤ ℓ(𝑥𝑆, 𝑢𝑆) (8.38) 

In order to guarantee the normal EMPC performance, the Equation 

(8.32) is used as the control series for each time step and computed for 

MPC, as stated before. Then, it is considered the admissible set ℤ𝑁 of 

(𝑥0, 𝑢
→0
) sets that fulfills the constraints presented as follows:  

 

ℤ𝑁 ≔ {

(𝑥0, 𝑢
→0
) |∃𝑥1, … , 𝑥𝑁: 𝑥𝑡+1 = 𝑓(𝑥𝑡, 𝑢𝑡),

(𝑥𝑡, 𝑢𝑡) ∈ ℤ, 𝑡 ∈ 𝕀[1,𝑁−1]
𝑥0 = 𝑥(0), 𝑥𝑠 = 𝑥𝑁

}, (8.39) 

and its projection 𝒳𝑁 on 𝕏 that is specified as: 

 𝒳𝑁 ≔ {𝑥 ∈ 𝕏 | ∃ 𝑢
→0
: (𝑥, 𝑢

→0
) ∈ ℤ𝑁}. (8.40) 

According to Angeli et al., (2012), for every 𝑥 ∈ 𝒳𝑁, there is at least one 

control series that guides the state to 𝑥𝑆 at time 𝑁 without leaving 𝒳𝑁 and 

the closed-loop process in Equation (8.27) with 𝑢0
→0

 includes an asymptotic 

average performance i.e., as a minimum, as adequate as the best 

acceptable steady-state.  
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Even with the asymptotic average performance being assured, the 

EMPC with the objective described by Equation (8.37) does not assure 

stability in a closed loop. In traditional MPC, the optimal cost of 𝐽𝑁(𝑥𝑡), 

defined before as 𝐽𝑁
0(𝑥𝑡) in Equation (8.34) is utilized as a Lyapunov 

function for the closed loop process, which is invariably decreasing for 

various closed loop solutions, i.e., 𝐽𝑁
0(𝑥𝑡+1) ≤ 𝐽𝑁

0(𝑥𝑡). However, for EMPC, 

this situation does not automatically occur due to the possible limit 

cycles, even if the process is stable. The explanation is that for the case of 

non-convex cost functions and nonlinear processes, it is not certain that 

𝑥𝑆 is the optimal steady-state.  

 

However, convergence to a steady-state can be guaranteed for an EMPC 

with the terminal constraint based on a Lyapunov function, if the strong 

duality assumption is fulfilled (Diehl et al., 2011). This means that the 

following solution 𝑥𝑠, 𝑢𝑠 of the steady-state optimization problem  

 𝑚𝑖𝑛
𝑥,𝑢

𝑙(𝑥, 𝑢)

𝑥 = 𝑓(𝑥, 𝑢)
𝑔(𝑥, 𝑢) ≤ 0

 (8.41) 

is the unique minimizer of the expression presented as follows, for some 

Lagrange multiplier 𝜆𝑠: 

 𝑚𝑖𝑛
𝑥,𝑢

𝑙(𝑥, 𝑢) + (𝑥 − 𝑓(𝑥, 𝑢))
′
𝜆𝑠. (8.42) 

Then, the strong duality condition in Equations (8.41), (8.42) was 

softened to the dissipativity assumption (Angeli et al., 2012). 

 

The process of Equation (8.27) is considered dissipative with respect to 

the supply rate 𝑠(𝑥𝑡, 𝑢𝑡): 𝕏 × 𝕌 → ℝ, If a there is a function 𝜆: 𝕏 → ℝ such 

that: 

 𝜆(𝑓(𝑥𝑡, 𝑢𝑡)) − 𝜆(𝑥𝑡) ≤ 𝑠(𝑥𝑡, 𝑢𝑡), ∀(𝑥𝑡, 𝑢𝑡) ∈ ℤ (8.43) 

In addition, if there is a positive definite function 𝜌: 𝕏 → ℝ≥0 such that: 

 𝜆(𝑓(𝑥𝑡, 𝑢𝑡)) − 𝜆(𝑥𝑡) ≤  −𝜌(𝑥𝑡) + 𝑠(𝑥𝑡, 𝑢𝑡),  (8.44) 

then the process is strictly dissipative (Angeli et al., 2012). 
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There are numerous expressions to reach closed-loop stability if the 

dissipativity assumptions are satisfied, together with the terminal 

constraints and terminal costs.  

 

For the economic problem, 𝑥𝑆 is an asymptotically stable state with 

attraction region 𝒳𝑁, if it is strictly dissipative for the supply rate in 

Equations (8.43), (8.44). This can be demonstrated by formulating a 

secondary augmented problem with a rotated stage cost, then finding 

that the feasible sets, 𝒳𝑁, coincide. Finally, this shows that the objective 

functions of the original and rotated formulations are altered only by a 

constant, deducing that both solutions are identical (Angeli et al., 2012). 

 

Closed-loop stability could also be reachable by using an adequate 

terminal cost with an inequality terminal constraint, as opposed to an 

equality constraint. This proof also comprises a rotated stage cost, which 

is assumed as a Lyapunov function, and considering the strict 

dissipativity property (Angeli et al., 2012). 

 

8.3.4.1 EMPC framework for the MHF 

The designed EMPC control is aimed at finding the optimal economic 

performance of the furnace through dynamically maximizing the profit 

while considering the process constraints of the MHF. The EMPC 

provides the feed rate and defines the setpoints to the basic temperature 

controllers in the hearths 4 and 6, as shown in Figure 8.23. The main 

feedbacks from the process to the controller are the gas consumption in 

the hearths 4 and 6 and the gas temperature measured in other hearths. 
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The economic objective of the process is to maximize production of the 

calcined kaolin while minimizing energy consumption. The flow rate of 

the calcined kaolin (𝐹𝐶), containing the product of interest, is obtained 

using the mass balance presented as follows: 

 𝐹𝐶 = (1 − 𝑐𝐻2𝑂) ∗ (1 − 𝑐𝑓𝑚) ∗ 𝐹𝐾 (8.45) 

From Eskelinen (2014), it is known that when the kaolin goes into the 

process, it expels approximately 14% of its weight via evaporation and 

dehydroxylation (𝑐𝐻2𝑂), as described in Equations (2.1) and (2.2). In 

addition, the calcined product holds nearly 0.5% of free moisture (𝑐𝑓𝑚) 

when it exits the process.  

 

The second interest, as mentioned earlier, is to minimize the energy use 

of the furnace. In the multiple hearth furnace, the main energy source is 

methane gas, which is combusted to rise temperature, and to achieve the 

required levels to initiate the various chemical reactions that occur inside 

the furnace. 

 

The methane entering the process is combusted in the hearths 4 and 6, 

then the respective gas flows for the hearths 4 and 6 are 𝐹𝐻4 and 𝐹𝐻6 are 

used to obtain total gas flow entering the process:  

 𝐹𝑔 = 𝐹𝐻4 + 𝐹𝐻6 (8.46) 

Figure 8.23 EMPC framework for the MHF. 
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To formulate the cost function, it is important to consider the prices of 

the variables related to the process economics. Hence, the cost function 

is defined as an equation that includes the main economic interests of the 

process (profit). 

 

 
𝐽𝑀𝐻𝐹 =∑𝑝𝐶𝐹𝐶 − 𝑝𝑔𝐹𝑔

𝑁

𝑡=0

 (8.47) 

Where 𝑝𝐶 and 𝑝𝑔 are the prices of calcined kaolin and methane gas 

respectively. 𝐽𝑀𝐻𝐹  represents the Economic Performance Index of the 

MHF for a particular interval of time [0, 𝑁]. 

 

The solution to the optimization problem is found by forecasting the 

process states via the simplified model and calculating the optimal 

temperature setpoints. The optimization problem comprises constraints 

for minimizing the tracking errors and the rate of change of the 

manipulated variables. In addition, the optimization formulation 

includes a term for maximizing the capacity of the furnace. The 

optimization problem is described in Equation (8.48): 

max
𝑢𝑡
𝐽𝑀𝐻𝐹 =∑𝑝𝐶𝐹𝐶 − 𝑝𝑔𝐹𝑔

𝑁

𝑡=0

 

 

   {
 𝑥𝑡+1 = 𝛼𝑥𝑡 + (1 − 𝛼)𝐹(𝑢𝑡)
𝑦𝑡 = 𝐺(𝑢𝑡, 𝑥𝑡)                

 

 𝐹𝐾 ∈ [79.17,100]% 
          𝐹𝐻4 ∈ [137, 270]𝑚𝑜𝑙/𝑚𝑖𝑛 
         𝐹𝐻6 ∈ [65, 170] 𝑚𝑜𝑙/𝑚𝑖𝑛 

 ∆𝐹𝐾 ∈ [−4.16, 4.16]% 
∆𝐹𝐻4, ∆𝐹𝐻6 ∈ [−3.49, 3.49]𝑚𝑜𝑙/𝑚𝑖𝑛 

             𝑚(𝐹𝐻4, 𝐹𝐻6, 𝑇𝐻1, 𝐹) ≤  4 𝑤𝑡.%, 
                 𝑆(𝐹𝐻4, 𝐹𝐻6, 𝑟, 𝐹𝐾) ≤ 0.50 𝑤𝑡.%, 
                                          T𝐻6 ≥ 𝑇𝐻6

𝑚𝑖𝑛(𝐹𝐾, 𝑟), 
                                       𝑇𝐻4

𝑚𝑖𝑛 < 𝑇𝐻4 < 𝑇𝐻4
𝑚𝑎𝑥, 

                                          𝑉𝑖𝑜 ≥ 𝑉𝑖𝑜∗ 

(8.48) 

where 𝑢𝑡 = [𝐹𝐾 , 𝐹𝐻4, 𝐹𝐻6] represents the manipulated variables (feed rate 

and gas flows to hearths 4 and 6),  [∆𝐹𝐾, ∆𝐹𝐻4, ∆𝐹𝐻6] is the rate of change 

for the manipulated variables. The simplified model (Section 8.3.1) is 

represented in the state-space form to facilitate the implementation of 

the EMPC paradigm. 𝑟 denotes the current value of the reaction soft 
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sensor, 𝑇𝐻1, 𝑇𝐻4 and 𝑇𝐻6 are the temperatures in the hearths 1, 4, and 6, 

respectively and 𝑚 is the mullite content of the product and its threshold. 

𝑆 represents the soluble alumina content and its threshold (if applicable). 

𝑉𝑖𝑜 symbolizes the brightness and its threshold. Finally, the values of the 

process constraints are shown in Equation (8.48). 

Summary 

The development and simulation details of the linear MPC strategy for 

the MHF have been presented in this chapter. The MPC strategy has 

shown superior results compared with the PI-based control scheme for 

the temperature control of the furnace. An outline of future work to 

implement Nonlinear MPC and Economic MPC into the MHF has been 

presented in the final part of this chapter. The following chapter will 

outline the final conclusions obtained in this thesis. 
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9. Conclusions 

 

This thesis focused on the design of a mineralogy-driven control 

strategy for the industrial MHF in kaolin calcination aiming to maximize 

the capacity and minimize energy consumption while maintaining the 

quality of the product. The control strategy was enhanced with the design 

of the mullite content (for capacity maximization), soluble alumina (for 

quality control), and reaction rate (for energy use minimization) soft 

sensors. The strategy was implemented for the mullite and reaction rate 

soft sensors, and then tested in the simulation environment based on the 

industrial data. Additionally, a testing and data collection campaign were 

planned and performed at the factory. The impact of the strategy results 

on the MHF process operation was analyzed and discussed. Finally, The 

MPC framework for the MHF in kaolin calcination was designed, 

implemented and tested in the simulation environment and further 

developments were outlined. 

 

The analysis of the MHF dynamic behavior offered a deeper 

understanding about the operating conditions and physicochemical 

phenomena taking place in the MHF. First, the SOM method was used to 

determine the optimal temperature setpoints of the MHF based on the 

key process and mineralogy variables of the feed material and product. 

The SOM proved to be an excellent tool, which facilitated the recognition 

of the different calcined kaolin products and aided in the construction of 

look-up tables for the MHF optimal temperature setpoints. Next, 

analyzing the process data allowed to identify occurrences when the 

“spinel phase” shifted to the top part of the furnace (hearth 4 and 5). The 

relocation of the reaction affected the final product quality due to 
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unnecessary extra heat given to the furnace. Based on this analysis, a first 

principle “spinel phase” reaction rate soft sensor was designed to 

determine the progress of the reaction in the top part of the furnace with 

the aim of maximizing the energy savings. Then, it was determined that 

mullite content in the product can be defined as an indirect indicator of 

the quality of the final product and that online mullite content data could 

be used for capacity maximization. So, a mullite content soft sensor was 

developed based on first principles and next based on artificial 

intelligence. The estimated mullite content results were highly accurate 

with respect to the laboratory results. Additional mullite content data 

may prove valuable to improve the accuracy of the soft sensors. Next, the 

soluble alumina soft sensor is recognized as the standard indicator in the 

industry for the quality control of certain types of calcined kaolin. A soft 

sensor based on artificial intelligence was devised to estimate the soluble 

alumina content in the product. The results were highly satisfactory and 

could be improved with the inclusion of additional soluble alumina 

laboratory data. 

 

The design of the enhanced control strategy presented in this research 

included 3 levels: optimizing, stabilizing and basic. Each level focused on 

a specific aspect to improve the performance of the furnace. The 

optimizing control featured the constructed look-up tables, which 

provide the initial temperature setpoints for the MHF based on the 

mineralogy information given by the feed material, and the mullite 

content soft sensor, which sets the constraints to maximize the capacity. 

Additionally, the soluble alumina soft sensor sets the constraints to 

maintain the quality of the product. The stabilizing level featured the 

integration of the reaction rate soft sensors and a feedforward controller 

to minimize the energy consumption of the MHF by preventing over 

calcination of the product. Finally, the basic level featured a mean 

temperature control to reduce the effects of the BtoB interaction 

occurring on the hearth 4. 

 

The simulation environment designed for testing the performance of 

the enhanced control strategy included the dynamic model of the MHF, 
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which was validated in previous research. The mean temperature 

controller was tested, and the results showed improved performance 

compared with the current control scheme. The design of the mean 

temperature control was simple and was intended to be a straightforward 

practical solution to the BtoB phenomena and more research should be 

made to obtain better results. The stabilizing control showed great ability 

to minimize the reaction rate disturbance and significantly increased the 

energy savings of the furnace. Finally, the optimizing control for the MHF 

was simulated and tested, with results showing the excellent control to 

maximize the capacity while upholding the desired mullite content levels 

in the product.  

 

The control logic of the multiple hearth furnace was evaluated in this 

work by industrial testing. Initially, the soft sensors were tested online in 

the plant automation system. The testing helped to improve the quality 

and usability of the MHF soft sensor software, and it assisted the 

operators to easily track the operating conditions of the MHF. The soft 

sensor software could be an excellent tool for obtaining additional 

information given by the process otherwise not available online. Next, a 

sampling and data collection campaign was performed over a period of 5 

days to collect data from the calciner. The results showed the 

performance of the soft sensors to estimate the process variables 

compared with the laboratory data. In general, the soft sensors presented 

fairly good results to estimate the reaction rate, mullite content and 

soluble alumina. During the sampling campaign, a limited number of 

samples were collected, and the overall performance of the soft sensors 

could be further improved with an extended sampling campaign. Finally, 

the evaluation of the control concept logic outlined the possibilities to 

improve the performance of the process. Some instances exhibited the 

possibility to improve the capacity and quality of the product, which 

created the opportunity to implement the enhanced control strategy and 

then optimize the production of the furnace.  
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Finally, the applicability of Linear MPC for the MHF control strategy 

was studied. The MPC aimed to decrease the interactions in the 

temperature control between the burner zones of the hearth 4. The design 

of the Linear MPC framework for the MHF in kaolin calcination was 

described as well as the linear model of the MHF for MPC. The model was 

identified as a transfer function model and showed fairly good 

performance compared with the mechanistic model. A series of 

simulation tests were performed to study the behavior of the MPC control 

for the MHF. Next, the MPC control was compared with a temperature 

control PI scheme. The comparison results showed that the MPC was a 

superior alternative due to the integration of the process model and the 

ability to foresee and track the temperature setpoints. Finally, an outline 

of the future implementations of NMPC and EMPC into the MHF was 

presented. The advanced MPC implementations featured a simplified 

nonlinear model of the MHF based on a Hammerstein-Wiener model 

structure. These advanced MPC implementations offer excellent 

opportunities to further optimize the economic performance of the 

furnace, especially the EMPC framework, which shows great promise to 

achieve this objective due to its capability to dynamically optimize the 

economic objective of the process. 
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