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RÉSUMÉ 

 

 

Les procédés de combustion sont utilisés dans la plupart des industries chimiques, 

métallurgiques et manufacturières, pour produire de la vapeur (chaudières), pour sécher des 

solides ou les transformer dans des fours rotatifs (ou autres). Or, les combustibles fossiles 

qui les alimentent (ex. : gaz naturel) sont de plus en plus dispendieux, ce qui incite 

plusieurs compagnies à utiliser d’autres sources de combustibles tels que de la biomasse, 

des rejets inflammables produits par le procédé lui-même ou des combustibles fossiles de 

moindre qualité. Ces alternatives sont moins coûteuses, mais de composition, et donc de 

pouvoir calorifique, plus variable. De telles variations dans la chaleur dégagée par la 

combustion perturbent l’opération des procédés et la qualité des produits qui dépendent de 

ces installations. De nouvelles stratégies de contrôle de la combustion doivent donc être 

élaborées afin de tenir compte de cette nouvelle réalité. Il a été récemment démontré que 

l’énergie dégagée par la combustion est corrélée à l’aspect visuel de la flamme, 

principalement sa couleur, ce qui permet d’en quantifier les variations par imagerie 

numérique. L’objectif de ce projet industriel consiste à faire la démonstration que l’analyse 

d’images multivariées peut servir à l’identification du comportement d’une chaudière à 

biomasse. La chaudière à biomasse opérée par Irving Pulp & Paper Ltd (Saint-John, 

Nouveau-Brunswick) fera office d’exemple. Les résultats montrent qu’un modèle bâtit à 

partir des informations fournies par les images ainsi que les données de procédé donne de 

bonnes prédictions de la quantité de vapeur produite (R2
modèle=93.6%, R2

validation=70.1%) et 

ce, 2,5 minutes à l’avance. Ce projet est la première étape du développement d’une 

nouvelle stratégie de contrôle automatique de la combustion de biomasse, capable de 

stabiliser l’énergie dégagée, malgré les variations imprévisibles dans le pouvoir calorifique 

et les proportions des combustibles utilisés provenant de différentes sources. 

 

 



 

ABSTRACT 

 

 

Biomass is increasingly used in the process industry, particularly in utility boilers, 

as a low cost source of renewable, carbon neutral energy. It is, however, a solid fuel with 

some degree of moisture which feed rate and heat of combustion is often highly variable 

and difficult to control. Indeed, the variable bark properties such as its carbon content or its 

moisture content have an influence on heat released. Moreover, the uncertain and unsteady 

bark flow rate increases the level of difficulty for predicting heat released. The traditional 

3-element boiler control strategy normally used needs to be improved to make sure the 

resulting heat released remains as steady as possible, thus leading to a more widespread use 

biomass as a combustible. It has been shown in the past that the flame digital images can be 

used to estimate the heat released by combustion processes. Therefore, this work 

investigates the use of Multivariate Image Analysis (MIA) of biomass combustion images 

for early detection of combustion disturbances. Applied to a bark boiler operated by Irving 

Pulp & Paper Ltd, it was shown to provide good predictions, 2.5 minutes in advance, of 

variations in steam flow rate (R2
fit=93.6%, R2

val=70.1%) when information extracted from 

images were combined with relevant process data. This project is the first step in the 

development of a new automatic control scheme for biomass boilers, which would have the 

ability to take proactive control actions before such disturbances in the manipulated 

variable (i.e. bark flow and bark properties) could affect steam production and steam header 

pressure. 
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CHAPTER 1 INTRODUCTION 
 

 

1.1 ENERGY PRODUCTION IN THE PROCESS INDUSTRY 
Combustion is used in most process industries, either as part of their main process 

or as a utility (i.e. steam generation). Indeed, the metallurgical, the food, as well as the 

chemical industry commonly use utility boilers, rotary kilns, and various types of furnaces. 

The food industry needs combustion processes to dry a wide variety of products, such as 

fish or soy meal. The pulp and paper industry, for example, uses kilns to perform a 

chemical reaction called calcining which requires heat to regenerate spent lime. 

Metallurgical industries also use kilns to carry out physical and chemical reactions within 

the ore to modify the material properties (i.e. drying, desulphurizing, phase change, etc). 

Most industries also use utility boilers for producing steam, mainly for supplying heat to 

the process. In chemical pulping large amounts of steam is required in the cooking stage 

where high temperatures are needed for delignification. Steam production can also be part 

of a power cogeneration process where a turbine is fed with steam and electricity is 

produced for equipment. 

Combustibles mainly used in combustion processes are fossil fuels such as 

petroleum products, coal or natural gas. The cost of those products is steadily increasing 

over the years and, in turn, yields significant fluctuations in production costs. Indeed, the 

price of natural gas, for example, tripled between 1995 and 2005 (Giroux, 2008). Fossil 

fuels are non-renewable resources and the sustainability of these raw materials is more and 

more compromised. Increasing demand in conjunction with depleting fossil fuels reserves 

are among the main causes for increasing costs. Another argument against fossil fuels is 

related with their environmental impact. Indeed, extracting and burning fossil fuels are 

major sources of greenhouse gas (i.e. CO2) which raises environmental concerns. As it is 

shown in Table 1, the amount of pollution, in mg/MJ of energy produced, is considerably 

higher when a boiler is fed with fossil fuels compared to bark especially with the CO2 

emissions. Indeed, according to the Institute of Bioenergy, since the amount of CO2 
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released by the combustion of bark is equivalent to the one absorbed by the respiration 

process, the CO2 balance can be considered nil.    

 

Table 1 : Net emissions created by the combustion of various fuels (mg/MJ of heat created) 

  SO2 NOx CO CO2 Dust 

Oil boiler 140 40 50 78 000 5 

Natural gas 
boiler 

0 40 50 52 000 0 

Coal boiler 340 70 4 500 104 000 60 

Bark boiler 
(teared wood) 

10 45 16 0 4 

 

Therefore, the rising costs of fossil fuels as well as associated sustainability and 

environmental issues are compelling arguments for process industries to replace fossil fuels 

by alternative low-cost, renewable and carbon neutral fuels as their energy supply in their 

combustion processes. 

Combustible process by-products and/or wastes, either gaseous or liquid, have 

traditionally been used to reduce fossil fuel consumption and increase energy efficiency. 

Nowadays, other kinds of combustibles are used. Biomass (e.g. sludge, bark, plant, 

vegetable or animal derived materials) is indeed increasingly used in the process industry as 

an alternative, renewable and in most cases carbon neutral fuel. Indeed, according to the 

Forest Product Association of Canada, biomass and small hydroelectric station are 

representing 60% of the energy source in the pulp and paper industry. Irving Pulp and 

Paper, located in St-John (New Brunswick, Canada), is one of those industries using 

biomass (i.e. bark) to reduce operational cost and environmental impact. A bark boiler is 

used to produce the steam they need in their pulp making process. However, not only 

process industries make use of biofuels to decrease their energy costs. Many public 

institutions such as schools, hospitals or even residential complexes can also be heated 
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using biomass boilers. Amqui’s hospital located in Gaspésie plans to save over 

100,000$/year using their new biomass boiler as their main heating system (Gagné, 2009). 

 

 

1.2 PROBLEMS WITH THE COMBUSTION OF BIOMASS 
Biomass boilers are very promising alternatives to traditional fossil fuel boilers, but 

cost reduction and improved environmental performance is made at the expense of using a 

much less stable fuel. Indeed, biomass composition (i.e. mainly carbon content), moisture 

content, and flow properties are typically highly variable which leads to an unsteady heat of 

combustion. Carbon content mainly depends on the biomass sources and carbon loss during 

storage (e.g. fermentation within bark piles reduces the amount of carbon available for 

combustion). Moreover, it is difficult to achieve a steady biomass feed flow to the boiler 

since biomass consists of wet solid particles which degree of humidity depend on biomass 

source and weather conditions (when stored outside). When transported using screw 

feeders, the wet solids have a tendency to stick to the screw shaft which modifies the 

effective volume of materials discharged at each screw revolution (Bell et al. 2003). 

Achieving consistent screw fullness is also difficult, creating further flow disturbances (i.e. 

flow tends to be lumpy). Furthermore, obtaining flow measurements of such materials is 

not straightforward and these are rather imprecise. The resulting variations in heat released 

by biomass combined with their unsteady flow properties are two factors that bring 

important pressure fluctuations within the biomass boiler steam drum, hence in steam 

production rate. Variations in steam production can lead to serious operation problem with 

equipments using steam for heating such as, in the chemical pulping industry, the pulp 

digesters which require a certain steam pressure (or temperature) in order to achieve the 

desired reaction temperature. Another example is when the steam from biomass boilers is 

also used in a cogeneration plant, as is the case with Irving Pulp & Paper. When it is 

anticipated that weather conditions could result in a power shortage, then steam production 

is increased in order to produce more electricity and even become independent of the local 

network. Since bark is too variable, the operation is often switched to fossil fuels until 
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weather conditions have improved. This results in higher operating costs, especially when 

such a situation happens regularly. 

To compensate for these variations, operators can either cut biomass feed rate when 

heat released is too high or burn fossil fuels through auxiliary fossil fuel burners when 

biomass combustion is not sufficient to meet steam demand. These control decisions are, 

however, generally taken after combustion disturbances have already affected steam 

production (i.e. feedback control). In certain critical situations when steam production is 

required to be steady, the use of biomass alone may be too risky. In these cases, when the 

boiler is equipped with auxiliary fossil fuel burners, steam is mainly produced through 

fossil fuel combustion until the process returns to normal operation. 

Improved equipment design and instrumentation may lead to some reduction in the 

variability of biomass flow properties, but carbon content would still remain untraceable. 

Indeed, a variety of agitation devices are commercially available to ensure that solids 

entering the screw feeders are in a highly flowable state, leading to a more uniform 

distribution of the product and a higher and more consistent degree of filling of the screw 

(Bell et al. 2003). On-line moisture sensors mainly based of near-infrared (NIR) probes or 

arrays have also been developed for estimating solids moisture content on conveyor belts. 

The system developed and commercialised by FPInnovation Paprican (www.paprican.ca) 

for wood chips is one example. Feedforward control actions could be taken to reduce 

potential upsets to the boiler before wet biomass is fed into the combustion chamber. 

Nevertheless, carbon content is typically measured using bomb calorimetry, which is 

mainly an off-line test performed in laboratory, and requiring some time to be performed 

(i.e. cannot be easily adapted for on-line use). Therefore, even with implementation of the 

improvements discussed above, biomass flow properties would not be perfectly steady, and 

variations in carbon content will still cause important disturbances in steam production. 

 

 

 
 



 15
 

1.3 OBJECTIVES OF THIS THESIS 
The long term objective of this research program is to develop a new combustion 

control strategy in order to stabilize the heat released by biomass combustion, hence 

leading to a more widespread use of such an alternative to fossil fuels. The 3-elements 

control strategy typically used in boiler control (Smith and Corripio, 2005) works well with 

fossil fuels which have much more stable combustion energy and are delivered steadily to 

the boilers (i.e. flow rates of gas or liquid fuels are easier to control). This strategy involves 

feedforward plus feedback control of the water level in the steam drum and feedback steam 

pressure control using the fuel flow rate. Whenever the steam pressure changes due to a 

change in steam demand, an action is taken to adjust the fuels flow. Since fossil fuels are 

generally very stable, consistent closed-loop dynamic responses are achieved. However, 

when biomass is used, the lumpy flow behaviour combined with fluctuations in heat of 

combustion introduces additional disturbances in the combustion chamber. That is, 

important disturbances enter the process through the manipulated variable (i.e. fuel flow) 

which is not the case with fossil fuels, except for fuel line pressure variations which are 

easily removed using flow controllers in cascade control loops. To help achieve steadier 

steam production, a more efficient use of biomass and a lower use of auxiliary fuels, the 3-

elements boiler control scheme needs improvements. 

The short term objective of this thesis therefore is to investigate early detection of 

heat of combustion disturbances introduced by changes in biomass flow properties, 

composition and moisture content, directly within the combustion chamber (i.e. the earliest 

time at which variations in heat released can be observed). The output of such an observer 

could later be incorporated into a new biomass boiler control strategy. More specifically, 

the forecast ability of such an observer will be studied. Indeed, forecasting steam 

production disturbances up to 2-3 minutes in the future would give a sufficient amount of 

time for the operators (or a controller) to react and attenuate these disturbances. 
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1.4 OVERVIEW OF THE PROPOSED APPROACH 
One way to measure fluctuations in heat released by the combustion of biomass is to 

rely on a set of temperature sensors (i.e. thermocouples or pyrometers). However, the 

combustion of biomass generally occurs on a large grate and is therefore not as spatially 

confined as when combustion occurs at a burner outlet (gas or liquid fuels). This would 

require a great number of temperature sensors (i.e. an array) carefully distributed within the 

combustion chamber to make sure that biomass combustion is monitored effectively on the 

2-dimensional grate area. Initial investment, shut down for the installation of those 

temperature sensors, as well as their maintenance over time may represent important 

operational cost. 

An alternative approach consists of using area sensors, such as cameras, to monitor 

biomass combustion. Nowadays, high temperature RGB cameras are often already installed 

on boilers and kilns for process safety purpose; operators look at flame images provided by 

these video cameras to make sure that the flame is well behaved and that combustion is 

maintained within a safe region (i.e. qualitative use of the combustion images). 

Furthermore, it has been recently established that the heat released by a combustion process 

can be indirectly quantified using RGB flame images, analysed using the Multivariate 

Image Analysis family of approaches (Yu and MacGregor, 2004; Szatvanyi and al., 2006). 

Indeed, it was shown that heat released is highly correlated to visual properties of the flame 

and that of combustion chamber (colors mainly), which allows its variations to be 

quantified using combustion images. Moreover, disturbances in biomass feed rate or 

properties should be first observed in the combustion chamber through the visual 

appearance of the flame and surroundings before having an impact on steam pressure. 

This work will therefore investigate a new machine vision approach based on 

Multivariate Imaging techniques for detecting disturbances related to the biomass unsteady 

flow and/or changing properties using images inside the combustion chamber. This 

approach should apply to biomass boilers in general, with some adaptation. However, the 

proof of concept will be illustrated using Irving Pulp and Paper’s bark boiler, which was 

already equipped with two high temperature video cameras, and sustained variations in 

bark properties affect steam production. 
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This thesis is organized as follows. Chapter 2 covers the review of literature. The 

first part is about the general operation of a boiler as well as the 3-elements combustion 

control strategy typically used when burning fossil fuels. Few improvements that have been 

made and some other that could be made when using bark will also be discussed at the end 

of chapter 2. The end of chapter 2 covers the literature review. The design of industrial 

experiment as well as the information acquisition will be covered in chapter 3. Chapter 4 is 

about multivariate imaging technique and covers the techniques used such as multivariate 

image analysis (MIA) and multivariate image regression (MIR). Each steps from the image 

acquisition to the modelling using images will be explained. The results will be discussed 

in chapter 5 after which conclusion will be drawn in chapter 6. Finally, in the last chapter 7, 

some recommendations will be made to increase the stability and make the process easier 

to operate. 

 



 

CHAPTER 2 BACKGROUND 
 

 

2.1 BOILER OPERATION AND CONTROL 
The understanding of the principles surrounding boilers is important. As shown in 

Figure 1, a boiler is an equipment that is composed of a combustion chamber where fuels 

are burned and combustion takes place. Walls around that combustion chamber are covered 

with small tubes in which water circulates. The small diameter of the tubes increases 

contact area between water inside the tubes and the hot flue gas produced inside the 

combustion chamber. This high contact area increases heat transfer rate between the hot 

flue gas and the water inside the tubes. Fresh water is first fed in the steam drum located 

near the top of the boiler and, by natural convection, circulates in the tubes to be heated up 

and evaporated to produce steam. 

 

 

Figure 1: Schematic representation of a steam boiler (http://www.lenntech.com) 

 

This chapter will cover boiler operation in some details. Further information on 

boiler operation or boiler control strategy can be found in the Boiler Operator’s Handbook 
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(Heselton, 2005) and in the Principles and Practice of Automatic Process Control (Smith 

and Corripio, 2005). First, the various water treatments required before it can be safely fed 

into the boiler will be presented. The control strategy around the water level in the steam 

drum of the boiler (Smith and Corripio, 2005) will also be explained. Then, in order to have 

a better understanding of the fuel-air control strategy, the combustion reactions will be 

discussed and explanation will be given on the different kinds of fuels that can be used to 

produce steam, as well as how these fuels are supplied to the boiler. Finally, the 3-elements 

control strategy (Smith and Corripio, 2005) used in industry will be discussed and a few 

suggestions about possible improvements will be made.  

 

2.1.1  WATER 

The control strategy surrounding the water used in a boiler is critical. The amount of 

water contained in the steam drum located at the top of the boiler has to be steady. Indeed, a 

high level of water can result in impurities in the steam system due to water dragging. On 

the other hand, tubes could be severely damage by overheating if they happen to be empty 

due to the insufficient amount of water in the steam drum. The control strategy required to 

maintain steam drum water level will be discussed but, first, the water pre-treatments 

needed before its use is explained. 

 

2.1.1.1 WATER PRE-TREATMENTS 

Fresh water needs to be treated before it is fed to the boiler to make sure the 

evaporation does not lead to a fouling layer inside the tubes due to accumulation of solid 

impurities that cannot evaporate. Fouling would decrease the heat transfer efficiency or, in 

a more serious manner, plug the tubes and perturb the normal operation of the boiler. To 

prevent this, water is first softened (Heselton, 2005) which consists in removing impurities 

such as calcium and magnesium thus preventing the fouling layer which acts as an 

undesired insulation. 
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Another problem that can happen when using fresh water is corrosion. Corrosion is 

due to the presence of oxygen inside the fresh water. The water pre-treatments then need a 

de-aeration stage (Heselton, 2005) to make sure the tubes will not be prematurely damaged 

by corrosion. 

 

2.1.1.2 WATER LEVEL CONTROL STRATEGY  

The level of water inside the steam drum is typically controlled using a 

feedforward/feedback control strategy (Smith and Corripio, 2005) as shown in Figure 2. 

LT1 is the level transmitter allowing for feedback control actions on the feed water flow. A 

lower and an upper limit are also selected such that process operators have enough time to 

react when these limits are reached. 

The main disturbance that affects the drum level is changes in steam demand. For 

this reason and because of the importance of maintaining a steady level in the steam drum a 

feedforward loop anticipating changes in water need is added to the feedback loop. Both 

control strategies are shown in Figure 2, where steam flow is measured and transmitted by 

FT5 allowing feedforward action on water valve opening. The idea behind this control loop 

is that each unit of steam needed requires the same amount of water to be fed in the drum. 

Before adding a feedforward loop, the effect of steam demand on level has to be well 

understood. Note that some issues related to the behaviour of bubbles are worth explaining. 

The bubbles have a lower specific volume compared to that of water, which allows them to 

displace the liquid and flow upward. When the steam demand goes up, the steam pressure 

drops which causes two effects; first, the existing bubbles collapse to form bigger bubbles 

and, second, a certain amount of hot water flashes into steam bubbles. This results in a 

momentary higher apparent volume of water in the steam drum due to the increased volume 

of bubbles going upward in the tubes. Without the feedforward loop, the feedback loop 

would decrease the flow of feed water. This phenomenon is called swell. The opposite 

situation is a shrink. It happens when the steam demand suddenly goes down causing the 

steam pressure to increase. Bubble size gets smaller while some bubbles are condensed into 

water causing the apparent volume of liquid in the drum to decrease. The steam flow 
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transmitter provides the feedforward signal while the level controller compensates for 

unmeasured flow or inaccurate measurements.  

The last component shown in Figure 2, is the flow transmitter FT2. This transmitter 

is in a cascade loop added on the feed water valve to compensate for changes in water line 

pressure in the system. Those changes in water feed pressure can happen at any time and 

introduce undesired flow disturbances. Indeed, the water line pressure affects water flow 

rate even though the valve has not changed position.  

 

 

Figure 2 : Steam Drum Water Level Control Strategy (two of the 3-elements boiler control 
scheme) (adapted from Smith and Corripio, 2005) 

 

2.1.2 FUELS  

To produce enough heat to evaporate the water inside the tubes, combustion has to 

take place. Combustion is a chemical reaction between a fuel (i.e. a source of carbon) and 

an oxidant. The overall combustion reaction (1) happens in two steps. Carbon goes through 
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a first oxidation process (2) and form carbon monoxide which can be further oxidized to 

produce carbon dioxide (3). Only the first reaction occurs when the amount of air is 

insufficient. It is called incomplete combustion. 

 

Overall reaction: 

22C + 2O  2CO 2

2

        ∆H ≈ -786 kJ/mol (1) 

Intermediate reactions:  

22C + O   2CO         ∆H ≈ -221 kJ/mol   (2) 

22CO + O   2CO         ∆H ≈ -565 kJ/mol (3) 

 

The enthalpy of reaction of the first oxidation (2) is -221 kJ/mol while the second 

oxidation reaction, from carbon monoxide to carbon dioxide (3), generates slightly more 

than twice as much heat as that of the first oxidation (i.e. 565 kJ/mol). Incomplete 

combustion thus leads to the lost of two third of the heat that one carbon can released. To 

make sure the fuel is used in an efficient way, and that complete combustion is obtained, air 

is introduced in excess of the stoichiometric ratio. Besides, another argument in favour of 

making sure complete combustion occurs is that carbon monoxide is toxic, and its 

emissions are ruled by environmental laws. The excess of air also prevents the production 

of smoke and pollutants due to the presence of carbon monoxide in the combustion 

chamber exhaust (i.e. flue gas). On the other hand, the greater the excess of air is, the lower 

the combustion efficiency. Indeed, even if pre-heated air is introduced in the combustion 

chamber, its temperature is lower than that inside the combustion chamber. The heat 

required to warm up the excess air and make sure the combustion chamber temperature is 

high enough to guarantee water evaporation is lost through the stack gases. Therefore, a 

compromise has to be made in the control of excess air and fuel flow to ensure the process 

is safe and does not release an important amount of pollutant while making sure 
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economical objectives are reached by optimizing efficiency. This makes the control 

strategy surrounding air and fuel flows important.  

In this section, the combustion control strategy will be discussed but first, the 

various kinds of combustibles that can be used in combustion processes will be reviewed. A 

fuel consists of any material that can be oxidized in presence of oxygen and energy. Fuel is 

burned in order to obtain energy to heat up another gas, liquid or solid. Even if gas and 

liquids are the fuels that are mostly used in combustion processes, solid fuels are 

increasingly used in combustion processes. Since the boiler investigated in this study uses 

mainly bark, but also natural gas and oil, both fossil fuel and biomass combustible will be 

discussed.  

 

2.1.2.1 FOSSIL FUELS 

Fossil fuels are an energy source considered non-renewable due to both the fact that 

it takes a long period to form and that reserves are being depleted much faster than new 

ones are being formed or discovered. The issue of using alternative fuels is to be seriously 

considered, but fossil fuels are still the primary source of energy in the world. 

Fossil fuels are found in the earth’s crust where dead plants and animals have been 

caught between layers of sediments for over hundreds of millions of years. Under the 

exposure of high levels of heat and pressure caused by the accumulation of sediments, the 

organic matter has fossilized, leading to the formation of hydrocarbons, made of carbon and 

hydrogen. The fossil fuels sources are mainly petroleum (crude oil), coal and natural gas. 

The biomass boiler operated by Irving Pulp and Paper uses both oil and natural gas. 

 

Oil is a product obtained from the distillation of petroleum. It has been classified 

into 6 groups, labelled 1 to 6, according to their properties such as boiling point, carbon 

chain length or viscosity. Carbon chain length increases with class number and so does the 

boiling point and viscosity which are two characteristics related to the number of carbons 

within the molecule. Oil number 6, also called Bunker C, is often used in furnaces and 
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boilers. It also has the longest carbon chain. Its viscosity is so high that it has to be pre-

heated before being sent to the burners. Another disadvantage of bunker C is the high 

amount of pollutants it contains, particularly sulphur compounds which lead to the 

formation of sulphur dioxide upon combustion. 

  

Natural gas can be found in earth in its associated form which means as a pocket of 

gas over crude oil or in a non-associated form, pure, in natural gas fields where it is trapped 

in porous rock formations. It contains mostly methane (CH4) but also significant amounts 

of ethane (C2H6), propane (C3H8), butane (C4H10), pentane (C5H12) and other impurities 

that first have to be removed prior to be used as a fuel. Since combustion of natural gas 

releases less carbon dioxide per unit of energy produced, it is considered a cleaner fossil 

fuel. Though, natural gas still generates more pollutant than renewable energy source such 

as biomass, and is definitely more expansive to purchase. 

 

2.1.2.2 BIOFUELS 

In contrast to fossil fuels, biofuels are renewable combustibles because they are 

produced from recently dead biological material that can be rapidly replenished such as 

plants. The most commonly used source of biofuels are photosynthetic plants, but animal 

residues can also be used. Biofuels are available in either its solid, liquid or gaseous state. 

Liquid and gaseous biofuels can be produced using two different strategies. One of them 

consists of growing crops of high sugar or starch content, which are then used to produce 

ethanol by fermentation. The other alternative is based on the fact that few plants contain 

high amounts of vegetable oil that can be heated and then burned. Biofuels in solid state, 

called biomass, can either come from plants, such as wood chips, bark or even tree 

trimming residues, typically left in the forest after tree trimming, or from animals like, for 

example, pig or chicken waste, manure or even bacteria removed from waste water 

treatment which are most of the time buried. Irving Pulp and Paper’s boiler uses, as 

mentioned, natural gas and/or oil but only if the main combustible, bark, cannot release 

enough heat to meet steam demand. 
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More specifically, bark is delivered by trucks every day and stored in the yard in 

natural conic shape stock piles. The angle between the surface on which the bark is poured 

and the surface of the pile is known as the angle of repose (Friedman and Robinson, 2002). 

This angle is different according to the density, the surface area and the friction coefficient 

of the material. Even though bark is stored outside under any weather, rain does not lead to 

significant additional accumulation of moisture due to the fact that the angle of repose of 

snow and rain is smaller than that of bark. Thus, the rain and snow do not accumulate on 

the bark piles. The ideal storage time is around 3 to 4 months. During this period, 

fermentation occurs. Carbons inside the bark components are oxidized and this reaction 

releases significant amount of energy. That energy helps evaporating excess bark moisture 

content. It was found that between 3 to 4 months of storage time (Simard, 2008), the carbon 

lost in the fermentation worth the amount of water evaporated from the pile. 

 

The bark taken from the yard needs to go through a few sorting stages. The first step 

is a screening stage that removes large pieces. The largest passing is 2”×2”×2”. Those 

rejected pieces of bark are taken to a hog that grinds the large particles before returning to 

the screening stage. The passing bark goes under a magnet whose function is to remove 

every metallic piece. The bark is then ready to be fed in the boiler.  

 

2.1.3 FUEL AND AIR FLOWS CONTROL STRATEGIES 

The fuel and air flow control strategy with natural gas and oil is the same. Using 

biomass makes the strategy different. The general strategy using either one of the fossil 

fuels will be explained and, then, the differences that need to be made when using biomass 

will also be clarified. 
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2.1.3.1 CONTROL STRATEGY USING FOSSIL FUEL 

The way the combustibles are fed inside the boiler influences the design and size of 

the boiler equipment. In the case of Irving’s bark boiler, both fossil fuels are feed inside the 

boiler using a burner equipped with a pulveriser. The atomisation created by the pulveriser 

decreases the length of the flame allowing a larger width. This helps reducing the size, and 

thus the cost, of the boiler. The contact between the two reactants is also better due to the 

smaller size of combustible particles. For safety reason, the flame shall not touch the tubes 

that could be damaged by excessive heat. Unlike feeding bark, using fossil fuels allow the 

heat released by the flame to be steady since their characteristics are stable. 

Fuel flow is often set according to the amount of steam needed. As mentioned 

earlier, air is introduced in the boiler in excess of the stoichiometric ratio. Since the air 

stream is cooler than the materials inside the combustion chamber, it reduces the 

combustion temperature and thus the efficiency is significantly reduced. This is why the 

amount of excess of air has to be limited. Preliminary tests covering the whole operation 

range are made to establish a relationship between fuel flow and the amount of air required 

to obtain complete combustion at this particular fuel flow rate. The amount of excess of air 

to use is determined by achieving a safe concentration of oxygen in the exhaust gas (i.e. 

flue or stack gas) within certain limits defined a priori. The excess of air needed typically 

decreases with increasing fuel flow. Indeed, the higher the fuel flow, the better is the mix 

between reactants due to turbulence. It is therefore easier to achieve complete combustion 

at higher fuel flow rates. As shown in Figure 3, the flow of combustibles is set in order to 

control steam drum pressure. The air-fuel relationship discussed previously (i.e. the FA/FF 

block in Figure 3) is then used to compute the appropriate air flow rate required to make 

sure complete combustion is achieved. 

 

As for fresh water flow rate, both fuel and air flow rates are under feedback control 

in order to reject flow disturbances such as fluctuations in line pressure. These flow 

controllers are integrated within cascade loops as shown in Figure 3. 
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Figure 3 : Air and fuel control strategy including flow cascade loop (adapted from Smith 
and Corripio, 2005) 

 

  A deeper analysis of the control scheme showed in Figure 3, a problem still persists 

requiring the control strategy to be improved. If the steam demand suddenly decreases, the 

pressure inside the drum then increases due to the greater accumulation of steam. The value 

being higher than the steam drum set point, the drum pressure controller reduces the fuel 

flow by closing the control valve. Since the set point on the combustible flow has been 

lowered down, the air flow is also reduced. During a short period of time, the air flow rate 

to the burner is larger than the flow needed to maintain complete combustion, which does 

not cause any safety issues. If, on the other hand, the fuel flow is increased due to a higher 

steam demand, the pressure controller opens the fuel valve first, which suddenly results in a 

poorer air/fuel ratio and potentially incomplete combustion and safety issues. The control 

scheme is thus not appropriate for this situation because it does not guarantee that air flow 

rate is always sufficient for every situation. Such a lower air/fuel ratio can be very 

dangerous since an insufficient amount of air in the combustion chamber results in 
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unburned fuel in the stack gases. This does not only mean economic losses and potential 

environmental hazards, but this situation can lead to an explosive mixture inside the 

combustion chamber due to accumulation of either carbon monoxide created by the 

incomplete combustion or unburned fuel. The control scheme shown in Figure 4 was 

modified to account for this safety issue. 

 

 

Figure 4: Modified air and fuel flow implemented control strategy to ensure safe 
combustion conditions (adapted from Smith and Corripio, 2005) 

 

This modified control scheme resolves the safety issue by making sure that air flow 

rate always changes first and that if, for some reason, air flow does not change (i.e. sticky 

valve, or else), then fuel flow is maintained at its current value. At any time, the fuel flow 

set point (FF
set) taken into account is the lowest value between the one requested by the 

pressure controller and the fuel flow required for complete combustion based on the current 
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air flow rate (computed using the fuel/air ratio). On the other hand, the air flow rate set-

point (FA
set) is computed based on the pre-determined air/fuel ratio using the greatest value 

between the actual fuel flow rate and the fuel flow set point requested by the pressure 

controller. This ensures that fuel flow is always lower or equal to what is necessary for 

complete combustion. This will be particularly useful when sudden changes in steam 

demand occur such as when start-up or shut-down of some process units are performed. 

The situation where a lower steam demand occurs will be explained as well as the opposite 

situation where the steam demand increases. Going through both situations will help 

understand how the modified control loop works. 

When steam pressure sharply increases due to a sudden reduction in steam demand, 

then less combustibles is needed, and the pressure control reacts by lowering the fuel flow 

rate set point. At that very moment, the controller compares the value of the new fuel flow 

rate set point with the calculated fuel flow based on the actual air flow and identifies the 

smallest value. In this particular case, the value of the new set point on the combustible is 

the smallest. At the same moment, the controller also needs to set a value for the new air 

flow. To do that, the actual fuel flow is compared to the fuel flow set-point and the highest 

value is taken in the computation of the air flow. Since the fuel flow had not enough time to 

decrease yet, the actual fuel flow is still larger than its new set point. The air flow is then 

fixed considering the actual fuel flow value. The more the actual fuel flow decreases, the 

more the air flow is also decreased. The transient period is thus richer in air than usual.  

The opposite situation occurs when the steam pressure is lower than its set point 

which requires the combustible flow to increase. The controller compares the value of the 

fuel set point with the calculated fuel flow based on actual air flow rate. Since the requested 

new set point is higher than its calculated value, the calculated value is selected. On the 

other hand, the actual value of the fuel flow is compared to the fuel flow set point and since 

the highest value is the one of the new set point, the air flow is calculated based on the new 

set point which results in increasing air flow. The more the real air flow increases and the 

more the calculated fuel flow based on the air flow increases. This increases the fuel flow 

set point since it is determined by the lowest value which will be the calculated flow.  This 

will prevail, as long as the calculated flow does not reach the value fixed by the steam 
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pressure set point. This pattern ensures that the air flow is always increased first or 

decreased last which makes the combustible and air mixture always richer than its normal 

value during transient periods. 

 

As mentioned, a compromise needs to be made on the air flow to meet both 

economical and safety objectives. Making sure the air flow is always in excess helps avoid 

producing an explosive carbon monoxide mixture due to incomplete combustion reaction. 

Economical objectives can be reached by minimising the excess air flow rate which 

requires very tight control of air/fuel ratio. This will help maintaining the excess of air 

introduced in the boiler at an optimum value. The goal is to maintain the amount of oxygen 

and/or of carbon monoxide in the stack gases between an upper and a lower limit. A CO 

and/or O2 analyzer helps finding and adjusting the air/fuel ratio to an appropriate value. 

Oxygen level in the exhaust is maintained close to the lower limit. This helps the 

combustion efficiency to be as high as possible by preventing loss of energy in the exhaust 

due to an important excess of air fed. 

 

2.1.3.2 CONTROL STRATEGY USING BIOMASS 

The control strategy described here could be used with most of the bark boilers. 

Once bark has gone through preliminary sorting stages, it is fed to the boiler. Since bark is 

a solid combustible, it is carried from the bin to the boiler using conveyors. Four screw 

feeders take the bark on the conveyor and leave it inside a discharge. At the end of this 

discharge, an air burst throws the bark at a certain location onto the boiler grid. As seen on 

Figure 5, primary and secondary air flow for bark combustion, unlike fossil fuels, are not 

fed at a burner tip, but are rather fed in the boiler using separate ducts. As bark is thrown on 

the grid located at the bottom of the boiler, air is fed both under and over the gapped grid. 

Undergrate air prevents bark and ash from falling through the grid holes. The inclined grid 

is equipped with a device named a stocker that shakes the grid. The vibrations thus created 

allow the bark to go from one end of the grid to the other at a speed determined by the 

frequency of the vibrations. Vibrations also help distributing the bark load evenly on the 
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grid. A good distribution improves the air-bark contact and allows reducing the air/bark 

ratio. It is also important to understand that the wetter is the bark, the thinner the bed needs 

to be. The air feeding strategy is therefore very different and more complex than the one 

used for combustion of fossil fuels. However, the impact of manipulating the grate 

vibration frequency is still to be quantified since this parameter has never been changed in 

this project. 

 

 

Figure 5: Irving Pulp and Paper's bark boiler 

 

As mentioned previously, the total amount of air required for bark combustion is 

partly fed under and partly fed over the grid. For safety reasons, the grid is at the bottom of 

the boiler to make sure the fire does not come in contact with the tubes where water is 

evaporated. The undergrate air is mainly used as primary air (combustion reaction 2) which 

produces an incomplete combustion of carbon into carbon monoxide that goes up in the 

boiler. The overgrate air is the secondary air. It makes sure that combustion is complete by 

further oxidizing carbon monoxide into carbon dioxide (combustion reaction 3), which 

releases two thirds of the combustion heat as close as possible to the tubes. Heat transfer is 

thus more efficient. The secondary air is fed uniformly over the grid because the gas 

produced by the combustion tends to be distributed equally in the combustion chamber. 

Primary air needs to be fed differently. 
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After discussing with an expert involved in several start-ups of biomass boilers 

(Simard, 2008), it was determined that most biomass boiler should be operated differently 

depending on bark moisture content.  The undergrate air blown towards the end, in the 

middle and at the beginning of the grid will be different. Bark is thrown at the far end of the 

grid by an air spout and from there it goes all the way down the grate and fall in the ash bin 

at beginning of the grid. When bark is very wet, the first step is to evaporate the excess of 

humidity before it can burn. Most of the primary air will then be fed in the middle of the 

grid where the bark will be dry enough to burn. A small amount will be feed at the end of 

the grid to allow the moisture to be evaporated and remaining of the total air flow will be 

fed at the beginning to burn the residual carbon left inside the ashes. On the other hand, if 

the bark entering the boiler is already dry enough to burn, the major part of the primary air 

will be feed at the end on the grid where the bark is thrown. The more the bark will 

progress down the grid and the less residual unburned carbon will remain and, for this 

reason, the air fed under those sections will be smaller. 

 

This air control strategy can be implemented as long as bark moisture content is 

measured (or known from the stockpiles feeding policy) before feeding in the boiler. To 

design such an air distribution control scheme, preliminary tests need to be performed to 

determine the optimal undergrate air flow distribution for each situation. One way to make 

sure the amount of secondary air is not too high is to measure the O2 concentration in the 

stack gases. If the concentration is too high, both the secondary air flow and the primary air 

flow are too high because both reactions occur on the grid and the secondary air does not 

contributes to oxidise the carbon monoxide which have been oxidised already by the 

primary air. To verify whether such a situation occurs, one simple test is to cut the 

secondary air flow. If steam production increases, secondary air flow rate is too high and 

cools down the combustion chamber. Therefore, reducing both primary and secondary air 

flows in this particular case improves heat transfer efficiency. 
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2.1.4 OTHER POTENTIAL IMPROVEMENTS WHEN BURNING 
BARK 

As it was mentioned before, some variations in the control strategy used with fossil 

fuels needs to be made. Indeed, since the combustible is burned on a grate instead of inside 

a burner, the combustion process is very different. Therefore, some modifications were 

made to ensure a proper air flow distribution. However, most of the biomass boilers have a 

control strategy that has not been improved more. The main reason for that is the lack of 

research on biomass combustion. Indeed, this process being still at its beginning, the 

researches on the other possible improvements are limited as well as the documentation on 

the subject. Therefore, in order to better understand the biomass boiler issues and their 

solutions, an experienced engineer, Gaétan Simard, who participated to start-ups and 

operated a few biomass boilers, have been consulted. The next section will cover some of 

the improvements mentioned during this consultation, solution that could be brought to any 

biomass boiler. 

 

2.1.4.1 FIXING THE AIR FLOW PROPERLY 

As explained earlier, the combustible flow is used as the manipulated variable to 

maintain the steam pressure at a desired set-point. The air flow is then fixed accordingly. 

The flow of natural gas and oil (liquid) can be easily measured using conventional flow 

meters allowing the computation of how much air is required and how much energy will be 

released. When it comes to bark, a solid, the flow is a calculated value rather than a 

measured value. The speed of the screw feeders only provides an estimate of the bark flow 

rate. This value does not take into account the fact that screws could be only partially full. 

Since the air flow is set according to an uncertain value, it brings even more uncertainties 

into the boiler operation. If the air flow is fixed with the bark flow assuming the screws are 

full, the chances of having too much air are to be considered. Indeed, if the screws are not 

full and the amount of air required is set according the screw speed assuming their fullness, 

the amount of air is then too high. This lowers the combustion efficiency because the 

excess of air cools down the combustion chamber and a part of the heat produced is not 

used to evaporate the water but is used to heat up the air inside the combustion chamber.  
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For this reason, the air flow should be set according to a more accurate value. Steam 

pressure could be a good value to fix the amount of air needed. Knowing that to produce 

more steam more energy needs to be released and to release more energy more carbon is 

required, it becomes easy to know in advance the amount of air necessary. The screw speed 

could then be adjusted if the amount of steam required is not reached because if all the 

steam needed is still not produced with a certain screw speed it means that the amount of 

carbon feed inside the boiler is insufficient. Increasing the screw speed would then increase 

the amount of carbon fed in the boiler no matter how full the screws are. The amount of 

carbon fed then becomes more important than the bark flow itself. This strategy is better 

because the amount of carbon changes throughout the year. Indeed, the compactness of the 

bark changes the amount of carbon per unit of bark. So, for the same flow, the carbon 

content will change and for this reason, the same flow will not always produce the same 

amount of steam. 

 

2.1.4.2 ASH RECIRCULATION 

Combustion of solid fuels produces ash that goes in the stack or is thrown at the end 

of the grid. Before being released in the environment, the stack gases have to go through 

different cleaning stages, involving electric precipitators and/or cyclones that remove the 

ash. The ash thus produced by bark combustion still contains some carbon residuals when 

some of the bark did not have a sufficiently long residence time on the grid. Since it still 

contains a certain amount of carbon, getting rid of it by burying it is a loss of energy and 

money. This ash could, if the boiler configuration allows it, be reintroduced inside the 

boiler to be burned again. The amount of bark fed inside the boiler could then be 

significantly reduced and the combustion efficiency increased. 

 

 However, biomass combustion is still hard. Indeed, even if everything possible is 

done to ensure the stability of those processes, the disturbances of the feeding will always 

be high. Even if the instrumentation of the boiler is highly updated, the properties (i.e. 

moisture content, carbon content, heat of combustion) of the biomass will always change 
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and will always be hard to measure. Therefore, another control strategy, involving new 

sensors, needs to be use. For this reason, images will be used for the monitoring and the 

control of biomass combustion.  

 

 

2.2 REVIEW OF PAST COMBUSTION IMAGING 
LITERATURE 

A large body of literature already exists on the use of various combustion imaging 

techniques in the fields of burner and internal combustion engine design, where the primary 

concern is flow visualization, and measuring the concentration of chemical species 

involved in combustion reactions. These require sophisticated spectroscopic imaging 

techniques. For example, Laser Induced Fluorescence (LIF) and Raman imaging were used 

to measure the concentration of CH4, CH radicals, CO, and OH species within methane 

flames (Dyer and Crosley, 1982; Namasian et al., 1989; Karpentis and Barlow, 2005). In 

another example, Waterfall et al. (1997) used electrical capacitance tomography (ECT) to 

monitor flame position and size, and the effect of air/fuel ratio within an internal 

combustion engine. 

Combustion imaging in process applications have mainly used grey scale images to 

extract flame features related to combustion performance and safety considerations. A 

method for detecting the presence of a flame in fossil fuel fired steam boilers was proposed 

by Bae et al. (2006). Various geometrical and luminous flame properties were extracted 

from grey level images, and classified using Artificial Neural Networks into arbitrarily 

defined states related to combustion performance (Victor et al., 1991; Bertucco et al., 2000; 

Zhang et al., 2008). Flame classification was also proposed for monitoring fuel and air flow 

rates (Tao et al. 1995), and for on-line tracking of pulverized fuels from different sources 

(Xu et al, 2005). Flame morphological and luminous features were also used for predicting 

a large number of combustion properties such as flicker rate (Huang et al., 1999, Lu et al. 

2004), unburnt carbon, CO2 and NOx emissions, ignition point, spreading angle, and 

temperature (Shimoda et al., 1990; Lu et al, 1999, 2000, 2004; Yan et al., 2002). An 
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improved flame segmentation algorithm for rotary kilns was also developed by Sun et al. 

(2008) using the Gabor wavelets. 

A few research studies used RGB color images for extracting flame characteristics. 

Wang et al. (2002) took advantage of the three color channels to estimate flame 

temperature (i.e. bi-color method) and to predict NOx concentration in the exhaust of a 

power boiler. Some unpublished color features were also extracted in the work reported by 

Keyvan (2005) after segmentation of RGB flame images. These features were correlated to 

air/fuel ratio obtained within a multiple burners glass furnace. 

More complex spectrometric devices were also investigated to obtain additional 

information about chemical species within the combustion chamber. Allen et al. (1983) 

used infrared spectrometers and neural networks to estimate the flame temperature inside a 

utility boiler. An infra-red spectrometer has also been used by Yamaguchi et al. (1997) as a 

sensor to detect the air/fuel ratio of a premixed flame in a gas boiler. Finally, Romero et al. 

(2005) have reviewed the application of VIS-IR spectrometry to provide real-time flame 

stoichiometry and temperature measurements at the burner level in natural gas-fired glass 

furnace applications. 

An important issue with most of the grey scale and color imaging techniques 

reviewed above is that the flame geometrical and luminous properties are extracted directly 

in the image space. Hence, every incoming image needs to be segmented in order to 

identify the pixels belonging to the region of interest (i.e. the flame) from which 

combustion features are calculated. In industrial combustion systems, the air and the fuel 

are non-premixed and the flames are highly turbulent. The flames bounce around 

continuously, change location, size, and shape even if they release the same amount of 

energy. Thus, using traditional image space segmentation approaches requires spending 

important computational efforts in tracking flame properties (i.e. location in the image) that 

are not fully relevant for estimating heat released.  

A more efficient method was first proposed by Yu and MacGregor (2004), 

investigating a liquid waste boiler, and later applied by Szatvanyi et al. (2006) to a rotary 

kiln fired using two fuels where one was a process by-product. They have shown that using 
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Multivariate Image Analysis (MIA) for extracting information from RGB images of 

turbulent flames was a very effective method, since segmentation is rather performed in a 

feature space (i.e. transformation of the original image) where image pixels are classified 

according to their colors (i.e. spectral signature) regardless of their location within the 

image. These color features were demonstrated to be closely related to the heat released by 

the combustion system. Hence, two flame images collected under similar combustion 

conditions (i.e. releasing similar amounts of heat) will have very similar spectral 

characteristics within the feature space, even if their shape, size and location within the 

combustion chamber is different. Segmentation in the feature space would be performed at 

only a few occasions; initially and every time the model is updated and not for every 

incoming image as is the case for the traditional image space segmentation approaches. In 

this research, Multivariate Image Analysis (MIA) will be used to extract relevant color 

features from RGB flame images that are the most highly correlated with steam production 

in biomass boilers. These concepts will be explored further in the remainder of this thesis. 

However, this work deals with different issues. As it has been mentioned, solid flow 

creates more disturbances in the flame images. As seen on Figure 6, two images taken one 

second apart will have a very different appearance without releasing a different amount of 

energy. To our knowledge, this problem has never been investigated in the past with 

biomass boilers even though it is increasingly being used in industries.  

 

 

A  B 

Figure 6: Flame images from inside Irving’s bark boiler taken A) at time t B) at time t + 1s 



 

CHAPTER 3 DESIGN OF INDUSTRIAL 
EXPERIMENTS AND DATA COLLECTION 

 

 

3.1 IRVING PULP AND PAPER’S BARK BOILER IMAGES 
The methodology presented here can be applied to any biomass boiler but the proof 

of concept will be made on Irving Pulp and Paper’s bark boiler. Therefore, their bark boiler 

will be presented in this section. 

Every combustion process needs to be equipped with a system that allows the 

operator to know whether the combustible is burning or not. This security requirement 

ensures the safety of the process by preventing accumulation of unburned combustible 

inside the combustion chamber which could lead to an explosive situation. Some systems 

have scanners that give analog signal to the operator but most of the combustion processes, 

including Irving’s bark boiler, are equipped with high temperature cameras looking inside 

the boiler giving thus a visual feedback on the flame to the operator. As shown on Figure 7, 

Irving Pulp and Paper’s bark boiler has two cameras. The first one is located on the third 

floor and looks across the grate where the bark is thrown. The second one is on the fifth 

floor located under the fossil fuels burners looking down at the grate. 
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Figure 7: Location of the two high temperature cameras on Irving’s bark boiler (A) with the 
view provided by both camera on fifth floor (B) and on third floor (C) 

 

The image shown in Figure 7B is taken from the 5th floor camera and shows the 

combustion of bark on the grate, viewed from the top. The second image (Figure 7C) was 

taken by the 3rd floor camera, and provides a side view of bark combustion on the grate. 

The 3rd floor camera has a limited field of view while images from camera on fifth floor 

shows a better field of view even if located over the arches of the boiler. Both high 

temperature video cameras (Quadtek M530) provide 8 bit RGB images with a spatial 

resolution of 576768 pixels. 

 

 

3.2 DESIGN OF INDUSTRIAL EXPERIMENTS 
A series of experiments were performed on bark flow rate and properties as well as 

on the fossil fuel flow rates (i.e. oil and natural gas) in order to generate a rich database for 

building dynamic models for steam production rate. These tests were conducted in June 

2008 at Irving’s Pulp and Paper mill. 
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3.2.1 FOSSIL FUELS EXPERIMENTS 

The objective was to vary the flow rate of fossil fuels to quantify their influence on 

steam production. However, bark is the less expensive combustible and was burnt at all 

times except under very special circumstances. It was burnt during the experiments made 

on fossil fuels. Bark properties and feed rate were maintained as constant as possible during 

the fossil fuel experiments. Bark flow and properties are hard to control, and these were 

obviously changing during these experiments as they usually do during normal operation. 

The changes made on fossil fuels were therefore made large to distinguish their 

contribution to steam production from that of bark. Tests were made on both fossil fuels 

(i.e. natural gas and oil) and data were acquired at a sampling rate of 10 seconds.  This was 

the fastest sampling rate available from Irving Pulp and Paper’s data archiving system. 

 

3.2.1.1 NATURAL GAS TESTS 

Tests on natural gas were performed on the afternoon of June, 17th 2008. No natural 

gas was used until the beginning of the tests. Only then, natural gas was burned using one 

of the four gas burners. Its flow was increased so the contribution of the natural gas on the 

steam production was around 40 kilo pounds per hour. At the beginning of the test 

(between 1000-2000 seconds) shown in Figure 8, bark flow was reduced and natural gas 

flow rate was increased to make the effect of natural gas clearer, but changes in both were 

made such that steam production remained approximately constant (i.e. both fuels were 

varied according to their respective heat of combustion, but total heat released is about the 

same). These conditions were kept steady for about half an hour, long enough to let the 

process stabilize. Then, step changes were made on natural gas. Without changing any 

other variables, the natural gas flow was doubled. Because the pressure of this new flow 

would have been too high in one burner, two burners were used. Once again, everything 

else was kept steady until the process had reached a new steady-state and then, the natural 

gas flow was returned to its initial value until the end of the test.  
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Figure 8: Natural gas experiments 

 

3.2.1.2 OIL TESTS 

The next day (June, 18th 2008), the tests on oil, the other fossil fuel normally used at 

Irving P&P, were made as shown in Figure 9. Once again, bark was also used throughout 

the test duration, which was implemented similarly as for natural gas. Note that the oil flow 

meter seems inaccurate since the oil flow value is 1.2 before the test started even if no oil 

was burnt. The test started by lowering bark flow rate and increasing oil flow rate (burnt 

using one of the four burners). As for the natural gas test, steam production was maintained 

at about the same level through an appropriate balance between the two fuels. Both 

combustibles were kept constant for about half an hour to let the process reach steady-state. 

Step tests on oil flow rate were then implemented first by increasing oil flow rate by a 

twofold factor and kept at that level until the new steady-state was achieved. Then oil flow 

was returned to its initial and the test was stopped after stabilisation. The step change on oil 

flow rate in percentage was smaller than the one on natural gas since oil is more difficult to 

burn. Therefore, the variance of steam production introduced by bark is more important 

compared to what it was in the natural gas test.  
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Figure 9: Oil experiments 

 

3.2.2 BARK EXPERIMENT 

Bark is different from fossil fuels. This solid combustible can change in two ways. 

First of all, as it was the case with natural gas and oil, its flow can vary. The main 

difference between biomass such as bark and fossil fuels lies in the fact that biomass 

properties can also be different from time to time. Unlike any fossil fuel whose composition 

is very stable and well known, bark properties such as carbon content and humidity that are 

constantly changing are most of the time unknown. Therefore, since two factors can have 

an impact on steam production, two kinds of test were made. Indeed, the moisture content 

as well as the carbon content needs to be changed along with the bark flow and that, for 

each combination of properties. This section will describe the way the properties of the 

bark are changed. The results of the tests made on bark will after that be explained. 
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3.2.2.1 CHANGING BARK PROPERTIES 

The series of tests performed on bark did not focus on flow rate only, but also on its 

properties to test whether changes in its combustion energy could be detected using the 

proposed imaging approach. Bark moisture and, therefore, its carbon content were changed 

simultaneously so any situations would be represented. The operation during summer, 

winter as well as other seasons was simulated by adjusting moisture content in the bark fed 

to the boiler. 

Different types of bark stock piles are maintained at Irving P&P plant, each having a 

different composition (bark, sawmill dust, wood chip rejects, pieces of fiberboard) and 

moisture content, allowing the operators to introduced designed disturbances in bark feed 

properties. The two mostly used bark piles are the covered bark which is dry, and piled 

bark which is subject to weather conditions, and therefore is wet. Sawmill dust and wood 

chip rejects are continuously mixed with the bark feed to the boiler. Therefore, changing 

the amount of moisture in the feed is relatively easy. The ratio of dry/wet bark fed to the 

boiler is changed by adjusting the relative amount of dry and wet bark the loader driver 

pours into the bin located at the beginning of the process. For example, a ratio dry:wet of 

3:9 means that for each bucket of dry bark loaded into the bin, 3 similar buckets of wet bark 

are loaded into the bin as well. 

Changing bark moisture content seems straightforward, but following the bark path 

from the yard to the boiler will help understand the difficulties associated with changing 

bark properties. First, the bark is taken in the yard by a loader and the desired recipe is 

charged into the reclaim container. The screening stage is the following step. The accepted 

bark then goes in another bin. This last bin feeds the conveyor that brings the bark to the 

boiler’s screw feeders. 

  According to Irving’s operators, bark takes about 5 minutes to go from the reclaim 

container through the screening stage, to the bin. From the bin, the different conveyors then 

take an additional 2 minutes to bring this bark to the boiler. Considering the residence time 

within both bins, changing bark recipe (i.e. moisture) takes about half an hour to reach the 

bark boiler. Therefore, the bark mixtures are not changed very often. If the operator 

observes that the bark is too humid, the short term solution does not rely on changing the 
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bark mixture, but temporarily burning fossil fuels.  This will have to be taken into account 

when a control strategy will be put online. 

 

3.2.2.2 BARK TESTS RESULTS 

Those tests were performed using no other combustibles but bark. The amount of 

moisture in the bark feed was progressively changed from 12:0 (dry bark) to 3:9 (very wet 

bark). Bark flow rate was also changed when moisture content allowed it. Indeed, when the 

bark feed is too wet, increasing flow rate may kill the fire on the grate since most of the 

available energy within the combustion chamber would be used for drying the wet bark, 

lowering the temperature to a point where combustion is no longer possible. A description 

of each test will be given. 

On the morning of June 20th, 2008, the two wetter bark mixtures were fed in the 

boiler. These tests are shown in Figure 10 C) and D) for dry:wet mixtures of 4:8 and 3:9, 

respectively. Step changes were made around 4000 seconds during the 4:8 mixture to 

investigate the effect of bark flow rate steam production when bark is wet. However, bark 

flow was quickly resumed to its initial value since the bark was pilling up on the grid 

instead of burning. The fire was being killed by the high moisture content. The wettest bark 

mixture (3:9) is shown in Figure 10 D). Bark flow was maintained constant during the test 

since any variation would affect steam production. 

Two drier mixtures were also studied. The driest one, the 12:0 mixture, was fed 

during the morning of June 18th, 2008 and the results are shown in Figure 10 A). The 

positive step change is followed by a decrease in steam production. According to the 

operator, this phenomenon is due to the sudden lower amount of bark fed. The temporarily 

insufficient amount of bark on the feeding conveyor did not allow the increase of the 

amount of bark fed inside the boiler. The last mixture, using equal amount of dry and wet 

bark (6:6), is the one normally fed in the boiler. All the tests when bark was fed were based 

on this mixture, except when the mixture was varied as discussed above. A representative 

period of time (afternoon of June 18th 2008) was selected for illustration purpose and is 

shown in Figure 10 B). A few steps changes on bark flow rate were also implemented when 
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feeding 6:6 mixture. The increase of the screws speed results into a higher steam 

production. When looking at the bark flow-steam production dynamics, it is clear it has a 

more complex, apparently non-linear, behaviour compared to that of fossil fuels since bark 

dynamics depends on its physical properties. It mostly depends on bark moisture content, 

which varies with time, as well as the degree of filling of the screws. 
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Figure 10: Bark tests from drier to wetter mixtures (A) 12:0 (B) 6:6 (C) 4:8 (D) 3:9 
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3.3 PROCESS DATA AND IMAGE ACQUISITION 
During each dynamic experiment, images and process data were acquired. Digital 

RGB images were extracted from the video captured using both cameras. The effective 

capture rate was 1 frame every 1 or 2 seconds which was the fastest rate the camera could 

record images. All measurements routinely available through the boiler instrumentation 

were also collected (10 seconds averages), including temperatures, air and fuel flow rates, 

water temperature and steam pressure and flow rate. In total, 154 300 images and 34 564 

observations on 320 variables were collected. The number of images and data available for 

each test is shown in the following table. 

 

Table 2: Information available for each test 

  

Observations available 
for each variable 

Images available from 
each camera 

Natural gas 1000 8789 Fossil fuels 
tests Oil 800 3749 

12:0 1150 10107 

6:6 1400 12705 

4:8 600 5086 

Bark tests 
(from dryer 
to wetter) 

3:9 800 7243 

 

Preliminary test were made to identify the important process measurements 

(variables). A PLS model (Erikson et al., 2006) showed that 28 variables were the most 

important for the prediction of steam production. The criterion used for this selection was a 

statistics known as the variable importance on projection (VIP). The reader is referred to 

Erikson et al. (2006) for details on the VIP statistic. The variables that had a VIP higher 

than 1 were considered the most important in the model. This rule of thumb is typically 

used in the chemometrics literature (Erikson et al., 2006). The following table shows the 

most important process variables as well as the tag number and a short description. 

Although it should have an important impact on combustion and steam production, grate 

vibration frequency could not change during the tests at Irving. 
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Table 3: Important TAG number and description 

TAG description 
TAG 

number 
TAG description 

TAG 
number 

FEEDWATER FLOW CONTROL 53FC102.PV #1 BARK FEEDER AMPERES 53II3306.PV 

NORTH UNDERGRATE AIR 
FLOW CONTROL 

53FC107.PV #2 BARK FEEDER AMPERES 53II3307.PV  

SOUTH UNGERGRATE AIR 
FLOW 

53FC108.PV #3 BARK FEEDER AMPERES 53II3308.PV 

BARK  BOILER OIL FLOW 53FC143.PV #4 BARK FEEDER AMPERES 53II3309.PV 

BARK FEEDERS FLOW 53FC300.PV 
CONDENSATE FROM 
STRIPPING COLUMN FLOW 

50FC2236.PV 

#4  BARK FEEDER FLOW 53FC311.PV RED AVERAGE (cam3) - 

NATURAL GAS FLOW 53FC567.PV COLOR AVERAGE (cam5) - 

SOUTH REAR UNDERGRATE 
AIR FLOW 

53FC620.PV RED AVERAGE (cam5) - 

NORTH REAR UNDERGRATE 
AIR FLOW 

53FC623.PV GREEN AVERAGE (cam5) - 

DNCG FAN DISCHARGE FLOW 53FI857.PV BLUE AVERAGE (cam5) - 

TOTAL BARK AIR FLOW 53FX087.PV FUEL OIL TEMP 53TI090.PV 

TOTAL UNDERGRATE AIR 
FLOW 

53FX088.PV STEAM DRUM TEMP B 53TI161.PV 

TOTAL NORTH UNDERGRATE 
AIR FLOW 

53FX107A.PV STEAM DRUM TEMP C 53TI162.PV 

TOTAL SOUTH UNDERGRATE 
AIR FLOW 

53FX108A.PV STEAM DRUM TEMP D 53TI163.PV 

 

 

 



 

CHAPTER 4 MULTIVARIATE IMAGING 
TECHNIQUES 

 

 

4.1 APPROACH OVERVIEW 
This section will give an overview of the proposed approach. As shown in Figure 

11, the design of experiments allowed gathering images and data. Images were first 

extracted from the captured videos and then synchronized with the process database. Useful 

features are extracted from the score density histogram obtained using principal component 

analysis (PCA). Images features are combined with process data to build input and output 

data matrices for regression (XMIR and Y). The model built is then analyzed and is 

modified iteratively if the predictive performance is not satisfactory until the final model is 

obtained. 
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Figure 11: Overview of the proposed Multivariate Imaging Approach for predicting steam 
production 

 

The procedure used for extracting image features, involving PCA and score 

histograms (called Multivariate Image Analysis, MIA), for generating input and output data 

matrices reflecting process dynamics, and for building the regression model will be 

explained in more details in this chapter. 

 

 

4.2 MULTIVARIATE IMAGES ANALYSIS (MIA) 
Multivariate Image Analysis (MIA) was originally proposed by Esbensen and 

Geladi (1989) as a very effective method for extracting color, or more generally, spectral 
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features from multivariate digital images (i.e. images having several color or spectral 

channels). Since color features are the most interesting characteristics for predicting steam 

production, this method is presented in this section. 

 

4.2.1 DIGITAL IMAGES 

Images captured by both cameras are RGB images. An RGB image, also called a 

true color image, is captured by a camera equipped with a charge couple device (CCD) 

sensor made from an array of photosensitive sensors (semiconductor material) of a given 

rectangular size, each defining one single pixel within the resulting image. To capture the 

three-color images, the CCD has three types of sensors, some sensitive to the wavelengths 

corresponding to the red color, the green, and the blue colors. The sensors are distributed 

on the CCD according to the Bayer pattern. When the incoming light from the scene 

reaches the CCD sensor, a photo-electric effect converts the energy of the light (intensities 

within a wavelength range) into a proportional accumulation of electrical charges. When 

the camera exposure time is completed (user-defined), each sensor of the CCD is 

discharged (in parallel) and an electric current results. An analog to digital converter takes 

the analog signal (i.e. discharge electric current), and converts it into a digital signal, which 

are integers varying from 0 to an upper value defined by the converter resolution (the 

number of bits of the camera). For example, an 8-bit camera will describe light intensity 

into 256 grey levels (i.e. 0-255). All these numbers are organized according to their original 

position on the CCD sensor which allows creating an image of the scene. Once the image is 

captured, a signal is sent to the computer for recording.  

Once digitized, these images become a 3-way array of data X (xyλ), with two 

spatial dimensions (i.e. x and y) defining the pixels of the image (i.e. discretization of the 

scene), and a third (λ) containing the light intensities at each wavelength as captured by the 

camera CCD as shown in Figure 12. The resolution of the RGB images (3 channels) 

captured by both cameras used at Irving P&P is 576×768 (height×width). Therefore, the ith 

RGB combustion image is Xi (5767683). 
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Figure 12: Image digitization 

 

4.2.2 PRINCIPAL COMPONENT ANALYSIS (PCA) 

Each image is then reorganized into a matrix Xi (xy)3 by collecting the RGB 

color intensities of each pixel row-wise as shown on Figure 13. Each reorganized image Xi 

has now 576768 rows (i.e. as many as the number of pixels of the original image), and 3 

columns for the red (R), green (G), and blue (B) intensities of each pixel.  
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Figure 13: Unfolding operation of an array X into a matrix X before applying PCA 

 

When applied to a single image, the next step in MIA consists of applying Principal 

Component Analysis (PCA) on the image matrix Xi. This particular step finds the 

orthogonal direction where the most variation into the data is observed. PCA is based on 

the same principles as performing singular value decomposition (SVD). Since the matrix X 

has as much as 442,368 rows (i.e. 576738), SVD is rather performed on the XTX matrix 

instead. The XTX matrix is of much lower dimensional matrix which, therefore, is 

advantageous for computation efforts and results in the same principal directions as if PCA 

was directly applied to X. This is called the kernel algorithm (Geladi and Grahn, 1996). To 

illustrate the method, a 3-D plot can be created using the values of red, green and blue 

intensities for one image as the three axes. 
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Figure 14: 3-D plot representing the distribution of red, green and blue intensities for each 
pixel of a combustion image 

 

As it can be seen in Figure 14, where each point represents one single pixel of the 

original image, the pixels of an image are oriented in a certain direction allowing the 

reduction of the number of dimensions of the 3-D plot. The direction of the most variation 

into the 3-D plot is called a loading vector p1 while the second direction of the largest 

source of variation into the data that is also orthogonal with p1 is called the loading vector 

p2. The third direction, also perpendicular to the first two, which would represent the third 

direction, would be the last loading vector p3. Adding a third dimension to the first two 

would be the same as performing a rotation of the original axes. PCA or SVD of X (or 

XTX) allows computing the loading vectors p1, p2 as well as p3. The projection of the data 

(X) onto these principal directions are called the score vectors and are obtained by 

projection (i.e. ti=Xpi). Mathematically, the PCA decomposition is represented as 

followed. 
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where A is the number of principal components, the ta vectors are the score vectors and the 

pa vectors are the loading vectors. As explained earlier, the loadings are orthonormal 

vectors defining linear combinations of the RGB color intensities explaining most color 

variations in an image; p1 is oriented in the direction of the greatest amount of variance in 

the RGB color space whereas p2 is the linear combination explaining the second greatest 

source of variance, and so on. The fact that the pixels are already oriented in a certain 

direction allows, once again, a space reduction from a 3-dimensional space onto a 2-

dimensional space (i.e. the plane defined by the first two components). Since most of the 

information contained within RGB images is generally captured using 2 components 

(A=2), this leaves the 3rd dimension in the PCA decomposition residuals E. Dimension 

reduction for RGB images it typically less important than for multi- or hyper-spectral 

images. Since any color is some linear combination of RGB intensities, the loading vectors 

are defining a new two dimensions color space. Those two vectors (not of unit length on the 

image for visualisation purpose) are shown in Figure 15. 

 

p1

p2

 

Figure 15: Loadings vectors p1 and p2 together define a plane in 3 space. 

 

Note that, in general, when using PCA on a data matrix, the latter is mean-centered 

and scaled in some way, typically to unit variance, in order to explain variations about the 
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mean of the variables, and to attribute equal importance to each variable which usually 

have different engineering units. In the case of images, mean centering and scaling is not 

necessary since the mean light intensities are meaningful (i.e. changes in mean color from 

image to image is important to capture) and the various color channels are measured in the 

same units and span a similar range (i.e. 0-255 for a 8 bit image). 

 

4.2.3 SCORE DENSITY HISTOGRAMS 

As discussed above, each pixel of the 3-D plot can be projected onto the plane 

defined by the first two new directions (principal components). The scores are, in fact, the 

new coordinates of each point on this new plane whereas the residuals E correspond to the 

distance of each observation off that plane (i.e. orthogonal projection error). The score 

vectors (i.e. ta = X pa) can be interpreted as color intensities in this new color space. 

 

Since score plots contain as many points as number of pixels of the image (i.e. 

576768 = 442,368), it is a common practice to enhance the visual appearance of these 

plots by displaying them as density histograms discretized into 256256 bins (Esbensen 

and Geladi, 1989; Geladi and Grahn, 1996; Yu and MacGregor, 2004), as shown in Figure 

16. To do so, the scores are first scaled so their values become integers between 1 and 256 

using the following equation. 
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   (5) 

Where k represents the principal component number and i represents the 

observation number (i = 1..442,368). 
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To obtain the score density histogram for one image, the range spanned by T1 and 

T2 is first discretized using a 256×256 rectangular grid. Each bin of the grid corresponds to 

a particular combination of T1 and T2 values. The count of the number of pixels having a 

given T1-T2 combination is stored in the appropriate position within a 256×256 square 

matrix H. The hi,j element of matrix H contains the total number of pixels having a T1-T2  

combination corresponding to position (i,j) in the grid. This matrix can be represented as a 

density histogram, which is simply the 2-D joint density distribution of the first two scores. 

A hot color map is used to indicate pixel density (represented by element hi,j) for each T1-

T2 combination; black means zero pixels and white means highest pixel density.  

 

 

Figure 16: Score plot density histogram for a particular bark combustion image. 

 

When MIA is to be applied to a set of J images, obtained, for example, during a 

design of experiments, as it is the case with this project, the orientation of the plane used to 

project the pixels (i.e. the loading vectors) as well as the scaling range of the score vectors 

t1 and t2 need to be common for all images of the set in order to make a comparison 

possible between images (i.e. score density histograms for all images are congruent). Using 

the scaling range on t1 and t2 allows the reference to be the same which let the different 

combinations of t1-t2 to represent the same color in the original image and this, despite the 

image. 
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A common PCA model for J images is obtained by applying PCA on the kernel 

matrix (Xi
TXi), i=1,2..,J (Geladi and Grahn, 1996; Yu and MacGregor, 2004). This yields 

a global model of all J images with a single common set of loading vectors. Score vectors 

are again computed, for each single image, as ta,i = Xi pa. 

 

4.2.4 IMAGE FEATURE EXTRACTION USING MIA 

The MIA approach classifies the pixels according to their color features instead of 

their position in the original image. However, the location of the pixel in the original image 

is stored in memory which allows going back and forth from the score plot to the original 

image and so on to see what color is represented by different regions of the score plot, and 

therefore, to explore the information contained in the images. The t1-t2 score plot is used to 

explore the image color features using MIA in a very similar way as when PCA is used to 

analyze process data. Score scatter plots reveal the presence of clusters of observations that 

are similar in a multivariate space. In image analysis, such a plot shows clusters of pixels 

(observations) sharing similar colors or spectral features. 

 

Score density histograms therefore provide an unsupervised classification of pixels 

according to their color (or spectral signature) regardless of their location in the original 

image. For example, two regions of the histogram shown in Figure 17 have been selected 

(see purple and green masks in Figure 17B) and all pixels having t1-t2 values falling within 

these selected regions are shown in the flame image of Figure 17C using a color overlay. 

Clearly, all pixels falling under the purple and green masks belong to the luminous and the 

non-luminous regions of the flame image, respectively.  
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Figure 17: Multivariate Image Analysis: A) t1-t2 score density histogram of a combustion 
image, B) masks capturing pixels of similar colors, C) overlay of pixels falling under each 
mask and capturing the luminous (purple) and the non-luminous (green) regions of the bark 
combustion flames 

 

Moreover, since pixels were classified individually according to their color only 

(i.e. the spatial inter-correlation of the pixels was not taken into account), another flame 

image having a similar color distribution but different flame shape, location or size, would 

have a very similar score density histogram. This is important in this case since we are 

mostly interested in heat released by the combustion (i.e. color distribution) rather than 

flame geometry. This shows a clear advantage for MIA over traditional imaging 

techniques, which would require segmenting the flame region in the image space every 

time and more computational efforts would result from this first step. Indeed, since the 

important information is in the flame color and not in the flame location in the original 

image, MIA provides a fast way to extract color features. Moreover, the common set of 

loadings and scaling range for the scores imply that the various regions of score plot 

represent the same color characteristics for every image. Therefore, the flame luminous 

region will always be at the same place in the score plot resulting in less computational 

efforts since this spot has to be found only once (or once every time the model is updated 

with new data). When the flame has been isolated for one image, it has also been isolated 

for all the other images. Furthermore, some aspects of flame geometry are also captured by 

MIA. For example, flame size is related to the number of pixels belonging to the luminous 

region. 
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4.3 MULTIVARIATE IMAGE REGRESSION 
Once the images have been collected, a model between images and steam 

production need to be built. Some problems need to be solved first. This section will cover 

the problems that need to be overcome as well as their solutions. The structure of the 

various dynamic models tested in this project will then be described. The way to use those 

models to get a forecast on the steam production a few steps ahead (i.e. minutes) will also 

be covered. 

 

4.3.1 REGRESSION DIFFICULTIES USING BARK COMBUSTION 
IMAGES 

The main issues before building a regression model arise from 1) the very different 

dimensionality of the images versus steam and process data, 2) the noisy nature of bark 

images requiring some averaging of the image features, and 3) synchronization of the 

images and process data. These issues will be discussed in turn. 

 

4.3.1.1 DIMENSIONALITY ISSUE  

For each sampling time, a multivariate combustion image (i.e. array or matrix of 

data) and a scalar measurement of steam production are available. The dimensionality 

difference between those data is something to be resolved before using those matrices. 

Indeed, the image array has 3 wavelengths (corresponding to the red, green and blue 

intensities for each pixels) that represents each pixel of the spatial resolution of the original 

image which is 576768. The dimensions of each matrix containing the information on 

each image are thus 5767683. Although the multivariate image is first transformed into a 

score plot density histogram (which is divided in 256×256 (65 536) bins), reducing the 

dimensions of the array from a 3-way array to a matrix, a difference with the steam 

production dimension (a scalar) still exists. Therefore, formulating a regression problem 

between multivariate images and some response variables requires solving this 
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dimensionality issue first. It mainly involves computing a row vector of relevant image 

features from the score density histograms. Various alternative methods for doing this were 

explored in details by Esbensen et al. (1992) and Yu and MacGregor (2003, 2004). 

The relevant characteristics likely to be correlated with the steam production are 

extracted from the score plot density histogram. A vector of image features are typically 

computed from the score density histograms. This vector can be combined with some 

process data altogether in a regressor matrix XMIR (np) and used in a regression model to 

predict a set of response variables, here steam production Y (n1). The image features used 

in this research are similar to those proposed by Yu and MacGregor (2004). First, a mask is 

constructed for the segmentation of the luminous and the non-luminous regions of the score 

plot of each combustion image. While the pixels that fall inside the mask are considered to 

be part of the luminous region, the pixels of the score plot that do not fall inside the mask 

are considered as being part of the non-luminous region. The two masks shown in Figure 

17 were drawn for illustration purpose only, but these are very close to those used for 

extracting the image features. The final mask is created in the score space and the related 

pixels falling into this mask are highlighted in the original image. This is done a few times 

until almost all the pixels of the luminous area are highlighted by the mask which is now 

considered precise enough to be selected as the one used for the analysis. This mask M is a 

squared matrix having the same dimensions than the score density histogram (i.e. 

256×256). The selected regions of M have a value of 1 while the non selected regions have 

a value of 0. The 9 following features are then computed using the score density histogram 

of each combustion image, according to Yu and MacGregor (2004). 

1. Luminous features 

1.1. Luminous region area (A) defined as the total amount of pixel having the same 

color then the bins under the defined mask where the numbers hi,j are the 

numbers of pixels falling at a particular position (i,j).  

,
,

              ( , ), 1i j i j
i j

A h i j m  ,     (6) 
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1.2. Flame brightness (B) is obtained by first converting the score space into a grey-

scale plane (L) instead of a color plane. The conversion coefficient vector helps 

convert the RGB signal into a corresponding intensity (Matlab Image 

Processing Toolbox, MathWorks, Natick, MA) 

 , ,

0.299

R G B 0.587

0.114
i j i j

l

 
   
  

  (7) 

where [R G B]i,j is computed using the following equation. 
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The sum of all the luminous intensity levels of each pixels falling inside the 

luminous area is then computed as the flame brightness. 

, , ,
,

             ( , ), 1i j i j i j
i j

B h l i j m     (9) 

1.3. Uniformity of flame brightness (U) defined as the standard deviation of the 

flame brightness throughout the luminous region. 
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1.4. Average brightness of the non luminous area (W) calculated as the brightness 

of the non-luminous area divided by the total amount of pixels of this region. 
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2. Color features 

2.1. Average color of the whole flame image along the first (s1m) and the second 

principal components (s2m) 
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, ,
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where N is the total amount of pixels within the images. 

2.2. Average color of the flame luminous region (s1f, s2f) which is the same features 

as the one described in 2.1 but specific to the luminous region. 
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2.3. Number of color of the luminous region (Nc) computed using the following 

equation. All the regions under the mask where at least one pixel is falling are 

considered as one color inside the luminous region.  

, ,
,

1              ( , ), 0c
i j

N i j h  i j i jm   (14) 

 Each one of those 9 features are computed for each combustion image and stored in 

a matrix. 
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4.3.1.2 UNSTEADY BARK FEED ISSUE 

As it has been already mentioned, bark flow is highly variable compared to liquids 

or gases. Indeed, a flow delivered by a pump is continuous and could be precisely measured 

if required using flow meters. Unlike liquids and gases, solids are delivered using 

conveyors and screw feeders. Moreover, solid material particles do not disperse themselves 

making sure all the space available is used evenly. Solid particles stay where they were put 

which results in an unequal distribution of the particles in the available space. This brings 

an unsteady combustible flow to the boiler. Indeed, conveyors, where a non homogeneous 

distribution of bark lays, bring the bark to the screw feeders that throw it in a discharge 

from where it is then blown on a grid, resulting in a very non homogeneous “lumpy” bark 

feed flow rate to the boiler.  

This creates rapid movements of the flame appearance as was shown in Figure 6. 

The temperature inside the combustion chamber, however, does not change as quickly as 

the flame, and part of the high frequency variations in the combustion does not affect steam 

production due to the large thermal inertia. To filter out some of these high frequency 

variations, the flame characteristics extracted from small number of consecutive images 

were averaged. The number of images taken for the averaging will be discussed in the 

results chapter. The corresponding process conditions were also averaged over the same 

time periods to maintain information consistency with respect to the images. 

 

4.3.1.3 TIME SYNCHRONIZATION 

Since the link needs to be found between XMIR (containing information on images 

or on both images and process data) and Y which is the steam production, the time of the 

rows in the X matrix have to be synchronized with those of Y. Therefore, images, process 

data and steam production were all synchronized prior to constructing these matrices. The 

process data and steam production were all acquired using the same system and are already 

synchronized. Images, however, were collected using a different system, had to be 

synchronized with data. Therefore, the image taken has the one synchronized with the data 
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as well as with the steam production was chosen to be the one which acquisition time was 

either the same or lower than the data’s acquisition time. Since the acquisition time were 

most of the time slightly different, the image acquisition time was more often chosen has 

the time that gave the smallest difference between the process data and the image 

acquisition time as long as that difference was not higher than 4 seconds. Therefore, the 

image was acquired first which is consistent with the fact that if a disturbance is introduced 

in the boiler, the flame appearance should change before the steam production. Indeed, 

considering the observation of the flame appearance gives an idea on the following steam 

production, images have to come first. 

 

4.3.1.4 REGRESSION MATRICES CONSTRUCTION SUMMARY 

Many problems have to be solved before having matrices ready for modelling. 

Those issues have been presented separately and this section will give a summary of all the 

different steps in chronological order as presented in Figure 18. First, images and process 

data were synchronized. To resolve the dimensionality issue, image features were 

computed from each image and a matrix XMIR was then built using image features and 

process data. Since the bark flow is lumpy which created too much variability in the image 

features, the matrix X(t) was averaged using m images which yields . This averaged 

matrix is now ready for the modelling. 
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Figure 18: Matrix construction summary 

 

4.3.2 MULTIVARIATE IMAGE REGRESSION AND DYNAMIC 
MODELLING 

The fundamental underlying relationship between two variables can be found using 

the appropriate balance equations. Taking into account every factor that can have an impact 

on the system formed by those two variables will result into a series of equations leading to 

the exact relation between the two considered variables. However, this method is easier to 

apply in theory where the amount of variables involved are more limited than in practice. 

Using balance equations to find the dynamic of a real process is harder since a large 

number of variables often needs to be considered and some phenomena may be unknown or 

difficult to quantify, such as energy lost in the process, or simply because it is not 

measured. For those reasons, empirical dynamic model identification approaches are often 

used in the process industries.  

The identification of a process model is usually done using iterative method. An 

initial model structure is first chosen, either the simplest one or based on a priori 
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knowledge of process behaviour. Then, some process data are used to find the model 

parameters and the other part of the process data available is used to validate the model. If 

the results are good on both sets of data, then the iterative process ends. In this research, the 

predictive ability in validation, measured by the multiple correlation coefficient (R2), was 

taken as the criteria to maximise. On the other hand, if the model performance is not 

satisfactory, the model structure is modified and the parameters have to be re-estimated and 

validated until an acceptable model is obtained. Therefore, model validation is very 

important since it confirms the capacity of the model to perform on new sets of data. A 

model could have a very good fit on data used to find the model coefficients because those 

coefficients are too numerous and overfitting of those particular data occurs. However, the 

model fitness in validation may be poor since those new data have not been used to build 

the model. It is therefore important to select a model structure that allows a good fit of the 

data, but general enough to maintain fitness on data sets not used to build the model. 

In this research, two non-parsimonious dynamic model structures were preliminary 

studied for relating images and process data to steam flow rate. Finite impulse response 

coefficients were obtained using the following two structures: the output error (OE) model 

and the exogeneous variable auto-regressive (ARX) model (Ljung, 1999). The model 

parameters were estimated using PLS regression in both cases (Duchesne and MacGregor, 

2001). Both structures provided good identification results based on the available data. 

Those two models will be presented in this section for a single-input single-output first, and 

then for the multi-input case. The results will be discussed in the results chapter. 

 

4.3.2.1 OUTPUT ERROR (OE) MODEL  

The first model tested in this research is a very simple one. The model used is based 

on the discrete structure called output error. The modelled output y is a function of the 

current and past values of the input variables x. The number of past values is chosen 

according to the process settling time. The general structure is shown using equation (15).  
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where the y(k), x(k) and e(k) correspond respectively to the steam production, the inputs 

containing whatever information required and the noise taken at each sampling time noted 

here k. The B(z-1) = b1(z-1)+b2(z-2)+...+bnb(z-nb) and F(z-1) = f1(z-1)+f2(z-2)+...+fnf(z
-nf) 

symbols are polynomials in the backwards shift operator (z-1) whereas z-d is the process 

dead-time. Note that in this work, the coefficients resulting from the long division of the 

numerator and denominator polynomials are estimated rather than the coefficient of the 

polynomial themselves (i.e. y(k) = B*(z-1)z-dx(k) + e(k)). The number of past input 

variables to use (also called lags) need to be sufficient to cover the process settling time. 

Moreover, when a prediction is needed, the error term is set to 0. Therefore, if we consider 

no dead time, the prediction of the y is shown in the equation (16). 

 

1 2ˆ( 1| ) ( ) ( 1) ... ( 1)ny k k b x k b x k b x k n          (16) 

 

where all the b’s are the coefficient of the regression estimated using PLS regression. The 

latter is an alternative to Multi-Linear Least-Squares Regression (MLR) improving the 

estimation of impulse response coefficients (i.e. the b’s) in presence of collinearity 

(Duchesne and MacGregor, 2001). Since the columns of the regressor matrix are past lags 

of the input variables, collinearity is generally present even with an orthogonal design of 

experiments. The amount of past x’s used will be determined in the results chapter. A 

prediction for additional steps ahead can be obtained using this structure. This prediction is 

computed using the equation (17) where n is the number of past input lags used in the 

model and where d, the dead time, is considered to be 0. 
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1 2ˆ( | ) ( ) ( 1) ... ( 1)ny k p k b x k p b x k p b x k n            (17) 

 

Since the information is available until sampling time k, all the inputs beyond this 

time need to be estimated using either some assumptions about future variations or using 

mathematical equations describing these if available. The results using this structure will be 

discussed in the next section. 

 

4.3.2.2 EXOGENEOUS VARIABLE AUTO-REGRESSIVE (ARX) MODEL  

The second model tried is based on the controlled auto-regressive structure. Once 

again, this structure is discrete and can be used with the sampled data available at Irving 

P&P. This model is similar to the OE structure, but allows for a colored noise model to be 

identified, that is the output y is computed as a function of past values of y and x. The 

number of past input and output lags to use in the model can be different from one another, 

but both of them are selected through the same iterative procedure. The general 

parsimonious ARX model structure is shown in equation (18). 

 

1 1( ) ( ) ( ) ( ) (dA z y k B z z x k e k    )   (18) 

 

The difference with the OE structure is that polynomial A(z-1) = a1(z-1)+a2(z-

2)+...+ana(z
-na) becomes a common auto-regressive component for both the process transfer 

function as well as the noise model. Non-parsimonious identification of impulse response 

coefficients for the ARX structure consists of building regression matrices for which any 

row expresses the current output y(k) as a function of past values of x and y. Once again, 

when a prediction is needed, the error term e(k) is set to 0. Therefore, the prediction, 

considering no dead time, of the y is shown on the equation (19). 
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1 1ˆ( 1| ) ( ) ... ( 1) ( ) ... ( 1)ny nxy k k a y k a y k ny b x k b x k nx              (19) 

 

where nx and ny correspond to the number of past input and output lags, respectively. The 

a and b coefficients are again estimated using PLS regression. The numbers nx and ny used 

will be determined in the results chapter. This structure also allows to compute prediction 

for more steps ahead. This prediction ŷ will be a function of the past x’s and y’s as well as 

the estimated x’s until x(k+p-1). 

 

4.3.2.3 STRUCTURE FOR MULTIPLE INPUTS 

The OE and ARX structures were presented for a single input variable only. Some 

modifications need to be made when using multiple inputs as it is the case here. Since the 

matrix X has more than one column (i.e. 9 image features and 28 process data), the 

equation becomes the following: 
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 where a1,...,any are equal to 0 when using the OE structure. 

Note that the dead-time (i.e. z-d) was considered to be the same for all inputs since it 

was smaller than the sampling rate used to build the dynamic models. 
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4.3.2.4 BUILDING MATRICES SUMMARY 

 The PLS regression technique is used in this project. This linear regression 

technique involves a regressor matrix XMIR, containing the past input/output lags of each 

variable, and a response matrix Y containing the variable to be predicted. How these 

matrices were obtained is shown in Figure 19. 

  

 

Figure 19: Building the XMIR and Y matrix summary 

  

 Using those matrices, the regression coefficients are estimated using PLS and the 

performances of the resulting model are analyzed. 

 

4.3.3 STEAM PRODUCTION PREDICTION  

The main objective of this research is to be able to predict steam production so an 

action can be taken to stabilize the steam production before it is affected by the different 

disturbances. Different approaches can be used to get predictions a few steps ahead. One of 

them is to develop a model as described in the previous sections and use the structure of 

this model as well as the coefficients found to make a prediction of the output a few steps 
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ahead. This method requires the development of mathematical equations based on the 

original model found. 

In this work, it was decided to construct a lagged structure matrix XMIR with respect 

to Y and the coefficients of this new model were then computed with PLS. The lags were 

selected by trial and error, to maximise predictive ability.   



 

CHAPTER 5 RESULTS AND DISCUSSION 
 

 

This section presents and discusses all the results obtained in this work. First, the 

dynamics between each combustible and steam production will be shown. This will serve 

as preliminary tests to help understand the behavior of the process and determine the 

structure of the final model to be found. The reader will also see that simple ARX models 

can be used to model steam production by both fossil fuels. However, steam produced 

using bark is harder to model using only a simple ARX structure and images could lead to a 

better model. Therefore, models based on each camera will be shown and the performance 

of each one will be analyzed and compared to see whether both cameras or only one of 

them help predict steam production by bark. It will be shown that process data give enough 

information to model the natural gas and oil behavior but some important pieces of 

information are missing when only bark is used. It will be shown that images complement 

process data by providing supplementary information. A strategy using simple ARX 

models for fossil fuels contributions on steam production and a more complex model using 

images and data for the contribution of bark on steam production will be explained. Finally, 

the final model will be shown and its performance will be discussed.  

 

 

5.1 STEAM PRODUCTION DYNAMICS FOR DIFFERENT 
FUELS 

Identifying the relationship between the manipulated variable and the variable to be 

controlled involves trying different models. Among all the data available, a certain amount 

should be kept aside from the identification procedure and used as testing data to see how 

well the model performs on data that were not used to identify it, a procedure called 

validation. The data chosen as being part of the validation set needs to have values inside 

the range of the values used to build the model. The model’s parameters can also be 
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compared to the information already available on the process and it is important that the 

model agrees with measurements. Any model can be tried but some models could be better 

for some process. To know what model to try first, all the information already available on 

the process to be identified needs to be used.  

In order to identify the relationship between a manipulated variable and a variable to 

be controlled, significant changes are required on the manipulated variable according to 

some designed experiments minimizing the correlation among the manipulated input 

variables and unforeseen events (i.e. disturbances). A change is considered significant when 

a valuable change is observed in the variable to be controlled due to the variation in the 

manipulated variable and not only due to the presence of noise in the process. To identify 

the relationship between the flow rate of each fossil fuel and steam production, two steps 

changes have been made on the natural gas flow and the oil flow (manipulated variables) 

and even if bark was also burnt during this period of time, its flow was as constant as 

possible. The values of the steps were chosen according to normal values used at the mill. 

However, some disturbances such as changing bark properties were unavoidable and this 

explains some of the noise observed in the steam production flow rate (variable to be 

controlled). As shown in Figure 20, the amount of noise introduced by the use of bark 

seems more important during the oil test (B) than during the natural gas test (A), since the 

oil step change released less energy. However, the results are still reasonable.  
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Figure 20: Single-input single-output dynamic identification results between the flow rates 
of natural gas (A), oil (B), and bark (C) and steam production using ARX models 

 

The dynamics between bark flow rate and steam production is harder to capture 

using bark flow rate as the single input. When using only bark, as it was the case during the 

period of time shown in Figure 20 C, the fluctuations in steam production are greater 

compared to when fossil fuels were used. No validation data was kept for the bark dynamic 

model since there was an insufficient amount of data where the effect of bark flow rate only 

could be isolated from other changes and disturbances. Fossil fuels were used at a few 

occasions during this period and changes in bark properties such as heat of combustion 

were observed. However, the main objective of this section of the thesis is to get a rough 

idea of the dynamics of the three fuels and, therefore, validation was not so critical at this 
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point. Note that the initial variations in model predictions are due to initial conditions, 

which were determined based on a much larger dataset. Again, the models identified in this 

section were built with the only goal of obtaining a rough idea about the dynamics of the 

fuels. 

The initial models used to build a dynamic relationship between steam production 

and the various fuels were based on a first order exogeneous auto-regressive (ARX) model 

structure. These models were identified in their parsimonious form using the Matlab 

Systems Identification Toolbox. A few other model structures were tried but steam 

production depends on the past operating conditions which means that if the boiler is cold, 

the steam produced by a certain flow will be different from the steam that could be 

produced if the boiler has been on for a long time, the ARX model was found to be the 

better one. 

Using an ARX model to identify the dynamic between both fossil fuels flow rate 

and the steam production gives good results. Indeed, looking at Figure 20, it can be seen 

that the predicted steam production calculated using the ARX model is representing the real 

steam production properly. The performance of both models is shown in Table 4. 

Considering the higher variability of the steam produced when using oil due to the fact that 

a higher percent of steam was produced using bark, poorer results were expected for oil 

identification.  

The time constants () and gains for the first order transfer functions identified for 

each test are provided in Table 4. Considering the uncertainty range, these were found to 

vary between 1.5 and 2.5 minutes. The percent explained variance (or multiple correlation 

coefficients R2 traditionally used in statistics) in fit and on validation data are also provided 

in this table. Time delays were very small for each fuel tested and were therefore neglected. 

As seen in Table 4, the time constant of each test is about the same. 
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Table 4: Natural gas, oil and bark identifications results 

Fuel tested 
Fit R2 
(%) 

Validation 
R2 (%) 

τ (min) Gain  

Natural gas 82.9 91.2 1.80±0.45 0.9±0.2 kpds/KSCF 

Oil 71.2 78.0 1.35±0.25 13.1±3.0 kpds/ kpds 

Bark 45.8 - 1.30±0.35 6.5±2.2 kpds/tons 
 

Those dynamics between each combustible will help having an idea on the best way 

to build the final model. For example, knowing that the time constants were found to be 

between 1 minute and 2 minutes and 30 seconds and that to cover the dynamic at least 5 

data samples are needed during one time constant, one data every 12 to 30 seconds is 

needed. Those sampling times were tried and 30 seconds was selected. Shorter sampling 

times did not increase the predictive ability of the models. Moreover, a sampling time of 30 

seconds simplifies the synchronization of images with the data sampled at a rate of 10 

seconds, which is a factor of 30 seconds.  

 

The results shown in this section indicate that simple models (i.e using flow rates 

only) could be used to describe fossil fuel dynamics contribution to steam production. 

However, when bark is used, alone or in combination with fossil fuels, a more complex 

model is required since the bark flow rate alone is insufficient to determine the amount of 

steam produced by the bark. Indeed, the value of the flow is inaccurate and does not give 

information on the changing properties such as the carbon content. Therefore, another 

sensor will have to be used to extract this information. In this research, images are proposed 

as a new area sensor to have indirectly this information.  
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5.2 DIFFERENCE BETWEEN BOTH CAMERAS 
As mentioned, Irving P&P’s boiler is equipped with two high temperature cameras 

each providing a different field of view of the combustion taking place within the boiler. As 

shown in Figure 7, the camera located on the third floor of the boiler gives a perpendicular 

view of the grate while the camera located on fifth floor looks down at the grate where the 

bark is burning. Some tests were made to investigate the predictive ability obtained with 

combustion images gathered using both cameras. Periods of time where only bark was 

burning were taken to build models of steam production by bark. This includes the bark 

moisture and flow rate tests discussed previously. In this section, only images were 

considered in the XMIR matrix (no process data was used nor past outputs). The image 

features used in XMIR were averaged using the current and the past two images. Ten past 

lags of those averaged images taken at 30 seconds intervals were used to build the model. 

That is, a history of 300 seconds (5 minutes) was used in the models for predicting current 

steam production rate. The modeling results using both cameras are shown in Figure 21. 
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Figure 21: Dynamic model identification results for bark tests based on each camera 
separately (one step ahead predictions). A) 5th floor camera; B) 3rd floor camera. Dots 
correspond to measured steam production and solid lines to model predictions. 

 

The percent explained variance of steam production by the models (i.e. R2), both in 

fit and validation and for each camera, are presented in Table 5. The number of latent 

variable (LV) chosen for each model is also presented. The number of LVs was selected 

using a leave-group-out cross-validation procedure (Eriksson et al., 2006). The 5th floor 

camera provided the best results, with about 70% of variations in steam production (i.e. 

training set) explained by the images only, and slightly above 50% on the validation set. 

Some discrepancies between the measured and predicted steam flow are observed in Figure 

21A, particularly on the validation data. Some efforts to improve these results, by adding 

information into the model, will be shown in the next sections. However, when compared 

to the results obtained with the 3rd floor camera, it is clear that the images provided by the 

5th floor camera are more informative, most likely due to a better field of view of the bark 
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combustion zone. Nevertheless, the 3rd floor camera captures most of the trends and 

supports the assumption that combustion images will be very useful in capturing 

disturbances in bark combustion. The 3rd floor camera was not investigated further and only 

the 5th floor camera images will be used in the remainder of this thesis. The camera on the 

3rd floor is less information rich, and provides redundant information compared to the 5th 

floor camera. A model using both cameras was also tried without any improvement of the 

predictive ability and the decision was taken to use the 5th floor camera only.  

 

Table 5: Comparison between camera 5 and camera 3 performances 

Camera 
Number 

of LV 
Fit R2 
(%) 

Validation 
R2 (%) 

5th floor 7 69.9 53.5 

3rd floor 7 59.4 24.9 

 

Some improvements have been brought further to see if the model built using the 5th 

floor camera could be improved. The results presented in this section covered only those 

periods when bark was burned. It will be shown that, although images are essential for 

capturing the contribution of bark for steam production, these images provide little 

information when fossils are burned. Adding process data to the models will prove to be 

useful for situations when fossil fuels only, or in combination with bark are used for 

producing steam. 

 

 

5.3 DIFFERENCE IN THE INFORMATION PROVIDED BY 
IMAGES AND PROCESS DATA 

Most of the time, models are built using information provided by traditional sensors, 

such as temperature, flow, pressure and concentration measurements. In this research, 
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predicting steam production will require using both process data and images. This section 

will establish the difference between the information given by both sources. 

To illustrate the difference between the information given by process data and 

images, a model has been build using only process data. This will show that some of the 

crucial information, such as variations in carbon content and other biomass properties, are 

not carried by process data. Another example is the inaccurate biomass flow rate 

measurements. A model was built using only process data in the XMIR matrix. The 

variables used in this model are those described in Chapter 3. The lag structure used for 

data was similar to the one used for images, that is ten past lags for each variable, taken at 

intervals of 30 seconds, were used to build the model. The information on each process data 

at time t-30, t-60 and so on until t-300 seconds were thus collected into the XMIR matrix to 

build the model. Periods of time where the three main combustibles were burned are used 

to build the model. The results are shown in Figure 22. 
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Figure 22: One-step ahead prediction model built using process data only (steam produced 
using natural gas or oil and/or bark) 
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As observed in this figure, the results of the model built using 7 latent variables are 

fairly good on the training data set, where a R2 in fit of 83.2% was achieved. The model is 

then applied to a validation set and a much lower R2 of 28.0% was obtained. Some on the 

variation were not captured by this model. Indeed, the validation data are not represented 

by the model properly. The disturbances brought by the bark flow or the changing moisture 

content are not captured by the model because those values are either inaccurate or 

completely missing in the datasheet, and therefore, this model seems to lack robustness. 

 

On the other hand, some information was also missing when the model was built 

using only images, as was observed in Figure 21 (on a different data set including only 

bark, no fossil fuels). Information not provided by images but available from process data 

includes the effect of variables such as temperature of the feed water, air flows, etc. Better 

results could be obtained combining images and process data. 

 

Therefore, the information provided by images and process data is different but 

complementary. Process data give information on the temperature of the different flows, the 

values of those flows as well as any other useful value that can be quantified such as 

information on temperatures or water feeding rate. On the other hand, those data do not 

provide precise information on bark flow, and very little or no information about bark 

moisture and other properties such as combustion energy. As mentioned, bark flow is 

calculated using the screw feeders’ speed which is an approximation of the real flow rate. 

To illustrate the inaccurate calculated bark flow, a situation where the calculated bark flow 

rate is steady but where the steam produced varies widely is presented in Figure 23A. A 

comparison is made on Figure 23B with a critical situation where the steam production had 

to be steady. In critical situations, operators stabilize the steam production by lowering the 

amount of bark fed inside the boiler. The steam is therefore produced using fossil fuels. In 

this particular situation, natural gas was used.  
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Figure 23: Comparison of steam production variability when using bark only (A) and a 
combination of bark and natural gas (B)  

 

As it is shown, the variability of steam production is lower when fossils are used 

compared with the situation where only bark is fed. The more the percent of steam is 

produced using fossil fuel and the lower the steam variability is. The variability can be 

quantified using the standard deviation. In the case shown on Figure 23A), the standard 

deviation is 20.43 which is a value higher than in the case where natural gas was used since 

the standard deviation of the steam production shown on Figure 23B) is 5.99 which is 4 

times smaller. Therefore, the bark calculated flow is inaccurate since the flow varies much 

more leading to important variations in steam production.  
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In addition to have inaccurate values, process data also have missing information. 

Indeed, the heat of combustion of the bark is an unknown value that changes according to 

the amount of carbon inside. The bark flow and the amount of energy it contains are both 

important data. This information is given within the images. Indeed, it was shown that the 

flame appearance is highly correlated with the heat it releases (Yu and MacGregor, 2004; 

Szatvanyi and al., 2006). Thus, using images allow this important information to be 

available. Whenever an unmeasured disturbance is introduced by bark, the image will 

provide information on those variations. Therefore, process data gives information on fossil 

fuel and images and process data are needed for bark contribution on steam production. 

 

 

5.4 IMAGES FOR BARK CONTRIBUTION ONLY 
Irving P&P boiler is fed using three different combustibles. Therefore, the total 

steam production is the sum of the contribution of each of them, thus requiring 

incorporating more information into an overall dynamic model for predicting total steam 

production. However, increasing the number of input and output variables generally leads 

to a more complex model and a greater level of difficulty to identify. The easiest way to 

build a model is always to try simplest structure first. Then add complexity as required to 

obtain a satisfactory model. To build a dynamic model for steam production when more 

than one fuel is used, it was decided to identify each of the three models separately after 

decoupling the contribution of each fuel. 

It was shown that single-input single output first order ARX models were sufficient 

for describing the dynamics between the fossil fuel flow rates (inputs) and steam 

production. Hence, these two models (one for oil and the other for natural gas) could allow 

computing the contribution of fossil fuels to steam production. Unlike bark, the stability of 

fossil fuels makes them easily described by simple first order models since those two 

combustibles are well understood. Indeed, their properties such as the flow or the heat of 

combustion are known accurately allowing the estimation of the heat released by each of 

them. However, a very different situation occurs when using bark since its flow rate and 
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heat of combustion are either inaccurate or unavailable and need to be found in a different 

way. For this reason, first order ARX models could be used to compute the contributions of 

the fossil fuels on steam production and a separate, more complex model could be build 

using images and process data to get the contribution of bark. The use of these three models 

in parallel would naturally lead to predict the total amount of steam produced. 

Moreover, another argument in favor of this approach is the fact that the 5th floor 

camera is located underneath the fossil fuel burners and therefore, should only provide 

information about bark contribution. Hence, it was decided to use the ARX models for the 

fossil fuels to predict their contribution to total steam production. These contributions were 

then subtracted from total steam produced which should, in theory, provide a good estimate 

of bark contribution. The more complex model for bark (using data and images as 

discussed in previous sections) could be developed using this estimate, therefore 

decoupling the identification of the models for each fuel, even if they were used 

simultaneously. This strategy was tested with little success. The combustion images shown 

in Figure 24 will help understand why the results were not conclusive. 

 

 

A  B 

Figure 24: Comparison of bark combustion images without (A) and with (B) natural gas 
burned simultaneously (images were taken by the 5th floor camera) 

 

Shown in Figure 24 are two situations where the bark flow feed rate and recipe (i.e. 

ratios of stockpiles) is similar. The image on the left shows combustion of bark alone. The 

image on the right represents a situation where the same amount of bark is burned but A  
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where natural gas is simultaneously burned using two of the four auxiliary burners. As it 

can be seen, the resulting images are different. When using both fuels, the flame (Figure 

24B) is a lot brighter especially on the top right corner. This is due to the natural gas flame. 

Even if the 5th floor camera is located underneath the auxiliary burners (used for oil and 

natural gas), the distance between the burners and the camera is not sufficient to allow bark 

combustion alone to be visualized in the images. Therefore, the light created by the 

combustion of the natural gas illuminates the boiler’s walls. As those walls can be seen 

within the field of view of the 5th floor camera, the resulting images contain some 

information on fossil fuels as well. Since this information cannot be removed from the 

image color intensities, the images contain redundant information about the effect of fossil 

fuels and this leads to overestimate the contribution of bark to total steam production. The 

information provided by the image about fossil fuel combustion are not sufficient for 

building a single model based solely on images for predicting steam production under any 

combinations of the three main fuels. However, it is important enough to justify building a 

single, more complex model, in which the contribution of oil, natural gas and bark are 

identified simultaneously. Therefore, the final model is a complete model including the 

effect of all combinations of bark, natural gas and oil used in practice on steam production. 

Such a model relies on both process data and images of the combustion chamber. 

 

 

5.5 FINAL MODEL 
The final model was built using a matrix X containing the 9 images features as well 

as 28 process variables (i.e. before including lags). Those variables were found in a 

preliminary analysis to be important for predicting steam production. Data were taken for 

each situation when combustion was made using either natural gas and bark, oil and bark or 

only bark but with different amount of moisture in it. Therefore, a single model is built for 

all three fuel combinations used in practice. Building a separate model for each situation 

only led to marginal improvements. 
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The one step ahead prediction results for total steam production are shown in Figure 

25, for both the output error (OE) structure (Figure 25A) and the ARX structure (Figure 

25B). As it was the case for the previous dynamic models, ten lags of matrix X were used 

to build the XMIR matrix. The lag intervals where again selected to be every 30 seconds and 

each data inside the matrix X was an average of the current data and the 2 previous data 

acquired at time t-10 and t-20 seconds. Models with increasing number of output lags were 

built for the ARX structure, but the one shown in Figure 25B has only one past lag of the 

output y. The choice of one past lag for the output will be discussed later in this section. 
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Figure 25: Results of simultaneous identification of dynamic models for all three fuels 
using the OE structure (A) and the ARX structure (B). One step ahead predictions are 
shown. The ARX model uses one past output lag. 
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The results of those models are promising as shown in Table 6. The results for the 

ARX model are a lot better since the autoregressive noise model embedded within its 

structure captures some of the structure information unexplained by images and process 

data. This model heavily relies on the output lag and it becomes easy to predict the steam 

production at time t when the previous steam production is known.  

 

Table 6: Comparison of the performance of the final models  

Structure
Number 

of LV 
Fit R2 
(%) 

Validation 
R2 (%) 

OE 9 89.0 55.6 

ARX 30 99.9 99.8 
 

The choice of having only one output lag is arbitrary. However, adding more output 

lags has been tried. The ARX model using ten past lags for the inputs but an increasing 

number of output lags were built and their predictive ability in fit and validation are shown 

in Figure 26. 
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Figure 26: Prediction ability (R2) of the various ARX models with increasing number of 
output lags 
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Based on Figure 26, the ARX model predictions remain fairly constant after adding 

one past output lag. Therefore adding more lags only increases the model complexity but 

only results in marginal improvements in the results. Only one output lag will be used for 

the rest of this thesis. 

 

To assess the forecast ability of those models, the OE and ARX model structures 

were applied for predicting steam production up to p future time steps (p=1,2,…,10) using 

the images and data available up to current time. Each step ahead corresponds to a 

prediction 30 seconds in the future (i.e. 5 steps ahead = 2.5 minutes in the future). To do 

this, matrices were built using the same structure than the one shown previously. The 

matrix XMIR was built based on the recursive structures. Since the predicted steam 

production is made for p steps ahead in the future, as shown by Equation 17 for the OE 

structure (an equivalent expression for the ARX model is also available), assumptions on 

how future values of the input data (i.e. images and process data) would behave in the 

future is required. In this work it was assumed that future data and images would remain 

constant and equal to last measurement collected on them (i.e. at current time). Therefore, if 

poor bark is fed to the boiler, the operator will have an early warning of what could happen 

in p steps if the bark quality does not improve. This approach requires re-estimating model 

parameters using, once again, PLS regression. The predictive ability of both model 

structures (OE and ARX) in fit and validation are presented in Figure 27 for p=1,2,…10 

steps ahead. 
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Figure 27: Model predictive ability for several steps ahead forecast of steam production 
using the OE structure (A) or the ARX structure (B) 

  

It can be observed that prediction performance reduces progressively as prediction 

horizon increases. This situation was expected since if new set-point changes or 

disturbances are introduced in the process in between current time t and time t+p (p steps 

ahead forecast), this information is not considered in the model. Variations occurring 

during this period may not be fully explained by the images and data collected up to current 

time. After discussing with Irving P&P’s engineers, it was found that, in practice, if their 

operators were warned at least 2 minutes in advance that steam production upsets will 

occur due to changes in bark properties, this would leave a sufficient amount of time to 

react proactively. However, the performance improvement obtained by using these 

forecasts into an advanced control scheme needs to be quantified. The 5 steps ahead 
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forecast corresponds to this situation in which steam production is predicted 2.5 minutes in 

the future. The fit and validation results for both OE and ARX structures are acceptable up 

to 5 steps ahead. Model predictions for p=5 are provided in Figure 28. Their R2 statistics 

are also given in Table 7. 
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Figure 28 : Steam production 5 steps ahead forecast using the OE structure (A) and the 
ARX structure (B) (steam produced using natural gas or oil and/or bark) 

  

Table 7: Comparison between both model performances in prediction (5 steps ahead) 

Structure
Number 

of LV 
Fit R2 
(%) 

Validation 
R2 (%) 

OE 13 86.7 54.5 

ARX 24 93.6 70.1 
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The results of the ARX model are generally better, especially on validation data, 

since it captures more variations in steam production. These results were expected because 

current steam production is correlated with previous values of steam production due to the 

boiler thermal inertia. If the boiler is cold and the combustibles are fed at their maximum 

values to increase the steam production, the value will not be as high as if the boiler would 

have been running for a long time. Therefore, the process seems likely to be described by 

an auto-regressive structure. However, this model seems to react more strongly to certain 

situations. For example, at a time of approximately 7.5x104 seconds, an increase in the flow 

of the wettest bark mixture was tested. This almost killed the fire on the grate, and led to a 

sudden drop in steam production. The ARX model clearly underestimates steam production 

in this situation compared to the OE model which prediction was much closer to the 

measured steam production. Further long-term validation of the models is required to 

confirm which dynamic structure performs best in terms of predictive ability and 

robustness. The autoregressive disturbance of the ARX model seems to exaggerate certain 

situations such as the one discussed previously. 

 



 

CHAPTER 6 CONCLUSION 
 

 

Combustion is a process used in most industries such as in chemical industries 

where boilers are used to produce steam for the process or in metallurgical industries where 

rotary kiln are used to dry or to change a property in the material. The rising cost of the 

combustibles mainly used in combustion processes, which are fossil fuels, as well as 

environmental issues surrounding the use of those products are undeniable reasons for 

industries to change the combustible used. Biomass is nowadays a combustible frequently 

used instead of fossil fuels.  

The biomass (bark) boiler operated by Irving Pulp and Paper’s is one example 

which was used in this study to illustrate the opportunities offered by combustion imaging 

techniques. Their boiler is now mainly fed with bark. Bark is a solid fuel with some degree 

of moisture which feed rate and heat of combustion are highly variable. The high sources of 

variations brought by the use of a solid product such as bark forces the improvement of the 

control strategy normally used with fossil fuels combustibles. This research program aimed 

at developing combustion monitoring tools for biomass boilers, to help react to combustion 

disturbances in a very proactive and efficient manner through innovative automatic control 

schemes. 

This was accomplished by performing an extensive review of boiler operation and 

control in chapter 2. This allowed the understanding of the process including the general 

operation of a fossil fuel boiler as well as the differences when using bark as a major 

combustible. Once the difficulties and issues surrounding the operation of biomass were 

identified (chapter 2), some basic possible improvements on the process were raised. In 

order to overcome the difficulties when using any kind of solid biomass as the main 

combustible in a boiler, a new control strategy was also suggested based on previous work 

also presented in chapter 2. Indeed, the changing properties of the combustible that cannot 

be easily quantified force the operation of a biomass boiler to be significantly different 
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from the operation of a boiler fed with fossil fuels. The main purpose of this work was to 

identify a new control strategy based on machine vision approach that could detect 

disturbances related to the biomass unsteady flow and/or changing properties using images 

already available on the site. Irving’s bark boiler is already equipped with two high 

temperature video cameras. The images that are now only used to help the operators to 

know whether bark is burning well or not based on a view of the combustion chamber. The 

basic technique used to analyze images which is called MIA for multivariate image analysis 

is explained in details in chapter 4 as well as the different regression techniques used to 

related images and process data with the steam production which are developed in chapter 

5. The different results of this research are shown is chapter 6. 

In this research, we have shown that combining multivariate RGB images of the 

combustion chamber, relevant process data and chemometrics methods such as principal 

component analysis (PCA) and partial least square (PLS), allows achieving good 

predictions of steam flow rate when applied to a bark boiler (i.e. a typical biomass boiler). 

Using a controlled auto regressive (ARX) model type which requires having information on 

the past gives very good results (R2
fit=93.6% and R2

val=70.1%). Moreover, it was shown 

that this model could be used to forecast variations in steam production up to 2-3 minutes 

in the future with very reasonable accuracy. This should give some time for the operators to 

react proactively to these incoming combustion disturbances. Such a model could be 

incorporated within a new biomass boiler control strategy for stabilizing steam production. 

 

A proof of concept that steam production can be predicted using bark combustion 

images has been made in this research. This project is the starting point for the 

development of a new control strategy for biomass boilers. Indeed, since steam production 

can be predicted using an image sensor, some work on the design and implementation of 

such a control strategy based on this new machine vision sensor can be pursued. Future 

work could include an analysis on the advantage for the operators to have a prediction of 

the steam production. Indeed, these techniques using multivariate image analysis have not 

yet been tested on real industrial time-varying processes. Some tests could therefore be 

made during a short period of time to see if the use of an on-line steam production 
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prediction based on the model built in this research would improve the efficiency of the 

boiler. Indeed, the prediction obtained by this model could help reduce the use of fossil 

fuels and contribute to stabilizing steam production. A comparison of the boiler 

performance could then be made between the situation where the operator has this helpful 

tool which is a predicted steam production that would occur if he doesn’t change anything 

in the process and the previous situation where the operators did not had access to this 

information. Moreover, since no industrial application of control scheme has been installed 

yet using information gathered using MIA, this research would not be complete without 

considering the implementation of an eventual automatic feedback control scheme on this 

bark boiler. Indeed, a complete system of feedback process control based on the model 

developed in this research could be installed so the correction of the process could be made 

automatically, thus helping to reduce the impact of the combustion disturbances brought by 

the time varying bark properties. As soon as the tolerance limits of the fire intensity would 

be reached, the monitoring system based on the MIA model would adjust the speed of the 

screw feeders or other manipulated variables to make sure that heat released (indirectly 

measured by image color intensities) would remain steady. Then and only then, the power 

and the economical advantages of this approach would be quantified and highlighted. 



 

CHAPTER 7 RECOMMENDATIONS 
 

 

Some improvements can be made to ensure a better stabilisation of the process. This 

section will give a description about the possible improvements that would get the boiler 

operation better such as improving the images quality, having a steadier bark flow and 

moisture or making useful changes into the operation.  

 

 

7.1 IMAGES QUALITY AND LOCATION 
The importance of image quality is crucial and could be improved. Two things 

could help having better images. First, more frequent cleaning of the camera lens and 

mirror (used by the 5th floor camera) could help enhance image quality. Since the model is 

built using information on images relatives on color properties, the sharper the colors are 

and the more the relevant information taken from those images are useful. The resulting 

final model would probably be better when it comes to predicting changes due to a 

variation in heat released by the bark due to a change in its quality or its feed flow rate. 

Even if the best results were obtained with the 5th floor camera, it was found difficult to 

obtain a good contrast with this camera compared to the 3rd floor camera, which do no 

make use of a mirror. 

Finding the best location of the high temperature cameras could also be investigated 

further. As mentioned, the information given by the camera located on third floor provides 

less information due to the fact that the field of view is limited to a small portion of the 

grate where the fire occurs. For this reason, the images captured are not as representative of 

the whole combustion process as the 5th floor camera is and, therefore, does not provide as 

much information for modelling purposes. The same argument can be applied to the camera 

located on fifth floor. Even if images provided by this camera are given a field of view big 
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enough to be useful, some improvement would lead to a greater image. Indeed, its location 

could be changed from its actual position which is over the arches. Those arches are 

limiting the field of view provided by the camera. Locating the camera under these arches 

could provide a complete view of the bark combustion area. The resulting images would 

then show the whole combustion zone providing an even more representative field of view 

of the fire. The information taken from those images would then be more precise leading to 

a better model.  

Positioning the camera below the arches could also help simplifying the models. 

Indeed, as mentioned in the results, since images contain information on bark as well as on 

fossil fuels combustion, the model built is a general model including bark and fossil fuels. 

However, the heat released by both fossil fuels is easier to compute since their properties 

are well known and are stable. The relative steam production is then easy to obtain based 

on the relevant flow rates. For this reason, the contribution of fossil fuels to steam 

production could be removed from the model built using images. The steam produced by 

fossil fuels could be subtracted from the total steam produced and images could be used to 

predict the steam produced by the bark only. The resulting model would be simpler and 

may be more precise. Installing the camera below the arches would focus even more on 

bark combustion and remove any information about fossil fuels. Indeed, the camera being 

under the arches, the burners where both fossil fuels are fed would have less effect on the 

lighting of the images taken by the camera. The images collected closer to the grate might 

help give a better account of bark combustion on the grate. 

 

 

7.2 BARK FLOW 
An important source of disturbance in this process is due to unsteady bark flow. The 

screw feeders that feed the bark to the boiler are not always full which brings uncertainty 

about the bark flow and variations in the steam production. Bark is already a combustible 

that brings many disturbances. Indeed, its properties such as its moisture or its carbon 

content are continuously changing. Reducing disturbances at the source may contribute 
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significantly in achieving a steady steam production. The unsteady flow is one of the 

disturbances that come with the use of bark as a combustible. Indeed, since this solid is 

feed using a screw feeder, the flow is a calculated value based on the screw feeder speed 

assuming they are completely full. In addition to flow measurement uncertainties, some 

design modifications may be implemented to help delivery steadier biomass flow such as 

incorporation of laser detector to measure the fullness of the screw feeders. 

 

 

7.3 BARK MOISTURE CONTENT 
Bark moisture is an important parameter since it has a direct impact on the boiler 

operation. The air feeding strategy should be different according to the bark moisture. To 

increase efficiency, the amount of air fed in each section under the grate should be changed 

depending upon whether the bark is wet or dry. On-line moisture sensors could be used to 

track these variations before bark is fed in the boiler so the proper air feeding strategy could 

be adapted by the operators in a timely fashion. 

 

 

7.4 AIR FLOW CONTROL STRATEGY 
The combustible flow is used as the manipulated variable to control steam drum 

pressure. The appropriate air flow is determined based on fuel flow. Considering that bark 

flow is calculated according to the screw feeder speed assumed completely full, the amount 

of air may often be too high. This lowers the combustion efficiency because the excess of 

air cools down the combustion chamber and a part of the heat produced is not used to 

evaporate the water but is used to heat up the air inside the combustion chamber. For this 

reason, the air flow should be set according to a more accurate measurement such as the 

steam pressure set point. The screw speed could then be adjusted to meet the steam 

production required regardless on the carbon content of the bark flow. 
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ANNEXE 1: MATLAB SCRIPTS 

SCRIPTS SUMMARY 

Some of the MATLAB scripts used in this work are presented. A list of all the 

scripts presented as well as a short description is given. 

 Image extraction: Takes each video recorded from both camera and extracts each 
frame 

 Synchronization 
o Image time: Stores the time acquisition of each image 
o Data time: Stores the time acquisition of each data 
o Synchronizing images and data: Compared the image time and the data time 

acquisition and finds the tinniest difference as long as this difference is higher 
than 4 seconds. This is the synchronized image.   

 MIA 
o Finding score density histogram scaling: Finds the minimum and the 

maximum values of t1 and t2 relatives to each synchronized images  
o Building score density histogram: Takes each synchronized images and build 

the score density histogram (H) based on the same scaling  
o Luminous region finding: This script allows the user to display a score density 

histogram, choose a region of interest and highlight the corresponding pixels 
in the original image back and forth until the luminous region is found. 

o Computing image features: Takes each synchronized image, computes the 9 
image features and stores the values for each image in one row.  

 Building matrices 
o Averaging: Takes each row of the matrix X and replace it with the average 

value of the row k, k-1, ..., k-n+1. 
o Matrices XMIR and Y: Takes the averaged matrix X and build matrices XMIR 

and Y according to the dynamic needed (numbers of past inputs and outputs 
lags, prediction) 

 Regression: PLS regression between matrix XMIR and Y 
 

IMAGE EXTRACTION 

% Prend un film et le numérise en enregistrant les valeurs des pixels de 
% chaque image dans une structure. 
[nom, chemin] = uigetfile('*.wmv','Veuillez sélectionner le vidéo à numériser'); 
video_name = [chemin, nom]; 
cd(chemin) 
  
video=mmread(video_name,1:1,[],[],'disableAudio');%Pour estimer le nombre de frame dans le 
film. 
  
if video.nrFramesTotal < 0 % Lorsqu’on a une estimation elle est négative  
    frame_tot = -1*video.nrFramesTotal; 
else 
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    frame_tot = video.nrFramesTotal; 
end 
  
warning off 
sstep=400; 
compteur1 = fix(frame_tot/sstep);%On définit le nombre de structures qui vont contenir 
exactement sstep images. 
  
% Structures pleines (comportant sstep images) 
for i=1:compteur1 
     
    video=[]; 
    ii=1+sstep*(i-1); 
    video=mmread(video_name,ii:i*sstep,[],[],'disableAudio'); 
    nommatricevideo = sprintf('cam520080204%d',(i+1000));% On met (i+1000) pour que 
lorsqu'on voudra faire un film avec ces figures, la première figure du film soit la figure 1 
et non la 10... 
    save(nommatricevideo,'video') 
    i 
     
end 
  
  
%Dernière structure... 
if rem(frame_tot,sstep)~=0 %On s'assure qu'il y ait vraiment un histogramme incomplet. 
  
    video = mmread(video_name,((sstep*compteur1)+1):frame_tot,[],[],'disableAudio'); 
    nommatricevideo = sprintf('cam520080204%d',(compteur1+1+1000)); 
    save(nommatricevideo,'video') 
     
end 
  
  

SYNCHRONIZATION 

IMAGE TIME 

% Sortir les heures de toutes les images du film 
  
% Ouvre une fenêtre qui permet à l'utilisateur de choisir le fichier  
% dans lequel se trouve les images qui serviront à faire la régression. 
clear all 
  
fichier = uigetdir('C:\','Veuillez sélectionner le dossier contenant les images 
numérisées'); 
 
% Définir l'heure réelle de début du film 
display('Entrez date et heure du début du film') 
an = input('Année : '); 
mois = input('Mois : '); 
jour = input('Jour : '); 
heure = input('Heure : '); 
minute = input('Minute : '); 
seconde = input('Seconde : '); 
   
temps = []; 
contenu = (dir([fichier,'\','*','.mat'])); 
mat_contenu = struct2cell(contenu)'; 
[l,c] = size(mat_contenu); 
b=0; %Compteur pour changer de ligne dans imagesdufichier 
  
for i = 1:l 
    if mat_contenu{i,4} == 0 
        b = b+1;%À la fin de la boucle, b représente le nombre de matrice dans le fichier. 
        imagesdufichier(b,1) = mat_contenu(i,1); 
    end 
end 
       

 
 



 104
 

% Définir le cd pour la fonction imread. 
  
cd(fichier) 
for i=1:b 
     
    nomimage = char(imagesdufichier(i)); 
    z = load(nomimage); 
     
    if size(z.video.frames,2) ~= 0 
         
        a = ones(size(z.video.times,2),1); 
        debut = [an*a mois*a jour*a heure*a minute*a seconde*a]; 
        offset = [0*a 0*a 0*a 0*a ((0*a)-4*a) 0*a-32*a]; 
        images = [0*a 0*a 0*a 0*a 0*a z.video.times']; 
         
        real_time = debut + offset + images;  
  
        % Le temps des images est égal à celui enregistré dans la matrice conçue par mmread. 
À ce temps, on ajoute l'heure du début du vidéo et on soustrait l'OFFSET par rapport au PhD 
qui est de 4 minutes et 32 secondes. On obtient alors le temps synchronizé 
        format long 
        temps_images_syncro_PhD = datenum(real_time); 
  
        temps = [temps; temps_images_syncro_PhD]; 
    end 
end 
 
 
DATA TIME 

% Sortir les heures de toutes les données de production 
   
% Ouvre une fenêtre qui permet à l'utilisateur de choisir le fichier  
% dans lequel se trouve les images qui serviront à faire la régression. 
[nom, chemin] = uigetfile('*.*','Veuillez sélectionner le fichier excel'); 
fichier_name = [chemin, nom]; 
cd(chemin) 
  
[data, txt] = xlsread(fichier_name); 
  
a = size(txt,1); 
  
format long 
temps_data = datenum(txt(7:a,3)); 
 
 
SYNCHRONIZING IMAGES AND DATA 

% Trouver l'image qui est la plus proche de la donnée i tout en étant plus petite que 0 
(l'image doit venir avant la production de vapeur...) mais plus grande que -4secondes (le 
délai entre l'image et la production de vapeur doit être de moins de 4 secondes...) 
clear all 
  
format long 
% Images 
[nom, chemin] = uigetfile('*.mat','Veuillez sélectionner le fichier pour le temps des 
images','C:\'); 
nomcomplet = [chemin, nom]; 
cd(chemin) 
temps_images = load(nomcomplet); 
temps_images = temps_images.temps; 
temps_images = temps_images(:,2); 
  
% Données 
[nom, chemin] = uigetfile('*.mat','Veuillez sélectionner le fichier pour le temps des 
données','C:\'); 
nomcomplet = [chemin, nom]; 
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cd(chemin) 
temps_data = load(nomcomplet); 
temps_data = temps_data.temps_data; 
temps_data = temps_data(:,2); 
  
% Syncroniser les données 
  
delaimax = 4/(3600*24);% Un intervalle d'une journée représente 1. Pour avoir 9 secondes, il 
suffit de diviser 4 par (3600*24)sec  
syncro_results = []; 
  
for i = 1:size(temps_data,1) 
     
    % On trouve la différence entre le temps de la data i et tous les temps des images... On 
trouve ensuite la différence la plus petite tout en respectant les contraintes. 
    diff_temps = temps_data(i,1)*ones(size(temps_images,1),1)-temps_images; 
     
    for j = 1:size(diff_temps,1) 
        if diff_temps(j,1) < 0 
            % On s'assure que l'image vient avant la donnée de production 
            % de vapeur. Si la différence entre les 2 temps moins  
            % que 0 alors l'image est après et on l'élimine  
            diff_temps(j,1) = 1e10; % On met un gros nombre pour l'éliminer. 
        else diff_temps(j,1)> delaimax 
            % On s'assure que le délai entre l'image et la donnée est, au 
            % plus, 9 secondes... 
            diff_temps(j,1) = 1e10; 
        end 
    end 
  
    if min(diff_temps) ~= 1e10 
        % On s'assure qu'il y ait au moins une image qui réponde aux 
        % critères. 
        x = find(diff_temps == min(diff_temps)); % indice de l'image la plus près 
        syncro_results = [syncro_results; i temps_data(i,1) x temps_images(x,1)]; 
    end 
end 
 
  

MIA 

FINDING SCORE DENSITY HISTOGRAM SCALING 

clear all 
X = []; 
Z = zeros(3); 
  
t1min = realmax;% Valeurs assez élevées pour qu'elles changent au premier score calculé. 
t1max = -realmax; 
t2min = realmax; 
t2max = -realmax; 
  
question1 = 1; 
  
while question1 == 1 
  
fichier = uigetdir('C:\','Veuillez sélectionner le dossier contenant les images à 
comparer'); 
  
contenu = (dir([fichier,'\','*','.jpg'])); 
  
% Convertit la structure en une cellule de p*n*m (nombre de fields*nombre 
% d'images*1. 
  
mat_contenu = struct2cell(contenu)'; 
  
% On veut s'assurer de conserver seulement les images et non les fichiers  
% contenus dans fichier. 
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[l,c] = size(mat_contenu); 
a=0; %Compteur pour changer de ligne dans imagesdufichier 
  
for i = 1:l 
    if mat_contenu{i,4} == 0 
        a = a+1;%À la fin de la boucle, a représente le nombre d'images dans le fichier. 
        imagesdufichier(a,1) = mat_contenu(i,1); 
    end 
end 
       
cd(fichier) 
  
% On ouvre chaque image du fichier et on la transforme en une matrice de 
% trois colonnes (RGB) pour ensuite calculer la matrice de Kernel relative à 
% cette image (matrice de variance-covariance X'X). On peut alors trouver la 
% matrice de Kernel globale pour toutes les images. 
  
for i = 1:a 
    nomimage = char(imagesdufichier(i)); 
    RGB = imread(nomimage); 
    [largeur,hauteur,profondeur]=size(RGB); 
    X = double(reshape(RGB, largeur*hauteur,profondeur)); 
    Z = Z + (X'*X);   
end 
  
question1 = input('Y a-t-il dautres images à analyser? (oui=1)'); 
end 
% On applique une décomposition SVD. La matrice P contient les eigenvectors  
% de Z, PT est la matrice transposée de P et E est une matrice dont la  
% diagonale est composée des eigenvalues de Z.  
[P,E,PT] = svd(Z); 
  
% On peut maintenant trouver les scores (t) relatifs à chaque image et ainsi 
% trouver les extrémums de l'ensemble des images. 
question1 = 1; 
while question1 == 1 
  
    fichier = uigetdir('C:\','Veuillez sélectionner le dossier contenant les images à 
comparer'); 
  
    contenu = (dir([fichier,'\','*','.jpg'])); 
  
    % Convertit la structure en une cellule de p*n*m (nombre de fields*nombre 
    % d'images*1. 
  
    mat_contenu = struct2cell(contenu)'; 
  
    [l,c] = size(mat_contenu); 
    a=0; %Compteur pour changer de ligne dans imagesdufichier 
  
    for i = 1:l 
        if mat_contenu{i,4} == 0 
            a = a+1; 
            imagesdufichier(a,1) = mat_contenu(i,1); 
        end 
    end 
  
    % Définir le cd pour la fonction imread. 
    cd(fichier) 
  
    for i = 1:a 
        nomimage = char(imagesdufichier(i)); 
        RGB = imread(nomimage); 
        [largeur,hauteur,profondeur]=size(RGB); 
        X = double(reshape(RGB, largeur*hauteur,profondeur)); 
        T = X*P; 
        t1 = T(:,1); 
        t2 = T(:,2); 
    % On vérifie que les valeurs de t1 et t2 sont dans les limites des extrémités.     
        if min(t1) < t1min 
            t1min = min(t1); 
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        end 
        if max(t1) > t1max 
            t1max = max(t1); 
        end 
        if min(t2) < t2min 
            t2min = min(t2); 
        end 
        if max(t2) > t2max 
            t2max = max(t2); 
        end 
  
    end 
  
    question1 = input('Y a-t-il dautres images à analyser? (oui=1)'); 
end 
 
 
BUILDING SCORE DENSITY HISTOGRAM 

% On doit d'abord définir t1min, t1max, t2min, t2max et Z  
[nom, chemin] = uigetfile('*.mat','Veuillez sélectionner le fichier des extrémités','C:\'); 
nomcomplet = [chemin, nom]; 
cd(chemin) 
ext = load(nomcomplet); 
t1min = ext.t1min; t1max = ext.t1max; t2min = ext.t2min; t2max = ext.t2max; Z = ext.Z; 
[P,E,PT]=svd(Z); 
  
  
% ------------------------------------------------------------------------ 
% Lorsqu'on veut faire un histogramme à partir d'images dont on doit 
% enlever (ou conserver seulement) une partie qui est nuisible dans l'image.  
% On doit aussi loader la matrice B dans la fenêtre de commandes. La  
% matrice B est l'image dont les 0 représente les pixels sous le masque. 
% BW = ext.BW; 
% [imask,jmask] = find(BW==0); 
% ------------------------------------------------------------------------ 
  
  
% Définir les numéros d'images syncronisées avec les données. 
[nom, chemin] = uigetfile('*.*','Veuillez sélectionner le fichier excel de la 
syncronisation','C:\'); 
nomcomplet = [chemin, nom]; 
cd(chemin) 
no_images = xlsread(nomcomplet); 
no_images = no_images(:,3); % Vecteur de nX1 
  
nom_fichier_initial = input('Numéro cam, date(ex. : 320080617)'); 
nom_fichier = 'vide'; 
  
% Définir le répertoire avec les matrices des images numérisées d'une 
% journée. 
fichier = uigetdir('C:\','Veuillez sélectionner le dossier contenant les images numérisées 
de cette journée'); 
cd(fichier) %Pour loader les différentes matrices, on doit être dans ce répertoire. 
  
H = ones(256,256,size(no_images,1)); 
for i = 1:size(no_images,1) 
    nom_fichier_comparaison = nom_fichier; 
    if rem(no_images(i,1),400) ~= 0 
        no_fichier = fix(no_images(i,1)/400)+1; 
  
    else 
        no_fichier = fix(no_images(i,1)/400); 
  
    end 
  
    nom_fichier = sprintf('cam%d%d',nom_fichier_initial,(1000+no_fichier)); 
    tf = isequal(nom_fichier, nom_fichier_comparaison); 
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    if tf == 0 
        % On empêche de loader le même fichier pour les images consécutives 
        % qui sont dans le même fichier. 
        Images = load(nom_fichier); 
  
    end 
  
    % Le numéro de l'image à aller chercher dans Images correspond à 
    % no_images - 400*(no_fichier-1) (ex : 404 représente l'image 4 du 
    % fichier 2 donc 404 - 400(2-1) = 4 
    RGB = Images.video.frames(1,(no_images(i,1)-400*(no_fichier-1))).cdata; 
%     % ---------------------------------------------------------------- 
    % On redéfinit les pixels sous le mask pour les faire 
    % ''disparaitre''. 
    for m = 1:length(imask), 
        RGB(imask(m),jmask(m),1) = 0; 
        RGB(imask(m),jmask(m),2) = 0; 
        RGB(imask(m),jmask(m),3) = 0; 
    end; 
%     % ---------------------------------------------------------------- 
    [largeur,hauteur,profondeur]=size(RGB); 
    X = double(reshape(RGB, largeur*hauteur,profondeur)); 
    T = X*P;%Chaque colonne de la matrice T est un vecteur qui représente un score de X. 
    t1 = T(:,1); 
    t2 = T(:,2); 
  
     
    s1 = ones(size(t1,1),1)+round(((t1 - (t1min*ones(size(t1,1),1)))./((t1max-
t1min))).*255); 
    s2 = ones(size(t2,1),1)+round(((t2 - (t2min*ones(size(t2,1),1)))./((t2max-
t2min))).*255); 
  
     
    nbrgroupes = 256;%Ces trois valeurs demeurent fixes pour toutes les 
%     images ce qui nous permet de nous assurer que les mêmes caractéristiques de chaque 
image se retrouve dans la même région puisque le scaling est le même. 
     
    % On doit maintenant faire une matrice H. Initialement, cette matrice contient des 0. On 
passe les valeurs de t1new et t2new et la valeur contenue dans H à la position (t1new, 
t2new) augmente de 1. 
    Amat = zeros(nbrgroupes, nbrgroupes); 
  
    for k = 1:length(s1) 
        % A(#rangée, #colonne)... comme t1 représente les colonnes et t2 les rangées ont met 
A(t2new, t1new) 
        Amat(s2(k), s1(k)) = Amat(s2(k), s1(k)) + 1; 
    end 
    %------------------------------------------------------------------ 
  
    A = flipud(Amat);%On change la matrice pour qu'elle devienne la représentation exacte de 
plot(t1,t2) et non son image miroir. 
 
% On change les valeurs de l’histogramme pour en faire l’affichage. Les nouvelles valeurs % 
sont comme un code de couleur. Utile pour faire des masques puisqu’il faut l’afficher. 
% [i,j] = find(151<=A); 
% for m = 1:length(i), 
%     A(i(m),j(m)) = 256; % Those bins in A having 151 or greater hits are reassigned to  % 
a pixel intensity value of 256 
% end; 
%   
% [i,j] = find(76<=A & A<=150); 
% for m = 1:length(i), 
%     A(i(m),j(m)) = 226; 
% end; 
%   
% [i,j] = find(34<=A & A<=75); 
% for m = 1:length(i), 
%     A(i(m),j(m)) = 201; 
% end; 
%   
% [i,j] = find(16<=A & A<=33); 
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% for m = 1:length(i), 
%     A(i(m),j(m)) = 176; 
% end; 

%   
% [i,j] = find(7<=A & A<=15); 
% for m = 1:length(i), 
%     A(i(m),j(m)) = 151; 
% end; 
%   
% [i,j] = find(3<=A & A<=6); 
% for m = 1:length(i), 
%     A(i(m),j(m)) = 126; 
% end; 
%   
% [i,j] = find(A==2); 
% for m = 1:length(i), 
%     A(i(m),j(m)) = 101; 
% end; 
%   
% [i,j] = find(A==1); 
% for m = 1:length(i), 
%     A(i(m),j(m)) = 76;  
% end; 
%    
% [i,j] = find(A==0); 
% for m = 1:length(i), 
%    A(i(m),j(m)) = 1; % Those bins in A having NO hits are reassigned to a pixel   
% intensity value of 1 (smallest value representing black) 
% end; 
 
    H(:,:,i) = A; 
end 
  
 

LUMINOUS REGION FINDING 

clear all 
         
% Pour faire des mask, on doit d'abord faire afficher une image. On peut aussi appliquer des 
masques déjà définis. 
% Loader la matrice qui contient tous les masques 
  
% % -------------------------------Masques prédéfinis------------------% [nom, chemin] = 
uigetfile('*.mat','Veuillez sélectionner le fichier des masques','C:\'); 
% nomcomplet = [chemin, nom]; 
% cd(chemin) 
% masques = load(nomcomplet); 
% masques = masques.mask; 
%  
% scoreplotpouruneimageFINAL 
%  
% for i = 1:size(masques,3) 
%     BW = masques(:,:,i); 
% --------------------------------------------------------------------- 
% -------------------------Masques fait manuellement------------------- 
scoreplotpouruneimageFINAL 
  
% On utilise la commande roipoly qui nous permet de tracer un mask 
% en forme de polygone comme on veut. La matrice BW est une image 
% dont les pixels sous le mask sont blanche (valeur 1) et les autres 
% sont noirs (valeur 0). 
% 
Indic = 1; 
  
while Indic == 1 
    
    BW = roipoly; 
  
% % -------------------------------------------------------------------  
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% % Faire afficher le mask dans le score plot  
    B = ~BW; % B is the mirror of BW (i.e. B has 0 for selected pixels and 1 for background 
pixels) 
  
    % A représente l'histogramme de l'image. 
    % Element by element multiplication of B with A will result in C (with 0 for the 
selected pixels) 
    C = double(B).*A; 
  
    [i,j] = find(C==0); 
  
    colormap(hot(256)); % HOT is a Matlab built-in colormap 
    map = colormap; 
  
    CRGB = uint8(round(ind2rgb(C,map)*255)); 
  
    % On fait en sorte que les pixels sous le mask soient roses. 
    for m = 1:length(i), 
        CRGB(i(m),j(m),1) = 160; 
        CRGB(i(m),j(m),2) = 0; 
        CRGB(i(m),j(m),3) = 105; 
    end; 
  
    imshow(CRGB,'InitialMagnification','fit'); 
    xlabel('t1'); 
    ylabel('t2'); 
  
  
    % Identifie les pixels de l’image initiale qui se trouve sous le masque 
    Anouveau = A; 
    [i,j] = find(Anouveau==1); 
    for m = 1:length(i), 
        Anouveau(i(m),j(m)) = 0; % Those bins in A having NO hits are reassigned to a pixel 
intensity value of 0 
    end; 
  
  
    % Les pixels sous le mask deviennent avec une valeur de -1 et les autres pixels 
conservent leur valeur de 0. On a redonné des valeurs nulles aux endroits qui n'avaient 
aucun point dedans (qui était quand même 1). 
 
    BWneg = -1*double(BW); 
  
    Amaskneg = Anouveau.*BWneg; 
  
    Amiroir = flipud(Amaskneg);% On remet la matrice A dans sa forme originale pour que les 
positions correspondent à celles de t2new. 
  
    [i,j] = find(Amiroir < 0);% On trouve les coordonnées des carreaux sous le mask. 
  
    % On veut créer un vecteur qui nous indiquera les positions où la valeur dans t2new et 
celle de t1new correspondent aux positions des carreaux sous le mask. On commence donc par 
faire un vecteur de 0 de la longueur de t1new pour ensuite assigner une valeur différente 
aux positions correspondantes. 
    pixelmaskt1 = zeros(size(t1new)); 
  
  
    for a = 1:length(i) 
        for b = 1:length(t1new) 
            if i(a)==t2new(b) && j(a)==t1new(b) 
  
                pixelmaskt1(b) = 1;% On met des valeurs 
  
            end 
        end 
    end 
  
    % On peut maintenant redonner la forme de l'image initiale à pixelmaskimage pour faire 
en sorte que les pixels du mask se retrouvent à l'endroit original sur l'image. 
    pixelmaskimage = reshape(pixelmaskt1, largeur, hauteur); 
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    [i,j]=find(pixelmaskimage == 1);% les pixels sous le mask ont des valeurs de 1 
  
    image = RGB; 
  
    for a = 1:length(i) 
        image(i(a),j(a),1) = 28; 
        image(i(a),j(a),2) = 255; 
        image(i(a),j(a),3) = 28; 
    end 
  
    figure(2); 
    imshow(image,'InitialMagnification','fit'); 
  
  Indic = input('Voulez-vous refaire le mask?: (0 = non, 1 = oui): '); 
    if Indic == 1 
        close(2) 
    end 
 end 
 
 

COMPUTING IMAGE FEATURES 

% Loader les histogrammes 
[nom, chemin] = uigetfile('*.mat','Veuillez sélectionner le fichier des 
histogrammes','C:\'); 
nomcomplet = [chemin, nom]; 
cd(chemin) 
histogramme = load(nomcomplet); 
histogramme = histogramme.H; 
%% 
% Loader le masque qui représente la flamme. 
[nom, chemin] = uigetfile('*.mat','Veuillez sélectionner le fichier du mask de la 
flamme','C:\'); 
nomcomplet = [chemin, nom]; 
cd(chemin) 
masques = load(nomcomplet); 
masques = masques.mask; 
  
%% -------------------- Partie pour trouver RGB final ---------------- 
% Loader les extrémités. 
[nom, chemin] = uigetfile('*.mat','Veuillez sélectionner le fichier des extrémités','C:\'); 
nomcomplet = [chemin, nom]; 
cd(chemin) 
ext = load(nomcomplet); 
t1min = ext.t1min; t1max = ext.t1max; t2min = ext.t2min; t2max = ext.t2max; Z = ext.Z; 
[P,E,PT]=svd(Z); 
  
p1 = P(:,1); 
p2 = P(:,2); 
  
RGB_final = zeros(256,256,3); 
for i = 0:1:255 
    t1 = (i*(t1max-t1min)/255)+t1min; 
    for j = 0:1:255 
        t2 = (j*(t2max-t2min)/255)+t2min; 
        RGB = t1*p1'+ t2*p2'+[1 1 1]; 
        for k = 1:3 
            if RGB(1,k) < 0 
                RGB(1,k)=0; 
            end 
        end 
         
        RGB_final((i+1),(j+1),:) = reshape(RGB,1,1,3); 
    end 
end 
ccc = RGB_final; 
RGB_final(:,:,1) = flipud(ccc(:,:,1));RGB_final(:,:,2) = flipud(ccc(:,:,2));RGB_final(:,:,3) 
= flipud(ccc(:,:,3)); 
  
%% ---------------------- Propriétés de la flamme --------------------- 
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L = 0.299*RGB_final(:,:,1)+0.587*RGB_final(:,:,2)+0.114*RGB_final(:,:,3); 
  
% On prédéfinit la matrice contenant les nouvelles images binnées. 
features = zeros(size(histogramme,3),9); 
  
pixels_total = sum(sum(histogramme(:,:,1))); 
  
mask = masques; 
inv_mask = ~mask; 
  
for j = 1:size(histogramme,3) 
  
    image = histogramme(:,:,j); 
    c = image.*mask; 
  
%     ---------------Luminous Features------------------------- 
%     Luminous Region Area A (nombre de pixels qui se trouvent dans la région lumineuse. 
    A = sum(sum(c)); 
    features(j,1) = A; 
  
    % Flame Brightness B  
    b = c.*L; 
    B = sum(sum(b)); 
    features(j,2) = B; 
     
    % Uniformity of Flame Brightness U 
    if A ~= 0  
        u = c.*L.*L; 
        u = sum(sum(u)); 
        U = ((u-B)/A)^(0.5); 
        features(j,3) = U; 
    else  
        features(j,3) = 0; 
    end 
     
    % Average Brightness of the nonluminous area W 
    inv_c = image.*inv_mask; 
    inv_b = inv_c.*L; 
    if sum(sum(inv_c)) ~= 0  
        W = sum(sum(inv_b))/sum(sum(inv_c)); 
        features(j,4) = W; 
    else  
        features(j,4) = 0; 
    end 
     
%     --------------Color Features--------------------- 
%     Average Color of the whole Image 
    SS1 = sum(image,1); 
    SS2 = sum(image,2); 
    S1 = 0; 
    S2 = 0; 
    for i = 1:length(SS1) 
        S1 = S1 + SS1(1,i)*i; 
        S2 = S2 + SS2(i,1)*i; 
    end 
    features(j,5) = S1/pixels_total; 
    features(j,6) = S2/pixels_total; 
     
%     Average Color of the Luminous Region 
    SS1_flame = sum(c,1); 
    SS2_flame = sum(c,2); 
    S1_flame = 0; 
    S2_flame = 0; 
    for i = 1:length(SS1_flame) 
        S1_flame = S1_flame + SS1_flame(1,i)*i; 
        S2_flame = S2_flame + SS2_flame(i,1)*i; 
    end 
    if A ~= 0  
        features(j,7) = S1_flame/A; 
        features(j,8) = S2_flame/A; 
    else  
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        features(j,7) = 0; 
        features(j,8) = 0; 
    end 
     
%     Total Number of Colors in the Flame Region 
    [row,colomn] = find(c~=0); 
    N = length(row); 
    features(j,9) = N; 
end 
 
 

BUILDING MATRICES 

AVERAGING 

function [x_moy, y] = moyennage(a, x_ini,y_ini) 
  
% Avec cette fonction, on prend un x comprenant des données 
% de production et on moyenne a rangées à la fois 
% Lorsqu’on veut donner un poids différent des valeurs à moyennées 
% g = 0.7; 
% div = (g^0*(1-g)+g^1*(1-g)+g^2*(1-g)+g^3*(1-g)+g^4*(1-g)+g^5*(1-g)); 
% poids = [g^5*(1-g) g^4*(1-g) g^3*(1-g) g^2*(1-g) g^1*(1-g) g^0*(1-g)]./div; 
  
if a>1 
    x_moy = zeros((size(x_ini,1)-a+1),size(x_ini,2)); 
    for i = a:size(x_ini,1) 
        x_moy(i-a+1,:) = mean(x_ini(i-a+1:i,:));%poids*(x_ini(i-a+1:i,:)); 
    end 
  
    y=y_ini(a:length(y_ini),:); 
  
else 
    x_moy = x_ini; 
    y = y_ini; 
end 
 
 

MATRICES XMIR AND Y 

clear all  
 
function [x_new,y_new] = prediction(pas,b,a,YY,x,y) 
% YY doit toujours être plus petit ou égale à b 
  
[N,sx] = size(x); 
sy = size(y,2); 
  
% Construire le modèle sans prédiction revient au même que tomber en 
% prédiction à 1 pas et ainsi considérer l'erreur nulle. 
if pas == 0  
    pas = 1; 
end 
  
y_new = y((b*a+1+(pas-1)*a):N); 
% pas réfère au nombre de pas à l'avance qu'on veut prédire. pas = 3, alors 
% notre prédiction sera y(k+3|k). 
  
% a réfère au nombre de lack entre les images. On prend une image toutes  
% les minutes donc toutes les 6 images. 
  
% b réfère au nombre d'images dans la dynamique. On veut avoir une  
% dynamique de 15 images donc pendant 15 minutes. 
  
% YY réfère au nombre de y qu'on veut dans la régression. Si on prend 3 y, 
% on aura y(k), y(k-1) et y(k-2) 
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compteurx = 1:a:a*b;% On prend donc les images 1,7,13,19,25,... 
matricex = zeros(size(y_new,1),(b+(pas-1))*sx); 
for i = 1:b 
     
    matricex(:,(((i-1)*sx)+1):i*sx) = x(compteurx(1,i):(compteurx(1,i)+(N-(b*a+1+(pas-
1)*a))),:); 
  
end 
  
% On ajoute x(k+1), x(k+2),... en supposant que ce sont les mêmes que x(k). 
% On dit donc voici ce qui va arriver si jamais les choses ne changent pas. 
if pas > 1 
    for i = (b+1):(b+pas-1)         
        matricex(:,(((i-1)*sx)+1):i*sx) = matricex(:,((b-1)*sx+1):b*sx); 
    end 
end 
  
compteury = compteurx(1,(b-YY+1):b)+a; 
matricey = zeros(size(y_new,1),YY*size(y,2)); 
if YY ~= 0 
    for i = 1:YY 
 
        matricey(:,(((i-1)*sy)+1):i*sy) = y(compteury(1,i):(compteury(1,i)+(N-(b*a+1+(pas-
1)*a))),:); 
  
    end 
end 
  
x_new = [matricey matricex]; 
 
 

REGRESSION 

function [ymeasured,ypred,n,sizemod,rmod,rval,rcum] = modeliser(xmod,ymod,xval,yval) 
  
%---------------------------------------------------------------------- 
% Les lettres majuscules sont pour les variables preprocesser alors que les lettres 
minuscules sont pour les variables sans preprocessing. 
%---------------------------------------------------------------------- 
  
options.display    = 'off';%Permet de faire apparaître le % de variation capturé par chaque 
PC dans la command window. 
options.plots      = 'none';%Fait en sorte qu'aucun graphique s'affiche à l'appel de la 
fonction pls. 
 
% Pour enlever le preprocessing et retrouver les valeurs initiales 
% data = preprocess('undo',sp,datap)  
s = preprocess('default','Autoscale');  
[Xmod,spx] = preprocess('calibrate',s,xmod); 
[Ymod,spy] = preprocess('calibrate',s,ymod); 
  
Xmod = double(Xmod); 
Ymod = double(Ymod); 
  
% En utilisant les structures de preprocessing on peut faire le 
% preprocessing approprié pour les vecteurs de validation. 
Xval = preprocess('apply',spx,xval); 
Yval = preprocess('apply',spy,yval); 
  
Xval = double(Xval); 
Yval = double(Yval); 
  
a = 30; % Nombre de composantes à investiguer 
Q2 = zeros(1,a); 
R2 = zeros(1,a); 
Rcum = zeros(1,a); 
  
for i = 1:a 
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    model = pls(Xmod, Ymod, i, options); 
    Ypred_mod = model.pred{1,2}; 
    ypred_mod = preprocess('undo',spy,Ypred_mod);  
    ypred_mod = double(ypred_mod); 
    valid = pls(Xval,Yval,model,options); 
    Ypred_val = valid.pred{1,2}; 
    ypred_val = preprocess('undo',spy,Ypred_val);  
    ypred_val = double(ypred_val); 
     
    coeffq = corrcoef([ypred_val yval]); 
    Q2(1,i) = 100*coeffq(2,1)*coeffq(2,1); 
% Le coefficient R2 est calculé selon la vrai formule. Par contre, on  
% aurait très bien pu prendre le coefficient de corrélation au carré. 
%     rsquare(1,i) = ((Ypred_mod - ybar)'*(Ypred_mod - ybar))/((Ymod -  
 
    R2(1,i) = model.detail.ssq(i,5); 
 
    ymeasured = [ymod;yval]; 
    ypred = [ypred_mod;ypred_val]; 
     
    coeffrcum = corrcoef([ymeasured ypred]); 
    Rcum(1,i) = 100*coeffrcum(2,1)*coeffrcum(2,1); 
    
end 
 
[i,n] = find(Rcum == max(Rcum)); 
  
model = pls(Xmod, Ymod, n, options); 
Ypred_mod = model.pred{1,2}; 
ypred_mod = preprocess('undo',spy,Ypred_mod);  
ypred_mod = double(ypred_mod); 
valid = pls(Xval,Yval,model,options); 
Ypred_val = valid.pred{1,2}; 
ypred_val = preprocess('undo',spy,Ypred_val); 
ypred_val = double(ypred_val); 
  
ymeasured = [ymod;yval]; 
sizemod = length(ymod); 
ypred = [ypred_mod;ypred_val]; 
  
rmod = model.detail.ssq(n,5); 
coeffq = corrcoef([ypred_val yval]);    
rval = 100*coeffq(2,1)*coeffq(2,1); 
coeffcum = corrcoef([ymeasured ypred]);    
rcum = 100*coeffcum(2,1)*coeffcum(2,1); 
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