568 research outputs found

    Encoding Markov Logic Networks in Possibilistic Logic

    Get PDF
    Markov logic uses weighted formulas to compactly encode a probability distribution over possible worlds. Despite the use of logical formulas, Markov logic networks (MLNs) can be difficult to interpret, due to the often counter-intuitive meaning of their weights. To address this issue, we propose a method to construct a possibilistic logic theory that exactly captures what can be derived from a given MLN using maximum a posteriori (MAP) inference. Unfortunately, the size of this theory is exponential in general. We therefore also propose two methods which can derive compact theories that still capture MAP inference, but only for specific types of evidence. These theories can be used, among others, to make explicit the hidden assumptions underlying an MLN or to explain the predictions it makes.Comment: Extended version of a paper appearing in UAI 201

    Learning Possibilistic Logic Theories

    Get PDF
    Vi tar opp problemet med å lære tolkbare maskinlæringsmodeller fra usikker og manglende informasjon. Vi utvikler først en ny dyplæringsarkitektur, RIDDLE: Rule InDuction with Deep LEarning (regelinduksjon med dyp læring), basert på egenskapene til mulighetsteori. Med eksperimentelle resultater og sammenligning med FURIA, en eksisterende moderne metode for regelinduksjon, er RIDDLE en lovende regelinduksjonsalgoritme for å finne regler fra data. Deretter undersøker vi læringsoppgaven formelt ved å identifisere regler med konfidensgrad knyttet til dem i exact learning-modellen. Vi definerer formelt teoretiske rammer og viser forhold som må holde for å garantere at en læringsalgoritme vil identifisere reglene som holder i et domene. Til slutt utvikler vi en algoritme som lærer regler med tilhørende konfidensverdier i exact learning-modellen. Vi foreslår også en teknikk for å simulere spørringer i exact learning-modellen fra data. Eksperimenter viser oppmuntrende resultater for å lære et sett med regler som tilnærmer reglene som er kodet i data.We address the problem of learning interpretable machine learning models from uncertain and missing information. We first develop a novel deep learning architecture, named RIDDLE (Rule InDuction with Deep LEarning), based on properties of possibility theory. With experimental results and comparison with FURIA, a state of the art method, RIDDLE is a promising rule induction algorithm for finding rules from data. We then formally investigate the learning task of identifying rules with confidence degree associated to them in the exact learning model. We formally define theoretical frameworks and show conditions that must hold to guarantee that a learning algorithm will identify the rules that hold in a domain. Finally, we develop an algorithm that learns rules with associated confidence values in the exact learning model. We also propose a technique to simulate queries in the exact learning model from data. Experiments show encouraging results to learn a set of rules that approximate rules encoded in data.Doktorgradsavhandlin

    Weighted logics for artificial intelligence : an introductory discussion

    Get PDF
    International audienceBefore presenting the contents of the special issue, we propose a structured introductory overview of a landscape of the weighted logics (in a general sense) that can be found in the Artificial Intelligence literature, highlighting their fundamental differences and their application areas

    A Constrained, Possibilistic Logical Approach for Software System Survivability Evaluation

    Get PDF
    In this paper, we present a logical framework to facilitate users in assessing a software system in terms of the required survivability features. Survivability evaluation is essential in linking foreign software components to an existing system or obtaining software systems from external sources. It is important to make sure that any foreign components/systems will not compromise the current system’s survivability properties. Given the increasing large scope and complexity of modern software systems, there is a need for an evaluation framework to accommodate uncertain, vague, or even ill-known knowledge for a robust evaluation based on multi-dimensional criteria. Our framework incorporates user-defined constrains on survivability requirements. Necessity-based possibilistic uncertainty and user survivability requirement constraints are effectively linked to logic reasoning. A proof-of-concept system has been developed to validate the proposed approach. To our best knowledge, our work is the first attempt to incorporate vague, imprecise information into software system survivability evaluation

    Semantics for possibilistic answer set programs: uncertain rules versus rules with uncertain conclusions

    Get PDF
    Although Answer Set Programming (ASP) is a powerful framework for declarative problem solving, it cannot in an intuitive way handle situations in which some rules are uncertain, or in which it is more important to satisfy some constraints than others. Possibilistic ASP (PASP) is a natural extension of ASP in which certainty weights are associated with each rule. In this paper we contrast two different views on interpreting the weights attached to rules. Under the first view, weights reflect the certainty with which we can conclude the head of a rule when its body is satisfied. Under the second view, weights reflect the certainty that a given rule restricts the considered epistemic states of an agent in a valid way, i.e. it is the certainty that the rule itself is correct. The first view gives rise to a set of weighted answer sets, whereas the second view gives rise to a weighted set of classical answer sets

    Possibilistic classifiers for numerical data

    Get PDF
    International audienceNaive Bayesian Classifiers, which rely on independence hypotheses, together with a normality assumption to estimate densities for numerical data, are known for their simplicity and their effectiveness. However, estimating densities, even under the normality assumption, may be problematic in case of poor data. In such a situation, possibility distributions may provide a more faithful representation of these data. Naive Possibilistic Classifiers (NPC), based on possibility theory, have been recently proposed as a counterpart of Bayesian classifiers to deal with classification tasks. There are only few works that treat possibilistic classification and most of existing NPC deal only with categorical attributes. This work focuses on the estimation of possibility distributions for continuous data. In this paper we investigate two kinds of possibilistic classifiers. The first one is derived from classical or flexible Bayesian classifiers by applying a probability–possibility transformation to Gaussian distributions, which introduces some further tolerance in the description of classes. The second one is based on a direct interpretation of data in possibilistic formats that exploit an idea of proximity between data values in different ways, which provides a less constrained representation of them. We show that possibilistic classifiers have a better capability to detect new instances for which the classification is ambiguous than Bayesian classifiers, where probabilities may be poorly estimated and illusorily precise. Moreover, we propose, in this case, an hybrid possibilistic classification approach based on a nearest-neighbour heuristics to improve the accuracy of the proposed possibilistic classifiers when the available information is insufficient to choose between classes. Possibilistic classifiers are compared with classical or flexible Bayesian classifiers on a collection of benchmarks databases. The experiments reported show the interest of possibilistic classifiers. In particular, flexible possibilistic classifiers perform well for data agreeing with the normality assumption, while proximity-based possibilistic classifiers outperform others in the other cases. The hybrid possibilistic classification exhibits a good ability for improving accuracy
    • …
    corecore