231 research outputs found

    Simple Regret Optimization in Online Planning for Markov Decision Processes

    Full text link
    We consider online planning in Markov decision processes (MDPs). In online planning, the agent focuses on its current state only, deliberates about the set of possible policies from that state onwards and, when interrupted, uses the outcome of that exploratory deliberation to choose what action to perform next. The performance of algorithms for online planning is assessed in terms of simple regret, which is the agent's expected performance loss when the chosen action, rather than an optimal one, is followed. To date, state-of-the-art algorithms for online planning in general MDPs are either best effort, or guarantee only polynomial-rate reduction of simple regret over time. Here we introduce a new Monte-Carlo tree search algorithm, BRUE, that guarantees exponential-rate reduction of simple regret and error probability. This algorithm is based on a simple yet non-standard state-space sampling scheme, MCTS2e, in which different parts of each sample are dedicated to different exploratory objectives. Our empirical evaluation shows that BRUE not only provides superior performance guarantees, but is also very effective in practice and favorably compares to state-of-the-art. We then extend BRUE with a variant of "learning by forgetting." The resulting set of algorithms, BRUE(alpha), generalizes BRUE, improves the exponential factor in the upper bound on its reduction rate, and exhibits even more attractive empirical performance

    Structure and Complexity in Planning with Unary Operators

    Full text link
    Unary operator domains -- i.e., domains in which operators have a single effect -- arise naturally in many control problems. In its most general form, the problem of STRIPS planning in unary operator domains is known to be as hard as the general STRIPS planning problem -- both are PSPACE-complete. However, unary operator domains induce a natural structure, called the domain's causal graph. This graph relates between the preconditions and effect of each domain operator. Causal graphs were exploited by Williams and Nayak in order to analyze plan generation for one of the controllers in NASA's Deep-Space One spacecraft. There, they utilized the fact that when this graph is acyclic, a serialization ordering over any subgoal can be obtained quickly. In this paper we conduct a comprehensive study of the relationship between the structure of a domain's causal graph and the complexity of planning in this domain. On the positive side, we show that a non-trivial polynomial time plan generation algorithm exists for domains whose causal graph induces a polytree with a constant bound on its node indegree. On the negative side, we show that even plan existence is hard when the graph is a directed-path singly connected DAG. More generally, we show that the number of paths in the causal graph is closely related to the complexity of planning in the associated domain. Finally we relate our results to the question of complexity of planning with serializable subgoals

    Landmarks, Critical Paths and Abstractions: What\u27s the Difference Anyway?

    Get PDF
    Current heuristic estimators for classical domain-independent planning are usually based on one of four ideas: delete relaxation, abstraction, critical paths, and, most recently, landmarks. Previously, these different ideas for deriving heuristic functions were largely unconnected. In my talk, I will show that these heuristics are in fact very closely related. Moreover, I will introduce a new admissible heuristic called the landmark cut heuristic which exploits this relationship. In our experiments, the landmark cut heuristic provides better estimates than other current admissible planning heuristics, especially on large problem instances

    Probabilistic Planning via Heuristic Forward Search and Weighted Model Counting

    Full text link
    We present a new algorithm for probabilistic planning with no observability. Our algorithm, called Probabilistic-FF, extends the heuristic forward-search machinery of Conformant-FF to problems with probabilistic uncertainty about both the initial state and action effects. Specifically, Probabilistic-FF combines Conformant-FFs techniques with a powerful machinery for weighted model counting in (weighted) CNFs, serving to elegantly define both the search space and the heuristic function. Our evaluation of Probabilistic-FF shows its fine scalability in a range of probabilistic domains, constituting a several orders of magnitude improvement over previous results in this area. We use a problematic case to point out the main open issue to be addressed by further research

    CP-nets: A Tool for Representing and Reasoning withConditional Ceteris Paribus Preference Statements

    Full text link
    Information about user preferences plays a key role in automated decision making. In many domains it is desirable to assess such preferences in a qualitative rather than quantitative way. In this paper, we propose a qualitative graphical representation of preferences that reflects conditional dependence and independence of preference statements under a ceteris paribus (all else being equal) interpretation. Such a representation is often compact and arguably quite natural in many circumstances. We provide a formal semantics for this model, and describe how the structure of the network can be exploited in several inference tasks, such as determining whether one outcome dominates (is preferred to) another, ordering a set outcomes according to the preference relation, and constructing the best outcome subject to available evidence

    Graphically structured value-function compilation

    Get PDF
    AbstractClassical work on eliciting and representing preferences over multi-attribute alternatives has attempted to recognize conditions under which value functions take on particularly simple and compact form, making their elicitation much easier. In this paper we consider preferences over discrete domains, and show that for a certain class of simple and intuitive qualitative preference statements, one can always generate compact value functions consistent with these statements. These value functions maintain the independence structure implicit in the original statements. For discrete domains, these representation theorems are much more general than previous results. However, we also show that it is not always possible to maintain this compact structure if we add explicit ordering constraints among the available outcomes
    • …
    corecore