
Semantics for possibilistic answer set programs:

uncertain rules versus rules with uncertain conclusions

Kim Bautersa,, Steven Schockaertb, Martine De Cocka, Dirk Vermeirc

aDepartment of Applied Mathematics and Computer Science
Universiteit Gent, Krijgslaan 281 (S9), 9000 Gent, Belgium

bSchool of Computer Science & Informatics, Cardiff University
5 The Parade, Cardiff CF24 3AA, United Kingdom

cDepartment of Computer Science
Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium

Abstract

Although Answer Set Programming (ASP) is a powerful framework for declar-
ative problem solving, it cannot in an intuitive way handle situations in which
some rules are uncertain, or in which it is more important to satisfy some
constraints than others. Possibilistic ASP (PASP) is a natural extension of
ASP in which certainty weights are associated with each rule. In this paper
we contrast two different views on interpreting the weights attached to rules.
Under the first view, weights reflect the certainty with which we can conclude
the head of a rule when its body is satisfied. Under the second view, weights
reflect the certainty that a given rule restricts the considered epistemic states
of an agent in a valid way, i.e. it is the certainty that the rule itself is correct.
The first view gives rise to a set of weighted answer sets, whereas the second
view gives rise to a weighted set of classical answer sets.

Keywords: logic programming, non-monotonic reasoning, possibility
theory, uncertainty, stable model semantics

∗Funded by a joint Research Foundation-Flanders (FWO) project
Corresponding author. Tel.: +32 9 264 49 05

Email addresses: kim.bauters@ugent.be (Kim Bauters),
s.schockaert@cs.cardiff.ac.uk (Steven Schockaert), martine.decock@ugent.be
(Martine De Cock), dvermeir@vub.ac.be (Dirk Vermeir)

Preprint submitted to International Journal of Approximate ReasoningSeptember 8, 2013

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55888796?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

Answer set programming (ASP) is a form of logic programming which uses
the stable model semantics to define negation-as-failure in a purely declara-
tive way. An ASP program consists of a set of rules, e.g.

beach← ¬weekday, not rain. (1)

This rule intuitively encodes that we go to the beach when we know that
today is not a weekday and when there is no indication of rain. Reasoning in
ASP is non-monotonic because of the semantics of ‘not’, which is called the
negation-as-failure operator. In particular, ‘not rain’ is true unless we have
evidence that ‘rain’ is true, e.g. we may read in the newspaper that rainy
weather is predicted at the beach and we may consequentially need to revise
our plans to go to the beach.

While ASP is well-suited for reasoning over incomplete information, it
lacks the means to reason over uncertain information in a natural way. Nev-
ertheless, uncertain information is an important and pervasive component
of common-sense reasoning. For example, in (1) it may happen that we are
driving an old car, in which case we may be uncertain as to whether or not
we will reach the beach, even when all the premises are satisfied.

In this paper we are mainly interested in the potential of ASP as a tool
for epistemic reasoning, i.e. for reasoning about what another agent believes.
Under this view answer sets are interpreted as possible epistemic states of
that agent. Rules are then seen as pieces of knowledge which constrain the
epistemic state that an agent may have.

Answer sets, however, have a number of limitations for modeling epistemic
states. One limitation is that an answer set can only express that the agent
knows that a given literal is true, or that the agent has insufficient knowledge
to assess the truth of the literal. An answer set cannot express in a natural
way the belief of an agent that “either literal l1 or literal l2 is true, but not
both”. This issue has been the topic of [1, 2]. An orthogonal issue is that
classical ASP cannot intuitively be used to express that knowledge may be
more or less certain. This particular issue is the focus of this paper.

There are two natural ways of introducing degrees of uncertainty in the
setting of ASP. On the one hand, we may wish to model weighted epistemic
states, in which an agent can be completely certain about the truth of some
literals, while believing in the truth of other literals without complete cer-
tainty. On the other hand, we may wish to keep epistemic states Boolean,

2

but rather express that the rules which constrain the possible epistemic states
are not fully certain. In the latter case, an ASP program should correspond
to a weighted set of classical answer sets. In this paper, we will compare and
contrast both views, using possibility theory to model the semantics of both
types of uncertainty degrees.

Combining ASP with possibility theory is not a new idea. In fact, two
particular forms of possibilistic ASP were already investigated in [3] and [4].
Both approaches adhere to the first view, i.e. they model weighted epistemic
states. The approaches do, however, differ in the way they treat negation-
as-failure. In particular, the semantics from [3] consider a naf-literal of the
form ‘not l’ to be false as soon as there is some evidence that ‘l’ is true. The
semantics from [4], on the other hand, adhere to the intuition that ‘not l’ is
certain to the extent that ‘¬l’ is possible. Which semantics to use is often
dependent on the context of the problem. Consider the example:

1 :¬breathing ←
1 : dead← ¬breathing,¬pulse

0.6 : dead← ¬pulse
0.2 : dead← ¬breathing
0.9 : first aid successful ← not dead.

This example models the reasoning of the first responder arriving at the scene
of an incident and faced with an unconscious victim. A quick examination
shows that the victim is no longer breathing. From his experience, the first
responder knows that lack of breathing does not necessarily indicate that
the person is dead. However, if the victim also lacked a pulse, then this
would considerably increase his certainty that the victim has died. The first
responder has a strong certainty that applying first aid will be successful
when there is no indication that the person is dead. Alternatively, we could
replace the last rule with the rule ‘0.9 : apply first aid ← not dead’. Then,
the intuition of the last rule becomes that the first responder has a high
certainty that he should at least attempt to apply first aid when there is no
indication that the victim is dead.

Regardless of the last rule, both the semantics from [3] and [4] agree
that ¬breathing is fully certain and dead is certain to degree 0.2. Given
the original last rule, the semantics from [3] furthermore conclude that the
certainty of first aid successful is 0, whereas the semantics from [4] conclude
that first aid successful is certain to degree 0.8. The conclusion that we are

3

certain of first aid successful to degree 0 is sound since dead is certain to
degree 0.2 while the certainty of ¬dead is 0, i.e. we are more certain that the
victim is dead than that he is alive. If, however, we consider the alternative
last rule, then given the approach from [3] we conclude that the certainty
of apply first aid is 0 and apply first aid is certain to degree 0.8 under the
approach from [4]. In this case, however, we can argue that the conclusion
must be that apply first aid is certain to degree 0.8 since we only have a
low certainty that the victim is dead, i.e. we entertain a high possibility
that the victim is still alive. As this example illustrates, the desired answer
greatly depends on the particular understanding of the problem at hand. In
Section 2.3 we recall the details of both approaches.

The rules in the example above are themselves not uncertain. Rather, the
rules are considered valid, but they only allow us to reach conclusions with
limited certainty. Often, however, we may be uncertain whether the rules
are actually meaningful, e.g. when they are coming from possibly unreliable
sources. Consider this example:

0.7 : paper title(title)←
0.9 : author(John Doe)← paper title(title)

0.2 : author(Jane Roe)← paper title(title)

1 :← author(John Doe), author(Jane Roe).

During a conference, a colleague shares the title of an interesting paper with
us. We are quite certain that we recall the name of the title correctly and we
would like to find out who the principal author of the paper is. We consult
the university website, which in the past has given reliable answers. However,
a quick search on the internet results in a different name for the same paper.
Evidently, they cannot both be the principal author of the paper.

The uncertainty attached to each rule now expresses how certain we are
that the information encoded in the rule is indeed valid. In particular, any
world in which both John Doe and Jane Roe are the principal author of the
paper can immediately be discarded due to the absolute certainty of the last
rule. We do, however, acknowledge that neither of the candidate authors
may be correct because we do not have absolute certainty as to whether
we correctly recall the title of the paper. Of the two remaining rules, we
have the most confidence in the rule that identifies John Doe as the author.
Thus, we expect that the conclusion that the actual principal author of the
paper is John Doe can be deduced with a higher certainty that the conclusion

4

that the principal author is Jane Roe. The semantics that agree with this
intuition, i.e. that agree with the idea of uncertain rules rather than uncertain
conclusions, are discussed in Section 3. In particular, it will turn out that
under the semantics from [3] and [4] the above program does not have any
answer sets.

The remainder of this paper is organized as follows. In Section 2 we pro-
vide the reader with some important notions from answer set programming,
possibilistic logic and current work on possibilistic answer set programs, in
which weights refer to the certainty with which the conclusions of rules can
be derived, given that their body is known to hold. In Section 3 we take
another view on the meaning of the weights in PASP, where we treat weights
as an indication of whether or not the information encoded in the rules is
valid. In Section 4 we show how the new semantics based on the intuition of
uncertain rules can be simulated using classical ASP. A special case of the
semantics presented in Section 3 are programs with optional rules. We show
in Section 5 how some important problems in AI can be expressed in terms
of programs with such optional rules. Related work is discussed in Section 6
and we formulate our conclusions in Section 7.

This paper extends parts of our work from [5]. In particular, the work is
extended to also cover literals (rather than just considering atoms) and we
extend the semantics to cover disjunctive programs. Additionally, we pro-
vide simulations using classical ASP for all reasoning tasks presented in [5].
Complexity results are now provided for all reasoning tasks and proofs are
provided in the appendix.

2. Preliminaries

We start by reviewing the definitions from both answer set programming
and possibility theory that will be used in the remainder of the paper. Fur-
thermore, we review current approaches that combine ASP and possibility
theory and we present the general framework of possibilistic ASP that will be
used throughout the paper. Finally, we recall some notions from complexity
theory.

2.1. Answer set programming (ASP)

To define ASP programs, we start from a finite set of atoms A. A literal
is defined as an atom ‘a’ or its classical negation ‘¬a’. For a set of literals L,
we use ¬L to denote the set {¬l | l ∈ L} where, by definition, ¬¬a = a. A set

5

of literals is said to be consistent when L ∩ ¬L = ∅, i.e. L does not contain
two contradictory literals. The set of all literals is written as L = A∪¬A. A
naf-literal is either a literal ‘l’ or an expression of the form ‘not l’, where ‘not’
denotes negation-as-failure. Intuitively, we have that ‘not l’ is true when we
have no proof for ‘l’. A disjunctive rule is an expression of the form

l0; ...; lk ← lk+1, ..., lm, not lm+1, ..., not ln

where li is a literal for every 0 ≤ i ≤ n. We say that l0; ...; lk is the head of
the rule (interpreted as a disjunction) and that lk+1, ..., lm, not lm+1, ..., not ln
is the body of the rule (interpreted as a conjunction). For a given rule r we
use head(r) and body(r) to denote the set of literals in the head and the body
of the rule, respectively. Specifically, we use body+(r) to denote the set of
literals in the body that are not preceded by the negation-as-failure operator
‘not’ and body−(r) for those literals that are preceded by ‘not’.

Whenever a disjunctive rule does not contain negation-as-failure, i.e. when
m = n, we say that the rule is a positive disjunctive rule. A rule with an
empty body, i.e. a rule of the form (l0; ...; lk ←), is called a fact rule and is
used as a shorthand for (l0; ...; lk ← >) with > a special language construct
denoting tautology. Conversely, a rule with an empty head, i.e. a rule of
the form (← lk+1, ..., lm, not lm+1, ..., not ln) is called a constraint rule and is
used as a shorthand for (⊥ ← lk+1, ..., lm, not lm+1, ..., not ln) with ⊥ another
special language construct denoting contradiction.

A (positive) disjunctive program P is a set of (positive) disjunctive rules.
A normal rule is a disjunctive rule with at most one literal in the head.
A simple rule is a normal rule without negation-as-failure. A definite rule
is a simple rule with no classical negation, i.e. a rule in which all literals
are atoms. A normal (resp. simple, definite) program is a set of normal
(resp. simple, definite) rules.

The Herbrand base BP of a disjunctive program P is the set of atoms
appearing in P . The set of literals relevant for a disjunctive ASP program
is defined as LitP = (BP ∪ ¬BP). A partial Herbrand interpretation I of a
disjunctive program P is any set of literals I ⊆ LitP . A partial Herbrand
interpretation I is said to be consistent when it does not contain both ‘a’ and
‘¬a’ for some a ∈ I. A partial Herbrand interpretation I is said to satisfy a
positive disjunctive rule r if head(r) ∩ I 6= ∅ or body(r) 6⊆ I, i.e. the body is
false or the head is true. In particular, I is said to satisfy a constraint rule r if
body(r) 6⊆ I. If for a partial Herbrand interpretation I and a constraint rule

6

r we have that body(r) ⊆ I, then we say that I violates the constraint rule r.
Notice that for a fact rule we require that head(r)∩ I 6= ∅, i.e. at least one of
the literals in the head must be true. A partial Herbrand interpretation I of
a positive disjunctive program P is a partial Herbrand model of P either if I
is consistent and I satisfies every rule r ∈ P , or if I = LitP . It follows from
this definition that LitP is always a partial Herbrand model of P , and that all
other partial Herbrand models of P (if any) are consistent partial Herbrand
interpretations, which we will further on also refer to as consistent partial
Herbrand models. We say that I is an answer set of the positive disjunctive
program P when I is minimal among the partial Herbrand models of P
w.r.t. set inclusion.

The semantics of an ASP program with negation-as-failure are based on
the idea of a stable model [6]. The reduct P I of a disjunctive program P
w.r.t. the partial Herbrand interpretation I is defined as:

P I = {l0; ...; lk ← lk+1, ..., lm | ({lm+1, ..., ln} ∩ I = ∅)
and (l0; ...; lk ← lk+1, ..., lm, not lm+1, ..., not ln) ∈ P}.

I is said to be an answer set of the disjunctive program P when I is an answer
set of the positive disjunctive program P I (hence the notion of stable model).
Note that we can also write the disjunctive program P as P = P ′ ∪C where
C is the set of constraint rules in P . A partial Herbrand interpretation I
then is an answer set of the disjunctive program P when I is an answer set
of P ′ and I is a model of C, i.e. I does not violate any constraints in C.

Whenever P has consistent answer sets, i.e. answer sets that are consis-
tent partial Herbrand interpretations, we say that P is a consistent program.
When P has the answer set LitP , then this is the unique [7] inconsistent
answer set and we say that P is an inconsistent program.

Example 1. Consider the normal program P with the rules:

a← b← not c c← not b ← c

The first rule is a fact rule, whereas the last rule is a constraint rule. We
have that BP = {a, b, c}. Three consistent partial Herbrand interpretations
of P are {a, b, c}, {a, b} and {a, c}. Both {a, b, c} and {a, c} violate the
constraint rule. Furthermore, {a, b, c} is not minimal w.r.t. the other two
interpretations. Only {a, b} is a partial Herbrand model of P and it is the
unique minimal partial Herbrand model, i.e. answer set, of P . Furthermore,
P is a consistent program since it has consistent answer sets.

7

Answer sets of simple programs can also be defined in a more procedural
way. By using the immediate consequence operator TP , which is defined for
a simple program P w.r.t. an interpretation I as:

TP (I) = {l0 | (l0 ← l1, ..., lm) ∈ P and l1, ..., lm ⊆ I} .

We use fp(P) to denote the fixpoint which is obtained by repeatedly applying
TP starting from the empty interpretation ∅, i.e. it is the least fixpoint of
TP w.r.t. set inclusion. When the partial Herbrand interpretation fp(P) is
consistent, fp(P) is the (unique and consistent) answer set of the simple
program P without constraint rules. When we allow constraint rules, a
partial Herbrand interpretation is a (consistent) answer set of P = P ′ ∪C iff
I is a (consistent) answer set of P and I is a partial Herbrand model of C.
For both simple and normal programs, with or without constraint rules, we
have that LitP is the (unique and inconsistent) answer set of P if P has no
consistent answer set(s).

Finally, we use |=b (resp. |=c) to denote brave (resp. cautious) inference
in classical ASP, i.e. P |=b l iff ∃M, l ∈ M ·M is an answer set of P , and
P |=c l iff 6 ∃M, l /∈M ·M is an answer set of P .

2.2. Possibilistic logic

Interpretations in ASP are different from interpretations in classical logic
as they may be partial. The semantics of possibilistic logic, on the other hand,
is defined w.r.t. classical interpretations. We represent such an interpretation
as a set of atoms ω, where ω |= a if a ∈ ω and otherwise ω |= ¬a, with |=
the satisfaction relation from classical logic. The set of all interpretations is
defined as Ω = 2A, with A a finite set of atoms.

At the semantic level, possibilistic logic [8] is defined in terms of a pos-
sibility distribution π on the universe of interpretations where a possibility
distribution is a π : Ω→ [0, 1] mapping. A possibility distribution π encodes
for each interpretation (or world) ω to what extent it is plausible that ω
is the actual world. By convention, π(ω) = 0 means that ω is impossible
and π(ω) = 1 means that no available information prevents ω from being
the actual world. A possibility distribution π is said to be normalized if
∃ω ∈ Ω · π(ω) = 1, i.e. at least one interpretation is entirely plausible. Con-
versely, when ∀ω ∈ Ω · π(ω) = 0 we say that a possibility distribution π is
vacuous. Note that possibility degrees are mainly interpreted qualitatively:

8

when π(ω) > π(ω′), ω is considered more plausible than ω′. For two possibil-
ity distributions π1 and π2 with the same domain Ω we write π1 ≥ π2 when
∀ω ∈ Ω · π1(ω) ≥ π2(ω) and π1 > π2 when π1 ≥ π2 as well as π1 6= π2.

A possibility distribution π induces two uncertainty measures that allow
us to rank propositions. The possibility measure Π is defined by [8]:

Π(p) = max {π(ω) | ω |= p}

and evaluates the extent to which a proposition p is consistent with the beliefs
expressed by π. The dual necessity measure N is defined by:

N(p) = 1− Π(¬p)

and evaluates the extent to which a proposition p is entailed by the available
beliefs [8]. Note that we always have N(>) = 1 for any possibility distri-
bution, while Π(>) = 1 (and N(⊥) = 0) only holds when the possibility
distribution is normalized, i.e. only normalized possibility distributions can
express consistent beliefs [8]. To identify the possibility/necessity measure
associated with a specific possibility distribution πX, we will use a subscript
notation, i.e. ΠX and NX are the corresponding possibility and necessity mea-
sure, respectively. We omit the subscript when the possibility distribution is
clear from the context.

An important property of necessity measures is their min-decomposability
w.r.t. conjunction: N(p ∧ q) = min {N(p), N(q)} for all propositions p and q.
However, for disjunction only the inequality N(p ∨ q) ≥ max {N(p), N(q)}
holds. As possibility measures are the dual measures of necessity measures,
they have the property of max-decomposability w.r.t. disjunction, while for
the conjunction we have that only the inequality Π(p ∧ q) ≤ min {Π(p),Π(q)}
holds.

At the syntactic level, a possibilistic knowledge base consists of pairs (p, c)
where p is a propositional formula and c ∈]0, 1] expresses the certainty that p
is the case. Formulas of the form (p, 0) are not explicitly represented in the
knowledge base since they encode trivial information. A formula (p, c) is
interpreted as the constraint N(p) ≥ c, i.e. a possibilistic knowledge base Σ
corresponds to a set of constraints on possibility distributions. Typically,
there can be many possibility distributions that satisfy these constraints. In
practice, we are usually only interested in the minimally specific possibility
distributions, which are the possibility distributions that make minimal com-
mitments, i.e. the maximal possibility distributions w.r.t. the ordering >. For

9

the constraints induced by a possibilistic logic base, there is a unique mini-
mally specific distribution, which is called the least specific distribution [8].

2.3. Possibilistic answer set programming (PASP)

Possibilistic ASP (PASP) combines ASP and possibility theory by associ-
ating a weight with each rule. Such a weight may be interpreted in different
ways. In [3, 4] this weight is the necessity with which the head of the rule
can be concluded, given that the body is known to hold. If it is uncertain
whether the body holds, the necessity with which the head can be derived is
the minimum of the weight associated with the rule and the degree to which
the body is necessarily true. Another interpretation of the weights associated
with rules will be introduced in Section 3.

We use the name PASP for a family of approaches that share a common
syntax and which all rely on possibility theory and ASP. Syntactically, a
possibilistic disjunctive (resp. normal, simple, definite) program is a set of
pairs p = (r, c) with r a disjunctive (resp. normal, simple, definite) rule and
c ∈]0, 1] a certainty associated with r. We will also write a pair p = (r, c) with
r a disjunctive rule of the form (l0; ...; lk ← lk+1, ..., lm, not lm+1, ..., not ln) as:

c : l0; ...; lk ← lk+1, ..., lm, not lm+1, ..., not ln.

For a possibilistic rule p = (r, c) we use p∗ to denote r, i.e. the classical rule
obtained by ignoring the certainty. Similarly, for a possibilistic program P we
use P ∗ to denote the set of rules {p∗ | p ∈ P}. The set of all weights found
in a possibilistic program P is denoted by cert(P) = {c | p = (r, c) ∈ P}
and we also use the extended set of weights cert+(P) = {c | c ∈ cert(P)} ∪
{1− c | c ∈ cert(P)} ∪ {0, 1/2, 1} where the intermediate weight 1/2 is needed
due to the particular treatment of negation-as-failure.1

Current approaches to PASP are based on a generalization of the concept
of a partial Herbrand interpretation. In classical ASP, a partial Herbrand
interpretation can be seen as a mapping I : LitP → {0, 1}, i.e. a literal
l ∈ LitP is either true or false. This notion is generalized in PASP to a
valuation, which is a function V : LitP → [0, 1]. The underlying intuition of
V (l) = c is that the literal ‘l’ is true with certainty ‘c’. Note that, like partial
Herbrand interpretations in ASP, these valuations are of an epistemic nature,

1Specifically, programs such as the program with the single rule (1 : a ← not a) will
give rise to the answer set

{
a

1/2
}

in the semantics from [4].

10

i.e. they reflect what we know about the truth of literals. For notational
convenience, we often also use the set notation V = {lc, . . .}. In accordance
with this set notation, we write V = ∅ to denote the valuation in which each
literal is mapped to 0. For c ∈ [0, 1] a certainty and V a valuation, we use
V c to denote the classical projection {l | l ∈ LitP , V (l) ≥ c}. We also use
V c = {l | l ∈ LitP , V (l) > c}, i.e. those literals that can be derived to be true
with certainty strictly greater than ‘c’. A valuation is said to be consistent
when V 0 is consistent. In such a case, there always exists a normalized
possibility distribution πV such that NV (l) = V (l).

Before we discuss the approaches from [3] and [4] in detail, we highlight
that, semantically, both approaches are essentially the same in terms of the
effect that they have on the reduct of a rule. Given a possibilistic rule r of
the form:

c : l0; ...; lk ← lk+1, ..., lm, not lm+1, ..., not ln

the certainty of the reduct w.r.t. a valuation V is given by:

min(c, FN(V (lm+1)), ..., FN(V (ln)))

with FN a fuzzy negator, i.e. FN a decreasing function with FN(0) = 1 and
FN(1) = 0. In particular, for the semantics of [3] we have that FN is the
Gödel negator FG, defined as FG(0) = 1 and FG(c) = 0 with 0 < c ≤ 1.
In [4], FN is the Lukasievicz negator F L(c) = 1− c with 0 ≤ c ≤ 1. Thus, for
a rule such as:

0.9 : b← not a

and a valuation V = {a0.2} we obtain under the approach from [3] the reduct
0 : b ←, whereas under the semantics of [4] we obtain the reduct 0.8 : b ←.
In the remainder of the paper, due to the difference in the negator, we will
refer to PASP under the semantics of [3] and [4] as PASPG and PASP L,
respectively. However, even though the semantics share similarities, there is
a notable difference in the underlying intuition of both approaches. Indeed,
both approaches have their own applications, just as the choice of a fuzzy
connective in fuzzy logic is dependent on the problem at hand.

2.3.1. Using Gödel negation

We present a trivial extension of the semantics for PASP introduced in [3].
Let the c-cut Pc of a possibilistic program P , with c ∈ [0, 1], be defined as:

Pc = {r | (r, c′) ∈ P and c′ ≥ c} ,

11

i.e. the rules in P with an associated certainty higher than or equal to ‘c’.

Definition 1. Let P be a possibilistic simple program and V a valuation. The
immediate consequence operator TP is defined as:

TP (V)(l0) = max {c ∈ [0, 1] | V c |= l1, ..., lm and ((l0 ← l1, ..., lm), c′) ∈ Pc} .

The intuition of Definition 1 is that we can derive the head only with the cer-
tainty of the weakest piece of information, i.e. the necessity of the conclusion
is restricted either by the certainty of the rule itself or the lowest certainty
of the literals used in the body of the rule. Note that the immediate con-
sequence operator defined in Definition 1 is equivalent to the one proposed
in [3], although we formulate it somewhat differently. Also, the work from [3]
only considered definite programs, even though adding classical negation does
not impose any problems.

As before, we use fp(P) to denote the fixpoint obtained by repeatedly
applying TP starting from the minimal valuation V = ∅, i.e. the least fixpoint
of TP w.r.t. set inclusion. A valuation V is said to be the answer set of a
possibilistic definite program if V = fp(P) and V is consistent. Answer sets
of possibilistic normal programs are defined using a reduct. Let L be a set
of literals. The reduct PL of a possibilistic normal program is defined as [3]:

PL = {(head(r)← body+(r), c) | (r, c) ∈ P and body−(r) ∩ L = ∅} .

A consistent valuation V is said to be an answer set of the possibilistic normal

program P iff fp(
(
P (V 0)

)
) = V , i.e. if V is the answer set of the reduct P (V 0).

In [3] classical negation was not considered, but adding classical negation does
not impose any problems. Indeed, classical negation can easily be simulated
in ASP [7].

Example 2. Consider the possibilistic normal program P with the rules:

0.1 :normal← 1 : abnormal← not normal 0.8 : problematic← abnormal

This program describes an automated computer system. We have very lim-
ited evidence that this system is still operating normally. If the system is no
longer operating normally, it is operating abnormally. And if the system is
operating abnormally, it is very likely that keeping the system running will
result in problematic behavior.

12

It is easy to verify that
{
normal0.1

}
is a possibilistic answer set of P .

Indeed, P {normal} is the set of rules:

0.1 :normal← 0.8 : problematic← abnormal

from which it trivially follows that fp(P) =
{
normal0.1

}
since the body of

the second rule is never true.

2.3.2. Using Lukasiewicz negation

Alternative semantics for PASP were proposed in [4]. This approach
was later extended in [2] to possibilistic disjunctive programs. Intuitively,
the semantics from [4, 2] take the certainty of literals into account when
determining the reduct. The underlying intuition of ‘not l’ is that ‘it cannot
be established that l is certain’, or, that it is possible that ‘¬l’ is true.

Definition 2. Let P be a possibilistic disjunctive program and let V be a
valuation. For every p ∈ P , the constraint γ

V
(p) induced by p = (r, c) with

r = (l0; ...; lk ← lk+1, ..., lm, not lm+1, ..., not ln) and V , with V a valuation, is
given by:

max {N(l0), ..., N(lk)} ≥ min{N(lk+1), ..., N(lm),

1− V (lm+1), ..., 1− V (ln), c}. (2)

C(P,V) = {γ
V

(p) | p ∈ P} is the set of constraints imposed by program P
and V , and S(P,V) is the set of all minimally specific possibilistic models
of C(P,V).

Definition 3. Let P be a possibilistic disjunctive program and let V be a
valuation. Let π ∈ S(P,V) be such that

∀l ∈ LitP ·N(l) = V (l)

then V =
{
lN(l) | l ∈ LitP

}
is called a possibilistic answer set of P .

Example 3. Consider the possibilistic normal program P from Example 2.
We verify that V =

{
normal0.1, abnormal0.9, problematic0.8

}
is a possibilistic

answer set of P under the semantics of [4]. The set of constraints C(P,V)

induced by the program and the valuation V is given by:

N(normal) ≥ 0.1

N(abnormal) ≥ min {1− 0.1, 1}
N(problematic) ≥ min {N(abnormal), 0.8}

13

from which it readily follows that N(normal) ≥ 0.1, N(abnormal) ≥ 0.9
and N(problematic) ≥ 0.8. It thus trivially holds for the unique minimally
specific possibility distribution π ∈ S(P,V) that N(l) = V (l) for every l ∈
LitP .

It should be noted that under the semantics from [4] there is no longer
a one-on-one mapping between the classic answer sets of a program and
the possibilistic answer sets of the corresponding PASP program where we
attach certainty c = 1 to each of the classical rules. Indeed, a possibilistic
program such as P = {(1 : a← not b), (1 : b← not a)} has an infinite number
of possibilistic answer sets, i.e. {ac, b1−c} for every c ∈ [0, 1].

2.4. Complexity theory

We now recall some notions from complexity theory. The complexity
classes ΣP

k and ΠP
k , 0 ≤ k ≤ 3, are defined as follows [9]:

ΣP
0 = ΠP

0 = P

ΣP
1 = NP ΣP

2 = NPNP ΣP
3 = NPΣP

2

ΠP
1 = coNP ΠP

2 = coΣP
2 ΠP

3 = coΣP
3

where NPNP is the class of problems that can be solved in polynomial time
on a non-deterministic machine with an NP oracle, i.e. assuming a procedure
that can solve NP problems in constant time. Likewise, NPΣP

2 is the class
of problems that can be solved in polynomial time on a non-deterministic
machine with an ΣP

2 oracle. Then ΠP
2 and ΠP

3 are the classes of problems
whose complement is ΣP

2 and ΣP
3 , respectively. For a general complexity

class C, a problem is C-hard if any other problem in C can be reduced to this
problem in polynomial time. A problem is said to be C-complete if the prob-
lem is in C and the problem is C-hard. Deciding the validity of a Quantified
Boolean Formula or QBF of the form φ = ∃X1∀X2 ·p(X1, X2) with p(X1, X2)
a formula in disjunctive normal form is the canonical ΣP

2 -complete problem.
Deciding the validity of a QBF of the form φ = ∀X1∃X2∀X3 · p(X1, X2) with
p(X1, X2) a formula in disjunctive normal form is the canonical ΠP

3 -complete
problem. These two canonical problems will later be used in the proofs listed
in this paper.

3. Semantics and Complexity Results of Uncertain Rules

In PASPG and PASP L the weight associated with a rule is interpreted as
the certainty with which we can deduce the head when the body is known

14

to hold. As such, we obtain a semantics based on weighted epistemic states,
where we relate exactly one possibility distribution with each possibilistic
answer set of the program. We can, however, look at these certainties in
another way. Rather than considering weighted epistemic states, we can use
Boolean epistemic states and use the certainties associated with the rules to
express that some epistemic states are more plausible than others. We thus
look at the weight associated with a rule as expressing our uncertainty as
to whether the rule is valid. Indeed, the information encoded in the various
rules may e.g. come from different sources and this may affect the degree to
which we believe the rule to be valid.

Example 4. Consider the program P with the rules:

0.2 : raining ←
0.9 : slippery ← raining

0.7 : safe ← not slippery .

We will use this program to clarify the semantics proposed in this subsection.
Intuitively, the program encodes the knowledge that it is raining, that raining
makes the floor slippery and that a floor which is not slippery is safe to walk
on without risk of injury.

Clearly, if we incorrectly consider a rule to be valid we may draw incorrect
conclusions. The usual strategy, which is adopted in e.g. possibilistic logic, is
to discard the least reliable pieces of knowledge when we want to ensure that
what we derive is reliable. However, such a strategy would not work in ASP
due to its non-monotonic nature. Indeed, while failing to discard incorrect
rules may lead to erroneous conclusions, the same may happen when we
incorrectly discard a valid rule. For example, if we omit the information
that it is raining because it is insufficiently reliable, then we are not able
to conclude that the floor is slippery and thus we are able to derive that
it is safe to walk on the floor. Hence, to assess the certainty with which a
literal can be derived, we need to consider all the subprograms of a given
program, including the complete program itself. Some of these subprograms
are more likely than others to correspond with an accurate representation of
the considered problem. An answer set is then said to be necessary when it
is an answer set of all the plausible subprograms. Similarly, we say that an
answer set is possible to the extent that it is an answer set of some plausible
subprogram.

15

Each subprogram corresponds with the assumption that some particular
rules are wrong, namely those rules from the program that are missing, while
the rules in the subprogram are assumed to be correct. Ideally, we would
thus want to associate a possibility degree with each subprogram, i.e. the
degree with which the assumption that the subprogram consists exactly of
the valid rules is compatible with the certainty that we have of the rules. In
practice, however, it is not feasible to list all subprograms and associate a
possibility with each individual subprogram. Instead, we encode a possibility
distribution over subprograms by associating a certainty with each rule in our
possibilistic program P . The possibility of each subset is then determined
by looking at the certainties of the rules that are omitted from the program.
If we omit a rule with a certainty of 1, i.e. a rule of which we are certain
that it is valid, then the rules in the subprogram can never be the set of all
rules that are valid. Thus, our possibility that the rules in the subprogram
correspond with the set of valid rules is 0. Conversely, if we only omit rules
with a low certainty, then we retain a high possibility that the rules in our
subprogram are exactly those rules that are valid. In particular, in the above
example, omitting only the first rule would result in a subprogram with a
high possibility of 0.8. However, omitting the second rule with a certainty
of 0.9 would result in a subprogram where we only have a possibility of 0.1
that it contains all the valid rules.

Following this line of reasoning, we conceptually need a possibility dis-
tribution over subprograms of P . Specifically, a possibilistic rule (r, c) is
interpreted as the constraint N(r) ≥ c, where the necessity measure N(r)
stands for N({P ′ | P ′ ⊆ P and P ′ contains the rule r}). The possibility dis-
tribution πP is then the least specific possibility distribution that satisfies
these constraints. Thus, a subprogram is considered possible to the extent
that it contains all of the certain rules.

Definition 4. Let P be a possibilistic ASP program. We define the possibility
distribution πP over the subsets P ′ ⊆ P as

πP (P ′) =

{
1−max {c | (r, c) ∈ P \ P ′} when P ′∗ consistent

0 otherwise

Intuitively, this definition states that the less certain the rules are that we
omit from the subprogram P ′, the more possible it is that P ′ is the correct
program. It is not hard to see that this definition corresponds with the least
specific possibility distribution that satisfies the constraints N(r) ≥ c for

16

every (r, c) ∈ P , with the additional constraint that inconsistent programs
are impossible. Indeed, we have that:

∀(r, c) ∈ P ·N(r) ≥ c

≡ ∀(r, c) ∈ P ·N({P ′ | P ′ ⊆ P and (r, c) ∈ P ′}) ≥ c

≡ ∀(r, c) ∈ P · Π({P ′ | P ′ ⊆ P and (r, c) ∈ (P \ P ′)}) ≤ 1− c
≡ ∀(r, c) ∈ P ·max {π(P ′) | P ′ ⊆ P, (r, c) ∈ (P \ P ′)} ≤ 1− c
≡ ∀(r, c) ∈ P · ∀P ′ ⊆ P, (r, c) ∈ (P \ P ′) · π(P ′) ≤ 1− c
≡ π(P ′) ≤ min {1− c | P ′ ⊆ P, (r, c) ∈ (P \ P ′)}
≡ π(P ′) ≤ 1−max {c | P ′ ⊆ P, (r, c) ∈ (P \ P ′)}
≡ π(P ′) ≤ πP (P ′)

Notice furthermore that πP is a normalized possibility distribution whenever
P ∗ is consistent since then πP (P) = 1.

Example 5. Consider the program P from Example 4. For compactness, we
name the rules r1, r2 and r3 from top to bottom. The possibility distribution
π over the subprograms of P is defined as:

π({r1, r2, r3}) = 1 π({r2, r3}) = 0.8

π({r1, r3}) = 0.1 π({r3}) = 0.1

π({r1, r2}) = 0.3 π({r2}) = 0.3

π({r1}) = 0.1 π({}) = 0.1

We now define the main reasoning tasks for these new semantics.

Definition 5. Let P be a possibilistic ASP program. Let πP be as in Def-
inition 4. The degree to which it is possible that ‘l’ is a brave/cautious
consequence of P is defined as:

Π
(
P |=b l

)
= max

{
πP (P ′) | P ′ ⊆ P and P ′

∗ |=b l
}

Π (P |=c l) = max
{
πP (P ′) | P ′ ⊆ P and P ′

∗ |=c l
}

i.e. this is the degree to which some program P ′ ⊆ P is possible which has
‘l’ as a brave/cautious consequence. The degree to which it is necessary that
P has ‘l’ as a brave/cautious consequence is defined as:

N
(
P |=b l

)
= 1−max

{
πP (P ′) | P ′ ⊆ P and P ′

∗ 6|=b l
}

N (P |=c l) = 1−max
{
πP (P ′) | P ′ ⊆ P and P ′

∗ 6|=c l
}
.

17

Note that this is the degree to which all programs P ′ ⊆ P that do not have
‘l’ as a brave/cautious consequence are impossible.

In the remainder of this section, we will also write P |=b
Π lλ to denote that

Π
(
P |=b l

)
≥ λ, and similar for the notations P |=c

Π lλ, P |=b
N lλ and P |=c

N lλ.
The differences between these types of inference are shown in the next ex-
ample.

Example 6. Consider the PASP program P with the rules:

0.8 : b← not c 0.3 : c← d, not b 0.9 : d← .

We have that

πP (P) = 1 {b, d} , {c, d}
πP (0.8 : b← not c;0.9 : d←) = 0.7 {b, d}
πP (0.3 : c← d, not b;0.9 : d←) = 0.2 {c, d}
πP (0.9 : d←) = 0.2 {d}
πP (0.8 : b← not c;0.3 : c← d, not b) = 0.1 {b}
πP (0.8 : b← not c) = 0.1 {b}
πP (0.3 : c← d, not b) = 0.1 {}
πP ({}) = 0.1 {}.

where the possibility associated with each subprogram is shown on the left
and the classical answer set(s) of each subprogram is shown on the right. We
obtain the following conclusions:

P |=b
N

{
b0.8, c0.3, d0.9

}
P |=c

N

{
b0, c0, d0.9

}
P |=b

Π

{
b1, c1, d1

}
P |=c

Π

{
b0.7, c0.2, d1

}
.

Furthermore, when the particular understanding of negation-as-failure
in [3] prevents us from obtaining intuitive results, we can use the approach
presented in this section, which offers results that are in line with PASP L.
We illustrate this in the next example.

Example 7. Consider the possibilistic normal program P from Example 3
with the rules

0.1 : normal ←
1.0 : abnormal ← not normal

0.8 : problematic ← abnormal .

18

Note that the intuition of the rules has changed slightly under the new se-
mantics. For example, we are certain with a fairly high degree that the last
rule, which describes that an abnormal system is behaving problematically,
is indeed valid. In PASP L, one would expect a conclusion in which we deduce
with a high certainty that the system will give problematic errors. Indeed,
the second rule states that we will assume that the system is working abnor-
mally, unless we are very certain that the system is working normally, i.e. we
act cautiously. Using the last rule, we then obtain with a high certainty
that the system will cause problematic behavior. The results obtained by
the different semantics are:

semantics from [3]
{
normal0.1

}
semantics from [4]

{
normal0.1, abnormal0.9, problematic0.8

}
semantics from Section 3 P |=c

N

{
normal0.1, abnormal0, problematic0

}
P |=b

N

{
normal0.1, abnormal0, problematic0

}
P |=c

Π

{
normal1, abnormal0.9, problematic0.9

}
P |=b

Π

{
normal1, abnormal0.9, problematic0.9

}
Note that in PASPG, because the certainty is ignored when determining

the reduct, ‘normal’ is assumed to be true without doubt. Hence, the second
rule is removed from the reduct and we have no way of concluding that
the system is performing abnormally. In PASP L, however, the certainty
is taken into consideration and we conclude, with a fairly high certainty,
that ‘abnormal’ is true. The semantics proposed in this section, for this
given example, agree with PASPG when we are interested in the inference
based on cautious necessity. On the other hand, the conclusions are closer
to those of PASP L when we look at the inference based on brave possibility.
Furthermore, note that since each subprogram has a unique answer set both
brave and cautious reasoning coincide.

In general though, neither of the semantics for PASP need to agree with each
other, as can be seen in the next example:

Example 8. Consider the PASP program P with the rules:

1 : lost ← not visible

1 : visible ← not hidden

0.5 : hidden ←

19

For compactness, we name these rules from top to bottom r1, r2 and r3.
Intuitively, this example describes a simple game where an agent loses when
he cannot see an object. However, there is uncertainty as to whether or not
the object itself is hidden. We have that:

πP (P) = 1 {hidden, lost}
πP (r1, r2) = 0.5 {visible}

whereas the possibility of all the other subprograms P ′ ⊆ P is 0. Since
each subprogram has a unique answer set, brave and cautious reasoning once
again coincide.
The results obtained by the different semantics are:

semantics from [3]
{
hidden0.5, lost1

}
semantics from [4]

{
hidden0.5, visible0.5, lost0.5

}
semantics from Section 3 P |=c

N

{
hidden0.5, visible0, lost0.5

}
P |=b

Π

{
hidden1, visible0.5, lost1

}
Neither of these conclusions agree. Nevertheless, the semantics proposed

in this section provide an intuitively satisfiable answer to the outcome of
the game that the agent plays. Indeed, we can conclude that it is entirely
possible that the agent has lost (since P |=b

Π lost1), while at the same time
we know that this is not necessarily so (since P |=c

N lost0.5).

Still, some interesting links exist between the semantics for PASP.

Proposition 1. Let P be a simple possibilistic ASP program. For each
literal ‘l’ we have that N (P |=c l) ≥ λ iff V (l) ≥ λ with V the possibilistic
answer set of P under the semantics from Bauters [4], which in turn coincides
with the semantics from Nicolas [3].

The previous result is not surprising because, without negation-as-failure,
all semantics for PASP adhere to the semantics of possibilistic logic. Fur-
thermore, notice that for simple programs, which have a unique answer
set, checking whether N

(
P |=b l

)
≥ λ is equivalent to checking whether

N (P |=c l) ≥ λ and, similarly, checking whether Π (P |=c l) ≥ λ is equiv-
alent to checking whether Π

(
P |=b l

)
≥ λ. Thus, also the complexity of

these reasoning types coincide. This is not the case for possibilistic nor-
mal/disjunctive programs.

20

Proposition 2. Let P be a possibilistic normal program. Deciding whether

Π
(
P |=b l

)
≥ λ is NP-complete;

N (P |=c l) ≥ λ is coNP-complete;

Π (P |=c l) ≥ λ is ΣP
2 -complete;

N
(
P |=b l

)
≥ λ is ΠP

2 -complete.

A similar jump in the polynomial hierarchy can be seen for possibilistic dis-
junctive programs.

Proposition 3. Let P be a possibilistic disjunctive program. Deciding whether

Π
(
P |=b l

)
≥ λ is ΣP

2 -complete;

N (P |=c l) ≥ λ is ΠP
2 -complete;

Π (P |=c l) ≥ λ is ΣP
3 -complete;

N
(
P |=b l

)
≥ λ is ΠP

3 -complete.

Thus far, we have considered a possibility distribution over the subpro-
grams. However, from an application perspective, it often makes more sense
to consider the possibility or necessity of an answer set. Clearly, each sub-
program P ′ ⊆ P may have zero or more answer sets. Furthermore we may
have that two subprograms P ′ ⊆ P and P ′′ ⊆ P have the same answer set,
even if πP (P ′) 6= πP (P ′′). This leads us to the following definition.

Definition 6. Let P be a possibilistic ASP program. Let πP be the possibility
distribution over the subsets P ′ ⊆ P . We define the possibility distribution
πA over the partial Herbrand interpretations M :

πA(M) = max
{
πP (P ′) |M is an answer set of P ′

∗}
Note that this definition implies that πA(M) = 0 whenever M is not an
answer set of any subprogram P ′ ⊆ P . Let πA be the possibility distribution
over the partial Herbrand interpretations M . The possibility that l is a literal
in the epistemic state of the agent is given by Π(l) = max {πA(M) | l ∈M}.
The necessity that l is a literal in the epistemic state of the agent is given by
N(l) = 1−max {πA(M) | l /∈M}.
Interestingly, we have that Π(l) = Π

(
P |=b l

)
and N(l) = N (P |=c l).

We now show that the new semantics are a proper extension of ASP.

21

Example 9. Consider the program from Example 6. We can verify that:

Π(b) = 1 Π(c) = 1 Π(d) = 1

N(b) = 0 N(c) = 0 N(d) = 0.9

Since all the associated weights are 1, only the subprogram consisting
of all the rules has a non-negative weight. Thus, only the classical answer
sets are considered to be possible and the reasoning tasks from Definition 5
reduce to cautious and brave reasoning.

We now provide a more elaborate example, which highlights a complex
setting in which humans can fairly easily come to a satisfiable conclusion,
but which is not easy to encode using e.g. classical ASP.

Example 10. Triage at an accident site with a large number of casualties is
an essential part of medical treatment when resources are limited. With the
help of triage, it becomes possible to distinguish which casualties can wait
for medical attention at a hospital and which casualties need to be treated on
the spot. For brevity of this example, we consider a triage system with three
levels. The casualty may have minor injuries (minor), which means that
the person can wait for treatment at the hospital. The casualty may need
to be treated immediately because of life-threatening, yet treatable injuries
(nowait). The final category is beyond urgency (beyond) and encompasses
those casualties which are so severely injured that, for the time being, medical
attention is better directed towards casualties in the nowait category as the
chances of survival of casualties in this latter category are far higher.

A rescue helper is faced with a casualty with extensive external injuries
(extensive), which indicates that he/she either falls in the nowait or beyond
category. The casualty is faintly moaning (moaning), which, with a very low
certainty, is an indication of the casualty still being conscious (conscious).
Similarly, the casualty is exhibiting a bleeding nose (nosebleed), which might
indicate internal bleeding (internal). The rescue helper would be a lot more
certain that the casualty is experiencing internal bleeding when he/she also
had low blood pressure (lowblood), but this has not been established. When-
ever the casualty does not appear to be conscious, he/she is assumed to be in
the nowait or beyond category. When there is no indication of internal bleed-
ing, the casualty is in the nowait category. A classification in one of the cate-
gories is never entirely certain since it is not possible, due to time constraints,
to perform all the required tests. We have the program with the rules:

1 : extensive←

22

0.9 :minor ← not extensive

1 :moaning ←
0.1 : conscious← moaning

0.9 :nowait← not beyond, not internal, not conscious, extensive

0.9 : beyond← not nowait, not conscious, extensive

1 :nosebleed←
0.1 : internal← nosebleed

0.7 : internal← nosebleed, lowblood

1 : ← nowait, beyond, extensive

1 : ← not nowait, not beyond, extensive

The last two rules encode that one and exactly one category needs to be
assigned to the casualty (either nowait or beyond), a requirement for an
efficient triage.

Notice that at least one rule needs to be omitted to make the pro-
gram consistent. Indeed, if we look at the classical program by ignoring
the weights, then it is clear that we have information (with varying degrees
of certainty) to support both nowait and beyond. In PASPG, we are un-
able to take the low certainty of the literal conscious into account when
reasoning with negation-as-failure. As such, the literal conscious, for the
purpose of determining the reduct, is considered as entirely true, which im-
mediately removes the rules with nowait or beyond in the head of the rule
from the reduct. In PASP L, on the other hand, we are unable to choose
between nowait and beyond. Indeed, we obtain an infinite number of an-
swer sets such that the sum of the necessities of nowait and beyond equals
0.9 and such that the necessity for both nowait and beyond is higher or
equal to 0.1. Under the semantics proposed in this paper, however, we
obtain that P |=b

Π

{
beyond0.9, nowait0.9

}
, P |=c

Π

{
beyond0.9, nowait0.1

}
,

P |=b
N

{
beyond0.9, nowait0.1

}
and P |=c

N

{
beyond0.1, nowait0.1

}
. The new

semantics are thus capable of arriving at the desired conclusion. Indeed,
since the necessity associated with beyond is higher or equal to the necessity
associated with nowait for all reasoning tasks, a reasonable classification for
the casualty is beyond. This corresponds with our intuition, as a number of
indications hint towards this worst case scenario (e.g. the bleeding nose).
If we added the fact that the casualty has low blood pressure, then even a
brave conclusion with possibility measures would indicate that the casualty

23

is beyond urgency, i.e. it would further reaffirm our conclusion.

4. Simulation of Uncertain Rules

We now show how the semantics presented in the previous section can be
simulated using existing formalisms. The decision problems Π(P |=b l) ≥ λ
or N(P |=c l) ≥ λ will be simulated using brave and cautious reasoning over
classical programs. The remaining decision problems, which have a higher
expressiveness, will be simulated by means of cautious abductive reasoning.
We start by describing the simulation of the decision problems Π(P |=b l) ≥ λ
or N(P |=c l) ≥ λ, which share a common base program Pbasic.

Definition 7. Let P be a possibilistic disjunctive program. We define Pbasic(λ)
as the set of rules:

{r′i ← not nr′i | (ri, ci) ∈ P, ci ≤ 1− λ}
{nr′i ← not r′i | (ri, ci) ∈ P, ci ≤ 1− λ} (3)

∪ {r′i ← | (ri, ci) ∈ P, ci > 1− λ} (4)

∪ {head(ri)← body(ri) ∪ {r′i} | (ri, ci) ∈ P} (5)

Intuitively, the program Pbasic(λ) simulates the semantics from Section 3
using classical ASP. In particular, the rules from (3) generate as many answer
sets as there are choices of rules such that the possibility of the associated
subprograms remains sufficiently high, i.e. greater than or equal to λ. The
rules in (4) ensure that all rules with a sufficiently high certainty are consid-
ered as valid. Depending on the choice made in (3), the information encoded
in the respective rules is applied using (5).

Example 11. Consider the possibilistic normal program P with the rules

0.8 : b← not c 0.3 : c← d, not b 0.9 : d← .

We have the classical normal program Pbasic(0.7) with the rules

r′1 ← r′2 ← not nr′2 r′3 ←
nr′2 ← not r′2

b← not c, r′1 c← d, not b, r′2 d← r′3

The program Pbasic(λ) can now be extended to solve the main reasoning tasks
on the second level of the polynomial hierarchy.

24

Definition 8. Let P be a possibilistic disjunctive program. The classical dis-
junctive program PΠ

brave(l, λ) to verify Π(P |=b l) ≥ λ is defined as Pbasic(λ)∪
{← not l}.

Intuitively, the simulation PΠ
brave(l, λ) will look for a world in which ‘l’ is

true, and has an associated possibility of λ. If such a world exists, i.e. if we
have an answer set, then Π(P |=b l) ≥ λ is true.

Proposition 4. Let P be a possibilistic disjunctive program and PΠ
brave(l, λ)

the classical disjunctive program as defined in Definition 8. We have that
Π(P |=b l) ≥ λ iff PΠ

brave(l, λ) has a classical consistent answer set.

Definition 9. Let P be a possibilistic disjunctive program. The classical
disjunctive program PN

cautious(l, λ) to verify N(P |=c l) ≥ λ with λ > 0 is
defined as Pbasic(1− λ′)∪{← l} with λ′ ∈ cert+(P) such that λ′ < λ and for
which we have that 6 ∃λ′′ ∈ cert+(P) · λ′ < λ′′ < λ.

Note that when λ = 0, it trivially holds that N(P |=c l) ≥ λ is true.
Intuitively, to determine whether N(P |=c l) ≥ λ we need to verify that

max {πP (P ′) | P ′ ⊆ P and P ′∗ 6|=c l} ≥ 1 − λ. In other words, whether we
do not have any subprogram P ′ such that P ′∗ 6|=c l and πP (P ′) > 1−λ. The
simulation PN

cautious(l, λ) intuitively looks for a world with a certainty higher
than 1− λ in which ‘l’ is false, i.e. l is not a cautious consequence. If such a
world does not exist, i.e. if we find no answer sets, then N(P |=c l) ≥ λ.

Proposition 5. Let P be a possibilistic disjunctive program, λ > 0 and
PN
cautious(l, λ) the classical disjunctive program as defined in Definition 9. We

have that N(P |=c l) ≥ λ iff PN
cautious(l, λ) has no classical consistent answer

set.

For the decision problems in Proposition 4 and 5, it was sufficient to find
one answer set of a particular subprogram that satisfies a given condition.
However, to decide whether Π (P |=c l) ≥ λ or N

(
P |=b l

)
≥ λ we need to

verify a particular condition for each answer set of a particular subprogram.
Our simulation of the decision problems Π (P |=c l) ≥ λ and N

(
P |=b l

)
≥ λ

is based on the idea that a disjunctive ASP program can be used to reason
about the answer sets of a normal program P . Specifically, it is possible to
translate a normal program P to a set of clauses to ensure that the program
is free of negation-as-failure. When a program is free of negation-as-failure
and free of classical negation (a trivial transformation, see e.g. [7]) we can use
saturation techniques [7] to reason about each answer set of P . Intuitively,

25

the saturation technique exploits the property that answer sets are minimal
models. Desirable partial Herbrand models are saturated to ensure that these
models cannot be minimal when undesirable partial Herbrand models exist
(i.e. when partial Herbrand models exist that represent counter-examples).
Using the saturation technique we both validate whether a given partial Her-
brand interpretation is a valid model of the subprogram and whether a given
literal is a desired cautious conclusion of the given subprogram. Crucially,
every normal program can be translated to a set of clauses, e.g. by using the
translation presented in [10]. Our simulation uses such a translation as a
black box, which allows us to take advantage of state of the art methods.

Definition 10. Let P = {p1, ..., pn} be a possibilistic normal program and
every pi = (ri, ci) for 1 ≤ i ≤ n a possibilistic normal rule. The disjunctive
program Pcomplex (λ) is defined as the set of rules:

{ri ← not ¬ri | 1 ≤ i ≤ n, ci ≤ 1− λ}
∪ {¬ri ← not ri | 1 ≤ i ≤ n, ci ≤ 1− λ} (6)

∪ {ri ← | 1 ≤ i ≤ n, ci > 1− λ} (7)

∪
{
cl← | cl ∈ cls(P r)†

}
(8)

∪
{

(sat← a, na) | a ∈ at(cls(P r)†)
}

(9)

∪
{

(a← sat) | a ∈ at(cls(P r)†)
}

∪
{

(na← sat) | a ∈ at(cls(P r)†)
}

(10)

∪ {← not sat} (11)

∪
{
cl′r ← | cl ∈ cls(P r)†

}
(12)

∪
{
← a′, na′ | a ∈ at(cls(P r)†)

}
(13)

where cls(P) is a representation of the normal program P as a set of clauses
(e.g. [10] or [11]), P r is the set of rules {head(ri)← body(ri), ri | (ri, ci) ∈ P}
with ‘ri’ a fresh atom, C† is the set of clauses obtained from C by replacing
every occurrence of a negated atom ¬a with a fresh atom na except for the
atoms ‘ri’. Furthermore, we use at(C) to denote the set of atoms appearing
in C from which we remove the atoms ‘ri’. Finally, cl′r is obtained from a
clause cl by replacing every literal from LitP with l′.

Note that, when using ASP solvers which support choice rules [12], the set
of rules in (6) can be defined as {1{ri,¬ri}1← | 1 ≤ i ≤ n, ci ≤ 1− λ}.

26

The intuition of this program is as follows. Rules (6) and (7) ensure
that each answer set of Pcomplex (λ) corresponds to exactly one subprogram
P ′ ⊆ P . Furthermore, the partial Herbrand interpretations of Pcomplex (λ)
that satisfy (8) then correspond with the answer sets of P ′. The rules in (9)
use saturation to simulate classical negation. The saturation itself is encoded
in the rules (10). Clearly, we do not want answer sets that represent counter-
examples, so we use a constraint rule in (11) to eliminate those models that
are not saturated. However, if P ′ itself is inconsistent, we do not want to
consider this program since then π(P ′) = 0. The rules in (8–11) are too
weak to eliminate such an inconsistent answer set. As such, we need to sim-
ulate P ′ once more with the rules (12) and (13) to ensure that subprograms
with inconsistent answer sets are not considered in our simulation. Notice
that while this simulation mostly uses fresh literals, the literals ri remain un-
changed. Thus the subprogram simulated in (12) is exactly the subprogram
that is simulated in (8).2

Proposition 6 and 7 further extend upon Pcomplex (λ) to effectively simulate
the reasoning tasks Π (P |=c l) ≥ λ or N

(
P |=b l

)
≥ λ, respectively, while

at the same time verifying their correctness.

Proposition 6. Let P be a possibilistic normal program and P c
Π(l, λ) the

disjunctive program defined as Pcomplex (λ)∪{sat← l}. Then Π (P |=c l) ≥ λ
iff P c

Π(l, λ) has a classical answer set.

Proposition 7. Let P be a possibilistic normal program and P b
N(l, λ) the

disjunctive program defined as Pcomplex (1− λ′)∪{sat← not l} with λ′ defined
as in Proposition 5. Then N

(
P |=b l

)
≥ λ iff P b

N(l, λ) has no classical answer
set.

5. Certain programs with optional rules

The simulations provided in the previous section for the decision problems
Π (P |=c l) ≥ λ and N

(
P |=b l

)
≥ λ are not only useful for reasoning with

uncertain answer set programs, but can be applied to the much wider range of
problems that can be encoded as programs with optional rules. In particular,
in this section we prove how two interesting AI problems, namely cautious

2A prototype implementation of this simulation using disjunctive ASP is under contin-
ual development and can be found online at: http://www.cwi.ugent.be/kim/pasp2asp/ .

27

abductive reasoning and conformant planning, can be expressed in terms of
programs with optional rules. As such, we can use the simulation presented
in the previous section, along with off-the-shelf ASP solvers, to efficiently
compute cautious abductive reasoning and the first single-step implemen-
tation of conformant planning in ASP. Both problems can also trivially be
extended with weights.

5.1. Cautious abductive reasoning

An abductive diagnosis program [13] is encoded as a triple 〈H,T,O〉 where
H is a set of literals referred to as hypotheses, T is a (normal) ASP program
referred to as the theory and O is a set of literals referred to as observations.
Intuitively, the theory T describes the dynamics of a system, the observa-
tions O describe the observed state of the system and the hypotheses H are
those literals that can be used to try and explain such observations within
the theory. Cautious abductive reasoning is concerned with the problem of
finding hypotheses that could explain the observations in O. Thus, we are
interested in a set E ⊆ H such that T ∪ E |=c O, where E is said to be a
cautious explanation.

Proposition 8. Let Pabd be the possibilistic normal program defined for an
abductive diagnosis program 〈H,T,O〉 as

{0.5 : block h← | h ∈ H} (14)

∪ {1 : h← not block h | h ∈ H} (15)

∪ {1 : goal← O} (16)

∪ {1 : r | r ∈ T} . (17)

It holds that 〈H,T,O〉 has a cautious explanation iff Π (Pabd |=c goal) ≥ 0.5.
In particular, we have that E is a cautious explanation if and only if we have
for P ′ = Pabd \ {block h← | h ∈ E} that P ′ |=c goal.

It is furthermore trivial to extend cautious abductive reasoning with weights,
which further increases the expressiveness of cautious abductive reasoning.

Example 12. John wants to become rich. He can either choose to invest his
money in stocks, or to invest it in bonds (he lacks the money to do both).
John knows that the stock market will either end with a gain (gain) or with a
loss (loss). When the overall stock market has gained value, then he is very
certain that also the stocks he bought will have gained value, i.e. he wins

28

a lot of money (win). When the stock market has lost money, he is fairly
certain that he will fail to recuperate his investment (fail). When he fails to
do so, he goes bankrupt (bankrupt). As an alternative to the stock market,
he can also invest his money in bonds. He is somewhat certain that bonds
will make him rich, i.e. bonds are safer but John has a lower certainty that
bonds will help him to become rich. We have:

1 : gain ← not loss 1 : loss ← not gain

0.9 : win ← gain, stocks 0.8 : fail ← loss , stocks

1 : rich ← win 1 : bankrupt ← fail

0.5 : rich← bonds 1 :← stocks, bonds

Given the hypotheses H = {stocks , bonds}, it is clear that when we ig-
nore the weights only E = {bonds} is a cautious abductive explanation for
the observation O = {rich}. If we take the certainties into account, then
E1 = {bonds} is only a cautious explanation when we take λ = 0.5. In other
words: we are only somewhat certain that the action bonds will cautiously
make us rich. Notice that E2 = {stocks} will only be a cautious explanation
for λ = 0.2. Indeed, we are far less certain that buying stocks will be a
guaranteed way to make us rich. The cautious explanation with the highest
certainty to make us rich is therefore to buy bonds. If, however, we were
looking for a brave explanation, then we would sooner be advised to buy
stocks as these have a high potential for making us rich.

5.2. Conformant planning

Conformant planning is the problem of determining whether a plan (i.e. a
series of actions) exists that always leads to the desired goal, regardless of the
incompletely known initial state of the agent. Such problems are typically
expressed using an action language.

An action language is built from a finite number of fluents f1, ..., fn.
A state is a finite set of fluents. The properties of the initial state s0 are
described by formulas of the form ‘initially f ’, which are called value proposi-
tions, with f a fluent literal, i.e. a fluent or a fluent preceded by ¬. Changes of
states are defined using a finite set of actions, which are formulas of the form
‘a causes f if f1, ..., fm’, which are called effect propositions, with f, f1, ..., fm
fluent literals. A domain D is a finite set of value and effect propositions.
A proper domain, to which we limit ourselves in this paper, is a domain in
which we can determine in polynomial time what the successor state is, given

29

the current state and an action. A plan is a sequence of actions [a1, ..., am].
The planning problem is to determine for a given domainD and a fluent literal
f whether a plan exists leading from s0 to a state in which f is true, where
we call f the goal fluent. To solve a planning problem, the domain is trans-
lated to ASP. Particularly, such a translation can be written as Pact ∪ Prem

where Pact are those rules used to describe the actions, whereas Prem are the
remaining rules that among others describe the (incomplete) initial state and
rules to ensure inertia. Then, a plan exists when an answer set contains the
goal fluent.

However, not all forms of planning problems can be solved in this way.
When we say that we have an incomplete domain, this means that the initial
values of some fluents are unknown. Conformant planning is the problem of
determining whether for an incomplete domain and a fluent f a plan exists
leading to a state in which f is true, regardless of the initial values of the
unknown fluents. Only some action languages, e.g. K [14, 15], have the ex-
pressive power to describe conformant planning problems. For solving such
problems, DLV K relies on a two-step translation to ASP where a plan is gen-
erated (that is not necessarily a conformant plan) and verified to be an actual
conformant plan, until an actual conformant plan is found. However, these
methods are not designed to work with uncertainty and cannot, e.g. compute
the most reliable plan when no conformant plan can be found.

We now show how conformant planning can be expressed in terms of a
decision problem of the form N

(
P |=b l

)
≥ λ. Note that the existence of a

conformant plan can be also written as ∃p ∀iv ·P (p, iv, pp) where P (p, iv, pp)
describes that for the planning problem pp and for all initially unknown
values iv the plan p leads to the goal fluent.

Proposition 9. Let Pcon be the possibilistic normal program defined for a
conformant planning problem with the atom ‘goal’ the desired goal fluent.
We express the domain knowledge as a normal ASP program Pact ∪ Prem.
Then Pcon is:

{0.5 : block i← | ri ∈ Pact} (18)

∪ {1 :H(ri)← B(ri) ∪ {not block i} | ri ∈ Pact} (19)

∪ {1 : r | r ∈ Prem} (20)

∪ {1 : ← not goal} (21)

A conformant plan exists iff Π (Pcon |=c goal) ≥ 0.5.

30

6. Related Work

The combination of logic programming and uncertainty handling in a
single framework has been an active topic of research during the last decen-
nia. The idea of combining logic programming and possibility theory was
pioneered in [16]. However, this approach was limited to classical formulas
and as such did not include default negation, i.e. non-monotonic reason-
ing. Shortly thereafter, in [17], a framework was proposed in which sta-
ble models are combined with a semi-possibilistic first-order logic, used as
a logic of graded truth, to deal with uncertainty. Specifically, this semi-
possibilistic logic is a compositional version of possibilistic logic, in which
compositionality is preserved on the basis of a Heyting algebra. As a direct
consequence, classical Boolean tautologies are no longer preserved in semi-
possibilistic logic [18]. A more recent approach is the work from [19], which
combines defeasible logic, a form of non-monotonic reasoning involving both
strict and defeasible rules, with possibility theory in a single framework. This
allows, among other things, to resolve conflicts between contradictory goals.
Possibility theory has also been combined with argumentation frameworks,
e.g. in [20], where revision rules allow an agent to revise its beliefs and goals.

One of the first works to explore the combination of possibility theory
and ASP was [3] in which the PASP framework for normal programs was
introduced. In [21], an extension to PASP was proposed to make it appli-
cable to possibilistic disjunctive programs. Both approaches, however, share
the same reduct operator in which the certainty is not taken into account
when removing negation-as-failure. Later, in [4], alternative semantics for
PASP were introduced that adhere to a different intuition when dealing with
negation-as-failure. While in [3] we have that ‘not l’ is true when we are more
certain that ‘¬l’ rather than ‘l’ is true, in [4] we have that ‘not l’ is true to
the degree in which it is possible that ‘¬l’ is true. Rules in [4] are interpreted
as constraints on possibility distributions, where answer sets correspond with
epistemic states and where the rules are used to reason over these epistemic
states. The work from [22] later showed that answer set programming can
indeed be seen as a form of meta-epistemic reasoning. Other semantics for
PASP were proposed in [23] based on the idea of pstable models [24]. Pstable
models are a framework characterized by a fusion of ASP and paraconsistent
logic. Such pstable models are closer to the intuition of classical models and
possibilistic logic than they are to stable models, as in our approach. Indeed,
the focus of pstable models is more on handling inconsistency. For instance,

31

the program containing the rule (c : a ← not a) has (a, c) as its unique pos-
sibilistic pstable model, which is not compatible with a reading of ‘not a’ as
“it cannot be established that a is certain”.

Many probabilistic extensions of logic programming have also been con-
sidered. One of the first generalizations of propositional logic based on prob-
ability theory is [25]. In this work, a logic is defined in terms of probability
distributions over possible worlds, where the probability attached to a for-
mula corresponds with the probability that the real world is among those
that make the formula true. This idea was later extended to probabilistic
logic programming [26], where maximum entropy takes on a role that is very
similar to the role of minimal specificity, as shown in the transformation
from [27]. Similar work on combining probability theory with logic program-
ming had already been done in [28]. Indeed, [28] is one of the earliest works
where, in the setting of probabilistic deductive databases, probability the-
ory is combined with non-monotonic negation. While many works exist that
combine probability theory and logic programming in general, only few have
tried to combine probability theory and ASP. One of the most notable excep-
tions is the work from [29], where probabilistic atoms are used to encode the
probability that an associated random variable will take on a given value.

Thus far we only considered frameworks which either use possibility the-
ory or probability theory to deal with uncertainty. Bayesian Logic Program-
ming [30], where a generalization of Bayesian networks is used to reason
over Horn clauses, can also be used to deal with uncertainty. In particu-
lar, Bayesian networks employ well-understood Bayesian models for repre-
senting joint probabilities and offer a good graphical representation of local
influences. Other popular approaches for dealing with uncertainty include
Markov Logic Networks [31], where first-order logic is used to compactly
specify a Markov Network and as such allow for uncertain inference. Markov
Logic Networks make it easy to specify interactions between random vari-
ables, and allow for dealing with cyclic dependencies. However, inference in
Markov Logic Networks is often computationally quite complex. Further-
more, the weights attached to the formulas in Markov Logic Networks tend
to be counterintuitive in that their influence in the network as a whole is not
immediately obvious.

From a practical point of view, being able to deal with uncertainty plays
an important (though often implicit) role in economics and in dealing with
preferences, handling inconsistencies and dealing with weak constraints. In-
deed, the uncertainty of costs [32] is an important problem, where factors such

32

as demand, production and actual costs are all pervaded by uncertainty [33].
Unsurprisingly, this is a very active domain where probability theory plays a
significant role [34]. Preferences, on the other hand, are an important topic
within the ASP community. For example, in [35] ordered logic programs are
used to deal with preferences. Ordered logic programs assume a partial order
among rules, allowing less important rules to be violated in order to satisfy
rules with higher importance. In some sense, the use of such preferences
among rules is related to using certainty weights, although the resulting se-
mantics are closer in spirit to the approach from [3] than to the semantics we
have developed throughout this paper. Quite a number of other works also
deal with preference handling in non-monotonic reasoning; we refer to [36]
for a thorough overview. Weak constraints [37] are yet another example of
a problem that can be seen as a problem of preferences amongst rules. In-
deed, weak constraints are constraints that we try to apply, while we are still
willing to violate such constraints if applying the constraint would otherwise
prevent us from finding an answer set. When dealing with inconsistencies in
ASP, a number of different approaches can be taken. Indeed, approaches ex-
ist to highlight inconsistencies (e.g. [38]), to resolve inconsistencies (e.g. [39])
or to reason in inconsistent knowledge bases. Examples of the latter case
include pstable models [24] and the semantics introduced in Section 3. In-
deed, we have seen that the semantics from Section 3 are able to deal with
inconsistencies in settings where the other semantics for PASP [3, 4] are not.

We noted in Section 5 that a special case of the semantics presented
in Section 3 are certain programs with optional rules. We discussed how
some important problems in AI can be expressed in terms of programs with
such optional rules. One such problems is cautious abductive reasoning. To
the best of our knowledge, the approach presented in this paper is the first
implementation of cautious abductive reasoning. Brave abductive reasoning,
on the other hand, has seen a myriad of implementations and many solvers
for answer set programming, e.g. [40, 41], have incorporated very performant
mechanisms for brave abductive reasoning. Interestingly, [42] illustrated how
abductive reasoning can benefit from possibility theory, allowing to order
the possible cautious explanations. Also of interest is the work from [43] on
abduction in multi-adjoint logic programs. In multi-adjoint logic programs, it
is possible to associate confidence factors the rules. Furthermore, it allows to
specify for each rule the type of the implication, i.e. the residual implicators
induced by the Gödel, Lukasiewicz or the product t-norm. Still, no practical
implementation has been suggested for this particular type of abduction.

33

Conformant planning, which is also known under other names such as
secure planning and strong planning, has also seen a lot of interest. For a
fixed plan length, conformant planning is a ΣP

3 -complete problem and secure
checking, i.e. verifying whether a plan is a secure plan, is a ΠP

2 -complete
problem. If we restrict ourselves to proper planning domains, then con-
formant planning and secure checking is ΣP

2 -complete and coNP-complete,
respectively. Many implementations of conformant planning exist, includ-
ing C-Plan [44], CMBT [45], Conformant-FF [46], and DLVK [15], where the
latter is an ASP-based approach. The latter approach, in particular, is an
ASP-based approach in which the planning problem is expressed in the ac-
tion language K. Contrary to our approach, however, these implementations
cannot readily be extended to deal with certainties.

Finally, the combination of ASP with weights has been used for reasons
other than the modelling of incomplete information. Fuzzy ASP (FASP) [47]
is a generalization of ASP where the truth of literals is graded, i.e. literals
are no longer strictly true or false. In FASP, there is considerable flexibil-
ity w.r.t. the interpretation of the connectives used in ASP (i.e. negation,
conjunction, disjunction, implication). All connectives map the values from
[0, 1] onto values from [0, 1], agree with the classical connectives and adhere
to specific properties, e.g. conjunction needs to be a monotonic, symmetric
and associative operator. In addition, extensions of FASP have been consid-
ered, e.g. aggregated FASP [47], that further extend the modeling power of
FASP. Clearly, FASP is a powerful tool for the treatment of gradual infor-
mation in the presence of complete information. A core language for FASP
was introduced in [48], which highlights that a fairly simple and compact
variant of FASP is sufficiently expressive to simulate a wide variety of FASP
formalisms. At the same time, it is easier to reason about and implement
such a core language. Current implementations of FASP translate programs
to instances of other formalisms such as bilevel programming [49, 50]. Other
authors have looked at fixpoint operators for finding upper and lower bounds
on the truth value of atoms [51, 52], which can be useful as a preprocessing
step for exact solvers, as an approximation of exact solvers, or as en exact
method for restricted classes of FASP programs. While FASP is a frame-
work to deal with multi-valuedness, it is not designed to model uncertainty.
In fact, both multi-valuedness and uncertainty are perpendicular problems
and can be combined in a single framework to deal with gradual truths in
the presence of incomplete information, e.g. [53, 54].

34

7. Conclusions

In this paper we contrasted two different semantics for PASP based on the
idea that an ASP program can be seen as a means to reason over the epistemic
states of an agent, where each answer set corresponds with an epistemic state.
When extending this idea to PASP, the weights attached to the rules can be
treated in two dual ways. On the one hand, weighted epistemic states can
be considered where the weight attached to each rule reflects the certainty
an agent would have in the conclusion of the rule, knowing that the body
is satisfied. In other words, weighted rules are interpreted as rules with
uncertain conclusions. This view was proposed in [4] and was formalized
in [4] by describing the semantics of weighted rules in terms of constraints
on possibility distributions.

Alternatively, we can maintain crisp epistemic states and use the weights
associated with rules to express that some epistemic states are more compat-
ible with available meta-knowledge than others. This is the view developed
in this paper. Given this understanding of a PASP program, we treat the
weight attached to each rule as the certainty that the rule is valid. As such,
weighted rules are seen as rules whose validity is uncertain. We showed how
treating a PASP program like this comes down to an efficient encoding of a
possibility distribution over the exponentially many subprograms of an ASP
program. This gives rise to four distinct types of inference, for which we have
examined the computational complexity. We find that two of these inference
types are as complex as the corresponding inference types in classical ASP,
while the complexity of the other two inference types goes up one level in the
polynomial hierarchy. We showed that all inference tasks can be simulated
using classical ASP. In addition, we discussed how the concept of optional
rules is a special case of the semantics presented in this paper. Important
problems in AI, including cautious abductive reasoning and conformant plan-
ning, can be expressed in terms of programs with optional rules.

Finally, other feasible options exist to encode the possibility distribution
of an exponential number of subprograms. Possibilistic networks, the possi-
bilistic counterpart of Bayesian networks, offer another approach to encode
the possibility distribution. In particular, using possibilistic networks, we
would be able to able to sidestep the implicit assumption made in this paper
that the validity of rules is independent of the validity of other rules. This
could be useful in a number of practical scenarios, although it would not
require any conceptual changes in the semantics that was developed in this

35

paper. For example, some rules may encode information obtained from a
single source; finding that one of the rules is invalid may increase our doubt
over the certainty of the other rules. Also, some of the rules may encode
special cases of a particular rule. For example, some rules may classify a bird
as a penguin, and others may classify birds as royal penguins when they have
yellow ornaments. Finding that the basic rule is invalid (since, obviously, not
all birds are penguins) may affect the certainty of the special cases. While
using possibilistic networks shows great potential, a full treatment of this
topic is left for future work.

36

Proofs

Proposition 1. Let P be a simple possibilistic ASP program. For each
literal ‘l’ we have that N (P |=c l) ≥ λ iff V (l) ≥ λ with V the possibilistic
answer set of P under the semantics from Bauters [4], which in turn coincides
with the semantics from Nicolas [3].

Proof. For each literal ‘l’ we have that N (P |=c l) ≥ λ iff V (l) ≥ λ with
V the possibilistic answer set of P under the semantics from [3] and as
given in Section 2.3. To see this, note that V (l) ≥ λ iff l is in the unique
answer set Vλ of the λ-cut of P . Indeed, we can only conclude V (l) ≥ λ
if we have only used rules with associated weights equal or greater than
λ to deduce ‘l’. Similarly, N (P |=c l) ≥ λ iff there does not exist some
subprogram P ′ such that πP (P ′) > 1−λ for which we have that P ′ 6|=c l. But,
the only subprograms for which πP (P ′) > 1−λ are exactly those subprograms
from which we did not remove any rules with associated weights equal or
greater than λ. Thus we have that l can be deduced from every subprogram
P ′ with πP (P ′) > 1 − λ. In particular, because of the monotonicity of
inference of simple programs, it suffices to consider the subprogram that
corresponds exactly with the λ-cut of P . Hence N (P |=c l) ≥ λ iff V (l) ≥ λ.
Finally, [4] proved that, for simple programs, the semantics of [3] and [4]
coincide. Thus, the result also holds for V the possibilistic answer set of P
under the semantics from [4].

Proposition 2. Let P be a possibilistic normal program. Deciding whether

Π
(
P |=b l

)
≥ λ is NP-complete;

N (P |=c l) ≥ λ is coNP-complete;

Π (P |=c l) ≥ λ is ΣP
2 -complete;

N
(
P |=b l

)
≥ λ is ΠP

2 -complete.

Proof. Part 1: deciding whether Π
(
P |=b l

)
≥ λ is NP-complete.

(membership) To determine whether Π
(
P |=b l

)
≥ λ we need to guess a

subset P ′ of rules from P such that πP (P ′) ≥ λ and an partial Herbrand
interpretation M which includes ‘l’. Given such a non-deterministic guess,
we can verify in polynomial time whether M is indeed an answer set and
hence whether P ′∗ |=b l. Hence determining whether Π

(
P |=b l

)
≥ λ is in

NP.
(hardness) NP-hardness follows trivially from the NP-hardness of brave

reasoning for classical normal programs.

37

Proof. Part 2: deciding whether N (P |=c l) ≥ λ is coNP-complete.
(membership) We will show that the complementary problem is in NP. To
determine whether N (P |=c l) 6≥ λ we guess a subset P ′ of rules from P such
that πP (P ′) > 1 − λ and a consistent partial Herbrand interpretation M ,
which does not include ‘l’. Given such a non-deterministic guess, we can ver-
ify in polynomial time that M is an answer set of P ′∗ and hence that P ′∗ 6|=c

l. We know that N (P |=c l) = 1 − max {πP (Q) | Q ⊆ P and Q∗ 6|=c l} ≤
1 − πP (P ′) < λ from Definition 5. In other words: determining whether
N (P |=c l) 6≥ λ is in NP. Deciding whether N (P |=c l) ≥ λ is thus in coNP.
(hardness) The coNP-hardness follows trivially from the coNP-hardness of
cautious reasoning for classical normal programs.

Proof. Part 3: deciding whether Π (P |=c l) ≥ λ is ΣP
2 -complete.

(membership) To determine whether Π (P |=c l) ≥ λ we need to guess a sub-
set P ′ of rules from P such that πP (P ′) ≥ λ. We cannot immediately guess
a partial Herbrand interpretation to determine whether P ′∗ |=c l since this
requires that ‘l’ is true in every single partial Herbrand interpretation. Given
a non-deterministic guess of P ′, however, we can rely on an NP-oracle [7] to
verify in constant time whether P ′∗ |=c l, as P ′∗ is a classical normal program.
Hence determining whether Π (P |=c l) ≥ λ is in NPNP, i.e. in ΣP

2 .
(hardness) We reduce the problem of determining the satisfiability of a QBF
of the form φ = ∃X1∀X2 · p(X1, X2) with p(X1, X2) in DNF, i.e. of the
form θ1 ∨ ... ∨ θn with each θi a conjunction of literals, to the problem of
deciding whether Π (P |=c l) ≥ λ. We define the possibilistic normal program
Pφ corresponding to φ as

Pφ = {0.5 :x← | x ∈ X1} ∪ {0.5 :¬x← | x ∈ X1} (22)

∪ {1 :x← not ¬x | x ∈ X2}
∪ {1 :¬x← not x | x ∈ X2} (23)

∪ {1 : sat← θt | 1 ≤ t ≤ n} (24)

where we identify the conjunction of literals θt in (24) with a set of literals.
We now show that the QBF is satisfiable if and only if Π (Pφ |=c sat) ≥ 0.5.

The rules in (22) ensure that there are as many subprograms P ′ ⊆ Pφ
as there are interpretations of X1. The subprograms P ′ with πPφ(P ′) > 0
then contain the rules (23) that generate as many answer sets as there are
interpretations of X2. The rules from (24) ensure that ‘sat’ is contained in
the classical answer set whenever for a chosen interpretation of X1 and X2

38

it holds that p(X1, X2) is satisfied. Notice that the certainty attached to
the rules ensures that removing any of the rules from (23) or (24) results in
πPφ(P ′) = 0, i.e. it indicates that these rules are completely necessary.

We then have that Π (Pφ |=c sat) ≥ 0.5 if and only if the QBF is sat-
isfiable. Indeed, from the construction of Pφ, and in particular from the
rules (22), we know that for every interpretation of X1 there will be a cor-
responding consistent subprogram for which the possibility is 0.5. Also,
P ′∗ |=c sat if and only if P ′ corresponds to an interpretation of X1 such that
p(X1, X2) is consistent for every interpretation of X2. Using the consistent
possibility measure (i.e. finding max

{
πPφ(P ′) | P ′ ⊆ Pφ and P ′∗ |=c sat

}
) im-

plies that the QBF is satisfied whenever we find at least one such an inter-
pretation X1.

Some of the subprograms of Pφ may either be inconsistent subprograms
or may correspond to partial interpretations of X1. However, the inconsistent
subprograms P ′ have πPφ(P ′) = 0 by definition and can therefore never be
used to derive Π (Pφ |=c sat) ≥ 0.5. Furthermore, any subprogram P ′ with
incomplete assignments for the variables in X1 from which we can conclude
that P ′∗ |=c sat can trivially be extended to a subprogram P ′′ to which we
add some rules from (22) to complete the assignment for the variables in X1

and we will still be able to conclude that P ′′∗ |=c sat.

Proof. Part 4: deciding whether N
(
P |=b l

)
≥ λ is ΠP

2 -complete.
(membership) We will show that the complementary problem is in ΣP

2 . To
determine whether N

(
P |=b l

)
6≥ λ we guess a subset P ′ of rules from P

such that πP (P ′) > 1− λ. Given a non-deterministic guess for P ′, we rely
on an NP-oracle [7] to verify in constant time that P ′∗ 6|=b l. Similar as
in Part 2 of this proof this gives us a counterexample for N

(
P |=b l

)
≥ λ.

Hence determining whether N
(
P |=b l

)
≥ λ is in co

(
NPNP

)
, i.e. in ΠP

2 .
(hardness) Let Q be the program defined as P ∪ {1 :x← not l} with x a
fresh literal. Then N

(
Q |=b l

)
≥ λ if and only if Π (Q |=c x) ≤ 1− λ. In-

deed, we know from Definition 5 that N
(
Q |=b l

)
≥ λ is true whenever

we have that 1−max
{
πQ(P ′) | P ′ ⊆ Q and P ′∗ 6|=b l

}
≥ λ, i.e. whenever we

have that max
{
πQ(P ′) | P ′ ⊆ Q and P ′∗ 6|=b l

}
≤ 1− λ. Because the newly

added rule (x ← not l) will be in every subprogram P ′ with πQ(P ′) > 0
(since the certainty attached to this rule is 1), we know that there is at least
one answer set in which l is true if and only if it is not the case that x
is true in every answer set. Thus, the previous inequality is equivalent to
max {πQ(P ′) | P ′ ⊆ Q and P ′∗ |=c x} ≤ 1− λ and, by applying Definition 5,

39

to Π (Q |=c x) ≤ 1− λ. Since the set of certainty values associated with the
rules is finite, this equation is equivalent to Π (Q |=c x) < λ′ for some λ′.
Hence we have that ¬(Π (Q |=c x) ≥ λ′). This problem is therefore the com-
plement of the decision problem from Part 3 of this proof. Thus deciding
whether N

(
P |=b l

)
≥ λ is ΠP

2 -hard.

Proposition 3. Let P be a possibilistic disjunctive program. Deciding whether

Π
(
P |=b l

)
≥ λ is ΣP

2 -complete;

N (P |=c l) ≥ λ is ΠP
2 -complete;

Π (P |=c l) ≥ λ is ΣP
3 -complete;

N
(
P |=b l

)
≥ λ is ΠP

3 -complete.

Proof. Part 1: deciding whether Π
(
P |=b l

)
≥ λ is ΣP

2 -complete.
(membership) Analogous to the proof in Part 1 of the proof of Proposition 2,
where we are able to verify in constant time that M is an answer set of P ∗,
which now is a positive possibilistic program, by using an NP-oracle.
(hardness) Analogous to the proof of the hardness in Part 1 of the proof of
Proposition 2.

Proof. Part 2: deciding whether N (P |=c l) ≥ λ is ΠP
2 -complete.

Entirely analogous to the proof in Part 2 of the proof of Proposition 2.

Proof. Part 3: deciding whether Π (P |=c l) ≥ λ is ΣP
3 -complete.

(membership) Analogous to the membership proof in Part 3 of the proof of
Proposition 2, but where we now require a ΣP

2 -oracle to verify in constant
time whether for P ′∗, with P ′∗ being a classical disjunctive program, we have
that P ′∗ |=c l.
(hardness) Analogous to the hardness proof in Part 4 of the proof of Propo-
sition 2, where we can now reduce the complement of this problem to an
instance of the decision problem from Part 4 of this proof.

Proof. Part 4: deciding whether N
(
P |=b l

)
≥ λ is ΠP

3 -complete.
(membership) Analogous to the proof of membership proof in Part 4 of the
proof of Proposition 2.
(hardness) We reduce the problem of determining the satisfiability of a QBF
of the form ψ = ∀X1∃X2∀X3·p(X1, X2, X3) with p(X1, X2, X3) in DNF, i.e. of
the form θ1 ∨ ... ∨ θn with each θi a conjunction of literals, to the problem

40

of deciding whether N
(
P |=b l

)
≥ λ. We define the possibilistic disjunctive

program Pψ corresponding to ψ as

Pψ = {1 :x;x′ ← | x ∈ X3} (25)

∪ {0.5 :x← | x ∈ X1} ∪ {0.5 :¬x← | x ∈ X1} (26)

∪ {1 :x← not ¬x | x ∈ X2}
∪ {1 :¬x← not x | x ∈ X2} (27)

∪ {1 : sat← θ′t | 1 ≤ t ≤ n} (28)

∪ {1 :x← sat | x ∈ X3} ∪ {1 :x′ ← sat | x ∈ X3} (29)

where we identify the conjunction of literals θ′t in (28) with a set of literals
and we have furthermore replaced all negative literals of the form ¬x by a
fresh atom of the form x′ for every x ∈ X3. We now show that the QBF is
satisfiable if and only if N

(
Pψ |=b sat

)
≥ 0.75.

The rules in (26) ensure that there are at least as many subprograms
P ′ ⊆ Pψ as there are interpretations of X1. Furthermore, the subprograms
P ′ with πPψ(P ′) > 0 contain the rules (25) and (27), which generate as many
answer sets as there are interpretations of (X2 ∪X3). The rule (28) ensures
that ‘sat’ is contained in the classical answer set whenever for a chosen in-
terpretation of X1, X2 and X3 it holds that p(X1, X2, X3) is satisfied. Notice
that the certainty attached to the rules ensures that removing any of the
rules from (25), (27), (28) or (29) results in πPψ(P ′) = 0, i.e. it indicates that
these rules are completely necessary.

Thus far, we have not discussed the rules from (29). These rules work
together with the rules from (25) to resolve the last ∀. Indeed, the rules
from (29) implement a saturation technique [7] over a disjunctive program
to ensure that sat will only be true in an answer set when p(X1, X2, X3) is
satisfied for every interpretation of X3, given some interpretation of (X1, X2).
In particular, let P ′ be a subprogram of Pψ with πPψ(P ′) > 0, and let M be
an answer set of P ′ that contains sat. Because of the rules from (26) and (27)
in P ′, M contains literals corresponding to the variables of X1 and X2, and
as such defines an interpretation of X1 and X2. Furthermore, because of the
saturation rules (29), M contains the literals x and x′ for every x ∈ X3. Now
suppose that there would exist a partial Herbrand interpretation M ′ of P ′

that contains the same literals as M corresponding to the variables of X1 and
X2 but that does not contain sat, then we have that M ′ ⊂M . Furthermore,
since M ′ contains the same literals as M corresponding to the variables of

41

X2, (P ′)M = (P ′)M
′
. If M ′ would be an answer set of P ′, then by definition

it would be a minimal partial Herbrand model of (P ′)M . This, together with
M ′ ⊂ M , would contradict the fact that M is an answer set of P ′. Hence
M ′ is not an answer set of P ′. We conclude that when sat is contained in
an answer set M of P ′, then sat is contained in all answer sets of P ′ that
contain the same literals corresponding to the variables of X1 and X2 as M ,
regardless of which choice is made by rules (25) for the literals corresponding
to the variables of X3, i.e. regardless of the interpretation of X3.

We then have that the QBF is satisfied iff N
(
Pψ |=b sat

)
≥ 0.75. In-

deed, from the construction of Pψ, and in particular from the rules (26), we
know that for every interpretation of X1 there will be a corresponding con-
sistent subprogram P ′ for which the possibility is 0.5. Also, P ′∗ |=b sat
if and only if P ′ has an answer set such that p(X1, X2, X3) is satisfied
for every interpretation of X3. Using the necessity measure (i.e. finding
min

{
1− πPψ(P ′) | P ′ ⊆ Pψ and P ′∗ 6|=b sat

}
≥ 0.75), it then holds that the

QBF is satisfied for every interpretation of X1. Finally, note that we need to
consider a necessity strictly greater than 0.5, e.g. 0.75. Indeed, we have

N(Pψ |=b sat) ≥ 0.75

≡ min
{

1− πPψ(P ′) | P ′ ⊆ Pψ and P ′
∗ 6|=b sat

}
≥ 0.75

≡ ∀P ′, P ′ ⊆ Pψ, P
′∗ 6|=b sat · 1− πPψ(P ′) ≥ 0.75

≡ ∀P ′, P ′ ⊆ Pψ, P
′∗ 6|=b sat · πPψ(P ′) ≤ 0.75

≡ ∀P ′, P ′ ⊆ Pψ, P
′∗ |=b sat · πPψ(P ′) > 0.25.

Furthermore, the possibility associated with each subprogram P ′ is πP (P ′) ∈
{0, 0.5, 1}. Hence, by verifying N(Pψ |=b sat) ≥ 0.5, we have only verified
that sat is a brave conclusion of those subprograms P ′ with πP (P ′) = 1,
whereas we want to verify for those subprograms P ′ with πP (P ′) = 0.5
whether P ′ |=b sat, i.e. we need verify whether N

(
Pψ |=b sat

)
≥ λ for an

arbitrary lambda in]0.5, 1].
Some of the subprograms of Pψ may either be inconsistent subprograms

or may correspond to partial interpretations of X1. However, the inconsistent
subprograms P ′ have πPψ(P ′) = 0 by definition and can therefore never be

used to derive N
(
Pψ |=b sat

)
≥ 0.75 (also, we already established that for

every interpretation of X1 there will be a corresponding consistent subpro-
gram P ′). Furthermore, any subprogram P ′ with incomplete assignments for
the variables in X1 from which we can conclude that P ′∗ |=b sat can trivially

42

be extended to a subprogram P ′′ to which we add some rules from (26) to
complete the assignment for the variables in X1 and we will still be able to
conclude that P ′′∗ |=b sat. Thus, these additional subprograms do not affect
our ability to derive N

(
Pψ |=b sat

)
≥ 0.75.

Proposition 4. Let P be a possibilistic disjunctive program and PΠ
brave(l, λ)

the classical disjunctive program as defined in Definition 8. We have that
Π(P |=b l) ≥ λ iff PΠ

brave(l, λ) has a classical consistent answer set.

Proof. We want to determine whether Π
(
P |=b l

)
≥ λ. By Definition 5 we

know this is equivalent to max
{
πP (P ′) | P ′ ⊆ P and P ′∗ |=b l

}
≥ λ, or, de-

termining whether there exists some subprogram P ′ ⊆ P with P ′∗ |=b l such
that πP (P ′) ≥ λ. Since we want πP (P ′) ≥ λ, this implies that Preq ⊆ P ′∗

with Preq = {r | (r, c) ∈ P, c > 1− λ}. Thus the problem reduces to deter-
mining whether for some set of rules Popt ⊆ {r | (r, c) ∈ P, c ≤ 1− λ} we
have P ′∗ = (Preq ∪ Popt) such that P ′∗ |=b l. By construction of Pbasic(λ), in
particular due to the rules (4), we know that every rule in Preq is chosen. Fur-
thermore, every choice made in (3) corresponds with a choice of Popt. This
choice Popt, along with the rules Preq, will be applied by the rules in Pbasic due
to the rules (5). Finally, the addition of the rule {← not l} ensures that ‘l’
must be a conclusion of some answer set of the simulation PΠ

brave(l, λ), or oth-
erwise PΠ

brave(l, λ) will not have any answer sets. Clearly, then Π
(
P |=b l

)
≥ λ

when PΠ
brave(l, λ) has a classical consistent answer set.

Proposition 5. Let P be a possibilistic disjunctive program, λ > 0 and
PN
cautious(l, λ) the classical disjunctive program as defined in Definition 9. We

have that N(P |=c l) ≥ λ iff PN
cautious(l, λ) has no classical consistent answer

set.

Proof. Analogous to the proof in Proposition 4.

Proposition 6. Let P be a possibilistic normal program and P c
Π(l, λ) the

disjunctive program defined as Pcomplex (λ)∪{sat← l}. Then Π (P |=c l) ≥ λ
iff P c

Π(l, λ) has a classical answer set.

Proof. We want to determine whether Π (P |=c l) ≥ λ, i.e. whether there
exists a P ′ ⊆ P such that P ′∗ |=c l and πP (P ′) ≥ λ. The latter condition
means that (r, c) ∈ P ′ for every (r, c) ∈ P with c > 1 − λ. Similar as in
Proposition 4, the rules in (6) and (7) generate as many answer sets as there
are subprograms P ′ ⊆ P for which πP (P ′) ≥ λ.

43

For each such subprogram P ′ we want to determine whether P ′∗ has ‘l’ as
is a cautious conclusion. By construction, {cl← | cl ∈ cls(P r)} is equivalent
to P r. In particular, every model of these rules corresponds to an answer set
of P r. Since we removed classical negation in (8), however, we need to add
the rules in (9) to ensure that ‘sat’ is contained in the answer set whenever
‘a’ and the opposite atom ‘na’ are true at the same time. The intuition of
making ‘sat’ true is thus to indicate that this is not a valid answer set of the
subprogram P ′. The rule (l ← sat) is used to try to make ‘l’ false, by once
again ensuring that ‘sat’ is contained in the answer set whenever ‘l’ is in the
answer set. Intuitively, we thus say that an answer set in which ‘l’ is true is
undesirable, i.e. we prefer answer sets of P ′ in which ‘l’ is false. The rule (11)
is then used to block all answer sets in which ‘sat’ is false. In other words:
unless for every answer set of P ′ we have that ‘l’ is true in the answer set,
we have not found that ‘l’ is a cautious consequence of P ′.

Thus far we have not discussed the use of the rules (10). Together with the
atom ‘sat’, these rules are used to implement a saturation technique [7] over
our disjunctive simulation and we refer to this work for a detailed overview of
how saturation works. The intuition of saturation is that we use the property
that an answer set is a minimal model. In particular, the rules in (10) will
add all the atoms under consideration to the model M to try and prevent it
from being an answer set. Indeed, if we find a model M ′ ⊆M then clearly M
cannot be an answer set. As such, we can ensure that consistent models of
P ′ are preferred over inconsistent models, and that models of P ′ in which
‘l’ is false are preferred over models in which ‘l’ is true. Then, only if no
consistent answer set (in which ‘l’ is false) exists for P ′, will we have that
‘sat’ is true in an answer set of P c

Π(l, λ).
Finally, when a subprogram P ′ is inconsistent, then π(P ′) = 0, i.e. we

do not want to consider this subprogram. Notice, however, that the rule
(9) would not work as expected in this case. Indeed, if P ′ is inconsistent
is does not have a consistent model and the saturation technique would not
exclude this subprogram. As such, we repeat our simulation of the subpro-
gram P ′ in (12) and use constraints in (13) to effectively block inconsistent
subprograms.

Proposition 7. Let P be a possibilistic normal program and P b
N(l, λ) the

disjunctive program defined as Pcomplex (1− λ′)∪{sat← not l} with λ′ defined
as in Proposition 5. Then N

(
P |=b l

)
≥ λ iff P b

N(l, λ) has no classical answer
set.

44

Proof. This proof is analogous to the proof of Proposition 6, similar as how
the proof of Proposition 5 was analogous to the proof of Proposition 4.

Proposition 8. Let Pabd be the possibilistic normal program defined for an
abductive diagnosis program 〈H,T,O〉 as

{0.5 : block h← | h ∈ H} (14)

∪ {1 : h← not block h | h ∈ H} (15)

∪ {1 : goal← O} (16)

∪ {1 : r | r ∈ T} . (17)

It holds that 〈H,T,O〉 has a cautious explanation iff Π (Pabd |=c goal) ≥ 0.5.
In particular, we have that E is a cautious explanation if and only if we have
for P ′ = Pabd \ {block h← | h ∈ E} that P ′ |=c goal.

Proof. For Π (Pabd |=c goal) ≥ 0.5, we must have some P ′ ⊆ Pabd such that
P ′ |=c goal and π(P ′) ≥ 0.5. Thus, clearly, all the rules defined in (15),
(16) and (17) must be in P ′. It is furthermore easy to see that for every

h ∈ H \ E we have that (h ←) ∈ ((P ′)∗)
M

for every answer set M of P ′∗

and, since P ′∗ |=c goal, that E is a cautious explanation.

Proposition 9. Let Pcon be the possibilistic normal program defined for a
conformant planning problem with the atom ‘goal’ the desired goal fluent.
We express the domain knowledge as a normal ASP program Pact ∪ Prem.
Then Pcon is:

{0.5 : block i← | ri ∈ Pact} (18)

∪ {1 :H(ri)← B(ri) ∪ {not block i} | ri ∈ Pact} (19)

∪ {1 : r | r ∈ Prem} (20)

∪ {1 : ← not goal} (21)

A conformant plan exists iff Π (Pcon |=c goal) ≥ 0.5.

Proof. When Π (Pcon |=c goal) ≥ 0.5 then, by definition, there exists a sub-
program P ′ ⊆ P such that (P ′)∗ |=c goal with πP (P ′) ≥ 0.5. Since πP (P ′) ≥
0.5 we know that all the rules from (19), (20) and (21) are in P ′. Thus,
only tules from (18) may be in P \ P ′. In that case, the corresponding
rule from (19) ensures that for every answer set M of (P ′)∗ we have that

(H(ri) ← B(ri)) ∈ ((P ′)∗)
M

. Thus, the action is no longer blocked and can

45

be applied. Because of the available actions we can, regardless of the initial
state described in (20), cautiously derive ‘goal’. Indeed, otherwise we know
due to (21) that M is not be a model. In other words: the choice made
in (18) corresponds with a set of actions that form a cautious plan for the
given planning problem.

46

References

[1] Y. Zhang, Epistemic reasoning in logic programs, in: proceedings of the
20th international joint conference on Artifical intelligence (IJCAI’07),
2007, pp. 647–652.

[2] K. Bauters, S. Schockaert, M. De Cock, D. Vermeir, Weak and strong
disjunction in possibilistic ASP, in: Proceedings of the 5th International
Conference on Scalable Uncertainty Management (SUM’11), 2011, pp.
475–488.

[3] P. Nicolas, L. Garcia, I. Stéphan, C. Lefèvre, Possibilistic uncertainty
handling for answer set programming, Annals of Mathematics and Ar-
tificial Intelligence 47 (1–2) (2006) 139–181.

[4] K. Bauters, S. Schockaert, M. De Cock, D. Vermeir, Possibilistic answer
set programming revisited, in: Proceedings of the 26th Conference on
Uncertainty in Artificial Intelligence (UAI’10), 2010, pp. 48–55.

[5] K. Bauters, S. Schockaert, M. De Cock, D. Vermeir, Possible and neces-
sary answer sets of possibilistic answer set programs, in: Proceedings of
the 24th International Conference on Tools with Artificial Intelligence
(ICTAI), 2012, pp. 836–843.

[6] M. Gelfond, V. Lifzchitz, The stable model semantics for logic program-
ming, in: Proceedings of the 5th Joint International Conference and
Symposium on Logic Programming (ICLP’88), 1988, pp. 1081–1086.

[7] C. Baral, Knowledge, Representation, Reasoning and Declarative Prob-
lem Solving, Cambridge University Press, 2003.

[8] D. Dubois, J. Lang, H. Prade, Possibilistic logic, Handbook of Logic for
Artificial Intelligence and Logic Programming 3 (1) (1994) 439–513.

[9] C. Papadimitriou, Computational complexity, Addison-Wesley, 1994.

[10] T. Janhunen, Representing normal programs with clauses, in: Pro-
ceedings of the 16th Eureopean Conference on Artificial Intelligence
(ECAI’04), 2004, pp. 358–362.

47

[11] F. Lin, J. Zhao, On tight logic programs and yet another translation from
normal logic programs to propositional logic, in: Proceedings of the 18th
international joint conference on Artificial intelligence (IJCAI’03), 2003,
pp. 853–858.

[12] I. Niemelä, P. Simons, Smodels – an implementation of the stable model
and well-founded semantics for normal logic programs, in: Proceed-
ings of the 4th International Conference on Logic Programming and
Non-Monotonic Reasoning (LPNMR’97), Vol. 1265 of Lecture Notes in
Artificial Intelligence, 1997, pp. 420–429.

[13] T. Eiter, G. Gottlob, N. Leone, Abduction from logic programs: Se-
mantics and complexity, Theoretical Computer Science 189 (1–2) (1997)
129–177.

[14] T. Eiter, W. Faber, N. Leone, G. Pfeifer, A. Polleres, Planning under
incomplete knowledge, in: Proceedings of the First International Con-
ference on Computational Logic (CL’2000), 2000, pp. 807–821.

[15] T. Eiter, W. Faber, N. Leone, G. Pfeifer, A. Polleres, A logic program-
ming approach to knowledge-state planning: Semantics and complexity,
ACM Transactions on Computational Logic 5 (2) (2004) 206–263.

[16] D. Dubois, J. Lang, H. Prade, Towards possibilistic logic programming,
in: Proceedings of the 8th Joint International Conference and Sympo-
sium on Logic Programming (ICLP’91), 1991, pp. 581–595.

[17] G. Wagner, Negation in fuzzy and possibilistic logic programs, in: Pro-
ceedings of the 2nd International Workshop on Logic Programming and
Soft Computing (LPSC’98), 1998, pp. 113–128.

[18] D. Dubois, H. Prade, Can we enforce full compositionality in uncertainty
calculi?, in: Proceedings of the 12th National Conference on Artificial
Intelligence (AAAI’94), 1994, pp. 149–154.

[19] C. Chesñevar, G. Simari, T. Alsinet, L. Godo, A logic programming
framework for possibilistic argumentation with vague knowledge, in:
Proceedings of the 20th Conference on Uncertainty in Artificial Intelli-
gence (UAI’04), 2004, pp. 76–84.

48

[20] L. Amgoud, H. Prade, Reaching agreement through argumentation: A
possibilistic approach, in: Proceedings of the 9th International Confer-
ence on Principles of Knowledge Representation and Reasoning (KR’04),
2004, pp. 175–182.

[21] J. C. Nieves, M. Osorio, U. Cortés, Semantics for possibilistic disjunctive
programs, in: Proceedings of the 9th International Workshop on Logic
Programming and Non-monotonic Reasoning (LPNMR’07), 2007, pp.
315–320.

[22] D. Dubois, H. Prade, S. Schockaert, Stable models in generalized pos-
sibilistic logic, in: Proceedings of the 13th International Conference on
Principles of Knowledge Representation and Reasoning (KR’12), 2012,
pp. 519–529.

[23] R. Confalonieri, J. C. Nieves, J. Vázquez-Salceda, Pstable semantics for
logic programs with possibilistic ordered disjunction, in: Proceedings of
the 11th International Conference on Advances in Artificial Intelligence
(AI*IA’09), 2009, pp. 52–61.

[24] M. Osorio, J. A. N. Pérez, J. R. A. Ramı́rez, V. B. Maćıas, Logics with
common weak completions, Journal of Logic and Computation 16 (6)
(2006) 867–890.

[25] N. J. Nilsson, Probabilistic logic, Artificial Intelligence 28 (1) (1986)
71–87.

[26] T. Lukasiewicz, Probabilistic default reasoning with conditional con-
straints, Annals of Mathematics and Artificial Intelligence 34 (1–3)
(2002) 35–88.

[27] D. Dubois, H. Prade, S. Sandri, On possibility/probability transforma-
tions, in: Proceedings of the 10th International Fuzzy Systems Associa-
tion World Congress, 1993, pp. 103–112.

[28] R. Ng, V. Subrahmanian, Stable model semantics for probabilistic de-
ductive databases, in: Proceedings of the 6th International Symposium
on Methodologies for Intelligent Systems (ISMIS’91), Vol. 542, 1991, pp.
162–171.

49

[29] C. Baral, M. Gelfond, N. Rushton, Probabilistic reasoning with answer
sets, Theory and Practice of Logic Programming 9 (1) (2009) 57–144.

[30] K. Kersting, L. De Raedt, Bayesian logic programs, CoRR.

[31] M. Richardson, P. Domingos, Markov logic networks, Machine Learning
62 (1-2) (2006) 107–136.

[32] E. Mills, Uncertainty and price theory, The Quarterly Journal of Eco-
nomics 73 (1) (1959) 116–130.

[33] A. Sandmo, On the theory of the competitive firm under price uncer-
tainty, The American Economic Review 61 (1) (1971) 65–73.

[34] P. Garvey, Probability Methods for Cost Uncertainty Analysis: A Sys-
tems Engineering Perspective, Taylor & Francis, 2000.

[35] D. Van Nieuwenborgh, D. Vermeir, Preferred answer sets for ordered
logic programs, in: Proceeings of the European Conference on Logics in
Artificial Intelligence, JELIA 2002, Cosenza, Italy, Vol. 2424 of Lecture
Notes in Computer Science, 2002, pp. 432–443.

[36] J. P. Delgrande, T. Schaub, H. Tompits, K. Wang, A classification and
survey of preference handling approaches in nonmonotonic reasoning,
Computational Intelligence 20 (2) (2004) 308–334.

[37] F. Buccafurri, N. Leone, P. Rullo, Strong and weak constraints in dis-
junctive datalog, in: Proceedings of the 4th International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR’97), 1997,
pp. 2–17.

[38] M. Gebser, J. Pührer, T. Schaub, H. Tompits, A meta-programming
technique for debugging answer-set programs, in: Proceedings of the
23rd National Conference on Artificial Intelligence (AAAI’08), 2008, pp.
448–453.

[39] M. Balduccini, M. Gelfond, Logic programs with consistency-restoring
rules, in: International Symposium on Logical Formalization of Com-
monsense Reasoning, AAAI 2003 Spring Symposium Series, 2003, pp.
9–18.

50

[40] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, F. Scar-
cello, The dlv system for knowledge representation and reasoning, ACM
Transactions on Computational Logic 7 (3) (2006) 499–562.

[41] M. Gebser, B. Kaufmann, R. Kaminski, M. Ostrowski, T. Schaub,
M. Schneider, Potassco: The potsdam answer set solving collection, AI
Communications 24 (2011) 107–124.

[42] D. Dubois, H. Prade, Fuzzy relation equations and causal reasoning,
Fuzzy Sets and Systems 75 (2) (1995) 119–134.

[43] J. Medinaús, O.-M. Aciego, V. s, A multi-adjoint logic approach to ab-
ductive reasoning, in: Proceedings of the 17th International Conference
on Logic Programming (ICLP’01), 2001, pp. 269–283.

[44] P. Ferraris, E. Giunchiglia, Planning as satisfiability in nondeterministic
domains, in: Proceedings of the Seventeenth National Conference on
Artificial Intelligence (AAAI’00), 2000, pp. 748–753.

[45] A. Cimatti, M. Roveri, Conformant planning via symbolic model check-
ing and heuristic search, Artificial Intelligence 159 (1–2) (2004) 127–206.

[46] J. Hoffmann, R. Brafman, Conformant planning via heuristic forward
search: A new approach, Artificial Intelligence 170 (6-7) (2006) 507–541.

[47] D. V. Nieuwenborgh, M. De Cock, D. Vermeir, Fuzzy answer set pro-
gramming, in: Proceedings of the 10th European Conference on Logics
in Artificial Intelligence (JELIA’06), Vol. 4160 of Lecture Notes in Com-
puter Science, 2006, pp. 359–372.

[48] J. Janssen, S. Schockaert, D. Vermeir, M. De Cock, A core language for
fuzzy answer set programming, International Journal of Approximate
Reasoning 53 (4) (2012) 660–692.

[49] S. Schockaert, J. Janssen, D. Vermeir, Fuzzy equilibrium logic: Declara-
tive problem solving in continuous domains, ACM Transactions on Com-
putational Logic (TOCL) 13 (4) (2012) 33:1–33:39.

[50] M. Blondeel, S. Schockaert, M. De Cock, D. Vermeir, NP-completeness
of fuzzy answer set programming under lukasiewicz semantics, in: Pro-
ceedings of the 1st Workshop on Weighted Logics for Artificial Intelli-
gence (ECAI’12), 2012, pp. 43–50.

51

[51] C. V. Damásio, L. M. Pereira, Antitonic logic programs, in: Proceedings
of the 6th International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR’01), Lecture Notes in Computer Science,
2001, pp. 379–392.

[52] M. Alviano, R. P. naloza, Fuzzy answer sets approximations, in: Pro-
ceedings of the 29th International Conference on Logic Programming
(ICLP’13), 2013.

[53] B. Bouchon-Meunier, D. Dubois, L. Godo, H. Prade, Fuzzy sets and
possibility theory in approximate and plausible reasoning, in: Fuzzy
Sets in Approximate Reasoning and Information Systems, Vol. 5 of The
Handbooks of Fuzzy Sets Series, Springer US, 1999, pp. 15–190.

[54] K. Bauters, S. Schockaert, M. De Cock, D. Vermeir, Towards possibilistic
fuzzy answer set programming, in: Proceedings of the 13th International
Workshop on Non-monotonic reasoning (NMR), 2010.

52

