
Cosimo Damiano Persia

Learning Possibilistic Logic
eories

2023

Thesis for the degree of Philosophiae Doctor (PhD)
University of Bergen, Norway

at the University of Bergen

Avhandling for graden philosophiae doctor (ph.d)

ved Universitetet i Bergen

.

2017

Dato for disputas: 1111

Cosimo Damiano Persia

Learning Possibilistic Logic
Theories

Thesis for the degree of Philosophiae Doctor (PhD)

Date of defense: 15.03.2023

The material in this publication is covered by the provisions of the Copyright Act.

Print: Skipnes Kommunikasjon / University of Bergen

© Copyright Cosimo Damiano Persia

Name: Cosimo Damiano Persia

Title: Learning Possibilistic Logic Theories

Year: 2023

Scientific environment

The work of this thesis, both research and writing, was done at the machine learning

group at the Department of Informatics at the University of Bergen.

Parts of the project received funding from L. Meltzers Høyskolefond.

ii

Acknowledgements

First, I am grateful to my family for having always been ready to listen to and help me

these years. Special thanks to Renee, who I could always rely on and who allowed me

to be in the perfect mindset to carry on this work.

Additionally, I have been lucky in meeting amazing colleagues in the machine learning

group. I acknowledge Philip for having been the best office buddy. Thanks to Erlend

for his ‘board game nights’ energy, Pierre for his incredibly accurate cynical comments,

Victor for the pocket teas and controversial topic conversations, Natasha for the tastiest

white beer selections, Ricardo for his LAN party and the best board game ever, Troels

for knocking at everybody’s door and reminding that it is lunchtime.

Moreover, I am honoured to have shared moments with fantastic friends. Thanks to

Eugenio for the ‘mozzarella from Milan’, and for the true and honest friendship, Isaac

for the deep discussions in the sauna, Alessandro for having shared with me the ‘Telemark

hype’, and Eino for the chilly outdoor activities. I am grateful to Enrico and Francesca

for having temporarily opened an ‘exclusive’ Italian restaurant in Bergen for me. Also,

thanks to Sebastian and Kayne for their ‘guttastemning’, and Cecilie for her kindness

and hospitality.

Last but not least, I am thankful to my supervisor Ana Ozaki and co-supervisor Ricardo

Guimarães for their feedback concerning the work in this thesis.

iv

Abstract in English

We address the problem of learning interpretable machine learning models from uncer-

tain and missing information. We first develop a novel deep learning architecture, named

RIDDLE (Rule InDuction with Deep LEarning), based on properties of possibility the-

ory. With experimental results and comparison with FURIA, a state of the art method,

RIDDLE is a promising rule induction algorithm for finding rules from data. We then

formally investigate the learning task of identifying rules with confidence degree asso-

ciated to them in the exact learning model. We formally define theoretical frameworks

and show conditions that must hold to guarantee that a learning algorithm will identify

the rules that hold in a domain. Finally, we develop an algorithm that learns rules with

associated confidence values in the exact learning model. We also propose a technique to

simulate queries in the exact learning model from data. Experiments show encouraging

results to learn a set of rules that approximate rules encoded in data.

vi

Sammendrag

Vi tar opp problemet med å lære tolkbare maskinlæringsmodeller fra usikker og man-

glende informasjon. Vi utvikler først en ny dyplæringsarkitektur, RIDDLE: Rule

InDuction with Deep LEarning (regelinduksjon med dyp læring), basert p̊a egenskapene

til mulighetsteori. Med eksperimentelle resultater og sammenligning med FURIA, en ek-

sisterende moderne metode for regelinduksjon, er RIDDLE en lovende regelinduksjonsal-

goritme for å finne regler fra data. Deretter undersøker vi læringsoppgaven formelt ved

å identifisere regler med konfidensgrad knyttet til dem i exact learning-modellen. Vi de-

finerer formelt teoretiske rammer og viser forhold som må holde for å garantere at en

læringsalgoritme vil identifisere reglene som holder i et domene. Til slutt utvikler vi en

algoritme som lærer regler med tilhørende konfidensverdier i exact learning-modellen.

Vi foresl̊ar ogs̊a en teknikk for å simulere spørringer i exact learning-modellen fra data.

Eksperimenter viser oppmuntrende resultater for å lære et sett med regler som tilnærmer

reglene som er kodet i data.

viii

List of Publications

The results on this thesis are based on the following publications:

1. RIDDLE: Rule Induction with Deep Learning [Persia and Guimarães, 2023]

Chapter 3 is based on the results of this work.

2. On the Learnability of Possibilistic Theories [Persia and Ozaki, 2020]

Chapter 4 is based on the results of this work.

3. Extracting Rules from Neural Networks with Partial Interpretations

[Persia et al., 2022]

Chapter 5 is based on the results of this work.

4. Extracting Horn Theories from Neural Networks with Queries and

Counterexamples [Persia and Ozaki, 2022]

Chapter 5 is based on the results of this work.

x

Contents

List of Acronyms xv

1 Introduction and Motivation 1

1.1 Challenge: Learning Interpretable Models 2

1.2 Problem Setting . 4

1.3 Contribution . 6

1.4 Structure of the Thesis . 8

2 Preliminaries 11

2.1 Knowledge Bases and Satisfiability . 11

2.2 Possibility Theory . 14

2.3 Possibilistic Logic . 16

2.4 Computational Learning Theory . 20

2.5 Artificial Neural Networks . 26

3 RIDDLE: Rule Induction with Deep Learning 29

3.1 Introducing RIDDLE . 30

3.2 Experimental Results . 39

3.3 Discussion . 44

xii CONTENTS

4 Exact Learning of Possibilistic Logic Theories 45

4.1 Learning System . 47

4.2 Learnability . 52

4.3 Polynomial Time Reduction . 57

4.4 Discussion . 73

5 Exact Learning Possibilistic Horn Theories 75

5.1 Extracting Horn Rules . 77

5.2 Experiments . 86

5.3 Dealing With Uncertainty . 92

5.3.1 Learning Possibilistic Horn Formulas 93

5.3.2 The Π HORN∗ Algorithm . 95

5.3.3 Experimental Results . 98

5.4 Discussion . 101

6 Related Work 103

6.1 Rule Induction and Neurosymbolic AI 103

6.2 Exact Learning . 105

6.3 Uncertainty Measures and Possibilistic Logic 106

7 Conclusion 109

7.1 Contribution . 109

7.2 Future Work . 111

A Omitted Definitions and Proofs 113

A.1 First-Order Logic . 113

CONTENTS xiii

A.2 Proofs of Chapter 4 . 114

A.2.1 Learnability (Section 4.2) . 115

A.2.2 Polynomial Time Reduction (Section 4.3) 121

A.3 Proofs of Chapter 5 . 125

A.3.1 Horn . 125

A.3.2 Results with Possibility Queries 127

A.4 Possibility and Necessity as Upper and Lower Probabilities 129

xiv CONTENTS

List of Acronyms

FO First Order

KB Knowledge Base

CNF Conjunctive Normal Form

EL Exact Learning

PAC Probably Approximately Correct

AI Artificial Intelligence

ML Machine Learning

ANN Artificial Neural Network

MSE Mean Squared Error

SGD Stochastic Gradient Descend

xvi List of Acronyms

Chapter 1

Introduction and Motivation

Machine learning is the branch of of Artificial Intelligence (AI) that studies the ability of

acquiring knowledge from experience. The goal is to build systems capable of performing

tasks after they have found patterns and induced knowledge from data. With the increase

of the complexity of the tasks we would like AI systems to perform, follows an increase

of the expressiveness of the knowledge induced from data. We want such knowledge to

be interpretable. Works in the field of computational logic studied ways of representing

knowledge, and performing reasoning with formal guaranteed properties. As learning,

representing knowledge and reasoning are important abilities that interact with each

other to perform complex tasks, combining the strengths of the approaches in these two

fields complements some of their respective limitations.

Often, learning systems should have the ability to cope with conditions of ignorance to

succeed in a given function. Consider the task of deciding what political party to vote

for the next elections. Among many efforts, it requires acquiring knowledge (potentially

contradictory) about different parties, reasoning about which one is expected to perform

better, and drawing an (uncertain) conclusion about which party to support. As intelli-

gent life developed mechanisms of dealing with lack of complete information, we would

like to devise systems with similar skills. Making choices, planning, generalising knowl-

edge from examples, etc. These abilities require some handling of uncertain information.

Especially when exposed to ambiguous or contradictory facts. Therefore, practical AI

systems should be able to learn and reason in situations of ignorance.

Moreover, complex AI systems should provide ways of expressing the reasons behind

their own decisions. We have witnessed machine learning models winning against pro-

fessional players of strategic-intensive games such as Chess and Go [Campbell et al.,

2002; Hölldobler et al., 2017] and achieving other important milestones in pattern recog-

2 Introduction and Motivation

nition [Le et al., 2012], in natural language processing (e.g., when Deep Blue performed

better than the champions of a quiz general knowledge game [Ferrucci, 2012]), and other

areas. For some applications, like adding filters to a human face [Antipov et al., 2017], it

may not be so relevant to fully understand why a model produced a particular output.

However, when machine learning models are used to support high-stakes decisions, it is

imperative to understand how predictions are made. For instance, whether loans should

be approved [Sheikh et al., 2020], or whether defendants should be detained depending

on the risk of offense [Kirkpatrick, 2017]. In particular, if rules are being derived from

data, AI systems need to ensure that such rules are fair and can be trusted.

In the work of this thesis, we develop algorithms that learn patterns under the form of

rules from imprecise data. We first describe a novel Artificial Neural Network (ANN)

architecture, dubbed RIDDLE (Rule InDuction with Deep LEarning). This architecture

scales well with the amount of data and it provides an explainable model, as learned

parameters can be converted to interpretable rules. Empirically, RIDDLE models show

competitive performance, but no general guarantee on the learning outcome is available.

For this reason, we formally study the learning task in the light of Angluin’s Exact

Learning (EL) model [Angluin, 1988]. We identify conditions that allow the learning

task to always succeed, that is identify the target, an unknown concept. The proven

positive results, allowed the development of Π HORN∗, an algorithm that finds (Horn)

rules, scales well with the size and volume of the data, and is guaranteed to always

identify the target and unknown rules.

In the following, we formalise the goal of this work (Section 1.1), then we clarify the

problem setting and our contribution (Sections 1.2 and 1.3). In Section 1.4, we present

the structure of this work.

1.1 Challenge: Learning Interpretable Models

The desire of understanding is closely related to learning processes. Consider the task

of analysing data about complex chemical processes, weather prediction, social network

analysis, etc. In similar cases, we are not only interested in knowing what will happen

given a state of the environment, but we would like to discover the rules that hold in a

specific domain, and give predictions based on interpretable models. These models should

be expressive enough to represent complex concepts, and represent knowledge formally

to guarantee explainability and unambiguous interpretations by different parties.

Knowing the reasons why things happen on a given domain can help learn more about the

1.1 Challenge: Learning Interpretable Models 3

problem itself. As we live in conditions of not perfect information, knowledge extracted

from data can help in reasoning why a generated model fails. For instance, if a system

that scores users depending on their ability to pay back a loan provides explanation

about the predicted score, it can be used to check if the prediction is to be trusted. In

case an error in the model is identified, this can reveal a problem in the data, in societal

structure, etc.

The benefit of a descriptive model is not only related to the phenomena it describes, but

such models can contribute to solutions of other problems. Knowledge transfer is one

activity that improves companies expertise, and it is only possible through the availability

of knowledge artifacts like documentation, or interpretable rules. The understanding of

a given problem positively contributes to the discovery of solutions of more complex

problems through the common effort of many persons. This is especially relevant for

solving global challenges.

Systems that find patterns from data should have properties that allow a constructive

influence on human activities. Some of them are:

• Fairness: Ensuring that predictions are not based on statistical correlations in

the available data. Learned models should not be biased against underrepresented

groups. An interpretable model can express the reasons why a person has been

denied the opportunity to get a loan, and it is possible to correct decisions based

on unwanted correlations.

• Robustness: Ensuring that noisy and small perturbations of the input to the

model do not lead to large changes in the prediction. This problem is common in

algorithms that identify undesired numerical patterns in data. Often, it leads to

security problems. Indeed, such venerability can be used by an attacker to take

advantage of the system by obtaining desired (and false) predictions.

• Causality: Ensuring that the generated model contains only patterns describing

causal relationships between concepts in the data.

Many works [Ozaki, 2020a] tackled the problem of learning a formal representation about

the relationships between concepts in a specific domain using classical logic-based knowl-

edge representation formalisms. In this way, the patterns found in data are expressed

with an unambiguous and clear language that both humans and machines can interpret.

A major difficulty is that in real world applications classical logic is too rigid to cope

with conditions of ignorance and manage imprecise and incomplete information.

Indeed, solving learning tasks requires the ability to cope with many facets of uncertainty.

4 Introduction and Motivation

Consider the task of selecting the best generated model suited for the data at disposal,

learning from a dataset populated by many imprecise measurements of unreliable sensors,

or learning from a dataset that expresses relationships between objects and attributes

that omits some assertions (for example ‘NULL’ values in database tables). For this

reason, we need to adopt a knowledge representation formalism that is able to manage

and express uncertain information.

1.2 Problem Setting

We formulate the problem of learning interpretable rules expressed in possibilistic

logic [Dubois et al., 1994] from data. An expressive knowledge representation language

designed to represent uncertainty and manage inconsistent knowledge.

Possibilistic Logic

There are different approaches to dealing with uncertainty [Parsons and Hunter, 1998].

Possibilistic logic [Dubois et al., 1994] is a promising formalism for approaching it. In this

language, we can express relationships between concepts and express subjective belief on

the truth value associated to such statements. We express formulas in possibilistic logic

as a pair (φ, α) where φ asserts a statement and α denotes the belief on φ. The value of

α ranges in the interval [0, 1] and the closer it is to 1, the stronger the belief becomes.

For instance, a student in biology can be uncertain whether a whale is a mammal or an

amphibian with a preference of assigning whales to be mammals. We can express this

knowledge in possibilistic logic with the three constraints:

(whale→ mammal, 0.9) (1.1)

(whale→ amphibian, 0.2) (1.2)

(mammal↔ ¬amphibian, 1) (1.3)

Formulas 1.1 and 1.2 denote that the student is more confident that a whale is a mammal

as it assigns a low belief that a whale is an amphibian. Formula 1.3 expresses the implicit

and sure knowledge that mammals cannot be amphibian and vice-versa. This formalism

gives freedom to show a graded notion of uncertainty and makes a clear distinction

between the concepts of truth and belief [Dubois and Prade, 2001]. A statement can be

either true or false like in classical logic and the belief degree acts on the meta-level.

1.2 Problem Setting 5

Exact Learning

To formally study the learning task, we employ definitions of computational learning

theory [Kearns and Vazirani, 1994] that studies in mathematical terms the process of

acquiring knowledge. We mainly investigate properties of algorithms devised for learning

possibilistic logic formulas with the EL model [Angluin, 1988] where there is a learner

that forms concepts by asking queries. In this model, it is assumed that:

• there is a teacher that knows the target and unknown concept (in this work a

set of possibilistic logic formulas). Moreover, the teacher can answer questions

concerning the structure of the target;

• there is a learner that can ask queries to a teacher to acquire knowledge and

identify the target concept.

• The types of queries the learner can ask is fixed and well-defined. Also, the teacher

and the learner share the information concerning the vocabulary and expressiveness

of the target.

This model is general and applicable to diverse specific instances. We illustrate this

statement with Example 1.1, where we describe the learning task of a chef that learns

how to make cream with a new machine.

Example 1.1. Consider a pastry chef who is using a professional machine to prepare

whipped cream but the outcome of the process is too liquid. The chef can consider some

causes for this to happen: not enough time or too much time was spent to whip the

cream, or the ingredients were expired. In the EL model, the chef would play the role of

the learner who will try to identify the reason why the whipped cream is too liquid by

using the machine. The actions of the chef can be considered as queries to the machine,

that plays the role of the teacher, and that will provide the desired cream if the chef

executes the right steps. The quality of the outcome can represent the answer to such

query/action. In this setting, the goal of the chef is to identify the right step to perform

to obtain the desired whipping cream based on the outcome returned by the machine.

Moreover, if possibilistic logic is used to represent the acquired knowledge, one can

model cases of complete uncertainty. Both low-whipping and high-whipping time, which

are two mutually exclusive conditions, can be considered fully possible. On the other

hand, if the uncertainty in this scenario is modelled by probability theory the more the

chef believes that low-whipping time is the cause for the cream to be liquid, the less it

considers the case of high-whipping time.

6 Introduction and Motivation

The flexibility of the uncertainty measure used in possibilistic logic can capture other

facets of uncertainty. Assume that the chef knows the quality of the ingredients and the

condition that the ingredients are expired is considered to be less possible, e.g. associated

with the value 1/3. In probability theory, complete ignorance of the first two conditions

would make us assign probability 1/3 to every condition (Laplace criterion). Thus, it

would not model the knowledge about the quality of the ingredients and the ignorance

about the time spent to whip the cream. /

The most studied communication protocol in this model allows the learner to ask ques-

tions of two kinds, called membership and equivalence queries. Membership queries allow

the learner to know whether a certain statement holds (e.g. ‘Is the timer of the whipped

cream maker broken?’) and its answer can be ‘yes’ or ‘no’. Equivalence queries allow the

learner to check whether a hypothesis (e.g. an explanation of why the whipped cream

maker did not work as expected) is correct and, if not, to fix it using a counterexam-

ple. In Example 1.1, the chef wants to learn how to use the machine, and the latter may

play the role of the teacher. The answer to the membership query ‘Is the timer of the

whipped cream maker broken?’ can be found when the chef empirically tests the timer

with another trusted clock. Equivalence queries happen when the chef formulates a hy-

pothesis to explain the cause of the problem and takes specific actions on the machine

to either confirm the hypothesis or find a counterexample. If the outcome of the process

does not correspond to the desired one, it may represent a counterexample. Other types

of queries, such as superset and subset queries, are also considered in this work.

1.3 Contribution

We propose a novel ANN architecture dubbed RIDDLE that finds patterns expressed as

possibilistic logic rules from data. Since it is based on the formal theory of possibilistic

logic, this architecture generates models that are both able to handle uncertain infor-

mation during the training phase, and provide certainty about the given prediction. As

RIDDLE models allow to check if predictions can be trusted, their adoption can give ben-

efits in those scenarios where decisions must be taken based on these predictions. We

also formally describe the semantics of the parameters of the network. As a consequence,

we show an algorithm that decodes the optimised parameters after the training phase

into interpretable possibilistic rules. This feature allows RIDDLE models to be used in

scenarios where predictions are used to give suggestions in high-stakes decision making

tasks. We carry empirical experimental evaluations on 15 datasets freely available at the

UCI machine learning repository [Dua and Graff, 2017]. With a comparison between

1.3 Contribution 7

trained RIDDLE models with state of the art fuzzy rule induction models, we can say

that RIDDLE is a competitive method with potential to be used in real life scenarios.

The performance of RIDDLE is promising, but to formally study the learning task of

identifying possibilistic logic rules, we base our work on notions of computational learning

theory [Kearns and Vazirani, 1994]. We first define the concept of a learning system: a

formal framework that takes into account notions of the theory of computation [Sipser,

1997] and computational learning theory. We identify conditions that must hold to

guarantee that an EL learner is able to identify target rules by asking a predefined set

of queries. We also identify negative results, and in both cases we formally prove our

statements. Additionally, we show the conditions that must hold for using algorithms

developed for finding classical rules, into algorithms that learn possibilistic logic rules. In

this way, the abundant number of classical learning algorithms developed, and present

in the literature, becomes relevant in scenarios with some degrees of uncertainty.

Finally, based on the positive learnability results we proved, we developed Π HORN∗, an

EL algorithm that is guaranteed to identify possibilistic Horn1 logic rules. This algorithm

runs in polynomial time with respect to the symbols in the considered language and the

number of rules K holding in a given domain, and it outputs a set of possibilistic logic

rules equivalent to K. Π HORN∗ is an adaptation of the LRN algorithm developed by

Frazier and Pitt [1993a] that learns classical Horn rules. To test the efficacy of the new

methodology, we propose a new approach for extracting rules hidden in so-called black-

box machine learning models, where neural network models lie in. First, we convert a

given dataset into a binarized form and train a neural network (there are no assumptions

regarding the internal architecture of the neural network). We then employ the Π HORN∗

algorithm for learning possibilistic Horn rules of the form ((sunny ∧ warm) → hike, 0.8).

As Π HORN∗ is developed in the EL model, it will act as a learner that asks queries

to a teacher in order to learn an abstract target (in our case a set of rules). We treat

a trained neural network model as the teacher, as originally proposed by Weiss et al.

[2018] for extracting automata.

However, answering efficiently queries in the EL model is not always possible. In our case,

simulating equivalence queries asked by Π HORN∗ with an ANN is hard. We propose

an efficient technique that can provide probabilistic guarantees for the correctness of

the rules extracted. This method is based on the connection between the EL and the

Probably Approximately Correct (PAC) learning models [Angluin, 1988; Valiant, 1984].

1A syntatic restriction of full propositional logic.

8 Introduction and Motivation

1.4 Structure of the Thesis

This work is divided in seven chapters:

• Chapter 2 – Preliminaries: we introduce the syntax and semantics of classical

propositional logic while providing relevant definitions applicable for the more ex-

pressive First Order (FO) logic. Then, we describe the main properties of possibil-

ity theory, and the type of uncertainty it captures. Based on these definitions, we

introduce possibilistic logic. We discuss syntax, and semantics, and its properties

in expressing uncertainty and handling inconsistent knowledge. Moreover, we state

reasoning complexity results and key properties that are going to be used in later

chapters. Then, we provide notions of computational learning theory, and impor-

tant definitions of the EL and PAC model such as: learning framework, learner,

teacher, query, and learnability. Finally, we introduce basic notions of ANN mod-

els, including general architecture and training algorithm.

• Chapter 3 – RIDDLE: Rule Induction with Deep Learning: We prove properties

based on possibility theory that provide ways of propagating uncertainty. With

these results, we define the RIDDLE architecture whose parameters can be op-

timised with standard gradient based algorithms. We explain how weights of a

trained RIDDLE model can be translated into interpretable (possibilistic) rules.

Moreover, we provide results of the empirical evaluation of RIDDLE with 15 dif-

ferent dataset available at the UCI machine learning repository [Dua and Graff,

2017]. We also compare the results with a state of the art fuzzy rule induction

algorithm. We claim that RIDDLE is a competitive model. We conclude with a

summary of the content of the chapter, and future works that may improve the

applicability of RIDDLE models. This chapter is based on the results of the work

published at NLDL23 [Persia and Guimarães, 2023].

• Chapter 4 – Exact Learning of Possibilistic Logic Theories: we study whether

possibilistic theories are learnable in the EL model. We first give a general and

formal definition of a learning context, denoted learning system, that takes into

account notions of the theory of computation. With this formal framework, we

prove under which conditions it is possible to guarantee exact identification of an

unknown target concept in the EL model. We show under which circumstances it

is possible to reduce polynomial time learnability results of classical logic formulas

to polynomial time learnability of possibilistic logic formulas and vice-versa. At

the end of the chapter, we mention proven results that hold in the PAC model

due to the connection between the EL and the PAC model. We conclude with a

1.4 Structure of the Thesis 9

discussion of proven results, and open challenges. This chapter is based on the

results of the work published at IJCAI20 [Persia and Ozaki, 2020].

• Chapter 5 – Exact Learning Possibilistic Horn Theories: we first develop HORN∗,

an EL learning algorithm that identifies unknown target Horn formulas by asking

queries. We propose a general method that answers queries asked by EL algorithms

based on the information available from data. We test this approach by treating

an ANN model trained on data as a teacher that answer queries. Then, using the

positive learnability results in the previous chapter, we develop Π HORN∗, a learn-

ing algorithms that identifies unknown target possibilistic Horn formulas by asking

queries as defined in the Exact Learning (EL) model. Also in this case, we test

our method by extracting possibilistic Horn rules from trained ANN models from

uncertain data. We conclude the chapter with a discussion about the generality

of our work that can inspire related research. This chapter is based on the results

published at NLDL22 [Persia et al., 2022] and KR4HI [Persia and Ozaki, 2022].

• Chapter 6 – Related Work: it is divided in three parts. In the first, we mention

relevant work concerning rule induction algorithms and neurosymbolic AI. In the

second part, we discuss works in the EL field that focused on algorithms that

exactly identify logic formulas. In the third part, we present uncertainty measures

alternative to possibility theory and similar knowledge representation formalisms

like possibilistic logic.

• Chapter 7 – Conclusion: we discuss the contribution and main results developed

during this work. At the end, we introduce ideas that can complement or extend

the methods, and solutions proposed in this work.

• Finally, in Appendix A, the reader can find omitted proofs and definitions.

10 Introduction and Motivation

Chapter 2

Preliminaries

We present basic notions that are going to be used for the rest of this work. In Section 2.1,

we introduce notions of propositional logic and mention the required notation of First

Order (FO) logic for a comprehensive understanding of this work. A more detailed

presentation of FO logic can be found in Appendix A.1. In Section 2.2, we introduce

possibility theory, that is the theoretical foundations of possibilistic logic. We present the

latter in Section 2.3 together with some key properties that are useful to formally explain

and show results in all next chapters. In Section 2.4, we define notions of computational

learning theory used to define the learning settings formally and prove learnability and

transferability results. These notions are relevant for Chapters 4 and 5. Finally, in

Section 2.5, we present artificial neural networks; a prominent algorithm in machine

learning for finding patterns in data. Such algorithm is relevant for Chapters 3 and 5.

2.1 Knowledge Bases and Satisfiability

Knowledge can be expressed in many forms. Propositional logic is a formal language

primarily used to mathematically describe statements using propositions. Moreover,

this language is more easily processable by algorithms, compared to natural language

statements. We formally define it here as we use it throughout this entire work for

explaining proofs, present algorithms, and clarify definitions with examples.

An alphabet Σ of propositional logic language consists of

• a finite set V := {v1, v2, · · · } of propositional variables;

• the set of connectives C := {¬/1,∧/2,∨/2}; and

12 Preliminaries

• the special characters “(”, “)”.

A propositional atomic formula is a variable in V. Each variable in V is associated a

“proposition” that can be either true or false. By conjoining them with connectives,

we can express increasingly complex statements. The set of propositional formulas LV

satisfy the following properties:

• the special symbols “true”, and “false” are always in the language, >,⊥ ∈ LV;

• every propositional atomic formula φ is in LV;

• If φ ∈ LV, then ¬φ ∈ LV;

• If ◦/2 ∈ {∧,∨}, then φ, ψ ∈ L implies (φ ◦ ψ) ∈ LV.

We omit the subscript in LV if it is clear from the context. We additionally give names

to formulas obeying specific constraints. A literal over V, denoted with the symbol l,

is either a variable v ∈ V or its negation, in symbols, ¬v. The former is also called

a positive literal, the latter a negative literal. A clause over V is a disjunction (∨) of

literals over V. It is called Horn if at most one literal is positive. A Conjunctive Normal

Form (CNF) formula over V is a conjunction ∧ of clauses over V. A formula is Horn

CNF if all its clauses are Horn. We may omit ‘over V’ in formulas, clauses, and literals.

A clause ψ can also be expressed as a rule r of the form ant(r) → con(r) where ant(r)

(the antecedent of r) is the set of all negated literals in ψ and con(r) (the consequent of

r) is the single positive literal in φ, or empty.

Example 2.1. Let V be the set {vw, vj, vd, vh} where variables are assigned the propo-

sitions ‘It is a working day’, ‘the job is unfinished’, ‘there is an imminent deadline’,

and ‘it is a holiday’, respectively. The clause (vh ∨ vw) states that at least one the

propositions appearing in it must be true, that is ‘either is holiday or it is a working

day’. This clause can be conjoined with (¬vd ∨ ¬vj ∨ vw) to form the CNF formula

((vh ∨ vw) ∧ (¬vd ∨ ¬vj ∨ vw)). Moreover, the clause (¬vd ∨ ¬vj ∨ vw) can be expressed as

a rule of the form r := (vd ∧ vj → vw) where ant(r) = {vd, vj} and con(r) = {vw}. Intu-

itively, it means ‘if there is an imminent deadline and the job is unfinished, then it is a

working day’. As such clause is Horn, there is only one way of expressing it as a rule

with the consequent as a positive literal. /

For a conjunction of clauses φ, the set of subformulas of φ is the smallest set of formulas

Sφ satisfying the following conditions:

• The formula φ is a subformula of itself, that is, φ ∈ Sφ;

2.1 Knowledge Bases and Satisfiability 13

• If ¬ψ ∈ Sφ, then ψ ∈ Sφ;

• If for any connective ◦/2 ∈ C, we have (ψ1 ◦ ψ2) ∈ Sφ, then ψ1, ψ2 ∈ Sφ

A (finite) set of statements, or alternatively a Knowledge Base (KB), gives a description

of the constraints that hold in a given domain using propositions in V. We denote

KBs with calligraphic letters, such as H, K, or T , with superscript if more than one is

involved in our discussion. We treat a KB H as a conjunction of formulas H :=
∧n
i=0 φi

with φi ∈ L. By definition of L, it follows that H ∈ L. For convenience, we will

interchangeably denote H as a set of formulas {φi ∈ L | 0 ≤ i ≤ n}. We recall that a

conjunction of formulas can be transformed into a logical equivalent CNF formula [Bell

and Machover, 1977]. The size of a formula φ ∈ L, denoted |φ|, is the number of symbols

in the language used to express φ. Similarly, the size of a H is |H| = |
∧n
i=0 φi|.

Example 2.2. The subformulas of φ := ((¬v2 ∨ v1) ∧ (¬v1 ∧ v3)) are: itself, (¬v2 ∨ v1),

(¬v1 ∧ v3), ¬v2, v2, v1, ¬v1, and v3. If in our discussion φ is a KB, we may represent

it as the set {(¬v2 ∨ v1), (¬v1 ∧ v3)}. The size of the formula (¬v2 ∨ v1) is 6 because the

symbols in this formulas are v1, v2,¬,∨,‘(’,‘)’. /

So far, we have shown a formal syntax to our language L. We now define a formal

semantics for a propositional logic language through the notion of truth-value assignment.

An interpretation over V is a function I : V → {>,⊥} that maps every variable either

to the ‘true’ (>) or ‘false’ (⊥) truth value. An interpretation I for a language L satisfies

a formula φ ∈ L iff I does not violate the constraints imposed by φ. If an interpretation

I satisfies φ, we write I |= φ, otherwise I 6|= φ. We say that φ ∈ L is satisfiable if

there is an interpretation I that satisfies φ. Moreover, φ is falsifiable if its negation ¬φ
is satisfiable. A tautology or a valid formula is a formula that is not falsifiable.

Example 2.3. Let φ := (¬vd ∨ ¬vj ∨ vw) be the clause presented in Example 2.1. Any

interpretation that maps the value of any literal in φ to > satisfies it. Any interpretation

I such that I(vd) = >, I(vj) = >, and I(vw) = ⊥ falsifies φ. /

It is not always reasonable to assume complete information in learning settings. There-

fore, we generalised the notion of interpretation that allows for variables to have an un-

known truth value. A partial interpretation I∗ over V is a function I∗ : V → {>,⊥, ? }
that states which variables are regarded as ‘true’, ‘false’, and ‘unknown’. I∗ falsifies a

variable v ∈ V if I∗(v) = ⊥, otherwise I∗ satisfies it. I∗ satisfies a negative literal ¬v

iff I∗(v) is equal to ‘? ’ or ‘⊥’. I∗ satisfies a clause φ if it satisfies at least one literal in

φ. In other words, I∗ satisfies a clause if there is a way of replacing ‘unknown’ values

(?) with ‘true’ (>) or ‘false’ (⊥) such that the clause is satisfied. We denote in symbols

14 Preliminaries

I∗ |= φ, if I∗ satisfies φ. We write I∗ 6|= φ instead, if I∗ does not satisfies φ. With this

definition, interpretations can be considered as a special case of partial interpretations

where no variable is mapped to the unknown value.

A KB H is satisfiable if there is an interpretation that satisfies every formula in H and it

is falsifiable if there is an interpretation that does not satisfy at least a formula in H. If

there is not interpretation that satisfies H, then we say that H is inconsistent. If every

interpretation that satisfies H satisfies also a formula φ ∈ L, then we say that H entails

φ, written H |= φ, otherwise we write H 6|= φ. If H entails every formula in another KB

H′, we write H |= H′. Two KBs H,H′ are logical equivalent if H |= H′ and H′ |= H,

also denoted with H ≡ H′. A KB is non-trivial if it is satisfiable and falsifiable.

Example 2.4. Let V be the set {vw, vj, vd, vh} and consider the CNF formula φ :=

((vh ∨ vw) ∧ (¬vd ∨ ¬vj ∨ vw)) given in Example 2.1. The partial interpretation

I1 = {(vw,⊥), (vj,>), (vd, ?), (vh, ?)} satisfies φ because we can replace the assignment

I1(vh) = ? to I1(vh) = > and I1(vd) = ? to I1(vd) = ⊥ such that every clause in φ is

satisfied by I1. On the contrary I2 = {(vw,⊥), (vj, ?), (vd, ?), (vh,⊥)} does not satisfy φ

as the first clause is always falsified; it does not matter to which values vj, vd are assigned

to. The KB {¬vw, (¬vd ∨ vw), (vd ∨ vw)} is inconsistent because there is no interpretation

that assigns to the variable ¬vd both the value > and ⊥. /

In Chapter 4, we are going to discuss theoretical results that include also the more

expressive First Order (FO) logic language (also denoted by L depending on the context)

consisting of closed well-formed formulas in the classical sense. We refer to Appendix A.1

for a quick definition of FO logic. We point to the book written by Bell and Machover

[1977] for a comprehensive formalisation. Also in FO logic, we denote by ¬,∧,∨ the

negation, conjunction, and disjunction operators, and by ∀, ∃ the universal and existential

quantifiers as usual. When we introduce an FO language we mean any fragment of FO

logic, also propositional logic. We denote by ΣH the vocabulary of the KB H, i.e. the

set of predicates (or propositional variables) occurring in H. We keep the same notation

for interpretations of an FO language and use the same notation for satisfiability of an

FO formula with respect to an FO partial interpretation.

2.2 Possibility Theory

The handling of uncertainty has been an issue in many scientific disciplines. Machine

learning is one of them, because often, learning tasks involve information that is uncertain

and incomplete. The demand to handle uncertainty led to the development of many

2.2 Possibility Theory 15

formalisms like probability theory [Jaynes, 2003], imprecise probabilities [Walley, 1991],

and evidence theory [Shafer, 1976]. Among the uncertainty handling formalisms in the

literature, possibility theory [Dubois and Prade, 2014] stands out for its simplicity and

its freedom in expressing any case of lack of information.

Let Ω be the set of states of affair. For instance, the set of interpretations over a logic

language L. A possibility distribution π : Ω→ [0, 1] is a function that maps an element

in Ω to a possibility value. For an I ∈ Ω, the closer π(I) is to 0, the less possible the

event described by I is considered. On the other hand, π(I) = 1 denotes that I is fully

possible. Let the set of states A ⊆ Ω describe an assertion or a proposition (like the

set of models of a formula). We define the possibility Ππ(A) measure that indicates how

much A is coherent with π and the necessity measure Nπ(A) that expresses the certainty

degree of A being implied by π as follows:

Ππ(A) := sup
I∈A
{π(I)}; and Nπ(A) := inf

I∈Ω\A
(1− π(I)) = 1− Π(Ac).

For sets A,B ⊆ Ω, the possibility measure satisfies the maxitivity property and the

necessity measure its dual, minitivity [Dubois et al., 1994]:

Ππ(A ∪ B) = max(Ππ(A),Ππ(B)); (Maxitivity)

Nπ(A ∩ B) = min(Nπ(A), Nπ(B)). (Minitivity)

If clear from the context, we omit the subscript π. Being certain of both A and Ac

in possibility theory implies that neither A nor Ac are fully possible according to a

possibility distribution π, expressing a type of inconsistency. Additionally, it always

holds that Π(A ∩ B) ≤ min(Π(A),Π(B)) meaning that adding constraints to a system

may decrease the possibility of that system to be compliant with future observations. The

more specific we are in describing a state, the less possible it might become. Moreover,

we also have the inequality N(A∪B) ≥ max(N(A), N(B)). Intuitively, we can be certain

about a state in which conditions A or B hold, but we are less certain if we consider these

conditions separately. In possibility theory we have the freedom of neither believing in

a set of statements A nor its negation Ac, while this is not allowed by the duality of a

probability measure (that is D(A) = 1−D(Ac)).

We recall a connection between probability and the possibility/necessity measures as

the latter can be used to model imprecise probabilities [Dubois and Prade, 1992]. Let

D be a probability distribution D : Ω → [0, 1] such that ΣA∈ΩD(A) = 1. A possibility

distribution π induces a family of probability measures P such that every probability

16 Preliminaries

measure D ∈ P over A ∈ Ω satisfies the constraint:

N(A) ≤ D(A) ≤ Π(A) = 1−N(Ac).

A wide interval associated to A implies a high uncertainty on the states in A. Figure 2.1

depicts the relationship between the possibility and necessity measure.

0 1N(A) = 0.4

N(Ac) = 0

Π(Ac) = 0.6

Π(A) = 1

Figure 2.1: Graphical representation of the dependency of necessity and possibility of
an element A ∈ Ω and its negation when Π(A) = 1 and Π(Ac) = 0.6.

We refer to Appendix A.4 for more detail about this connection.

2.3 Possibilistic Logic

Possibility theory has a logical counterpart named possibilistic logic [Dubois and Prade,

2014]. It remains close to classical FO logics while being able to express uncertainty over

truth values. Possibilistic logic belongs to the family of weighted logics and it associates

a certainty degree to classical formulas. Let L be an FO logic language. A possibilistic

formula is a pair (φ, α) where φ ∈ L (restricted to well-formed formulas without free

variables) and α is a value in the interval (0, 1] with finite precision, also called the

valuation of φ. A possibilistic KB H is a finite set of possibilistic formulas. Intuitively,

if (φ, α) ∈ H, this means that φ is believed to be true at least to degree α. The closer

α gets to 1, the more φ is believed to be certain. A possibilistic KB H can be seen as

a stratified collection of classical formulas where each “layer” is associated a different

valuation. Each layer or level of this stratification corresponds to a set of formulas that

are considered certain with the same degree. The upper layers correspond to the set of

formulas considered more certain. With the operators α-cut and α-cut with α ∈ (0, 1]

we can ignore some layers of a KB H as follows:

Hα = {(φ, β) ∈ H | β ≥ α}, Hα = {(φ, β) ∈ H | β > α}.

The classical projection of a possibilistic KB H is denoted by H∗ = {φ | (φ, α) ∈ H}
that is the corresponding KB expressible in L by dropping all valuations of formulas

in H. It will be convenient to define the set Hv = {α | (φ, α) ∈ H} that contains

all the valuations present in H. For every valuation α ∈ (0, 1], by combining α-cut

2.3 Possibilistic Logic 17

and the classical projection, we can obtain the classical projection of some “layers” of a

possibilistic KB with H∗α.

The semantics of a possibilistic logic formula depends on the semantics defined for the

underlying logic, that gives meaning to the classical formulas, plus the additional notion

of uncertainty modelled by a possibilistic measure. The semantics of a classical KB

partitions the set of interpretations in two sets: the set of interpretations that satisfy

the KB and the set of interpretation that do not. A possibilistic KB does not partition

the set of interpretations but it defines a possibility distribution over the interpretations

expressing a preference relation over them. More precisely, let Ω be a countable (possibly

infinite) set of interpretations of the language L. We know that a possibility distribution

π : Ω→ [0, 1] associates to each interpretation in Ω a possibility value such that for I ∈ Ω,

the closer π(I) is to 1, the more the interpretation is considered possible according to π.

For I1, I2 ∈ Ω, having π(I1) > π(I2) means that I1 is preferred over I2.

It is convenient, from a knowledge representation perspective, to express the possibility

and necessity measures of formulas instead of interpretations. For this reason, we extend

the definition of such measures. For any formula φ ∈ L, we characterize the possibility

measure Ππ and necessity measure Nπ induced by the possibility distribution π:

Ππ(φ) = sup
I∈Ω
{π(I) | I |= φ} and Nπ(φ) = 1− Ππ(¬φ) = inf

I∈Ω
{1− π(I) | I 6|= φ}.

This definition is a cleaner alternative notation for the measures (defined in Section 2.2)

Ππ([[φ]]) and Nπ([[φ]]) where [[φ]] := {I ∈ Ω | I |= φ} is the set of all interpretations

that satisfy φ with respect to the possibility distribution π. If clear from the context,

we omit the subscript π from Ππ and Nπ. Π(φ) outputs the highest valuation of an

interpretation that satisfies φ. If φ is not satisfiable, then Π(φ) = 0 and if φ is valid,

then Π(φ) = sup{π(I) | I ∈ Ω} [Dubois et al., 1994]. The formula φ is more certainly

true when N(φ) is closer to 1, that is when ¬φ is less possible according to the possibility

distribution. A possibility distribution π is normalised if it assigns to at least an element

I ∈ Ω the maximal possibility value, π(I) = 1. Therefore, if φ is valid, Π(φ) = 1 =

1 − N(¬φ). Otherwise, if φ is an unsatisfiable formula and the possibility distribution

into consideration is normalised, then Π(φ) = 0 = 1−N(¬φ). From these definitions, it

follows that in possibilistic logic it is possible to have a case where Π(φ) = Π(¬φ) = 1

or N(φ) = N(¬φ) = 0, that means ignorance over φ.

As stated before, a possibilistic KB H defines a possibility distribution which in turn

defines a preference over the interpretations. In fact, H defines a class of possibility

distributions that are compliant with its constraints. Every formula (φ, α) ∈ H expresses

18 Preliminaries

the constraint N(φ) ≥ α.1 We say that a possibility distribution π satisfies a possibilistic

formula (φ, α) denoted π |= (φ, α), iff the necessity measure Nπ(φ) satisfies Nπ(φ) ≥ α.

A possibility distribution satisfies a KB H iff for every (φ, α) ∈ H, π satisfies (φ, α),

denoted π |= H. A possibility distribution π1 is more specific than a possibility distri-

bution π2 iff for every I ∈ Ω, π1(I) ≤ π2(I). For a possibilistic KB H there may be

multiple possibility distributions that satisfy it, since we are interested in modelling un-

certainty we are interested in the least specific possibility distribution that satisfies H.

This means that we prefer the possibility distribution that assigns the highest possibil-

ity value to all elements in Ω while satisfying the constraints of H. This respects the

principle of minimum specificity [Dubois and Prade, 1987] that is in line with the intu-

ition that the less it is known, the more different alternative events can be considered to

be possible, in general. Analogously, the more it is known about a specific domain, the

fewer possible events not complying with the current state of knowledge become. For in-

stance, if I am somewhat certain that an elephant is a mammal, I should be more certain

that an elephant is not an insect.

Given a possibilistic KB H and I ∈ Ω, we can define the least specific possibility distri-

bution of H in this way:

πH(I) =

1 if for every a ∈ H, I |= a

1− sup({α | (φ, α) ∈ H and I |= ¬φ}) otherwise.

We denote by ΠH and NH the possibility and necessity measures induced by πH, respec-

tively. The least specific possibility distribution maximises the possibility values assigned

to interpretations while satisfying the considered constraints. Proposition 2.5 formalises

the previous statement and Example 2.6 illustrates this notion.

Proposition 2.5. [Dubois et al., 1994] Let H be a possibilistic KB and let Ω be the set

of all interpretations for the logic language L considered. For any possibility distribution

π, π satisfies H iff for every interpretation I ∈ Ω, we have that π(I) ≤ πH(I).

Example 2.6. Let L be a propositional logic language defined on the set of variables

V = {v1, v2}. Assume Hex = {(¬v1 ∨ ¬v2, 0.2), (v1, 0.3), (v2, 0.8)}. The 0.3-cut of Hex,

Hex,0.3 is {(v1, 0.3), (v2, 0.8)} that is also equal to the 0.2-cut of Hex. The classical

projection H∗ex is {(¬v1 ∨ ¬v2), v1, v2} and the classical projection with the 0.3-cut is

H∗ex,0.3 = {v1, v2}. The possibility distribution πHex is computed with the (possibilistic)

1In this work, we are considering only “necessity valued possibilistic KBs”, that is set of formulas
that impose a lower bound on the necessity measure. The interested reader may read more about
“generalised possibilistic logic” where formulas in the KB may impose also an upper bound on the
possibility measure [Dubois et al., 1994].

2.3 Possibilistic Logic 19

v1 v2 (¬v1 ∨ ¬v2, 0.2) (v1, 0.3) (v2, 0.8) πHex
1 1 0.8 1 1 0.8
1 0 1 1 0.2 0.2
0 1 1 0.7 1 0.7
0 0 1 0.7 0.2 0.2

Figure 2.2: Possibilistic truth table of Hex.

truth table in Figure 2.2. The interpretations that falsify the formula v2 are associated

with a low possibility degree because Hex constraints v2 to be almost certain (with

necessity degree at least 0.8). The distribution πHex is an example of a not normalised

possibility distribution. /

Similarly to non-possibilistic logics, a possibilistic formula (φ, α) is a logical consequence

of a KB H iff for any π satisfying H, then π also satisfies (φ, α), written in symbols

H |= (φ, α). By Proposition 2.7, it follows that computing the least specific possibility

distribution is sufficient for checking if a possibilistic formula is entailed by the KB.

Proposition 2.7. [Dubois and Prade, 1990a, Corollary 3.2.3] Let H be a possibilistic

KB. For every possibilistic formula (φ, α), H |= (φ, α) iff πH |= (φ, α).

The possibility distribution πHex induced by the KB Hex in Example 2.6 entails the

formula (v1 ∧ v2, 0.3) because the possibility and necessity measure induced by πHex give

N(v1 ∧ v2) = 1 − Π(¬v1 ∨ ¬v2) = 1 − sup{πHex(I) | I |= ¬v1 ∨ ¬v2} = 1 − 0.7 = 0.3.

By definition, πHex satisfies (v1 ∧ v2, 0.3) iff N(v1 ∧ v2) ≥ 0.3. Since it is the case,

πHex |= (v1 ∧ v2, 0.3) and by Proposition 2.7, we have that Hex |= (v1 ∧ v2, 0.3). πHex

satisfies also (v1 ∧ v2, 0.2), (v1 ∧ v2, 0.03) etc. (Proposition 2.8).

Proposition 2.8. [Dubois and Prade, 1990a, Property 1 at page 453] Let H be a

possibilistic KB. For every possibilistic formula (φ, α), if H |= (φ, α) then we have that

H |= (φ, β) for every β s.t. 0 < β ≤ α.

Clearly, we are interested in computing the highest valuation of an entailed formula.

The deduction problem in possibilistic logic consists of identifying the highest valuation

associated to a formula entailed by the possibilistic KB H. Let φ be a classical formula.

We denote by val(φ,H) = sup{α | H |= (φ, α)}.

Possibilistic logic is capable of managing inconsistent knowledge. If L admits inconsistent

KBs, the possibilistic extension Lπ admits partial inconsistent possibilistic KBs. The

classical projection of the KB Hex in Example 2.6 is inconsistent but not every formula

can be entailed by Hex, for example Hex 6|= (v1, 0.5). This is because possibilistic logic

KBs allow for graded inconsistency. This degree is equal to the maximal value among the

20 Preliminaries

smallest valuations associated to formulas that are involved in a contradiction in the KB.

In Example 2.6, the KBHex is inconsistent up to degree 0.2 because (¬v1∨¬v2, 0.2) is the

formula with the smallest valuation present in every contradiction. A possibilistic KB H
is (partially) inconsistent up to level α if it holds that H |= (⊥, α) and its inconsistency

degree is computed as follows:

inc(H) = sup{α | H∗α is inconsistent}.

The inconsistency level ofH = ∅ is 0 and forHex in Example 2.6, we have inc(Hex) = 0.2.

Recall that we have chosen πH to be the least possibility measure that satisfies H.

Another good reason for choosing the least specific distribution πH as the characteristic

measure for H is that it minimises the necessity measure N , i.e. it maximises the values

of Π. As a consequence, πH also minimises the inconsistency degree of H.

It follows from the definition, that formulas non-trivially entailed must have a valuation

greater than the inconsistency level of the KB. By Proposition 2.9, finding the valuation

of a formula entailed by a possibilistic KB is reduced to finding the inconsistency degree

of a formula. The complexity of reasoning in the possibilistic extension of L increases

only by a logarithmic factor on the number of valuations in the KB [Lang, 2000].

Proposition 2.9. [Dubois and Prade, 1990a, Proposition 3.5.5] Let H be a possibilistic

KB. For every possibilistic formula (φ, α), H |= (φ, α) iff H ∪ {(¬φ, 1)} |= (⊥, α) or

equivalently val(φ,H) = Inc(H ∪ {(¬φ, 1)}).

Recall once again the KB Hex in Example 2.6 and assume we would like to check what

is val(v1 ∧ v2,Hex). By Proposition 2.9 we compute inc(Hex ∪ {(¬v1 ∨ ¬v2, 1)}) that

corresponds to checking for every valuation2 α if F = (Hex ∪ {(¬v1 ∨ ¬v2, 1)})∗α is

inconsistent. Since F is a classical KB, this check is done using standard techniques.

2.4 Computational Learning Theory

In order to study learning tasks formally, we need an abstract learning framework that

states precisely what are the objects that can be learned and what elements represent the

source of information. For this reason, we introduce the notion of a learning framework

F that consists of a triple:

(E ,L, µ)

2Actually, clever approaches can be used, like binary search on the valuations of the KB.

2.4 Computational Learning Theory 21

where E is a non-empty set of examples, L is a non-empty hypothesis space and µ is a

mapping function µ : L → 2E that maps each hypothesis in the hypothesis space to a set

of examples [Konev et al., 2018]. Elements in E are statements or data that, together

with the information provided by the function µ, characterise an abstract target the

learner wants to learn. In this work, L contains an element T called target that the

learner attempts to find. In literature, this is called the realisability assumption [Shalev-

Shwartz and Ben-David, 2014] and in this work it means that we can represent the target

concept in the same way we can represent the hypothesis.

Example 2.10. Let F = (E ,L, µ) be a learning framework where L is a propositional

logic language defined on the set of variables V = {v1, v2}. E corresponds to the set of

all formulas in L and µ relates propositional logic KBs H ∈ L with formulas entailed by

them, that is µ(H) = {φ ∈ E | H |= φ}. For the KB H = {¬v1 ∨ v2, v1}, for instance, we

have that v1 ∨ v2, v1, v2 ∈ µ(H). /

We now define two learning models that state what the goal of the learning task is and

what the allowed actions are for obtaining information and fulfil the goal.

The Exact Learning Model

We formally study learning of possibilistic logic KBs in the EL model [Angluin, 1988].

Given a learning framework F = (E ,L, µ), the goal of this learning model is the exact

identification of a target T ∈ L, by posing queries. Exact learning models the scenario

where there is a learner and a teacher. The learner attempts to identify the unknown

target by asking queries to the teacher who knows it. Each element H of L is assumed to

be represented using a set of symbols ΣH (the signature of H introduced in Section 2.1)

that the learner knows. We say that e ∈ E is a positive example for H ∈ L if e ∈ µ(H)

and a negative example for H if e 6∈ µ(H). Given T ,H ∈ L, a counterexample for T
and H is an example e ∈ E such that e ∈ µ(T)⊕ µ(H).3 An example e ∈ E is a positive

counterexample for T and H if e ∈ µ(T). It is a negative counterexample for T and H
if e ∈ µ(H) otherwise. Example 2.11 clarifies these last definitions.

Example 2.11. Let F be the propositional logic learning framework defined in Exam-

ple 2.10 and let H = {¬v1 ∨ v2, v1} be a propositional logic KB. The formulas v1 and

(v1 ∧ v2) in E are positive examples for H and the formulas ¬v1 and (v2 ∧ ¬v1) are neg-

ative examples for H. A counterexample for H and L = {¬v1} may be ¬v1 because

L |= ¬v1 and H 6|= ¬v1 or it may be v1 because H |= v1 and L 6|= v1. /

3 The symbol ⊕ denotes the symmetric difference of two sets A,B. That is (A \B) ∪ (B \A).

22 Preliminaries

In this learning model, different communication protocols can be studied depending on

which queries the learner is able to ask to the teacher. We consider four types of queries.

The most studied communication protocol between the learner and the teacher supports

two types of queries, membership and equivalence query. For any F = (E ,L, µ) and

target T ∈ L, we define the membership query oracle MQF,T and the equivalence query

oracle EQF,T . MQF,T is the oracle that takes as input some e ∈ E and returns ‘yes’ if

e ∈ µ(T) and ‘no’ otherwise. A membership query is a call to the oracle MQF,T . EQF,T is

the oracle that takes as input a hypothesis H ∈ L and returns ‘yes’ if µ(H) = µ(T) and

a counterexample otherwise. There is no assumption regarding which counterexample is

chosen by the oracle. An equivalence query is a call to EQF,T .

Other queries we consider are subset and superset queries. Analogously, we define the

subset query oracle SbQF,T and superset query oracle SpQF,T . SbQF,T takes as input

a hypothesis H ∈ L and it returns ‘yes’ if µ(H) ⊆ µ(T) and a counterexample e ∈
µ(H) \ µ(T) otherwise. SpQF,T takes as input a hypothesis H ∈ L and it returns ‘yes’ if

µ(T) ⊆ µ(H) and a counterexample e ∈ µ(T) \ µ(H) otherwise.

In this work, we consider two main settings for concept learning. One in which the

learner has to identify the target T with examples being formulas. The second where

the examples are partial interpretations.

Given a learning framework (E ,L, µ) with L being an FO logic language. When E is a

set of formulas, and µ is the entailment relation (|=), we say that we are in the learning

from entailments setting. Otherwise, we are in the learning from (partial) interpretations

setting if E is a set of (partial) interpretations and µ maps KBs H ∈ L to the set of

(partial) interpretation (subset of E) that satisfy H.

Example 2.12. The learning framework defined in Example 2.10 belongs to the learning

from entailment setting. While the learning framework F := (E ,L, µ) where E is a set of

partial interpretations, L is the propositional logic language, and µ(H ∈ L) = {I ∈ E |
I |= H} belongs to the learning from interpretation setting. /

Given a learning framework F = (E ,L, µ), and a non-empty set of oracles Q, we say that

F is exact learnable with Q if there is an algorithm A such that for any H ∈ L:

• A can ask queries to any oracle in Q; and

• A always halts and outputs H′ ∈ L such that H′ ≡ H.

Every learning framework (E ,L, µ) is exact learnable if equivalence queries are available.

2.4 Computational Learning Theory 23

Algorithm 1: Exact Learning k-CNF formulas

1: Input: V: variables.
2: Output: A k-CNF formula equivalent to the target t.
3: Initialise H as the conjunction of every clause over V with at most k literals.
4: while EQFπ ,T (H) returns a counterexample I do
5: for clause ψ ∈ H do
6: if I 6|= ψ then
7: H ← H \ {ψ}
8: end if
9: end for

10: end while
11: return H

Theorem 2.13 ([Angluin, 1988]). Let F = (E ,L, µ) be an FO learning framework with

T ∈ L, and Q a set of oracles such that EQF,T ∈ Q. F is exact learnable with Q.

Proof. Let k be the string length of T with respect to L. We can consider an algorithm

A that enumerates all Hn ∈ L such that Hn has string length n ≥ 1 with respect to

the language L. For each of such a Hn (starting with n = 1), the learning algorithm A

will call EQF,T with input Hn. If the answer is ‘yes’, then A will halt and output Hn.

Otherwise, A will select another Hn
2 ∈ L until all elements with length n in L have been

queried to EQF,T . After that, A will increase n by 1 and repeat this process until it has

found a hypothesis equivalent to T (n = k).

Otherwise, we can find learning frameworks that are not exact learnable with a specific

combination of queries. For example, when only a membership query oracle is available.

Example 2.14. We define Φn := ∃x1 . . . ∃xn.
∧n
i=0 r(xi, xi+1) for n ∈ N+. Let (E ,L, µ)

be a learning framework where µ is the entailment relation and

E := {Φn | n ∈ N+} and L := {∃x0Φn | n ∈ N+} ∪ {∀x0Φn | n ∈ N+}.

So, we are in the learning from entailment setting. A learner may ask membership queries

of the form Φn for an arbitrarily large n without being able to distinguish whether the

target theory is ∃x0Φn or ∀x0Φn. Knowing the signature of the target theory does not

help the learner. /

To help familiarise with the notation and the learning process, we explain how a fragment

of propositional logic called k-CNF can be exact learned with only equivalence queries in

the learning from interpretations setting [Angluin, 1988]. A logic language L is k-CNF

if the number of literals in every clause in a formula φ ∈ L is at most k. We can run

24 Preliminaries

an algorithm A that follows the steps in Algorithm 1. At first A generates a k-CNF

formula H that is the conjunction of every clause over n variables (V| = n) with at most

k literals. As there are in total at most (2|V|+ 1)k of such clauses, H has a polynomial

size with respect to k and the number of literals |V|. For an unknown target T ∈ L, it

always holds that H |= T , therefore A can only receive a counterexample I such that

I 6|= H and I |= T . As a consequence, A can delete all clauses ψ ∈ H satisfying I 6|= ψ.

Example 2.15 follows the steps of one such loop depicted in Algorithm 1.

Example 2.15. Let |V| = 2 and k = 2 and assume the target k-CNF formula is T :=

(v1 ∨ v2). Algorithm 1 will instantiate at first the formula H:

v1 ∧ v2 ∧ ¬v1 ∧ ¬v2 ∧ (v1 ∨ v2) ∧ (v1 ∨ ¬v2) ∧ (¬v1 ∨ v2) ∧ (¬v1 ∨ ¬v2).

After calling an equivalence query with input H, the algorithm will receive a positive

counterexample I. Let such counterexample be I = {(v1,⊥), (v2,>)}. Therefore, the

algorithm will refine its hypothesis H to:

v2 ∧ ¬v1 ∧ (v1 ∨ v2) ∧ (¬v1 ∨ v2) ∧ (¬v1 ∨ ¬v2).

This ensures that the condition I |= H is respected again. /

Afterwards, A can call the equivalence query again and repeat the same steps until the

answer received is ‘yes’. The maximum number of queries that the algorithm will ask is

bounded by (2|V|+ 1)k.

The PAC Learning Model

Requiring the learner to exactly identify an unknown concept may be a condition too

demanding. Moreover, the assumption of oracles that answer queries may fail to hold in

real world learning tasks. Therefore, in some scenarios it is more convenient to adopt a

passive model that does not require an active interaction between the learning algorithm

and the provider of information. The PAC learning model [Valiant, 1984] belongs to

the class of learning models whose goal is to approximate a target concept from the

observation of a labelled set of examples.

More precisely, let F = (E ,L, µ) be a learning framework, where E is a set of examples,

L is the hypothesis space, µ : L → E is a surjective function, and T ∈ L is the unknown

target. We assume the existence of a probability distribution D : E → [0, 1] such that

Σe∈ED(e) = 1. To keep the notation consistent with the EL model, we introduce the

example oracle EXDF,T . It takes as input no argument, and when EXDF,T is called, it draws

2.4 Computational Learning Theory 25

Algorithm 2: PAC Learning k-CNF formulas

1: Input: V: variables.
2: Output: A k-CNF formula.
3: Initialise H as the conjunction of every clause over V with at most k literals.
4: i← 1
5: while there is a counterexample I in a sample of size (1/ε)(ln1/δ + i ln2) from

EXFπ ,T (H) do
6: for clause ψ ∈ H do
7: if I 6|= ψ then
8: H ← H \ {ψ}
9: end if

10: end for
11: i← i+ 1
12: end while
13: return H

an e ∈ E according to the probability distribution D and it returns the pair (e,1e∈µ(T)) to

the caller.4 A sample generated by EXDF,T is a (multi-)set of indexed classified examples,

independently and identically distributed according to D, and sampled by calling EXDF,T .

A learning framework F = (E ,L, µ) is PAC learnable if there is a function f : (0, 1)2 → N
and a deterministic algorithm A such that, for every ε, δ ∈ (0, 1), every probability

distribution D on E , and every target T ∈ L given a sample of size m ≥ f(ε, δ) generated

by EXDF,T , the algorithm always halts and outputs H ∈ L such that with probability at

least (1− δ) over the choice of m examples in E , we have that D(µ(H)⊕ µ(T)) ≤ ε.

There is a connection between the EL and PAC learning model due to the relation

between equivalence and stochastic equivalence [Angluin, 1988]. Assume the learning

framework F is exact learnable with algorithm A. If instead of asking its i-th equivalence

query, A generates a set of examples from the oracle EXF,T of size

si := d1
ε
(ln

1

δ
+ i ln2)e, (2.1)

then the algorithm A can find a hypothesis with PAC guarantees. Indeed, when A

generates samples with size si, the probability that A outputs a hypothesis H such that

4
1e∈µ(T) is 1 if the condition e ∈ µ(T) is satisfied, and 0 otherwise.

26 Preliminaries

D(µ(H)⊕ µ(T)) > ε is at most

Σ∞i=1(1− ε)si ≤ Σ∞i=1e
εsi

≤ Σ∞i=1

δ

2i

≤ δ

(2.2)

Therefore, A will output a hypothesis compliant with the PAC learnability conditions if

an equivalence query oracle is replaced by a example oracle, and if the size of the sample

where the counterexamples are searched in is large enough (Equation (2.1)). Due to this

connection, k-CNF formulas are also learnable in the PAC learning model. Algorithm 2

illustrates how to learn k-CNF in the PAC model. It is similar to Algorithm 1, but the

algorithm has only access to an example oracle. The correctness follows according to

Equation (2.2) and by the choice of the size of the sample in Equation (2.1).

2.5 Artificial Neural Networks

Acquiring information and generalising observed data is a challenging task to automate

and implement in machines. A prominent method for gathering knowledge in the form of

patterns from data is named Artificial Neural Network (ANN) [Goodfellow et al., 2016],

whose intuition originally derivates from an analogy with the human brain.

Model Description

Mathematically, an ANN can be represented as a function f : Rn → Rm that takes as

input a vector of size n and outputs a vector of predictions of size m. We denote vectors

in bold with subscript to point to a specific value, that is xi corresponds to the i-th

element of the vector x.

In this work, we will only consider a specific class of ANNs where the computation

only flows forward from the input vector x to the output. For this reason, they are

called feedforward neural networks, and they can be represented as a chain of functions

f(x) = fk(fk−1(· · · f 1(x))). Figure 2.3 shows an example where k = 2. In literature,

when k ≥ 2, we call it a deep learning neural network model. The length k of the chain

defines the depth of the model which is always made of an input layer, the leftmost part

of Figure 2.3, hidden layers, the central part where nodes are labelled with f i and one

output layer. The nodes f ij in the hidden layers are additional components of a single

function f i. They are called hidden because their output is shown neither in the input

2.5 Artificial Neural Networks 27

...

...
...

...

x1

x2

x3

xn

f 1
1

f 1
s

f 2
1

f 2
t

y1

ym

Input
layer

Hidden
layer

Hidden
layer

Ouput
layer

Figure 2.3: An example of an ANN with two hidden layers.

nor output data. The number of nodes per layer defines the width of the model.

Following the analogy of the human brain, each layer is assumed to extract increasingly

complex patterns from the output of previous layers. Each node in Figure 2.3 represents

an artificial neuron that can fire a signal depending on the received input signals. The

abstraction capability of deep ANNs makes it efficient to automatically find custom rep-

resentation of arbitrary datasets. The first layer can identify lines direction, the second

layers contours, and next layers corners, shapes, etc. As a consequence, there can be

little effort in finding a good representation of the data to be fed to the learning algo-

rithm. For example, if we would like to have an image recognition system to classify cars

and manually engineer a representation, we could think of how to define combinations of

pixels that represent horizontal, vertical edges, etc. The abstraction of each layer makes

ANNs a general algorithm for learning tasks.

Usually, the depth and width of the model is chosen a priori, and the challenge is to

find an optimal configuration of the connections between each node from data. Each

connection can be considered as a parameter of the ANN function that can strengthen

or weaken its input signal. When needed, we explicitly write the parameters w of the

ANN function with input x as f(x;w). As each layer in an ANN follows the same

structure of f(x;w), we can also express each layer i as f i(x;wi). Therefore:

f(x;w1, · · · ,wk) := fk(fk−1(· · · f 1(x;w1),wk−1),wk)

where each wi is the parameter vector of layer i.

28 Preliminaries

Algorithm 3: The Stochastic Gradient Descend (SGD) optimisation algorithm.

1: Input: parameters: w, error function: JD, learning rate: α, iterations: epochs.
2: Output: updated parameters w.
3: count← 0
4: while count < epochs do
5: Shuffle D into s random samples Di, 1 ≤ i ≤ s
6: for 1 ≤ i ≤ s do
7: for 1 ≤ j ≤ n do

8: wj ← wj − α
∂JDi (w)

wj

9: end for
10: end for
11: end while
12: return w

Optimisation

Identifying the optimal value for each parameter in an ANN is a computationally complex

problem [Baskakov and Arseniev, 2021]. But, experimental evaluations have shown that

in practice optimisation procedures based on gradient descent have nice guarantees of

finding solutions with good-performing models. These optimisation algorithms require

a score of the learned model with respect to the true label of any input vector x of a

given dataset D. For instance, let f ∗ be the unknown target function that we would like

to approximate. A score of correctness of the model f can be computed with the Mean

Squared Error (MSE) function:

JD(w) := Σx∈D(f ∗(x)− f(x;w))2 (2.3)

The closer to 0, the more the model f(·;w) approximates the target. Therefore, the

training process assumes that the true classification labels of input vectors x are avail-

able while optimising the parameters in w. We can imagine the MSE function in a

|w|-dimensional space where the minimums (or minimum if there is only one global

minimum) represent an optimal configuration of the parameters w.

Gradient-descent learning methods can exploit the continuity of the MSE function and

gradually update the values in w following the slope of the curve. This is achieved by

computing the first-order derivative, denoted ∂JD(w)
wj

, of JD(w) with respect to every pa-

rameterwj and decreasing the value ofwj if ∂JD(w)
wj

> 0, otherwisewj is increased. There

are many (first-order-based) optimisation algorithms based on this idea like SGD Bottou

[2004]. The step-size update value to add or subtract to the parameters is regulated by

the learning rate α ∈ R+, usually less than 1. Implementations also decrease the value

α as the algorithm loops to guarantee converges to the local minimum.

Chapter 3

RIDDLE: Rule Induction with Deep

Learning

Chemical, oil [Bratko, 1993], energy companies [WJ., 1987] profit from the adoption

of rule induction algorithms. Also, the advantage of finding interpretable patterns from

data, benefits the field of medicine [Podgorelec et al., 2002; Scala et al., 2019], engineering

(fault detection) [Dhanraj et al., 2022], and frauds [Xu et al., 2018], to name a few. These

algorithms express patterns found in data in the form of associative (‘if-then’) rules

[Cohen, 1995; Dash et al., 2018; Kusters et al., 2022; Vreeken et al., 2011] effectively

aiding users in decision-making.

One main limitation for the adoption of rule induction approaches is that they have

to solve hard discrete combinatorial problems. The search space for rule induction al-

gorithms is often discrete and grows exponentially with respect to the number of the

symbols available for expressing the patterns [Cohen, 1995; Dash et al., 2018; Hühn and

Hüllermeier, 2009]. Hence, their scalability suffers when compared to classification meth-

ods that can rely on techniques tailored for the optimisation of differentiable functions,

such as deep learning with gradient-based optimisation [Elkano et al., 2020; Kusters

et al., 2022]. Indeed, deep learning approaches have excelled in many tasks, including

classification [Druzhkov and Kustikova, 2016], time series [Torres et al., 2021] image seg-

mentation [Minaee et al., 2021], text and image generation [Fatima et al., 2022; Ramesh

et al., 2021], etc. The success of deep learning approaches is due to the flexibility to

handle many different forms of data and scalability regarding the current technology on

hardware. Unfortunately, the most successful trained deep learning models are not in-

terpretable. Therefore, the patterns found during training phase cannot be inspected

and tested to give support for high-stakes decisions [Dash et al., 2018; Rudin, 2019].

30 RIDDLE: Rule Induction with Deep Learning

In this chapter, we propose a novel Artificial Neural Network (ANN) architecture dubbed

RIDDLE: Rule InDuction with Deep LEarning. This architecture is based on the frame-

work of possibility theory. As a consequence, learned rules are supplied with a confidence

value that states how certain the model is about the respective rule (necessity degree).

RIDDLE can find patterns expressible in full possibilistic propositional language. More

precisely, in the possibilistic extension of Conjunctive Normal Form (CNF).

RIDDLE has two main advantages over most traditional rule induction methods:

• It does not have ‘sharp’ decision boundaries. That is, the learning task can be

cast into a differentiable error function. Similarly to differentiable inductive logic

programming techniques and further developments [Shindo et al., 2021]. So, we can

employ efficient optimisation algorithms for tuning the parameters of the model.

• The order of the learned rules is irrelevant, that is, they yield rule sets instead of

lists [Hühn and Hüllermeier, 2009]. As a consequence the process of learning many

rules can be parallelised.

We test the performance of RIDDLE with 15 benchmark datasets, spanning from the

medical domain to finance. We show that our method has state-of-the-art performance

(accuracy) compared with other established rule induction algorithms. We noticed that

RIDDLE shines especially on datasets with uncertain information.

In Section 3.1, we describe the RIDDLE architecture and in Section 3.2, we provide an

empirical comparison between RIDDLE and FURIA [Hühn and Hüllermeier, 2009], a

prominent fuzzy rule induction algorithm. We mention future steps in Section 3.3.

3.1 Introducing RIDDLE

Let V be the set of propositional variable in our domain, that is we represent rules with

symbols from V. For the rest of this chapter, we assume an arbitrary but fixed ordering

of the variables in V: (v1, . . . , vn, t1, . . . , tm). We want to predict the certainty degree of

the variable tj, for 1 ≤ j ≤ m, with the information provided by vi for 1 ≤ i ≤ n. We

omit the subscript j from tj to denote just one of the many target variables. More in

detail, our goal is to predict Π(¬t) (or Π(t)), of a target variable t, from the possibility

degrees of variables v1,¬v1, . . . , vn,¬vn, and compute how necessary the target variable is

according to our input with N(t) = 1− Π(¬t) (or N(¬t)). Therefore, with the RIDDLE

architecture, an ANN can be seen as a function N : [0, 1]2n → [0, 1]2m that takes as

3.1 Introducing RIDDLE 31

input a vector of possibility values associated to v1,¬v1, . . . , vn,¬vn and outputs the

possibilities of each target literal t1,¬t1, . . . , tm,¬tm (Remark 3.1).

Remark 3.1. In practice, we may be interested in predicting the value of only one

between tj and ¬tj. In this case N can be defined as N : [0, 1]2n → [0, 1]s with s ≤ 2m.

Such that the output of N is a vector corresponding to the possibility value of only s

literals among t1,¬t1, . . . , tm,¬tm.

We would like to train a N on dataset of labelled examples. For this reason, we assume a

general setting in which the dataset can be represented as a set of (partial) interpretations

I := {I1, . . . , Id} where some rules rj with 1 ≤ j ≤ k of the form (φ → t) hold. That

is for each 1 ≤ i ≤ d and 1 ≤ j ≤ k, we have Ii |= rj. We can convert the statements

expressed by the partial interpretations I ∈ I to possibilistic degrees via the method

proposed by Joslyn [1991] to estimate possibilities from imprecise data. To do so, we

first define the set

II := {I ′ ∈ I | ∀v ∈ V, I(v) = ? or I(v) = I ′(v)}

that contains precisely the interpretations in I that differ only on the unknown values of

I. Then, from II , we count the number of interpretations that satisfy a literal l which

is given by cII(l) := |{I ∈ II | I |= l}|. Finally, the possibility associated to a literal l

according to the facts in I and I, is defined as

ΠII(l) := cII(l)/max(cII(l), cII(¬l)).

Therefore, from I we can get the set of possibility degrees for each input literal D :=

{x1, . . . ,xd} where for any Ii ∈ I,

xi := (ΠIIi (v),ΠIIi (¬v1), . . . ,ΠIIi (vn),ΠIIi (¬vn)).

The number j in xij corresponds to the value at the j-th position. We denote the

associated formula with respect to Ii ∈ I by

X i := {(l, 1− ΠIIi (¬l)) | ΠIIi (¬l) < 1}.

Example 3.2 provides a clarification for these definitions.

Example 3.2. Let I = {I1, I2} with

I1 = {(v1,>), (v2,>), (t,>)}

I2 = {(v1,>), (v2, ?), (t, ?)}.

32 RIDDLE: Rule Induction with Deep Learning

We have x1 = (1, 0, 1, 0, 1, 0), and x2 = (1, 0, 1, 1/2, 1, 1/2). x2
4 is 1/2 and X 2 :=

{(v1, 1), (v2, 1/2), (t, 1/2)}. /

To properly define the architecture later in this section, and make use of a differentiable

error function, we employ the function log-sum-exp:

LSEα(x1, . . . , xn) :=
1

α
ln(eαx1 + · · ·+ eαxn),

as a smooth approximation of the max (min) function when α → ∞ (α → −∞). We

write LSEmax for LSE30 and LSEmin for LSE−30 to visually aid the reader in the next

section and because we use LSEmax and LSEmin in our implementation. The number 30

is chosen empirically as a good parameter for the smooth approximation.

Theoretical Motivation

With V: (v1, . . . , vn, t), let T = {(φi → t, αi) | 1 ≤ i ≤ k}, with NT (t) = 0, be the target

set of possibilistic rules. We would like to identify rules in T having at our disposal

the dataset D = {x1, · · · ,xd} of possibility degrees over variables in V that respect the

possibility values conditions imposed by rules in T . Under this setting we can prove an

important property of the possibility measure with Lemma 3.3.

Lemma 3.3. Given T = {(φi → t, αi) | 1 ≤ i ≤ k}, with NT (t) = 0, and a set of

possibilistic literals K = {(lj, αj) | 1 ≤ j ≤ u}, if we set F = T ∪ K, then we have

ΠF(¬t) = min{max{1− αi,ΠF(¬φi) | 1 ≤ i ≤ k}}.

Proof. By Proposition 2.9 and NT (t) = 0, we obtain that

NF(t) = max{α | F ∪ {(¬t, 1) |= (⊥, α)}

= max{NF(φi ∧ (φi → t)) | 1 ≤ i ≤ k}.

From Minitivity, we get NF(t) = max{min(NF(φi), αi) | 1 ≤ i ≤ k}. Moreover, For

any x ∈ [0, 1]n, it holds (1 − max(x)) = min(1 − x), hence by the relation between

possibility and necessity:1

ΠF(¬t) = 1−max{min(NF(φi), αi) | 1 ≤ i ≤ k}

= min{max{1− αi,ΠF(¬φi) | 1 ≤ i ≤ k}.
1Π(φ) = 1−N(¬φ).

3.1 Introducing RIDDLE 33

For convenience, we denote by ψi := li,1 ∨ . . . ∨ li,si the clause ¬φi for any rule (φi →
t, αi) ∈ T . By Lemma 3.3 and Maxitivity, for any formula X we can compute ΠT ∪X (¬t)

as

ΠT ∪X (¬t) = min{max{1− αi,ΠT ∪X (ψi) | 1 ≤ i ≤ k}} (3.1)

with ΠT ∪X (ψi) = max(ΠT ∪X (l1,i), . . . ,ΠT ∪X (l1,si)).

By definition of T , ΠT ∪X (ψi) is equal to ΠX (ψi). Therefore, we can propagate the known

uncertainty of input variables with x to obtain the certainty degrees of the unknown

target variable t with min-max operations. In practice, we do not know what rules

(φi → t) hold in T and their necessity degree αi. But, such rules constrain every

possibility degree in D that we can use to induce φi and αi, with 1 ≤ i ≤ k. Now,

we describe RIDDLE, a novel neural network architecture tailored for rule induction

leveraging the uncertainty propagation properties of a possibility measure.

Architecture

We can alternatively compute ΠT ∪X (ψi) as a parametrised combination of product and

maximum operators:

ΠT ∪X (ψi) = ΠX (ψi) = max(wψi
1 ΠX (v1),wψi

2 ΠX (¬v1), . . . ,wψi
2nΠX (¬vn))

where for odd (even) 1 ≤ t ≤ n, wψi
t ∈ [0, 1] selects to what degree vt (¬vt) appears in

ψi. In matrix notation with input x ∈ D, this operation becomes

fψ(x) := x ?wψ = x ? [wψ
1 ,w

ψ
2 , . . . ,w

ψ
2n]

T
= ΠX (ψi),

where ? denotes the matrix dot product with the sum replaced by the LSEmax operator.

Lemma 3.4 formally states that for any clause ψ, we can find fψ : [0, 1]n → [0, 1] such

that ΠX (ψ) = fψ(x).

Lemma 3.4. For any clause ψ and formula X over V, there is a vector wψ ∈ [0, 1]|V|,

such that fψ(x) = ΠX (ψ).

Proof. Let ψ := l1 ∨ · · · ∨ ls. By the Maxitivity property,2 we have

ΠX (ψ) = max(ΠX (l1), . . . ,ΠX (ls)) = fψ(x) = x ?wψ

2Π(ψ1 ∨ ψ2) = max(Π(ψ1),Π(ψ2)).

34 RIDDLE: Rule Induction with Deep Learning

We can assign for odd 1 ≤ t ≤ n, the value wψi
t = 1 (wψi

2t = 1) if vt (¬vt) appears

as a top-level literal in the disjunct ψi, otherwise the value 0. By definition, we get

max(ΠX (l1), . . . ,ΠX (ls)) = fψ(x).

As a consequence, we can approximate the computation of the value ΠT ∪X (¬t) in Equa-

tion (3.1) with the respective smooth approximations:

ΠT ∪X (¬t) = LSEmin(LSEmax(β,x ? [wψ1 , · · · ,wψk]))

= LSEmin(LSEmax(βi, fψi(x) | 1 ≤ i ≤ k)).
(3.2)

The vector β ∈ [0, 1]k is the parameter that approximates 1 − αi. Therefore, the (pos-

sibilistic) rule induction problem of finding rules in T is reduced to selecting the right

value for each parameter wψi and β.

We can improve this method by exploiting the associative property of the LSEmax op-

erator and compute fψ(x) as LSEmax(fΨ1(x), . . . , fΨl(x)), where each Ψj with 1 ≤ j ≤ l

is a subformula of ψ. Example 3.5 clarifies the idea behind it. Additionally, some rule

antecedents φi, φj (with i 6= j) in the target T may share common subformulas. So, by

representing subformulas, we can decrease the number of parameters required to repre-

sent a clause ψ′ with fψ′(x) by stratifying fψ′(x).

Example 3.5. Given ψ1 := v1∨¬v2∨v3, ψ2 := v1∨¬v2∨v4, and possibilities x ∈ [0, 1]8,

we can compute

fv1∨¬v2(x) = x ?wv1∨¬v2 ,

fv3(x) = x ?wv3 , and

fv4(x) = x ?wv4

at first. Then, we can compute

fψ1(x) = ([fv1∨¬v2(x), fv3(x), fv4(x)] ? [1, 1, 0]T)

fψ2(x) = ([fv1∨¬v2(x), fv3(x), fv4(x)] ? [1, 0, 1]T)

The number of parameters needed to represent clauses increases with the number of

clauses. If the clauses to represent have many common clauses, representing them first

can be beneficial. /

Figure 3.1 depicts a two hidden layers ANN with an architecture based on the idea of

identifying subformulas. For an l ≥ 0, and i ≥ 1, let HLli : [0, 1]Il → [0, 1] be the function

3.1 Introducing RIDDLE 35

...

...
...

x1

x2

x3

x2n

HL1
1

HL1
O1

HL2
1

HL2
O2

y1

w1
1,1

w1
2,1

w1
3,1

w1
2n,1

w2
1,1

w2
s,1

β1

β2

HL0

layer
HL1

layer
HL2

layer
Output

layer

Figure 3.1: An example of an ANN with RIDDLE architecture and one output node.

that takes as input an example x ∈ D (Il possibility values) and computes fψi(x) with:

HLli(x) := LSEmax(w
l
i,jHLl−1

j (x) | 1 ≤ j ≤ Il)

HL0
i (x) := xi,

where for each 1 ≤ h ≤ l, the value of every element in the matrix wh is in the interval

[0, 1]. In other words, for 1 ≤ h ≤ l the function HLhi (x) computes ΠX (Ψ) for a subfor-

mula Ψ of a clause ψ, in the same way fψ(x) computes ΠX (ψi). For a fixed l ≥ 1 and

i ≥ 1, HLli can be considered as node i in the l-th layer in the neural network structure

(Figure 3.1). Therefore, each layer 1 ≤ h ≤ l, is a function HLh : [0, 1]Ih → [0, 1]Oh ,

with Ih,Oh ≥ 1 freely chosen (hyperparameters) that obey the constraint posed by the

standard matrix dot-product. Finally, we can define a RIDDLE model (with one output)

that takes as input x ∈ D and outputs the possibility of a target literal as

RIDDLE(x) = LSEmin(LSEmax(βi,HLli(x) | 1 ≤ i ≤ k)). (3.3)

where k ≥ 1 is a hyper parameter that defines the number of nodes in the last layer.

Theorem 3.6 shows that the defined architecture behaves as expected.

Theorem 3.6. Given T = {(φi → t, αi) | 1 ≤ i ≤ k} with NT (t) = 0, we can find a

configuration of the parameters in RIDDLE such that for any X = {(lj, αj) | 1 ≤ j ≤ u},
we have RIDDLE(x) = ΠT ∪X (¬t).

36 RIDDLE: Rule Induction with Deep Learning

Proof. For all literals l, by definition NT (l) = 0. Hence, for any clause ψ, ΠT ∪X (ψ) =

ΠX (ψ). By Lemma 3.4 and associativity of max, we can set the values of the parame-

ters in HLli(x) so that it computes ΠX (φi). By Equations (3.2) and (3.3), we get that

RIDDLE(x) computes ΠT ∪X (¬t) like in Equation (3.1).

The ideas developed so far can be trivially generalised to the case with many target

variables, that is when V: (v1, . . . , vn, t1, . . . , tm). The architecture is represented as:

RIDDLE(x) = (LSE1
min(LSEmax(βi

1,HLli(x) | 1 ≤ i ≤ k)),

· · · ,

LSEsmin(LSEmax(βi
s,HLli(x) | 1 ≤ i ≤ k))),

(3.4)

with s ≤ 2m as explained in Remark 3.1. A direct consequence of Equation (3.4) and

Theorem 3.6 is the following.

Corollary 3.7. Given V = {v1, . . . , vn, t1, . . . , tm} and T = {(φi → t, αi) | 1 ≤ i ≤ k, t ∈
{t1, . . . , tm}}, with NT (t) = 0, we can find a configurations of the parameters in RIDDLE

such that for any set of literals X = {(lj, αj) | 1 ≤ j ≤ s}, we have

RIDDLE(x) = (ΠT ∪X (t1),ΠT ∪X (¬t1), · · · ,ΠT ∪X (tm),ΠT ∪X (¬tm)).

Theorem 3.6 (or Corollary 3.7) relies on Lemma 3.4 which requires all parameters to be in

[0, 1]. Thus, in practice after updating the parameters of the model with an optimisation

technique, we replace negative values with 0 and values greater than 1 with 1.

Rule Extraction and Injection

When the optimisation procedure terminates tuning the parameters, we can extract the

rules encoded in the network, by inspecting the value of each parameter. Indeed, every

weight of the model lies in the interval [0, 1] and by the semantics given to their values,

we can apply the argument in Lemma 3.4, to extract the literals included in the clauses

of each layer HLh, with 1 ≤ h ≤ l recursively. Algorithm 4 shows the general steps to

decode the weights of the network until the last hidden layer HLl into clauses (which

represent the negated rule antecedents in T). The algorithm treats every node of the

network HLhj (Figure 3.1) as a clause. The j-th node of the input layer HL0
j is the clause

vj itself. Recursively, the j-th node of the hidden layer HLhj , 1 ≤ h ≤ l is the disjunction

of clauses HLh−1
i if wh

i,j > z, with a chosen threshold parameter z ∈ [0, 1]. The closer

wh
i,j is to 1, the more certain the clauses encoded by the node HLh−1

i is a subclause of the

clause encoded by the node HLhj . Algorithm 4 recursively builds clauses encoded by the

3.1 Introducing RIDDLE 37

Algorithm 4: GET CLAUSES

1: Input: a trained RIDDLE model N : [0, 1]2n → [0, 1]s, a threshold z
2: Output: vector of s clauses encoded in N .
3: Let l be the number of hidden layers in N
4: V′ ← (v0

1, · · · , v0
2n)

5: V← V′

6: for 0 ≤ h ≤ l and 1 ≤ j ≤ Oh do
7: add variable vhj to V
8: end for
9: M← empty map

10: for v ∈ V′ do
11: M (v)← v
12: end for
13: h← 1
14: while h ≤ l do
15: Let wh be the weights of the layer HLh

16: for 1 ≤ j ≤ Oh do
17: φ = ⊥
18: for 1 ≤ i ≤ Ih do
19: if wh

i,j ≥ z then

20: φ← φ ∨M
(
vh−1
i

)
21: end if
22: set M

(
vhj
)
← φ

23: end for
24: end for
25: h← h+ 1
26: end while
27: return (M

(
vlj
)
| 1 ≤ j ≤ Ol)

Algorithm 5: GET RULES

1: Input: a trained RIDDLE model N : [0, 1]2n → [0, 1]s, a threshold z.
2: Output: rules encoded in N .
3: H ← ∅
4: C ← GET CLAUSES(N, z)
5: for each i-th element φi in C do
6: for 1 ≤ r ≤ s do
7: if φi 6= ⊥ and βri < 1 then
8: add (¬φi → tr, 1− βri) to H
9: end if

10: end for
11: end for
12: return H

38 RIDDLE: Rule Induction with Deep Learning

input network, representing them with only variables that are associated to the nodes

of the input layer. The clauses generated in the output correspond to the clauses ψi in

Equation (3.1) or Equation (3.2).

To construct the final rules encoded in the network N , we run Algorithm 5. We recall

that by Lemma 3.3 and Corollary 3.7, clauses encoded by nodes of the last hidden layer

corresponds to the negated antecedent of a rule encoded in the network. Therefore,

Algorithm 5 loops for each such clauses, and it forms a possibilistic rule. To compute

the necessity value associated to the rule, we use the relation between necessity and

possibility measures: N(φ) = 1 − Π(¬φ). In simple terms, Algorithm 5 exploits the

direct correspondence between Equation (3.1) and Equation (3.4).

In our tests (next section), we observed that the parameters always collapse to either 0

or 1 after a sufficient number of parameter updates (epochs). The introduction of hidden

layers can be considered a way of having predicate invention as in ILP settings [Mug-

gleton et al., 2012]. Moreover, we can also manually inject rules of the form (φ → t)

to a RIDDLE instance before or after training. For doing that, due to Lemma 3.4, we

just need to append to the operation LSEmin associated to target variable T in Equa-

tion (3.4), a layer RL : [0, 1]u → [0, 1]v corresponding to the computation of injected and

negated rule antecedents as described. In this way, a RIDDLE instance would look like

in Equation (3.5):

RIDDLE(x) = (LSE1
min(LSEmax(βi

1,HLli(x) | 1 ≤ i ≤ k)

LSEmax(γi
1,RL1

i (x) | 1 ≤ i ≤ c1))

· · · ,

LSEsmin(LSEmax(βi
s,HLli(x) | 1 ≤ i ≤ k)

LSEmax(γi
s,RLsi (x) | 1 ≤ i ≤ cs))),

(3.5)

where for each target variable tj, with 1 ≤ j ≤ s, we have added cj rules of the form

(φji → tj, 1−γji), for 1 ≤ i ≤ cj to the rules encoded by the network. The nodes denoted

with RLji can be pictured as special nodes that take as input the values of the nodes in

the first layer HL0 such that the weight between node HL0
m and RLji is 1 if the clauses

encoded by RLji is supposed to include the variable vm.

3.2 Experimental Results 39

3.2 Experimental Results

We implemented the RIDDLE model in Python 3.9 that is fully integrated in the Py-

Torch [Paszke et al., 2019] ecosystem. The gradient of the model parameters are com-

puted with PyTorch’s automatic differentiation package and after the update, they are

‘clamped’ to the range [0, 1] to preserve the correctness of the model. The implementation

is available at the following link: https://git.app.uib.no/Cosimo.Persia/riddle.

We conduct the experiments on an Ubuntu 18.04.5 LTS server with i9-7900X CPU at

3.30GHz, 32 physical cores, 8 GPUs NVIDIA A100 with 80GB, and 32GB RAM.

Test settings

Often, the features in the considered datasets include a mixture of nominal, continuous

and integer fields. Using feature discretization, we divide continuous or integer values in

8 bins such that all bins for each feature have the same number of points. Each bin will

be associated with a new variable that it is going to be set to ‘true’ if the value of the

original value belongs to the respective bin. Missing values assign the value ‘unknown’ to

all related new binarised variables. In this way, we can generate a set of interpretations

D := {I1, . . . , Id}. Then, we can generate the dataset D := {xi | Ii ∈ D} as explained

at the beginning of Section 3.1. D expresses the possibility values of variables and their

negation for each interpretation in D. The first column in Table 3.1, shows the datasets

that we considered for the benchmark. These are freely available at UCI machine learning

repository [Dua and Graff, 2017], and commonly used to empirically test the performance

of rule induction algorithms. Briefly:

• ‘Anneal’: In metallurgy, annealing is a heat treatment that alters the physical

properties of a material. Examples are a description of states of an object before the

heat treatment and the prediction is the final state of the object. The probability

of an attribute to be missing is on average 60%.

• ‘Audiology’ : The input example is a description of ear characteristic of a patient.

The target class denotes ear ailments. On average, 2% is probability of an attribute

to be missing.

• ‘Auto’: Examples are descriptive information of an auto, associated with its value.

That is whether it is expensive, medium, or low range. The probability of an

attribute to be missing is on average 1%.

• ‘Credit-A/Credit-G’: Examples are credit card applications denoting information

about a client. Each example is classified positively if a client has been approved

40 RIDDLE: Rule Induction with Deep Learning

a credit card, negatively otherwise. ‘Credit-A’ concerns Australian clients, while

‘Credit-G’ only German clients. No missing attribute.

• ‘Breast Cancer’: Examples list features of a tumor, and it is classified either as

benign or malignant. The probability of having a missing attributes is 1%.

• ‘Chess’: Each instances in this database is a sequence of 37 attribute values. Each

instance is a board-descriptions for a chess endgame. The first 36 attributes de-

scribe the board. The last attribute is the classification whether the player will

win or lose. No missing attributes.

• ‘Glass’: Examples are description of an object. Each of them is classified with the

type of glass it belongs to: headlamp, window, etc. No missing attributes, but

possibly uncertain measurements.

• ‘Hepatitis’: Instances are patients with relevant features and blood tests. They are

classified as being able to survive or not. On average, 6% of attributes are missing.

• ‘Horse’: Examples describe the condition of sick horses. Each horse is associated

with a class denoting whether the horse will survive the treatment, die or will be

euthanised. The probability of having missing attributes is 15%.

• ‘hypothyroid’: Examples consist of patient observations and a binary class stating

whether a person has hypothyroid or not. The probability of having a missing

attributes is 5%.

• ‘Lymphography’: Instances denote properties of a tumor, with associated type:

fibrosis, metastases, benign, etc. No missing attributes.

• ‘Mushroom’: The dataset is a samples corresponding to 23 species of gilled mush-

rooms. Each species is identified as definitely edible, definitely poisonous, or of

unknown edibility and not recommended. The probability of having a missing

attributes is 1%.

• ‘Primary tumor’: Instances are body measurements, and the associated class is the

location of the tumor. The probability of having a missing attributes is 4%.

• ‘Wine’: Examples are chemical analysis of wines grown in Italy but derived from

three different cultivars. They are classified according to the quantity of alcohol

they generate after fermentation. There are no missing values, but it is possible to

have imprecise measurements.

More details about the UCI datasets at http://archive.ics.uci.edu/ml. Most

datasets have a substantial amount of missing values in selected features.

3.2 Experimental Results 41

Evaluation

The RIDDLE model optimises a regression problem while training, so we use the MSE

loss as a the measure to minimise. Compared with arbitrary linear/ReLU feedforward

deep network architectures, RIDDLE performs slightly better (in addition to being ex-

plainable). Therefore, we will focus our comparison on the accuracy of the FURIA

algorithm [Hühn and Hüllermeier, 2009], a prominent decision tree for fuzzy rule in-

duction based on RIPPER [Cohen, 1995] that represents the state of the art algorithm

in the field of propositional rule induction. We use the FURIA implementation freely

available on Weka [Frank et al., 2005], and test it on classification tasks and compare

based on the standard definition of the accuracy measure. To use the trained RIDDLE

model for classification purposes, we look at RIDDLE output (Π(¬t1), · · · ,Π(¬ts)), and

if Π(¬ti) ≤ 0.4, then the variable ti is preferred over its negation ¬ti and we assume

that the variable ti is predicted to be true. This is justified by the relation between pos-

sibility and necessity measures (N(t) = 1 − Π(¬t)). We carried our tests on the same

benchmark datasets used by the aforementioned rule induction system.

Model selection

We split each dataset in 70%, 10%, and 20% for training, validation and test, respec-

tively. Finding the best combinations of hyperparameters (number of layers, nodes per

layers, learning rate etc.) can be a tedious task. But, we noticed that in general RIDDLE

performs quite well already with small networks and extremely well with deeper configu-

rations. We select the hyperparameters on a grid search fashion using Tune [Liaw et al.,

2018]. The hyper-parameters are selected from a specified pool of values. The number

of hidden layers varies from 1 to 10; the number of nodes per layer from 2 to 500; the

batch size from 8 to 64; the learning rate from 0.1 to 0.001. We use SGD (Algorithm 3)

to optimise the parameters.

The final models’ sizes correlate positively with the number of variables given as input

and with the number of rules that hold in the dataset. On average, the resulting network

has 6 layers with 50 nodes. Each model is trained with a batch of size 16 over 100

epochs with a learning rate of 0.01, and with early-stopping. That is, we stop the

training routine if the validation loss has not has not decreased by more than 0.01 for 10

subsequent epochs. Moreover, we fixed a weight-decay factor of 0.001. This means that

the gradients used for updating the parameters are summed to the constant value 0.001.

42 RIDDLE: Rule Induction with Deep Learning

Accuracy
RIDDLE FURIA

Dataset Inst. Var. Discrete Var. MSE
Anneal 798 39 286 1e-4 97 97
Audiology 226 71 708 4e-3 95 91
Auto 205 26 354 3e-4 98 85
Credit-A 690 15 158 2e-1 87 89
Credit-G 1000 21 166 2e-2 74 72
Breast cancer 699 21 160 3e-2 91 90
Chess 3196 37 146 1e-2 91 99
Glass 214 10 72 4e-3 94 68
Hepatitis 155 20 122 4e-4 86 75
Horse 368 28 252 5e-3 83 85
Hypothyroid 3163 30 140 8e-3 95 95
Lymphography 148 19 118 9e-4 86 86
Mushroom 8124 19 234 1e-4 97 98
Primary tumor 339 18 60 6e-5 94 75
Wine 178 14 112 1e-4 96 90

Table 3.1: Accuracy of RIDDLE and FURIA compared with different datasets. The
column ‘Inst.’ shows the number of instances, ‘Var.’ shows the number of variables in
the original dataset and ‘Discrete Var.’ is the number variables after discretization and
binarization.

Model complexity
RIDDLE FURIA

Dataset Inst. Var. Discrete Var. Size Count Size Count
Anneal 798 39 286 2.9 17.1 3.2 21.7
Audiology 226 71 708 1.7 19.0 2.1 19.3
Auto 205 26 354 2 3.4 2 3.3
Credit-A 690 15 158 3.1 6.8 4.1 7.3
Credit-G 1000 21 166 2.2 10.3 3.1 10.2
Breast cancer 699 21 160 3.3 5.1 3.6 9.9
Chess 3196 37 146 4.6 15.3 4.7 28.3
Glass 214 10 72 1.8 5.9 2.0 16.7
Hepatitis 155 20 122 3.1 3.4 2.2 4.1
Horse 368 28 252 1.8 5.9 2.7 5.0
Hypothyroid 3163 30 140 4.8 11.3 6.3 18.1
Lymphography 148 19 118 2.1 5.4 2.2 5.3
Mushroom 8124 19 234 2.8 5.3 2.4 6.0
Primary tumor 339 18 60 1.9 3.6 1.9 4.0
Wine 178 14 112 3.4 8.2 3.4 8.1

Table 3.2: Model complexity of RIDDLE and FURIA compared with different datasets.
The column ‘Inst.’ shows the number of instances, ‘Var.’ shows the number of variables
in the original dataset and ‘Discrete Var.’ is the number variables after discretization
and binarization. ‘Size’ is the average number of literals per clause and ‘Count’ is the
average number of clauses.

3.2 Experimental Results 43

Dataset Min Max Median S.D.
Anneal 93 98 96 1.18
Audiology 94 96 95 0.63
Auto 95 99 98 2.48
Credit-A 66 92 86 4.12
Credit-G 68 82 76 5.65
Breast cancer 85 96 91 4.52
Chess 83 98 88 6.04
Glass 81 99 88 4.54
Hepatitis 71 89 86 6.83
Horse 78 86 84 5.71
Hypothyroid 91 98 94 4.37
Lymphography 83 88 87 2.91
Mushroom 94 98 97 1.17
Primary tumor 85 99 93 5.13
Wine 84 98 95 3.59

Table 3.3: Additional statistics from the empirical evaluation of RIDDLE obtained by
running 40 training instances. The value ‘min’ and ‘max’ are the minimum and maximum
accuracy found on test data. ‘S.D.’ is the computed standard deviation.

Results

Table 3.1 shows the results of our experiments concerning the MSE error and the accu-

racy on the test data compared with the FURIA decision tree model. Often, RIDDLE

converges to a local minimum after only 30 epochs; and soon after the early-stopping

routine stops the training. The average training time with the largest datasets (mush-

rooms, chess, hypothyroid), is 2 seconds for RIDDLE and 3 for FURIA. The ‘Accuracy’

columns in Table 3.2 shows that RIDDLE generalises often better from training data.

FURIA performs better with complete information as in the ‘Chess’ dataset. But, even

in such case RIDDLE outputs a simpler model. Concerning datasets with more missing

data, such as glass or hepatitis, RIDDLE performs considerably better.

Also, Table 3.2 reports the size and the number of induced clauses found by each model

per dataset. For instance, rules found by RIDDLE in the ‘hepatitis’ are

((1.9 ≤ bilirubin) and ¬has ascites→ dies, 0.8),

((3.7 ≤ albumin) and firm liver→ lives, 1).

Also on this aspect, RIDDLE shows a better model complexity with fewer and shorter

rules, even when RIDDLE performed worse in terms of accuracy. This suggests a bias to-

wards simpler models. As expected, when we manually inject to the RIDDLE model rules,

that we know to hold in the given domain, with additional layers (end of Section 3.1),

the performance improves.

44 RIDDLE: Rule Induction with Deep Learning

Table 3.3 shows the statistical results after 40 different experiments. For each dataset, we

stored the minimal and maximal accuracy. Then, we computed the median and standard

deviation. From Table 3.3 we can conclude that RIDDLE has consistent performance in

most of the datasets considered.

We remark that another advantage of RIDDLE is that the values provided with the

rules have a clear meaning, in terms of necessity. Meanwhile, fuzzy approaches such as

FURIA provide a weaker foundation for the interpretation of the values associated with

the rules. Additionally, the necessity values also distinguish RIDDLE from approaches

such as decision trees which, usually, do not provide a measure of a rule’s reliability.

3.3 Discussion

We introduced RIDDLE; a novel deep learning architecture specialised in performing rule

induction in the presence of missing, and uncertain data. RIDDLE is a white-box model

architecture as its trained weights have a clear meaning concerning the decisions that the

model takes while performing inference on the input. These weights can be translated

into propositionally complete rules that are simpler than the rules found by established

rule induction algorithms (Table 3.2). In addition, each rule is associated a certainty

degree expressing the confidence of the model about the induced rule. Together with the

capability of RIDDLE to incorporate background knowledge, and learn from incomplete

or imprecise data, RIDDLE is a competitive algorithm for rule induction.

The proposed RIDDLE architecture is efficient and scales well with the size of the dataset

as tested in our experiments. The matrix computation can be carried with general tech-

niques, but we can additionally optimise it in out implementation, and speed-up both

training and inference time. A better estimation of possibilities values associated to in-

put variables can improve both the quality of the output rules and certainty degrees

associated to them. For this reason, future work may focus on improving the data pre-

processing. For example, we could investigate different methods of drawing possibilities

distributions from imprecise data [Dubois and Prade, 1992, 2016]. Some are based on

the connection between possibility distributions, statistics, uncertain probabilities, on

qualitative analysis, and other interesting techniques. Another interesting project would

be finding automated technique for discretising the original dataset. Indeed, the RIDDLE

architecture requires the input to be discretised features. A technique for discretising

and binarising continuous variables than minimises the total number of binary variables

may be useful in domains with a high number of continuous measurement.

Chapter 4

Exact Learning of Possibilistic Logic

Theories

The RIDDLE architecture, proposed in the previous chapter, is successful in delivering

possibilistic rules induced from data. But other than the empirical evaluation, it is dif-

ficult to state properties or guarantees on the learning outcome. Possibilistic logic and

its many applications [Dubois and Prade, 2014, 2015] have been extensively studied,

but there are not many works that formally investigate the learnability of possibilistic

theories. We partially cover this gap by studying whether possibilistic theories are learn-

able in Angluin’s exact learning model [Angluin, 1988; Persia and Ozaki, 2020]. That

is, under which conditions it is possible to guarantee exact identification of an unknown

target concept. We show also whether (and under which conditions) it is possible to re-

duce polynomial time learnability results of classical logic formulas to polynomial time

learnability of possibilistic logic formulas and vice-versa. A part of our contribution is

the definition of a general and formal definition of learning problems that takes into

account notions of the theory of computation Ozaki [2020b]. To the best of our knowl-

edge, no books in machine learning provide a formal definition of learning algorithms

in light of the theory of computation, in particular in the context of active learning.

Watanabe (1990) addresses this need, but we give a more detailed and precise definition.

The exact learning model is an active model in which there is a learner that wants to learn

an abstract target concept from data, that is obtained by the answers of queries asked

to oracles. As defined in Section 2.4 of Chapter 2, a learner can be tasked to identify an

unknown logic formula T based on the data acquired by checking if the current hypothesis

is equivalent to T (Example 2.15). The oracle, also called the teacher, is assumed to

know the vocabulary and the target concept, and whenever it is asked a query by the

learner, it is expected to answer truthfully. The most studied communication protocol

46 Exact Learning of Possibilistic Logic Theories

in this model allows the learner to ask membership and equivalence queries. We also

consider other types of queries in Angluin’s model [Angluin, 1988], such as superset

and subset queries. When studying the learnability or reducibility of learning problems,

we consider cases in which only membership, equivalence, superset, subset, and both

membership and equivalence or both superset and subset queries can be posed by the

learner while identifying the target concept.

Concerning learnability results, we show that when the number of digits used to express

necessity degrees, also called precision, occurring in the target is not known, we cannot

(exactly) learn possibilistic theories with only membership, superset, or subset queries.

When the learner can ask or simulate equivalence queries or when the precision of the

target is known, we have positive learnability results (Section 4.2). We also get positive

results because these queries together can simulate both membership and equivalence

queries. When the learner does not know the precision of the necessity degrees of the

target and it can ask membership and equivalence queries, for a large class of problems,

polynomial time learnability can be transferred from classical logic to the respective

possibilistic extension. If the precision of the target is known by the learner, it is possible

to transfer learnability results into the possibilistic settings with other queries. For

instance, if we allow the learner to ask only membership queries, and we assume that

the maximal precision of valuations in the target is fixed and known by the learner, then

polynomial time learnability of a classical logic can also be transferred to the respective

possibilistic extension.

As a consequence of our mentioned results, we establish, for instance that since propo-

sitional Horn [Angluin et al., 1992; Frazier and Pitt, 1993a] and fragments of first-order

Horn [Arimura, 1997b; Konev et al., 2018; Reddy and Tadepalli, 1998b] are exactly

learnable in polynomial time (with both kinds of queries), their respective possibilistic

extensions are also learnable in polynomial time. Table 4.1 summarises our results. The

first column shows the results concerning learnability. 3 means a positive result, p indi-

cates that is assumed that the learner knows the maximal precision of valuations present

in the target. 7 and �p indicate their respective negation. The third column shows the

transferability of polynomial time learnability results from classical settings F to possi-

bilistic settings Fπ. The fourth column shows the result in the other direction. 3∗ and

3† indicate respectively, that the learnability result holds only when its classical setting

is learnable and when there is a positive bounded learner for that learning framework,

that is when the learner guarantees that its hypothesis is a logical consequence of the

target at every step. As polynomial time learnability in the exact model is transferable

to the classical probably approximately correct (PAC) [Valiant, 1984] model extended

with membership queries, our work also establishes such results in this model.

4.1 Learning System 47

Queries Learnability Pol. Time. Reduction
F→ Fπ Fπ → F

p �p p �p p �p
MQ 3∗ 7 3 7 3 –
SbQ 3∗ 7 3 7 3 –
SpQ 3∗ 7 3 7 3 –
EQ 3 3 3† 3† 3 3

MQ,EQ 3 3 3 3 3 3

SbQ,SpQ 3 3 3 3 3 3

Table 4.1: Each row summarises the outcome when a learner can ask only membership
(MQ), subset (SbQ), superset (SpQ), equivalence (EQ) or both (MQ,EQ), (SbQ,SpQ).

In Section 4.1, we introduce the novel and necessary notions of computational learning

theory. In Section 4.2, we investigate whether possibilistic logic theories can be learned

and, in Section 4.3, we show transferability of polynomial time learnability results. We

conclude with a discussion and directions for future work. For conciseness, we defer some

proofs to Appendix A.2 as they employ the same strategy of other proofs in this chapter.

4.1 Learning System

In order to study learning problems taking into account the theory of computation, we de-

fine the learner as a deterministic multitape Turing machine (DMTM) and the teacher as

a non-deterministic multitape Turing machine (NMTM) [Sipser, 1997]. A DMTM with k

tapes is a tuple M = (Q,Σ,Θ, q0, qf) where Q is a finite set of states, Σ is a finite alphabet

including the blank symbol, Θ : (Q\{qf})×Σk → Q×Σk×{l, r}k is the transition func-

tion, q0 is the initial state where the computation starts and qf is the final state where

the computation ends. The expression Θ(q, s1, · · · , sk) = (q′, s′1, · · · , s′k, D1, · · · , Dk)

means that if the DMTM is in state q and the head of the tape 1 ≤ i ≤ k reads the

symbol si, then M transitions to state q′, each head in tape i moves to the direction

Di and the symbol s′i is written to every tape i at the position the head points to. A

NMTM is similar to a DMTM with the only difference that Θ is a relation, i.e. for

every q ∈ Q, si ∈ Σ we have Θ(q, s1, · · · , sk) ⊆ 2Q×Σk×{l,r}k . The learner has special

states called query state, for each type of query it is allowed to ask, and the teacher

has answer states, one for each type query it supports. A configuration of a DMTM or

NMTM (MTM) with k tapes is a k-tuple (w′1qw1, · · · , w′kqwk) where w′i, wi ∈ Σ∗ and

q ∈ Q. A configuration captures a snapshot of the computation of a MTM, for ev-

ery 1 ≤ i ≤ k, w′iqwi means that the MTM is on state q, on tape i it is written the

word w′iwi and its head points to the first symbol in wi. A computation of a MTM is

a sequence of configurations ((w′1q0w1, · · · , w′kq0wk)1, · · · (u′1qu1, · · · , u′kquk)n, · · ·) such

48 Exact Learning of Possibilistic Logic Theories

L Treads reads

reads/writesreads/writes

writes reads

input tape

communication tape

output tape oracle tape

Figure 4.1: Graphical representation of a learning system.

that it starts from the initial state q0 and each pair of consecutive configurations sat-

isfies the constraints imposed by Θ. For example, for two consecutive configurations

(w′1qs1w1, · · · , w′kqskwk)i, (u′1rs′1u1, · · · , u′krs′kuk)i+1 in a computation of DTM, we have

Θ(q, s1, · · · , sk) = (r, s′1, · · · , s′k, D1, · · · , Dk).

Concerning the formal description of the learning protocol, we are going to use the

formal computational model called ‘learning system’ [Ozaki, 2020b; Watanabe, 1990]. A

learning system is a pair (L, T) of multitape Turing machines where L is the learner and

T is the teacher. In a learning system there are four types of tapes:

• a read-only input tape, shared by L and T ;

• a read-write communication-tape shared by L and T ;

• a read-only oracle tape accessed only by T ;

• a write-only output tape accessed only by L.

L is a DMTM with three tapes: input, communication and output tape. T is NMTM

with input, communication and oracle tape (Figure 4.1). The computation of the learning

system (L, T) executes L and T , in turn, starting from L. L starts its computation from

its initial state and it stops (it does not halt) in query state (associated the respective

query) upon writing a query string on the communication tape. T starts from its initial

state, reads the query and it writes the answer in the communication tape, it stops in the

answer state corresponding to the type of query answered, and L resumes its execution.

L and T alternate their execution until L enters its final state. When this happens, the

learning system halts.

A computation of a learning system (L, T) on an input word w is a tree TL,T,w whose

paths are sequences of successive configurations determined by the transition relations

of L and T . The root is the configuration corresponding to the initial state of L. The

existence of branches are due to the non-determinism of T . If a path p (rooted) in TL,T,w

contains a configuration corresponding to the final state of L (which is also the last

configuration of every path, if present) we say that p is terminated or a terminated path.

4.1 Learning System 49

Otherwise, we say that p is unterminated or an infinite path. The length of a path p is

the number of configurations in it but configurations corresponding to the computation

of T in p are not part of the count. We additionally write pi with i ∈ N+ to denote the

prefix of the path p that from the initial configuration of L it includes every subsequent

configuration in p until the i-th configuration. The output of a terminated path p is the

content of the output tape in the last configuration of p.

In this model, for a learner, posing a query to an oracle means writing down the query

in an (additional) communication tape, entering in a query state, and waiting. The

oracle then writes the answer in the communication tape, enters in an answer state, and

stops. After that, the learner resumes its execution and can now read the answer in the

communication tape. The proposed model of computation can be generalised to cases

of multiple learners (DMTM) and teachers (NMTM).

Let F = (E ,L, µ) be a learning framework. When we write (LF, TF) we mean the learning

system (L, T) where an arbitrary target K ∈ L is written in the oracle tape, strings

written in the output tape are always in L, and queries posed by the learner written in

the communication tape are always in E . If a specific K ∈ L is written in the oracle

tape, we write TF(K). If it is clear from the context, we may omit the subscript F from

(LF, TF). A teacher T is said to be terminating if for every K ∈ L, T (K) it is guaranteed

to terminate for every possible query it can answer. In this work, we are going to consider

learning frameworks where we assume that a terminating teacher always exists.

Remark 4.1. Computing an answer to a query can be an undecidable task. In particular,

in this work, membership queries are entailment queries and entailment in e.g. FO-logic

is well known to be undecidable. If the entailment problem is decidable in a fragment of

FO-logic, that is, if there is a terminating teacher that can answer membership queries,

then the same problem is decidable in the possibilistic extension of that logic [Lang, 2000].

Given a learning framework F = (E ,L, µ) and the learning system (LF, TF(K)) where

K ∈ L is the target, and TF(K) is terminating, we say that:

• LF calls the oracle MQF,K with input e ∈ E , whenever LF writes e in the commu-

nication tape, enters in the membership query state and stops (it does not halt).

TF resumes its execution, it writes the answer ‘yes’ in the communication tape if

e ∈ µ(K), ‘no’ otherwise, it stops in membership answer state, and LF resumes its

execution. Let p be a path in TLF,TF(K),ΣK . We say ‘the i-th call to MQF,K with in-

put e ∈ E in p’ to refer to the i-th configuration in p where LF calls MQF,K with

input the example e.

• LF calls the oracle EQF,K with input H ∈ L, whenever LF writes H in the commu-

50 Exact Learning of Possibilistic Logic Theories

nication tape, enters in equivalence query state and it stops (it does not halt). TF

resumes its execution, it writes the answer e ∈ µ(K)⊕µ(H) in the communication

tape if µ(K) 6= µ(H), ‘yes’ otherwise, it stops in equivalence answer state, and LF

resumes its execution. Analogously as before, we say ‘the i-th call to EQF,K with

input H in p’ to refer to the i-th configuration in p where LF calls EQF,K with in-

put H. We say the same for calls to the superset SbQF,K or subset SpQF,K oracles

but the counterexample returned is e ∈ µ(H) \ µ(K) in the case of SbQF,K and

e ∈ µ(K) \ µ(H) in the case of SpQF,K.

Given a learning system (L, T (K)) on input X, we refer to it saying ‘L attempts to learn

K on input X’. We write Y ∈ (L, T (K))(X) if there is a terminated path in TL,T (K),X

where the output is Y .

We are now ready to define notions of learnability for learning problems. We say that

F = (E ,L, µ) is (exactly) learnable if there is a a terminating T , and there is a learner

L such that for any K ∈ L, the computation tree TL,T ′(K),ΣK is finite (every path rooted

in TL,T ′(K),ΣK is a terminated run) and every H ∈ (L, T ′(K))(ΣK) satisfies µ(H) = µ(K).

In this case L is said to be a learner for F (Remark 4.2).

Remark 4.2. We can assume that the signature Σ given as input to the learning system

(L, T ′(K))(Σ) can contain more symbols, that is Σ ⊇ ΣK, and it does not affect the

computation of the learning system.

If additionally, in every path rooted in TL,T ′(K),ΣK the sum of the number of configurations

corresponding to the computation of L is bounded by a polynomial w.r.t. |K| and the size

of the largest counterexample returned by the teacher so far (if equivalence, superset,

or subset queries are allowed), F is polynomial time learnable and L is said to be a

polynomial time learner for F.

If a learner L is such that at all times its built hypothesis H satisfies µ(H) ⊆ µ(K), then

L is said to be a positive bounded learner.

Remark 4.3. Let F = (E ,L, µ) be an FO learning framework and let K ∈ L be the target

and let H ∈ L be the hypothesis constructed by a learner. If the learner has access to

MQF,K then we can assume w.l.o.g. that if there is a learner for F then there is positive

bounded learner for F: the learner can check whether each φ ∈ H is entailed by K. The

same holds for Fπ.

As similarly introduced by Ozaki (2020b), we denote by El(MQ,EQ) and ElP(MQ,EQ)

the classes of all learning frameworks that are, respectively, exactly learnable and exactly

4.1 Learning System 51

learnable in polynomial time with membership and equivalence queries. El(SbQ,SpQ),

and ElP(SbQ,SpQ) denote similarly the case when subset and superset queries can be

asked. Analogously, El(MQ), ElP(MQ), El(EQ), ElP(EQ), El(SbQ), ElP(SbQ)

El(SpQ), ElP(SpQ) are the respective classes of learning frameworks where only one

type of query can be asked. In this work, polynomial time learnability assumes tractable

complexity of some reasoning tasks (Remark 4.4).

Remark 4.4. Often while proving polynomial time learnability results, we ask the learner

to check if a formula is entailed by a classical or possibilistic KB. This means that those

results hold only for logics which complexity of entailment-check is tractable. In this work,

we assume that if a learning framework is polynomial time learnable (in any learning

model), the logic used to define the hypothesis space allows to check if an example e is

entailed by a hypothesis H in polynomial time w.r.t. |H| and |e|.

Let F = (E ,L, µ) be a learning framework. By possibilistic extension of H ∈ L we mean

the set (with infinite size) of possibilistic KBs of the form {(φ, α) | φ ∈ H, α ∈ (0, 1]}.
The possibilistic extension Fπ of F is the triple (Eπ,Lπ, µπ) where Lπ is the set of all

elements in the possibilistic extensions of each H ∈ L, Eπ is the set of all possibilistic

formulas entailed by an element of Lπ, and µπ is the entailment relation (Example 4.5).

Example 4.5. The possibilistic extension of the learning framework F of Example 2.10

in Chapter 2 is Fπ = (Eπ,Lπ, µπ) where Lπ is the set of all possibilistic propositional

KBs on the set of variables V = {v1, v2} and Eπ is the set of all possibilistic formulas

expressible with variables V. An element of Lπ may be Hπ = {(¬v1 ∨ v2, 0.3), (v1, 0.8)}
and for instance the example (v2, 0.3) ∈ Eπ satisfies (v2, 0.3) ∈ µπH . /

In our work, we consider the problem of learning targets represented in decidable frag-

ments of FO logic or in their possibilistic extensions. For this reason, when defining

learning frameworks (E ,L, µ) where L and E are formulas, we assume that µ is the en-

tailment relation. That is, for every H ∈ L, µ(H) = {φ ∈ E | H |= φ} (Example 2.10

or Example 4.5). We call such an F an FO learning framework. We say that F is falsi-

fiable if L contains a falsifiable FO KB, non-trivial if L contains a non-trivial FO KB;

and that it is safe if for all H ∈ L, then H′ ⊆ H implies that H′ ∈ L.

Remark 4.6. Polynomial time learnability results of learning frameworks do not depend

on the complexity of reasoning in the logic used to express hypotheses or examples. For

example, 3-CNF formulas are exactly learnable in polynomial time (with only equivalence

queries) [Angluin, 1988] while entailment in 3-CNF is NP-hard. On the other hand,

the logic EL is not learnable from entailments in polynomial time with membership and

equivalence queries even though the complexity of the entailment problem in this logic is

in PTime [Konev et al., 2016, 2018].

52 Exact Learning of Possibilistic Logic Theories

4.2 Learnability

In this section, we investigate the learnability of possibilistic logic KBs in the learning

from entailment setting and in cases where the learner can ask only membership, only

superset, only subset, or only equivalence queries. That is, we want to identify queries

that allow for an identification of the target without taking into account efficiency or

resources limitations.

We start with some important properties of possibilistic logic that are going to be used

during the proofs in the next sections. Some points can be easily found in the literature,

The proof of Point 5 is presented in the literature [Persia and Ozaki, 2020] and Points 3

to the best of our knowledge, is not explicitly proven in any previous work.

Proposition 4.7. Let H be a possibilistic KB. For every possibilistic formula (φ, α),

1. inc(H) = 0 iff H∗ is consistent;

2. H |= (φ, α) iff Hα |= (φ, α);

3. H |= (φ, α) iff H∗α |= φ;

4. H |= (φ, α) iff α ≤ val(φ,H); and

5. H |= (φ, α) implies val(φ,H) ∈ Hv ∪ {1}.

Proof.

1. Point 1 of Proposition 3.5.2 in Dubois and Prade (2014).

2. Proposition 3.5.6 in Dubois and Prade (2014).

3. By Point 2 of Proposition 4.7, we have that H |= (φ, α) iff Hα |= (φ, α). By

Proposition 2.9, it holds that Hα |= (φ, α) iff Hα∪{¬φ, 1} |= (⊥, α) or equivalently

val(φ,Hα) = inc(Hα ∪ {¬φ, 1}) > 0 and by definition of valuation, we know that

α > 0. By Point 1 of Proposition 4.7, it follows that inc(Hα ∪ {¬φ, 1}) > 0 iff

(Hα ∪ {¬φ, 1})∗ is inconsistent iff H∗α ∪ {¬φ} is inconsistent. It classically follows

that H∗α ∪ {¬φ} is inconsistent iff H∗α |= φ. At this point we have proven that

H |= (φ, α) iff H∗α |= φ.

4. Property 1 at page 453 in Dubois et al. (1994).

4.2 Learnability 53

5. Let Ω be the set of interpretations of the language used to represent the KB H.

By definition of πH, for all I ∈ Ω, πH(I) is either 1 or 1 − β for some β ∈ Hv.

Let NH be the necessity measure induced by πH. By definition of NH, we have

NH(φ) = inf{1−πH(I) | I ∈ Ω, I |= ¬ϕ}. Then, NH(φ) ∈ Hv ∪{0, 1} (recall that

inf{} is 1, which is the case for tautologies). By the semantics of possibilistic logic,

NH(φ) = val(φ,H) [Dubois et al., 1994, Corollary 3.2.3]. As (φ, α) is a possibilistic

formula, α > 0. So, by Point 2, NH(φ) = val(φ,H) ∈ Hv ∪ {1}.

Let α ∈ (0, 1] be a valuation. We denote by ↓p (α) the operator that checks if two

numbers are equal up to precision p (it truncates the number after precision p). For

example ↓3 (0.12345) = 0.123 = ↓3 (0.12377) but ↓3 (0.124) 6= 0.12345. We denote by

↑p (α) the number α truncated at precision p and if the truncated part is greater than 0,

then the last digit (the digit at the p-th position after the comma) is increased by one.

For example, if p = 2 then ↑p (0.12001) = 0.13, ↑p (0.3200) = 0.32 and ↑p (0.3) = 0.30.

We write prec(α) for the precision of the number (or alternatively valuation) α and

prec(T) = sup{prec(α) | (φ, α) ∈ T } the precision of the KB T . Given an interval I, we

write Ip for the set containing all α ∈ I that satisfy prec(α) = p. Recall that we write N+

for the set of positive natural numbers. Given p ∈ N+, we denote by Fpπ = (Eπ,Lpπ, µπ)

the p-possibilistic extension of F, which results from removing every H ∈ Lπ in Fπ that

does not satisfy prec(H) = p.

We start the study of whether any possibilistic learning framework Fπ is learnable with

only membership queries. The main difficulty in learning with only membership queries

(even for plain FO settings) is that the learner would ‘not know’ whether it has found

a formula equivalent to a (non-trivial) target. Example 2.14 in Chapter 2 provides the

description of a learning framework non-learnable with only membership queries. For

possibilistic theories, another difficulty arises even for the propositional case. As the pre-

cision of a formula can be arbitrarily high, the learner may not know when to stop (e.g.,

is the target {(v, 0.1)}? or {(v, 0.11)}? If it is not {(v, 0.11)}, is it {(v, 0.101)}?). Theo-

rem 4.8 states that, indeed, except for trivial cases, learnability cannot be guaranteed.

Theorem 4.8. Let F be a non-trivial FO learning framework. Fπ is not in El(MQ).

Sketch. Proof in Appendix A.2. Any learner L for the possibilistic extension Fπ will not

be able to determine if the precision of a formula φ entailed by the target is higher than

the one estimated by the learner with a finite amount of membership queries. After every

membership query the learner is left with an infinite set of candidate hypotheses.

If the precision of the target is known or fixed, learnability of an FO learning framework

can be transferred to its possibilistic extension. We state this in Theorem 4.11. To show

54 Exact Learning of Possibilistic Logic Theories

it, we use the following technical results that are also going to be used in some other

proofs in the next sections.

Lemma 4.9. Let T be a possibilistic KB. Let I be a finite set of valuations such that

T v ⊆ I. If for each α ∈ I there is some FO KB K∗α such that K∗α ≡ T ∗α then, it holds

that T ≡ {(φ, α) | φ ∈ K∗α, α ∈ I}.

Proof. Let H = {(φ, α) | φ ∈ K∗α ≡ T ∗α , α ∈ I}. Assume H |= (φ, γ). If γ = 1 and γ 6∈ I
then φ is a tautology. In this case, for all β ∈ (0, 1], T |= (φ, β). Suppose this is not

the case. By Points 4 and 5 of Proposition 4.7, γ ≤ α, where α = val(φ,H) ∈ Hv ∪ {1}.
Also, H |= (φ, α). By construction of H, Hv = I, so α ∈ I. Moreover, for every β ∈ I,

we know that H∗β = K∗β. Therefore K∗α ≡ H∗α. By Point 3 of Proposition 4.7, H |= (φ, α)

implies H∗α |= φ. Then, K∗α |= φ. As K∗α ≡ T ∗α , we have that T ∗α |= φ. Again by Point 3

of Proposition 4.7, T ∗α |= φ iff T |= (φ, α). Since α ≥ γ, T |= (φ, γ) by Point 2. The

other direction can be proven similarly.

Lemma 4.10. Let H be an FO KB and let T be the possibilistic KB {(φ, 1) | φ ∈ H}.
For every possibilistic formula (φ, α), we have that H |= φ iff T |= (φ, α).

Proof. If T |= (φ, α), since T ∗ |= T ∗α and H = T ∗, H |= φ. If H |= φ, by construction

T ∗1 |= φ. By Point 3 of Proposition 4.7, T ∗1 |= φ iff T |= (φ, 1), so, for all α ∈ (0, 1],

T |= (φ, α).

Theorem 4.11. Let F = (E ,L, µ) be a safe FO learning framework. For all p ∈ N+, let

Fpπ = (Eπ,Lpπ, µπ) be its p-possibilistic extension. Then, F ∈ El(MQ) iff Fpπ ∈ El(MQ).

Proof. (⇒) We show first that if F is learnable, then Fpπ is learnable. Let T ∈ Lpπ be the

target, and let TFπ be a terminating teacher (Remark 4.1). We describe the action of

a learner LFπ such that the computation tree of (LFπ , TFπ(T)) with input ΣT has finite

depth andH ∈ (LFπ , TFπ(T))(ΣT) satisfiesH ≡ T . The fact that F is in El(MQ) implies

the existence of a finite TL,T (K),ΣK for every K ∈ L where L is a learner for F, T is a

terminating teacher and, if H ∈ (L, T (K))(ΣK), it satisfies H ≡ K. For every α ∈ (0, 1]p,

T ∗α ∈ L because F is safe.

Description of LFπ ’s steps. For each α ∈ (0, 1]p, the learner LFπ repeats the same

steps performed by the learner L in an arbitrary path p in TL,T (T ∗α),ΣT ∗ . At the i-th call

to MQF,T ∗α with input φ in p, LFπ calls MQFπ ,T with (φ, α) as input. This is done in

finitely many steps. By Point 3 of Proposition 4.7, MQF,T ∗α (φ) = MQFπ ,T (φ, α), therefore

LFπ is able to perform every step made by L in p. Since TL,T (K),ΣK is finite and (0, 1]p

contains finitely many valuations, LFπ will be able to find a K∗α ≡ T ∗α for each α ∈ (0, 1]p

in finitely many steps. By Lemma 4.9, T ≡ H = {(φ, α) | φ ∈ K∗α, α ∈ (0, 1]p}.

4.2 Learnability 55

Termination. Let d be the longest (finite) depth of TLF,TF(T ∗α),ΣT ∗ for α ∈ (0, 1]p. The

depth of the computation tree of (LFπ , TFπ(T)) with input ΣT is bounded by d times

the number of values in (0, 1]p plus a constant factor that comprises the computation

needed to rewrite queries asked by LF and the final computation of H ≡ T . Thus, we

can transfer learnability of F (with only membership queries) to Fpπ.

(⇐) We now show the other direction. Let K ∈ L be the target, and assume TF is a

terminating teacher. We describe the action of a learner LF such that TLF,TF(K),ΣK has a

finite depth and that H ∈ (LF, TF(K))(ΣK) satisfies H ≡ K. We know Fπ is learnable,

therefore there is a terminating teacher TFπ and a learner LFT for Fπ such that for every

T ∈ Lπ, TLFπ ,TFπ (T),ΣT is finite andH ∈ (LFπ , TFπ(T))(ΣT) impliesH ≡ T . By definition

of Fπ, we have that T = {(φ, 1) | φ ∈ K} ∈ Lπ.

Description of LF’s steps. LF repeats every step that the learner LFπ performs in paths

in TLFπ ,TFπ (T),ΣT . At the i-th call to MQFπ ,T with input (φ, α) in a path p in TLFπ ,TFπ (T),ΣT ,

LF calls MQF,K with φ as input. By Lemma 4.10, MQFpπ ,T (φ, α) = MQF,K(φ), therefore

LF is able to perform every step in p and compute H ∈ (LFpπ , TFpπ(T))(ΣT) that satisfies

H ≡ T . As H∗ ≡ T ∗ = K, we have that H∗ is as required.

Termination. Since TLFπ ,TFπ (T),ΣT is finite, also TLF,TF(K),ΣK is finite. This is because LF

copies every step of a path in TLFπ ,TFπ (T),ΣT and each query (φ, α) asked by LFπ can be

translated in polynomial time with respect to its size. Thus, we can transfer learnability

of Fpπ (with only membership queries) to F.

If, e.g., MQFπ ,t((φ, 0.01)) = ‘yes’, MQFπ ,t((φ, 0.02)) = ‘no’, and the precision of the

target is 2, then val(φ, t) = 0.01. So, knowing the precision is important for learning

with membership queries only. Otherwise, it will not be possible to determine whether

more digits are needed to find the valuation of the formula or whether it has already been

found. The direction from possibilistic to the classical setting in Theorem 4.11 normally

holds. It is easy to see it because classical formulas are a special case of possibilistic

formulas which have been assigned a necessity value of 1. Therefore, an algorithm

that learns possibilistic hypotheses can learn also hypotheses with only formulas with

necessity degree 1 (that are then dropped to represent any classical hypothesis). The

difficulty of showing this result is to simulate possibilistic queries using a classical oracle.

More in detail, the answer of a membership query in the possibilistic settings carries more

information than the answer of a membership query in the classical settings. Membership

queries give more power to the learner to obtain new information. The same argument

holds when showing learnability and polynomial time learnability results (Section 4.3)

with subset and superset queries.

56 Exact Learning of Possibilistic Logic Theories

Corollary 4.12 states that having a terminating teacher that answers equivalence queries

is a sufficient condition for learnability. The argument is similar to Theorem 2.13 (Chap-

ter 2) adapted with learning system terminology. The other direction trivially holds by

definition.

Corollary 4.12. Let F be an FO learning framework. F has a terminating teacher that

answers equivalence queries iff F is in El(EQ).

If equivalence queries are allowed then a learner can build a hypothesis equivalent to the

target without knowing the precision in advance (Theorem 4.13).

Theorem 4.13. If an FO learning framework F has a terminating teacher that answers

equivalence queries, then Fπ is in El(EQ).

Proof. If an FO learning framework F has a terminating teacher that answers equivalence

queries then, by Remark 4.1, there is a terminating teacher TFπ that answers equivalence

queries posed by a naive learner LFπ for the learning system (LFπ , TFπ). By Corollary 4.12,

the statement holds. The learner does not know the size of the target in advance but it

can estimate it to be n, ask all possible hypotheses of this size, then increase to n + 1,

and so on. In this case, it also needs to estimate the precision of the target and increase

it as it navigates the search space. As the precision of the target is finite, eventually LFπ

also halts and outputs an equivalent hypothesis.

If both membership and equivalence query oracles are available, learnability is guaranteed

by the previous theorem (even when the precision of the target is unknown) and the

following corollary holds.

Corollary 4.14. If an FO learning framework F has a terminating teacher that answers

membership and equivalence queries, then Fπ is in El(MQ,EQ).

We conclude this section by arguing about learnability when the learner can ask subset

or superset queries. If a learner uses one of these two queries, in general, learnability

is not guaranteed (Theorem 4.15). If the precision of the target is not known and the

learner can ask only one of these queries, it is impossible for the learner to know when

to stop increasing the precision of the valuation of the formulas in the built hypothesis,

even when there is a positive learnability result in the classical setting.

Theorem 4.15. For every non-trivial FO learning framework F, we have that Fπ is

neither in El(SpQ) nor in El(SbQ).

4.3 Polynomial Time Reduction 57

If the precision of the target is known, learnability can be transferred, similarly to the

case where the learner can ask only membership queries. We show with Theorem 4.16

the learnability result when only subset queries can be asked.

Theorem 4.16. Let F = (E ,L, µ) be a safe FO learning framework and for any p ∈ N+

let Fpπ = (Eπ,Lpπ, µ) be its possibilistic extension. F is in El(SbQ) iff Fpπ is in El(SbQ).

And we also show in Theorem 4.17 the learnability result when the learner has access

only to superset query oracle.

Theorem 4.17. Let F = (E ,L, µ) be a safe FO learning framework and, for any p ∈ N+,

let Fpπ = (Eπ,Lpπ, µ) be its possibilistic extension. F is in El(SpQ) iff Fpπ is in El(SpQ).

It is possible to simulate an equivalence query with input a hypothesis H by first asking

a superset and then a subset query with input H. If both queries returned ‘yes’, then

H is logically equivalent to the target. Otherwise a counterexample is returned. As a

consequence of Theorem 4.13, learnability is guaranteed (Corollary 4.18) if both superset

and subset queries can be asked.

Corollary 4.18. Let F be an FO learning framework that has a terminating teacher that

answers subset and superset queries, then Fπ is in El(SbQ,SpQ).

In Appendix A.2, the reader can find all the omitted proofs. In the next section we focus

on polynomial time learning transferability results.

4.3 Polynomial Time Reduction

In this section we investigate whether, in the exact learning model, results showing

that an FO learning framework is polynomial time learnable can be transferred to its

possibilistic extensions and vice-versa. The general idea behind every proof is to assume

that a learning framework F is polynomial time learnable and use one (or multiple)

learner(s) for F to show that another learning framework is polynomial time learnable.

We start by showing a general result when both membership and equivalence queries

can be asked. Theorem 4.19 states the transferability of ElP(MQ,EQ) membership

from the possibilistic extension Fπ of an FO learning framework F to its classical setting.

For example if F = (E ,L, µ) is a propositional learning framework, the idea is that if we

can learn the hypothesis H = {(v1 ∧ v2, 1)} ∈ Lπ, then we have learned H∗ = {v1 ∧ v2}.
Recall that as discussed in the previous section, the challenge in this direction comes

58 Exact Learning of Possibilistic Logic Theories

from the fact that the answer of a membership query MQFπ ,T carries more information

than an answer given by MQF,T .

Theorem 4.19. Let F be an FO learning framework. If its possibilistic extension Fπ is

in ElP(MQ,EQ), then F is in ElP(MQ,EQ).

The converse of Theorem 4.19 does not hold as shown by Theorem 4.21. Simple FO

learning frameworks can become difficult to learn when extended with possibilistic val-

uations because algorithms also have to deal with multiple valuations (Example 4.20).

Example 4.20. Let F⊥ = (E ,L⊥) be a propositional learning framework with L⊥ =

{{v,¬v}}. F⊥ is learnable with only membership queries in constant time because there is

a learner L that can directly form an inconsistent hypothesis. The possibilistic extension

F⊥π = (Eπ,L⊥π) of F⊥ allows for partial inconsistency as explained in Subsection 2.3 (Chap-

ter 2). Therefore, in L⊥π there are hypotheses such as {(v, 0.3282), (¬v, 0.701)} ∈ L⊥π that

are partially inconsistent. By Theorem 4.8, F⊥π is not learnable. As a consequence, we

cannot transfer learnability from the learning framework F⊥ to F⊥π . /

The FO learning framework F⊥ in Example 4.20 (or in the proof of Theorem 4.21) is

not safe (see definition in Section 2.4 in Chapter 2) because, for H 6⊆ {φ,¬φ} we have

H ∈ L⊥ with (H \ {φ,¬φ}) 6∈ L⊥. Intuitively, non-safe learning frameworks allow cases

in which the target is easy to learn if we aim at learning the whole target, but they

require a more complex algorithm when only learning a subset of it.

Theorem 4.21. There is an FO learning framework F such that F is in ElP(MQ,EQ),

but Fπ = (Eπ,Lπ, µπ) is not in ElP(MQ,EQ).

Proof. Let F = (E ,L, µ) be an FO learning framework that is not in ElP(MQ,EQ).

Such F exists, one can consider, for instance, the EL learning framework [Konev et al.,

2018, Theorem 68]1. We use F to define the learning framework F⊥ = (E ,L⊥) where

L⊥ = {H ∪ {φ,¬φ} | H ∈ L} for a fixed but arbitrary non-trivial FO formula φ. Even

though F is not learnable in polynomial time, F⊥ is. The learner LF⊥ of the learning

system (LF⊥ , TF⊥) can learn any H ∈ L⊥ by returning the hypothesis {⊥} (in constant

time). Assume that F⊥π = (Eπ,L⊥π) is in ElP(MQ,EQ). This means that for every target

T ∈ L⊥π we can obtain in polynomial time a hypothesis H ∈ (LF⊥π
, TF⊥π)(ΣT) such that

H ≡ T . By construction, for every T ∈ L there is K ∈ L⊥π such that T ≡ K∗
inc(K)

. By

learning H such that H ≡ K we have also learned a hypothesis H such that H∗
inc(H)

≡ T .

By Theorem 4.19, F ∈ ElP(MQ,EQ), which contradicts our assumption that this is

1Non-polynomial query learnability is proven in [Konev et al., 2018, Theorem 68], which implies
non-polynomial time learnability.

4.3 Polynomial Time Reduction 59

not the case. Therefore, we have found an FO learning framework F⊥ that is is in

ElP(MQ,EQ) but its respective possibilistic extension F⊥π is not in ElP(MQ,EQ).

The remaining section is divided in five parts, in the following subsection we prove

transferability when only membership queries can be asked. In the next subsections

we consider the case when only equivalence queries, only superset, only subset queries,

both membership and equivalence queries, or both superset and subset queries can be

asked. For the rest of this section, we focus on FO learning frameworks that are safe2.

The assumption is only used while proving transferability from classical to possibilistic

learning frameworks.

Reduction With Membership Queries

The first transferability result we present is for the case in which the learner has access to

only membership queries. Before showing the reduction, we present Algorithm 6, which

computes the highest valuation, up to a predefined precision p, of a formula φ entailed

by the target T . That is, β such that ↓p (β) = val(φ, T). The checks T |= (φ, β) in

Algorithm 6 are implemented with calls to the oracle MQFπ ,T , i.e., if the learner wants

to check T |= (φ, β), it calls MQFπ ,T with (φ, β) as input.

Algorithm 6: Finding the valuation of a formula.

1: Input: precision p ∈ N+, a formula φ
2: Output:β such that ↓p (β) = val(φ, T).
3: min← 0,max← 1
4: while (max−min) > 10−p do
5: Compute β = ↓p

(
min+max

2

)
// β is always > 0

6: if T |= (φ, β) // membership queries

then
7: min← β
8: else
9: max← β

10: end if

11: end while
12: if T |= (φ,max) // membership queries

then
13: return max
14: end if
15: return min // value 0 can be returned

The value β computed in Line 5 is always greater than 0 because max−min > 10−p in

2Most learning settings considered in the literature are safe.

60 Exact Learning of Possibilistic Logic Theories

the main while loop. This is important because the value 0 is not a valid valuation for

a (necessity valued) possibilistic formula. Also, the check in Line 11 calls MQFπ ,T with

a formula with valuation at least 10−p as input. Lemma 4.22 states the correctness of

Algorithm 6 and the fact that it runs in polynomial time w.r.t. the size of the input.

Lemma 4.22. Let Fπ = (Eπ,Lπ, µπ) be a possibilistic learning framework and let T ∈ Lπ
be the target. Algorithm 6, with input a precision p ∈ N+ and φ ∈ Eπ, runs in polynomial

time in p and |φ| and outputs β such that ↓p (β) = val(φ, T).

Proof. By Point 4 of Proposition 4.7, Algorithm 6 can determine β such that ↓p (β) =

val(φ, T) by performing a binary search on the interval of numbers [0, 1]p. The computa-

tion of β in Line 5 requires polynomial time w.r.t. p. The check T |= (φ, β) in Lines 6,12

consists of asking a membership query with input (φ, β). It is positive if the answer is

‘yes’, otherwise it is negative. We recall that to ask a membership query, the learner

writes φ and β on the communication tape. This step can be done in polynomial time

w.r.t. |φ| and p. A membership query counts as a step of computation and each loop

can be computed in polynomial time w.r.t. |φ| and p. The algorithm performs a binary

search on the interval of numbers [0, 1]p, therefore the number of iterations is bounded

by log2[0, 1]p ≤ log210p < 4p which is polynomial w.r.t. p.

A simple run of Algorithm 6 is presented in Example 4.23.

Example 4.23. Let F be a propositional learning framework and let F1
π = (E1

π,L1
π) be

its possibilistic extension. Assume the target is T = {(v, 0.3)} ∈ L1
π. The learner LF1

π

of the learning system (LF1
π
, TF1

π
) can find val(v, T) by running Algorithm 6 with input

1 and v. The first membership query asked by LF1
π

would be with input the possibilistic

formula (v, 0.5), the response would be ‘no’ and max is set to 0.5. The second query will

be (v, 0.2) with answer ‘yes’. After that, min = 0.2 and the query will have as input

(v, 0.3) and the answer will be ‘yes’. At this point min = 0.3 and max = 0.5. After the

query with input (v, 0.4), min is set to 0.3 and max to 0.4. Since max −min ≤ 10−p,

the execution will exit from the main loop and the algorithm will return 0.3 after having

asked the last query with input (v, 0.4). /

In our next theorem, we show that, for safe FO learning frameworks, polynomial time

results with only membership queries can be transferred to their possibilistic extensions

if the precision of the target is known (recall that, by Theorem 4.8, we cannot remove

this assumption because the learning framework is not learnable).

Theorem 4.24. Let F be a safe FO learning framework. For all p ∈ N+, F is in

ElP(MQ) iff Fpπ is in ElP(MQ).

4.3 Polynomial Time Reduction 61

Proof. (⇒) To show the transferability of ElP(MQ) membership from F to Fπ, we use

the following claim.

Claim 4.25. Assume F = (E ,L, µ) is safe and in ElP(MQ). For every p ∈ N+ and

framework Fpπ = (Eπ,Lpπ) with T ∈ Lpπ, given a valuation α with prec(α) = p, one can

learn K∗α such that K∗α ≡ T ∗α in time polynomial w.r.t. |T | with only membership queries.

Proof. F in ElP(MQ) implies that there is a learning system (LF, TF) such that for

any K ∈ L, TLF,TF(K),ΣK has a finite depth, and H ∈ (LF, TF(K))(ΣK) implies H ≡ K.

Since F is safe, we have that T ∗α ∈ L. We consider the computation of the learning

system (LFπ , TFπ(T)) on input ΣT where LFπ performs every step done by LF in an

arbitrary path p in TLF,TF(T ∗α),ΣT ∗ . ΣT ∗ is computed from ΣT (Remark 4.2). At the i-th

call to MQF,T ∗α with φ as input in p, LFπ calls MQFπ ,T with (φ, α + 10−p) as input. By

Point 3 of Proposition 4.7, MQF,T ∗α (φ) = MQFπ ,T (φ, α + 10−p). This query simulation

requires polynomially many steps with respect to the size of the query. In this way, LFπ

will compute in polynomially many steps w.r.t. the number of steps made by LFπ in

p a hypothesis K∗α such that K∗α ≡ T ∗α . The number of steps performed by LF in p is

polynomial with respect to |T ∗α |, therefore the claim holds.

Given the learning system (LFπ , TFπ(T)) on input ΣT , the learner LFπ can initialise two

helper variables γ := 0 and S := ∅. By Claim 4.25, it can find in polynomial time w.r.t.

|T | a hypothesis K∗γ such that K∗γ ≡ T ∗γ . For every φ ∈ K∗γ, we run Algorithm 6 with

p = prec(T) and φ as input to find val(φ, T). In this way, by Point 5 of Proposition 4.7

and Lemma 4.22, LFπ identifies in polynomial time w.r.t. |T | the smallest β ∈ T v ∪ {1}
such that K∗γ ≡ T ∗β . LFπ sets K∗β := K∗γ and it adds K∗β to S. Then, γ is updated to the

value β and Claim 4.25 is applied again. For every φ ∈ K∗γ, LFπ runs Algorithm 6 again

with p = prec(T) and φ as input to find val(φ, T). This process is repeated until LFπ

finds K∗γ ≡ ∅ or γ + 10−p > 1. Each time LFπ runs Algorithm 6, it identifies a higher

valuation in T v. Therefore, this happens at most |T v| times. For all α ∈ T v, there is

K∗α ∈ S that satisfies K∗α ≡ T ∗α , therefore, by Lemma 4.9,

H =
⋃
K∗α∈S

{(φ, α) | φ ∈ K∗α}

is such that H ≡ T . The number of steps that LFπ makes is bounded by a polynomial

w.r.t. |T |, therefore Fπ is in ElP(MQ).

(⇐) We now show the transferability of ElP(MQ) membership from Fπ to F. Let K ∈ L
be the target. Since Fπ is in ElP(MQ), for each T ∈ Lπ, there is a learning system

(LFπ , TFπ(T)) such that TLFπ ,TFπ (T),ΣT is finite, and H ∈ (LFπ , TFπ(T))(ΣT) implies H ≡
T . By definition of Fπ, T = {(φ, 1) | φ ∈ K} ∈ Lπ. We consider the computation of

62 Exact Learning of Possibilistic Logic Theories

the learning system (LF, TF(K)) on input ΣK where LF performs every step made by

LFπ in an arbitrary path p in TLFπ ,TFπ (T),ΣT . ΣT is built from ΣK. At the i-th call to

MQFπ ,T with input (φ, α) in p, LF calls MQF,K with φ as input. The number of steps

needed to compute the translation of the query is polynomial with respect to its size.

By Lemma 4.10, MQFπ ,T (φ, α) = MQF,K(φ) and LF is able to compute the hypothesis

H such that H ≡ T . As H∗ ≡ T ∗ = K, H∗ is as required. The number of steps that

LF executes is polynomial w.r.t. the number of steps made by LFπ in p. As the latter

number is polynomial w.r.t. |T |, which is polynomial w.r.t. |K|, Fπ is in ElP(MQ).

When we want to transfer learnability results from F to Fπ it is important to learn one

Hα such that Hα ≡ Tα for each α ∈ T v, where T is the target. Example 4.26 provides

a case where if the layers of the target are not taken into account, the final generated

hypothesis fails to be logically equivalent to the target.

Example 4.26. Let T = {(v1 → v2, 0.3), (v1 → v3, 0.7)}. We can use the polynomial

time algorithm for propositional Horn [Angluin et al., 1992] (extended to many variables

in the consequent). With it we would learn a hypothesis K∗ = {v1 → (v2 ∧ v3)} ≡ T ∗.
However, if we build the hypothesis H = {(φ, val(φ, T)) | φ ∈ K∗} by asking membership

queries, then we would have H = {(v1 → (v2 ∧ v3), 0.3)} 6≡ T . /

Learning classical hypothesis separately, allows the learner to find every valuation oc-

curring in the target.

Reduction With Equivalence Queries

The main difficulty in the reduction with only equivalence queries is that we do not know

the precision of the target. But under certain conditions, a learner who has access to only

equivalence queries sometimes has a way of deducing if a given precision is smaller than

the precision of the target (Claim 4.30). To illustrate this idea consider Example 4.27.

Example 4.27. Let T be the target and assume T |= (v, 0.32). Suppose the learner

receives the positive counterexample (v, 0.32). If the precision of T is 1 then it must

be the case that T |= (v, 0.4). If the learner also receives the negative counterexample

(v, 0.33), then the precision of T cannot be 1 because, otherwise, T 6|= (v, 0.3), which

cannot happen if T |= (v, 0.4). This reasoning is justified by Point 4 of Proposition 4.7.

Therefore, the precision of T is larger than 1. /

The polynomial time reduction from classical to possibilistic settings presented in this

section is difficult to show in the general case without any assumption made on the

4.3 Polynomial Time Reduction 63

learner or the learning framework into consideration (Example 4.28). As illustrated in

Example 4.27, one can determine if the estimated precision of the target is too low with

equivalence queries. In the proof, the learner can get this information when the search

space (of hypotheses with a fixed length) is completely pruned. While showing polyno-

mial time learnability results, we cannot apply the same strategy as in Theorem 4.13. If

a learner can receive both positive and negative counterexamples, we cannot know if the

counterexample returned by an equivalence query is due to the wrong hypothesis built

by the classical learner(s) or the estimated precision. Therefore, while showing transfer-

ability results we have to rely on other assumptions. In this section, we assume that the

learner is positive bounded (Section 4.1), that is the hypothesis generated by the learner

is always logically entailed by the target. So when it receives a negative counterexample,

it can use this information to tune the estimated precision of the target.

Example 4.28. Let LFπ be a learner for Fπ that uses the polynomial time learnability

result of a classical learner LF for F = (E ,L, µ) where L is a conjunction of literals

and E is the set of all conjunctions of literals. We may have the additional information

that the target has two valuations: α1, α2 ∈ (0, 1], α1 < α2; and as explained before

(Example 4.26), LFπ should copy the steps made by LF to learn classical hypotheses for

each valuation. Let Kα1 = {v1}, Kα2 = {v2} be two hypotheses built by a possibilistic

learner LFπ according to the steps made by LF for each αi (LF may want to initialise

hypotheses randomly). LFπ may ask an equivalence query with input the hypothesis

H =
⋃2
i=1{(φ, αi) | φ ∈ Kαi}. If a negative counterexample of the form (v1 ∧ v2, γ)

with γ ≤ α1 is returned, LFπ does not know how to use the information provided by the

counterexample to continue with the steps made by the classical learner because no built

classical hypothesis entails (v1∧v2). In this case, we may receive a counterexample (φ, γ)

from a call to EQFπ ,T such that φ is not the counterexample of any classical hypothesis

built so far by any instance of LF.

The learner can build Kα1 such that Kα1 |= Kα2 by considering formulas in Kα2 not

entailed by Kα1 as positive counterexamples when repeating the steps made by LF. Let

φ ∈ Kα2 be a formula that is considered as a positive counterexample while building

Kα1 . Since we cannot assume that Kα2 is entailed by the target, the learner can discover

only later that φ should have never be returned as a positive counterexample. This is

problematic because LF (as it is defined) expects the oracle to answer truthfully. /

As illustrated in Example 4.28, a negative example (φ, α) may refer to entailments coming

from the combination of classical hypotheses that alone do not entail φ. In the most

general case, it is not clear how counterexamples can be used to continue the steps made

by the classical learner. For this reason, we limit the transferability result from a classical

learning framework F to Fπ to the case where there is a positive bounded learner for F.

64 Exact Learning of Possibilistic Logic Theories

Lemma 4.29. Let Fπ be the possibilistic extension of a safe FO learning framework F in

ElP(EQ) and let T ∈ Lπ be the target. Assume there is a positive bounded learner for

F. Then, given p ∈ N+, one can determine that p < prec(T) or compute H ∈ Lπ such

that H ≡ T , in polynomial time with respect to |T |, p, and the largest counterexample

seen so far, by asking only equivalence queries.

Proof. F = (E ,L, µ) in ElP(EQ) implies that there is a learning system (LF, TF) such

that for any K ∈ L, LF calls only EQF,K, and H ∈ (LF, TF)(ΣK) implies H ≡ K. Since F

is safe, we have that T ∗α ∈ L for any α ∈ (0, 1]p. Let Fπ = (Eπ,Lπ, µπ) be the possibilistic

extension of F. We consider the learning system (LFπ , TFπ(T)) and we describe the steps

of the learner LFπ that attempts to learn T on input ΣT . To support our argument, we

show the following claims. For a number p ∈ R, recall the definition of ↑p (φ) and ↓p (φ)

at the beginning of Section 4.2.

Claim 4.30. For an unknown T ∈ Lπ, let two finite sets P and N be such that P ⊆ µπ(T)

and N ⊆ Eπ \µπ(T), and let p ∈ N+. If there is (ψ, γ) ∈ N such that {(φ, ↑p (γ)) | (φ, γ) ∈
P} |= (ψ, γ), then p < prec(T). This check can be done in polynomial time w.r.t. |P|+|N|.

Proof. We know that for every e ∈ P, T |= e and that for every e ∈ N, T 6|= e. If we

assume p ≥ prec(T), we need to conclude that there is (φ, γ) ∈ N such that T |= (φ, γ),

contradiction. Therefore, when this condition applies, we know that p < prec(T). We

can make this check by looping for every different valuation in {↑p (γ) | (φ, γ) ∈ P} and

every element in N. The result follows because of Remark 4.4.

Claim 4.31. Let T ∈ Lπ. If for 0 < γ < δ ≤ 1, T |= (φ, γ), and T 6|= (φ, δ) then there

is α ∈ T v with γ ≤ α < δ.

Proof. By Points 4 and 5 of Proposition 4.7, γ ≤ val(φ, t), T |= (φ, val(φ, T)) and

val(φ, T) ∈ T v. Since T 6|= (φ, δ), by Point 4 of Proposition 4.7, we have val(φ, T) < δ.

Therefore, there is α = val(φ, T) such that α ∈ T v and γ ≤ α < δ.

Let Pi and Ni be respectively the sets of positive and negative counterexamples received

so far after the i-th call to EQFπ ,T . LFπ calls EQFπ ,T with input ∅ (∅ ∈ Lπ because F

is safe). If the target is not the empty set, LFπ receives a positive counterexample e

(P1 = P0 ∪ {e},N1 = N0), otherwise LFπ receives ‘yes’ and it terminates. We denote by

V ip the set of valuations {↑p (γ) | (φ, γ) ∈ Pi}.

Asking an equivalence query. Assume LFπ has asked the i-th query, i ≥ 0. For each

α ∈ V ip, the learner LFπ performs every step that LF makes in a path pα in TLF,TF(T ∗α),ΣT ∗

(Remark 4.2). Whenever there is a call to EQF,T ∗α with input Kα in pα, LFπ finds a positive

4.3 Polynomial Time Reduction 65

counterexample (φ, γ) ∈ Pi (if any) for Kα with α ≤ γ and continues the computation

in path p. By Points 3 and 4 of Proposition 4.7, each counterexample found in this way

satisfies Kα 6|= φ and T ∗α |= φ. For α ∈ V ip, whenever LFπ reaches the configuration in

the associated computation path where LF stops in query state with input Kα,i and no

counterexample can be found in Pi, LFπ creates the hypothesis

Hi =
⋃
α∈Vip

{(φ,mid(α)i) | φ ∈ Kα,i}

where

mid(α)i = ↑p

(
α + end(α)i

2

)
end(α)i = min({↓p (δ) | (φ, δ) ∈ Ni and Kα,i |= φ} ∪ {1}),

and LFπ calls EQFπ ,t with input Hi. If the answer is ‘yes’, LFπ stops and outputs Hi.

Upon receiving a counterexample, LFπ creates (or updates) Pi+1, Ni+1 and checks by

Claim 4.30 if p < prec(T). If it is the case, it stops. Note that the possibilistic learner is

not positive bounded because valuations attached to formulas are guessed with a higher

value. Negative counterexamples are returned to signal that the estimated valuation is

too high for a formula.

If the counterexample received (φ, γ) is positive, LFπ resumes the computation of all

paths pβ such that Kβ,i 6|= φ with ↑p (γ) ≥ β (recall Remark 4.4) and starts simulating

all the steps that LF makes in a path p↑p(γ) in TLF,TF(T ∗↑p(γ)),ΣT ∗
as described (because

↑p (γ) ∈ Vi+1). When for all α ∈ V i+1
p , the learner LFπ reaches the configuration in pα

where LF stops in query state with input Kα,i+1 and no counterexample can be found

in Pi+1, the learner LFπ creates Hi+1 and calls again EQFπ ,T with input Hi+1 until it

receives the answer ‘yes’. The hypotheses Kβ,i+1 written in the communication tape in

paths pα that are not resumed are not updated, that is they remain the same in the next

iteration Kβ,i+1 := Kβ,i.

Each iteration i is computed in polynomial time with respect to the size of |P|i, |N|i,
and p (see also Claim 4.30). The maximum number of iterations corresponds to the

maximum number of elements in the set P of positive counterexamples and N of negative

counterexamples. In the following, we argue about their size and we show that they are

polynomial with respect to |T |, p, and the largest counterexample seen so far.

Size of P. Let i be the number of equivalence queries asked so far. A positive coun-

terexample (φ, γ) is received when val(φ,Hi) < γ ≤ val(φ, T). If val(φ,Hi) = 0, by

monotonicity and by Point 3 of Proposition 4.7, no Kα,i entails φ for every α ∈ V ip. At

66 Exact Learning of Possibilistic Logic Theories

iteration i + 1, there will be the smallest β ∈ V i+1
p , such that Kβ,i |= φ. Since LF is a

polynomial time learner for F, this case can happen at most g(|T ∗β |, |e|) times where g is

a polynomial and e is the largest counterexample seen so far. Indeed, after g(|T ∗β |, |e|)
counterexamples falling in this case, for the smallest β ∈ V i+1

p , we have Kβ,i |= T ∗, hence

Kβ,i ≡ T ∗ because LF is positive bounded. If 0 < val(φ,Hi) < γ ≤ val(φ, T), by construc-

tion and by Point 5 of Proposition 4.7, we have that there is β ∈ V ip = {↑p (γ) | γ ∈ Pi}
such that mid(β)i = val(φ,Hi) and γ > ↑p

(
β+end(β)i

2

)
. At the next iteration val(φ,Hi+1)

will be equal to ↑p
(
γ+end(β)i

2

)
or greater than end(β)i. This means that this case can

happen at most log2(β, end(β)i) ≤ log2(0, 1]p ≤ log210p < 4p times. By Claim 4.31 and

since for every α, β ∈ V ip with α < β, we have that Kα,i |= Kβ,i,3 there can be at most

|T v| different end(β)i. Therefore, a positive counterexample is returned a number of

times at most g(|T |, |e|) · |T v| · 4p.

Size of N. A negative counterexample (φ, γ) is returned when val(φ,Hi) > val(φ, T).

For every α ∈ V ip, α ≥ γ, by construction, T ∗α |= Kα,i 6|= φ. Therefore, a negative

counterexample serves only the purpose of updating end(α)i for some α ∈ V ip, α < γ.

By definition, val(φ,Hi) = ↑p
(
α+end(α)i

2

)
, and end(α)i+1 (by definition) will be equal

to ↑p
(
α+γ

2

)
− 10−p. This means that for each α ∈ V ip this case happens at most

log2(α, end(α)i) ≤ log2(0, 1]p ≤ log210p < 4p times. We have shown that the num-

ber of negative examples is bounded by a polynomial w.r.t. |T |, p, and the size of the

largest counterexample seen so far. It follows that N is also bounded by |T | and the size

of the largest counterexample seen so far.

Termination. LFπ performs at most polynomially many steps with respect to |T |, the

size of the largest counterexample received so far, and p until at iteration i, either it

knows that p < prec(T) or it has computed for every β ∈ T v, Kα,i ≡ T ∗β with α ∈ V ip
and β = mid(α)i (because F is safe). Every Lα with α ∈ V ip satisfies α ≤ γ < end(α)

for γ ∈ T v because (φ, ↑p (α)) ∈ Pi. Since we have shown that the number of positive

counterexamples that Lπ receives is polynomially bounded, for every γ ∈ T v, there is

(φ, γ′) ∈ Pi such that val(φ, T) = γ′. As described, the learner will be able to identify

the correct valuation for every formula (φ, γ′) ∈ Pi in polynomial time w.r.t. |T |, the

largest counterexample seen so far, and p (if the estimated precision is high enough).

When this happens, we have that T v ⊆ Hi,v and by Lemma 4.9, the learner LFπ finds a

hypothesis Hi such that Hi ≡ T .

By asking only equivalence queries, the learner may be able to find a lower bound for

3We can assume that, before building Hi, every Lα receives a positive counterexample φ if there is
φ ∈ Kβ,i with β ∈ Vip and β > α such that Kα,i 6|= φ.

4.3 Polynomial Time Reduction 67

the precision of the target. This is done by keeping track of counterexamples received so

far. Example 4.32 gives a simple run of the steps described in the previous lemma about

how to make this check.

Example 4.32. Let F = (E ,L, µ) be a safe learning framework where L is the set

of all possible conjunctions of literals over variables V = {v1, v2}, and E is the set

of literals. Let Fπ be its possibilistic extension, let t = {(v1, 0.33), (v2, 0.7)} be the

target and let the estimated precision p of the target be 1. We consider the polynomial

time learning algorithm for learning conjunction of literals that starts with the empty

hypothesis and when it receives a counterexample, it adds it to the hypothesis. Following

our argument in Lemma 4.29, we ask the equivalence query with input ∅ and assume we

receive the positive counterexample (v1, 0.19). As explained, the possibilistic learner L

will create the hypothesis H = {(v1, 0.6)} because 0.6 = ↑p
(
↑p(0.19)+1

2

)
and we will call

again the equivalence query oracle with input H. Assuming the call returns the negative

counterexample (v1, 0.35), L checks if p < prec(T) according to the counterexamples

received. Since the information revealed is not enough to discover that p < prec(T),

L will build the hypothesis H = {(v1, 0.2)}. After another equivalence query, assume

L receives the positive counterexample (v1, 0.23). When this happens, L discovers that

p < prec(T) because it knows T |= (v1, 0.23) and T 6|= (v1, 0.35). Assuming p = 1,

this would imply that T |= (v1, 0.3) and T 6|= (v1, 0.3) because ↑p (0.23) = 0.3 and

↓p (0.32) = 0.3. Therefore, prec(T) ≥ 2. /

Once the precision of the target is correctly estimated, again by following the steps

described in Lemma 4.29, in Example 4.33 the learner can use the information of coun-

terexamples received so far to both identify the intervals where the valuations present in

the target lie, and estimate the valuation of formulas present in the hypothesis.

Example 4.33. Assume now that the target is T = {(v1, 0.3), (v2, 0.7)} and p = 1.

Assume we have N = {(v2, 0.9), (v2, 1), (v1, 0.43)} and P = {(v1, 0.13), (v2, 0.42)}, which

are respectively the sets of negative and positive counterexamples received so far. As

described in the previous lemma, the learner L computes the hypothesis K0.2 = {v1∧v2},
K0.5 = {v2} and the hypothesis H = {(v1, 0.3), (v2, 0.7)}, which is equivalent to T .

The number 0.3 is obtained after computing ↑p
(
↑p(0.13)+↓p(0.4)

2

)
because of the positive

counterexample (v1, 0.13). /

The statement in Lemma 4.29 can be used to claim polynomial time transferability

results from classical to possibilistic settings.

Theorem 4.34. Let F be a safe FO learning framework in ElP(EQ) such that there is

a positive bounded learner for F. Then, Fπ is in ElP(EQ).

68 Exact Learning of Possibilistic Logic Theories

Proof. We consider the learning system (LFπ , TFπ(T)) on input ΣT . LFπ starts by esti-

mating the precision p of the target T ∈ Lπ to be 1. Using Lemma 4.29, we can assume

that this learner can either determine that p < prec(T) or find a hypothesis H such that

H ≡ T , in time polynomial w.r.t. |T |, p and the largest counterexample seen so far us-

ing only equivalence queries. In the former case, this learner sets the estimated precision

p of the target to p+ 1. This happens at most prec(T) times, which is bounded by |T |.
As a consequence, Fπ is in ElP(EQ).

The other direction also holds. The polynomial time transferability result from the pos-

sibilistic to classical case (Theorem 4.35) does not require the assumption that learning

frameworks are safe.

Theorem 4.35. Let Fπ be the possibilistic extension of an FO learning framework F. If

Fπ in ElP(EQ), then F is in ElP(EQ).

Reduction With Membership and Equivalence Queries

A learner that has access to both membership and equivalence query oracle has a way

of finding the precision of the target when it is unknown. With membership queries,

we can use Algorithm 6 to find the valuation of formulas up to a given precision. By

Lemma 4.36, we can obtain useful information about the precision of the target with the

counterexamples obtained after an equivalence query.

Lemma 4.36. Assume Fπ = (Eπ,Lπ, µπ) is the possibilistic extension of a safe FO

learning framework in ElP(MQ,EQ) and T ∈ Lπ is the target. Given p ∈ N+, one can

determine that p < prec(T) or compute H ∈ Lπ such that H ≡ T , in polynomial time

with respect to |T |, p, and the largest counterexample seen so far.

Proof. In our proof, we use the following claims.

Claim 4.37. Given H ∈ Lπ such that T |= H, one can construct in polynomial time

in |H| some H′ ∈ Lπ such that T |= H′ |= H and, for all (φ, α) ∈ H′, T |= (φ, α) and

↓prec(H′) (α) = val(φ, T).

Proof. Let H′ be the set of all (φ, β) such that (φ, α) ∈ H and Algorithm 6 returns β

with φ and prec(H) as input. As T |= H, by construction of H′, T |= H′ |= H. By

Lemma 4.22, H′ can be constructed in polynomial time in |H| and is as required.

Claim 4.38. Let H ∈ Lπ be such that, for all (φ, α) ∈ H, T |= (φ, α) and ↓prec(H) (α) =

val(φ, T). If EQFπ ,T with input H returns (φ, α) then either prec(T) > prec(H) or H∗β 6|= φ

where ↓prec(H) (β) = val(φ, T).

4.3 Polynomial Time Reduction 69

Proof. By Point 3 of Proposition 4.7, H∗β |= φ iff H |= (φ, β). If H |= (φ, β) or β = 0

(note: β can be 0 because, e.g., ↓1 (0.01) = 0), then prec(val(φ, T)) > prec(H). By

Point 5 of Proposition 4.7, val(φ, T) ∈ T v ∪ {1}, so prec(T) > prec(H).

By Remark 4.3, we can assume at all times in this proof that any hypothesis constructed

is entailed by the target (possibilistic or not). Moreover, by Claim 4.37, we can assume

that, for any target and hypothesis T ,H ∈ Lπ, we have that, for all (φ, α) ∈ H, T |=
(φ, α) and ↓prec(H) (α) = val(φ, T). So we can assume at all times in our proof that the

hypothesis H we construct (Equation 4.1) satisfies the conditions of Claim 4.38. Since F

is in El(MQ,EQ), there is a learning system (LF, TF) such that, for any K ∈ L, LF calls

both MQF,K and EQF,K, and K′ ∈ (LF, TF)(Σk) implies K′ ≡ K.

As in the proof of Theorem 4.24, we consider the learning system (LFπ , TFπ(T)) on input

(ΣT) where T ∈ Lπ is the target and we describe the steps that LFπ makes on input ΣT .

For some α ∈ (0, 1]p, LFπ does every step that LF performs in a path pα in TLF,TF(T ∗α),ΣT ∗

(Remark 4.2). Since F is safe, for every β ∈ (0, 1], T ∗β ∈ L. We denote by R the set of

valuations α that LFπ is considering in order to learn Kα equivalent to T ∗α . We write

Kβ,n to indicate that the learner LFπ has reached n configurations in pβ that correspond

to when the learner stops in the equivalence query state with input Kn,β. For n = 0, we

assume that Kβ,n = ∅.

Description of LFπ ’s steps. Initially, R := {10−p}. Whenever for β ∈ R in pβ there is

a call to EQF,T ∗β with input φ ∈ E , by Point 3 of Proposition 4.7, LFπ simulates MQF,T ∗β
by calling MQFπ ,T with (φ, β) as input and treating its answer as the answer of EQF,T ∗β .

Let H0 be {(φ>, α)} where φ> is a tautology and α is a valuation with prec(α) = p.

When LFπ reaches the configuration in all pα, α ∈ R corresponding to an equivalence

query state with input Kα,mα , LFπ creates

H :=
⋃
α∈R

{(φ, α) | φ ∈ Kα,m} ∪ H0 (4.1)

and calls EQFπ ,T with H as input. If the answer is ‘yes’, LFπ has computed H such

that H ≡ T and it terminates. Upon receiving a (positive) counterexample (φ, γ), LFπ

runs Algorithm 6 with φ and prec(H) as input and it computes a valuation β such that

↓prec(H) (β) = val(φ, T) (Lemma 4.22). If β 6∈ R, LFπ starts the execution of every step

made by LF in a path pβ in TLF,TF(T ∗β),ΣT ∗ and it adds β to R. Otherwise, β ∈ R and LFπ

checks whether Kβ,m |= φ (Remark 4.4) (assume m is the number of equivalence queries

posed so far in the visited part of the path pβ). If Kβ,m |= φ then, by Claim 4.38, LFπ

knows that prec(H) < prec(T) then it terminates. If Kβ,m 6|= φ (Remark 4.4) then φ is a

(positive) counterexample for Kβ,m and T ∗β . LFπ treats φ as a counterexample returned

70 Exact Learning of Possibilistic Logic Theories

(a)

(b)

(c)

EQFπ ,T (H) = (v1 → v2, 0.1)

EQFπ ,T (H) = (v1 → v2, 0.1)

EQFπ ,T (H′) = (v1 → v3, 0.21)

⇐ v1 → v2
⇐ v1 → v2

A0.1

A0.3

A0.7

Figure 4.2: Multiple instances of algorithm A in Example 4.39. Time flows top-down.
A dotted line means that the learner is waiting in query state, a continuous line means
that the learner is running.

by EQF,T ∗α for every α ∈ R such that α ≤ β and Kα,m 6|= φ. Observe that, since H0 ⊆ H,

by the construction of H, at all times prec(H) = p.

Termination. We now argue that LFπ terminates in polynomially many steps w.r.t.

|T |, p, and the largest counterexample seen so far. Since there is only one instance β in

R for each valuation β such that ↓p (β) = val(φ, T), by Point 5 of Proposition 4.7, we have

that at all times |R| is linear in |T v|, which is bounded by |T |. By Lemma 4.22, whenever

LFπ runs Algorithm 6 to compute a valuation with φ and p as input, only polynomially

many steps in |φ| and p are needed. Since F is safe and L is a polynomial time learner

for F either we can determine that p < prec(T) or LFπ computes in polynomial time in

the size of T ∗β and the largest counterexample seen so far, and outputs Kβ,n = H∗β such

that H∗β ≡ T ∗β . In this case, by Lemma 4.9, H ≡ T and LFπ terminates.

The constructive proof of Lemma 4.36 delineates the steps made in Example 4.39 where

the precision of the target is 1.

Example 4.39. Let F = (E ,L, µ) be the safe learning framework where L is the set of

all propositional Horn KBs, E is the set of all (propositional) Horn clauses and µ maps

Horn KBs to Horn clauses that are entailed by it. Let T ∈ Lπ and L be, respectively, the

target and the learner of Example 4.26. Following our argument in Lemma 4.36, we start

performing the steps that a classical learner L for Horn KBs may do to learn T ∗0.1. We

add 0.1 to R. When we should wait in equivalence query state, we build H = {(φ>, 0.1)}
(Equation A.1) and call EQFπ ,T with H as input (Point (a) in Figure 4.2). Assume we

receive the positive counterexample (v1 → v2, 0.1). We run Algorithm 6 with 1 and

(v1 → v2) as input, which computes val(v1 → v2, T) = 0.3. Since 0.3 6∈ R, we start

performing the steps that a classical learner L for Horn KBs may do to learn T ∗0.3. When

we reach a point where all learners are waiting in the query state, we call again EQFπ ,T

with H as input (Point (b) in Figure 4.2).

Assume we receive (v1 → v2, 0.1) again. We have that val(v → v2, T) = 0.3 and

0.3 ∈ R. Since K0.3,1 6|= v1 → v2 and K0.1,1 6|= v1 → v2, we treat v1 → v2 as a

positive counterexample for both K0.3,1 and K0.1,1. When we all learners are waiting

4.3 Polynomial Time Reduction 71

in equivalence query state again, we call the oracle EQFπ ,T with input the hypothesis

H′ = {(φ>, 0.1), (v1 → v2, 0.1), (v1 → v2, 0.3)}.

Assume the response is (v1 → v3, 0.21). We run Algorithm 6 with arguments 1 and

(v1 → v3) as input, which returns val(v1 → v3, T) = 0.7. As before, we compute every

step that a classical learner L for Horn KBs may do to learn T ∗0.7 (Point (c) in Figure 4.2)

and add 0.7 to R. When all learners are waiting again we call EQFπ ,T with H′ as input.

Assume we receive (v1 → v3, 0.1). We then send v1 → v3 to every learner in R. Next

time we call EQFπ ,T , with H′ ∪ {(v1 → v3, 0.7), (v1 → v3, 0.3), (v1 → v3, 0.1)} as input.

The answer is ‘yes’ and we are done. /

In some cases, the learner can discover if the precision of the hypothesis needs to increase.

Example 4.40 shows such case.

Example 4.40. Assume the target is T := {(v1 → v2, 0.32)} and the learner built

the hypothesis H = {(v1 → v2, 0.3)}. Similarly to Example 4.39, the precision of the

hypothesis is set to 1. A future equivalence query will return the counterexample H :=

{(v1 → v2, α)} with α > 0.3. The learner will run Algorithm 6 with input 1 and v1 → v2,

which will return 0.3. Since H |= (v1 → v2, 0.3), this can happen only if the precision of

the hypothesis is low. /

A direct consequence of Lemma 4.36 is Theorem 4.41.

Theorem 4.41. Let F be a safe FO learning framework. We have that F is in

ElP(MQ,EQ) iff Fπ is in ElP(MQ,EQ).

Proof. One direction holds by Theorem 4.19. We prove the other direction. Let F be a

safe FO learning framework in ElP(MQ,EQ) and let Fπ = (Eπ,Lπ, µπ) be its possibilistic

extension. Consider a learner that initially estimates the precision p of the target T ∈ Lπ
to be 1. By Lemma 4.36, we can assume that this learner can either determine that

p < prec(T) or find a hypothesis H such that H ≡ T , in polynomial time w.r.t. |T |,
p and the largest counterexample seen so far. In the former case, this learner sets the

estimated precision p of the target to p+ 1. This happens at most prec(T) times, which

is bounded by |T |. As a consequence, Fπ is in ElP(MQ,EQ).

Reduction With Subset and Superset Queries

We know by Theorem 4.15 that without knowing the precision of the target, it is not

possible to transfer polynomial time learnability results with only subset or superset

72 Exact Learning of Possibilistic Logic Theories

queries. In this section, we provide polynomial time reduction in both directions (classical

to possibilistic and vice-versa) for safe learning frameworks when the learner can ask only

subset or superset queries and the precision of the target is fixed. We recall the need

of assuming that the learning framework under consideration is safe when showing the

direction from classical to possibilistic setting (Example 4.20).

Theorem 4.42. Let F be a safe FO learning framework. For all p ∈ N+, F is in

ElP(SbQ) iff Fpπ is in ElP(SbQ) and F is in ElP(SpQ) iff Fpπ is in ElP(SpQ).

We can simulate an equivalence query with input a hypothesisH by first asking a superset

and then a subset query with input H. A membership query with input a formula φ

is simulated by a subset query with input {φ}. If both superset and subset queries are

allowed, we can use the result of Theorem 4.41 to state the next corollary.

Corollary 4.43. Let F be a safe FO learning framework. If F is in ElP(MQ,EQ), then

Fπ is in ElP(SbQ,SpQ).

Connections With the PAC Learning Model

We end this section recalling a connection between the exact and the PAC learning

models. In the PAC model [Valiant, 1984], a learner receives classified examples and

attempts to create a hypothesis that approximates the target. In this model, it is as-

sumed the existence of the example oracle EX that when called, it draws an example

according to a probability distribution and it returns to the caller the example and the

classification of the example according to the target. It is known that polynomial time

results for the exact learning model with only equivalence queries can be transferred to

the PAC learning model [Angluin, 1988; Mohri et al., 2012]. This holds also in the case

where the learner can pose membership and equivalence queries and the PAC model

is extended with membership queries—a variant of PAC in which the learner can ask

membership queries and example queries (but not equivalence queries). Let PlP(EX)

and PlP(EX,MQ) be, respectively, the class of all learning frameworks that are PAC

learnable with only example queries in polynomial time and PAC learnable with both ex-

ample and membership queries in polynomial time. In symbols, ElP(EQ) ⊆ PlP(EX)

and ElP(MQ,EQ) ⊆ PlP(EX,MQ). Recall that by Remark 4.4, when a framework is

exactly learnable in polynomial time, it is assumed that the logic used to define the hy-

pothesis space allows to check if an example is entailed by it in polynomial time. Then,

by Theorem 4.41, the following corollary holds.

Corollary 4.44. For all safe FO learning frameworks F, if F ∈ ElP(MQ,EQ), then

Fπ ∈ PlP(EX,MQ).

4.4 Discussion 73

In general, the converse direction of Corollary 4.44 does not hold as shown by Blum [1994]

with an argument based on the assumption that one-way functions exist and by Ozaki

et al. [2020] relying on a representation-dependent proof. Moreover, by Theorem 4.34

the next corollary is also valid.

Corollary 4.45. For all safe FO learning frameworks F such that there is a polynomial

time and positive bounded learner for F, if F ∈ ElP(EQ), then Fπ ∈ PlP(EX).

4.4 Discussion

Our results focus on the learning from entailments setting, where prior to learning, we

select a logic language that describes concepts (logic theories). Information about an

unknown target concept is given by examples that are logic formulas, and the target is

identified by looking at the entailment relation between the examples and the target. The

goal is to find, through the information provided by the examples, a hypothesis that is

logically equivalent to the target. There are other settings for learning logic theories such

as learning from satisfiability, where examples are set of formulas and classified as positive

example if when conjoined with the unknown target concept the resulting formula is

satisfiable. Otherwise, they are negative examples. Some relationships can already be

found in literature. Hermo and Ozaki (2020) show (in Section C.1) how to transfer

polynomial time learnability results from entailments to interpretations when the logic

language considered is expressive up to multivalued dependency formulas. Raedt (1997)

also shows that learning (not polynomial time learning) from interpretations reduces

to learning from entailments. In turn, learning from entailments reduces to learning

from satisfiability. Therefore, some of the learnability results presented also hold in the

learning from partial interpretations and learning from satisfiability settings.

Future works can investigate learnability and polynomial time transferability results to

possibilistic settings in learning from interpretations, or learning from satisfiability. We

already know that learnability from partial interpretations reduces to learnability from

entailment and vice-versa, but whether polynomial time transferability results hold in

possibilistic settings is an open question. We can also consider studying learnability and

polynomial time transferability results for the PAC learning model that is more general

and includes strictly more polynomial time learnable frameworks than the exact model.

74 Exact Learning of Possibilistic Logic Theories

Chapter 5

Exact Learning Possibilistic Horn

Theories

The theoretical framework and the results shown in the previous chapter inspired the

development of a learning algorithm that identifies unknown target possibilistic Horn

formulas by asking queries as defined in the Exact Learning (EL) model. This chapter is

divided in two parts. In the first, the goal is to identify an efficient method with which

we can use exact learning algorithms in practice. Indeed, there are cases in which no

oracle able to answer queries is available, especially equivalence queries. In principle,

domain experts could be available to answer queries to exact learning algorithms, but it

is a costly and hard task to complete. We propose a semi-automatic technique that can

simulate such oracles. In the second part, we tackle the problem of learning possibilistic

logic Horn formulas. Since this study is based on the EL model, we are able to prove

guarantees on the learning outcome. Moreover, this work gives the opportunity to express

the uncertainty concerning the learned hypothesis of machine learning models.

For simulating oracles, we propose a solution based on the connection between the EL and

the PAC model (end of Section 4.3 in Chapter 4). The idea is that instead of aiming at the

exact identification of the target concept, we can guarantee PAC learnability conditions

if counterexamples for equivalence queries are found in a randomly generated sample of

labelled examples. We test this idea with a modification of the LRN algorithm [Frazier

and Pitt, 1993b] that learns (propositional) Horn formulas in the EL model by asking

membership and equivalence queries from partial interpretations. We name our version

of the algorithm HORN∗ and we show that it runs in polynomial time with respect to

the size of the target formula and the number of variables in the language. Since Horn

is a logic upon which automated reasoning can be carried on efficiently [Dowling and

Gallier, 1984], one can quickly check if a property under the form of a rule holds, or if

76 Exact Learning Possibilistic Horn Theories

an unintended rule is entailed.

Tabular datasets, that collect examples in the form of features of vector and target value,

are abundant and easily accessible. Our method proposes to train a machine learning

model from data and use such models to simulate oracles. Employing trained models

to automate the task of oracles has two main advantages. First, we can use the gen-

eralisation capabilities of machine learning models to obtain comprehensively answers

that cannot be found in the dataset. Secondly, if the machine learning model used to

answer queries is a so called black-box (like ANNs), we can use an exact learning algo-

rithm to extract rules encoded in it. Artificial Neural Network (ANN) are being widely

adopted for giving suggestions that may impact the life course of a person (criminal jus-

tice, health, and so on [McGough, 2018; Wexler, 2017]). Therefore, we carried our tests

treating a trained neural network model N as the target. More in detail, our method

treats an ANN N as an oracle that encodes a Horn formula, and uses the HORN∗ algo-

rithm to ask queries to N and gradually form a hypothesis that approximates the Horn

rules encoded in N . It is often the case that not all values in a dataset are known or

trustable. For this reason, our approach assumes settings in which the dataset used to

train the neural network contains noisy or missing values. Moreover, there is no assump-

tion regarding the internal architecture of the neural network. In this way, when the

network is trained on medical data, we are able to extract rules of the form ‘if an adult

is not a smoker and has normal pressure, then it survives the treatment’, in Horn logic:

((adult ∧ ¬smoker ∧ normal pressure)→ survives).

We perform an empirical study using the hepatocellular carcinoma dataset (HCC) [San-

tos et al., 2015], which describes survivability of patients diagnosed with hepatocellular

carcinoma according to clinical information. The HCC dataset contains many missing

values of attributes of patients. We compare the hypothesis built with our approach with

the hypothesis built by a state-of-the-art implementation of the incremental decision tree

algorithm [Domingos and Hulten, 2000b]. Our rule extraction procedure correctly ex-

tracts meaningful rules and it is two times faster than the decision tree algorithm.

In the second part of this chapter, we develop and test the Π HORN∗ algorithm that ex-

actly identifies an unknown possibilistic (propositional) Horn formula by asking equiv-

alence queries and possibility queries. The latter is similar to a membership query,

but it takes into account possibility degrees. We provide theoretical results concerning

polynomial time learnability of possibilistic logic theories in the exact learning model.

Π HORN∗ runs in polynomial time with respect to the size of the target and the number

of variables in the language. Also in this case, we test the strategy for simulating oracles

5.1 Extracting Horn Rules 77

with a trained neural network. The additional advantage of using Π HORN∗ is that with

possibilistic rules we can represent the uncertainty of rules encoded in the trained ANN.

Also in the second part, we consider the case where a neural network N has been trained

on uncertain or unreliable data, and compare the hypothesis built by Π HORN∗ (that

treats N as an oracle) with the hypothesis built by a decision tree algorithm [Domingos

and Hulten, 2000a; Montiel et al., 2018].

In Section 5.1, we present HORN∗, that identifies a Horn theory in the learning from

partial interpretation setting, and we explain how to simulate oracles. We provide ex-

perimental results in Section 5.2. Then, in Section 5.3, we explain how to identify

possibilistic Horn theories with Π HORN∗, and we show the results of extracting possi-

bilistic Horn rules from trained ANN models. The implementation of both algorithm is

available at the following link: https://git.app.uib.no/Cosimo.Persia/horn.

5.1 Extracting Horn Rules

We present an adaptation of the LRN algorithm [Frazier and Pitt, 1993b] that learns

from partial interpretations instead of entailments, as originally proposed by the authors

of the mentioned paper. This algorithm is able to exactly identify any unknown target

Horn formula by posing queries to membership and equivalence query oracles. The

algorithm is guaranteed to terminate in polynomial time with respect to the number

of variables into consideration. After that, we show how to simulate membership and

equivalence oracles with machine learning models trained on data.

The HORN∗ Algorithm

Angluin et al. (1992) proposed for the first time an algorithm for learning conjunction of

Horn clauses from classical (not partial) interpretations that runs in polynomial time with

respect to the size of the target, and the number of variables into consideration. Later,

Frazier and Pitt (1993a) showed that conjunctions of Horn clauses can be learned also

in the learning from entailment setting with their LRN algorithm. Exact identification

of a Horn theory with LRN is achieved in polynomial time with respect to the size

of the target Horn formula and the number of variables into consideration. The LRN

algorithm is more fit in cases where we cannot assume to have complete information over

the training examples [De Raedt, 1997]. As opposed to learning from interpretations

where an example provides the truth value of every variable, in learning from entailment

the learner has to identify the target in presence of incomplete information. Example 5.1

78 Exact Learning Possibilistic Horn Theories

clarifies this statement.

Example 5.1. Let F be the learning framework (E ,L, µ) with E and L the set of all

Horn formulas of 4 variables (|V| = 4), and µ the logical entailment operator between

formulas. Let

T := {(v1 → v2), (v1 → v3)} ∈ L

be the target. If the learner asks an equivalence query EQF,T with input ∅ it may receive

the counterexample (v1 → v2). So, it will get the information a constraint in the target

is violated when v1 is set to true and v2 to false. But, the learner cannot state anything

about the truth value of v3. On the contrary, if E is the set of interpretations of 4 variables

and µ is the satisfiability relation between interpretations and formulas, the learner may

receive I := {(v1,>), (v2,⊥), (v3,⊥), (v4,>)} as a counterexample after a call to EQF,T

with input ∅. In this case, there cannot be uncertainty about the truth value of v3.

Theorem 5.2 shows a connection between the learning from entailment and learning from

partial interpretations setting. With our terminology, this means that an algorithm

developed in the learning from entailment setting can be used to identify the target

concept in the learning from partial interpretations. Unfortunately, this results does not

take into account polynomial time property of EL algorithms.

Theorem 5.2 ([De Raedt, 1997] Theorem 16). Learning from finite partial interpre-

tations reduces to learning from entailment, and vice versa, learning from entailment

reduces to learning from partial interpretations

In this chapter, we focus our attention on learning Horn formulas from partial interpre-

tations. This setting captures best the type of available information we would like to

use in this work when training machine learning models. Indeed, it is common to have

available tabular data where each row is an example and columns are features of each ex-

ample. Since non-binary features (of nominal or continuous type) can be binarised into

a set of variables [Garćıa et al., 2013], we can treat each row in our dataset as a partial

interpretation. Discretization techniques [Peng et al., 2009] may lose important informa-

tion during the process of deciding which bin to associate to continuous variables, but

it is required for applying rule induction algorithms that learn classical logic formulas.

Example 5.3 shows how a simple dataset can be binarised.

Example 5.3. Table 5.1 depicts a dataset with two columns, each one of them is a

different feature. Feature F1 is a continuous variable with possible values in range [0, 100]

and feature F2 is nominal with possible values either 1, 2, or 3.

We can divide the interval of the feature F1 in 2 parts: feature F1,1 associated to the

interval [0, 50), and feature F1,2 associated to [50, 100]. If the original value of an example

5.1 Extracting Horn Rules 79

F1 F2

27 1
56 2
81 3

Table 5.1: A dataset of 3 examples and 2 features.

F1,1 F1,2 F2,1 F2,2 F2,3

1 0 1 0 0
0 1 0 1 0
0 1 0 0 1

Table 5.2: The binarised dataset

belongs to the i-th interval, the respective value of the F1,i feature is set to 1, and 0

otherwise (first 2 columns in Table 5.2). If the variables to binarise are nominal, the

number of features that replace the original is less arbitrary and it coincides with the

possible number of values that the nominal feature can have. Since in this case F2 can

have 3 different values, F2 is replaced with 3 other columns. For any example, the value

of F2,i is set to 1 if the respective instance of attribute F2 coincides with the i-th value of

F2 (for an arbitrary ordering of values of F2). The last 3 columns in Table 5.2 replaced

F2 in Table 5.1 where the arbitrary order on the values is one of the natural numbers. /

We adapt the algorithm for learning conjunction of Horn clauses introduced by Frazier

and Pitt (1993b) so that it is able to learn rules from partial interpretations. This

algorithm required a membership and an equivalence oracle to exactly identify the target

Horn formula. In our setting, membership queries take as input partial interpretations

and equivalence queries output counterexamples that are also partial interpretations.

Algorithm 7 shows the main steps of the modified algorithm.

HORN∗ starts with an empty hypothesis and throughout the run, it satisfies the condi-

tion T |= H. Lemma 5.4 is an indirect consequence of having a learner that can ask

membership queries (Remark 4.3).

Lemma 5.4 (Frazier and Pitt [1993a] Lemma 4 Adaptation). Let T be the target Horn

formula and H be the hypothesis built by HORN∗. At every step, it holds that T |= H.

HORN∗ poses equivalence queries until it receives ‘yes’ as an answer. Upon receiving

a counterexample I, by Lemma 5.4 we know I falsifies a rule in T not present in H,

because it is a negative counterexample. So, we know that some variables set to true by

the received counterexample satisfy the antecedent of a rule and some variables set to

false falsify their heads. Therefore, positive variables in counterexamples will denote the

80 Exact Learning Possibilistic Horn Theories

Algorithm 7: HORN∗

1: Input: It is assumed that the learner knows F (that is, it knows that the
hypothesis should be a Horn theory) but not the target T .

2: Output: H such that H ≡ T .
3: Let S be the empty sequence.
4: Denote with Ai the i-th element of S.
5: Let H be the empty hypothesis.
6: while EQF,T (H) returns a counterexample I do

7: Â ← {v ∈ V | (H ∧ {v′ ∈ V | I(v′) = >}) |= v}
8: if there is Ai ∈ S such that Ai ∩ Â ⊂ Ai and CON(Ai ∩ Â) 6= ∅ then
9: replace the first such Ai with Ai ∩ Â in S

10: else
11: append Â to S
12: end if
13: H ← ∅
14: for I ∈ S do
15: A ← {v ∈ V | I(v) = >}
16: for u ∈ CON(V,A) do
17: add the rule (

∧
v∈A

v)→ u to H

18: end for
19: end for
20: end while
21: return H

Algorithm 8: CON

1: Input: variables A ⊆ V,
2: Output: A subset B of V ∪ {⊥} such that T |= A → v for all v ∈ B
3: B ← ∅
4: for {u | u ∈ V ∪ {∅} \ A} do

5: Let I be such that for v ∈ V, I(v)←

1 v ∈ A
0 v = u

? otherwise

6: if MQF,T (I) = ‘no’ then
7: add u to B
8: end if
9: end for

10: return B

5.1 Extracting Horn Rules 81

antecedent of a rule in T . These set of variables are stored in the list S and they are

used to form the antecedents of rules in T . With Algorithm 8, at every loop, the HORN∗

algorithm will check for every A ∈ S,1 if T |= A → v for any v ∈ V. This guarantees

that the target entails every rule added to the hypothesis. Then, HORN∗ tries to refine

the last received counterexample with the previous. From Line 7 to 12 in Algorithm 7,

HORN∗ checks if the counterexample I is returned due to an antecedent stored in S that

is too specific, that is it has too many variables. This is done by checking if the target

T entails a rule r where ant(r) is a subset of variables in the intersection Â between

variables A ∈ S and variables that must be necessarily set to > by I with respect to

H. By calling CON with input a set of antecedents, HORN∗ checks if the refined set

of variables still appears in the antecedent of a rule in T . If it does, then A ∈ S is

replaced with Â that represents a better approximation of the antecedent of a rule in T .

Otherwise, I reveals an antecedent of a new rule entailed by T , and the corresponding

positive literals satisfied by I are directly added to S.

The main loop terminates with HORN∗ generating a set of Horn rules where elements (set

of variables) in S represent the antecedents of rules in T . Algorithm 8 is used to check

what variables should appear as consequents for each antecedent A ∈ S. By Lemma 5.5,

we can formally state that since each element in S denotes a rule antecedent in T (with

no duplicates), the size of S is guaranteed to be polynomial in the size of T .

Lemma 5.5 (Frazier and Pitt [1993a] Lemma 9 Adaptation). Let T be the target Horn

formula. At any time during a run of HORN∗, for any A1,A2 ∈ S, there are two distinct

Horn rules r1, r2 ∈ T such that ant(r1) ⊆ A1 and ant(r2) ⊆ A2.

Each counterexample will either reveal a superset of variables in an antecedent of a rule

in T or it will refine an already discovered antecedent of a rule. The first case can happen

|T | times and the second at most |V| times. Based on this intuition, Theorem 5.6 finally

states the correctness of the HORN∗ algorithm.

Theorem 5.6 (Frazier and Pitt [1993a] Theorem 10 Adaptation). Let V be a finite set

of propositional variables and let T be the unknown target Horn formula. HORN∗ runs

in polynomial time with respect to |T |, and |V|, and outputs a hypothesis H such that

H ≡ T by asking membership and equivalence queries.

Therefore, we can state that the learning framework under consideration is efficiently

exact learnable.

Corollary 5.7. Let F := (E ,L, µ) be the learning framework with E the set of partial

interpretation, and L the Horn logic language over V, and for all H ∈ L, µ(H) := {I ∈
E | I |= L}. F is in El(MQ,EQ).

1Recall that a set of variables is treated interchangeably as a conjunction.

82 Exact Learning Possibilistic Horn Theories

For clarity, Example 5.8 shows how Algorithm 7 generates a hypothesis by asking queries.

Example 5.8. Let the target Horn theory T be {v1 ∧ v2 → v3} and let V = {v1, · · · , v5}.
The HORN∗ algorithm will start with the empty hypothesis H = ∅. Upon the first call to

the equivalence query with input H, assume it receives the counterexample

I1 = {(v1,>), (v2,>), (v3,⊥), (v4,⊥), (v5,>)}.

Since at the first iteration S is equal to the empty set, HORN∗ will add the set {v1, v2, v5}
to S in Line 11. Then, it will generate the hypothesis H = {(v1∧v2∧v5 → v3)} and it will

call again the equivalence query oracle with input the new H. The only counterexample

that can be returned at this stage is

I2 = {(v1,>), (v2,>), (v3,⊥), (v4,⊥), (v5,⊥)}.

The algorithm will try to simplify the set {v1, v2, v5} in S with the set {v1, v2, v3} computed

in Line 7. Note that CON with input {v1, v2} outputs v3. Therefore, since all the checks

will be satisfied in Line 8, HORN∗ will replace {v1, v2, v5} in S with {v1, v2}. Later, the

algorithm will generate the hypothesis H = {(v1 ∧ v2 → v3)} and at the next equivalence

query, HORN∗ will terminate with output H that is logically equivalent to the target. /

Simulating Oracles

We recall that the learning framework into consideration is F := (E ,L, µ), where E is a

set of partial interpretations for the Horn language L and µ is the satisfiability relation

between (partial) interpretations and Horn formulas (learning from partial interpretation

setting). We propose to extract rules encoded in black-box models with the HORN∗

algorithm where the trained models act as oracles. The chosen black-box model is a

neural network denoted N .

Given the set of variables V, we assume that N is a function N : {>,⊥, ?}|V| → {0, 1}
that encodes a target Horn theory TN ∈ L. Therefore, N takes as input a partial

interpretation I and it outputs 0 if the encoded target Horn theory TN is falsified by

I and 1 otherwise, that is if I |= TN . We also assume an arbitrary but fixed ordering

on V such that we can express I as a vector(I), that is a vector of assignment values.

Example 5.9 clarifies the notation.

Example 5.9. Assume we have the set of variables V = {v1, · · · , v5}. The interpretation

5.1 Extracting Horn Rules 83

I = {(v1,>), (v2, ?), (v3,⊥), (v4,⊥), (v5,>) can be represented in vector form as:

vector(I) = (1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0).

Each variable truth value is represented as a triple with the first position set to 1 if I
maps it to >, second position set to 1 if I maps it to ⊥, and third position set to 1if I
maps it to ?, otherwise 0. We assigned the ordering of variables in V that follows the

ordering of the subscripts of variables in V. /

To simulate the membership oracle MQF,TN , we directly use the classifier N . When-

ever Algorithm 7 calls MQF,TN with input a partial interpretation I, we check if

N(vector(I)) = 1, which means that I |= TN . If so, we return the answer ‘yes’ to

the algorithm, ‘no’ if I 6|= TN .

Simulating an equivalence query oracle EQF,TN is not as straightforward as simulating

MQF,TN . This is due to the need of checking if the hypothesis constructed is equivalent

to TN . Such query requires evaluating whether the hypothesis constructed by HORN∗ is

equivalent to TN . Unfortunately, we already know that there is no algorithm that can

always find a counterexample in polynomial time, if one exists. That would imply Horn

formulas are polynomially learnable with only membership queries, which is known to

not be the case [Angluin, 1988].

For this reason, we drop the requirement of exactly identifying the target Horn theory

in favour of finding an approximation of it in light of the PAC learning model (PAC Sec-

tion 2.4 in Chapter 2). We simulate EQF,TN by generating a set of examples randomly

and classifying the examples using membership queries (by calling the ANN N). Then,

we search for an example in this set that the hypothesis constructed by HORN∗ misclas-

sifies. With this strategy, if the size of the set of examples randomly generated is large

enough [Vapnik and Chervonenkis, 1971], one can ensure that when the learning pro-

cess terminates, the generated hypothesis respects PAC conditions. That is, with high

probability the total number interpretations misclassified by the hypothesis is below a

predefine threshold (considering the entire space of partial interpretations). More pre-

cisely, if L is the language used to define the target TN , and if the size of the set of

examples generated randomly is at least

1

ε
log2

(
|L|
δ

)
,

then one can ensure that the hypothesis constructed is probably approximately cor-

rect [Valiant, 1984]. The parameter ε ∈ (0, 1) indicates the probability that the hy-

pothesis misclassifies an interpretation with respect to the target and δ ∈ (0, 1) is the

84 Exact Learning Possibilistic Horn Theories

probability that the learned hypothesis errs more than ε. Horn logic is closed under in-

tersection. This means that if I and I ′ satisfy a Horn theory then I ∩I ′ also does [Horn,

1951]. Thus, if L is restricted to Horn formulas only expressible with Horn logic and

variables V, then the number of logically different hypotheses in L is approximately

2(|V|
b|V|/2c).

This number follows from the work done by Alekseev [1989] and Burosch et al. [1993].

This bound is not practical as it would be infeasible to generate a sample respecting

PAC conditions with a large set of variables V.

Therefore, in order to guarantee that the hypothesis is PAC, we use the method proposed

by Angluin (1988) (Section 2.4) where the size of the sample is not fixed but increases

the more equivalence queries are asked. As shown by Equation (2.2) in Section 2.4

(Chapter 2) the size of the sample from which counterexamples are searched in after the

i-th equivalence query, should be greater or equal to

d1
ε

(
ln

1

δ
+ i ln 2

)
e. (5.1)

We will refer to this number when talking about the size of the sample for simulating

equivalence queries in the next sections.

Non-Horn Oracles

The truth table associated to the predictions made by a neural network (playing the

role of an oracle) may not always reflect the truth table of a Horn theory. This happens

when the neural network does not encode Horn rules. Even if the theory used to classify

the examples used to train a neural network is Horn, this does not mean that the neural

network will have a Horn theory encoded in it. Indeed, as oracles are assumed to answer

truthfully, HORN∗ would misbehave when answers to queries are returned according to

a non-Horn oracle. Example 5.10 shows a case where the HORN∗ algorithm may not

terminate when the target formula is not Horn.

Example 5.10. Assume V = {v1, v2} and let N be a trained model that encodes the

formula TN := {(v1 ∨ v2)}, which is not a Horn KB. Therefore, N classifies the inter-

pretation I1 := {(v1,⊥), (v2,⊥)} as 0 and the interpretations I2 := {(v1,>), (v2,⊥)},
I3 := {(v1,⊥), (v2,>)}, and I4 := {(v1,⊥), (v2,>)} as 1. This means that N encodes a

theory not closed under intersection (and, thus, not Horn).

Following the steps of Algorithm 7, the HORN∗ algorithm starts with the empty hypoth-

5.1 Extracting Horn Rules 85

esis and it asks an equivalence query. I1 may be returned as a negative counterexample

in Line 6 and the algorithm will then add the empty set to S in Line 11 (S is empty

at the first iteration). Then, as T 6|= v for any v ∈ V, the algorithm will never add any

rule to H in Line 6, and it will end the main loop with again the empty hypothesis. The

algorithm may receive in Line 6 again the counterexample I1 after a new equivalence

query. Therefore, the algorithm can loop indefinitely without improving the hypothesis

when the target is not a Horn theory. /

A first solution would be to avoid returning counterexamples more than once, but this

may lead to some problems because of how the HORN∗ learning algorithm works. Ex-

ample 5.11 clarifies the need of returning seen counterexamples in previous equivalence

queries for the correct execution of Algorithm 7.

Example 5.11. Assume |V| = 4 and the target is

T = {((v1 ∧ v3)→ v4), (v1 → v2)}.

Suppose the algorithm asks the first equivalence query and it receives the negative coun-

terexample I1 := {(v1,>), (v2,>), (v3,>), (v4,⊥)}, and after a second equivalence query,

another negative counterexample I2 := {(v1,>), (v2,⊥), (v3,⊥), (v4,>)}.

At this point, the list of antecedents kept by the algorithm would be S = ({v1}). After

some positive counterexamples, the hypothesis generated by the algorithm could then

be {v1 → v2}, and the only negative counterexample that can be received to learn the

other clause in the target would be again I1. Therefore, it is important for the correct

execution of the algorithm to receive already seen counterexamples. /

In order to avoid the loop in Example 5.10, the learning algorithm checks, after a coun-

terexample has been processed, if every set of variables in the list S contributes to the

addition of at least one rule in the hypothesis. By construction, if this check is not

passed we find ourselves in the case of Example 5.10, we can ignore that counterexam-

ple in future iterations. This means that we do not return such counterexample to the

algorithm if we find it in the sample of interpretations in future equivalence queries.

Representing Constraints

We explain how we can express constraints that are going to be extracted in the exper-

imental section. Horn rules r are of the form ant(r)→ con(r), for example:

(sunny ∧ happy)→ jogging

86 Exact Learning Possibilistic Horn Theories

where all the variables both in the antecedent and in the consequent are not negated.

This means that with Horn logic we cannot express rules of the form:

(¬sunny ∧ happy)→ boardgame night.

(empty fridge ∧ hungry)→ ¬happy.

To express a ‘weak’ form of negation, we duplicate all the variables in V and treat every

new variable as the negation of a variable in V. For example, let vi be the duplicated

variable of any vi ∈ V. We can express the rules

(sunny ∧ happy)→ boardgame night.

(empty fridge ∧ hungry)→ happy.

Usually, when duplicating variables in this way, we would like to avoid that both paired

variables are true in a partial interpretation (since they represent each other’s negation).

For this reason, we assume that Horn rules of the form

(v ∧ v)→ ⊥ (5.2)

always hold, for every v ∈ V. The constraint in Equation (5.2) for each variable v is

added to the hypothesis before the learning algorithm HORN∗ starts.

5.2 Experiments

In this section we show experimental results using the approach presented in the previous

section where a trained neural network is treated as an oracle for the HORN∗ algorithm.

We implemented the algorithm in a Python 3.9 script. For the neural networks, we

used the Keras library [Chollet et al., 2015]. Our HORN∗ implementation can start

with an empty hypothesis or with a set of Horn formulas as background knowledge

(assumed to be true properties of the domain at hand). We conduct the experiments

on an Ubuntu 18.04.5 LTS server with i9-7900X CPU at 3.30GHz, 32 physical cores,

8 GPUs NVIDIA A100 with 80GB, and 32GB RAM. For each proposed dataset, we

first train the neural network N on partial interpretations (more specifically, their vector

representation) classified as 0, if it is a negative example, or 1, if it is a positive example.

Then, we run the HORN∗ algorithm, which poses queries to N in order to extract the

rules encoded in N .

5.2 Experiments 87

HCC Dataset

We first experiment our approach of extracting Horn theories from partial interpretations

on a dataset (HCC) in the medical domain [Santos et al., 2015]. This dataset contains

missing values for attributes. We can consider each instance as a partial interpretation

that sets some variables (attributes of that instance) to true, some to false, and other

variables to ‘unknown’. Hepatocellular carcinoma causes liver cancer, and it is a serious

concern for global health. The HCC dataset [Santos et al., 2015] consists of 165 instances

of many risk factors and features of real patients diagnosed with this illness.

There are 49 features selected according to the EASL-EORTC (European Association

for the Study of the Liver - European Organisation for Research and Treatment of Can-

cer). From these features, 26 are quantitative variables, and 23 are qualitative variables.

Missing values represent 10.22% of the whole dataset and only 8 patients have complete

information in all fields (4.85%). The target class of each patient is binary. Each patient

is classified positively if they survive after 1 year of having been diagnosed with HCC,

and negatively otherwise. 63 cases are labelled negatively (the patient dies) and 102 pos-

itively (the patient survives). Quantitative variables describe, for example, the amount

of oxygen saturation in the human body, the concentration of iron in the blood, or num-

ber of cigarettes packages consumed per year. The range of the values that each variable

can assume varies, but it is specified. Qualitative variables can only have two different

values in this dataset (either 0 or 1). Usually they describe categorical information such

as if the patient comes from an endemic country, or if it is obese, etc.

The HORN∗ algorithm expects to receive counterexamples in the form of a partial in-

terpretation that specifies the truth values of boolean variables. For this reason, we

encode quantitative variables in a binary representation format. The interval of val-

ues of each quantitative variable is partitioned into three sub-intervals. These inter-

vals divide the values of the quantitative variable into ‘low’, ‘middle’, and ‘high’ val-

ues. For example, the interval of values of the variable that describes the number of

cigarettes packages consumed by the patient per year is [0, 510] can be partitioned into

[0, 50], (50, 200], (200, 510]. The binarisation technique follows the same idea explained

in Example 5.1.

The binarised dataset has in total 26∗3+23+1 = 102 variables and it can be considered

a set of partial interpretations. A missing value in the new dataset is denoted with ‘?’

similarly as in the original one, otherwise the value is 1 (0) if the variable is set to true

(false). Each partial interpretation I matches a rule (not necessarily Horn) of the form

(l1 ∧ · · · ∧ ln−1)→ ln (5.3)

88 Exact Learning Possibilistic Horn Theories

haemoglobin low hemoglobin med hemoglobin high smoker adult survives
1 0 0 1 ? 0

Table 5.3: A simplified description of a patient.

where each li is a positive literal if the variable i is set to true in I and negative otherwise.

The literal lk is not present in the rule if lk has a missing value (Example 5.12).

Example 5.12. Let the row in Table 5.3 describe the information of a patient who does

smoke, that has a low amount of haemoglobin, and that does not survive after 1 year

of being diagnosed with HCC. We can express this information under the form of the

following rule: ((haemoglobin low∧¬haemoglobin med∧¬haemoglobin high∧ smoker)→
¬survives). Variables in the antecedent that do not provide meaningful information can

be removed. For instance, the literals ¬haemoglobin med and ¬haemoglobin high in the

presence of haemoglobin low can be removed during data preprocessing. The information

stating whether the patient is an adult is missing. /

As explained in the previous section, by duplicating the number of variables and pairing

them such that one represents the negation of another variable, we can express the

previous rule with a Horn formula. For this reason, we further modify the dataset by

duplicating variables. Each new variable semantically represents the negated concept of

its paired variable. So, we form a dataset D of partial interpretations with 204 variables.

We can express each example in D with Horn rules like in Formula 5.3. We denote by T
the set of such rules that can be formed by looking at all partial interpretations in the

extended dataset. To express disjointness constraints between paired variables, we add

to T also the additional Horn rules of the form (vi ∧ vi)→ ⊥ (Formula 5.2). Finally, the

dataset used for training the neural network is formed by randomly generating partial

interpretations (with 204 variables) whose classification label is 0 if they do not satisfy

a rule in T , and 1 otherwise.

Model selection

By only randomly generating partial interpretations (with 204 variables), we can create

an unbalanced dataset with most partial interpretations classified as positive by the tar-

get Horn theory T (note: T is defined above). We solve this problem by oversampling

interpretations with negative label that are created by violating rules that match inter-

pretations in the binarised dataset. In total, there are 200 negative examples and 200

positive examples in the training dataset. 80% of the (balanced) binarised dataset was

used for training and validation. We used 3-fold cross validation for model evaluation.

As T is a Horn theory, there is no noisy data generated in this process.

5.2 Experiments 89

Hidd. Layers L. rate Accuracy
64, 32, 32,16 0.01 0.9252
64, 32, 32, 8 0.01 0.9241
32, 32, 32, 16 0.001 0.9138
32, 32, 16, 8 0.01 0.9159

Table 5.4: Architecture and learning rate of the top four neural networks in ascending
order with respect accuracy. The model in the first row was the selected one.

We built a sequential neural network model, where the number of nodes in the input

layer is 204, which is the number of variables in an input partial interpretation. We used

the library “Keras version 2.4.3” [Chollet et al., 2015] and we empirically searched for the

sequential architecture with the best performance varying the number of hidden layers,

nodes in hidden layers and the learning rate. We use SGD (Algorithm 3) to optimise

the parameters.

We searched our model with the following hyper-parameters:

• number of hidden layers ranging in {2, 3, 4, 5};

• number of nodes per layer in {4, 8, 16, 32, 64, 128}

• learning rate in {0.001, 0.01, 0.1}.

The model with the best performance had 5 hidden layers, 64, 32, 32, 16 nodes per layer

respectively, and 0.01 learning rate. Table 5.4 shows the best performing architectures.

Test Setting

In our experiments, we run the HORN∗ algorithm and we set a limit of 100 equivalence

queries that the algorithm can ask before terminating with the built hypothesis as its

output. To simulate an equivalence query, we randomly generate a sample of partial

interpretations and we classify each interpretation using the neural network. Afterwards,

we search for a counterexample to return to the algorithm as the answer of the query.

The size of the set of random interpretations for simulating the i-th equivalence query

is the same as in Formula 5.1 (Formula 2.2 in Section 2.4 of Chapter 2):

si := d1
ε

(
ln

1

δ
+ i ln 2

)
e

with ε and δ set to 0.05. We compare the quality of the HORN∗ hypothesis with the

hypothesis formed by an incremental decision tree [Domingos and Hulten, 2000b], an

established white box machine learning model. We use ‘Hoefffding Decision Tree’ imple-

mentation present in the ‘skmultiflow’ framework [Montiel et al., 2018]. It is possible to

90 Exact Learning Possibilistic Horn Theories

#Equiv. T /H T /N H/N T /tree
100 5.4% 3.1% 4.7% 4.6%

Table 5.5: The outcome of the rule extraction process with the HCC dataset. The
numbers are the percentages of interpretations classified differently between the target
T , neural network N , HORN∗ hypothesis H, and the tree.

generate a set of propositional rules by visiting every branch of the tree from the root

to leafs labelled negatively. The sampling idea for finding negative counterexamples for

HORN∗ is also used for extracting a decision tree from the neural network. For train-

ing the tree, we generate partial interpretations randomly that are then classified by the

neural network. The size of the i-th sample generated in this way is si. We check if at

least one of those classified partial interpretations is misclassified by the decision tree

algorithm. If this is the case, we incrementally train the tree with the entire sample.

This process is repeated until all classified interpretations in the sample are correctly

classified by the tree.

When the HORN∗ hypothesis and the tree have been extracted, we compute a partial

truth table of 204 variables of size 2000s100. We classify these interpretations according

to the target T , the neural network N , the HORN∗ hypothesis H and the decision tree.

We then compare the truth tables and count the number of times an interpretation is

classified differently between the different models.

Results

Table 5.5 shows the outcome of our experiment. The columns T /H, T /N , H/N , T /tree

are, respectively, the percentage of interpretations that are labelled differently between

the target and the hypothesis, the target and the neural network, the hypothesis and the

neural network, and the tree and the target. The running time of the HORN∗ algorithm

with at most 100 equivalence queries was around 6 minutes. The time for extracting an

incremental decision tree is around 30 minutes.

The type of rules that the HORN∗ algorithm extracted are of the form:

(hemoglobin high ∧ leucocytes low→ survives)

(hemoglobin low ∧ AFP high ∧ ferritin medium→ survives)

(hemoglobin low ∧ AFP high ∧ ferritin high→ survives)

with around 40 different variables in the antecedent. With 100 equivalence queries, the

hypothesis extracted has 20 rules of this type that are also present in the target T .

Other rules that are entailed by T can be found in the hypothesis. Examples labelled

5.2 Experiments 91

negatively with many missing values contain more information about the dependency

between variables that must be respected. Indeed, we noticed an increase of the accuracy

of the neural network trained on more missing values ensuring balanced classes. As a

consequence, also the quality of the extracted rules improves.

Randomly Generated Formulas

We tested this approach also with synthetic datasets. We generate Horn theories T ran-

domly, with at most n variables and having between
⌊
n
2

⌋
and n clauses. Each variable

is treated as an attribute with two values (true, false). We randomly generate interpre-

tations that are labelled 1 if they satisfy T , and 0 otherwise. The dataset contains all

possible interpretations with the given variables. As described earlier, the size of the

sample for simulating the i-th equivalence query is

si := d1
ε
(ln

1

δ
+ i ln 2)e.

with ε and δ set to 0.05 (Equation (2.2) in Section 2.4 of Chapter 2).

Test Setting

In our experiments with the synthetic dataset, we generate a target Horn formula ran-

domly, train the neural network, and run the HORN∗ algorithm. 80% is used for training

and we use the same model as in the previous subsection. The model complexity of the

ANN is adapted to the number of input variables n. Each hidden layer contains half the

nodes of the previous layer (rounded up) with a minimum number of nodes of 16. So in

total, the ANN has dlog2(n)e − 4 hidden layers and 1 node in the output layer. For in-

stance, if the number of variables is 1 000, the ANN has an input layer with 1 000 nodes,

and the hidden layers have 500, 250, 125, 63, 32, 16 nodes, respectively. With this choice,

we ensured the accuracy of the neural network to be at least 95% on the validation data.

The input is binarized with standard one-hot encoding techniques.

We compare our approach with incremental decision trees [Domingos and Hulten, 2000b],

an established white box machine learning model. We use the implementation available

in the ‘skmultiflow’ framework [Montiel et al., 2018]. By visiting the entire built tree,

it is possible to generate a set of Horn rules. To train the tree, we employ a similar

method we use to extract rules from a neural network using the sampling strategy. We

generate a sample of random interpretations classified by the neural network and we test

if at least one of the examples is misclassified by the tree. If this is the case, we give the

entire sample to the tree as training data and we repeat the process until all classified

92 Exact Learning Possibilistic Horn Theories

examples in the generated sample agree with the tree classification.

We limit to 100 the number of equivalence queries that HORN∗ is allowed to ask and study

how the number of variables affects the outcome of the learning process. The columns

T /H, T /N , H/N have the same meaning as in the experiments with the HCC dataset:

the percentage of interpretations that are labelled differently between the hypothesis, the

target, and the neural network. T /tree is the same percentage between the classification

of the built tree and the target. In these tests, we also keep track of the number of

predictions pred that the neural network provides asked by the HORN∗ algorithm. We

repeat this test also for the case where labels in the training data have been flipped

with probability 5% and 10%, that is when there is noise in the data. We test also the

scalability of this approach with a number of variables of at most 10 000. We compute

the number of interpretations labelled differently from a random sample of size

10n s100 = 10n d1
ε
(ln

1

δ
+ 100 ln 2)e.

Results.

Table 5.6 shows T /H, T /N , H/N , T /tree and pred. These numbers are the average

of 10 different iterations for each configuration. In our experiments, T /H is at most

7%, that is the algorithm succeeds in finding an approximation the target, even though

the neural network misclassifies some interpretations and noise is applied in some cases.

With 100 variables, the running time of the HORN∗ algorithm is on average 2 minutes,

while the training time of the decision tree circa 4 minutes. With 10 000 variables, the

running time of the HORN∗ and tree algorithm is respectively of 2 hours, and 4 hours.

Table 5.7 shows the time requirements in seconds.

5.3 Dealing With Uncertainty

Uncertainty and incomplete data are common in location-based services, sensor monitor-

ing, social networks, and many other domains. Learning rules based on the information

given by imprecise sensors or from data with missing values, in some cases requires a

different approach that is able to express uncertainty of rules. Consider for example the

task of identify a faulty component of a motor from the inexact measurement of the

other parts. Possibility and necessity measures are well suited to model uncertainty in

such cases. In Chapter 2, we have shown how to express formulas in possibilistic logic

that quantify how certain a piece of knowledge it is. Also, we showed how possibility

and necessity measures naturally represent imprecise probabilities [Dubois and Prade,

5.3 Dealing With Uncertainty 93

Var. Noise T /H T /N H/N T /tree Pred.
10 0% 1% 1% 0.5% 3% 1.1e4

5% 1.1% 1.1% 0.6% 3.1% 1.2e4
10% 2% 1.2% 1.5% 3.2% 1.2e4

102 0% 3.1% 3% 2.9% 3.1% 3.5e4
5% 3.5% 3.4% 3.1% 3.4% 3.7e4
10% 3.7% 4.6% 3.3% 3.5% 4.8e4

103 0% 5.3% 4.8% 4.2% 4.9% 9.2e4
5% 5.4% 4.8% 4.3% 5.1% 1.1e5
10% 5.4% 4.9% 4.3% 5.1% 1.2e5

104 0% 6.7% 6.5% 6.2% 6.8% 2.4e6
5% 6.9% 7% 6.5% 7.1% 4.1e6
10% 7% 7.2% 6.8% 7.1% 5.4e6

Table 5.6: Rule extraction results with the synthetic dataset and sampling strategy for
simulating an equivalence query. The table shows the percentage of interpretations that
are labelled differently between the hypothesis, target, neural network, and decision tree.

Var. HORN∗ Tree
10 16 19
102 120 230
103 1841 2957
104 7145 14591

Table 5.7: Running time in seconds of the extraction procedures with synthetic datasets
with at most 100 equivalence queries.

1988, 1992], where the possibility value of a formula represents the upper bound of the

associated probability value and the necessity value is the lower bound. In this section,

we introduce Π HORN∗, an exact learning algorithm for identifying possibilistic Horn

formulas. It asks possibility and equivalence queries, and it runs in polynomial time

with respect to the size of the target and the number of variables into consideration.

Additionally, we discuss how to extract possibilistic Horn rules from black-box machine

learning models.

5.3.1 Learning Possibilistic Horn Formulas

We extend some and introduce new definitions presented in Section 2.4 of Chapter 2

that are relevant to our learning setting.

The learning framework F = (E ,L, µ) in the previous section was defined with E being

a set of partial interpretations over V, L the Horn logic language, and µ(H) = {I ∈

94 Exact Learning Possibilistic Horn Theories

E | I |= H}. Until the end of this chapter, by possibilistic extension of F we mean

the learning framework Fπ = (Eπ,Lπ, µπ) where Eπ is the set of pairs (I, α) with I a

partial interpretation and α ∈ [0, 1], Lπ is the set of possibilistic Horn rules. We say

that (I, α) ∈ Eπ is a positive example for H ∈ Hπ if α < πH(I). That is, by Point 2

of Lemma 5.14, (I, α) is a positive example iff I |= H∗1−α, otherwise it is a negative

example. Therefore µπ is the satisfiability relation between the example (I, α) and the

classical knowledge base H∗1−α.

As the definition of the trained model is different from the one introduced earlier, we

also need to take into account what types of queries it can answer. The model N treated

in this part solves a regression problem as the output is a number in the interval [0, 1].

Therefore, a call to N cannot be used anymore to simulate a membership query as it

does not provide a answer with binary truth value. The answer of N will be a real

number in [0, 1] representing a possibility value, instead of 1 (‘yes’) or 0 (‘no’). For this

reason, we adapt the membership oracle in Section 2.4 to the possibilistic case, named

possibility oracle. Let PQFπ ,H be the oracle that takes as input some (I, β) ∈ Eπ and

outputs πH(I).2 A possibility query is a call to the oracle PQFπ ,H.

We first investigate whether polynomial time learnability results in classical logic are

transferable to this new setting, where the learner can ask equivalence queries, and

membership queries are replaced by possibility queries. If so then, since Horn formulas

are exactly learnable in polynomial time, by Corollary 5.7 it would follow that this

holds for possibilistic Horn. We recall the result in Chapter 4 stating that in general,

transferability from the classical to the possibilistic setting does not hold. The argument

trivially follows in the learning form partial interpretation setting.

Theorem 4.21. There is an FO learning framework F such that F is in ElP(MQ,EQ),

but Fπ = (Eπ,Lπ, µπ) is not in ElP(MQ,EQ).

Fortunately, for the class of safe learning frameworks (Section 4.1 in Chapter 4) which

contains the Horn learning framework, transferability from the classical to the possibilis-

tic setting holds as stated by Theorem 5.13.

Theorem 5.13. Let F be a safe learning framework. Fπ is exactly learnable in polynomial

time with possibility and equivalence queries iff F is exactly learnable in polynomial time

with membership and equivalence queries.

In Theorem 5.13, we can remove the safe condition for the direction from Fπ to F. Based

on our result in Theorem 5.13, we adapted the classical HORN∗ algorithm to the pos-

sibilistic setting, To learn possibilistic Horn formulas, we train the neural network with

2The precision of this number is finite if H is finite.

5.3 Dealing With Uncertainty 95

interpretations (more precisely, their vector representations) annotated with a possibility

value. A comprehensive proof of Theorem 5.13 is found in Appendix A.3.

5.3.2 The Π HORN∗ Algorithm

The positive transferability result shown in the previous section, encouraged the devel-

opment of a possibilistic version of the HORN∗ algorithm in the learning from partial

interpretation setting. Algorithm 9 depicts the steps that should be taken to learn a

hypothesis equivalent to an unknown possibilistic Horn formula T by asking possibility

and equivalence queries, by respectively calling PQFπ ,T , and EQFπ ,T . In our argument to

show correctness of the Π HORN∗ algorithm, we use the following properties.

Lemma 5.14. Let T be a possibilistic formula and I an interpretation such that I |= T ∗.
The following properties hold:

1. πT (I) = α implies 1− α ∈ T v ∪ {0}.

2. For α < 1, πT (I) > α iff I |= T ∗1−α.

Proof.

1. Let πT (I) = α. If α is 1, the statement holds. If α < 1, by definition of πT ,

there is a formula (φ, β) ∈ T where β the highest valuation such that I 6|= φ.

Consequently, α = 1− β and it follows that 1− α = β ∈ T v.

2. (⇒) Assume I 6|= T ∗1−α. Then, there is φ ∈ T ∗1−α such that I 6|= φ. By definition of

πT , we have that πT (I) ≤ 1− (1− α) = α.

(⇐) Assume I |= T ∗1−α. Then, I satisfies every formula φ ∈ T ∗1−α. If I does

not satisfy an arbitrary (φ, β) ∈ T , then β must be smaller than 1 − α and by

definition of πT , we know πT (I) ≤ 1 − β which is greater than 1 − (1 − α) = α

because β < 1− α.

Similarly to the HORN∗ algorithm, Π HORN∗ starts with the empty hypothesis and an

empty list S that stores antecedents of rules in T in addition to the possibility value

originally assigned to the counterexample revealing such antecedent. Π HORN∗ starts

its main loop by calling the equivalence query oracle, and it will terminate only when a

call to the equivalence query signals that the built hypothesis is equivalent to the target.

Upon receiving a counterexample (I, α′), we know by Lemma 5.15 that (I, α′) 6|= T .

96 Exact Learning Possibilistic Horn Theories

Lemma 5.15. Let T be the target possibilistic Horn formula and H be the hypothesis

built by Π HORN∗. At all times during the run, T |= H.

Proof. At the start of the computation when H = ∅, it trivially holds. Moreover, Line 17

is the only place where the algorithm adds rules to the hypothesis. For any rule (φ, β)

added to the hypothesis, we have that the interpretation Iφ such that it maps to >
only variables in the antecedent of φ, it maps to ⊥ the consequent of φ, and to ‘? the

remaining variables, then Iφ 6|= Tβ. By Property 2 of Lemma 5.14, only possibilistic

rules entailed by T are added to H after calls to Algorithm 10.

Therefore, a subset of variables mapped to > by I satisfy the antecedent of a rule in T
that I falsifies. In addition to keeping track of rule antecedents in the target, Π HORN∗

should also compute the possibility α associated to such counterexample with respect to

T . This is done by calling the possibility query oracle in Line 7.

Algorithm 9: Π HORN∗

1: Input: It is assumed that the learner knows Fπ but not the target T .
2: Output: H such that H ≡ T .
3: Let S be the empty sequence.
4: Denote with (Ai, αi) the i-th element of S.
5: Let H be the empty hypothesis.
6: while EQF,T (H) returns a counterexample (I, α′) do
7: α← PQFπ ,T (I)

8: Â ← {v ∈ V | (H ∧ {v′ ∈ V | I(v′) = >}) |= (v, 1− α)}
9: if there is Ai ∈ S such that Ai ∩ Â ⊂ Ai and Π CON(Ai ∩ Â, 1− α) 6= ∅ then

10: replace the first such (Ai, α) with (Ai ∩ Â, αi) in S
11: else
12: append Â to S
13: end if
14: H ← ∅
15: for (A, α) ∈ S do
16: for u ∈ Π CON(A, 1− α) do
17: add the rule ((

∧
v∈A

v)→ u, 1− α) to H

18: end for
19: end for
20: end while
21: return H

By Points 1,2 of Lemma 5.14, knowing the possibility value, and the information that

(I, α′) 6|= T reveal a valuation in the target. Later in the algorithm, the value α associ-

ated to a set of variables will be used to assign the necessity degree to formulas in the

hypothesis.

5.3 Dealing With Uncertainty 97

Algorithm 10: Π CON

1: Input: variables A ⊆ V, possibility α
2: Output: A subset A′ of V ∪ {⊥} such that T |= (A → v, α) for all v ∈ A′
3: A′ ← ∅
4: for {u | u ∈ V ∪ {∅} \ A} do

5: Let I be such that for v ∈ V, I(v)←

> v ∈ A
⊥ v = u

? otherwise

6: if PQFπ ,T (I) ≤ α then
7: add u to A′
8: end if
9: end for

10: return A′

After having found the variables that must be mapped to > according to the knowl-

edge acquired so far in Line 8, Π HORN∗ attempts to simplify the antecedent of a rule

previously found stored in S. The reason behind each step is analogous to the classical

HORN∗ algorithm, but this time the algorithm should be aware of the different valua-

tions in the target. An element (Ai, αi) ∈ S will be replaced with (Ai∩A, αi) if there is a

rule (r, 1−αi) in T with ant(r) ⊆ Ai∩Â. The check in Line 9 guarantees that rules with

smaller antecedents are identified first. Intuitively, the algorithm runs the HORN∗ algo-

rithm for each different valuation in the set of received counterexamples S. Correctness

and polynomial time learnability of Algorithm 9 follow by Theorem 5.13.

Theorem 5.16. Let V be a finite set of propositional variables and let T be the unknown

target possibilistic Horn formula. Π HORN∗ runs in polynomial time with respect to the

size of the target |T |, and number of variables |V|, and outputs a hypothesis H such that

H ≡ T by asking possibility and equivalence queries.

Proof. By Lemma 5.15, Π HORN∗ can only receive negative counterexamples. The pos-

sibilistic formula T can be represented as a set of layered classical horn formulas T ∗1−α
for each (1 − α) ∈ T v. Therefore, the idea is to learn a each classical layer of T with

the HORN∗ algorithm.

Whenever Π HORN∗ receives a counterexample (I, α′) from a call to EQFπ ,T , it calls

PQFπ ,T to obtain α = πT (I). By Property 1 of Lemma 5.14, we have α ∈ T v. Therefore,

at most |T v| different valuations are returned after a call to the possibility oracle. For

each of such valuation α, by Property 2 of Lemma 5.14, Π HORN∗ follows the same steps

of HORN∗ to build a hypothesis H1−α such that H1−α ≡ T ∗1−α.

Lemma 4.9. Let T be a possibilistic KB. Let I be a finite set of valuations such that

T v ⊆ I. If for each α ∈ I there is some FO KB K∗α such that K∗α ≡ T ∗α then, it holds

98 Exact Learning Possibilistic Horn Theories

that T ≡ {(φ, α) | φ ∈ K∗α, α ∈ I}.

By Theorem 5.6 and Lemma 4.9, we can prove that the statement holds.

Also in this case, the possibility distribution encoded by the neural network may not

reflect a possibilistic Horn theory. We adopt a similar solution for solving the problem

of counterexamples not reflecting a Horn theory as in Example 5.10. That is, after a

counterexample is received, Π HORN∗ checks if every element (A, α) ∈ S is responsible

for the addition of at least one rule in the hypothesis. If it is not the case, (A, α) is never

returned as a counterexample again.

5.3.3 Experimental Results

We experiment the extraction of possibilistic Horn formulas with a possibilistic synthetic

dataset. Similarly as in the classical case, we generate a possibilistic Horn theory T ran-

domly, with at most n variables and having between
⌊
n
2

⌋
and n clauses. The valuation

associated to a rule in T is chosen randomly in the interval (0, 1]2.3 We then generate

partial interpretations I, also randomly. Each interpretation is classified with the pos-

sibility value πT (I). In this way, we generate a dataset D := {(Ii, πT (Ii)) | 1 ≤ i ≤ d},
where the size depends on the number of variables into consideration, with d = 3000n.

Similarly as in the previous part of this chapter, we assume to have a trained machine

learning model, here a neural network N . This model takes as input a vector of vari-

able assignments {>,⊥, ?}|V| and it outputs a value in [0, 1], representing the possibility

of that assignment with respect to the encoded possibility distribution by N . Assuming

that N encodes a possibilistic Horn formula TN , in this setting, the ANN N with input

a partial interpretation I outputs πTN (I). The dataset used to train the ANN model

is {(vector(Ii), αi) | 1 ≤ i ≤ d}. Recall that vector(Ii) stands for the one-hot transfor-

mation of a vector representation of an interpretation (Example 5.9). This is because

each attribute is treated as a categorical type with three values (0, 1, ?). In the end,

the dataset is a set of one-hot encoded partial interpretations Ii with label αi. We train

an ANN model such that given as input the encoding vector(I) of a partial interpreta-

tion I, it outputs a number in [0, 1] expressing the possibility associated to I, that is

πTN (I). After training the ANN model, we run the Π HORN∗ algorithm. Calls to mem-

bership queries with input (I, α), by Point 2 of Lemma 5.14, will be answered ‘yes’ if

N(vector(I)) > α, ‘no’ otherwise. So, the ANN directly simulates PQFπ ,TN . Also in this

3The subscript in the interval means the precision.

5.3 Dealing With Uncertainty 99

Variables Hidd. Layers Learn. rate MSE
10 64 0.1 0.0194
102 128, 64, 64 0.01 0.0291
103 512,256,64 0.001 0.0473
104 1024,512,512,64 0.001 0.8812

Table 5.8: Architecture and learning rate of the best neural network.

case, to simulate the i-th equivalence query, we create a sample of size

si = d1
ε
(ln

1

δ
+ i ln 2)e.

with ε and δ set to 0.05. We let the trained ANN classify each generated example, and

we search for a (negative) counterexample in it. If we found one, we return it to the

algorithm, otherwise we stop the run of Π HORN∗ and obtain the extracted hypothesis.

Model Selection

80% of the data was reserved for training and validation. We used 3-fold cross validation.

We searched for the best combination of hyper-parameters:

• number of hidden layers ranging in {5, 10, 15, 20, 25};

• number of nodes per layer in {64, 28, 256, 512, 1024}

• learning rate in {0.001, 0.01, 0.1}.

We optimise the parameters with SGD (Algorithm 3) and we set to 2000 the maximum

number of epochs with early-stopping. This means that when the validation loss does

not decrease more than 0.001 after 10 times the parameter have been updated, the opti-

misation algorithm stops. Table 5.8 shows the best performing architectures depending

on the number of variables into consideration during our tests.

Test Setting

The baseline model of choice is an implementation of an incremental decision tree re-

gressor [Domingos and Hulten, 2000b] available on the ‘skmultiflow’ framework [Montiel

et al., 2018]. To train the tree, we generate a sample of random interpretations classi-

fied by the neural network and we test if at least one of the examples is misclassified by

the tree. If this is the case, we give the entire sample to the tree as training data. We

100 Exact Learning Possibilistic Horn Theories

Var. Noise T /H T /N H/N T /tree Pred.
10 0% 0.3% 0.5% 0.3% 0.4% 1.2e4

5% 0.4% 0.5% 0.4% 0.5% 1.4e4
10% 0.5% 0.6% 0.4% 0.5% 1.5e4

102 0% 0.7% 0.6% 0.7% 0.7% 3.7e4
5% 0.7% 0.8% 0.7% 0.8% 3.9e4
10% 0.8% 0.9% 0.9% 0.8% 5.1e4

103 0% 1.2% 1.1% 1.3% 1.3% 9.7e4
5% 1.3% 1.3% 1.3% 1.4% 1.3e5
10% 1.5% 1.6% 1.4% 1.6% 1.3e5

104 0% 2.2% 2.4% 2.3% 2.7% 2.5e6
5% 2.4% 2.4% 2.5% 2.7% 4.2e6
10% 2.8% 2.9% 2.8% 2.9% 5.5e6

Table 5.9: Rule extraction results with the synthetic dataset and sampling strategy for
simulating an equivalence query. The table shows the percentage of interpretations that
are labelled with a difference between possibility values greater than 0.05.

Var. Π HORN∗ Tree
10 348 1021
102 420 351
103 6.2e3 5.2e4
104 7.4e4 6.1e5

Table 5.10: Running time in seconds of the extraction procedures with synthetic datasets
with at most 100 equivalence queries.

repeat the process until the tree predictions are the same as the ANN. The size of the

i-th generated sample is si.

We limit Π HORN∗ to ask at most 100 equivalence queries. We vary the number of vari-

ables from 10 to 10 000. To simulate cases where we have noisy data, we repeat this test

also for cases where labels in the training data have been added or subtracted a random

value between [0.1, 0.3]2 with probability 5% and 10%; making sure that the corrupted

labels are in the interval [0, 1]. We record the percentage of interpretations in which the

difference between possibility values passed 0.05 when comparing the hypothesis H, the

target T , the neural network N , and the tree. We compute the number of interpretations

labelled differently from a random sample of size

10n s100 = 10n d1
ε
(ln

1

δ
+ 100 ln 2)e.

5.4 Discussion 101

Results

Table 5.9 shows the outcome of out experiments. The columns T /H, T /N , H/N ,

T /tree is respectively the percentage of interpretations that differ by more than the

value 0.05 between the target and the hypothesis, the target and the neural network, the

hypothesis the neural network, and the target and the tree. The last column, ‘Pred’, is

the number of predictions that the neural network provides for answering queries to the

Π HORN∗ algorithm. Table 5.10 shows the time required by Π HORN∗ and incremental

tree algorithm to extract rules from the neural network. We conclude that the hypothesis

generated by Π HORN∗ is more accurate with comparable running times.

5.4 Discussion

In this work, we presented an approach for simulating queries, defined in the exact

learning model, for cases where it is not realistic to have oracles that can answer queries.

The most challenging part is how to simulate equivalence queries, in particular, how

to generate counterexamples. We evaluate a strategy for simulating them, based on

sampling. It is often the case that not all values in a dataset are known or trustable.

Our method based on partial interpretations covers such scenarios and generalizes the

case with (full) interpretations. We test our approach empirically using a real world

dataset in the medical domain. We tested this method by extracting Horn theories from

neural networks, using the HORN∗ learning algorithm. The quality of the extracted

hypothesis and the runtime results are promising. Moreover, there is also some potential

for optimising our implementation.

Additionally, data is not always certain or complete. We tackle the problem of learning in

the presence of uncertainty, and express knowledge with degrees of confidence using the

framework of possibilistic logic and the exact learning model. We prove that polynomial

time results can be transferred from classical to possibilistic settings. For this reason,

we implement and test Π HORN∗ an adaptation of HORN∗ to the possibilistic case.

Π HORN∗ is time efficient and effective in identifying the unknown possibilistic target

formula. This work contributes to the challenge of how to represent ignorance in black-

box machine learning models, like neural networks.

Future works will focus on studying alternative ways of simulating exact learning oracles.

Depending on the specific context where an exact learning algorithm is run, there may

be new queries that can be performed. For instance, in the possibilistic setting, it

was convenient to replace the membership oracle with the possibility one. Moreover,

102 Exact Learning Possibilistic Horn Theories

polynomial time learnability results hold up to multivalued dependency formulas [Hermo

and Ozaki, 2020]. Investigating more expressive classical languages, may lead to new

methods for learning more complex possibilistic rules.

Chapter 6

Related Work

We give an overview of relevant works related to ours. In Section 6.1, we list pertinent

efforts in combining the knowledge representation advantages of logic-based formalisms

and performant inductive inference of statistical methods. In Section 6.2, we present

important studies in the exact learning of logical theories. Finally, in the last section

we discuss proposed formalisms with the goal of modelling uncertainty, and works on

learning possibilistic logic theories.

6.1 Rule Induction and Neurosymbolic AI

The most used rule induction algorithms belong to the decision tree family. In partic-

ular, the classification and regression tree (CART) algorithm [Breiman et al., 1984] or

the ID4.5 [Quinlan, 1993] decision tree algorithm. Such trees are built by splitting the

initial dataset, that represents the root node of the tree, into subsets according to the

value of a feature. These values then constitute the successor children. This process is

repeated on each subset representing each child until new data-subsets are homogeneous,

according to some predefined stopping criteria. In literature, we can find many variants

based on the idea of a decision tree, such as RIPPER [Cohen, 1995] that generates bi-

nary (or crisp) rules. We also recall FURIA, an improvement of RIPPER, that generates

fuzzy rules [Elkano et al., 2020; Hühn and Hüllermeier, 2009]. Decision trees are simple to

interpret, handle missing data, both categorical and numerical features, and there are ef-

ficient implementations of tree learning algorithms that are open source [Pedregosa et al.,

2011]. Unfortunately, the complexity of finding an optimal tree is intractable [Hyafil and

Rivest, 1976] and techniques based on greedy heuristics make the tree building process

dependant on the structure of the data. The issue of scalability in rule induction has al-

104 Related Work

ready been observed in Big Data settings. For tackling the problem of learning trees with

big datasets, Elkano et al. [2020] proposed CFM-BD, a distributed system for fuzzy rule

induction using a MapReduce paradigm. While CFM-BD has shown promising results,

it still solves a search problem on a large discrete space. Decision trees mainly differ

from the RIDDLE architecture as the type of data given as input (RIDDLE requires pos-

sibility values), and decision trees have ‘sharp’ decision boundaries while with RIDDLE

the learning task can be cast into a differentiable error function.

Other approaches aim at finding directly the rules holding in a dataset. Works in induc-

tive logic programming (ILP) like PROGOL [Muggleton, 1995] combine reasoning and

search to find the rules to add to a given background knowledge such that the final hy-

pothesis (background + rules) gives correct predictions. However, the applications of

such systems is limited by the high computational costs they require to find rules. An-

other method used to discover patterns in data under the form of rules is association

rule mining (ARM) [Agrawal et al., 1993]. With this approach, rules are found look-

ing at correlations, causal structures among sets of features in databases. Generally, the

search procedures selects candidate rules and computes the statistical significance, called

support, and percentage of cases that satisfy a given rule, called confidence. When both

support and confidence of a rule are above a given threshold, such rule is outputted. The

proposed RIDDLE architecture has the main advantage of casting the learning problem

into a differentiable error function, so efficient optimization algorithms can be used.

Recently, we witnessed a increase in generating interpretable rules with Artificial Neural

Network (ANN) models. The goal is to combine the advantages of symbolic logic of

carrying reasoning and representing knowledge, with the large-scale learning capabilities

of the algorithms used to train ANN models. Hence the reason of the name of this

field called neuro-symbolic artificial intelligence. On the most abstract level, works

in this field propose different architecture for ANN models that can be trained with

standard gradient descent techniques, such that after training, the optimised weights can

be used to construct rules. DR-Net [Qiao et al., 2021] employs a simple 2-layer neural

network architecture to learn DNF rule sets. DR-Net also controls the complexity of the

rules learned via a sparsity term. Kusters et al. [2022] define a 3-layer neural network

architecture for rule induction, named R2N, that can also identify potential new terms.

R2N integrates neural networks and rule induction with a differentiable function, but

it can only learn positive DNF, a restricted class of rules where variables cannot be

negated [Angluin, 1988]. Glanois et al. [2022] propose HRI, a hierarchical approach to

rule induction. The language of rules differs considerably from propositional rules, and

their method also relies of pre-defined rule templates that determine the types of rules

that can be learned. The RIDDLE architecture does not limit the number of layers, and

it is able to express full propositional CNF rules.

6.2 Exact Learning 105

6.2 Exact Learning

The exact learning model [Angluin, 1988] has been applied for investigating and solving

problems in computational learning theory. The works by Cohen and Hirsh (1994) and

Frazier and Pitt (1996) present results on the learnability of formulas that describe an

abstract concept in the exact learning model using membership and equivalence queries.

Konev et al. (2014) present results on the exact learning of lightweight description logic

ontologies. They make a distinction between polynomial time and polynomial query

learnability (where not the running time but only the number and the size of queries

asked by the learner are taken into account) [Konev et al., 2016, 2018]. Positive poly-

nomial time learnability results for lightweight description logics have also inspired the

implementation of ‘ExactLearner’ [Duarte et al., 2018], a tool that can build ontologies

by asking queries to domain experts. This tool also shows the strength of the algorithm

with the implementation of a teacher that returns ‘difficult’ answers that minimise the

information revealed about the target. Among the systems built for learning description

logic concepts, we highlight the DL-Learner proposed by Lehmann (2009). Some of the

results concerning learnability of lightweight logical theories were presented by Ozaki

et al. (2020) where they replaced an equivalence query with an inseparability query that

returns ‘yes’ if the hypothesis is inseparable from the target with respect to a predefined

query language.

An important open question in computational learning theory is whether the class of

formulas in conjunctive normal form is learnable in polynomial time. Horn logic is

efficiently learnable in the exact learning model with membership and equivalence queries

[Angluin et al., 1992] and a recent work shows positive results for a more expressive class

of propositional logic formulas [Hermo and Ozaki, 2020]. About the exact learning of

more expressive logic, we recall works on the exact learnability of fragments of FO

Horn logic under certain conditions [Arias and Khardon, 2002; Arimura, 1997a; Reddy

and Tadepalli, 1998a; Selman and Fern, 2011]. There is also an implementation that

instead of asking queries to domain experts, it just looks at available data to mine a

fragment of FO Horn rules, this system is called Logan-H [Arias et al., 2007]. The

original algorithm is polynomial in the number of clauses, terms and predicates and the

size of the counterexamples, but exponential in the arity of predicates and in the number

of variables per clause. The existence of a polynomial time exact learning algorithm for

FO Horn with respect to the number of variables per clause is still an open question.

A lot of work has been done in the field of learning logical theories. We point out to

comprehensive surveys [Cimiano et al., 2010; Lehmann and Völker, 2014; Ozaki, 2020a;

Wong et al., 2012]. Regarding works extending Angluin et al.’s (1992) algorithm for

learning propositional Horn theories, we highlight the works by Arias and Balcázar [2009]

106 Related Work

and Hermo and Ozaki [2020]. Some authors addressed the problem of learning logic

theories with only membership queries. Lav́ın Puente (2011) shows that a fragment of

propositional logic where the consequents of the clauses in the target are pairwise disjoint

and with a constant maximum number of variables are polynomial time learnable with

only membership queries. Monotone CNF formulas [Domingo et al., 1999] in which each

variable appears at most a constant number of times are also learnable in polynomial

time with only membership queries. Decision trees with a fixed depth are also learnable

with only membership queries [Bshouty and Haddad-Zaknoon, 2019].

In literature, we can find other works that use exact learning to extract an interpretable

representation of a neural network by posing queries. In 2019, Weiss et al. extend their

already mentioned approach for extracting automata from neural networks to the case

in which the automata are probabilistic. Recently, Okudono et al. (2020) extended the

mentioned work with a regression method for simulating equivalence queries. Shih et al.

(2019) consider the problem of verifying binarized neural networks with membership and

equivalence queries. The authors extract a binary decision diagram using a SAT solver

to answer equivalence queries. The interpretability field is large and there are many

approaches to interpret neural networks models Zhang et al. [2021]. There is a global

and active approach that focuses on explaining the already trained model as a whole, as

opposed to changing the network architecture for interpretability (passive), or explaining

through feature studies or correlation (local).

6.3 Uncertainty Measures and Possibilistic Logic

Imprecise and uncertain information is abundant and, in some cases, the only available

data. There are many attempts for formally representing uncertainty. Probability theory

[Ross, 2014] is the most well known uncertainty formalism. We recall belief function-

based evidence theory [Shafer, 2016; Yager and Liu, 2008] that similarly as in possibility

theory, there is a function, named belief function, that assigns to every element of the

domain into consideration, a value in the interval [0, 1] with the additional constraint

that the sum of beliefs on all world views must be 1. An event is more certain when

the value associated by the belief function approaches 1. The theory of evidence can

also be considered a generalisation of Bayesian theory [Jensen, 2001; Pearl, 1988]. The

latter is also an important representation formalism for uncertainty in knowledge. To

address the need of both managing uncertain and complex structured knowledge, there

are some works that combine logic and uncertainty formalisms. Classical logic is too

rigid and fails to model situations where there is contradictory, incomplete information;

often encountered and abundant in the real world. We mention probabilistic logic [Guan

6.3 Uncertainty Measures and Possibilistic Logic 107

and Lesser, 1990; Nilsson, 1986], where the truth of a statement is not binary but asso-

ciated with a probability value. In this way, reasoning tasks are carried out to find the

probability of a statement based on the probability of other given statements. A similar

formalism is subjective logic [Jøsang, 2001], well suited for modelling situations where

knowledge is mostly dubious.

If instead we want to model the vagueness of statements, Fuzzy logic [Pelletier, 2000;

Zadeh, 1965] provides a mathematical framework for encoding vague knowledge and

reasoning about it. For example, if we want to model the concept of cold, −45◦ Celsius

may be assigned a higher value of ‘coldness’ (as a membership to the concept ‘cold’) if

compared with −1◦ Celsius. When the underlying theory for managing incomplete, or

inconsistent knowledge is possibility theory [Dubois and Prade, 1998; Zadeh, 1978] we

have possibilistic logic [Dubois and Prade, 1990a, 2014; Dubois et al., 1994; Lang, 2000].

It can model uncertainty numerically or quantitatively and, in general, it gives more

freedom to model uncertainty as it for example, allows to neither believe in an event

nor in its negation (forbidden by the complement rules in other uncertainty measures

like probability). Also, possibility theory is advertised as the simplest and non-trivial

formalism for modelling imprecise probability [Coolen et al.; Walley, 1996; Walley and

Peter, 1991]. The measures introduced by possibility theory can be seen as upper bounds

and lower bounds of ill-known probabilities [Dubois and Prade, 1988, 1990b, 1992]. The

belief and plausibility measures defined in evidence theory can also be used to model

imprecise probabilities, respectively, the lower and upper bounds.

We can find some works that combine learning and possibilistic logic. We can find works

on the PAC learnability of possibilistic logic theories from default rules [Kuzelka et al.,

2016]. Moreover, possibilistic logic has been used to reason with default rules [Benferhat

et al., 1992]. They propose a method for learning consistent logical theories from noisy

default rules. When carrying automated reasoning procedures with default rules, it is

important to rank rules such that it is easier to derive plausible conclusions according to

the given rank applicable to the situation under concern. Possibilistic logic provides a way

of selecting and ordering rules. In inductive logic programming, first-order possibilistic

logic has been used to handle exceptions by means of prioritised rules [Serrurier and

Prade, 2007]. In statistical relational learning, possibilistic logic has been used as a

formal encoding of statistical regularities found in relational data [Kuzelka et al., 2017].

Additionally, they claim that possibilistic models are easier to interpret correctly, as

they are stratified classical theories. We recall the work by Kuzelka et al. [2015] stating

that possibilistic formulas can encode Markov logic networks. Formal concept analysis

has been applied to generate attribute implications with a degree of certainty [Djouadi

et al., 2010]. Finally, we point out an extension of version space learning that deals with

examples associated with possibility degrees [Prade and Serrurier, 2008].

108 Related Work

Chapter 7

Conclusion

Finding patterns in datasets under the form of interpretable rules is beneficial to var-

ied fields [Bratko, 1993; WJ., 1987]. Interpretable models can support decisions in

biomedicine [Podgorelec et al., 2002; Scala et al., 2019], and security [Dhanraj et al.,

2022; Xu et al., 2018], to name a few. Moreover, uncertainty is pervasive and it is cru-

cial to handle to extract useful knowledge from the available data. The work in this

thesis provides a method for finding interpretable patterns in data under the form of

rules with the additional goal of managing and expressing uncertainty over the learned

knowledge. In this chapter, we summarize the main contribution of this work. Then, we

mention open problems and possible future works.

7.1 Contribution

The work on this thesis can be divided in three main parts:

Rule Induction with Artificial Neural Networks (ANNs). Traditional ANN

architectures scale well with the size of the data. But, they are defined ‘black-box’ models

as it is difficult to understand the decisions made by the model when giving predictions.

On the contrary, rule induction algorithms provide interpretable rules induced from data,

but face difficulties in scaling in the presence of a high number of variables. In Chapter 3,

we introduced RIDDLE. A novel ANN architecture based on the framework of possibility

theory. The only requirement needed to run the learning algorithm is to express the

features of the dataset used for training with possibility values. Each one of these values

is associated to the truth value of the corresponding variable in the original dataset. We

implemented the RIDDLE architecture with the openly available and industrial-ready

110 Conclusion

PyTorch library [Paszke et al., 2019]. The parameter optimisation task is carried with

standard and established techniques based on first-order derivatives. The formalisation

is easily applicable to future extension or discovery of new techniques for parameter

optimisations. In the experimental evaluation with 15 real-world datasets, we compared

the model complexity of RIDDLE and the fuzzy rule decision tree FURIA [Hühn and

Hüllermeier, 2009]. We show that the extracted rules are most of the times less complex

than rules found by the decision tree. We concluded that RIDDLE is competitive and a

viable option for rule induction tasks.

Computational Learning Theory. The empirical performance of RIDDLE is promis-

ing, and we can apply it to solve challenging rule induction tasks. However, the ar-

guments shown in Chapter 3 do not provide properties about the learned rules or the

learning task itself. For this reason, in Chapter 4 we formally investigated the learn-

ing task of learning possibilistic logic theories in light of Angluin’s Exact Learning (EL)

model [Angluin, 1988]. To do so, we introduced new notions in computational learning

theory, bridging the gap between the theory of computation and computational learn-

ing theory. We provided the definition of a learning system that abstractly models the

communication between a learner and a teacher. Both of them are pictured as Turing

Machines, and the learner represents the learning algorithm that identifies an unknown

target hypothesis. The generality of the learning system allows to apply different learn-

ing models present in literature like the EL and Probably Approximately Correct (PAC)

model [Valiant, 1984]. We first identify conditions that guarantee the learner to succeed

in finding a possibilistic theory equivalent to the target. Then, we study conditions that

allow a polynomial time learning algorithm to be adapted and used in the possibilistic

setting. We consider cases where the learner can ask the queries: membership, equiva-

lence, superset, subset only, or membership and equivalence queries together. Our results

apply in the learning from entailment setting and when the classical logic language used

to define the possibilistic extension is a decidable fragment of First Order (FO) logic.

We also recall a connection between the EL and the PAC learning model. Indeed, poly-

nomial time results in the EL model with only equivalence queries can be transferred to

the PAC learning model [Angluin, 1988; Mohri et al., 2012]. If the learner is allowed to

ask membership queries too, the learnability results holds in the PAC model where the

learner can ask example and membership queries.

Learning Possibilistic Horn Theories. The formal study carried in Chapter 4, en-

couraged the development of a possibilistic version of the LRN algorithm [Frazier and

Pitt, 1993b] that learns (propositional) Horn formulas in the EL model by asking mem-

bership and equivalence queries. LRN is developed in the learning from entailment

setting, but we decided to implement a version that runs in the learning from partial

7.2 Future Work 111

interpretations setting. This change is due to the fact that representing examples as par-

tial interpretations better captures the type of data we use during training. We name

the new algorithm Π HORN∗, and we prove correctness and polynomial time running

properties with respect to the size of the target and number of variables into considera-

tion. This includes also the precision, that is the highest number of digits that the target

requires to express the certainty degrees of the encoded formulas.

We also address the problem of answering the queries asked by an EL algorithm. Often,

this represents an obstacle for the adoption of algorithms in such a model. Our method

allows an EL algorithm to receive answers to queries in an automated way from data.

To do so, we leverage the connection to the EL and PAC model. The technique can

be divided in two parts. In the first, we train a Machine Learning (ML) model that

identifies patterns in data. In the second part, we use the learned model to answer

queries of an EL algorithm that aims at identifying the patterns encoded in the trained

model. This technique is especially useful when the trained ML model is black-box, i.e.

it is not easy to extract the patterns after it has learned after the training phase. For

this reason, we select ANNs as a ML model that generalises patterns from data and that

answers the queries asked by Π HORN∗. With this method, an EL algorithm loses the

property of outputting a hypothesis equivalent to the target, but it outputs a hypothesis

that respects PAC conditions. We empirically test our technique with the Π HORN∗

algorithm that by asking queries to a trained ANN model N , it outputs a possibilistic

theory that is an approximation of the rules encoded in N . The empirical evaluation up

until 10 000 variables showed that this is a viable solution.

7.2 Future Work

As already mentioned in Chapter 3, although the RIDDLE architecture is efficient and

scales well with the size of the dataset, we can further optimise the matrix computation of

RIDDLE in our implementation and speed-up both training and inference time. Moreover,

the quality of the rules found with RIDDLE improves with the quality of the possibilistic

values in the input dataset. A better estimation of such values contributes positively

to both the complexity of the output rules and certainty degrees associated to them.

For this reason, future work may focus on improving the data preprocessing. This

can be done on many aspects. For instance, there are different methods of drawing

possibilities distributions from imprecise data [Dubois and Prade, 1992, 2016]. Some are

based on the connection between possibility distributions and uncertain probabilities;

others on qualitative analysis. Another interesting project would be to find an automated

technique for discretising the original dataset, before drawing possibilities values for the

112 Conclusion

final dataset given as input to RIDDLE. As a consequence, such technique could decrease

the total number of final variables in the input dataset and improve the complexity of the

final RIDDLE model. On top of that, the human-time saved during data preprocessing

is a huge bonus.

In Chapter 4, we carried our investigation in the learning from entailment setting in the

EL model. Since the set of learning frameworks learnable in polynomial time in the EL

model is only a strict subset of the learning frameworks learnable in polynomial time

in the PAC model, extending our study directly to the PAC model is a viable option.

The proposed learning system is general enough to be applied to both active (like EL)

and passive (like PAC) learning scenarios. Next steps could consider applying it to the

settings of transfer learning, or multiple-instance learning. The first focuses on providing

the solution of a problem from the knowledge gained in a similar problem instance, such

as learning to play chess after having mastered checkers. The second studies how to

learn a concept only based on the relation of other concepts. For example, learning to

identify the concept ‘beach’, but only looking at the relation between ‘water’, ‘sand’, etc.

Finally, we may also investigate learnability and polynomial time transferability results

to possibilistic settings in learning from interpretations, or learning from satisfiability

setting [De Raedt, 1997].

In Chapter 5, we proposed a way of simulating equivalence queries from data. Depending

on the domain at hand, there may be new ways of providing answers to queries answered

by EL algorithms. Additionally, we can improve the performance of the Π HORN∗ algo-

rithm, both learning and inference time. The optimisation process may take into account

the adoption of already optimised solvers. Moreover, the polynomial time learnability

results shown in Chapter 4 and Chapter 5, hold for decidable fragments of FO logic.

Therefore, we can extend the work present in the EL literature, and develop possibilistic

versions of such EL algorithms.

Appendix A

Omitted Definitions and Proofs

In this chapter, we can find omitted proofs in the main body of the document. Ap-

pendix A.1 defines the more complex FO language. Appendix A.2 provides all the

omitted proofs in Chapter 4, and Appendix A.3 shows omitted proofs in Chapter 5.

A.1 First-Order Logic

An alphabet of a First Order (FO) logic language L consists of (1) countably infinite

sets R, F, V of, respectively, relations symbols, functions symbols and variables ; (2) the

set {¬/1,∧/2,∨/2,→ /2,↔ /2} of boolean connectives; (3) the set {∀, ∃} of quantifiers

and (4) the special characters “(”, “)” and “,”. R, F, V are assumed to be given, function

symbols with arity 0 are called constant symbols, ∀ is called universal quantifiers and ∃
is called existential quantifier. Recall that a signature of the language is a non-empty

set of symbols used to formulas. The set of predicates symbols V and functions F in the

signature are assumed to be known prior to learning. Let X := {x1, x2, · · · } be an infinite

set of variables. The set TF,X of terms is the smallest set satisfying:

1. every variable x ∈ X is in TF,X.

2. if f/n ∈ F and t1, · · · , tn ∈ TF,X, then f(t1, · · · , tn) ∈ TF,X.

We omit the subscripts from TF,X if clear from the context. A term is closed if it does

not contain any variables.

The set of FO logic formulas LV,F,X is defined as follows:

114 Omitted Definitions and Proofs

1. for a predicate p/n ∈ V and terms t1, · · · , tn ∈ TF,X, the string of the form

p(t1, · · · , tn), called atom is in LV,F,X;

2. if φ ∈ LV,F,X, then ¬φ ∈ LV,F,X;

3. if φ1, φ2 ∈ LV,F,X, then for any connective ◦/2 ∈ {∧,∨}, (φ1 ◦ φ2) ∈ LV,F,X;

4. if φ ∈ LV,F,X, then for an x ∈ X, we have (∀x)φ, (∃x)φ ∈ LV,F,X.

A first order logic interpretation I := (∆, ·I) consists of a non-empty set ∆, called

domain, and a mapping ·I . For every function symbol f/n ∈ F, we define the mapping

fI : ∆n → ∆, and for every relation p/n ∈ R, we denote the object of the domain

belonging to the relation pI ⊆ ∆n. A variable assigment w.r.t. I = (∆, ·I) is a mapping

Z : V→ ∆. The image of a variable x ∈ V with respect to Z is denoted xZ = Z(x).1

The meaning of a term t ∈ T with respect to an interpretation I and a variable assign-

ment Z is denoted tI,Z, and it is defined recursively:

1. for every variable x ∈ X, xI,Z = xZ;

2. for every term f(t1, · · · , tn) ∈ T, f(t1, · · · , tn)I,Z = fI(tI,Z1 , · · · , tI,Zn).

An interpretation I and a variable assignment Z assign a truth value in {>,⊥} to a

formula φ ∈ LV,F,X as follows:

1. if φ = p(t1, · · · , tn), then p(t1, · · · , tn)I,Z = > iff (tI,Z1 , · · · , tI,Zn) ∈ pI ;

2. if φ = (¬ψ), then (¬ψ)I,Z = ¬(ψ)I,Z ;

3. if φ = (φ1 ∗ φ2) for a binary connective ∗, then (φ1 ∗ φ2)I,Z = (φI,Z1 ∗ φI,Z2);

4. if φ = (∀x)ψ, then ((∀x)ψ)I,Z = > iff for all d ∈ ∆, ψI,{x→d}Z = >;

5. if φ = (∃x)ψ, then ((∃x)ψ)I,Z = > iff for some d ∈ ∆, ψI,{x→d}Z = >.

Satisfiability of a KB follow the same notations introduced in Chapter 2.

A.2 Proofs of Chapter 4

This section is divided in two parts. The first section shows the omitted proofs concerning

learnability of learning frameworks. The second section provides the omitted proofs for

the polynomial time transferability results.

1In this work we only consider closed formulas.

A.2 Proofs of Chapter 4 115

A.2.1 Learnability (Section 4.2)

Theorem 4.8. Let F be a non-trivial FO learning framework. Fπ is not in El(MQ).

Proof. Let Fπ = (Eπ,Lπ, µπ) and let T ∈ Lπ be a falsifiable target (end of 2.1 in Chap-

ter 2). Assuming there is a terminating T (T) (Remark 4.1), for any learner L, we prove

that not every path rooted in TL,T (T),ΣT is terminated or if there are terminates paths,

then H ∈ (L, T (T))(ΣT) does not satisfy H ≡ T .

Proof strategy. The goal of the learner is to prune the search space Lπ through the

information acquired by the answers of membership queries. For any n ≥ 0, we denote

with Sn the set of candidate hypotheses compliant with the set of positive and negative

examples that L received after having asked the n-th membership query. Initially, S0 =

Lπ. Consider (φ, α) ∈ T with φ different from a tautology, such (φ, α) exists because

T is falsifiable. By definition of Lπ, for any valuation β ∈ (0, 1] (infinitely many) there

is T β ∈ Lπ where T β := (T ∪ {(φ, β)}) \ {(φ, α)}. So Lπ (hence S0) contains infinitely

many non-equivalent hypotheses. We prove that after any membership query asked by L,

the number of non-equivalent candidate hypotheses in the search space remains infinite.

That is, for every i > 0, we always have Si of infinite size.

Pruning the search space. Assume the set of candidate hypotheses is Si with i ≥ 0

and the i + 1-th membership query is asked as input (ψ, δ). If the answer is ‘yes’, then

Si+1 = {H ∈ Si | H |= (ψ, δ)}. If for some β ∈ (0, 1], T β ∈ Si and T β 6|= (ψ, δ), then

T β 6∈ Si+1. When this happens, we have that T |= (ψ, δ) and T β 6|= (ψ, δ). We know

T β∗ = T ∗ and by Point 3 of Proposition 4.7, T β∗δ 6= T ∗δ . By construction of T β, it follows

that T β∗δ ⊂ T ∗δ . Therefore, we deduce that β < δ ≤ α. We denote by vimin the highest

valuation δ present in a positive example (asked in the first i membership queries) such

that there is T β ∈ Si−1 and T β 6|= (ψ, δ). We set vimin to 0 if there is no such an example.

If the answer is ‘no’, then Si+1 = {H ∈ Si | H 6|= (ψ, δ)}. Similarly as before, if for

some β ∈ (0, 1], T β ∈ Si and T β |= (ψ, δ), then T β 6∈ Si+1. In this case, we have that

T 6|= (ψ, δ) and T β |= (ψ, δ). We know T β∗ = T ∗ and by Point 3 of Proposition 4.7,

T β∗δ 6= T ∗δ . By construction T β∗δ ⊃ T ∗δ . In this case it follows that β ≥ δ > α. We

denote by vimax the lowest valuation δ present in a negative example (asked in the first i

membership queries) such that there is a T β ∈ Si−1 and T β |= (ψ, δ). We set vimax to 1

if there is no such an example.

Non-learnability. We have (φ, α) ∈ T and that the i-th positive example may rule out

some T β with β 6= α from the set Si with a β < α and the i-th negative example may

116 Omitted Definitions and Proofs

rule out some T β from the set Si with a β > α. After every i-th query, we have T β ∈ Si

with vimin < β, α < vimax. Therefore, Si will always contain infinitely many hypotheses not

equivalent with each other, independently of how many membership queries have been

asked. At every step in an arbitrary path in TL,T (T),ΣT , only finitely many membership

queries have been asked by L that it is not able to identify the target, as the set of

candidate hypotheses is always infinite. If L terminates with a hypothesis H as output,

L cannot guarantee that H is equivalent to the target. Therefore, there is no learner

such that H ∈ (L, T (T))(ΣT) and H ≡ T .

Corollary 4.12. Let F be an FO learning framework. F has a terminating teacher that

answers equivalence queries iff F is in El(EQ).

Proof. (⇒)Every FO learning framework F with a terminating teacher is learnable with

only equivalence queries. Indeed, for any terminating teacher TF (Remark 4.1), there is

a learning system (LF, TF) where the naive learner LF enumerates all H ∈ L built using

symbols from ΣT , taken as input, and asks the possible hypothesis to oracle EQF,T , one

by one. The learner does not know the size of the target in advance but it can estimate

it to be n, ask all possible hypothesis of this size, then increase to n+1, and so on. Since

the target is finite, eventually LF halts and outputs H equivalent to T .

(⇐) If F is exactly learnable with equivalence queries, the learner is guaranteed to always

receive an answer from the teacher. This means that F has a terminating teacher.

Theorem 4.15. For every non-trivial FO learning framework F, we have that Fπ is

neither in El(SpQ) nor in El(SbQ).

Proof. We first show the proof when the learner can ask only superset queries. Let

Fπ = (Eπ,Lπ, µπ) and let T ∈ Lπ be a falsifiable target. Assuming there is a terminating

T , for any learner L that can ask only superset queries, we can prove similarly as in

Theorem 4.8 that the computation tree TL,T (T),ΣT has infinite depth.

By definition of Fπ, we have that for a formula (φ, α) ∈ T and β ∈ (0, 1], there is

Kφ,β = (T \ {(φ, α)}) ∪ {(φ, β)} (Kφ,α is T). For simplicity we omit φ from Kφ,β for

the rest of the proof. There are infinitely many such Kβ ∈ Lπ. The proof can continue

as in Theorem 4.8. Alternatively, we can assume that in a step in an arbitrary path p

in TL,T (T),ΣT the learner knows that for β ≥ α, µπ(T) ⊆ µπ(Kβ) and for some γ < α,

µπ(Kγ) ⊂ µπ(T). We show that also with this assumption, the learner cannot identify

the target among the candidate hypotheses Kδ with δ ∈ (γ, β] with a finite amount of

calls to the oracle.

Infinite candidate hypotheses. Let (γ, β] be the interval containing all valuations δ

A.2 Proofs of Chapter 4 117

of candidate hypotheses Kδ. Whenever the learner calls SpQFπ ,T in p with input Kδ and

δ ∈ (γ, β], the answer ‘yes’ will bound the right member of the interval (γ, β]. That is, β

will be updated with the value δ ≤ β. This is because if µπ(T) ⊆ µπ(Kδ), by construction

δ ≥ α. The answer ‘no’ will update γ with δ > γ because if µπ(Kδ) ⊂ µπ(T), by

construction δ < α. In both cases, the number of candidate hypotheses remains infinite.

If the input to the superset query is Kδ with δ 6∈ (γ, β], the search space of candidate

hypotheses is not pruned after receiving the answer.

Non-termination. Only finitely many queries have been asked by L at every step in

an arbitrary path in TL,T (T),ΣT . Therefore, L is not able to identify the target as the

set of candidate hypotheses is always infinite. Since there is no finite path in TL,T (T),ΣT

where L terminates with a hypothesis equivalent to the target, the depth of TL,T (T),ΣT

is infinite and Fπ is not learnable.

The case with subset queries. The proof for showing non learnability with only

subset queries is similar. Let T be the target. We can assume that in a step in an

arbitrary path p in TL,T (T),ΣT the learner knows that for β ≤ α, µπ(Kβ) ⊆ µπ(T) and

for some γ > α, µπ(T) ⊂ µπ(Kγ). The learner will search for a target Kδ in the interval

δ ∈ [β, γ) by asking subset queries. Upon asking a query with input (φ, η), the answer

‘yes’ will bound the left argument β of the interval of candidate valuations with a η ≥ β.

This is because if µπ(Kη) ⊆ µπ(T), by construction η ≤ α. The answer ‘no’ will update

γ with η < γ because if µπ(T) ⊂ µπ(Kη), by construction η > α. As proved in the first

part, the number of candidate hypotheses remains infinite at every step in any path of

the computation tree.

Theorem 4.16. Let F = (E ,L, µ) be a safe FO learning framework and for any p ∈ N+

let Fpπ = (Eπ,Lpπ, µ) be its possibilistic extension. F is in El(SbQ) iff Fpπ is in El(SbQ).

Proof. (⇒) Let T ∈ Lpπ be the target, and let TFπ be a terminating teacher, we describe

the action of a learner LFπ such that the computation tree of (LFπ , TFπ(T)) with input

ΣT has finite depth and H ∈ (LFπ , TFπ(T))(ΣT) satisfies H ≡ T . F in ElP(SbQ) implies

that there is a learning system (LF, TF) such that for any K ∈ L, TLF,TF(K),Σk has a finite

depth, LF calls only SbQF,K, and H′ ∈ (LF, TF)(ΣK) implies H′ ≡ K. Since F is safe, we

have that T ∗α ∈ L for any α ∈ (0, 1]p. We are going to use the following claim.

Claim A.1. Let F = (E ,L, µ) be a safe FO learning framework and let Fπ = (Eπ,Lπ, µπ)

be its possibilistic extension. Let T ∈ Lπ, and K ∈ L. For a fixed α ∈ (0, 1], let

H = {(φ, α) | φ ∈ K}. The oracle SbQF,T ∗α (K) can return the answer ψ iff SbQFπ ,T (H)

can return (ψ, β) with β ≤ α.

118 Omitted Definitions and Proofs

Proof. Assume SbQF,T ∗α (K) returned ψ, hence K |= ψ and T ∗α 6|= ψ. By construction,

K = H∗α |= ψ and by Point 3 of Proposition 4.7, T 6|= (ψ, α) and H |= (ψ, α). Therefore

SbQFπ ,T (H) can return (ψ, β) with β ≤ α. Assume that SbQFπ ,T (H) returned (ψ, β)

with β ≤ α. This means that H |= (ψ, β) and T 6|= (ψ, β) (with β > 0). By Point 5 of

Proposition 4.7 and by construction of H, val(φ,H) = α, then H |= (ψ, α). By Point 3

of Proposition 4.7, H∗α |= ψ and since H∗α = K, we have that K |= ψ. Finally, by

Proposition 2.8 we get T ∗α 6|= ψ.

Description of LFπ ’s steps. For each α ∈ (0, 1]p, the learner LFπ repeats the same

steps performed by the learner LF in TLF,TF(T ∗α),ΣT ∗ . At the i-th call to SbQF,T ∗α with input

Kα in p in TLF,TF(T ∗α),ΣT ∗ , the learner LFπ calls SbQFπ ,T with Hα = {(φ, α) | φ ∈ Kα} as

input. This hypothesis is created in finitely many steps.

By Claim A.1, LFπ is able to perform every step made by LF in p. Upon receiving

a counterexample φ, it continues the steps made by LF as the subset query returned

(φ, α). Since TL,T (K),ΣK is finite and (0, 1]p contains finitely many valuations, LFπ will

be able to find a K∗α ≡ T ∗α for each α ∈ (0, 1]p in finitely many steps. By Lemma 4.9,

T ≡ H = {(φ, α) | φ ∈ K∗α, α ∈ (0, 1]p}.

Termination. Let d be the longest (finite) depth of TLF,TF(T ∗α),ΣT ∗ for α ∈ (0, 1]p. The

depth of the computation tree of (LFπ , TFπ(T)) with input ΣT is bounded by d times

the number of values in (0, 1]p plus a constant factor that comprises the computation

needed to rewrite queries asked by LF and the final computation of H ≡ T . Thus, we

can transfer learnability of the learning framework F with only subset queries to the

respective possibilistic extension Fpπ.

(⇐) We now show the other direction. Let K ∈ L be the target, and assume TF(K)

is a terminating teacher. We describe the action of a learner LF that asks only subset

queries and such that TLF,TF(K),ΣK has a finite depth and that H′ ∈ (LF, TF(K))(ΣK)

satisfies H′ ≡ K. We know Fpπ is learnable, therefore there is a terminating teacher

TFpπ and a learner LFpπ for Fpπ that asks only subset queries, such that for every t ∈ Lπ,

TL
F
p
π
,T

F
p
π

(T),ΣT is finite and H ∈ (LFpπ , TFpπ(T))(ΣT) implies H ≡ T .

Description of LF’s steps. By definition of Fpπ, we have that T = {(φ, 1) | φ ∈ K} ∈

Lπ. LF repeats every step that LFpπ performs in an arbitrary path p in TL
F
p
π
,T

F
p
π

(T),ΣT .

At the i-th call to SbQFpπ ,T with input H in p, LF calls SbQF,K with H∗ as input. By

Claim A.1, upon receiving a counterexample φ, we know that K 6|= φ and H∗ |= φ. By

construction of T , K = T ∗1 6|= φ and T 6|= (φ, α) for every α ∈ (0, 1]p. Therefore, LF

returns (φ, 10−p) to LFpπ .

A.2 Proofs of Chapter 4 119

Termination. Each query can be translated in polynomial time w.r.t. the size of H.

Since TL
F
p
π
,T

F
p
π

(T),ΣT is finite, also TLF,TF(K),ΣK is finite. Thus, we can transfer learnability

of Fpπ (with only subset queries) to F.

Theorem 4.17. Let F = (E ,L, µ) be a safe FO learning framework and, for any p ∈ N+,

let Fpπ = (Eπ,Lpπ, µ) be its possibilistic extension. F is in El(SpQ) iff Fpπ is in El(SpQ).

Proof. (⇒) We show first that if F is learnable, then Fpπ is learnable. Let T ∈ Lpπ be

the target, and let TFpπ be a terminating teacher, we describe the action of a learner

LFpπ such that the computation tree of (LFpπ , TFpπ(T)) with input ΣT has finite depth

and H ∈ (LFpπ , TFpπ(T))(ΣT) satisfies H ≡ T . F in ElP(SpQ) implies that there is a

learning system (LF, TF) such that for any K ∈ L, TLF,TF(K),ΣK has a finite depth, and

H′ ∈ (LF, TF)(ΣK) implies H′ ≡ K. Since F is safe, we have that T ∗α ∈ L for any

α ∈ (0, 1]p.

Description of LFπ ’s steps. For each α ∈ (0, 1]p, the learner LFpπ repeats the same

steps performed by the learner LF in an arbitrary path pα in TLF,TF(T ∗α),ΣT ∗ . When in

pα there is a call to SpQF,T ∗α with input Kα, LFpπ does not ask any query (it temporarily

stops the simulation of LF’s steps at the point where LF stops in superset query state).

When LFpπ reaches the point where LF stops in superset query state with input Kβ for

every β ∈ (0, 1]p, it calls SpQFπ ,T with

Hα =
⋃

β∈(0,1]p

{(φ, α) | φ ∈ Kβ}

as input. This hypothesis is created in finitely many steps.

Claim A.2. Let F = (E ,L, µ) be a safe FO learning framework and let Fpπ = (Eπ,Lpπ, µπ)

be its possibilistic extension. Let T ,H ∈ Lpπ, if SpQFpπ ,T (H) can return (ψ, β), then

SpQF,T ∗β
(H∗β) can return ψ.

Proof. Assume a counterexample (φ, β) is returned after the call to SpQFpπ ,T with input

H. We have that H 6|= (φ, β) and T |= (φ, β). By Point 3 of Proposition 4.7, we have

that T ∗β |= φ and H∗β 6|= φ.

Assume a counterexample (φ, α) is returned after the call to SpQFπ ,T with input H. By

Claim A.2 and by construction of H, we know that there is a Kβ such that Kβ 6|= φ for

β ∈ (α, 1]p. Therefore, in this way LFpπ finds a counterexample for at least one Kα and

we may use it to resume the computation in path pα. With this consideration, upon

receiving a counterexample (ψ, γ), LFpπ loops for every β ∈ (0, γ]p and if Kβ 6|= ψ, it

120 Omitted Definitions and Proofs

continues to perform the steps made by LF in pβ treating ψ as a counterexample. When

for all δ ∈ (0, 1]p, LFpπ reached the point where pδ is waiting in query state with input

Kδ, it generates again H as defined until the superset query returns ‘yes’.

Termination. LFpπ is able to perform every step made by LF in p. Since TLF,TF(K),ΣK is

finite and (0, 1]p contains finitely many valuations, LFpπ will be able to find a K∗α ≡ T ∗α
for each α ∈ (0, 1]p in finitely many steps. By Lemma 4.9,

T ≡ H = {(φ, α) | φ ∈ K∗α, α ∈ (0, 1]p}.

Let d be the longest (finite) depth of TLF,TF(T ∗α),ΣT ∗ for every α ∈ (0, 1]p. The depth of the

computation tree of (LFpπ , TFpπ(T)) with input ΣT is bounded by d times the number of

values in (0, 1]p (which is polynomial w.r.t. p) plus a constant factor that comprises the

computation needed to rewrite queries asked by LF and the final computation of H ≡ T .

Thus, we can transfer learnability of the learning framework F with only superset queries

to its possibilistic extension Fpπ.

(⇐) We now show the other direction. Let K ∈ L be the target, and assume TF(K)

is a terminating teacher. We describe the action of a learner LF that asks only subset

queries and such that TLF,TF(K),ΣK has a finite depth and that H′ ∈ (LF, TF(K))(ΣK)

satisfies H′ ≡ K. We know Fpπ is learnable, therefore there is a terminating teacher

TFpπ and a learner LFT for Fpπ that asks only subset queries, such that for every t ∈ Lπ,

TL
F
p
π
,T

F
p
π

(T),ΣT is finite and H ∈ (LFpπ , TFpπ(T))(ΣT) implies H ≡ T . By definition of Fpπ,

we have that

T = {(φ, 1) | φ ∈ K} ∈ Lπ.

Description of LF’s steps. LFpπ repeats the steps performed in an arbitrary path p

in TL
F
p
π
,T

F
p
π

(T),ΣT . At the i-th call to SpQFpπ ,T with input H in p, LF calls SpQF,K with

H∗ as input. Upon receiving a counterexample φ, we know that K |= φ and H∗ 6|= φ.

Consequently, by Point 3 of Proposition 4.7, H 6|= (φ, α) for every α ∈ (0, 1]. By

construction of T , K = T ∗1 |= φ and T |= (φ, α) for every α ∈ [0, 1]. Therefore, LF

returns (φ, 1) to LFpπ . When LFπ terminates with output H s.t. H ≡ T , LF outputs H∗

that satisfies H∗ ≡ T ∗ = K.

Termination. Each query asked by LFπ can be translated in polynomial time w.r.t. the

size of H. Let d be the depth of TLF,TF(K),ΣK (which is finite). The depth of TL
F
p
π
,T

F
p
π

(T),ΣT

is at most d plus a constant amount steps needed to simulate SpQFπ ,T for each superset

query asked by LFπ , hence it is finite. Thus, we can transfer learnability of Fpπ (with only

subset queries) to F.

A.2 Proofs of Chapter 4 121

A.2.2 Polynomial Time Reduction (Section 4.3)

Theorem 4.19. Let F be an FO learning framework. If its possibilistic extension Fπ is

in ElP(MQ,EQ), then F is in ElP(MQ,EQ).

Proof. Let F = (E ,L, µ), let K ∈ L be the target and TF be a terminating teacher. We

list the (polynomially many) steps that a learner LF does, such that TLF,TF(K),ΣK is finite,

and K′ ∈ (LF, TF(K))(ΣK) implies K′ ≡ K.

Since Fπ is in ElP(MQ,EQ), for any T ∈ Lπ there is a learning system (LFπ , TFπ(T))

such that TLFπ ,TFπ (T),ΣT has finite depth and H ∈ (LFπ , TFπ(T))(ΣT) implies H ≡ T .

By definition of Fπ, we have that T = {(φ, 1) | φ ∈ K} ∈ Lπ. We can assume that

LF repeats every step that LFπ performs in an arbitrary path p in TLFπ ,TFπ (T),ΣT (the

signature ΣT is built based on the symbols in ΣK).

At the i-th call to MQFπ ,T with input (φ, α) in p, LF calls MQF,K with input φ. By

Lemma 4.10, for all α ∈ (0, 1], MQFπ ,T ((φ, α)) = MQF,K(φ). At the i-th call to EQFπ ,T

with H as input in p, LF calls EQF,K with input H∗. By Remark 4.3, we can assume that

all counterexamples returned by EQF,K are positive. Again by Lemma 4.10, for all α ∈
(0, 1], K |= φ iff t |= (φ, α), in particular, for α = 1. This means that whenever LF receives

a (positive) counterexample φ, it is like (φ, 1) is returned by EQFπ ,T . Each translation of a

query can be computed in polynomial time by LF w.r.t. its size. Eventually, LF computes

H ≡ T . Clearly, H∗ ≡ T ∗ = K is as required. The number of steps made by LF, which

define the length of paths in TLF,TF(K),ΣK is polynomial w.r.t. the sum of steps made by

LFπ in p which in turn is polynomial w.r.t. |T | and the longest counterexample seen so

far. As |T | is polynomial w.r.t. |K|, by definition we have that F is in ElP(MQ,EQ).

Theorem 4.35. Let Fπ be the possibilistic extension of an FO learning framework F. If

Fπ in ElP(EQ), then F is in ElP(EQ).

Proof. let F = (E ,L, µ) be a learning framework and assume Fπ = (Eπ,Lπ, µπ) is in

ElP(EQ). Since Fπ is in ElP(EQ), there is a learning system (LFπ , TFπ) such that for

any T ∈ Lπ, TLFπ ,TFπ (T),ΣT has a depth which is polynomial with respect to |T | and the

largest counterexample received in each path, and K′ ∈ (LFπ , TFπ)(ΣT) implies K′ ≡ T .

For a fixed but arbitrary K ∈ L, we consider the computation of the learning system

(LF, TF(K)) on input ΣK where TF(K) is terminating.

Description of LF’s steps. By definition of Fπ, we have that T = {(φ, 1) | φ ∈ K} ∈ Lπ
(by definition ΣT and ΣK are equal). Whenever in p there is a call to EQFπ ,T with

input H, LF calls EQF,K with input H∗. Upon receiving a positive counterexample φ,

122 Omitted Definitions and Proofs

LF can continue the computation that LFπ performs with the positive counterexample

(φ, 1) ∈ Eπ. If φ is a negative counterexample, (φ, val(φ,H)) is returned instead.

Simulating a positive counterexample. Upon receiving a positive counterexample

φ, we know that K |= φ and H∗ 6|= φ. By construction we have T ∗1 = K, and it follows

that T ∗1 |= φ iff K |= φ. By Point 3 of Proposition 4.7, T ∗1 |= φ iff T |= (φ, 1), therefore LF

can continue the computation assuming that it has received the positive counterexample

(φ, 1) ∈ Eπ.

Simulating a negative counterexample. Upon receiving a negative counterexample

φ, we know that K 6|= φ and H∗ |= φ. Let α ∈ Hv be the smallest valuation in Hv.

By construction, we get H∗ = H∗α, so H∗α |= φ. By Point 3 of Proposition 4.7, we have

H∗α |= φ iff H |= (φ, α) and by Point 5 of Proposition 4.7, the fact H |= (φ, α) implies

val(φ,H) ∈ Hv ∪ {1}. It follows that necessarily 0 < val(φ,H). Also K 6|= φ and by

construction, T 6|= (φ, 1) holds. By Point 4 of Proposition 4.7, val(φ, T) < 1. Assume

val(φ, T) > 0. By Points 4 and 5 of Proposition 4.7, 1 6= val(φ, T) ∈ {1} = T v, clearly

impossible. Therefore val(φ, T) = 0. We have shown val(φ,H) > 0 and val(φ, T) = 0, as

a consequence LFπ can assume it has received the negative counterexample (φ, val(φ,H)).

Termination. By the depth of TLFπ ,TFπ (T),ΣT , LFπ terminates in polynomial time w.r.t.

|T | and the largest counterexample seen so far and outputs a hypothesis H that satisfies

H ≡ T . As H∗ ≡ T ∗ = K, LF finds an equivalent hypothesis H∗ w.r.t. the target K.

As a consequence we have found a polynomial time learner for F and we have that F is

in ElP(EQ) (translating counterexamples as described can be done in polynomial time

w.r.t. the size of largest counterexample received so far).

Theorem 4.42. Let F be a safe FO learning framework. For all p ∈ N+, F is in

ElP(SbQ) iff Fpπ is in ElP(SbQ) and F is in ElP(SpQ) iff Fpπ is in ElP(SpQ).

Proof. Let F = (E ,L, µ), and Fπ = (Eπ,Lπ, µπ).

(⇒) F in ElP(SbQ) implies that there is a learning system (LF, TF) such that for any

K ∈ L, LF asks only subset queries and K′ ∈ (LF, TF(K))(ΣK) implies K′ ≡ K. We

consider the learning system (LFπ , TFπ(T)) with input ΣT and we explain the steps that

the learner LFπ does to find the target. The learner will employ a binary search to find

valuations in T v in the interval (0, 1]p. Claim A.4 states that for a given interval [β, α]p,

it is possible to find the highest γ ∈ [β, α]p such that γ ∈ T v and a hypothesis K such

that K ≡ T ∗γ .

Claim A.3. Let T ∈ Lπ be the target. For any γ ∈ [0, 1]p, the learner LFπ can find in

A.2 Proofs of Chapter 4 123

polynomial time w.r.t. |T | and the largest counterexample seen so far, a hypothesis K
such that K ≡ T ∗γ .

Proof. LFπ performs every step that the learner LF does in a path p in TLF,TF(T ∗γ),ΣT ∗

(Remark 4.2). We can assume T ∗γ ∈ L because F is safe. Whenever in p there is a call to

SbQF,T ∗γ with input K, LFπ will call SbQFπ ,T with input H = {(φ, γ) | φ ∈ K}. By Point 3

of Proposition 4.7, H |= (φ, γ) iff H∗γ |= φ and since K = H∗γ, we get H∗γ |= φ iff K |= φ.

Again by Point 3 of Proposition 4.7, T |= (φ, γ) iff T ∗γ |= φ. By our consideration, T 6|= H
iff H |= (φ, γ) and T 6|= (φ, γ) iff K |= φ and T ∗γ 6|= φ. Therefore, φ is a counterexample

that can be returned by SbQF,T ∗γ with input K and LFπ continues the computation in p

by considering φ as a counterexample. After a polynomial amount of time w.r.t. |T ∗γ |
and the largest counterexample seen so far, LFπ will build Kγ such that Kγ ≡ T ∗γ .

Claim A.4. Let β, α ∈ [0, 1]p with β < α, and let T ∈ Lπ be the target. LFπ can find

in polynomial time w.r.t. |T |, p, and the largest counterexample seen so far, the highest

γ ∈ [β, α]p such that γ ∈ T v ∪ {β} and a hypothesis K ∈ L such that K ≡ T ∗γ .

Proof. The idea is to search for the highest valuation in T v with a binary-search like

strategy. By Claim A.3, LFπ can find in polynomial time Kα such that Kα ≡ T ∗α and for

γ = ↑p
(
α+β

2

)
a Kγ such that Kγ ≡ T ∗γ .

If Kα 6|= Kγ (Remark 4.4), then there is a formula φ such that T ∗α 6|= φ and T ∗γ |= φ.

By Point 3 of Proposition 4.7, T |= (φ, γ) and by Points 4 and 5 of Proposition 4.7,

γ ≤ val(φ, T) ∈ T v and val(φ, T) < α. Therefore, there is a valuation δ = val(φ, T) ∈ T v

in the interval [γ, α)p. In this case, such valuation in T v lies in the interval [γ, α)p. LFπ

updates β to γ.

Otherwise, if Kα |= Kγ (Remark 4.4), no element in T v is in [γ, α)p. For this reason, a

valuation in T v (if any) should be searched in the interval [β, γ)p. LFπ updates α to γ.

After that, every step from the beginning is repeated with the updated α or β. When

β = α = γ, LFπ outputs the last computed Kγ. This process requires log2[β, α]p ≤
log2[0, 1]p < 4p calls to Claim A.3, therefore LFπ terminates in polynomial time w.r.t.

|T |, p, and the largest counterexample seen so far.

By Claim A.4, LFπ can find the highest α ∈ T v and Kα such that Kα ≡ T ∗α . LFπ can then

add Kα to K which is a set of classical hypotheses labelled with a valuation, initialised

to the empty set. Again by Claim A.4, LFπ can find the highest β ∈ T v and Kβ such

that Kβ ≡ T ∗β such that β ∈ [0, α)p and add Kβ to K. This process is repeated until

124 Omitted Definitions and Proofs

β = 0. In this last case, LFπ generates

H =
⋃
Kγ∈K

{(φ, γ) | φ ∈ Kγ}

and it stops, writing H in the output tape. By Claim A.4, this process requires poly-

nomial time w.r.t. p and |T v| and the largest counterexample seen so far. Finally, by

Lemma 4.9, we have that H ≡ T .

The proof when only superset queries can be asked, is analogous. The only difference

is how responses to queries are used. Claim A.5 replaces Claim A.3 in the proof for

superset queries.

Claim A.5. Let T ∈ Lπ be the target. When only superset queries can be asked, for any

γ ∈ [0, 1]p, we can find in polynomial time w.r.t. |T |, p, and the largest counterexample

seen so far a hypothesis K such that K ≡ T ∗γ .

Proof. F in ElP(SpQ) implies that there is a learning system (LF, TF) such that for any

K ∈ L, LF asks only subset queries and K′ ∈ (LF, TF(K))(ΣK) implies K′ ≡ K. Let

T ∈ Lπ be the target. LFπ performs every step that LF does in a path p in TLF,TF(T ∗γ),ΣT ∗

(Remark 4.2).

We can assume T ∗γ ∈ L because F is safe. Whenever in p there is a call to SpQF,T ∗γ with

input K, LFπ will call SpQFπ ,T with input H = {(φ, γ) | φ ∈ K}. We know by Point 3 of

Proposition 4.7 that H |= (φ, γ) iff H∗γ |= φ iff (by construction) K |= φ. We also know

again by Point 3 of Proposition 4.7, T |= (φ, γ) iff T ∗γ |= φ. It follows that H 6|= T iff

H 6|= (φ, γ) and T |= (φ, γ) iff K 6|= φ and T ∗γ |= φ. Therefore, φ is a counterexample

that can be returned by SpQF,T ∗γ with input K, and LFπ continues the computation in p

by considering φ as a counterexample. After a polynomial amount of time w.r.t. |T ∗γ |
and the largest counterexample seen so far, LFπ will build Kγ such that Kγ ≡ T ∗γ .

A similar claim to Claim A.4 can be stated where only superset queries can be asked and

the rest of the proof follows the same strategy as in the case with only subset queries.

(⇐) Let K ∈ L be the target. Since Fπ is in ElP(SbQ), there is a learning sys-

tem (LFπ , TFπ) such that for any T ∈ Lπ, LFπ asks only subset queries, and K′ ∈
(LFπ , TFπ)(ΣT) implies K′ ≡ T . We consider the computation of the learning system

(LF, TF(K)) on input ΣK where TF(K) is terminating.

By definition of Fπ, we have that T = {(φ, 1) | φ ∈ K} ∈ Lπ. LF performs every

step that LFπ does in a path p in TLFπ ,TFπ (T),ΣT (ΣT is built from the symbols of ΣK).

Whenever in p there is a call to SbQFπ ,T with input H, LF calls SbQF,K with input H∗.

A.3 Proofs of Chapter 5 125

Upon receiving a counterexample φ, LF knows K 6|= φ and H∗ |= φ. By construction

we have T ∗1 = K, and it follows that T ∗1 6|= φ iff K 6|= φ. By Point 1 of Proposition 4.7,

T ∗1 |= φ iff T |= (φ, 1), therefore LF can continue the computation that LFπ performs

with the counterexample (φ, 10−p) ∈ Eπ.

LFπ terminates in polynomial time w.r.t. |T | and the largest counterexample seen so

far with output a hypothesis H that satisfies H ≡ T . As H∗ ≡ T ∗ = K, LF finds an

equivalent hypothesis H∗ w.r.t. the target K. We have found a polynomial time learner

for F and we have that F is in ElP(SbQ) (translating counterexamples as described can

be done in polynomial time w.r.t. the largest counterexample received so far).

The polynomial time reduction with only superset queries is analogous. Whenever LF

should call SpQFπ ,T with input H, the learner LF calls SpQF,K with input H∗. Upon

receiving a counterexample φ, LF knows K |= φ and H∗ 6|= φ. By construction we have

T ∗1 = K, and it follows that T ∗1 |= φ iff K |= φ. By Point 1 of Proposition 4.7, T ∗1 |= φ

iff T |= (φ, 1), therefore LF can continue the computation that LFπ performs with the

counterexample (φ, 1) ∈ Eπ.

A.3 Proofs of Chapter 5

In this section, we provide the omitted proofs for the correctness of the HORN∗ algo-

rithm and the polynomial time transferability results between learning frameworks with

membership and equivalence queries and frameworks with possibility and equivalence

queries.

A.3.1 Horn

Lemma 5.4 (Frazier and Pitt [1993a] Lemma 4 Adaptation). Let T be the target Horn

formula and H be the hypothesis built by HORN∗. At every step, it holds that T |= H.

Proof. The algorithm adds a clause φ to the hypothesis after a membership query with

input I returned ‘no’. Such clause φ is such that ant(φ) consists of literals set to true

to the input interpretations I and con(φ) are the only variables set to false by I. As

the membership query call returned a negative answer, we know that there is a clause

T |= ψ such that ant(ψ) ⊆ ant(φ) and con(ψ) = con(φ). Therefore, T |= φ for every

φ ∈ H.

126 Omitted Definitions and Proofs

Lemma 5.5 (Frazier and Pitt [1993a] Lemma 9 Adaptation). Let T be the target Horn

formula. At any time during a run of HORN∗, for any A1,A2 ∈ S, there are two distinct

Horn rules r1, r2 ∈ T such that ant(r1) ⊆ A1 and ant(r2) ⊆ A2.

Proof. The algorithm will add to the set of antecedents S only a set of variables A such

that T |= A → v for some v ∈ V. This follows by considering that in Line 8 only a set

of variables appearing as an antecedent of a rule entailed by T is added by calling the

membership oracle (with CON). Otherwise, by Lemma 5.4, we know that I 6|= T and in

Line 11 we add to S the set of all variables that can make the antecedent of a clause in

T to ‘true’.

We now show that two different elements A1,A2 ∈ S are a superset of two different

rule antecedents in T . Line 11 is the only part where we add a new set A to the set S.

This happens when we cannot find any other element in S that satisfies the condition

in Line 8. That is, the last retuned counterexample I cannot be used to derive a set

of variables mapped to ‘true’ At (Line 7) such that At intersected with any element in

S identifies a smaller antecedent of a rule in T with respect to the antecedents already

stored in S. Therefore, by Lemma 5.4, At ⊆ ant(r) for a rule r ∈ T such that no other

A ∈ S satisfies A ⊆ ant(r). On the other hand, when an element A′ ∈ S is replaced with

the set A after the check in Line 8, we either:

• can find at least two rules with different antecedents r1, r2 ∈ T such that A ⊆
A′ ⊆ ant(r1), A′ ⊆ ant(r2), and ant(r1) ⊂ ant(r2). Therefore, the algorithm will

give precedence to the discovery of shorter antecedents first; or

• for a rule r ∈ T , A ⊆ A′ ⊆ ant(r). So, this check allows to remove redundant

variables in rules antecedents.

Therefore, the statement holds.

Theorem 5.6 (Frazier and Pitt [1993a] Theorem 10 Adaptation). Let V be a finite set

of propositional variables and let T be the unknown target Horn formula. HORN∗ runs

in polynomial time with respect to |T |, and |V|, and outputs a hypothesis H such that

H ≡ T by asking membership and equivalence queries.

Proof. By Lemma 5.5, the size of S is bounded by the number of rules in T . Moreover,

the algorithm only replaces elements in S with proper subsets of themselves. As this

can happen at most |V| times for each element in S, the main loop terminates after a

polynomial number of iterations with respect to |T | and |V|. Finally, the algorithm will

output H ≡ T by definition of equivalence query oracle.

A.3 Proofs of Chapter 5 127

A.3.2 Results with Possibility Queries

In this section, we show the theoretical results that motivated the development of the

Π HORN∗ algorithm. They hold in more general settings when examples are partial

interpretations.

With Theorem A.6 we show one direction of Theorem 5.13.

Theorem A.6. Let F be a learning framework. If Fπ is polynomial time learnable with

possibility and equivalence queries, then F is polynomial time learnable with membership

and equivalence queries.

Proof. Let F = (E ,H, µ) and let K ∈ H be the target. Since Fπ is polynomial time

learnable, the restriction of Fπ for the case in which all valuations are 1, denoted F1
π,

is also polynomial time learnable. Then, there is a polynomial time learner Aπ for

F1
π = (Eπ,Hπ, µπ). We start the execution of Aπ that attempts to learn a hypothesis H

equivalent to T = {(φ, 1) | φ ∈ K} ∈ Hπ.

For all (I, α) ∈ Eπ, a call to PQFπ ,T with input I returns 1 iff I |= T ∗1 (recall that

T ∗ = K) iff I |= K iff MQF,K(I) returns ‘yes’. Also, we can simulate a call to EQFπ ,T

with H as input by calling EQF,K with H∗ as input. By construction for all I ∈ E , we

get I |= K iff I |= T ∗1 iff πT (I) = 1.

Whenever Aπ asks a possibility query with input (I, α), we call MQF,K with input I. If

the answer is ‘yes’, we return 1 to Aπ, otherwise 0. Whenever Aπ asks an equivalence

query with input H, we call EQF,K with input H∗. Upon receiving a negative counterex-

ample I for K, we know that I 6|= K, and I |= H∗. This means that πH(I) = 1. By

construction, K = T ∗, I 6|= T ∗1 , and so πT (I) = 0. Therefore we return the negative

counterexample (I, 0) to Aπ.

Upon receiving a positive counterexample I for K, we know that I |= K, and I 6|= H∗.
This means that πH(I) < 1. Since by construction K = T ∗, I |= T ∗1 , and so πT (I) = 1.

We return the positive counterexample (I, 1) to Aπ.

Eventually, Aπ will output a hypothesis H ≡ T in polynomial time w.r.t. |T | and the

largest counterexample received so far. Clearly, H∗ is as required.

The converse of Theorem A.6 does not hold. The argument is similar to the one shown

in Theorem 4.21. That is, simple strategies to find a hypothesis may not work when the

learning framework is extended with possibilistic valuations because the algorithms also

have to deal with multiple valuations (Example 4.20).

128 Omitted Definitions and Proofs

We now show the other direction of Theorem 5.13.

Theorem A.7. Let F be a safe learning framework. If F is polynomial time learnable

with membership and equivalence queries, then Fπ is polynomial time learnable with

possibility and equivalence queries.

Proof. Let Fπ = (Eπ,Hπ) and let T ∈ Hπ be the target. We are going to use the following

lemma, presented in Chapter 4.

Lemma 4.9. Let T be a possibilistic KB. Let I be a finite set of valuations such that

T v ⊆ I. If for each α ∈ I there is some FO KB K∗α such that K∗α ≡ T ∗α then, it holds

that T ≡ {(φ, α) | φ ∈ K∗α, α ∈ I}.

Strategy. Let A be a polynomial time learner2 for F. We run multiple instances of A

and we denote by R the set of run instances of A. Each instance in R is denoted Aβ

and attempts to learn a hypothesis equivalent to Tβ, with β ∈ (0, 1]. We denote by Kβ,n

the hypothesis given as input by Aβ when it asks its n-th equivalence query. For n = 0,

we assume that Kβ,n = ∅. We omit the number n from Kβ,n if we want to refer to the

hypothesis built by Aβ when asking its last equivalence query. Initially, R := {A1}.

Simulating a membership query. Whenever Aβ ∈ R asks a query with input I ∈ E ,

we can simulate MQF,T ∗β by calling PQFπ ,T with input I. If the answer πT (I) = δ is

greater than 1 − β, by Point 2 of Proposition 4.7, we return ‘yes’ to Aβ, otherwise we

return ‘no’.

Simulating an equivalence query. Whenever Aβ ∈ R asks its n-th equivalence query,

we leave Aβ waiting in the query state. When all Aα ∈ R are waiting in the query state,

we create

H :=
⋃
Aα∈R

{(φ, α) | φ ∈ Kα} (A.1)

and call EQFπ ,T with H as input (note: each instance Aα ∈ R may have asked a different

number of equivalence queries when another Aβ asks its n-th equivalence query). If the

answer is ‘yes’, we have computed H such that H ≡ T and we are done.

Upon receiving a positive counterexample (I, γ), by definition, we know that I |= T ∗1−η
for all γ ≥ η ∈ [0, 1]. Since (I, γ) is a positive counterexample and by definition of πH,

we also know that πH(I) ≥ γ and I 6|= H∗1−γ. This means that for some (φ, 1− δ) ∈ H
with (1−δ) ≥ (1−γ), I 6|= φ and hence I 6|= H∗1−δ. By construction of H, each valuation

2Assume w.l.o.g. that A always eventually ask an equivalence query until it finds an equivalent
hypothesis (but may execute other steps and ask membership queries between each equivalence query).

A.4 Possibility and Necessity as Upper and Lower Probabilities 129

α ∈ Hv is associated a Aα ∈ R. As a consequence, we send to such A1−δ ∈ R the positive

counterexample I and A1−δ resumes its execution.

If (I, γ) is a negative counterexample, we know that I 6|= T ∗1−γ. We call PQFπ ,T to obtain

πT (I) = δ. If A1−δ 6∈ R, we start the execution of the instance A1−δ of algorithm A and

add A1−δ to R. Otherwise, we send the negative counterexample I to A1−δ that resumes

its execution.

Termination. We now argue that this procedure terminates in polynomial time w.r.t.

|T |, and the largest counterexample seen so far. Since there is only one instance Aβ

in R for each valuation β ∈ T v such that there is at least a formula φ ∈ E satisfying

β = val(φ, T), by Point 1 of Proposition 4.7, we have that at all times |R| is linear in |T v|,
which is bounded by |T |. Since F is safe and A is a polynomial time learner for F, each

Aβ ∈ R terminates, in polynomial time in the size of T ∗β and the largest counterexample

seen so far, and outputs Kβ ≡ Tβ. By Claim 4.9 and by construction of H, H ≡ T and

the process terminates. As a consequence, Fπ is polynomial time learnable.

Theorems A.6 and A.7 directly imply Theorem 5.13.

Theorem 5.13. Let F be a safe learning framework. Fπ is exactly learnable in polynomial

time with possibility and equivalence queries iff F is exactly learnable in polynomial time

with membership and equivalence queries.

A.4 Possibility and Necessity as Upper and Lower

Probabilities

Possibilistic logic can be also used to reason about imprecise probabilities [Coolen et al.].

We introduced this relationship in Section 2.2 in Chapter 2 when we stated the principle

‘what is probable must be possible and something necessarily true must be probable’. A

possibility distribution π defines the pair of measures (Nπ,Ππ) that characterise a class

P of probability distributions over E that satisfy the constraints

P = {D | φ ∈ E , N(φ) ≤ D(φ) ≤ Π(φ)}.

The modelling of uncertain probabilities with possibilistic logic is straightforward with

normalised possibility distributions. That is, distributions that assign to at least an

element I ∈ Ω the maximal possibility value, π(I) = 1. This is because a normalised π

has a nice property that ensures that the possibility value is always higher or equal to the

130 Omitted Definitions and Proofs

v1 v2 (v1, 0.2) (¬v1, 0.8) (v2, 0.9) (¬v2, 0.1) π
1 1 1 0.2 1 0.9 0.2
1 0 1 0.2 0.1 1 0.1
0 1 0.8 1 1 0.9 0.8
0 0 0.8 1 0.1 1 0.1

Figure A.1: Possibilistic truth table of H.

necessity value of a formula. Indeed, for every φ ∈ E , it holds that Π(φ) = 1 or N(φ) = 0

and it trivially holds that N(φ) ≤ Π(φ). With normalised possibility distributions, we

can identify two cases for a formula φ ∈ E :

1. if Π(φ) = 1, then N(¬φ) = 0. We are uncertain about the values of N(φ) and

Π(¬φ) and with the necessity valued constraint w.r.t. φ (N(φ) ≥ α), we can bind

the lower bound of the probability associated to φ and the upper bound of the

probability associated to ¬φ. The more N(φ) is close to 1, the smaller the value

of Π(¬φ) becomes;

2. if Π(¬φ) = 1, then N(φ) = 0 and we are in a similar case as before. The constraint

N(¬φ) will restrict the interval that defines the family of probability measures

induced by the possibility distribution.

If the normalisation assumption is removed, not every possibility distribution can be used

to model uncertain probabilities as just described. Example A.8 shows a case where this

relationship cannot hold.

Example A.8. We consider the propositional language with only two variables p, q and

let π be the possibility distribution induced by the possibilistic KB

H = {(v1, 0.2), (¬v1, 0.8), (v2, 0.9), (¬v2, 0.1)}.

As shown in the Figure A.1, we have that Π(v2) = 0.8 but N(v2) = 0.9, also Π(¬v2) = 0.1

but N(¬v2) = 0.2. As Π(v2) < N(v2), this possibility distribution cannot be used to

model uncertain probabilities as described. This case may happen when the possibility

distribution is not normalised (H is partially inconsistent). /

When the inconsistency level of the possibilistic KBH is different from 0, the least specific

possibility distribution πH is not normalised. Therefore, the possibility distribution

cannot be directly used to define a family of probability distributions lying between N

and Π. If there is no formula φ with Π(φ) = 1, we cannot guarantee the property that

N(φ) ≤ Π(φ) (Example A.8). A solution to this problem, would be to subtract to the

value of the necessity measure of a formula the value representing the inconsistency level

A.4 Possibility and Necessity as Upper and Lower Probabilities 131

α = inc(H) of the KB H into consideration to ensure the property N(φ) − α ≤ Π(φ).

This idea works as proved, with the help of Proposition A.9, in Proposition A.10.

Proposition A.9. If the KB H satisfies inc(H) = 0, then πH is normalised.

Proof. If inc(H) = 0, there is at least a model I for H∗. By definition of the least specific

possibility distribution, πH(I) = 1 since I satisfies every formula in H∗.

Recall that as we defined in Section 2.3 in Chapter 2, with the KB H we write ΠH

and NH to denote the possibility and necessity measure associated to the possibilistic

distribution πH.

Proposition A.10. Let H be a possibilistic KB with α = inc(H). For any formula φ

expressible in the language of H, NH(φ)− α ≤ ΠH(φ).

Proof. If α = 0, by Proposition A.9 π is normalised, and it holds that ΠH(φ) = 1 or

NH(φ) = 0 and for every formula φ, NH(φ) ≤ ΠH(¬φ). To continue we use the following

observation.

Claim A.11. Let α = inc(H). If for a formula φ, ΠHα(φ) = 1, then ΠH(φ) = 1− α.

Proof. For any β > α there is an interpretation I in the set Ω of interpretations in the

considered logic language, such that I |= H∗β and I 6|= H∗α (because H∗α is consistent).

We also know that α is the highest valuation of a formula (ψ, α) ∈ H∗α such that I 6|= ψ,

therefore πH(I) = 1 − α. Since α = inc(H), then πH associates to any interpretation

a value less or equal 1 − α. That is, there is no other interpretation I ′ with πH(I ′) >
πH(I) = 1− α. By definition, it means that ΠH(φ) = supI∈Ω{πH(I)} = 1− α.

By Proposition A.9, πHα is normalised and we can distinguish two cases:

1. ΠHα(φ) = 1 and NHα(¬φ) = 0;

2. ΠHα(¬φ) = 1 and NHα(φ) = 0.

Case 1. Assume ΠHα(φ) = 1 and then NHα(¬φ) = 0. As α = inc(H), we have that

ΠHα(φ) = sup
I∈Ω
{πHα(I) | I |= φ} = 1

Claim A.11
= ΠH(φ) + α

and as a consequence, NH(¬φ) = α.

132 Omitted Definitions and Proofs

If NHα(φ) = β, with β > α ≥ 0, we know that ΠHα(¬φ) < 1. It follows that every

interpretation that satisfies ¬φ falsifies at least one formula ψ such that (ψ, δ) ∈ Hα.

Then, it holds that

ΠHα(¬φ) = sup
I∈Ω
{1− sup{δ | (ψ, δ) ∈ H and I |= ¬ψ and δ > α} | I |= ¬φ} = ΠH(¬φ).

Therefore, it follows that NH(φ) = β. With our observations, we see that

NH(φ) = NHα(φ) ≤ 1 = ΠHα(φ) = ΠH(φ) + α,

NH(¬φ)− α = 0 ≤ ΠH(¬φ) = 1− β.

Case 2. If NHα(φ) = β, with β ≤ α, then ΠHα(¬φ) ≥ 1 − α. This means that every

interpretation that satisfies ¬φ falsifies (if any) a formula (ψ, δ) ∈ Hα with δ ≤ α.

ΠHα(¬φ) = sup
I∈Ω
{1− sup{δ | (ψ, δ) ∈ H and I |= ¬ψ and δ ≤ α} | I |= ¬φ} = 1.

Therefore, β = 0 because there is no (ψ, δ) ∈ Hα with δ ≤ α. It follows that ΠH(¬φ) =

1− α and NH(φ) = α. Also in this case, 0 = NH(φ) − α ≤ ΠH(φ), and since we shown

earlier that NH(¬φ) = α, then NH(¬φ)− α = 0 ≤ ΠH(¬φ).

The case ΠHα(¬φ) = 1 and NHα(φ) = 0 is similar to the previous point and in both

cases the statement holds.

Recall the relationship between the possibility measure and uncertain probabilities. To

know the lower bound of the probability of a proposition φ to hold, we need to check

N(φ) = val(φ,H) and subtract inc(H). The upper bound of the probability associated

to φ is instead Π(φ) = 1−N(¬φ) = 1− val(¬φ,H) (Example A.12).

Example A.12. Let H = {(v1 ∨ v2, 0.8), (¬v1 ∨ ¬v2, 0.3)}. The least specific possi-

bility distribution associated to H defines the family P of probability distributions on

interpretations with variables v1, v2 such that for every D ∈ P, we obtain

0 = N(v1) ≤D(v1) ≤ Π(v1) = 1

0 = N(¬v1 ∧ ¬v2) ≤D(¬v1 ∧ ¬v2) ≤ Π(¬v1 ∧ ¬v2) = 0.2

0.8 = N(v1 ∨ v2) ≤D(v1 ∨ v2) ≤ Π(v1 ∨ v2) = 1

that are the related probabilities of a formula to hold, and so on. /

A.4 Possibility and Necessity as Upper and Lower Probabilities 133

With our considerations, once we have a set of possibilistic formulas we may be able to

carry reasoning over uncertain probabilities by querying the KB H what is the necessity

and possibility value of a fact (minimum and maximum probability of a fact).

134 Omitted Definitions and Proofs

Bibliography

R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items

in large databases. Sigmod Record, 22, 1993. doi: 10.1145/170036.170072.

V. Alekseev. On the number of intersection semilattices [in Russian]. DiskretnayaMat.1,

page 129–136, 1989.

D. Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, Apr 1988.

doi: 10.1023/A:1022821128753. URL https://doi.org/10.1023/A:1022821128753.

D. Angluin, M. Frazier, and L. Pitt. Learning conjunctions of Horn clauses. Machine

Learning, 9:147–164, 1992.

G. Antipov, M. Baccouche, and J.-L. Dugelay. Face aging with conditional generative ad-

versarial networks. 2017 IEEE International Conference on Image Processing (ICIP),

pages 2089–2093, 2017.

M. Arias and J. L. Balcázar. Canonical Horn representations and query learning. In

ALT, pages 156–170. Springer, 2009.

M. Arias and R. Khardon. Learning closed Horn expressions. Inf. Comput., 178(1):

214–240, 2002.

M. Arias, R. Khardon, and J. Maloberti. Learning Horn expressions with LOGAN-H.

J. Mach. Learn. Res., 8:549–587, 2007.

H. Arimura. Learning acyclic first-order Horn sentences from entailment. In ALT, volume

1316 of Lecture Notes in Computer Science, pages 432–445. Springer, 1997a.

H. Arimura. Learning acyclic first-order Horn sentences from entailment. In International

Workshop on Algorithmic Learning Theory, pages 432–445, 1997b.

D. Baskakov and D. Arseniev. On the computational complexity of deep learning algo-

rithms. In Proceedings of International Scientific Conference on Telecommunications,

Computing and Control, pages 343–356, Singapore, 2021. Springer Singapore. ISBN

978-981-33-6632-9. doi: https://doi.org/10.1007/978-981-33-6632-9 30.

136 BIBLIOGRAPHY

J. L. J. L. Bell and M. Machover. A course in mathematical logic / by J. L. Bell and M.

Machover. North-Holland, Amsterdam, 1977. ISBN 0720428440.

S. Benferhat, D. Dubois, and H. Prade. Representing default rules in possibilistic logic. In

International Conference on Principles of Knowledge Representation and Reasoning,

1992.

A. L. Blum. Separating distribution-free and mistake-bound learning models over the

boolean domain. SIAM J. Comput., 23(5), 1994.

L. Bottou. Stochastic learning. In Advanced Lectures on Machine Learning, Lecture

Notes in Artificial Intelligence, LNAI 3176, pages 146–168. Springer Verlag, Berlin,

2004. doi: 10.1007/978-3-540-28650-9 7.

I. Bratko. Applications of machine learning: Towards knowledge synthesis. New Genera-

tion Computing, 11(3):343–360, Sep 1993. ISSN 1882-7055. doi: 10.1007/BF03037182.

URL https://doi.org/10.1007/BF03037182.

L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and Regression

Trees. Taylor & Francis, Andover, England, UK, 1984. ISBN 978-0-41204841-8.

N. H. Bshouty and C. A. Haddad-Zaknoon. Adaptive exact learning of decision trees

from membership queries. In ALT, volume 98 of Proceedings of Machine Learning

Research, pages 207–234. PMLR, 2019.

G. Burosch, J. Demetrovics, G. Katona, D. Kleitman, and A. Sapozhenko. On the num-

ber of closure operations. pages 91–105, Budapest, 1993. János Bolyai Mathematical

Society.

M. Campbell, A. J. H. Jr., and F. Hsu. Deep blue. Artif. Intell., 134(1-2):57–83, 2002.

doi: 10.1016/S0004-3702(01)00129-1.

F. Chollet et al. Keras. GitHub, 2015. URL https://github.com/fchollet/keras.

P. Cimiano, J. Völker, and P. Buitelaar. Ontology construction. In Handbook of Natural

Language Processing, Second Edition., pages 577–604. Chapman and Hall/CRC, 2010.

W. W. Cohen. Fast effective rule induction. In Machine Learning, Proceedings

of the Twelfth International Conference on Machine Learning, Tahoe City, Cal-

ifornia, USA, July 9-12, 1995, pages 115–123. Morgan Kaufmann, 1995. doi:

10.1016/b978-1-55860-377-6.50023-2.

W. W. Cohen and H. Hirsh. The learnability of description logics with equality con-

straints. Mach. Learn., 17(2-3):169–199, 1994.

BIBLIOGRAPHY 137

F. P. A. Coolen, M. C. M. Troffaes, and T. Augustin. Imprecise Probability, pages 645–

648. Berlin, Heidelberg. ISBN 978-3-642-04898-2. doi: 10.1007/978-3-642-04898-2

296. URL https://doi.org/10.1007/978-3-642-04898-2_296.

S. Dash, O. Günlük, and D. Wei. Boolean decision rules via column generation. In

Advances in Neural Information Processing Systems 31: Annual Conference on Neural

Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,

Canada, pages 4660–4670, 2018. URL https://proceedings.neurips.cc/paper/

2018/hash/743394beff4b1282ba735e5e3723ed74-Abstract.html.

L. De Raedt. Logical settings for concept-learning. Artificial Intelligence, 95(1):187–201,

1997. ISSN 0004-3702. doi: 10.1016/S0004-3702(97)00041-6.

J. A. Dhanraj, M. Prabhakar, C. P. Ramaian, M. Subramaniam, J. M. Solomon, and

N. Vinayagam. Increasing the Wind Energy Production by Identifying the State of

Wind Turbine Blade. In Lecture Notes in Mechanical Engineering, pages 139–148.

Springer Nature Singapore, 2022. doi: 10.1007/978-981-16-7909-4 13.

Y. Djouadi, D. Dubois, and H. Prade. Possibility theory and formal concept analysis:

Context decomposition and uncertainty handling. pages 260–269, 06 2010. doi: 10.

1007/978-3-642-14049-5 27.

C. Domingo, N. Mishra, and L. Pitt. Efficient read-restricted monotone CNF/DNF

dualization by learning with membership queries. Mach. Learn., 37(1):89–110, 1999.

P. Domingos and G. Hulten. Mining high-speed data streams. In Proceedings of the Sixth

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

KDD ’00, page 71–80, New York, NY, USA, 2000a. Association for Computing Ma-

chinery. ISBN 1581132336. doi: 10.1145/347090.347107.

P. M. Domingos and G. Hulten. Mining high-speed data streams. In KDD, pages 71–80.

ACM, 2000b. doi: 10.1145/347090.347107.

W. F. Dowling and J. H. Gallier. Linear-time algorithms for testing the satisfiability

of propositional Horn formulae. The Journal of Logic Programming, 1(3):267–284,

1984. ISSN 0743-1066. doi: https://doi.org/10.1016/0743-1066(84)90014-1. URL

https://www.sciencedirect.com/science/article/pii/0743106684900141.

P. N. Druzhkov and V. D. Kustikova. A survey of deep learning methods and software

tools for image classification and object detection. Pattern Recognition and Image

Analysis, 26(1):9–15, Jan 2016. ISSN 1555-6212. doi: 10.1134/S1054661816010065.

URL https://doi.org/10.1134/S1054661816010065.

D. Dua and C. Graff. UCI machine learning repository, 2017.

138 BIBLIOGRAPHY

M. R. C. Duarte, B. Konev, and A. Ozaki. ExactLearner: A tool for exact learning of

EL ontologies. In KR, pages 409–414. AAAI Press, 2018.

D. Dubois and H. Prade. The principle of minimum specificity as a basis for evidential

reasoning. In Uncertainty in Knowledge-Based Systems, pages 75–84, Berlin, Heidel-

berg, 1987. Springer Berlin Heidelberg. ISBN 978-3-540-48020-4.

D. Dubois and H. Prade. Modelling uncertainty and inductive inference: A survey of

recent non-additive probability systems. Acta Psychologica, 68(1):53–78, 1988. ISSN

0001-6918. doi: https://doi.org/10.1016/0001-6918(88)90045-5. URL https://www.

sciencedirect.com/science/article/pii/0001691888900455.

D. Dubois and H. Prade. Resolution principles in possibilistic logic. Int. J. Approx.

Reasoning, 4(1):1–21, 1990a.

D. Dubois and H. Prade. Consonant approximations of belief functions. International

Journal of Approximate Reasoning, 4(5):419–449, 1990b. ISSN 0888-613X. doi: https:

//doi.org/10.1016/0888-613X(90)90015-T. URL https://www.sciencedirect.com/

science/article/pii/0888613X9090015T.

D. Dubois and H. Prade. When upper probabilities are possibility measures. Fuzzy Sets

and Systems, 49:65–74, 1992. doi: https://doi.org/10.1016/0165-0114(92)90110-P.

D. Dubois and H. Prade. Possibility Theory: Qualitative and Quantitative Aspects, pages

169–226. Springer Netherlands, Dordrecht, 1998. ISBN 978-94-017-1735-9. doi: 10.

1007/978-94-017-1735-9 6. URL https://doi.org/10.1007/978-94-017-1735-9_

6.

D. Dubois and H. Prade. Possibility theory, probability theory and multiple-valued

logics: A clarification. Ann. Math. Artif. Intell., 32(1-4):35–66, 2001.

D. Dubois and H. Prade. Possibilistic logic - an overview. In Computational Logic, pages

283–342. 2014. doi: 10.1016/B978-0-444-51624-4.50007-1. URL https://doi.org/

10.1016/B978-0-444-51624-4.50007-1.

D. Dubois and H. Prade. Possibility theory and its applications: Where do we stand?

In Springer Handbook of Computational Intelligence, pages 31–60. 2015. doi: 10.1007/

978-3-662-43505-2\ 3.

D. Dubois and H. Prade. Practical methods for constructing possibility distributions.

International Journal of Intelligent Systems, 31(3):215–239, 2016. doi: https://doi.

org/10.1002/int.21782.

D. Dubois, J. Lang, and H. Prade. Possibilistic Logic, page 439–513. Oxford University

Press, Inc., USA, 1994. ISBN 0198537476.

BIBLIOGRAPHY 139

M. Elkano, J. A. Sanz, E. Barrenechea, H. Bustince, and M. Galar. CFM-BD: A dis-

tributed rule induction algorithm for building compact fuzzy models in big data clas-

sification problems. IEEE Transactions on Fuzzy Systems, 28(1):163–177, jan 2020.

doi: 10.1109/tfuzz.2019.2900856.

N. Fatima, A. S. Imran, Z. Kastrati, S. M. Daudpota, and A. Soomro. A systematic

literature review on text generation using deep neural network models. IEEE Access,

10:53490–53503, 2022. doi: 10.1109/access.2022.3174108.

D. Ferrucci. Introduction to “This is Watson”. IBM Journal of Research and Develop-

ment, 56:1:1–1:15, 05 2012. doi: 10.1147/JRD.2012.2184356.

E. Frank, M. A. Hall, G. Holmes, R. Kirkby, B. Pfahringer, and I. H. Witten. Weka:

A machine learning workbench for data mining., pages 1305–1314. Springer, Berlin,

2005. URL http://researchcommons.waikato.ac.nz/handle/10289/1497.

M. Frazier and L. Pitt. Learning from entailment: An application to propositional Horn

sentences. In ICML, pages 120–127. Morgan Kaufmann, 1993a.

M. Frazier and L. Pitt. Learning from entailment: An application to propositional Horn

sentences. In ICML, 1993b. doi: 10.1007/3-540-49730-7 11.

M. Frazier and L. Pitt. Classic learning. Machine Learning, 25(2-3):151–193, 1996.

S. Garćıa, J. Luengo, J. A. Sáez, V. López, and F. Herrera. A survey of dis-

cretization techniques: Taxonomy and empirical analysis in supervised learning.

IEEE Transactions on Knowledge and Data Engineering, 25(4):734–750, 2013. doi:

10.1109/TKDE.2012.35.

C. Glanois, Z. Jiang, X. Feng, P. Weng, M. Zimmer, D. Li, W. Liu, and J. Hao.

Neuro-symbolic hierarchical rule induction. In International Conference on Machine

Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of

Proceedings of Machine Learning Research, pages 7583–7615. PMLR, 2022. URL

https://proceedings.mlr.press/v162/glanois22a.html.

I. J. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, Cambridge,

MA, USA, 2016. http://www.deeplearningbook.org.

J. Guan and V. R. Lesser. On probabilistic logic. In AI and Cognitive Science ’89, pages

113–131, London, 1990. Springer London. ISBN 978-1-4471-3164-9.

M. Hermo and A. Ozaki. Exact learning: On the boundary between Horn and CNF.

ACM Trans. Comput. Theory, 12(1):4:1–4:25, 2020.

140 BIBLIOGRAPHY

S. Hölldobler, S. Möhle, and A. Tigunova. Lessons learned from AlphaGo. In YSIP2,

pages 92–101. CEUR-WS.org, 2017.

A. Horn. On sentences which are true of direct unions of algebras. The Journal of

Symbolic Logic, 16(1):14–21, 1951. ISSN 00224812. doi: 10.2307/2268661.

J. Hühn and E. Hüllermeier. FURIA: an algorithm for unordered fuzzy rule induction.

Data Mining and Knowledge Discovery, 19(3):293–319, Dec 2009. ISSN 1573-756X.

doi: 10.1007/s10618-009-0131-8.

L. Hyafil and R. L. Rivest. Constructing optimal binary decision trees is NP-complete.

Information Processing Letters, 5(1):15–17, 1976. ISSN 0020-0190. doi: https:

//doi.org/10.1016/0020-0190(76)90095-8. URL https://www.sciencedirect.com/

science/article/pii/0020019076900958.

E. T. Jaynes. Probability theory: The logic of science. Cambridge University Press,

Cambridge, 2003.

F. V. Jensen. Bayesian Networks and Decision Graphs. Statistics for Engineering and

Information Science. Springer, 2001.

A. Jøsang. A logic for uncertain probabilities. Int. J. Uncertain. Fuzziness Knowl. Based

Syst., 9(3):279–212, 2001.

C. Joslyn. Towards an empirical semantics of possibility through maximum uncertainty.

1991.

M. J. Kearns and U. V. Vazirani. An Introduction to Computational Learning Theory.

MIT Press, 1994. ISBN 978-0-262-11193-5. URL https://mitpress.mit.edu/books/

introduction-computational-learning-theory.

K. Kirkpatrick. It’s not the algorithm, it’s the data. Communications of the ACM, 60:

21 – 23, 2017.

B. Konev, C. Lutz, A. Ozaki, and F. Wolter. Exact learning of lightweight description

logic ontologies. In KR. AAAI Press, 2014.

B. Konev, A. Ozaki, and F. Wolter. A model for learning description logic ontologies

based on exact learning. In AAAI, pages 1008–1015, 2016.

B. Konev, C. Lutz, A. Ozaki, and F. Wolter. Exact learning of lightweight description

logic ontologies. Journal of Machine Learning Research, 18(201):1–63, 2018.

R. Kusters, Y. Kim, M. Collery, C. de Sainte Marie, and S. Gupta. Differentiable rule

induction with learned relational features. Jan. 2022.

BIBLIOGRAPHY 141

O. Kuzelka, J. Davis, and S. Schockaert. Encoding Markov logic networks in possibilistic

logic. In UAI, pages 454–463. AUAI Press, 2015.

O. Kuzelka, J. Davis, and S. Schockaert. Learning possibilistic logic theories from default

rules. In IJCAI, pages 1167–1173. IJCAI/AAAI Press, 2016.

O. Kuzelka, J. Davis, and S. Schockaert. Induction of interpretable possibilistic logic

theories from relational data. In IJCAI, pages 1153–1159. ijcai.org, 2017.

J. Lang. Possibilistic Logic: Complexity and Algorithms, pages 179–220. Springer Nether-

lands, Dordrecht, 2000. ISBN 978-94-017-1737-3. doi: 10.1007/978-94-017-1737-3 5.

URL https://doi.org/10.1007/978-94-017-1737-3_5.

V. Lav́ın Puente. Learning a subclass of k-quasi-Horn formulas with membership queries.

Information Processing Letters, 111(11):550–555, 2011. ISSN 0020-0190. doi: https:

//doi.org/10.1016/j.ipl.2011.03.008.

Q. V. Le, M. Ranzato, R. Monga, M. Devin, G. Corrado, K. Chen, J. Dean, and A. Y.

Ng. Building high-level features using large scale unsupervised learning. In ICML.

icml.cc / Omnipress, 2012. doi: 10.48550/arXiv.1112.6209.

J. Lehmann. Dl-learner: Learning concepts in description logics. J. Mach. Learn. Res.,

10:2639–2642, 2009.

J. Lehmann and J. Völker. Perspectives on Ontology Learning, volume 18 of Studies on

the Semantic Web. IOS Press, 2014.

R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I. Stoica. Tune:

A research platform for distributed model selection and training. arXiv preprint

arXiv:1807.05118, 2018.

M. McGough. How bad is Sacramento’s air, exactly? Google results appear at odds with

reality, some say, 2018. URL https://www.sacbee.com/news/state/california/

fires/article216227775.html.

S. Minaee, Y. Y. Boykov, F. Porikli, A. J. Plaza, N. Kehtarnavaz, and D. Terzopoulos.

Image segmentation using deep learning: A survey. IEEE Transactions on Pattern

Analysis and Machine Intelligence, pages 1–1, 2021. doi: 10.1109/tpami.2021.3059968.

M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine Learning. Adap-

tive computation and machine learning. MIT Press, 2012.

J. Montiel et al. Scikit-multiflow: A multi-output streaming framework. Journal of

Machine Learning Research, 19(72):1–5, 2018. doi: 10.48550/arXiv.1807.04662.

142 BIBLIOGRAPHY

S. Muggleton. Inverse entailment and Progol. New Generation Computing, 13(3):245–

286, Dec 1995. ISSN 1882-7055. doi: 10.1007/BF03037227. URL https://doi.org/

10.1007/BF03037227.

S. Muggleton, L. De Raedt, D. Poole, I. Bratko, P. Flach, K. Inoue, and A. Srinivasan.

ILP turns 20. Machine Learning, 86(1):3–23, Jan 2012. ISSN 1573-0565. doi: 10.

1007/s10994-011-5259-2. URL https://doi.org/10.1007/s10994-011-5259-2.

N. J. Nilsson. Probabilistic logic. Artificial Intelligence, 28(1):71–87, 1986. ISSN

0004-3702. doi: https://doi.org/10.1016/0004-3702(86)90031-7. URL https://www.

sciencedirect.com/science/article/pii/0004370286900317.

T. Okudono et al. Weighted automata extraction from recurrent neural networks via

regression on state spaces. In AAAI, pages 5306–5314. AAAI Press, 2020. doi: 0.

1609/aaai.v34i04.5977.

A. Ozaki. Learning description logic ontologies: Five approaches. Where do they stand?

KI - Künstliche Intelligenz, 04 2020a. doi: 10.1007/s13218-020-00656-9.

A. Ozaki. On the complexity of learning description logic ontologies. In Reasoning Web,

volume 12258 of Lecture Notes in Computer Science, pages 36–52. Springer, 2020b.

A. Ozaki, C. Persia, and A. Mazzullo. Learning query inseparable ELH ontologies. In

AAAI, pages 2959–2966. AAAI Press, 2020.

S. Parsons and A. Hunter. A Review of Uncertainty Handling Formalisms, pages 8–37.

Springer Berlin Heidelberg, Berlin, Heidelberg, 1998.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,

A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch:

An imperative style, high-performance deep learning library. In Advances in Neural

Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988. ISBN 1558604790.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12:2825–2830, 2011.

F. J. Pelletier. Metamathematics of fuzzy logic. Trends in logic, vol. 4. Kluwer Academic

Publishers, Dordrecht, Boston, and London, 1998, viii 297 pp. Bulletin of Symbolic

Logic, 6(3):342–346, 2000. doi: 10.2307/421060.

BIBLIOGRAPHY 143

L. Peng, W. Qing, and G. Yujia. Study on comparison of discretization methods. 2009

International Conference on Artificial Intelligence and Computational Intelligence, 4:

380–384, 2009.

C. Persia and R. Guimarães. RIDDLE: Rule induction with deep learning. In NLDL.

septentrio.uit.no, 2023.

C. Persia and A. Ozaki. On the learnability of possibilistic theories. In IJCAI, pages

1870–1876. ijcai.org, 2020.

C. Persia and A. Ozaki. Extracting Horn theories from neural networks with queries and

counterexamples. In KR4HI. CEUR workshop proceedings, 2022.

C. Persia, J. Jøsang, and A. Ozaki. Extracting rules from neural networks with partial

interpretations. In NLDL. septentrio.uit.no, 2022.

V. Podgorelec, P. Kokol, B. Stiglic, and I. Rozman. Decision trees: An overview and

their use in medicine. Journal of Medical Systems, 26(5):445–463, Oct 2002. ISSN

1573-689X. doi: 10.1023/A:1016409317640. URL https://doi.org/10.1023/A:

1016409317640.

H. Prade and M. Serrurier. Bipolar version space learning. International Journal of

Intelligent Systems, 23(10):1135–1152, 2008.

L. Qiao, W. Wang, and B. Lin. Learning accurate and interpretable decision rule sets

from neural networks. In Thirty-Fifth AAAI Conference on Artificial Intelligence,

AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intel-

ligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial

Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pages 4303–4311. AAAI

Press, 2021. URL https://ojs.aaai.org/index.php/AAAI/article/view/16555.

J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993. ISBN

1-55860-238-0.

L. D. Raedt. Logical settings for concept-learning. Artif. Intell., 95(1):187–201, 1997.

A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever.

Zero-shot text-to-image generation, 2021. URL https://arxiv.org/abs/2102.

12092.

C. Reddy and P. Tadepalli. Learning first-order acyclic Horn programs from entailment.

In ICML, pages 472–480. Morgan Kaufmann, 1998a.

C. Reddy and P. Tadepalli. Learning first-order acyclic Horn programs from entailment.

ILP, pages 23–37, 1998b.

144 BIBLIOGRAPHY

S. Ross. A First Course in Probability. Pearson Education, Incorporated, 2014. ISBN

9780321794772. URL https://books.google.no/books?id=7yqBNAEACAAJ.

C. Rudin. Stop explaining black box machine learning models for high stakes decisions

and use interpretable models instead. Nat. Mach. Intell., 1(5):206–215, 2019. doi:

10.1038/s42256-019-0048-x.

M. S. Santos et al. A new cluster-based oversampling method for improving survival

prediction of hepatocellular carcinoma patients. Journal of Biomedical Informatics,

58:49–59, 2015. ISSN 1532-0464. doi: 10.1016/j.jbi.2015.09.012.

G. Scala, A. Federico, V. Fortino, D. Greco, and B. Majello. Knowledge generation with

rule induction in cancer omics. International Journal of Molecular Sciences, 21(1):18,

dec 2019. doi: 10.3390/ijms21010018.

J. Selman and A. Fern. Learning first-order definite theories via object-based queries. In

ECML/PKDD (3), volume 6913 of Lecture Notes in Computer Science, pages 159–174.

Springer, 2011.

M. Serrurier and H. Prade. Introducing possibilistic logic in ILP for dealing with excep-

tions. Artif. Intell., 171(16-17):939–950, 2007.

G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, 1976. ISBN

9780691100425. URL http://www.jstor.org/stable/j.ctv10vm1qb.

G. Shafer. A mathematical theory of evidence turns 40. International Journal of Ap-

proximate Reasoning, 79:7–25, 2016. ISSN 0888-613X. doi: https://doi.org/10.1016/

j.ijar.2016.07.009. URL https://www.sciencedirect.com/science/article/pii/

S0888613X16301141. 40 years of Research on Dempster-Shafer Theory.

S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From theory to

algorithms. Cambridge university press, 2014.

M. A. Sheikh, A. K. Goel, and T. Kumar. An approach for prediction of loan approval

using machine learning algorithm. In 2020 International Conference on Electronics

and Sustainable Communication Systems (ICESC), pages 490–494, 2020. doi: 10.

1109/ICESC48915.2020.9155614.

A. Shih, A. Darwiche, and A. Choi. Verifying binarized neural networks by Angluin-style

learning. In SAT, 2019. doi: 10.1007/978-3-030-24258-9 25.

H. Shindo, M. Nishino, and A. Yamamoto. Differentiable inductive logic programming

for structured examples. Proceedings of the AAAI Conference on Artificial Intelligence,

35(6):5034–5041, May 2021. doi: 10.1609/aaai.v35i6.16637. URL https://ojs.aaai.

org/index.php/AAAI/article/view/16637.

BIBLIOGRAPHY 145

M. Sipser. Introduction to the theory of computation. PWS Publishing Company, 1997.

J. F. Torres, D. Hadjout, A. Sebaa, F. Mart́ınez-Álvarez, and A. Troncoso. Deep learning

for time series forecasting: A survey. Big Data, 9(1):3–21, 2021. doi: 10.1089/big.

2020.0159. URL https://doi.org/10.1089/big.2020.0159. PMID: 33275484.

L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, 1984. ISSN

0001-0782.

V. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequencies

of events to their probabilities. 1971. doi: 10.1007/978-3-319-21852-6 3.

J. Vreeken, M. van Leeuwen, and A. Siebes. Krimp: mining itemsets that compress.

Data Mining and Knowledge Discovery, 23(1):169–214, Jul 2011. ISSN 1573-756X.

doi: 10.1007/s10618-010-0202-x.

P. Walley. Statistical Reasoning with Imprecise Probabilities. Chapman & Hall, 1991.

P. Walley. Measures of uncertainty in expert systems. Artificial Intelligence, 83(1):1–

58, 1996. ISSN 0004-3702. doi: https://doi.org/10.1016/0004-3702(95)00009-7. URL

https://www.sciencedirect.com/science/article/pii/0004370295000097.

P. Walley and W. Peter. Statistical Reasoning with Imprecise Probabilities. Chapman &

Hall/CRC Monographs on Statistics & Applied Probability. Taylor & Francis, 1991.

ISBN 9780412286605. URL https://books.google.no/books?id=-hbvAAAAMAAJ.

O. Watanabe. A formal study of learning via queries. In M. S. Paterson, editor,

Automata, Languages and Programming, pages 139–152, Berlin, Heidelberg, 1990.

Springer Berlin Heidelberg. ISBN 978-3-540-47159-2.

G. Weiss, Y. Goldberg, and E. Yahav. Extracting automata from recurrent neural

networks using queries and counterexamples. In ICML, volume 80, pages 5244–5253.

PMLR, 2018. doi: 10.48550/arXiv.1711.09576.

G. Weiss, Y. Goldberg, and E. Yahav. Learning deterministic weighted automata with

queries and counterexamples. In NeurIPS, 2019.

R. Wexler. When a computer program keeps you in jail: how computers are harm-

ing criminal justice., 2017. URL https://www.nytimes.com/2017/06/13/opinion/

how-computers-are-harming-criminal-justice.html.

L. WJ. A rule-based process control method with feedback. Advances in Instrumentation

41, 169–175, 1987.

146 BIBLIOGRAPHY

W. Wong, W. Liu, and M. Bennamoun. Ontology learning from text: A look back and

into the future. ACM Comput. Surv., 44(4):20:1–20:36, 2012.

P. Xu, Z. Ding, and M. Pan. A hybrid interpretable credit card users default prediction

model based on RIPPER. Concurrency and Computation: Practice and Experience,

30(23):e4445, feb 2018. doi: 10.1002/cpe.4445.

R. R. Yager and L. Liu, editors. Classic Works of the Dempster-Shafer Theory of Belief

Functions, volume 219 of Studies in Fuzziness and Soft Computing. Springer, 2008.

L. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965. ISSN 0019-

9958. doi: https://doi.org/10.1016/S0019-9958(65)90241-X. URL https://www.

sciencedirect.com/science/article/pii/S001999586590241X.

L. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1(1):3–

28, 1978. ISSN 0165-0114. doi: https://doi.org/10.1016/0165-0114(78)90029-5. URL

https://www.sciencedirect.com/science/article/pii/0165011478900295.

Y. Zhang, P. Tiňo, A. Leonardis, and K. Tang. A survey on neural network inter-

pretability. IEEE Transactions on Emerging Topics in Computational Intelligence, 5

(5):726–742, 2021. doi: 10.1109/TETCI.2021.3100641.

Graphic design: Com
m

unication Division, UiB / Print: Skipnes Kom
m

unikasjon AS

uib.no

ISBN: 9788230854259 (print)
9788230867600 (PDF)

	107883 Cosimo Damiano Persia_Elektronisk
	107883 Cosimo Damiano Persia_korrekturfil
	107883 Cosimo Damiano Persia_innmat
	107883 Cosimo Damiano PersiaElektronsk_bakside
	107883 Cosimo Damiano PersiaElektronsk_bakside

