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In this paper, we present a logical framework to facilitate users in assessing a software system in terms 
of the required survivability features. Survivability evaluation is essential in linking foreign software 
components to an existing system or obtaining software systems from external sources. It is important 
to make sure that any foreign components/systems will not compromise the current system’s 
survivability properties. Given the increasing large scope and complexity of modern software systems, 
there is a need for an evaluation framework to accommodate uncertain, vague, or even ill-known 
knowledge for a robust evaluation based on multi-dimensional criteria. Our framework incorporates 
user-defined constrains on survivability requirements. Necessity-based possibilistic uncertainty and 
user survivability requirement constraints are effectively linked to logic reasoning. A proof-of-concept 
system has been developed to validate the proposed approach. To our best knowledge, our work is the 
first attempt to incorporate vague, imprecise information into software system survivability evaluation. 

Keywords: Survivability; software system; logic; constraint; possibility; evaluation. 

1.   Introduction 

The security and reliability of software systems have become more important than ever as 
those systems are continuously used in various high security and high integrity settings, 
such as healthcare, national defense, financial services, telecommunications, and utility 
infrastructure. Given the critical functions that those systems provide, they must be reliable 
and dependable. Unfortunately, critical software systems are often the targets of malicious 
attacks due to the important roles that they play. Furthermore, those systems are often 
subject to functional and operational failures. As components, architectures, and networks 
become ever more complex, there are simply more things that could go wrong. In a study 
by the National Institute of Standards and Technology (NIST), it was reported that software 
systems deficiency in security and reliability alone cost the US economy $59.5 billion 
annually in breakdowns and repairs [1]. This does not include the loss of productivity as 
employees spent time trying to clean up after attacks. Hence, we must make sure that a 
critical software system has the ability to survive malicious attacks and system failures 
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while still providing adequate levels of services to support mission critical applications. 
Consequently, evaluating the survivability features of a system becomes important.  

Survivability is a multi-dimensional notation, which covers not only security but also 
reliability and other aspects of a software system. While security focuses on prevention, 
defense, and recovery from intentional attacks, reliability focuses on system operational 
fault tolerance, functional damage masking, and performing robustness. Rather than trying 
to achieve a completely attack-free system, survivability focuses on provisioning of an 
acceptable level of services even in the presence of malicious attacks [2]. Hence, 
survivability aims at a higher level of assurance that a system can survive malicious attacks 
and internal failures even if part of the system has been damaged. It includes not only 
security but also other important features, such as reliability, adaptation, re-configuration, 
and damage recovery.  

For many mission-critical systems, survivability is an important system property. 
Survivability considerations have to be designed into a system, rather than in an add-on 
fashion [3]. Any systems/components acquired from external sources must meet a user’s 
criteria to ascertain that those systems will not compromise the survivability properties of 
the existing systems. This assentation is essential when the systems/components are to be 
applied to support mission-critical functions. The research work in this paper is applied to 
such situations as linking software components/modules dynamically to the existing 
systems or obtaining external software systems from third-party providers. Software 
linking and acquisition have been widely used in component-based software development 
where individual software modules/components are composed to form a larger-scale 
software system. In those cases, any foreign software systems/components must meet the 
users’ survivability requirements. 

In this paper, we propose a logical approach for evaluating the survivability features of 
a software system/component. The user’s survivability requirements are represented in a 
logic, called Ĉ-Ƥ, with application specific operators and inference rules. A software 
system’s compliance with those requirements are checked through a logic reasoning 
process. Applying a formal, logic-based approach provides a rigorous verification and 
guarantee of some system properties in a well-structured reasoning process. When the 
scope of software systems becomes large and their complexities continuously grow, there 
is a pressing need for formal methods to analyze, evaluate, and verify important system 
properties for the purposes of security, reliability, and survivability. Based on solid 
mathematical structures and proven theories, a logic-based approach offers some key 
advantages, such as rigorous reasoning, systematic analysis, and sound methodologies. 

A use scenario of the framework   Figure 1 shows a generic use scenario of our proposed 
Ĉ-Ƥ framework and the major steps to conduct survivability evaluation for a software 
system/component. In step 1, a user determines their survivability requirements towards 
the software system/component to be acquired. Those requirements are specified as the 
user’s survivability policy. To evaluate that the software system/component complies with 
the policy, the user’s survivability evaluation agent first collects evidence from some 
trusted evaluators who can verify certain survivability features of the system/component 
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(step 2). The evidence is encoded as formulas in the Ĉ-Ƥ logic. The framework has an 
evaluator server, which certifies the trusted evaluators for different survivability properties. 
It is likely that no evaluator can assess all the survivability features of a system. So, the 
evaluator server can authorize different evaluators are used for different survivability 
properties. To ensure data integrity, all the survivability supporting evidence is signed 
digitally. After the necessary evidence is collected and all the digital signatures are verified, 
the user applies a theorem prover program to prove/disapprove that the system/component 
complies with the user’s survivability policy (step 3). If so, the system/component is 
considered as satisfied with the user’s survivability requirements and can be safely 
acquired or linked (step 4). 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: A Generic Use Scenario of the Survivability Evaluation Framework 
 

Design principles In designing the Ĉ-Ƥ survivability evaluation framework, we follow 
a set of principles and guidelines as shown below.   

First of all, since survivability is a multi-dimensional concept, a software system’s 
properties need to be evaluated from different aspects, including security, adaptability, 
robustness, and fault tolerance. We apply the survivability requirement model [4], which 
allows a user to customize their specific requirements by defining flexible terms from 
different perspectives, called survivability characteristics (SCs). A SC contains a set of 
primitive properties called survivability primitives (sps), which further describe the 
system’s more concrete features in the context of that SC. For an illustrative purpose, a set 
of SCs and sps are listed in Table 1 [4]. 

Secondly, given the increasing large scope and complexity of modern software systems, 
it is virtually impossible for any user to evaluate every property of a system. Due to lack 
of expertise and detailed knowledge about the software system, such an evaluation may be 
overwhelming for a user. As we illustrated in the use scenario, to obtain an objective and 
more accurate assessment about a system’s survivability features, third-party trusted 
evaluators can be used who are specialized in some particular aspects of system 
survivability features. More specifically, our approach supports collecting survivability 
property certificates from trusted evaluators, encoded as Ĉ-Ƥ logic formulas, reasoning on 
those individual assessments through a logic proof process, and integrating them into a 
complete survivability evaluation result. 
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Thirdly, it is often the case that even a specialized evaluator may not be very certain 
about a particular feature of a software system. Therefore, our approach supports logic 
reasoning on uncertain, imprecise, or even vague information. This uncertainty-aware 
reasoning is achieved by defining many-valued logic formulas and necessity-based 
possibilistic uncertainty, where uncertain information can be formally represented and 
linked to a logic reasoning process. Our framework makes it possible to express fuzzy 
pattern matching in formal survivability proof.   

Finally, an evaluation framework should be applicable to practical case scenarios. In 
terms of users’ system property requirements, it should have a mechanism to represent and 
reason about constraints on the required survivability features of a software system. Some 
system properties may take others as their pre-requisite conditions. For example, the 
system’s self-healing ability depends on an accurate and timely damage assessment. As 
another example, the capability of a system to reasonably predict the causes of system 
faults and take the corresponding corrective actions to recover from damage is closely 
related to the system’s ability to control vulnerability. Therefore, both of those two 
properties may be required for the system. Incorporating those constraints and allowing an 
efficient connection between a constraint domain and a logic reasoning process is critical 
for a survivability evaluation framework to be practical. As will be discussed later, our Ĉ-
Ƥ framework supports constrained logic reasoning to accommodate these and other types 
of constraints. 

Table 1. Survivability Characteristics (SCs) and Survivability Primitives (sps) 

Survivability 
Characteristics 

(dimensions) 

Survivability Primitives 
(Survivability properties within each dimension) 

Reliability and 
resilience (SC1) 

Service availability (sp1)                                              Service consistency (sp2) 
Endurability (sp3)                                                                   Predictability (sp4) 
Strong authentication/authorization (sp5)                  Vulnerability control (sp6) 

 
Adaptability 
(SC2) 

Monitoring and control (sp7)                                   Behavioral adjustment (sp8) 
Reusability (sp9)                                             Component reconfiguration (sp10) 
Process migration (sp11)                         Connectivity and interoperability (sp12) 

Recoverability 
(SC3) 

System self-healing (sp13)                               Prompt damage assessment (sp14) 
Service/component resynchronization (sp15)                   Fault traceability (sp16) 
Malice immunization (sp17) 

Fault tolerance 
(SC4) 

Redundancy based fault masking (sp18)                               Fault isolation (sp19)                              
Tolerance through backup (sp20)                     Proxy-based fault tolerance (sp21) 

 
Research contributions  Our major contributions in this paper include the following: 

(1) a threshold-based, multi-dimensional framework for software system survivability 
evaluation; (2) a formal approach to represent possibilistic uncertainty on many-valued 
formulas annotated with principals’ belief (evaluation) degrees; (3) a systematic 
mechanism to incorporate uncertain, imprecise knowledge and user-defined constraints to 
logic reasoning; (4) a specification of the soundness of the proposed Ĉ-Ƥ logic; and (5) a 
proof-of-concept prover system to validate the logic. 

The rest of the paper is organized as follows. Section 2 discusses related work. In 
Section 3, we introduce a base logic. Our constrained, probabilistic logic is based on this 
logic. Section 4 presents the details of our Ĉ-Ƥ logical framework. Section 5 discusses 
experiments and performance evaluation. Section 6 concludes this paper. 
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2.   Related Work 

Several research works have been conducted on survivability evaluation. Shen, et al. [5] 
propose a mechanisms of survivability evaluation for attacked Wireless Sensor Network. 
Based on the classical reliability theory, the evaluation is composed of the reliability, 
survival lifetime, and availability in the steady state. Yang, et al. [6] analyze and evaluate 
the survivability of three virtual machine-based architectures, i.e., load balance server 
architecture, isolated component server architecture, and Byzantine fault tolerant server 
architecture. Different architectures are modeled with Continuous Time Markov Chain. 
The transient behaviors and steady states of those architectures are analyzed. Wang, et al. 
[7] propose a network survivability analysis and evaluation model. Network survivability 
is abstracted as a dynamic game process among network attacker, network defender, and 
normal user. An evolutionary game model is established and analysis algorithm is proposed 
based on the game model. Ghasemieh, et al. [8] develop a model checking algorithm to 
evaluate the survivability properties of fluid critical infrastructures. The Stochastic Time 
Logic is introduced to express intricate state-based and until-based properties for hybrid 
Petri nets. The feasibility of the proposed approach is illustrated using a case study to 
evaluate the survivability of a water refinery and distribution plant. Fu, et al. [9] evaluate 
the survivability schemes in hybrid wireless optical broadband access network (WOBAN) 
from a point view of Quality of Recovery (QoR). The evaluation is based on availability, 
recovery time, redundancy, and bandwidth of a backup path. To verify the performance of 
the survivability schemes, extensive simulations are conducted under different WOBAN 
configurations. Wang, et al. [10] present a framework for network survivability testing and 
evaluation. While the testing of network survivability is performed based on specific 
network survivability measurement models, the evaluation of network survivability is 
based on the quantification results of network survivability metrics. The experimental 
results demonstrate the generality and practicability of the proposed framework. 

Current research works are very specific – they focus on a particular system’s 
survivability evaluation. Our research aims at a more general, systematic survivability 
evaluation framework for a wide range of critical software systems. Furthermore, we apply 
a formal, logic-based approach for survivability evaluation. In the literature, the PCS 
framework [4] is the closest to the work presented in this paper. However, there are several 
fundamental differences between our Ĉ-Ƥ approach and the PCS framework. First, PCS 
focuses on proof-carrying mechanisms, and the Ĉ-Ƥ framework targets a general, 
constrained and possibilistic evaluation model. Secondly, PCS cannot reason on 
incomplete, vague or ill-known knowledge. For instance, PCS cannot represent the case 
when an evaluator is only able to assess a system’s property with a partial certainty 
(confidence), say 0.75, instead of a full level of guarantee. Furthermore, PCS cannot 
support that an evaluator signs a statement with a partial truth value about a particular 
survivability property. Technically, the truth of each formula in PCS is binary (either 
completely true or completely false), and an evaluator has no way to express a more subtle 
and gradual ranking towards a system property. Nevertheless, those features are highly 
desirable in an evaluation framework, given the increasing complexity of modern systems. 
Thirdly, the PCS framework cannot represent the inherent relationships among the 
properties of a system. As we have discussed earlier, appropriate constraints on those and 
other types of restrictions are both practically necessary and theoretically important. A 
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mechanism to incorporate user survivability requirement constraints to logic reasoning is 
presented in [11]. However, that mechanism cannot represent uncertain or ill-known 
knowledge in logic reasoning and does not support fuzzy reasoning. Our proposed Ĉ-Ƥ 
framework effectively supports both necessity-based possibilistic uncertainty and user 
survivability requirement constraints in logic reasoning. To our best knowledge, our work 
is the first attempt to incorporate vague, imprecise information into software system 
property evaluation. 

The proposed Ĉ-Ƥ framework uses necessity measuring as defined in possibilistic logic 
(PL) [12-13] to describe judgment uncertainty and to include fuzzy information in logical 
pattern matching. PL provides formal methodology to reason about incomplete or vague 
values, built upon classical first-order logic. However, our Ĉ-Ƥ logic is more general to 
include higher-order formulas. Dubois, et al. [14] propose an extension of PL, dealing with 
fuzzy constants and fuzzily restricted quantifiers (called PLFC). Alsinet, et al. [15] provide 
PLFC with a formal semantics and a sound resolution-style calculus. Like many other 
works, the proof method for PLFC is based on refutation through rules, such as resolution, 
fusion, and merging. Ĉ-Ƥ also incorporates variable weights and fuzzy constants, but the 
proof method is goal-oriented and performed in a bottom-up manner through a set of 
inference rules. Benferhat, et al. [16] propose a flexible representation of uncertain 
information where the weight in a possibilisic formula is associated with an interval instead 
of a unit number. The semantics of the interval-based PL is compatible with the standard 
PL bases, and it effectively extends PL whenever all the intervals are singletons. Alsinet, 
et al. [17] present a new logic programming language, called Possibilistic Defeasible Logic 
Programming, which combines features from argumentation theory and logic 
programming, incorporating the treatment of possibilistic uncertainty. Such features are 
formalized on the basis of PGL, a possibilistic logic, based on Godel fuzzy logic. 

In the literature, there are several research works on constraint specification and 
verification in formal logics. Jia and Walker [18] present an intuitionistic linear logic with 
constraints which combines the logic with a classical constraint domain. Classical formulas 
are isolated by a modal operator rather than binary connectives. Bartak [19] propose to use 
constraint satisfaction to describe which variables are unified in the hypotheses to specify 
the structure of the hypothesis in inductive logic programming. A constrain model is 
presented with index variables accompanied by a Boolean model to strengthen inference 
and hence improve efficiency. Saranli and Pfenning [20] propose a constrained 
intuitionistic linear logic for hybrid robotic planning problems. The logic incorporates 
domain-dependent constraints to linear logical reasoning (e.g., some resources are 
consumable and hence can only be used once) by defining two new connectives (used in a 
similar way to the pre- and post-condition operators in the Ĉ-Ƥ logic) that effectively link 
the constraints to a sequent calculus statement. Constraint solving and specification are out 
of the scope of the logic and should be conducted in an application-specific constraint 
domain. Finally, Casali, et al. [21] present a logical framework to represent and reasoning 
about gradual desires and intentions. Additional constraints can be addressed that an agent 
can set about the kind of preferences he/she is dealing with. The framework is expressive 
to describe how desires, together with other information, can lead agents to intentions. 

Constraint specification and solving in Ĉ-Ƥ are different from the existing approaches. 
The necessity constraint domain is based on the well-developed PL logic; hence, its 
soundness and completeness can be proved. This proof increases the confidence for users 
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to use the logic. For the survivability requirement constraint domain, formal constraint 
types and rules are defined. As we will see, the constraint solver is implemented as a logical 
program. Therefore, the Ĉ-Ƥ framework can directly integrate constraint specification and 
checking into a logical search process. This integration is different from all the existing 
approaches where the constraint reasoning is separated from the logical reasoning itself. 
Closely tying constraint expression and verification to logical operations has an advantage 
that constraint information can be used as part of the logic reasoning, and its correctness 
can be guaranteed, using logic instruments. 

3.   A Base Logic 

To better present our Ĉ-Ƥ logical framework for software system evaluation, we specify a 
base logic to build our logic constructs for constrained, probabilistic logic reasoning. 
Instead of developing a completely new logic, the PCS logic [4] is chosen since it supports 
the above-mentioned threshold, multi-dimensional evaluation guidelines. However, the 
proposed techniques in this paper can be applied to other logic models. We next briefly 
discuss the predicates and inference rules of the PCS logic.  

The PCS predicates can be classified into two categories:  
a) Survivability property certification predicates. 
-  ensures(Ev, S): entity Ev (e.g., an evaluator) endorses that statement S (e.g., sat(sp)) 

is true. For example, if the statement S is digitally signed by Ev, then Ev ensures S; 
-  sat(sp): the system under evaluation satisfies the user’s requirements in terms of a 

survivability primitive sp; 
-   signed(K, S): statement S is signed by an entity with a public key K;  
-  keyBind(K, E): entity E is bound to a public key K. Therefore, any statement signed 

by the private key paired with K should be considered as a statement ensured by E; 
-  cerAuth(CA): entity CA is a key certificate authority, i.e., if CA confirms a key 

binding between a public key K and an entity E, the predicate keyBind(K, E) is true; 
-  evaluator(Ev): entity Ev is a trusted evaluator on a certain survivability property sp. 

Therefore, if Ev says that a system satisfies the property sp, then it is believed true.  
b) Threshold selection predicates. 
- ltso(Sys, n, SPlist): a low bound threshold selection operator. For a given survivability 

characteristic SC, ltso(Sys, n, SPlist) specifies that a system Sys must satisfy at least 
n out of sp1, sp2, …, spm survivability primitives in SPlist in order to be considered as 
satisfying the user’s requirements in terms of SC. n is called the degree of ltso(Sys, 
n, SPlist); 

- cltso(Sys, n, mL, SPlist): a conditional low bound threshold operator. It indicates that 
a system Sys must satisfy at least n sps in SPlist, among which all the sps in mL (mL
⊆ SPlist) must be satisfied. 

Using ltso(.) and cltso(.), a survivability requirement policy is shown below where the 
predicate ok_To_Satisfy indicates that the system Sys satisfies the user’s survivability 
requirement policy. Since the system Sys to which it is implicitly referred in a ltso(.) or 
cltso(.) predicate, we omit Sys in the following discussions. As we can see, to prove 
ok_To_Satisfy, it only needs to prove an appropriate set of ltso(.) and cltso(.).  

cltso(4, {sp5}, {sp1, sp2, sp3, sp4, sp5, sp6}) ˄ (cltso(4,{sp7, sp12}, {sp7, sp8, sp9, sp10, sp11, sp12}) 
˅ (ltso(3, {sp13, sp14, sp15, sp16, sp17}) ˄ ltso(2, {sp18, sp19, sp20, sp21}))) →    ok_To_Satisfy 
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The PCS inference rules relevant to our discussions are shown in Figure 2. The first 
four rules reason about a system satisfying a sp, i.e., sat(sp). The rule “ensures_i” says that 
if a statement S (e.g., sat(sp)) is signed by a private key corresponding to the public key K 
and an entity E is bound to K, then we can conclude that E ensures that S is true. The rule 
“ensures_e” says that if an evaluator server Es says that Ev is a trusted evaluator, then it is 
believed so. The “keyBind_i” rule says that if a certificate authority CA ensures that a key 
binding statement between K and E is true, then we believe that K is the public key of entity 
E. The “sat_i” rule says that if an evaluator Ev ensures a statement sat(sp), then it is 
believed that the statement is true, i.e., the system satisfies the user’s requirements in terms 
of that survivability primitive sp.  

 

 
Fig. 2. PCS Logic Inference Rules 

 
The next four rules reason about a system satisfying a user’s requirements in terms of 

a survivability characteristic SC as represented in a low-bound threshold selection structure 
ltso(n, SPlist). The “ltso_b” rule represents the base case: if the degree n ≤ 0, then ltso(n, 
SPlist) is true.  The “ltso_i1” and “ltso_i2” rules represent the recursive evaluation of ltso(n, 
SPlist). If sp is satisfied, then ltso(n, [sp|SPlist]) will be reduced to ltso(n-1, SPlist). 
Otherwise, ltso(n, SPlist) must be satisfied.  Finally, the rule “cltso_e” converts the proof 
of a cltso(.) to the equivalent ltso(.). 

We next use an example to briefly describe how to apply the PCS logic predicates and 
inference rules to compile a proof for sat(sp). For more details, please refer to [4]. 

  Step 1: signed(KCA, keyBind(K, EServer)) ˄ keyBind(KCA, CA)  →  ensures(CA,  
keyBind(K, EServer))     

By applying the ensures_i rule, if a statement keyBind(K, EServer) is signed by an entity 
with a public key KCA and KCA is bound to entity CA, then it is believed that CA ensures 
that the statement keyBind(K, EServer) is true. 
       Step 2: ensures(CA, keyBind(K, EServer)) ˄ cerAuth(CA)  →  keyBind(K, ESever) 
By applying the keyBind_i rule, if an entity CA ensures a key binding between an entity 
EServer and a public key K and CA is an authorized certificate authority, then it is believed 
that K is the public key of ESever. 

   Step 3: ensures(EServer, Evaluator(Ev)) ˄ ev_server(ESever)   →   evaluator(Ev) 
By applying the evaluator_i rule, if an entity ESever ensures that Ev is a trusted evaluator 
and we know that EServer is an authorized evaluator server, then it can be believed that 
the endorsed statement evaluator(Ev) is true,  i.e., entity Ev is indeed a trusted evaluator. 

    Step 4: evaluator(Ev) ˄ ensures(Ev, sat(sp))   →   sat(sp) 

signed(K, S)  keyBind(K, E)  (ensures_i)     cerAuth(CA)  ensures(CA, keyBind(K, E))  (keyBind_i) 
        ensures(E, S)                                                              keyBind(K, E) 
 

ev_server(Es)    ensures(Es, evaluator(Ev))     (evaluator_i)                    n = 0                   (ltso_b) 
              evaluator(Ev)                                                                          ltso(n, SPlist)                                                                      
 
  

 
 evaluator(Ev)   ensures(Ev, sat(sp))    (sat_i)                   sat(sp)        ltso(n - 1, SPlist) (ltso_i1) 
                       sat(sp)                                                             ltso(n, mk_Set(SPlist, sp))        
 
     ltso(n, SPlist)                 (ltso_i2)      ltso(|mL|, mL)    ltso(n – |mL|, set_Sub(SPlist, mL))    (cltso_e) 
 ltso(n, mk_Set(SPlist, sp))                                                   cltso(n, mL, SPlist)) 
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By applying the sat_i rule, if entity Ev ensures a statement sat(sp) and Ev is a trusted 
evaluator, then it is believed that sat(sp) is true, i.e., the system under evaluation satisfies 
the user’s requirement in terms of survivability primitive sp. 

A PCS inference rule can be specified as a higher-order Horn clause “p0 ˅ ¬p1 ˅… ˅ 
¬pn”, where each pi is a positive atomic predicate representing a term, such as keyBind(K, 
E) and sat(sp).  More conveniently, the rule is denoted as “p1˄… ˄ pn → p0”. For example, 
the ltso_i1 rule is written as “sat(sp) ˄ ltso(n-1, Splist) → ltso(n, mk_Set(SPlist, sp))”. We 
next discuss our constrained, possibilistic Ĉ-Ƥ logic built on top of the PCS logic. 

4.   The Ĉ-Ƥ Logical Framework for Software System Survivability Evaluation 

This section presents the details of our logical framework for software system survivability 
evaluation. Its core part is a constrained, possibilistic logic, called Ĉ-Ƥ, based on the PCS 
logic. The Ĉ-Ƥ logic supports fuzzy pattern matching for survivability evaluation 
uncertainty reasoning and user requirement constraint specification and verification. In the 
following discussions, we first introduce many-valued formulas with annotated necessity 
measures. Then, we present a mechanism to represent user-defined survivability 
requirement constraints. Thirdly, we specify the Ĉ-Ƥ inference rules in a sequent calculus. 
Fourthly, we discuss proof search given a survivability evaluation goal statement by 
applying a set of inference rules subject to a set of constraints. Finally, we show the 
soundness of the Ĉ-Ƥ logic. 

4.1.   Many-Valued Formulas with Annotated Necessity Measures 

4.1.1.   Truth necessity measure of a formula 

As we mentioned earlier, the Ĉ-Ƥ logic supports expression and reasoning on uncertain 
information, such as partial belief of an evaluator about his/her evaluation on a 
survivability feature of a system, the uncertainty that an entity is a trusted evaluator, and 
the partial truth of a statement, such as ltso(n, SPlist). To represent the possibilistic 
uncertainty of a logic formula, we use the approach of annotating – formulas are labeled 
with truth necessities (or necessities for short) [12, 22]. In the Ĉ-Ƥ logic, a necessity-
annotated formula is denoted as a weighted pair <F, α>, where F represents an atomic 
formula (e.g., sat(“self-healing”), ltso(n, SPlist)) or a compound formula (e.g., 
ev_Server(Es) ∧ ensures(Es, evaluator(Ev)) → evaluator(Ev)); and α represents a lower 
bound on the degree of necessity for F to be true. α is evaluated to an element of a totally-
ordered, bounded scale Ɫ, such as a lattice. For the sake of simplicity, in this paper we use 
the ordinary scale {0, 1} for the domain of α. 

A necessity-annotated formula <F,α> in Ĉ-Ƥ is interpreted as N(F) ≥ α, where N(.) is 
a truth necessity function, mapping a set of logical formulas to Ɫ ([15, 23]). N(F) ≥ α means 
that F is true at least α–certain. For example, <sat(“self-healing”), 0.8> indicates that an 
evaluator certifies that a software system satisfies the user’s survivability requirement in 
terms of the property “self-healing” to a degree of at least 0.8. The necessity function N(.) 
in the possibilistic logic [12, 22] is specified in terms of a possibility distribution π over a 
set of interpretations ρ on the formulas in the language, i.e., π: ρ → {0,1}. Essentially, π 
models the belief states on the set of interpretations ρ. Each interpretation I∈ρ represents 
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one belief state view, mapping each atomic formula to a truth value. π(I) represents the 
degree of compatibility of interpretation I with available information. π(I) = 0 means that 
the interpretation I is impossible, given the current information, while π(I) = 1 means that 
I is totally possible. Given π, the possibility measure Π and necessity measure N for a 
formula F are defined as follows [12, 13]: Π (F) = max{π(I): I∈ρ; I╞ F} and N(F) = 1- Π 
(¬F), where I╞ F represents the interpretation I entails formula F.  π satisfies a formula <F, 
α>, denoted as π╞ <F,α>, iff N(F) ≥ α. 

Given the above notations, a necessity-annotated formulas in Ĉ-Ƥ logic is represented 
as Fc = <F, α>, such as <keyBind(E, K), α1>, <sat(“self-healing”), α2>, <ok_To_Satisfy, 
α2>. For an inference rule l: p1 ∧ p2 … ∧ pn → p, the quantitative relationship among the 
necessity measures of  l and its predicates is specified in the generalized modus ponens rule 
[24] as shown below: 

<(p1 ∧ p2 … ∧ pn → p), γ > 
<p1, β1>   <p2, β2>  …  <pn, βn>  
<p, min(γ, β1, β2, …, βn)> 

4.1.2.   Many-valued truth 

To incorporate uncertain and imprecise information in logic reasoning, we define fuzzy 
predicates in Ĉ-Ƥ logic with variable weights and fuzzy constants [14]. Basically, a variable 
weight is added to a formula F so that the truth of the formula is many-valued (no longer 
binary) depending on a particular value that the variable will take in a fuzzy set. In our 
framework, this allows an evaluator to express his/her assessment of a system’s 
survivability feature in a fine-graded scale rather than a simply binary satisfaction or 
unsatisfaction. Consider the formula sat(sp) in the rule “sat(sp) ˄  ltso(n-1, Splist) → ltso(n, 
mk_Set(SPlist, sp))”. The many-valued counterpart of sat(sp) in Ĉ-Ƥ is represented as 
sat(sp, x), which indicates that a system satisfies the user’s survivability requirement in 
terms of sp with a partial truth determined by a value to be taken for the variable x. 
Therefore, the truth of the predicate sat(sp, x) can now take any intermediate value in {0, 
1}. A variable weight is employed to express the statement such as “the more x is High 
(highly satisfied), the more true is sat(sp, x)”, where High is defined on a fuzzy set with a 
membership function denoted as µHigh(x).  Defined on a domain Đ, say an evaluation scale 
{0, 10}, µHigh(x) maps each value in Đ to a member degree of High, i.e., ∀ x∈Đ, µHigh(x) 
→ {0, 1}. Essentially, a variable weight can be seen as (flexible) restrictions on a universal 
quantifier. Semantically, it is interpreted as “sat(sp, x) is true with a necessity measure at 
least µHigh(x)”. When High represents an imprecise, but non-fuzzy interval, such as {6, 7}, 
then sat(sp, x) = 1 if x ∈{6, 7} and sat(sp, x) = 0, otherwise. 

Fuzzy constants are used to model the statement such as “an evaluator assesses that a 
system satisfies the users’ survivability requirements in terms of sp, as represented by a 
value in an range B, say {3, 4}”, denoted as sat(sp, B). Such a statement represents the 
evaluation certificate collected from a trusted evaluator. Exactly which value in {3, 4} will 
be taken is uncertain. Therefore, the statement is interpreted as “sat(sp, y) = 1 if ∃y∈{3, 4} 
and sat(sp, y) = 0, otherwise”. A formula p(B) with a fuzzy constant B can be seen as 
(flexible) restrictions on an existential quantifier over formula p. 

In a logical reasoning process, the unification between a variable weight x (defined on 
a fuzzy set A on a domain Đ) and a fuzzy constant B is conducted using the following rule, 
where N(A | B) represents the possibility of A given B and is defined as [15, 23]: N(A | B) 
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= µA(B)  =  infx∈BµA(x),  if B is a non-fuzzy, but imprecise set defined on Đ; or N(A | B) = 
infx∈Đ max(1- µB(x), µA(x)), if B is a fuzzy set. 

    <p(x) → q, α1>        <p(B), α2> 
        <q, min(α1, α2, N(A | B)> 

 
Given that the truth of a formula F with variable weights and fuzzy constants is many-

valued, for an interpretation I, I(F) can now take any intermediate value in {0, 1}. For a 
possibility distribution π, a formula F no longer induces a crisp set, but rather a fuzzy set 
of interpretations. We use the notion [F] to represent such a fuzzy set of interpretations, 
i.e., [F]⊆ ρ so that for each I∈[F], we have I(F) > 0.  Formula (1) [15, 23] is used to 
measure the uncertainty induced on a formula F by π on [F]. We will use this formula to 
prove the soundness of the Ĉ-Ƥ logic (see Section 4.5). 

        N([F] | π) =  inf I∈[F] max(1- π(I), I(F))                                     (1) 

4.2.   Specifying Survivability Requirement Constraints 

While Section 4.1 describes the logic constructs to support uncertain and fuzzy information 
in logic reasoning, this section discusses a mechanism based on [11] to incorporate user-
defined survivability requirement constraints to logic reasoning. To explain how our 
framework specifies constraints on the sps in SPlist in proving a formula ltso(n, SPlist) or 
cltso(n, mL, SPlist), we give some constraint examples [11] (see Figure 3) with regard to 
SCs and sps represented in Table 1. Although they are only exemplary, those constraints 
show it is necessary for those user-desired constraints to be represented and enforced. We 
call such types of constraints survivability requirement constraints. 

To clearly state constraints, there must be a formal specification to define the 
constraints. In the meantime, constraint verification should be easily integrated into logical 
reasoning. To enforce the constraints, rules must be defined and proof obligations must be 
created whenever the rules are applicable. To show that logical reasoning will not violate 
any of those constraints, some elements must be prohibited in a proof process. A constraint 
domain Ç is defined to integrate those three components [11] as shown below: 

Ç.L: a survivability requirement constraint specification. It is composed of a set of 
constraints representing the inherent causality and dependency relationships among the sps 
in SPlist in proving ltso(n, SPlist) as well as the corresponding constraint rules for checking 
and enforcing those relationships. We present those constraint rules in Table 2. The 
constraints shown in Figure 3 can therefore be represented as Constraint 1: sp2 ╣sp1; 
Constraint 2:╔ sp8, sp10 ╗; and Constraint 3: sp17 ┤[sp16 ˅ sp14]. 

Ç.O: a set of proof obligations that must be satisfied. It contains the sps which are 
obligated to be proved as a result of applying some constraint rules. As shown in Table 2, 
when a sp is provable, some proof obligations may be generated. For instance, if a constraint 
specifies that spi depends on spj, …, spk, and if sat(spi) becomes true, then spj, …, spk are 
obligated to be proved. So, {spj, …, spk} must be admitted to Ç.O as proof obligations. 
When a proof process proceeds and resources are available (e.g., when spj, …, spk are 
proved), those corresponding proof obligations will be discharged. 

Ç.R: a set of sps that must be restricted in any future poof process. Such a restriction is 
also created as a result of applying some constraint rules. For instance, for an exclusive 
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rule spi ╫ spj, if spi is provable, then spj must be excluded in any future proof process. The 
last row of Table 2 describes this case. 

As we can see, checking whether a sp complies with Ç amounts to rule-checking sp 
against each constraint rule in Ç.L. A rule is applicable if sp can unify with the premise of 
the rule. A proof violates the constraints if for any sp to be proved, (1) sp∈Ç.R; or (2) for 
any constraint rule r∈Ç.L, sp satisfies r and the resulting Ç.O ∩ Ç.R ≠ ∅. 
 
 
 
 
 
 
 
 
 

 
Fig. 3: Survivability Requirement Constraints 

 
Table 2. Survivability Requriement Constraints and the Corresponding Constraint Rule Semantics 

Constraints Constraint Definitions Operations on Ç.O & Ç.R if spi is Proved 
Atomicity: ╔ spi, 
spj, ..., spk ╗ 

{spi, spj, ..., spk} must all be 
satisfied if any one of them, 
say spi, is proved. 

Ç.O ∪{spj, ..., spk} 
If spi ∈Ç.O, then Ç.O – {spi} 
If spi∈{spm, …,spn} and L∈Ç.O, then Ç.O – L 

Dependency:  spi 
╣{spj, …, spk} 

spi depends on all elements 
in{spj, …, spk}, i.e., if spi is 
proved, then spj, …, spk are 
obligated to be proved. 

Ç.O ∪{spj, …, spk} 
If spi ∈ Ç.O, then Ç.O – {spi} 
If spi ∈{spm, …, spn} and L∈Ç.O, then Ç.O – L 

Selective 
dependency: spi 
┤[spj ˅ …˅ spk] 

spi depends on one element 
in {spj, …, spk}.  If spi is 
satisfied, either spj, …, or spk 
must be satisfied. 

Ç.O ∪{[spj˅ …˅ spk]} 
If spi∈Ç.O, then Ç.O – {spi} 
If spi∈{spm, …, spn} and L∈Ç.O, then Ç.O – L 

Exclusion: spi ╫ spj 
… ╫spk 

{spi, spj, …, spk} cannot be 
satisfied at the same time 

If spi ∈Ç.O, then Ç.O – {spi} 
If spi ∈{spm, …, spn} and L ∈Ç.O, then Ç.O – L  
Ç.R ∪ {spj, …, spk} 

*In Table 2, we assume spi is the constraint term to be checked. We define L = [spj˅ …˅ spk] to 
represent a special selective set in such a way that if any one element in {spj, …, spk} is satisfied, 
then the whole set [spj˅ …˅ spk] is satisfied and can be discharged from Ç.O. 

4.3.   Sequent Calculus Rules 

The Ĉ-Ƥ framework provides a mechanism to unify hybrid constraint domains with a 
logical reasoning process. The interplay between constraint checking/verification and logic 
reasoning is through a set of inference rules. We present the Ĉ-Ƥ logic inference rules using 
sequent calculus. 

Constraint 1: In SC1, the survivability primitive “Service consistency” (sp2) depends on 
“Service availability” (sp1). This dependency must be specified since if a service cannot be 
guaranteed to be available, then it is impossible to require service consistency. 

Constraint 2: In SC2, “Behavior adjustment” (sp8) and “Component reconfiguration” (sp10) 
must be required to be satisfied at the same time. 

Constraint 3: In SC3, “Malice immunization” (sp17) depends on either “Prompt damage 
assessment” (sp14) or “Fault traceability” (sp16) since either of them satisfies the pre-
conditions for the system to generate immunization formulas to make sure that other 
components will not be subject to the same type of attacks in case some components have 
been compromised. 
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4.3.1.   A sequent 

To describe the high level design of Ĉ-Ƥ logic reasoning, we start from a sequent 
(hypothetical judgment), which is the fundamental construct for reasoning from 
assumptions. A sequent has a format “∑; Ψ; Γ => Fc”, where ∑ represents a context, Γ 
represents a set of hypothetical formulas, Fc represents a conclusion formula, and Ψ 
contains a set of constraints. The sequent is interpreted as: given all the appropriately sorted 
variables in ∑, if the constraints in Ψ are all satisfiable, then we can prove the goal formula 
Fc given the hypothesis in Γ. 

The Context   ∑ defines the vocabulary of the Ĉ-Ƥ logic language, including the 
following specifications: 

(1) the sort (or type) of each term or variable appearing in a formula. Basic sorts 
include characters, strings, integers, sets, principals, survivability requirement 
parameters, necessity measures, and constraint types, 

(2) the variable weights and fuzzy constants in a formula. For each variable weight, 
the corresponding fuzzy set A is specified with its membership function µA(x). For 
a fuzzy constant, the corresponding fuzzy set or the imprecise but non-fuzzy 
interval is defined, 

(3) a mapping of each basic sort to a domain of values, 
(4) a mapping of each necessity measure term (e.g., constant, or valuation expression) 

to an element of a totally-ordered, bounded scale. 
 

The constraint Ψ   Consider a Ĉ-Ƥ rule “<p1, β1> ∧ <p2, β2> … ∧ <pn, βn>  →  <p, α>”. 
The equality α = min(β1, β2, …, βn) must hold. We consider this is another type of constraint 
and call it a necessity-based possibilistic uncertainty constraint (or necessity constraint for 
short), since it represents the semantics of an assertion about the quantitative relationship 
among the necessity values of the formulas of an inference rule. We represent this type of 
constraint using Ñ in order to distinguish it from the survivability requirement constraints 
Ç as we discussed earlier. Therefore, the entire constraint domain Ψ in Ĉ-Ƥ logic is 
composed of these two hybrid constraint worlds represented by Ñ and Ç. We denote these 
two sub-domains as Ψ.Ñ and Ψ.Ç, respectively.  

In constraint solving, a constraint term (denoted as C) refers to a formula to be checked 
with regard to a constraint sub-domain or a variable to be solved (to a ground term) given 
other constraints in that particular sub-domain. More specifically, a constraint term in Ψ.Ç 
may be a sp to be checked (e.g., to see whether proof of sp would potentially violate any 
constraint rules) or Ψ.Ç.O (e.g., to see whether the proof obligations have all been 
discharged). In Ψ.Ñ, C represents either an assertion about the relationship among the 
necessity measures of a set of formulas (e.g., α = min(β1, β2, …, βn)) or a necessity variable 
to be solved. 

A constraint solver is defined for each of Ψ.Ç and Ψ.Ñ. The two major tasks of a 
constraint solver are: 

(1) to determine whether a constraint term C can be admitted to the constraint sub-
domain, denoted as admit(Ψ.Ñ, C) or admit(Ψ.Ç, C). The former is to verify whether 
C can be assumed given the existing necessity values and the necessity relationships 
in Ψ.Ñ. Let Ψ.Ñ contain a set of necessity assertions C1, C2, …, Cn.  C is admissible 
to Ψ.Ñ if there is no conflict in assigning values to the free variables in C1, C2, …, 
Cn given the quantitative constraints expressed by C. If indeed there is no conflict, 
Ψ.Ñ is updated by adding C. Otherwise, admit(Ψ.Ñ, C) returns false. 
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The function of admit(Ψ.Ç, C) is to check that the admission of an sp 
(represented by C) will not violate any constraint rules defined in Ψ.Ç.L given the 
current constraint state.  Similar to the case for Ψ.Ñ, admit(Ψ.Ç, C) returns false if 
C is not admissible to Ψ.Ç. As we discussed earlier, a failure case occurs when (1) 
sp∈Ψ.Ç.R; or (2) for any constraint rule r∈Ψ.Ç.L, sp satisfies r and the resulting 
Ψ.Ç.O ∩ Ψ.Ç.R ≠ ∅. Otherwise, Ψ.Ç is updated by adding sp to Ψ.Ç.O and 
performing other actions as shown in Table 2. 

(2) to check whether a constraint term C can be solved given the existing constraints in 
Ψ.Ñ or Ψ.Ç (denoted as Ψ.Ñ├ C or Ψ.Ç├ C), i.e., whether a constraint set Ψ entails 
C. If C represents an sp, Ψ.Ç├ C is true iff admit(Ψ.Ç, C) is updated without 
violating any constraint. Otherwise, if C represents a constraint obligation set O to 
be checked, Ψ.Ç├ C returns true if Ψ.Ç.O is empty (i.e., all the proof obligations 
have been fulfilled). Constraint solving in Ψ.Ñ means solving a necessity variable 
(as represented by C) to a ground term given the existing necessity constraints in 
Ψ.Ñ. This essentially reduces to a multi-equation/inequality solving problem. 

We next discuss some properties of the constraint solvers, which can be easily proved: 
(1) (Hypothesis): Ψ.Ç├ C is true for a constraint term C not unifiable with any rule 

r∈Ψ.Ç.L;  
(2) (Truth universal rule): if C is a ground term, then for a constraint domain Ψ.Ñ, we 

have Ψ.Ñ├ C. 
(3) (Cut): if Ψ.Ñ├ C and Ψ.Ñ,C├ C’, then Ψ.Ñ├ C’;  
(4) (Weakening): if Ψ.Ñ├ C, then Ψ.Ñ, nc├ C for any necessity constraint nc, given 

admit(Ψ.Ñ, nc). 

4.3.2.   Ĉ-Ƥ logic inference rules 

We introduce two more connectives in Ĉ-Ƥ: a constraint implication operator “»c” and a 
constraint conjunction operator “«c”. While “C »c Fc” introduces a pre-condition C to 
formula Fc, “Fc «c C” asserts the validity of a post-condition C of Fc. These operators are 
used to connect the constraint checking with logic reasoning. Their semantics are 
represented by the inference rules that use them. 

The Ĉ-Ƥ inference rules are represented in Figure 4, where F represents an 
unconstrained formula, p(B) and p(x) represents formulas with fuzzy constant B and 
variable weight x, φ is an arbitrary formula, ∑├ v:c indicates that variable v has a sort c, 
and ∑├ var(C) checks that the variables in formula C all have appropriate sorts. Each 
inference rule is read bottom up. As an example, the “«c L” left rule indicates that the proof 
of Γ, Fc  «c C => φ in a constraint domain Ψ can be reduced to the proof of Γ, Fc => φ in a 
new constraint domain determined by admit(Ψ.Ñ, C).  As we discussed earlier, a constraint 
term C is admissible to Ψ.Ñ if the addition of C will not cause any inconsistency between 
C and the existing constraints. As another example, the initial3 rule represents that a 
semantic unification of fuzzy events is performed through variable weights and fuzzy 
constants. To prove Γ, (p(B), α') => (p(x), α) given the variable weight x (defined on a 
fuzzy set A) and the fuzzy constant B, it is only necessary to prove Γ, (p(B)) => (p(x) with 
the post-condition that the necessity constraint α = min(α’, N(A | B)) is admissible to Ψ.Ñ 
(where N(A | B) is defined in Section 4.1). The last example is about the initial4 rule. It says 
that to prove Γ => (ltso(0, SPlist), α), we need to show that the necessity variable α can be 
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set to 1 in Ψ.Ñ (i.e., admit(Ψ.Ñ, α = 1)) and that the obligation set Ψ.Ç.O is empty. Other 
rules can be interpreted similarly. 

 
Fig. 4: Ĉ-Ƥ Logic Inference Rules 

4.3.3.   The hypothesis set Γ   

Γ contains two categories of hypotheses: (1) Arules – a set of necessity-annotated inference 
rule formulas used for proof derivation (see Table 3); and (2) Aaxioms – a set of axioms 
assumed to be true. As we can see, the necessity constraint on each inference rule in Arules 
is represented using the post-condition operator «c and solved in the constraint domain Ψ.Ñ.  
As an example, “(<signed(K, P), α1> ∧ <keyBind(K, E), α2> → <ensures(E, P), α >) «c (α 
= min(α1,α2))” indicates that the logical inference “signed(K, P) ∧ keyBind(K, E) → 
ensures(E, P)” can be applied in a proof with a post-condition that the necessity constraint 
α = min(α1,α2) holds in Ψ.Ñ. 

Table 3. Ĉ-Ƥ Inference Rule Formulas in Arules 

(<signed(K, P), α1> ∧ <keyBind(K, E), α2> → <ensures(E, P), α >)   «c  (α = min(α1,α2)) 

(<cerAuth(CA), α1>  ∧ <ensures(CA, keyBind(K, E)), α2>  → <keyBind(K, E), α >)  «c  (α = min(α1,α2)) 

(<ev_Server(Es),α1>  ∧ <ensures(Es, evaluator(Ev)), α2>  → <evaluator(Ev), α >)   «c  (α = min(α1,α2)) 

<ltso(0, SPlist), α >   «c  (α = 1) 
(<evaluator(Ev), α1> ∧ <ensures(Ev, sat(sp, x)), α2>  →  <sat(sp, x), α >)  «c  (α = min(α1,α2)), where x is 
a variable weight defined on a fuzzy set A with a membership function µA(x) 
(<sat(sp, x), α1> ∧ <ltso(n-1, SPlist), α2)  → <ltso(n, {sp} ∪ SPlist), α >)   «c   (α = min(α1,α2)) 

(<ltso(n’, mL), α1> ∧ <ltso(n - n’, SPlist – mL), α2> → <cltso(n, mL, SPlist), α>)   «c   (α = min(α1,α2)) 

The axioms in Aaxioms as shown in Table 4 represent some proof assumptions (e.g., Emily 
is a key certificate authority, public key K200 is bound to Emily). For a formula representing 

∑; Ψ; Γ => Fc    ∑; Ψ; Γ, Fc’ => φ    (→L rule)                              ∑; Ψ; Γ, Fc => Fc’              (→R rule) 
  ∑; Ψ; Γ, Fc → Fc’ => φ                                                     ∑; Ψ; Γ => Fc → Fc’   

 
∑; Ψ; Γ, Fc, Fc’ => φ       (˄L rule)                                    ∑; Ψ; Γ => Fc     ∑; Ψ; Γ => Fc’        (˄R rule) 
∑; Ψ; Γ, Fc ˄ Fc’ => φ                                                                      ∑; Ψ; Γ => Fc ˄ Fc’ 
 
∑├ var(C)   ∑;Ψ.Ç├ C    ∑; Ψ; Γ, Fc => φ  (»c L rule)     ∑├ var(C)  ∑; admit(Ψ.Ç, C); Γ =>Fc  (»c R rule) 
                   ∑; Ψ; Γ, C »c  Fc => φ                                                         ∑; Ψ; Γ => C »c  Fc 
 
∑├ var(C)   ∑; admit(Ψ.Ñ, C); Γ, Fc => φ  («c L rule)    ∑├ var(C)   ∑; Ψ.Ñ├ C   ∑; Ψ; Γ =>Fc  («c R rule)                      

        ∑; Ψ; Γ, Fc  «c C => φ                                                           ∑; Ψ; Γ => Fc «c C 
  
∑├ v:c    ∑; Ψ; Γ, [v/x]Fc => φ            (∀ L rule)                ∑├ v:c     ∑; Ψ; Γ => [v/x]Fc           (∀R rule)             
         ∑; Ψ; Γ, ∀ x:c.Fc => φ                                            ∑; Ψ; Γ => ∀ x:c.Fc  
 
                                            (initial1 rule)                   ∑; admit(Ψ.Ñ, (α1= α2)); Γ, F => F        (initial2 rule) 
         ∑; Ψ; Γ, F => F                                ∑; Ψ; Γ, <F, α1> => <F, α2> 
 
∑├ x:variable weight A; B:fuzzy constant    ∑; admit(Ψ.Ñ, (α = min(α’, µA(B)))        (initial3 rule) 
                                   ∑; Ψ; Γ, (p(B), α') => (p(x), α) 
 
admit(Ψ.Ñ, α = 1)     Ψ.Ç├ Ψ.Ç.O                       (initial4 rule)  
    ∑; Ψ; Γ => (ltso(0, SPlist), α)        
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an evaluator’s judgment on a system’s survivability property, we use check(Ψ.Ç)(sp) to 
represent the constraint term sp as a pre-condition, which is to check whether the proof of 
spi satisfies the constraints defined in Ψ.Ç.  In addition, a fuzzy constant B and a belief 
necessity measure α are specified in a constrained formula such as <signed(K100, 
sat(“service migration”, {3, 4})), 0.9>. 

Table 4. Ĉ-Ƥ axiom assumpitons in Aaxiom 

check(Ψ.Ç)(sp: “service migration”) »c <signed(K100, sat(“service migration”, {3,4})), 0.9> 

<cerAuth(Emily), 1> 

<keyBind(K200, Emily), 0.98> 

<signed(K200, keyBind(K100, Alice)), 0.95> 

<ev_Server(Bob), 1> 
 

4.4.   Proof Search 

Proof search is a process for identifying a derivation of a goal statement given a set of 
assumptions Γ by applying a set of Ĉ-Ƥ inference rules subject to a set of constraints. A 
proof derivation is logically viewed as a tree rooted by the conclusion sequent (e.g., ∑; Ψ; 
Γ => <ltso(3, {“service migration”, …}), α>). The leaf sequents of the derivation tree are 
all axioms and each non-leaf sequent is derived from its premise sequents by an inference 
rule application. A goal statement such as <ltso(n, SPlist), α> is provable if all the 
following are true: (1) ltso(n, SPlist) is provable; (2) no constraint is violated in either Ψ.Ç 
or Ψ.Ñ; and (3) α is solved to a ground term. 

A theorem prover generates a proof (or disproof) given a survivability requirement 
policy. In a proof process, each application of an inference rule reduces a sequent matching 
the conclusion of the rule to its premises. A branch of the proof is successfully terminated 
when the formula to be proved unifies with a formula in the hypothesis set Γ and no 
constraint is violated. The resulting unifier is propagated to the next remaining premise and 
the process is repeated. Proof search follows the following rules: 

(1) if every leaf node is an instance of an axiom (i.e., ∑; Ψ; Γ, Fc => Fc or ∑; Ψ; Γ => 
<ltso(0, SPlist), α>) and the corresponding constraints are solvable, the proof search 
has terminated successfully; 

(2) if some leaf contains no logical connectives, but is not an instance of any axiom, 
then the search has terminated unsuccessfully; 

(3) if a leaf contains some logical connectives, a search step may choose one connective 
and apply the corresponding inference rule to reduce the proof of the conclusion to 
its premises. 

4.5.   Soundness of Ĉ-Ƥ Logic 

A logic is said to be sound if a formula can be proved syntactically from a set of 
assumptions Γ, then under any model, the formula must be true if the assumptions in Γ are 
true. To prove the soundness of a logic, there should be a model that gives meaning to the 
logic. We next show the soundness of the Ĉ-Ƥ logic. 
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Theorem (Soundness). Any constrained formula Fc proved in Ĉ-Ƥ is sound with respect 
to the underlying higher-order logic and the constraint models, i.e., the possibility 
distribution model [15, 23] and the survivability requirement model (see Section 4.2). 

Proof (sketch). The soundness of the Ĉ-Ƥ logic can be proved from the following three 
perspectives. 

(1) The Ĉ-Ƥ logic is based on PCS, which is in turn based on the higher-order logic - 
each unconstrained operator in Ĉ-Ƥ is defined in the higher-order logic terms. 
Since each unconstrained term of Ĉ-Ƥ is eventually represented by the higher-
order logic terms, the soundness of Ĉ-Ƥ is determined by the underlying higher-
order logic which has been proved as sound [25]. 

(2) The soundness of the Ĉ-Ƥ in terms of necessity constraints is proved with respect 
to the possibility distribution model [15, 23]. 

As we discussed in Section 4.1, a normalized possibility distribution π models 
the belief states on the set of interpretations ρ defined as π: ρ → {0, 1}. π satisfies 
a constrained formula <F, α>, written π╞ <F, α> iff N([F] | π) ≥ α. Now let Γ be 
a set of constrained formulas. Γ entails <F, α>, denoted as Γ ╞ <F, α> iff every 
possibility distribution π that satisfies all the constrained formulas in Γ also 
satisfies <F, α>.  In this sense, we say <F, α> is the semantic consequence of Γ. 

From the syntactic reasoning perspective, if a set of possibilistic formulas Γ 
induces a constrained formula <F, α>, denoted as Γ├ <F, α>, we say that <F, α> 
is the syntactic consequence of Γ. 

The soundness of Ĉ-Ƥ is proved by showing: if Γ├ <F, α>, then Γ╞ <F, α>. 
In other words, if we can syntactically prove <F, α> from a set of constrained 
formulas Γ, then this formula must be semantically correct in the possibility 
distribution model given Γ. 

As we have seen, the generalized modus ponens rule (in Section 4.1) is the 
only rule used in Ĉ-Ƥ for possibilistic uncertainty reasoning. Given Γ├ <F, α>, to 
show the proof of Γ╞ <F, α> is reduced to check, for each possibilistic distribution 
π: ρ → {0, 1}, if N([(p1 ∧ p2 … ∧ pn → p)] | π) ≥ γ, N([p1] | π) ≥ β1, N([p2] | π) ≥ 
β2, …, N([pn] | π) ≥ βn, we have N([p] | π) ≥ min(γ, β1, β2, …, βn). Following 
Formula (1) in Section 4.1, the first n+1 conditions amount to, for each 
interpretation I∈ρ, max(1- π(I), I(p1 ∧ p2 … ∧ pn → p)) ≥ γ, max(1- π(I), I(p1)) ≥ 
β1, max(1- π(I), I(p2)) ≥ β2, …, and max(1- π(I), I(pn)) ≥ βn. The conclusion N([p] 
| π) ≥ min(γ, β1, β2, …, βn) amounts to max(1- π(I), I(p)) ≥ min(γ, β1, β2, …, βn). 
According to the Godel semantics, we have I(p1 ∧ p2 … ∧ pn) = min(I(p1), I(p2), 
…, I(pn)) = min(β1, β2, …, βn). Furthermore, I(φ → ω) = 1 if I(φ) ≤ I(ω) and I(φ 
→ ω) = I(φ), otherwise.  Here we have I(p1 ∧ p2 … ∧ pn → p) = 1 (since each 
inference rule in PCS logic has been proved and therefore plausible, we have γ = 
1).  Consequently, we know min(I(p1), I(p2), …, I(pn)) ≤ I(p). Given γ = 1, we have 
I(p) ≥ min(γ, I(p1), I(p2), …, I(pn)) = min(γ, β1, β2, …, βn). Therefore, max(1- π(I), 
I(p)) ≥ min(γ, β1, β2, …, βn) holds for each interpretation I, and thus N([p] | π) ≥ 
min(γ, β1, β2, …, βn). 

(3) The soundness of the Ĉ-Ƥ logic with respect to the survivability requirement 
model is evidenced by the rules defined in Table 2. Since the semantics of those 
rules are defined by users and strictly enforced during a proof process, their 
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soundness is guaranteed as long as the constraint solver correctly implements 
those rules. 

5.   Experiments 

To make sure that the Ĉ-Ƥ logic inference rules are correct, we have developed a 
prototyping theorem prover implemented in JProlog (http://www.ugosweb.com/ 
jiprolog/index.aspx). The Ĉ-Ƥ logic engine is encoded in Prolog with 43 rules. We have 
conducted a set of experiments for system survivability evaluation on a PC with i5-3570 
CPU @3.40GHZ and 3.48GB RAM. All the Ĉ-Ƥ inference rules have been validated.  

Theoretically, the time for the Ĉ-Ƥ theorem prover to generate a proof given a goal 
statement (e.g., <ok_To_Satisfy, α>) depends on the complexity of the user’s survivability 
requirement policy and the available assumptions that support the proof process. Given 
other factors being the same, the more ˅ logical connectives in a survivability requirement 
policy and the more proof options under each ˅ connective, the larger the search space is.  
Logically, each ˅ logical connectives represents a binary choice in determining which set 
of SCs to choose to prove. Consequently, a proof choice represents all the connective set 
of SCs that must be proved in order to satisfy the final goal statement. Taking the 
survivability requirement policy in Section 3 as an example, there are two proof choices 
from which to choose:  

(1) <cltso(4, {sp5}, {sp1, sp2, sp3, sp4, sp5, sp6}), α1> ˄ <cltso(4,{sp7, sp12}, {sp7, sp8, 
sp9, sp10, sp11, sp12}), α2>;  

(2) <cltso(4, {sp5}, {sp1, sp2, sp3, sp4, sp5, sp6}), α1> ˄ (<ltso(3, {sp13, sp14, sp15, sp16, 
sp17}), α3> ˄ <ltso(2, {sp18, sp19, sp20, sp21}) , α4>). 

In the worst case scenario, the theorem prover needs to try all the proof choices to 
finally either prove or disapprove the final goal statement. Since the proof time for a proof 
choice is the sum of the times to prove all of the <ltso(.), α> in that proof choice, we will 
only show the proof time for one <ltso(.), α> in the following discussions. Furthermore, 
for each proof of <ltso(.), α> subject to a set of constraints, the proof time is the sum of the 
time required for the unconstrained logic reasoning and the time required for constraint 
checking and verification. Constraint solving in both of the necessity constraint domain 
Ψ.Ñ and user survivability requirement domain Ψ.Ç has been implemented as logic rules. 
We have verified that the Ĉ-Ƥ logical framework can represent and enforce all the types of 
constraints discussed in this paper. 

To measure the performance of the Ĉ-Ƥ evaluation engine, we set up the following 
specifications to represent an evaluation environment for a moderately complicated 
system/component in term of one survivability characteristic SC (as discussed in Section 
3, each ltso(n, SPlist) corresponds to one SC): 

(1) The SC contains 25 sps, i.e., |SPlist| = 25, 
(2) There are three certificate authorities in the system. A certificate authority is fully 

trusted and, therefore, a formula representing such an entity, e.g., cerAuth(Emily) 
has a necessity degree of 1. Each key binding certificate issued by a certificate 
authority has a partial trust value in a range {0, 1}, e.g., <keyBind(100, Alice), 0.97>, 

(3) There are three evaluator servers, which verify that 11 entities are authorized 
evaluators. Like a certificate authority, an evaluator server is fully trusted, e.g., 
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eServer(John) has a necessity degree of 1. A certificate issued by an evaluator server 
indicating that an entity is an authorized evaluator and therefore, has a necessity 
degree in a range {0, 1}, e.g., <evaluator(Bob), 0.99>; 

(4) About half of sps in SPlist have been evaluated by the evaluators. An evaluator 
assesses the survivability features of a software system in a scale of {0, 10} with a 
belief degree in a range {0, 1}, e.g., <sat(“service migration”, {3, 4}), 0.9>, 

(5) The degree of ltso(n, SPlist), i.e., n, varies from 1 to 10, 
(6) Each survivability requirement constraint is specified with 2-4 domain variables, 

e.g., ╔ sp1, sp16, sp17 ╗, sp2 ╣{sp10, sp22, sp25}, and sp1 ╫ sp3╫ sp8 ╫sp11, 
(7) Each variable weight associated in a Ĉ-Ƥ rule has a fuzzy member function defined 

as a trapezoid (a, b, c, d) in a domain {0, 10}. 
 

 
Fig. 5: Ĉ-Ƥ Performance Evaluation 

 

To have a better understanding of how constraint checking and verification affect the 
performance of logic reasoning, we have measured the times required to prove a ltso(.) in 
the following cases: 

(1) Unconstrained logic reasoning with formulas ltso(.), sat(SP), keyBind(E, P), etc., 
(2) Logic reasoning with necessity constraints only with formulas <ltso(.), α>, 

<sat(SP, B), β1>, <keyBind(E, P), β2>, etc., 
(3) Logic reasoning with necessity constraints with formulas <ltso(.), α>, <sat(sp, B), 

β>, etc., subject to a set of constraints╔ spi, spj, ..., spk ╗, spi ╣{spj, …, spk}, and 
spi ╫ spj … ╫spk. 

Figure 5 shows the performance results to prove <ltso(.), α>. The longest time taken 
by the Ĉ-Ƥ theorem prover is 710 ms when the degree of ltso(.), α> is 10 subject to a 
dependency constraint (see Table 2). As we can see, in general the evaluation times in all 
the cases increase slightly when n increases. More specifically, the necessity constraint 
only adds a small amount overhead in terms of proof time (roughly 30-50 ms) to an 
unconstrained logic reasoning. However, different survivability requirement constraints 
(except the exclusion rule) result in different levels of overheads to prove the <ltso(.), α>. 
In our simulations, the dependency constraint rule results in the highest overhead time 
(roughly 300-550 ms), while the exclusion constraint causes the least amount of overhead 
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time. This difference can be explained by the nature of those constraint rules: a dependency 
rule essentially requires to prove additional sps since the sp to be proved depends on other 
sps while an exclusion rule exclusively prevents some sps from being proved, therefore, 
reducing the search space. In general, we can see that the constraint checking and 
verification adds a moderate level of overhead to the unconstrained logic reasoning, 
making it realistic to be applied to an online survivability evaluation framework. 

6.   Conclusion 

We present a new mechanism to incorporate survivability requirement constraints and 
possibilistic uncertainty to software system survivability evaluation. A logical framework 
has been developed to represent and to reason with uncertain and imprecise information 
under a set of user-defined constraints on system survivability requirements. A formal 
design is presented to link the hybrid worlds of constraint domains to logic reasoning. The 
interplay between the constraint checking and logic reasoning is supported by a set of logic 
inference rules. Applying a logic-based formal approach provides rigorous verification and 
guarantee of system properties in a well-structured reasoning process. When the scope of 
software systems becomes large and their complexities continuously grow, there is a 
pressing need for formal methods to analyze, evaluate, and verify important system 
properties. 
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