62 research outputs found

    Three real-space discretization techniques in electronic structure calculations

    Full text link
    A characteristic feature of the state-of-the-art of real-space methods in electronic structure calculations is the diversity of the techniques used in the discretization of the relevant partial differential equations. In this context, the main approaches include finite-difference methods, various types of finite-elements and wavelets. This paper reports on the results of several code development projects that approach problems related to the electronic structure using these three different discretization methods. We review the ideas behind these methods, give examples of their applications, and discuss their similarities and differences.Comment: 39 pages, 10 figures, accepted to a special issue of "physica status solidi (b) - basic solid state physics" devoted to the CECAM workshop "State of the art developments and perspectives of real-space electronic structure techniques in condensed matter and molecular physics". v2: Minor stylistic and typographical changes, partly inspired by referee comment

    Impurity effects in quasiparticle spectrum of high-Tc superconductors

    No full text
    The revision is made of Green function methods that describe the dynamics of electronic quasiparticles in disordered superconducting systems with d-wave symmetry of order parameter. Various types of impurity perturbations are analyzed within the simplest T-matrix approximation. The extension of the common selfconsistent T-matrix approximation (SCTMA) to the so-called group expansions in clusters of interacting impurity centers is discussed and hence the validity criteria for SCTMA are established. A special attention is payed to the formation of impurity resonance states and localized states near the characteristic points of energy spectrum, corresponding to nodal points on the Fermi surface

    Snapshot-Based Methods and Algorithms

    Get PDF
    An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This two-volume handbook covers methods as well as applications. This second volume focuses on applications in engineering, biomedical engineering, computational physics and computer science

    Fast iterative solvers for Cahn-Hilliard problems

    Get PDF
    Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, Dissertation, 2016von M. Sc. Jessica BoschLiteraturverzeichnis: Seite [247]-25

    Model Order Reduction

    Get PDF
    An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This two-volume handbook covers methods as well as applications. This second volume focuses on applications in engineering, biomedical engineering, computational physics and computer science

    Splitting methods based on algebraic factorization for fluid-structure interaction

    Get PDF
    We discuss in this paper the numerical approximation of fluid-structure interaction (FSI) problems dealing with strong added-mass effect. We propose new semi-implicit algorithms based on inexact block-LULU factorization of the linear system obtained after the space-time discretization and linearization of the FSI problem. As a result, the fluid velocity is computed separately from the coupled pressure-structure velocity system at each iteration, reducing the computational cost. We investigate explicit-implicit decomposition through algebraic splitting techniques originally designed for the FSI problem. This approach leads to two different families of methods which extend to FSI the algebraic pressure correction method and the Yosida method, two schemes that were previously adopted for pure fluid problems. Furthermore, we have considered the inexact factorization of the fluid-structure system as a preconditioner. The numerical properties of these methods have been tested on a model problem representing a blood-vessel system.&nbsp

    Numerical modelling in a multiscale ocean

    Get PDF
    Systematic improvement in ocean modelling and prediction systems over the past several decades has resulted from several concurrent factors. The first of these has been a sustained increase in computational power, as summarized in Moore\u27s Law, without which much of this recent progress would not have been possible. Despite the limits imposed by existing computer hardware, however, significant accruals in system performance over the years have been achieved through novel innovations in system software, specifically the equations used to represent the temporal evolution of the oceanic state as well as the numerical solution procedures employed to solve them. Here, we review several recent approaches to system design that extend our capability to deal accurately with the multiple time and space scales characteristic of oceanic motion. The first two are methods designed to allow flexible and affordable enhancement in spatial resolution within targeted regions, relying on either a set of nested structured grids or, alternatively, a single unstructured grid. Finally, spatial discretization of the continuous equations necessarily omits finer, subgrid-scale processes whose effects on the resolved scales of motion cannot be neglected. We conclude with a discussion of the possibility of introducing subgrid-scale parameterizations to reflect the influences of unresolved processes
    corecore