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Numerical modelling in a multiscale ocean

by Dale B. Haidvogel1,2, Enrique N. Curchitser1, Sergey Danilov3,
and Baylor Fox-Kemper4

ABSTRACT
Systematic improvement in ocean modelling and prediction systems over the past several decades

has resulted from several concurrent factors. The first of these has been a sustained increase in com-
putational power, as summarized in Moore’s Law, without which much of this recent progress would
not have been possible. Despite the limits imposed by existing computer hardware, however, signif-
icant accruals in system performance over the years have been achieved through novel innovations
in system software, specifically the equations used to represent the temporal evolution of the oceanic
state as well as the numerical solution procedures employed to solve them.

Here, we review several recent approaches to system design that extend our capability to deal
accurately with the multiple time and space scales characteristic of oceanic motion. The first two
are methods designed to allow flexible and affordable enhancement in spatial resolution within tar-
geted regions, relying on either a set of nested structured grids or, alternatively, a single unstructured
grid. Finally, spatial discretization of the continuous equations necessarily omits finer, subgrid-scale
processes whose effects on the resolved scales of motion cannot be neglected. We conclude with a
discussion of the possibility of introducing subgrid-scale parameterizations to reflect the influences
of unresolved processes.

Keywords: Ocean modelling, nested grids, finite element and volume methods, subgrid-scale param-
eterization

1. Introduction

The equations of motion for the ocean cannot be solved exactly except under highly ide-
alized conditions. This is so for several reasons. First, the equations governing the dynamics
of the open ocean in their exact form are nonlinear partial differential equations (PDEs)
for which analytic, closed-form solutions are unobtainable. Even were this not the case,
many if not all of the environmental fields needed to specify a given problem—bathymetry,
coastline geometry, surface forcing, initial and boundary conditions, etc.—are nonanalytic
fields determined from observations; these in turn are uncertain to within observational error
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Figure 1. Space-time scales of some oceanic processes. The latitude has been set to 25◦ N. The
characteristic length scale of water bodies is taken to be sqrt(area).

and often nonuniformly distributed in space and time. As a consequence of these restric-
tions, solutions to the equations of motion, unless greatly simplified, must be determined
numerically via approximate solution procedures.

Obtaining predictions of future states in the ocean therefore raises several related, and
often competing, issues. These include the following: first, how to discretize the continuous
equations of motion and their component variables (and what potential sources of error
may be introduced thereby). Of particular recent interest, given the broad range of scales
relevant to ocean prediction (e.g., global, regional, coastal, estuarine, etc.), are multiscale
discretization techniques that allow timely and affordable predictions. Second, because
discretization necessarily omits some smaller-scale processes, the inclusion of the effects
of subgrid-scale influences via appropriate parameterizations must be considered.

In what follows, we first discuss some general properties and consequences of the numer-
ical solution of the oceanic equations of motion. We next briefly review two methodologies
used to extend the range of spatial scales covered by such solutions, namely the use of nested
structured grids and unstructured grids, respectively. Finally, we close with a discussion of
the “scale-aware” parameterization of subgrid-scale processes.

2. A brief introduction to ocean numerical modelling: Issues,
techniques, and consequences

Ocean processes cover an enormous range of space and time scales; some examples are
shown schematically in Figure 1. Notwithstanding this complexity, the equations governing
the time evolution of oceanic processes are for the most part well understood. The primitive
equations that form the basis for many ocean circulation prediction systems are derived
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from the conservation laws for mass, momentum (Newton’s Law, F = ma), heat (the First
Law of Thermodynamics), and tracers (e.g., salinity), supplemented with an equation of
state relating the density of the ocean to in situ properties (temperature, salinity, pressure).
The primary assumptions made along the way are the Boussinesq and hydrostatic approx-
imations. The derivation and implications of the primitive equations are reviewed in the
companion contribution by Jacobs and Fox-Kemper (2017).

In their “simplest” form, the primitive equation set incorporates seven nonlinear PDEs
describing the space/time evolution of the seven primary oceanic variables: velocity com-
ponents in three space dimensions (u, v, w), temperature and salinity, density, and pressure.
In addition to conservation of mass, momentum, and heat upon which they are based, the
primitive equation set has many additional desirable properties, among them conservation
of higher-order quantities such as energy, vorticity, and enstrophy (vorticity squared).

Although we will not dwell overly long on the (very important) issue of computational
efficiency, it is to be noted that the hydrostatic primitive equations encompass processes of
both hyperbolic (wave) and parabolic (diffusion) types, but avoid the elliptic character of the
equation set in the absence of the hydrostatic approximation. This yields great computational
savings in that solutions of elliptic equations are not required. However, in exchange for this
economy, the solution of the primitive equations requires some “regularization” (smooth-
ing) if convergence under grid refinement is to be guaranteed (e.g., Vitousek and Fringer
2011).

The essence of determining approximate solutions to the equations of motion is the
representation of each of the four-dimensional dependent variables—velocity for instance—
as a discrete function described by a finite set of numbers, rather than as a continuous
function of space and time, i.e., u(x, y, z, t). As is clear, this representation requires specific
methodologies for discretization of the four independent variables. After discretization
in space and time, the resulting approximate difference equations (ADEs), supplemented
with an appropriate set of initial and boundary conditions, are solved to obtain solutions
representing future ocean states.

The primitive equations are essentially “exact” for processes for which the hydrostatic
and Boussinesq approximations are appropriate (i.e., the upper-right quadrant of Fig. 1) as
well as conservative of the properties noted previously. However, solutions to the ADE are
clearly approximate only, and several questions therefore arise. These include the following:
in what way(s) do errors arise, how big are they, and how may they be minimized and/or
avoided; do solutions to the ADE converge to the exact solution as discretization intervals
in space/time are reduced; and can the conservation of properties displayed in the original
exact equations be maintained in the ADE despite inevitable error?

We discuss these questions, by example, next. To do so, we will use a convenient, reduced
form of the equations of motion, namely the linearized shallow water equations that apply
to a single, shallow layer of constant density. Treatment of ocean stratification will be
discussed below. In the absence of density variation, and with the inclusion of a conserved
tracer field, the reduced equation set is
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where the dependent variables are as follows: (u,v), the horizontal velocity components in
the x and y coordinate directions, respectively; η, the elevation of the sea surface above its
resting position; and T, a tracer field. The parameters appearing in the equations, assumed
constant, include the following: U, an advecting zonal velocity; f, the Coriolis parameter; g,
the acceleration of gravity; H, the resting layer depth; and K, a horizontal mixing coefficient.

a. Spatial differencing: Taylor series and a simple geostrophic example

Spatial discretization of the dependent variables and spatial operators in the equations
of motion can be approached in several ways. The methods most commonly employed in
ocean modelling are the finite difference (FD), finite volume (FV), and finite element (FE)
methods.5 We will use the first of these techniques here to illustrate some general principles
and results. The implementation of the latter two methods is also discussed.

The FD method assumes that each dependent variable, say u(x,y,z,t), is defined by its
values at a finite number of spatial points (xj, yk, zl) where j, k, and l are integer subscripts.
Typically, these “grid points” form a structured grid and are uniformly spaced, although
some degree of nonuniform spatial resolution can be accommodated with appropriate coor-
dinate transformations (Thompson, Warsi, and Mastin 1982).

For simplicity, consider the function u(x,t) in one space dimension, and suppose that we
seek approximate forms for the partial derivatives ∂x, ∂2

x , etc., along with an estimate of the
error incurred by the approximation. Consider a set of equally spaced grid points (xj = jΔx)
and an associated set of values u(xj) ≡ uj. FD approximations to differential equations can
be obtained in several ways. The most often used is the Taylor series method. The Taylor
series expansions for the behavior of a smooth function about a central point xj are

u(xj + Δx) = u(xj ) + (Δx)u′ +
(

Δx2

2

)
u′′ +

(
Δx3

3!
)

u′′′ + O(Δx4)

u(xj − Δx) = u(xj ) − (Δx)u′ +
(

Δx2

2

)
u′′ −

(
Δx3

3!
)

u′′′ + O(Δx4)

5. Other spatial representation methods based upon higher-order expansions in continuous Fourier or polyno-
mial basis functions, although enjoying a lengthy history in atmospheric prediction, have seen more limited use
in ocean modelling. See, e.g., Wunsch et al. (1997) and Choi et al. (2004).
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where the prime notation designates a partial derivative (i.e., u′ ≡ ∂xu). By combining these
expressions, a variety of FD approximations may be derived, including

u′(xj ) = u(xj + Δx) − u(x)

Δx
+ O(Δx)

u′(xj ) = u(xj + Δx) − u(xj − Δx)

2Δx
+ O(Δx2)

and

u′′(xj ) = u(xj + Δx) − 2u(xj ) + u(xj − Δx)

Δx2
+ O(Δx2).

Here O(Δx) and O(Δx2) represent residual (error) terms proportional to Δx and Δx2,
respectively, and indicate the rate at which the error made by the approximation may be
reduced as the grid spacing Δx is refined. An approximation whose leading-order error term
is proportional to Δx is referred to as “first-order” in space; for an error term proportional to
Δx2 the approximation is said to be of “second-order.” Higher-order approximations may
be obtained by using additional gridpoint values (e.g., u(xj ± 2Δx)).

As the first two expressions illustrate, FD approximations can be constructed in alternate
ways, each having their own distinct error properties. Note that centered FD approximations
(those using gridpoint values set equally to either side of the central point) are generally
more accurate than one-sided approximations (those using sets of values asymmetrically
distributed to one side or the other).

As a first example, consider geostrophic currents in the ocean. At lowest order in a Rossby
number expansion, the open ocean is in quasi-steady hydrostatic and geostrophic balance.
From the first of our prior equations, north-south geostrophic flow near the ocean surface
is given by f v = g

∂η

∂x
(e.g., Stewart 2008). Let us suppose that the sea surface perturbation

is oscillatory in space η(x) = η0e
ikx , where η0 is the amplitude and k is the wavenumber

(2π/wavelength) of the sea surface disturbance. From this, the north-south component of
geostrophic flow is found to be exactly v = (η0g/f )ikeikx .

It is instructive to ask what geostrophic flow we would obtain if we were to adopt a
centered, second-order approximation to the term ∂η

∂x
on an FD grid of spacing Δx. In this

case, we assume
∂η

∂x
= η0

(
eik(x+Δx) − eik(x−Δx)

)
/2Δx

from which, after substitution and a bit of manipulation, we obtain

v = (η0g/f )ikeikx(sin(kΔx)/kΔx).

Our FD approximation matches the exact result except for an additional factor of
(sin(kΔx)/kΔx)). The error in utilizing our centered, second-order approximation is there-
fore determined by the departure of this additional multiplicative factor from a value of
unity. Note that the FD result may be written v = (η0g/f )ik′eikx where the modified
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Figure 2. Percent error in the value of surface geostrophic current when a second-order finite differ-
ence (FD) approximation is used to evaluate the surface pressure gradient on a uniform grid.

wavenumber k′ = k sin(kΔx)/kΔx (e.g., Moin 2010). Because k′ is real, the central dif-
ferencing operator is seen in this case to produce no phase error, as it would if k′ had an
imaginary component.

On a uniform FD grid, the admissible wavenumbers k range from approximately 0 (very
fine resolution relative to the wavelength of η) to a value of (π/Δx). The latter limit applies
because the finest perturbation resolvable on a grid of spacing Δx has a wavelength of 2Δx.
As (2π/kΔx) is equal to the number of grid points per wavelength of η, we can compute
the percent error in our approximation as a function of grid point resolution. The result is
shown in Figure 2.

Several features in Figure 2 are of interest. Suppose that we wanted to guarantee an error
less than 5%. For this discretization and the assumed form of the sea surface perturbation,
we would require roughly 12 grid points per wavelength of the significant sea surface
undulations. At reduced resolution, say 6 points per wavelength, we are already up to
roughly 20% error. Finally, for the finest resolvable sea surface perturbation, the 2Δx wave,
the error is 100%; there is no geostrophic flow at all at this scale despite the fact that the
2Δx wave has, in the continuum, the most rapid spatial variation.

b. Horizontal discretization in two dimensions: Propagating waves on staggered grids

Thus far we have assumed that all variables are available on a common set of horizontal
grid points. Such an arrangement is not necessary however. An alternative is the use of
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Figure 3. The arrangement of variables on the Arakawa grids.

horizontally staggered grids in which the dependent variables are offset from each other in
various ways. Five examples of horizontal staggering, the so-called Arakawa “A,” “B,” “C,”
“D,” and “E” grids (Arakawa 1966), are shown in Figure 3. Historically, the most widely
used arrangements of variables for FD primitive equation ocean models have been the B
and C grids; however, the majority of models in widespread current use have adopted the
C grid. The arrangement of variables on the C grid places the discrete values of the sea
surface height and tracer fields at the center of each grid cell, and the values of the u and v
velocity components on the cell edges in the sense of normally directed flow (Fig. 3).

Consider the impact on processes resulting from the discretization of their governing
equations on a C grid. We first return briefly to the previous geostrophic example. Note
that the arrangement of variables on the C grid facilitates the discretization of the surface
pressure gradient terms in the equations for geostrophic balance. Because of the positioning
of the values of η, the sea surface gradient terms needed at u and v grid points can both be
obtained from central differences across a single Δx or Δy. (On our nonstaggered example
previously, the central difference was obtained across 2Δx). For second-order differencing,
an error reduction of a factor of four is realized on the staggered C grid.
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A broad space-time spectrum of propagating waves exists within the ocean and can be
associated with gravitational, planetary, and/or topographic restoring forces (e.g., Pedlosky
2003). Two classes of wave motions that are intimately involved in basin-scale adjustment
are inertia-gravity waves, which mediate gravitational adjustment, and planetary or Rossby
waves, which are the primary basin-wide agents of geostrophic adjustment. Systematic
errors in the representation of these wave processes have consequences for the manner in
which numerical ocean circulation models respond to time-varying forcing.

As a second example, consider our shallow water equation set under the assumption of
no large-scale advection (U = 0) or diffusion (K = 0). Defining the horizontal divergence
δ = (

∂u
∂x

+ ∂v
∂y

)
, the equations for (u, v, η) can be combined to form the hyperbolic equation

for the propagation of inertia-gravity waves

∂2δ

∂t2
+ (f 2 − gH∇2)δ = 0.

The insertion of a trial wave solution proportional to ei(kx+ly−ωt) into this equation yields
the exact dispersion relation for inertia-gravity waves:

(
ω

f

)2

= 1 + R2
d(k

2 + l2)

where Rd = √
gH/f is the Rossby deformation radius.

As we have noted, on a C grid the discretized form of the surface pressure gradient terms
are easily obtained by a central difference across a single grid interval (Δx or Δy). However,
the discretized forms of the Coriolis terms (requiring fv at a u point and fu at a v location)
each require a four-way average of v and u values, respectively. This is in contrast to a
nonstaggered grid or the Arakawa B grid, neither of which would require spatial averaging
to specify a centered estimate of the Coriolis terms.

For a propagating, wave-like solution of the form ei(kx+ly−ωt), the effect of spatial dif-
ferencing on the estimates of the surface pressure gradient terms follows from the previous
geostrophic example, yielding multiplicative terms proportional to sin

(
kΔx

2

)
and sin

(
lΔy

2

)
in the respective momentum equations. In contrast, the effects of the spatial averaging on
the Coriolis terms can be shown to result in factors of cos

(
kΔx

2

)
and cos

(
lΔy

2

)
for averaging

in x and y.
Taking a uniform grid (Δx = Δy) for convenience, and for the moment assuming exact

time differencing, the corresponding form for the dispersion relation on a C grid becomes

(
ω

f

)2

= cos2
(

kΔx

2

)
cos2

(
lΔx

2

)
+ 4

(
Rd

Δx

)2 [
sin2

(
kΔx

2

)
+ sin2

(
lΔx

2

)]
.

The departure of the approximate dispersion relation (ADR) from its exact form is found
to be dependent on the two nondimensional parameters

(
kΔx

2

)
and

(
lΔx

2

)
; these are (π times)

the ratio of the grid spacing to the wavelength of the wave in the x and y directions. Recalling
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that k and l are, respectively, 2π divided by the x and y wavelengths of the wave, and that
the finest resolvable wavelength is 2Δx, these “error parameters” range in value from near
zero (the limit of very fine resolution of the wave) to

(
π
2

)
. From this it is clear that the ADR

approaches the exact form in the limit (Δx→0).6

The maximum error incurred on the C grid occurs for the most poorly resolved wave(
k = l = π

Δx

)
, for which

(
ω

f

)2

= 0 +
[(

4

π2

)
R2

d(k
2 + l2)

]
k=l=π/Δx

where the “0” has been included to emphasize that the contribution to the ADR from the
Coriolis parameter has disappeared entirely. In addition, the contribution to the ADR from
the gravity waves has been reduced by a factor of π2. In other words, the phase speed(
cph = ω

k

)
of the gravity waves has been reduced by a factor of π. Note that, in the

continuum, pure gravity waves are nondispersive; that is, their phase speed is constant,
independent of wavenumber. However, when produced on a C grid, they are dispersive.

In the preceding semi-discrete example (discrete in space, exact in time) the bi-directional
wave (hyperbolic) character of the solutions is maintained, albeit with errors in the phase
speed dependent on wavenumber. This fortuitous outcome is a consequence of the symmetric
differencing and averaging operations defined on the C grid, which do not change the
character of the resulting ADE. Further discussion of the influence of staggered grids on
the propagation of geophysical waves can be found in Wajsowicz (1986) and Dukowicz
(1995).

c. Time marching of the wave equation: Mix and match

So far, so good. However, numerical solution of the equations of motion requires that
they be discretized in time as well as in space. That is, approximate forms for the time
derivative must be specified that relate the future values of the dependent variables to
their past values. As with approximations in space, there are many approaches to time
differencing. A thorough discussion of time differencing is beyond the scope here. Instead,
we will use several simple time-marching schemes to support our general remarks. The
reader is directed to more comprehensive discussions (e.g., Durran 1999).

Consider the generic tracer equation ∂T
∂t

= F(T ) where F is a linear function describing
the time-evolution of T, e.g., the advection, diffusion, or combined advection–diffusion
equations. As in space, we divide the continuous time interval into discrete increments,
or time steps, Δt. Then integration of the tracer equation in time yields a relationship
between past and future values of the prognostic variable, i.e., a time-marching scheme.
Time integration may in principle be performed over any number of past time levels. In

6. Note that sin(kΔx/2)→(kΔx/2) and cos(kΔx/2)→1 as Δx→0.
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practice, integration from t0 to t0 + Δt (a “one-step” scheme) or from t0 – Δt to t0 + Δt (a
“two-step” scheme) are typically employed.

Several simple one- and two-step time-marching schemes can be written in the following
form: T(n + 1) = αT(n)+βT(n − 1)+Δt {γF(n + 1)+κF(n)+εF(n − 1)}. Here, α–ε are constants,
and the superscript notation denotes the time step, i.e., T(n) ≡T(x, nΔt). It has been assumed
that values of T are available at a minimum of two prior time levels. Simple time-marching
schemes that fit this description include the following: Euler forward (α = 1, κ = 1;
β = γ = ε = 0), Euler backward (α = 1, γ = 1), trapezoidal

(
α = 1, γ = κ = 1

2

)
, leapfrog

(β = 1, κ = 2), and Adams–Bashforth (α = 1, κ = 3/2, ε = −1/2).
From our discussion of differencing in space, it may be anticipated that time differences

that are “centered”—that is, with the estimate of F centered within the interval spanned by
the time steps of T—will be more accurate than those that are not. This is indeed the case.
Of our five simple time-marching schemes, the two Euler methods are of first order in time.
The remaining three, including the well-known leapfrog scheme, are centered in this sense
and consequently of second order. Note that higher-order accuracy can be obtained with
either a one- or two-step scheme.

In general, two types of error may arise in solutions to the ADE. The first, dispersive
error, we have already encountered. The second is amplitude error, in which the magnitude
of the approximate solution differs from its exact counterpart. A particularly unfortunate
situation arises when the time-marching scheme allows the approximate solution to grow
in amplitude without limit, rather than behave stably as in the previous propagating wave
example wherein the amplitude of the wave is preserved in time. This is termed “numerical
instability” and caution is always needed to avoid an approximate solution that “blows up.”

In previous reference to the semi-discrete, bi-directional wave equation, we have noted
that it is helpful for the ADE to preserve the character—in this instance, hyperbolic—of
the exact equation set. As we will see, this is not the case for all time-marching schemes.
However, here is one that does so:(

η(n+1) − η(n)

Δt

)
= −H

(
∂u(n)

∂x
+ ∂v(n)

∂y

)
(

u(n+1) − u(n)

Δt

)
= f

(
v(n+1) + v(n)

2

)
− g

(
∂η

∂x

)(n+1)

(
v(n+1) − v(n)

Δt

)
= −f

(
u(n+1) + n(n)

2

)
− g

(
∂η

∂y

)(n+1)

wherein a mixture of Euler forward, Euler backward, and trapezoidal treatments are all used
in combination. This treatment seems strange at first sight; however, manipulation of the
ADE for (u, v, η) yields the equivalent ADE for horizontal divergence, namely

(
δ(n+1) − 2δ(n) + δ(n−1)

Δt2

)
= −f 2

(
δ(n+1) + 2δ(n) + δ(n−1)

4

)
+ gH∇2δ(n).
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Here, we have left the spatial derivatives in their continuous form for convenience only; in
the fully discrete ADE they would need to be approximated using symmetric averages and
differences as in the C grid examples shown previously.

The result of our time-marching treatments in this case is a second-order (in time and
space) bi-directional wave equation in which there arises both a centered time-differencing
term on the left-hand side of the equation and a centered time-averaging term on the right.
Insertion of our trial wave equation, as shown previously, shows that the former yields
a multiplicative factor of

[ − 4 sin2 (
ωΔt

2

)
/Δt2

]
and the latter a factor of cos2

(
ωΔt

2

)
. It

is easily verified that the solution to the ADE approaches that of the exact equation as
the time step is refined. A more complete analysis of the propagation of inertia–gravity
waves for forward–backward time-differencing on staggered grids is offered by Beckers
and Deleersnijder (1993).

d. Time-marching of the advection equation: Constraints on Δt

In the preceding example, a well-chosen combination of space and time discretizations
reproduces the essential character of the exact equation set. In particular, the solutions to the
ADE are propagating waves (whose phase speeds may, however, differ from the continuum
result) but whose amplitudes are preserved. An alternate way to state this is to observe that
the ADR has solutions for ω that are real numbers. This favorable property is a consequence
of a clever choice of time marching in which implicit time weighting of the right hand-side
terms (i.e., the Euler backward and trapezoidal treatments) are employed.

Unfortunately, in a general setting such forward-in-time treatments may require consider-
able extra effort in the solution of the resulting coupled ADE. For this reason, explicit-in-time
marching schemes are generally preferred. In return for the computational simplicity and
efficiency that are thus gained, however, numerical instability (unbounded growth of the
approximate solutions) may be encountered.

It is therefore necessary to guarantee that the solution to our ADEs converge to the
true solution under space/time grid refinement. Two properties of an approximation are
related to its convergence. These are consistency of the ADE with the original PDE and the
numerical stability of its solution. The Lax–Richtmyer equivalence theorem prescribes the
relationship between convergence, consistency, and stability. The theorem states for linear
constant-coefficient PDEs that consistency plus stability together guarantee convergence.

The Von Neumann method for establishing the stability of a difference approximation
is the most frequently used and readily applied stability analysis method, though it is not
directly applicable to nonlinear equations. In it, we test the stability of a single spatial
harmonic of the approximated equation. Stability of all admissible harmonics then becomes
the necessary condition for stability of the overall scheme.

The procedure is as follows: assume a separation of space/time variables can be made such
that u(n) = λneikx, where k is the wavenumber (2π/wavelength) of the trial solution and λ is
a (possibly complex) factor specifying the phase and amplitude change in the solution from
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one time step to the next. Substitute the trial solution into the difference equation, and solve
for λ. Then, requiring |λ| ≤ 1—that is, precluding systematic amplitude growth—ensures
stability.

As a next example, set β = ε = 0 in the simple time-marching schemes previously
shown. The resulting one-step scheme uses time levels n and (n + 1) only. Then, for the
advection equation ∂T

∂t
+ U ∂T

∂x
= 0 , and for exact spatial differencing, the Von Neumann

method can be applied to show that

λ =
{

1 − iκ


1 + iγ


}
=

(
1 − κγ
2 − i


1 + γ2
2

)

where 
 = UkΔt (note that κ + γ = 1 for consistency with the original equation). Taking
the modulus of λ for the various combinations of κ and γ shows the Euler forward scheme
to be unstable (|λ| = (1 + 
2)1/2), the Euler backward scheme to be stable but damping
(|λ| = (1 + 
2)−1/2), and the trapezoidal scheme to be amplitude-preserving (|λ| = 1). Of
these schemes, the time-implicit trapezoidal is best (i.e., unconditionally stable and also of
higher order in time) although possibly more costly to implement in a more general setting.

The result of this stability analysis may be anticipated by inspection of the leading-order
error terms in the ADE. Note that, from the preceding Taylor series,

T (n+1) − T (n)

Δt
=

(
∂T

∂t
+ Δt

2

∂2T

∂t2
+ ...

)(n)

∂

∂x
T (n+1) = ∂

∂x

(
T + Δt

∂T

∂t
+ Δt2

2

∂2T

∂t2
+ ...

)(n)

.

Combining these leading-order terms with the exact advection equation leads us to the
following for the Euler-backward method applied at time step “n”:

∂T

∂t
+ U

∂T

∂x
=

(
U 2Δt

2

)
∂2T

∂x2

where the higher-order terms have been dropped. The ADE with Euler-backward marching
thus resembles the original advection equation but with the addition of a spurious diffusion
term; after discretization, the modified equivalent PDE is no longer a simple advection
equation, but rather has a combined advective–diffusive character. Note that in this case
the erroneous diffusive coefficient

(
U2Δt

2

)
is positive; hence, its influence is to damp the

amplitude of the solution, anticipating the results of the Von Neumann stability analysis.
If we had selected the Euler-forward method, the diffusive term would again enter but

with a negative sign, corresponding to spurious antidiffusion (growth) of the solution. This
is again consistent with the conclusion drawn previously that Euler forward is unstable
in this setting. Finally, a similar derivation for the leading-order influence of trapezoidal
marching confirms that the error is dispersive, not diffusive.
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For the two-step schemes (leapfrog and Adams–Bashforth), the identical Von Neumann
analysis can be performed. In these cases, the result is a quadratic equation for λ, which
may be solved in the usual fashion for the two associated values of λ. For leapfrog (β = 1,
κ = 2), the two roots are

λ2 = i
 + (1 − 
2)1/2.

λ2 = i
 − (1 − 
2)1/2.

The two-step leapfrog approximation to the wave equation has two possible solutions,
and both are conditionally stable, as discussed. But by taking the limit as Δt→0, we note
that the former corresponds to the true solution (λ1 →1) whereas the latter is unphysical
(λ2 →–1). These are the physical and computational modes, respectively. The latter can
be problematic if it grows too large relative to the physical mode, and hybrid schemes have
been devised to keep the computational mode in check (most simply, the occasional use of
a trapezoidal correction step).

Finally, if we wish to assure stability of the physical mode (|λ1| ≤ 1), then 
2 must be less
than or equal to 1; this in turn requires UkΔt ≤ 1. The most severe restriction on Δt occurs
for the largest permissible value of the wavenumber k, that is, the finest possible resolved
spatial scale. The finest resolvable wavelength is 2Δx; hence, kmax is (2π/2Δx) or (π/Δx)
and (UΔt/Δx) ≤ (1/π). More generally, were we to discretize in space as well as time using,
say, centered differences, stability would require (UΔt/Δx) ≤ 1. This is the well-known
“Courant–Friedrichs–Lewy” (CFL) condition for the second-order FD approximation to
the advection equation. Finally, note that UkΔt = (kΔx)

(
UΔt
Δx

)
, the product of the ratio of

grid spacing to wavelength and the Courant number. The latter is the ratio of the time step
to the shortest advective time scale (Δx/U).

The central lesson conveyed in the CFL condition is that, generally speaking, time steps
are constrained by the rate at which “information” passes across the spatial grid. For the wave
equation, and the second-order methods employed here, the requirement is Δt ≤ (Δx/U).
With this lesson in mind for the diffusion equation ∂T

∂t
= K ∂2T

∂x2 , simple dimensional analysis

suggests that the time step should be limited by a value proportional to (Δx2/K). A detailed
stability analysis proves this to be the case.

e. Phase errors and the creation of false extrema

As our simple examples from the advection and bi-directional wave equations demon-
strate, solutions obtained by approximating the time and/or space derivatives will gen-
erally not preserve the nondispersive character of the true solution for simple gravity
waves. Instead, the approximate solution will, in general, display a phase speed error that
depends on the wavenumber k (and l, if in two horizontal dimensions). This result holds
even for otherwise attractive and robust time-marching schemes such as the trapezoidal
method.
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The dependence of phase speed error on wavenumber can have significant consequences.
Consider uniform advection of a tracer field with an initial distribution that is localized in
space. The localized distribution can be thought of as being made up of an overlapping sum
of waves of different wavenumbers, adding up in just the right way and moving together in
phase. When advanced in the continuum according to the 1d advection equation, the initial
distribution is carried along at speed U without change of shape. However, an approximate
solution will suffer gradual de-phasing of the component wavenumber contributions with
a variety of unpleasant consequences, including the potential production of false extrema
(e.g., negative values) in the tracer field. A variety of approaches that attempt to minimize
the consequences of dispersive errors have been explored (e.g., Zalesak 1979; Thurburn
1990; Friedrich 1998).

f. Discretization in the “vertical”

A significant choice in the character of numerical ocean models has been the choice of
vertical discretization. In the vertical direction, the ocean has two impermeable boundaries:
the free surface, which is time- and space-dependent, and the bottom topography, which is
usually assumed to be static except when studying near-shore sediment transport processes.
The depth of the ocean floor has a significant range from the near-shore shelves at a few
meters depth (even vanishing if storm surge and/or tidal wetting/drying are considered)
to the deep ocean, reaching over 4,000 meters. Features such as canyons, trenches, sills,
and seamounts are known to impose dynamical signatures in the ocean circulation and,
therefore, must be properly represented. Hence, the variable ocean depth, the time-evolving
free surface, and the space/time dependent internal density structure are all considerations
in the treatment of the vertical coordinate.

Historically, ocean models were originally developed tailored to a specific vertical
coordinate—e.g., geopotential, terrain-following, or isopycnal—chosen with the intended
application in mind. Consider a general vertical coordinate s(i,j,k,t). Then these historically
popular formulations are given by s = z (geopotential), s = z/(H + η) (terrain-following
or “sigma”), and s = ρ (isopycnal).

More recently in ocean models, the discretization of the vertical direction has been posed
as an arbitrary Lagrangian–Eulerian (ALE) coordinate, as originally described by Hirt,
Amsden, and Cook (1974) generally and by Bleck (2002) for the ocean. ALE can be
configured to be purely Lagrangian (with no transport across the coordinate lines and a grid
that moves exactly with the flow), Eulerian (wherein the fluid properties are regridded to a
fixed coordinate), or anything in between (White, Adcroft, and Hallberg 2009). A general
implementation consists of a Lagrangian step followed by a regridding of the time-dependent
vertical coordinate and an Eulerian step used to compute the vertical advection relative to
the moving vertical coordinate. ALE can be configured to be any of the traditional methods
used in ocean models: geopotential, terrain-following, or isopycnal. Recent examples in
ocean modelling are given in Chassignet et al. (2006) and Leclair and Madec (2011).
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g. Exact conservation: Yes and no

A brief comment on conservation is in order. The exact equations are predicated on the
conservation of properties such as mass, momentum, and heat and imply the conservation of
higher-order quantities such as energy and vorticity. If the ADEs are derived via consistent
differencing from the exact equations expressed in flux form, then exact conservation (to
within machine round-off error) can generally be guaranteed for the lowest-order conserved
properties.

Note however that the corresponding ADE for higher-order properties (e.g., kinetic energy
[KE]) may not conserve such properties exactly. For illustration, consider the derivation of
the conservation statement for KE from the 1d advection equation

u

(
∂u

∂t
+ U

∂u

∂x

)
= ∂

∂t

(
u2

2

)
+ U

∂

∂x

(
u2

2

)
= 0

where the straightforward outcome in the continuum is an equivalent expression for advec-
tion of KE (u2

2 in this 1d example). A similar manipulation of the ADE will depart from strict
conservation via the appearance of space and time differencing error terms. These can be
reduced in size by appropriate choice of space and time steps and differencing schemes. In
general, however, departures from strict conservation of higher-order invariants will remain
unless more complex, specialized differencing treatments are employed.

h. Initial conditions, boundary conditions, and forcing functions

Solution of the ADE requires the specification of initial conditions for all prognostic
variables7 as well as boundary conditions at surface, bottom, sidewalls, and on any open
boundary segments. At solid boundaries, the condition of vanishing normal flow must be
imposed; beyond that, however, boundary conditions become less clear-cut. In principle,
the rate and manner by which fluxes of momentum, heat, and tracers are carried across all
bounding surfaces must be specified. In some cases, such fluxes may be assumed to vanish
(e.g., no heat flux through an assumed insulating bottom boundary). More generally, how-
ever, specification of boundary mixing and fluxes becomes a question of parameterization
(e.g., mixing and exchange at the ocean surface). Finally, on open boundaries the exchange
of properties must also be specified (requiring a different form of parameterization). These
topics are discussed further below.

Note a common feature of the need to provide initial boundary and forcing information:
in any realistic application, all three require access to observational datasets of various types
(atmospheric, oceanic, hydrospheric, etc.) and the quality of such datasets will determine
to a large extent the success of the simulation. With the increasing use of data assimilation
methodologies to improve simulation accuracy, the need for high-quality observational

7. Recall that initial conditions may be required at more than one prior time level, depending on the nature of
the time marching algorithm.
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products becomes particularly acute. Other contributions to this volume discuss some of
these topics (e.g., Brink and Kirincich 2017; Lermusiaux 2017).

i. Beyond simple equations

The systems of equations applied in ocean prediction are of course much more complex
than the simple examples used for illustration here. Importantly, they incorporate multi-
ple space dimensions and a simultaneous mix of interacting processes on a wide range of
space/time scales. Notwithstanding this additional complexity, and the availability of a wide
variety of alternate spatial and temporal discretization methods, the general messages con-
veyed by these simple examples continue to apply: first, that insufficient spatial resolution
can produce significant qualitative and quantitative error; second, that discretization may
alter the fundamental character of the equation set; and lastly, that time steps are typically
limited by the rates of information flow across the discrete grid.

The details will of course matter in each instance, and conclusions drawn in a simple
setting may be overly simplistic or misleading in a more complex situation. For instance,
in a multidimensional advection problem, the CFL restriction on Δt becomes more severe,
though it remains a function of the advecting velocity components and the grid spacing
in each of the coordinate directions (Δx, Δy, and/or Δz). Also, guidance obtained for a
single process in isolation may need to be reconsidered when in combination with another,
e.g., inertia–gravity waves (Beckers and Deleersnijder 1993) and advection plus diffusion
(Beckers 1992).

The simultaneous occurrence of different processes with their own rate of information
flow can present significant challenges to efficient numerical implementation. Consider the
example of global ocean prediction in the presence of a free sea surface. In the deep ocean,
the phase speed of surface gravity waves is particularly rapid (csgw = (gH)1/2 ≈ 200 m/s). A
straightforward time-explicit marching algorithm, like those mentioned previously, would
require Δt ≤ (Δx/csgw) for all equations, even for those variables not intimately related
to gravity wave propagation. To avoid the associated computational penalty, a variety of
time-marching schemes have been devised to treat different processes separately, each with
its own unique Δt. Again, a full treatment is beyond our scope. A practical example, used in
the Regional Ocean Modelling System (ROMS), is given in Shchepetkin and McWilliams
(2005).

The computational requirements of high-resolution ocean modelling can be demanding
and in many cases prohibitive. A simultaneous halving of the grid spacing in all 3 dimen-
sions, taking into account the typical requirement to also halve the time step, increases
computational cost by a factor of approximately 24 = 16. This rapid cost increase is partic-
ularly problematic in global ocean modelling on long time scales. As a consequence, novel
approaches that effectively enhance the space/time coverage of ocean models have become
essential.
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As previously suggested, system improvement may be obtained in several alternate ways,
for instance, either by refining spatial resolution or by improving the convergence rate
of the numerical approximation. Given their geometrical complexity, ocean models have
tended to favor a combination of low-order methods and decreasing spatial resolution.8 An
increasingly valuable supplement in applications with a range of spatial scales of motion
is to apply high resolution only in specific subregions of an otherwise less-well-resolved
larger domain. Such regional refinement can be either static or adaptive in time; the former
is more common, and we focus on that here. The move to a static, multiscale framework
may be accomplished in several ways, as described next.

3. Multiscale modelling on structured grids

Representing ocean physics across a wide range of scales remains a significant challenge
to climate-scale integrations. Although computer power continues to increase roughly fol-
lowing Moore’s Law (Moore 1965), ocean models that simultaneously resolve submeso- and
global-scales in a single configuration remain rare—nonexistent for climate timescales—
and many decades away (Fig. 4).

One approach being applied to achieve high resolution in a limited spatial domain is
the nesting of a high-resolution, limited-area grid within a lower-resolution, larger-scale
numerical domain. The fundamental numerical consideration for dynamical nesting is the
treatment of the boundaries between coarse (parent) and high-resolution (child) grids. In
regional ocean models, the open boundary conditions are typically implemented with vari-
ants of the method of characteristics (e.g., Orlanski 1976). Marchesiello, McWilliams, and
Shchepetkin (2001) distinguish passive (outflow) from active (inflow) boundaries with the
use of Orlanski (1976)-type radiation conditions. For passive boundaries, information is
extrapolated from the interior of the domain in such a way as to (approximately) minimize
reflections, whereas for active boundaries the interior solution is nudged towards informa-
tion contained in the exterior solution.

For purely passive boundaries, the radiation condition applied to a field variable, say
u(x,y,t), takes the continuous form

∂u

∂t
+ cx

∂u

∂x
+ cy

∂u

∂y
= 0

where cx and cy are estimates of the rate of phase speed propagation in the directions
normal and tangential to the boundary, respectively. The boundary conditions along active
boundaries can be obtained from observational data or a larger-scale model. Marchesiello,
McWilliams, and Shchepetkin (2001) show that the quality of the solution depends highly

8. As a single example, in the class of finite element models discussed below, refinement of resolution can be
of h-type (the size of cells is varied), of p-type (the polynomial order is varied) or of r-type (when the order of
reconstruction is varied).
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Figure 4. Estimate of the effective nominal horizontal resolution of ocean model components for
primary baseline and climate change scenarios as reported in the Intergovernmental Panel on
Climate Change (IPCC) reports by year of publication (Fox-Kemper et al. 2014).

on the accuracy of the computation of the normal (to the boundary) phase speed of the most
significant wave modes.

For hindcast simulations—that is, those simulating past time periods—information can be
downscaled from the coarse- to the fine-resolution region through an overlap in the domains
themselves. Downscaling can work well, within the uncertainty of model parameters, when
the forcing data are constrained by observations, such as in the reanalysis products (e.g.,
Curchitser et al. 2005; Hermann et al. 2009). The high-resolution nest can then explicitly
resolve features missing from the large-scale model, and it is constrained by the large-scale
circulation patterns via the lateral boundary conditions and/or internal nudging. However,
if nesting is within a coupled climate model, such as when making a future projection,
the forcing functions are not necessarily constrained by data and the coupled model can
be expected to respond differently if provided with an alternative (high-resolution) nested
ocean.

Multiscale nested coupling can be between two oceans or between a multiscale ocean
and the atmosphere. One of the challenges, then, is to not only downscale information to
the regional window, but also to understand how regional changes affect the global ocean
(Biastoch, Böning, and Lutjeharms 2008) or global climate (Small et al. 2015), i.e., the
effects of upscaling. Examples of upscaling include Chanut et al. (2008), who use Adaptive
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Grid Refinement in FORTRAN (AGRIF) (Debreu, Vouland, and Blayo 2008) for a model
of the Labrador Sea. The AGRIF framework permits the simultaneous integration of the
parent and child grids. The child grid must be designed with a constant refinement factor
from the parent grid and the coupling happens at every timestep. The AGRIF framework
is sufficiently flexible to permit two-way coupling between the parent and child grids.
Conservative interpolation enforces a continuity of fluxed variables.

Two-way nesting permits a more freely evolving system. This can be viewed as an
advantage if the goal is to allow upscaling of information to the larger-scale circulation.
However, with the flexibility also comes the potential to drift from a more realistic solution
that might be achievable were observational data to constrain the solution on the parent grid
(Döscher, Böning, and Herrmann 1994; Gerdes et al. 2001).

A more flexible framework that does not require the parent and child grids to be collo-
cated, nor the parent and child models to be the same, is described by Curchitser et al. (2011)
and Small et al. (2015). This new framework offers the advantage of optimizing grid and
model design in specific regions. The framework has been implemented in the National Cen-
ter for Atmospheric Research-Community Earth System Model (NCAR-CESM) using the
Parallel Ocean Program (POP) and ROMS global and regional models, respectively (Small
et al. 2015). In ocean-only hindcast mode, ROMS, which was designed as a coastal model,
has shown improved skill in modelling boundary currents (e.g., Kang and Curchitser 2013,
2015). The embedding of such a regional model in a global configuration allows for isola-
tion of specific processes affecting both the local climate representation and the potential
for upscaling effects. The additional flexibility comes at the expense of boundary condi-
tion simplicity. Interpolated radiation boundary conditions are needed to pass information
from the parent to the child grid. Additionally, overlap regions and sponge layers may be
necessary.

Figure 5 shows an example of an embedded regional ocean model in the northwest
Atlantic using the CESM multiscale ocean configuration. The global ocean is POP at 1◦;
the regional model is ROMS at 7-km resolution. The ocean models are two-way coupled.
A merged ocean sea surface temperature (SST) is passed to the global atmosphere at each
coupling time step, typically at a daily frequency (R. Dussin, pers. comm.). Though con-
spicuous features such as the Gulf Stream separation are not as skillful as in the pure ROMS
hindcast of Kang and Curchitser (2013, 2015), there is an improvement over the coarse-
resolution global model. This configuration is now being used to explore the effects of the
Gulf Stream position and correction of some of the global model biases on downstream
climate. Similar models in other boundary currents (e.g., Small et al. 2015) can be used to
improve the representation of specific features in a climate model.

In spite of increasing computational resources, practical implementation of global high-
resolution models will remain challenging for some time. This is especially true with Earth
System Models that incorporate biogeochemistry. A careful implementation of a nesting
strategy is useful to begin exploring the role of the coastal ocean in the climate system
and the potential linkages between disparate scales of motion. The technique relies on
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Figure 5. National Center for Atmospheric Research-Community Earth System Model (NCAR-
CESM) multiscale configuration in the Northwest Atlantic. The global ocean is Parallel Ocean
Program (POP) at 1°; the regional model is Regional Ocean Modelling System (ROMS) at 7-km
resolution. The ocean models are two-way coupled. A merged ocean sea surface temperature (SST)
is passed to the global atmosphere at each coupling time step (R. Dussin, pers. comm.).

careful and accurate remapping, which permits conservative interpolation of fluxes. Signif-
icant challenges remain in designing nesting strategies for model components other than
momentum. Radiation conditions may not be appropriate for propagating signals arising
from the dominant dynamics in sea ice and biogeochemistry. A final point to be noted is
that although high-resolution nests may more accurately represent certain dynamics, such
as boundary currents, in and of themselves they cannot correct significant biases that the
parent model may contain.

4. Multiscale modelling on unstructured grids

Unstructured meshes are inherently suited to resolve dynamics encompassing a range
of scales. By allowing the size of mesh elements to vary, they offer geometric flexibility
that goes beyond the functionality allowed by nesting or generalized curvilinear meshes,
the two techniques applied commonly to refine on structured meshes. We consider only
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Figure 6. A regular patch of triangular mesh (left) and hexagonal mesh (right). Such meshes are dual
to each other. In the triangular case, the degrees of freedom are most frequently located at vertices,
centroids, or circumcenters or, in the case of C-grid discretization, at mid-edges. For the hexagonal
mesh, it is commonly centers of cells or mid-edges in the case of C-grid discretization.

horizontally unstructured meshes, because the dominance of hydrostatic balance in the
ocean demands vertical alignment. Compared with structured meshes, unstructured meshes
enable smooth coastlines. Their horizontal density can be adjusted in places where the
topographic slope is large, allowing finer topographic details to be better resolved. Many
coastal models, designed to use unstructured meshes, benefit from the ability to scale the
size of mesh elements with the square root of depth, which allows them to avoid the time
step limitation with respect to the speed of surface gravity waves over the deep part of
the ocean. Triangular meshes are most flexible and serve as a basis of most models, e.g.,
ADvanced CIRCulation Model (ADCIRC) (Westerink et al. 1992), Finite-Volume, primi-
tive equation Community Ocean Model (FVCOM) (Chen, Liu, and Beardsley 2003), Semi-
implicit Eulerian-Lagrangian Finite Element (SELFE) (Zhang and Baptista 2008), Stanford
Unstructured Nonhydrostatic Terrain-following Adaptive Navier–Stokes Simulator (SUN-
TANS) (Fringer, Gerritsen, and Street 2006) and Finite Element Sea Ice-Ocean Model
(FESOM) (Wang et al. 2014).

Figure 6 (left) shows a patch of such a mesh. Most commonly, the variables are located on
mesh vertices, centroids of mesh elements (triangles), or mesh edges. However, higher-order
representations are also possible when additional degrees of freedom are introduced inside
triangles. Meshes dual to triangular, i.e., obtained by connecting circumcenters of triangles,
can also be used, as is schematically shown in the left panel, leading to an arrangement
shown in the right panel (see Ringler et al. 2013). We will refer to these as quasi-hexagonal,
for hexagons will be met most frequently in this case. The circumcenters should lie inside
their triangles, which excludes obtuse triangles. Meshes satisfying this property are called
orthogonal. The dual mesh in this case presents the Voronoi tessellation. In principle, there
is no limitation on the polygon type and generalized meshes combining different polygons,
e.g., triangles and quads, are also possible. The question is rather their numerical stability,
for mesh heterogeneity may contribute to locally increased errors. In the following, we will
use triangular meshes as an example.
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a. Examples of unstructured grid techniques

To illustrate the basic approaches for horizontally unstructured meshes we consider the
2D advection–diffusion equation for a tracer T,

∂tT + ∇ · (uT − K∇T ) = 0 (1)

with ∇ = (∂x, ∂y) and insulating lateral boundary conditions. Here u is the horizontal
velocity vector and K the diffusivity. For simplicity, we will also consider the 1D version
of this equation

∂tT + ∂x(uT − K∂xT ) = 0

when describing discretizations.

b. Finite volume methods

There are several possible ways to discretize the equations of motion on unstructured
meshes. The first one relies on reformulating equations so that they express balances related
to control volumes, hence the name FV method. In the simplest case when variables are
located at the centers of triangles, the control volumes (also referred to as cells) are the
mesh triangles proper. If they are at vertices, the so-called median–dual control volumes
are routinely used. They are formed by connecting centroids to the centers of edges. The
other option is to connect the circumcenters, but this is only possible if the circumcenters
are inside their respective triangles. On a regular patch shown in Figure 6 these options
coincide, but they differ on general meshes.

The FV method relies on the fact that the motion equations have the form of conservation
laws, as equation (1). These equations are integrated over control volumes and their flux
divergence term is expressed, via the Gauss theorem, in terms of fluxes out of the control
volumes. Due to this strategy, local and global balances are ensured on the discretized level.
We apply the FV method to equation (1) with cell-centered placement of variables. Indices
c, v, and e will be used to designate the cells, vertices, and edges, respectively. Integrating
over a triangle c one obtains

∂t

∫
T dΩc +

∑
e(c)

Fe · nele = 0. (2)

Here e(c) is the symbolic notation for the indices of the edges of triangle c, ne is the
outer normal to the edges, and le their length. The discrete tracer values are introduced as
Tc = ∫ T dΩc/Ac, where Ac is the triangle area. Note that no approximation is involved
in deriving equation (2). The essence of the FV approach lies in estimating fluxes in terms
of cell-averaged values Tc. The language of fluxes automatically ensures that total tracer is
conserved. Assuming the velocity field to be given, fluxes can be estimated if the field T is
known at the boundary of the control volume.
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This can be done by designing a polynomial reconstruction valid in the cell and its vicinity
Tc(x)= a0 +a1x +a2y + ..., where x and y are coordinates measured from the centroid and
ai the expansion coefficients, such that it satisfies the strong constraint ∫ TcdΩc = TcAc

and weak constraints minimizing L = Σn(c)(∫ TndΩn − TnAn)
2. Here n(c) is the list of

the neighboring triangles. The number of neighbors involved in the reconstruction depends
on its order. Only the nearest neighbors (3 triangles sharing edges with c) are needed for
linear least-squares reconstruction, and generalizations of this scheme are straightforward.
The higher the order of the reconstruction the more accurate is the estimate of fluxes
leaving/entering the control volume. However, for each edge the estimates coming from
triangles sharing it are generally different. The flux entering equation (2) is therefore some
combination of, for example, centered or upwind-biased estimates. On uniform meshes, the
first choice will leave a dispersive error, whereas the second one will lead to a diffusive
error. This behavior will be preserved if meshes vary smoothly. One can also reconstruct
gradients of T on centered and upstream-biased stencils and use them to estimate T at
edges, or combine field reconstruction on several stencils to obtain a weighted essentially
non-oscillatory (WENO) scheme. The details here depend on the variable placement. For
example, for vertex placement of variables the language of gradient reconstruction turns
out to be more convenient because gradients are easily estimated on triangles.

Obtaining a monotonic scheme requires limiters or flux-corrected transport algorithms.
Because directional splitting is not possible in the horizontal plane, these algorithms prove
to be more computationally expensive than their structured-grid counterparts. Note lastly
that reconstruction of velocity fields on unstructured grids must be carried out carefully to
avoid unintended inaccuracies (e.g., Wang, Zhao, and Fringer 2011).

c. Finite element methods

The FE method relies on expanding the ocean fields in a series of polynomial basis
functions defined on mesh elements, and seeking the coefficients of these expansions from
the requirement that the governing equations be satisfied in an optimal way.

We introduce a set of basis functions Nj(x, y) defined on mesh elements (in the FE
method this name is routinely used instead of volumes or cells in the case of FV) and
expand the tracer field as T = Tj (t)Nj (x, y), with summation implied over the repeating
indices in this section. The coefficients of expansion are only a function of time, which will
be implied below. Depending on the choice of functions, the index j can list mesh elements
(triangles) or their vertices, edges, or additional nodes in elements. A simple example is
the continuous P1 representation (P stands for polynomial, and 1 for its degree) in which
case Nj(x, y) equals 1 at vertex j and goes linearly to zero at neighboring vertices. In
this case T = Tj (t)Nj (x, y) represents a linear interpolation that is continuous across the
faces. Continuous quadratic P2 representation deals with functions defined at vertices and
mid-edges. Many other possibilities are described in traditional courses on the FE method
such as Zienkiewicz and Taylor (2000). It is important to stress that, despite the nonuniform
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placement of the degrees of freedom Tj , the field T becomes defined over the entire mesh.
Because this representation is based on a finite set of degrees of freedom, it cannot satisfy
the continuous motion equations exactly. Instead, one requires equation (1) be satisfied in
a weak sense as ∫

(Mi∂tT − Fh∇Mi)dΩ = 0 (3)

where Mi is an appropriate test function, and integration by parts has been performed
to reduce the order of derivatives applied to T . No difficulties occur in this case if the
representation for T is continuous, which will be assumed. Clearly, the set of Mi should be
sufficient to constrain all the degrees of freedom used to represent T . An obvious possibility
is to take Mi = Ni to obtain

Mij∂tTj + (Aij + Dij )Tj = Si (4)

where Mij = ∫ NiNjdΩ, Aij = − ∫ Nj u · ∇NidΩ and Dij = ∫ Kh(∇Ni)(∇Nj )dΩ are,
respectively, mass, advection, and diffusion matrices. Note that derivatives in expressions
for matrices Aij and Dij would be singular if Nj were discontinuous. The approach imple-
mented in equation (4) is known as continuous Galerkin (CG) discretization. It is optimal
in the sense that the residual of the equation for the field T in the space of basis functions
Nj is orthogonal to these functions. A reader should notice that the procedure relies on a
scalar product introduced over the space of functions Nj . This proves helpful, for it offers a
natural representation for the balance of tracer variance or energy in the case of the primitive
equations.

Note that in contrast to FD or FV treatments, the time derivatives are coupled through
the mass matrix (Mij previously). It is nondiagonal for the CG discretization and links all
degrees of freedom. The presence of mass matrices improves accuracy, as we shall see, by
reducing numerical dispersion (for more detail, see Donea and Huerta 2003), but iterative
solvers must then be used to disentangle ∂tTj . Diagonal, or lumped, approximations are
sometimes selected for Mij to reduce computational burden, but this has an adverse effect
on accuracy.

Discontinuous finite elements can be considered a generalization of both FV and CG
FE approaches. In this case, the polynomial representation for T is confined to element
interiors, and is discontinuous across the elemental boundaries. The simplest example is
P0, wherein T is elementwise-constant. For the P1 discontinuous representation, the vertex
values are different on each element, so that if six triangles meet at vertex v, there will be
six values of Tv there. This leads to clustering of degrees of freedom, so that other variants
with internal placement should be preferred.

Because of the discontinuous representation, one writes the weak formulation by inte-
grating over element interiors,

∑
c

(∫
(Mi∂tT − Fh∇Mi)dΩc +

∫
MFndΓc

)
+ P = 0 (5)
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where the integration in the last term is over the boundary of element c. Because elements
are disconnected, equation (5) is incomplete unless certain penalties are added, represented
here through P . They include terms that weakly impose the continuity of fluxes and fields.
An alternative approach is to consider fluxes F as “numerical” fluxes, combining flux
estimates from elements across the face together with relevant continuity constraints needed
for accuracy and stability. If Mi = Ni , the result is the discontinuous Galerkin (DG)
discretization. The reader is advised to consult a regular course (e.g., Li 2006) for details
that are numerous here.

Compared with the FV method, the DG FE method spares the need for high-order recon-
structions if high-order representation is used. This representation is internal to the element,
which is beneficial from the standpoint of parallelization. Likewise, mass matrices now
connect only local degrees of freedom inside elements, which makes their direct inversion
feasible, in contrast to CG FE. This makes the DG FE method appealing for ocean mod-
elling. However, the computational burden is high, and practical applications are still rare
(e.g., Dawson et al. 2006; Kärnä, Legat, and Deleersnijder 2012). Besides, the complexity of
coastlines and bottom topography is the reason why geometrical refinement and low-order
discretizations are preferred.

d. Elementary examples

In order to explain how FV and CG FE methods work (we skip the DG FE case as it
requires more lengthy detail) we consider a 1D example assuming the velocity u to be
uniform. For the FV method, let Tc be the cell-mean value in cell c. The cell length will
be hc, and its boundaries will be at xc − 1/2 and xc + 1/2 = xc − 1/2 + hc, with the index c
increasing in the positive x-direction. We get

∂Tc + (Fc+1/2 − Fc−1/2)/hc = 0.

For advection, a local linear reconstruction Tc + 1/2 = (Tc + 1hc + Tchc + 1)/(hc + hc + 1)

will lead to a scheme that is equivalent to standard centered differences on uniform meshes.
Note that for linear reconstruction the difference between the cell-mean and cell-centered
values can be ignored but is essential in higher-order reconstructions. If u > 0, the estimate
for the advective part of the flux Fc + 1/2 = uT c will yield the first-order upwind method, and
the upwind quadratic reconstruction based on Tc − 1, Tc, and Tc + 1 will lead to a second-order
method on a uniform mesh. In order to increase the accuracy of discretization, instead of
accurate representation of fluxes, one has to concentrate on representing the flux divergence
and follow the road discussed, for example, by Webb, de Cuevas, and Richmond (1998).
No further detail will be provided here because the reconstructions are specific to the mesh
geometry. The important statement, however, is that on general triangular or hexagonal
meshes similar procedures are possible as on regular meshes and that will yield discretiza-
tions familiar from FDs in many cases. The computational effort will be higher, however,
for one cannot rely on a regular stencil. As concerns the diffusive part of the fluxes, one
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estimates (∂xT )c + 1/2 = 2(T c + 1 − −Tc)/(hc + 1 + hc) in the 1D case. More generally, the
centered combination of diffusive fluxes computed on neighboring control volumes is used.

To illustrate the case of CG FE, we place the degrees of freedom Tv at “vertices” located
at xv, with the index increasing in the x-positive direction. The P1 basis function associated
to vertex v is Nv = 1− (x −xv)/hv + 1/2 for xv ≤ x ≤ xv + 1 and Nv = 1+ (x −xv)/hv − 1/2

for xv − 1 ≤ x ≤ xv and zero otherwise. Here hv + 1/2 = xv + 1 −xv and hv − 1/2 = xv −xv − 1.
Performing computations of the entries of the matrices, we get

Mvj ∂tTj = hv+1/2

6
∂t (2Tv + Tv+1) + hv−1/2

6
∂t (2Tv + Tv−1)

Avj Tj = (u/2)(Tv+1 − Tv−1),

and

Dvj Tj = k

hv+1/2
(Tv − Tv+1) + k

hv−1/2
(Tv − Tv−1).

Taking for simplicity the case of uniform mesh, hv + 1/2 = hv − 1/2 = h,

∂t (Tv−1 + 4Tv + Tv+1)/6 + (u/(2h))(Tv+1 − Tv−1) − K(Tv−1 − 2Tv + Tv+1)/h2 = 0.

We now easily recognize that the expressions for advection and diffusion are just the
traditional centered differences. The novel feature is the presence of the mass matrix with
the time derivative. Because of the mass matrix, the time derivative is weighted over the
same stencil as the space derivative. To understand why this is important, we turn to the
von Neuman analysis discussed previously, taking T = T0(t)e

ikx . In this case, we get
(2 + cos kh)∂tT0/3u(sinkh)T0 + K(2 − cos(kh))T0 = 0 meaning that the phase velocity
becomes cp = 3(u/kh)sin(kh)/(2+cos(kh)), which ensures much more accurate behavior
for small kh compared with the estimate cp = (u/kh)sin(kh) that will follow in the absence
of the mass matrix and will also be the result for the FV case shown previously.

To conclude, on uniform meshes both FV and linear FE lead to expressions recognizable
from FDs. This situation persists in 2D, and one would derive the same statements on
regular quadrilateral meshes. The methods are thus generalizations of common technology
to rather arbitrary polygonal meshes. They are more expensive, because the information on
neighbors has to be retrieved from look-up tables, as well as information on coefficients of
differential operators, which have to be computed in advance to minimize run-time effort.

e. Numerical considerations in the primitive and shallow water equations

Although the previous considerations focus on explaining the essence of unstructured
numerical methods, it leaves aside an important question of the consistency between the
representation of velocity and scalars (pressure and tracers).

Similar to the difference in numerical properties of solutions on the Arakawa A, B,
and C grids, the properties of solutions on unstructured meshes also depend on the place-
ment of variables. The collocated placement of velocities and scalars is equivalent to the
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A grid and shares a similar difficulty, namely the presence of a pressure mode on uni-
form meshes. A pressure mode is the possibility of nontrivial pressure distribution that
corresponds to zero pressure gradient. It occurs because of gradient averaging implied by
collocated meshes. Additionally, on such meshes the discrete curl of pressure gradient in
the discretized momentum equation is not necessarily zero, which introduces errors in the
discrete vorticity balance. Both call for stabilization in geostrophically dominated regimes,
which introduces errors in the energy balance. Although collocated placement of variables
is popular in computational fluid mechanics because the same infrastructure is shared by
all variables, there is a tendency toward the use of codes with staggered placement of
variables, which are free of pressure modes if there is no gradient averaging, in ocean
modelling.

Staggered triangular grids, however, encounter a geometrical difficulty. The ratio of the
number of vertices to cells to edges is 1:2:3, so that, as a rule, a staggered discretization
will not be balanced: the number of degrees of freedom in velocity and pressure taken
at different locations will be inconsistent, i.e., will deviate from the ratio 2:1. Thus, for
example, a cell-vertex (velocity-pressure) FV discretization, which is an analog to the B
grid, is characterized by a too-large velocity space. A triangular C-grid discretization with
normal velocities at edges has too many pressure degrees of freedom. The consequence of
the lack of balance is the presence of numerical modes. A review by Danilov (2013) presents
a more detailed analysis and contains references to numerous works that have explored the
properties of particular discretizations.

In summary, there is no perfect staggered discretization, but in some cases the numerical
modes can be handled relatively easily. Numerical modes involving extra velocities can be
controlled by viscosity; however, there is no obvious means to control too large a pressure
space. In this respect, the triangular C grid is a suboptimal choice, and preference should be
given to its dual implementation, the hexagonal C grid that has too many velocities. A gen-
eral issue for C-grid codes is the accuracy of horizontal velocity reconstruction. Codes based
on triangular C grids are prone to noise in the vertical velocity field in regimes characteristic
of the large-scale ocean. They are, nevertheless, popular in coastal or estuarine-scale appli-
cations for which the noise presents a lesser problem. A quasi-hexagonal C grid forms the
basis of the MPAS approach (Ringler et al. 2013), whereas the FV cell-vertex discretization
is used in FVCOM and in the FV approach of Danilov (2012). Triangular C grids are the
choice of Unstructured, Residual, Intertidal Mudflat (UnTRIM) and SUNTANS. FESOM
(Wang et al. 2014) is an A-grid model relying on CG FE, as does ADCIRC.

Although initial development of unstructured-mesh ocean models was distributed
between the CG FE and FV methods, current understanding is in favor of the FV method.
The reason is that the hydrostatic approximation used by models and the need to have a clear
definition of fluxes both encounter difficulties in the CG FE implementation. The horizontal
coupling of CG FE makes the hydrostatic balance horizontally nonlocal, and breaking this
coupling destroys energetic consistency. Although CG FE codes can be made perfectly vol-
ume conserving, they treat conservation in the weighted sense, without resorting to fluxes.
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The interest in DG FE and in spectral element methods persists; yet, at present they are
associated with an overly large computational burden.

f. Meshes, resolution, and practical examples

The practical recipes on how the mesh resolution should be varied depend on the appli-
cation and differ on regional and large scales. On regional scales, if the dynamics are tidally
driven, scaling the mesh element size as (gH)1/2, with g the acceleration due to gravity and
H the fluid thickness, could be advantageous because such meshes are “uniform” in terms
of the propagation speed of surface gravity waves. Making cells on the deep water larger
helps to circumvent time-step limitations that will occur otherwise. Extra resolution may,
however, be needed to resolve steep or sharply varying topography or to resolve estuaries
or details of coastlines. Many examples of successful applications demonstrating the utility
of this approach can be found, for example, on the web sites of such models as FVCOM or
ADCIRC, and the review by Greenberg et al. (2007) discusses many associated aspects.

Such highly variable meshes are not necessarily optimal in other situations involving
baroclinic dynamics, instabilities, and eddies. Here the point is that numerical and physical
dissipation depends on resolution and smaller dissipative coefficients are used on finer
meshes. The implication is that a mesh optimal for simulating tides can be suboptimal for
simulating baroclinic dynamics because of enhanced dissipation across its coarse mesh.
Such applications would benefit from certain mesh uniformity, and the unstructured mesh
character has only to provide a mechanism for effective nesting. The mesh design is then very
similar to that sought by nested structured-grid models, with the difference that technical
nesting can be avoided.

This situation is also common for large-scale applications. In this case, there are two main
factors motivating the use of unstructured meshes. The first is once again the effective nesting
motivated by the need to resolve eddies, as demonstrated by Ringler et al. (2013). The other
factor is the geometry of important straits, as in the study by Wekerle et al. (2013). In all
cases it should be borne in mind that dissipation, especially spurious numerical dissipation,
is linked to resolution, and, by refining, one takes into account smaller flow details and
simultaneously activates a part of dynamics that was previously damped on resolved scales.
From the consideration of numerical stability and accuracy, smooth mesh transitions should
be preferred, because this minimizes residual errors in representation of discrete operators.
There are physical consequences, too, for baroclinic instabilities and eddies do not saturate
immediately, and the presence of a coarse or eddy-permitting mesh upstream may affect
the dynamics downstream in the refined domain. Study of all numerical aspects associated
with variable resolution is only beginning.

Questions on how to deploy resolution are closely related to time integration. In the nested
mode, the time step of an unstructured-mesh code will be defined by the size of the smallest
element. Such codes will then be numerically efficient only if the smallest elements use an
overwhelming number of degrees of freedom. This is easy to achieve in some situations,
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and this may be the reason for reduced numerical efficiency in some others. Generally, this
implies the need for careful consideration of many related issues and much experimentation
with alternative approaches.

5. Parameterizing unresolved and partially-resolved phenomena

In ocean modelling, an approximation of the effects of unresolved processes in terms of
resolved and known quantities is called a parameterization. In other fields, the terms subgrid
model, closure, or regularization are used, which reflect that the unresolved processes 1) lie
below the resolution of the grid, 2) are required for the equations of motion to be closed,
and 3) tend to regularize or eliminate singularities that may arise in their absence. The most
important consideration in determining the parameterizations required in an ocean model is
determining which processes are resolved, which are not, and which are partially resolved.
In unstructured grid models, this determination is even more important. In hierarchies of
models of varying resolution or nested grid modelling, these determinations can help to
ensure that equivalent scenarios are being simulated among the models.

Parameterizations may be crude or sophisticated, and they are rarely insignificant to the
outcome of the simulation. If they were they would be neglected, for reasons explained
as follows. Standard fluid viscosity and diffusivity themselves are parameterizations: they
approximate the average over many stochastic trajectories of molecules under the assump-
tions of local equilibrium and typically also isotropy or transverse isotropy (e.g., when
vertical and horizontal directions are distinguished). On scales near the mean free path of
molecules, these approximations break down. In situations featuring strongly nonequilib-
rium thermodynamics, thermal diffusivity fails. Non-Newtonian fluids are still treatable as
viscous fluids, but with generally nonlinear constitutive relations between stress and rate
of strain, rather than a simple proportionality with a viscous coefficient between stress and
rate of strain.

In fluid modelling, turbulence is the most common feature requiring parameterization.
The idea of an eddy viscosity or eddy diffusivity—a value much larger than the molecular
one to treat turbulent eddies similarly to molecular motions—predates computational mod-
elling (e.g., Boussinesq 1877; Ekman 1905). However, turbulence is not necessarily confined
to a largest scale that plays the role of the mean free path, and therefore a scale separation
between resolved features and unresolved turbulence may not be realized. Furthermore,
geophysical turbulence is frequently anisotropic and heterogeneous, and parameterizations
may reflect this broken symmetry to greater or lesser degree.

A lack of scale separation complicates the development and generality of parameteriza-
tions significantly. When there is a scale separation between the largest turbulent features and
the grid scale, the equations can be cast in terms of predicting only the Reynolds average of
the motion, which may be steady, slowly varying, and/or easily resolved. Simulations with-
out scale separation can be termed large eddy simulations (LESs), as only the largest of the
turbulent features are resolved and smaller ones are parameterized. In Reynolds-averaged
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parameterizations, the modest changes in resolution of the model may not affect the param-
eterization. In LES, the eddy viscosity typically depends on the resolution of the model and
also the flow.

Likely the most common eddy viscosity parameterization is that of Smagorinsky (1963)
based on the energy cascade idea of Kolmogorov (1941), which has precisely these char-
acteristics:

νS =
(

ΥΔx

π

)2
√

1

4

(
∂ui
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+ ∂uk

∂xi

) (
∂ui
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where Einstein summation is implied on indices, and the dimensionless constant Υ is near
1. The Smagorinsky viscosity depends on both the velocity u and gridscale Δx. Because of
these scalings, the rate at which energy is dissipated can be matched to the rate at which
it is flowing from large to small scales in the resolved flow, which mimics the effects of a
longer turbulence cascade (i.e., higher resolution).

Although the Smagorinsky viscosity is in wide use in nonhydrostatic simulations, it
is not appropriate for use in the large-scale enstrophy cascades of rotating fluids later
discovered by Kraichnan (1967) as an integral critical in the derivation of the viscosity
diverges in an enstrophy cascade (Fox-Kemper and Menemenlis 2008). The preceding
three-dimensional form is the correct one for use in nonhydrostatic models where all velocity
components are treated similarly. Smagorinsky (1993) also derives a hydrostatic version
that only involves the horizontal velocities, and forms for anisotropic grids require more care
(e.g., Ramachandran, Tandon, and Mahadevan 2013). For a derivation of the Smagorinsky
closure for hydrostatic and nonhydrostatic models, see Smagorinsky (1993) or Fox-Kemper
and Menemenlis (2008).

Even though Smagorinsky developed this parameterization for use in atmospheric mod-
els, it is not suitable for most simulations of large-scale atmospheric and oceanic flows that
commonly use hydrostatic approximations and anisotropic grids. At large scales, the effects
of rotation (quantified by Rossby number Ro = U/fL), stratification (quantified by Richard-
son number Ri = N2/(∂U/∂z)2), and the limited aspect ratio (α = H/L) of motions wider
than the depth of the ocean all prevent the occurrence of isotropic three-dimensional (3D)
turbulence. In stratified fluids, only scales smaller than the Ozmidov scale (the square root
of energy flux divided by N3) or the Thorpe scale are observed to have turbulence resem-
bling a 3D cascade. Dillon (1982) shows that these scales are frequently related and O(1m)
in the upper ocean at a variety of sites—obviously, these scales are much smaller than the
grid scale used in large-scale ocean and atmosphere modelling. Perhaps these scales might
be resolved by the vertical grid, but not the horizontal: Is an anisotropic form of Smagorin-
sky appropriate in that case? Even anisotropic forms of the Smagorinsky scheme continue
to be derived from Kolmogorov theory for 3D turbulence with a forward energy cascade
(e.g., Ramachandran, Tandon, and Mahadevan 2013). In large-scale oceanic turbulence,
the forward energy cascade is not usually in effect until very small scales, and a cascade
of enstrophy or potential enstrophy, may be more relevant on the scale of the model grid.
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Then, the Leith (1996) scheme or adaptations of it (Fox-Kemper and Menemenlis 2008;
Bachman, Fox-Kemper, and B. Pearson 2017; Pearson et al. 2017) are preferable. One day,
large-scale ocean simulations will reach the point where the grid scale is firmly within the
range of scales where Kolmogorov turbulence is expected, as presently occurs in bound-
ary layer LES (Sullivan and Patton 2011), but at present rates of increasing computational
power, this day is centuries away for global simulations and decades away for most coastal
applications.

In the meantime, it is important to distinguish between partially-resolved processes—
requiring parameterizations to be scale-aware, or scale with resolution—and processes
that are firmly below the grid scale—for which parameterizations may be less dependent
on grid scale. In typical ocean models, mesoscale and submesoscale eddies are partially
resolved, justifying a scale-aware LES approach to handling these phenomena (e.g., Pearson
et al. 2017). However, boundary layer and breaking internal wave turbulence, which are
expected to cascade into the 3D turbulence but only with O(1m) grids and nonhydrostatic
models, are far from being resolved. Thus, these processes are likely to be approximated
with Reynolds averages and parameterizations that do not depend on modest changes to
the scale of the grid, such as a background eddy diffusivity. Sometimes, even Reynolds-
average schemes are flow-aware (i.e., they depend on resolved flows in a nontrivial way) and
therefore must also become scale-aware to account for the dependence of the resolved flow
resolution. For example, the submesoscale restratification parameterization of Fox-Kemper
et al. (2011) incorporates the strength of resolved density gradients to infer the strength
of unresolved fronts. At coarse resolution, the resolved density gradients are sensitive to
changes in resolution, so the parameterization depends on the grid scale to approximately
account for this lack of convergence. In this Reynolds-averaged but flow-aware case, the
goal is to keep the effect of the unresolved phenomena unaffected by changes in the grid
scale. By contrast, LES schemes are scale-aware to make parameterizations of partially-
resolved phenomena be affected by grid scale, so that the parameterization effect is reduced
as the grid is refined.

Therefore, parameterizations must not only account for the effects of unresolved motions,
but be sensitive, or scale-aware, as to what kinds of motion are or are not resolved. For exam-
ple, the majority of present atmosphere and ocean models are hydrostatic, which is a good
approximation when the aspect ratio of the resolved motion is small. However, hydrostatic
motions cannot exhibit a Kolmogorov 3D cascade, which requires an equality among veloc-
ities in all directions. Thus, when the grid aspect ratio is small and the model is hydrostatic,
it is not consistent to use a Kolmogorov-based LES parameterization, such as the Smagorin-
sky scheme, because then the physical parameterization assumes no scale separation from
3D turbulence whereas the numerics demands a scale separation. However, the Smagorin-
sky scheme is frequently used outside of its realm of theoretical applicability because it is
numerically robust, scale-aware, and flow-aware despite being inaccurate in such applica-
tions (Griffies and Hallberg 2000). In such models, the effects of 3D turbulence should be
included through Reynolds-averaged boundary layer schemes, and other scale-aware and
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flow-aware schemes should be used that are suited for the partially-resolved phenomena.
Dimensional analysis based on the grid scales, coupled with dominant balances expected
by the flow regime, can reveal important aspects of the motion near the grid scale use-
ful in developing or choosing among parameterizations (e.g., Bachman, Fox-Kemper, and
Pearson 2017).

On much larger scales, when the Rossby number is small and the Richardson number
is large, then the horizontal scale of motion may be larger than the deformation radius
(quantified by the Burger number Bu = (Ld/L)2 ≈ Ro2Ri). When a model grid has a small
or O(1) Burger number, then the turbulence near the gridscale is quasi-geostrophic (QG),
and a different set of turbulence cascades may be used to construct LES parameterizations.
At the same time, the effects of 3D turbulence, for example in boundary layer schemes,
may also be included with an assumed scale separation. Likewise, on very large scales, the
barotropic motions may be approximated as 2D turbulence. Fox-Kemper and Menemenlis
(2008) give examples of closures suitable in these regimes, whereas other closures rely
on spectral self-similarity but do not specify what kind of self-similarity to expect (e.g.,
Bardina, Ferziger, and Reynolds 1980; San et al. 2011, San, Staples, and Iliescu 2013).

Examples of processes for which parameterizations presently exist are: mesoscale (Gent
and McWilliams 1990; Redi 1982; Treguier, Held, and Larichev 1997; Griffies 1998; Eden
and Greatbatch 2008; Jansen and Held 2014; Bachman et al. 2015; Grooms 2016; Bachman,
Fox-Kemper, and Pearson 2017; Pearson et al. 2017; Zanna et al. 2017), submesoscale (Fox-
Kemper, Ferrari, and Hallberg 2008; Fox-Kemper et al. 2011), boundary layer turbulence
(Kraus and Turner 1967; Mellor and Yamada 1982; Price, Weller, and Pinkel 1986; Large,
McWilliams, and Doney 1994; Sullivan, McWilliams, and Moeng 1994; Canuto et al. 2001;
Harcourt 2013; Li et al. 2016), tidal mixing (Jayne and St Laurent 2001), fine-scale mixing
by internal gravity waves (Polzin et al. 2014), symmetric instabilities (Bachman et al.
2017), surface gravity waves (Longuet-Higgins and Stewart 1962; Craik and Leibovich
1976; Lane, Restrepo, and McWilliams 2007), air–sea fluxes (Large and Pond 1981, 1982;
Edson et al. 2013), bubbles (Liang et al. 2011), sediment (Warner et al. 2008), estuaries
(Garvine and Whitney 2006; Sun et al. 2017), albedo (Payne 1972; Brandt et al. 2005),
ice–ocean fluxes (McPhee, Morison, and Nilsen 2008), convection (Killworth 1989; Ilicak,
Adcroft, and Legg 2014), abyssal overflows (Yeager and Danabasoglu 2012), skin layers
and diurnal layers (Large and Caron 2015), biophysics (Zhang et al. 2009), and many
more processes. Process studies—using high-resolution models or observations—of each
phenomenon, spanning a hopefully representative set of scenarios, are generally the key to
parameterization development and evaluation.

The reader may note that the majority of phenomena requiring closures just mentioned
are turbulent or at least nonlinear. This results from the need to parameterize only those
motions that can communicate across scales from unresolved to resolved. Scale connec-
tivity is a defining aspect of turbulence, and all nonlinear phenomena have the poten-
tial for scale connectivity. Dominantly linear phenomena, such as waves in the absence
of mean flow, stratification, or topography variations, do not link strongly across scales,
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so unresolved waves of this type do not interact with resolved flows. One important
exception occurs at surface and bottom boundary layers, where many phenomena require
parameterization to appropriately accept stress and energy forcing (generally using a
Reynolds average approach). Mathematically, neglecting these effects produces singular
perturbations of the equations of motion thereby eliminating whole categories of possible
solutions.

An advantage of scale-aware parameterizations is that they tend to regularize singularities
regardless of grid scale and therefore result in robust numerical stability. The Boussinesq,
hydrostatic primitive equations common to ocean and atmospheric simulations are well-
behaved mathematically, but some mechanisms of regularization are required for this to be
true (Cao and Titi 2007; Cao et al. 2013). Even in structured grid modelling, variation in
latitude or stratification can change the effective scale of phenomena, and make constant
viscosities and diffusivities fail to regularize the flow sufficiently for a given grid scale. In
unstructured and variable grid modelling, such considerations are paramount for accurate
and stable simulations. However, physical parameterizations are often more complicated,
e.g., strongly nonlinear or flow-dependent, which may mean that, although they tend to
regularize, it may be impossible to prove that fact. Examples of stability and improved
simulation fidelity through physical parameterizations include Griffies and Hallberg (2000),
Fox-Kemper and Menemenlis (2008), Chen, Gunzburger, and Ringler (2011) and Ilicak et al.
(2012).

There are some disadvantages of physical parameterizations to keep in mind as well.
The most obvious is that they may make the simulation more costly (parameterizations cost
typically 10% to 25% of the total) and, therefore, reduce the achievable model resolution that
is almost always desired. So, parameterizations should be judged based on impact versus cost
and designed with attention to balancing increased accuracy versus increased complexity.
Additionally, the generally-idealized process studies used to develop a parameterization are
typically not representative of all scenarios that may be encountered in realistic modelling.
It is common for a parameterization developed in extra-tropical process studies to fail in
applications near the equator. In addition, parameterizations introduce imperfectly-known
constants or parameters and, thus, additional uncertainty into models. Clever approaches to
exploit these uncertainties rely on tuning the parameter values to reduce model to observation
mismatch, or better yet to produce ensembles of simulations of varying parameter values
to map and quantify the consequences of uncertainties.

Tuning is a dangerous business, because often the right answer can be arrived at for the
wrong reasons, which may significantly affect model sensitivity or behavior in unprece-
dented forcing regimes (such as climate change). A good example of this effect is that often
when a new parameterization, with solidly grounded physics based on process modelling or
observations, is introduced into a model previously lacking a representation of said physics,
it often increases the biases and mismatches in the model solutions versus observations. This
is not an indication that the model has been degraded in realism, but that it was previously
tuned to mask the neglect of a phenomenon with a canceling error in the values of other
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parameters chosen. Once the new phenomenon receives treatment, the erroneous values of
the other parameters resulting from tuning are exposed and require readjustment.

Finally, the nonlinear character of most parameterizations may preclude or limit their use
in certain circumstances, as do some types of data assimilation that do not require adjoints
(e.g., ensemble Kalman methods). Finally, it is easy to oversimplify parameterizations,
e.g., substituting a horizontal diffusivity for an along-isopycnal diffusivity or an isotropic
scalar diffusivity where an anisotropic tensor diffusivity is more appropriate, and it may be
difficult to identify the consequences of these oversimplifications without careful thought
and comparison with observations (Veronis 1977; Fox-Kemper, Lumpkin, and Bryan 2013).

Some numerical schemes seek to regularize, or otherwise constrain solution characteris-
tics, without attempting to reproduce a particular physical phenomenon. Common examples
are upwinding, monotonic, and shock-capturing schemes. Generally, these methods arrive
at the cost of low-order accuracy, but low-order accuracy is typical in unstructured grid
modelling in any case. A closely related idea is that of mimetic schemes, which seek exact
mimicry of conservation laws in the continuous equations (for energy, enstrophy, potential
density, mass, etc.) in the discrete equations. These schemes inherently offer regularization
benefits. For example, if energy is conserved, it is impossible for an instability to cause
unbounded growth in energy. However, these schemes are often slower to converge and
less formally accurate than nonconservative schemes, e.g., spectral methods. It is easy to
prove the effectiveness of such schemes, because conservation is guaranteed. However, it
is difficult to prove that choice to be optimal, because other aspects of the solution are
degraded in exchange. Furthermore, mimetic and constrained schemes are not a replace-
ment for accurate physical parameterizations. For example, there are many pathways where
energy is transferred among scales, and so exact conservation of resolved energy would
be incorrect. Consider the example of boundary layers in oceanic and atmospheric flows.
These layers have significantly more turbulent energy from surface roughness, waves, and
convection—all of which is injected on scales smaller than a typical large-scale model grid,
yet these energetic regions tend to perform important mixing of the larger scale property
gradients. Conserving energy on the large-scale grid is no substitute for these unresolved
phenomena in terms of ocean model accuracy, unlike in engineering LES or DNS applica-
tions where small-scale energy is dwarfed by larger-scale flows. Thus, scale-aware physical
parameterizations may be used together with mimetic schemes to arrive at realistic flows of
energy, enstrophy, or other desired quantities. Examples of accuracy and improved simula-
tion fidelity through such schemes are Lax and Wendroff (2005), Leonard (1979), Zalesak
(1979), Friedrich (1998), Nadiga and Bouchet (2011), San et al. (2011), and San, Staples,
and Iliescu (2013).

Most modelling approaches blend together the physical aspects of parameterizations of
unresolved processes with numerical accuracy, convergence, and regularization concerns
such as grid scale and altered vertical coordinate discretization, including Lagrangian or
semi-Lagrangian approaches. As such, the desired overall effect may be realized, but care
is needed, e.g., in adapting a parameterization that is successful in a pressure coordinate
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model into a model using isopycnal coordinates. A general approach to these issues is not
yet known, but these steps become an active topic of research each time a new modelling
system is developed.

6. Final remarks: Numerical modeling in a multicomponent ocean

Ocean prediction systems require several integrated components. A central element in
these systems, discussed here, is a time-evolving numerical circulation model based upon
the oceanic equations of motion (Jacobs and Fox-Kemper 2017). Equally important however
are, first, in situ and external data collection systems necessary to provide the information
required for initial and boundary conditions and, second, data assimilation methodologies
to impose internal data-driven constraints. These issues are reviewed in this volume by,
among others, Brink and Kirincich (2017) and Lermusiaux (2017).

One overriding constraint on our ability to deliver improved high-resolution numerical
forecasts is the competition between the computational cost of our prediction systems and the
rate of increase in computer power (i.e., Moore’s Law). In addition to the continuing delivery
of additional raw computer power, consequential improvement has also been consistently
achieved through enhancement in the computational algorithms used for numerical solution,
data assimilation, etc. The implementation of multiscale discretization procedures, such as
the nested and unstructured grid techniques reviewed here, are examples of the latter means
of achieving gains in efficiency. Alternative numerical approaches are continually under
development; additional examples include moving grid methods (Koltakov and Fringer
2012), and higher-order FE and mortar element methods (Iskandarani et al. 2002; Maday,
Mavriplis, and Patera 1989).

Lastly, we have focused here primarily on numerical treatments for the multiscale ocean
circulation, i.e., ocean physics. For the reasons noted here, this has been, and will remain, an
unavoidable concern in Earth System Model design. Of perhaps equal concern, however, is
the increasing cost and complexity of including specialized modules for other geomorpho-
logical, chemical, ecological, and cryospheric processes, i.e., the multicomponent ocean.
Especially over the long time scales of concern to climate modelling and prediction, the link-
ages between the ocean circulation and these other processes are all of significant concern.

As a consequence, in parallel with the development of multiscale treatments such as
those described previously, whole new categories of coupled marine models have been,
and are being, developed to address particular concerns. These include integrated models
that incorporate the effects of waves and tides, currents and sediment transport (Egbert and
Ray 2017; Kirby 2017), geochemical cycling (Hofmann et al. 2008), physical/biological
interaction (Curchitser et al. 2013; Hofmann et al. 2009), ice–ocean coupling (Bartino and
Holland 2017), and many other processes.

Integrations of multicomponent systems of significant duration are now routinely feasible
on many space scales, e.g., estuarine (de Brye et al. 2010; Powell et al. 2012), continental
shelf and slope (Previdi et al. 2009), basin-scale (Hermann et al. 2009), and global (Miller
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at al. 2017). Despite continued enhancement in computer capacity, the next step forward—
end-to-end coupled Earth System Models that allow affordable integration over extended
time scales on global, multi-scale domains—will ensure the continuing need for novel new
numerical approaches.
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