1,905 research outputs found

    OPTICAL-BASED TACTILE SENSORS FOR MINIMALLY INVASIVE SURGERIES: DESIGN, MODELING, FABRICATION AND VALIDATION

    Get PDF
    Loss of tactile perception is the most challenging limitation of state-of-the-art technology for minimally invasive surgery. In conventional open surgery, surgeons rely on their tactile sensation to perceive the tissue type, anatomical landmarks, and instrument-tissue interaction in the patient’s body. To compensate for the loss of tactile feedback in minimally invasive surgery, researchers have proposed various tactile sensors based on electrical and optical sensing principles. Optical-based sensors have shown the most compatibility with the functional and physical requirements of minimally invasive surgery applications. However, the proposed tactile sensors in the literature are typically bulky, expensive, cumbersome to integrate with surgical instruments and show nonlinearity in interaction with biological tissues. In this doctoral study, different optical tactile sensing principles were proposed, modeled, validated and various tactile sensors were fabricated, and experimentally studied to address the limitations of the state-of-the-art. The present thesis first provides a critical review of the proposed tactile sensors in the literature with a comparison of their advantages and limitations for surgical applications. Afterward, it compiles the results of the design, modeling, and validation of a hybrid optical-piezoresistive sensor, a distributed Bragg reflecting sensor, and two sensors based on the variable bending radius light intensity modulation principle. The performance of each sensor was verified experimentally for the required criteria of accuracy, resolution, range, repeatability, and hysteresis. Also, a novel image-based intensity estimation technique was proposed and its applicability for being used in surgical applications was verified experimentally. In the end, concluding remarks and recommendations for future studies are provided

    Multidimensional embedded MEMS motion detectors for wearable mechanocardiography and 4D medical imaging

    Get PDF
    Background: Cardiovascular diseases are the number one cause of death. Of these deaths, almost 80% are due to coronary artery disease (CAD) and cerebrovascular disease. Multidimensional microelectromechanical systems (MEMS) sensors allow measuring the mechanical movement of the heart muscle offering an entirely new and innovative solution to evaluate cardiac rhythm and function. Recent advances in miniaturized motion sensors present an exciting opportunity to study novel device-driven and functional motion detection systems in the areas of both cardiac monitoring and biomedical imaging, for example, in computed tomography (CT) and positron emission tomography (PET). Methods: This Ph.D. work describes a new cardiac motion detection paradigm and measurement technology based on multimodal measuring tools — by tracking the heart’s kinetic activity using micro-sized MEMS sensors — and novel computational approaches — by deploying signal processing and machine learning techniques—for detecting cardiac pathological disorders. In particular, this study focuses on the capability of joint gyrocardiography (GCG) and seismocardiography (SCG) techniques that constitute the mechanocardiography (MCG) concept representing the mechanical characteristics of the cardiac precordial surface vibrations. Results: Experimental analyses showed that integrating multisource sensory data resulted in precise estimation of heart rate with an accuracy of 99% (healthy, n=29), detection of heart arrhythmia (n=435) with an accuracy of 95-97%, ischemic disease indication with approximately 75% accuracy (n=22), as well as significantly improved quality of four-dimensional (4D) cardiac PET images by eliminating motion related inaccuracies using MEMS dual gating approach. Tissue Doppler imaging (TDI) analysis of GCG (healthy, n=9) showed promising results for measuring the cardiac timing intervals and myocardial deformation changes. Conclusion: The findings of this study demonstrate clinical potential of MEMS motion sensors in cardiology that may facilitate in time diagnosis of cardiac abnormalities. Multidimensional MCG can effectively contribute to detecting atrial fibrillation (AFib), myocardial infarction (MI), and CAD. Additionally, MEMS motion sensing improves the reliability and quality of cardiac PET imaging.Moniulotteisten sulautettujen MEMS-liiketunnistimien käyttö sydänkardiografiassa sekä lääketieteellisessä 4D-kuvantamisessa Tausta: Sydän- ja verisuonitaudit ovat yleisin kuolinsyy. Näistä kuolemantapauksista lähes 80% johtuu sepelvaltimotaudista (CAD) ja aivoverenkierron häiriöistä. Moniulotteiset mikroelektromekaaniset järjestelmät (MEMS) mahdollistavat sydänlihaksen mekaanisen liikkeen mittaamisen, mikä puolestaan tarjoaa täysin uudenlaisen ja innovatiivisen ratkaisun sydämen rytmin ja toiminnan arvioimiseksi. Viimeaikaiset teknologiset edistysaskeleet mahdollistavat uusien pienikokoisten liiketunnistusjärjestelmien käyttämisen sydämen toiminnan tutkimuksessa sekä lääketieteellisen kuvantamisen, kuten esimerkiksi tietokonetomografian (CT) ja positroniemissiotomografian (PET), tarkkuuden parantamisessa. Menetelmät: Tämä väitöskirjatyö esittelee uuden sydämen kineettisen toiminnan mittaustekniikan, joka pohjautuu MEMS-anturien käyttöön. Uudet laskennalliset lähestymistavat, jotka perustuvat signaalinkäsittelyyn ja koneoppimiseen, mahdollistavat sydämen patologisten häiriöiden havaitsemisen MEMS-antureista saatavista signaaleista. Tässä tutkimuksessa keskitytään erityisesti mekanokardiografiaan (MCG), joihin kuuluvat gyrokardiografia (GCG) ja seismokardiografia (SCG). Näiden tekniikoiden avulla voidaan mitata kardiorespiratorisen järjestelmän mekaanisia ominaisuuksia. Tulokset: Kokeelliset analyysit osoittivat, että integroimalla usean sensorin dataa voidaan mitata syketiheyttä 99% (terveillä n=29) tarkkuudella, havaita sydämen rytmihäiriöt (n=435) 95-97%, tarkkuudella, sekä havaita iskeeminen sairaus noin 75% tarkkuudella (n=22). Lisäksi MEMS-kaksoistahdistuksen avulla voidaan parantaa sydämen 4D PET-kuvan laatua, kun liikeepätarkkuudet voidaan eliminoida paremmin. Doppler-kuvantamisessa (TDI, Tissue Doppler Imaging) GCG-analyysi (terveillä, n=9) osoitti lupaavia tuloksia sydänsykkeen ajoituksen ja intervallien sekä sydänlihasmuutosten mittaamisessa. Päätelmä: Tämän tutkimuksen tulokset osoittavat, että kardiologisilla MEMS-liikeantureilla on kliinistä potentiaalia sydämen toiminnallisten poikkeavuuksien diagnostisoinnissa. Moniuloitteinen MCG voi edistää eteisvärinän (AFib), sydäninfarktin (MI) ja CAD:n havaitsemista. Lisäksi MEMS-liiketunnistus parantaa sydämen PET-kuvantamisen luotettavuutta ja laatua

    Roadmap on semiconductor-cell biointerfaces.

    Get PDF
    This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world

    Critical appraisal of technologies to assess electrical activity during atrial fibrillation: a position paper from the European Heart Rhythm Association and European Society of Cardiology Working Group on eCardiology in collaboration with the Heart Rhythm Society, Asia Pacific Heart Rhythm Society, Latin American Heart Rhythm Society and Computing in Cardiology

    Get PDF
    We aim to provide a critical appraisal of basic concepts underlying signal recording and processing technologies applied for (i) atrial fibrillation (AF) mapping to unravel AF mechanisms and/or identifying target sites for AF therapy and (ii) AF detection, to optimize usage of technologies, stimulate research aimed at closing knowledge gaps, and developing ideal AF recording and processing technologies. Recording and processing techniques for assessment of electrical activity during AF essential for diagnosis and guiding ablative therapy including body surface electrocardiograms (ECG) and endo- or epicardial electrograms (EGM) are evaluated. Discussion of (i) differences in uni-, bi-, and multi-polar (omnipolar/Laplacian) recording modes, (ii) impact of recording technologies on EGM morphology, (iii) global or local mapping using various types of EGM involving signal processing techniques including isochronal-, voltage- fractionation-, dipole density-, and rotor mapping, enabling derivation of parameters like atrial rate, entropy, conduction velocity/direction, (iv) value of epicardial and optical mapping, (v) AF detection by cardiac implantable electronic devices containing various detection algorithms applicable to stored EGMs, (vi) contribution of machine learning (ML) to further improvement of signals processing technologies. Recording and processing of EGM (or ECG) are the cornerstones of (body surface) mapping of AF. Currently available AF recording and processing technologies are mainly restricted to specific applications or have technological limitations. Improvements in AF mapping by obtaining highest fidelity source signals (e.g. catheter–electrode combinations) for signal processing (e.g. filtering, digitization, and noise elimination) is of utmost importance. Novel acquisition instruments (multi-polar catheters combined with improved physical modelling and ML techniques) will enable enhanced and automated interpretation of EGM recordings in the near future

    Assessment of portable and miniaturized sensors for the monitoring of human exposure to air pollutants

    Get PDF
    In the last years, several in-field campaigns have been conducted using portable and miniaturized monitors to evaluate the personal exposure to different pollutants. In general, this kind of monitors are characterized by worse metrological performance if compared to the traditional standard methods. Despite this disadvantage, portable and miniaturized monitors could be easily used across different applications, because their advantageous features, such as the capability to provide real-time measurement, the high spatial and temporal resolution of acquired data, the ability to adapt to different experimental designs and, especially, the ability to follow the subject in any activity. Finally, portable and miniaturized instruments can provide data acquired in the respiratory zone of the subject, following therefore the practices for a correct exposure assessment. Obviously, the best compromise between the analytical gold standard (in terms of precision, accuracy and instrumental sensitivity) and the gold standard in regard to the exposure assessment should be chosen. Therefore, in brief, principal aims of this thesis are (i) to evaluate the on-field performances of portable and miniaturized monitors for gaseous pollutants and airborne PM and (ii) to use these monitors in exposure assessment studies and (iii) to understand if data acquired via portable and miniaturized monitors could be useful in other fields of application, such as epidemiological studies or toxicological studies, in which the evaluation of the inhaled dose of pollutants could play a key role

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Review of fiber-optic pressure sensors for biomedical and biomechanical applications

    Get PDF
    As optical fibers revolutionize the way data is carried in telecommunications, the same is happening in the world of sensing. Fiber-optic sensors (FOS) rely on the principle of changing the properties of light that propagate in the fiber due to the effect of a specific physical or chemical parameter. We demonstrate the potentialities of this sensing concept to assess pressure in biomedical and biomechanical applications. FOSs are introduced after an overview of conventional sensors that are being used in the field. Pointing out their limitations, particularly as minimally invasive sensors, is also the starting point to argue FOSs are an alternative or a substitution technology. Even so, this technology will be more or less effective depending on the efforts to present more affordable turnkey solutions and peer-reviewed papers reporting in vivo experiments and clinical trials.info:eu-repo/semantics/publishedVersio

    Graphene Quantum Dot-Based Electrochemical Immunosensors for Biomedical Applications

    Get PDF
    In the area of biomedicine, research for designing electrochemical sensors has evolved over the past decade, since it is crucial to selectively quantify biomarkers or pathogens in clinical samples for the efficacious diagnosis and/or treatment of various diseases. To fulfil the demand of rapid, specific, economic, and easy detection of such biomolecules in ultralow amounts, numerous nanomaterials have been explored to effectively enhance the sensitivity, selectivity, and reproducibility of immunosensors. Graphene quantum dots (GQDs) have garnered tremendous attention in immunosensor development, owing to their special attributes such as large surface area, excellent biocompatibility, quantum confinement, edge effects, and abundant sites for chemical modification. Besides these distinct features, GQDs acquire peroxidase (POD)-mimicking electro-catalytic activity, and hence, they can replace horseradish peroxidase (HRP)-based systems to conduct facile, quick, and inexpensive label-free immunoassays. The chief motive of this review article is to summarize and focus on the recent advances in GQD-based electrochemical immunosensors for the early and rapid detection of cancer, cardiovascular disorders, and pathogenic diseases. Moreover, the underlying principles of electrochemical immunosensing techniques are also highlighted. These GQD immunosensors are ubiquitous in biomedical diagnosis and conducive for miniaturization, encouraging low-cost disease diagnostics in developing nations using point-of-care testing (POCT) and similar allusive techniques.TU Berlin, Open-Access-Mittel - 201

    Assessment of portable and miniaturized sensors for the monitoring of human exposure to air pollutants

    Get PDF
    In the last years, several in-field campaigns have been conducted using portable and miniaturized monitors to evaluate the personal exposure to different pollutants. In general, this kind of monitors are characterized by worse metrological performance if compared to the traditional standard methods. Despite this disadvantage, portable and miniaturized monitors could be easily used across different applications, because their advantageous features, such as the capability to provide real-time measurement, the high spatial and temporal resolution of acquired data, the ability to adapt to different experimental designs and, especially, the ability to follow the subject in any activity. Finally, portable and miniaturized instruments can provide data acquired in the respiratory zone of the subject, following therefore the practices for a correct exposure assessment. Obviously, the best compromise between the analytical gold standard (in terms of precision, accuracy and instrumental sensitivity) and the gold standard in regard to the exposure assessment should be chosen. Therefore, in brief, principal aims of this thesis are (i) to evaluate the on-field performances of portable and miniaturized monitors for gaseous pollutants and airborne PM and (ii) to use these monitors in exposure assessment studies and (iii) to understand if data acquired via portable and miniaturized monitors could be useful in other fields of application, such as epidemiological studies or toxicological studies, in which the evaluation of the inhaled dose of pollutants could play a key role
    • …
    corecore