9,414 research outputs found

    MetTeL: A Generic Tableau Prover.

    Get PDF

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India

    Formalising responsibility modelling for automatic analysis

    Get PDF
    Modelling the structure of social-technical systems as a basis for informing software system design is a difficult compromise. Formal methods struggle to capture the scale and complexity of the heterogeneous organisations that use technical systems. Conversely, informal approaches lack the rigour needed to inform the software design and construction process or enable automated analysis. We revisit the concept of responsibility modelling, which models social technical systems as a collection of actors who discharge their responsibilities, whilst using and producing resources in the process. Responsibility modelling is formalised as a structured approach for socio-technical system requirements specification and modelling, with well-defined semantics and support for automated structure and validity analysis. The effectiveness of the approach is demonstrated by two case studies of software engineering methodologies

    Supporting user-oriented analysis for multi-view domain-specific visual languages

    Get PDF
    This is the post-print version of the final paper published in Information and Software Technology. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.The integration of usable and flexible analysis support in modelling environments is a key success factor in Model-Driven Development. In this paradigm, models are the core asset from which code is automatically generated, and thus ensuring model correctness is a fundamental quality control activity. For this purpose, a common approach is to transform the system models into formal semantic domains for verification. However, if the analysis results are not shown in a proper way to the end-user (e.g. in terms of the original language) they may become useless. In this paper we present a novel DSVL called BaVeL that facilitates the flexible annotation of verification results obtained in semantic domains to different formats, including the context of the original language. BaVeL is used in combination with a consistency framework, providing support for all steps in a verification process: acquisition of additional input data, transformation of the system models into semantic domains, verification, and flexible annotation of analysis results. The approach has been validated analytically by the cognitive dimensions framework, and empirically by its implementation and application to several DSVLs. Here we present a case study of a notation in the area of Digital Libraries, where the analysis is performed by transformations into Petri nets and a process algebra.Spanish Ministry of Education and Science and MODUWEB
    • …
    corecore