1,497 research outputs found

    The real projective spaces in homotopy type theory

    Full text link
    Homotopy type theory is a version of Martin-L\"of type theory taking advantage of its homotopical models. In particular, we can use and construct objects of homotopy theory and reason about them using higher inductive types. In this article, we construct the real projective spaces, key players in homotopy theory, as certain higher inductive types in homotopy type theory. The classical definition of RP(n), as the quotient space identifying antipodal points of the n-sphere, does not translate directly to homotopy type theory. Instead, we define RP(n) by induction on n simultaneously with its tautological bundle of 2-element sets. As the base case, we take RP(-1) to be the empty type. In the inductive step, we take RP(n+1) to be the mapping cone of the projection map of the tautological bundle of RP(n), and we use its universal property and the univalence axiom to define the tautological bundle on RP(n+1). By showing that the total space of the tautological bundle of RP(n) is the n-sphere, we retrieve the classical description of RP(n+1) as RP(n) with an (n+1)-cell attached to it. The infinite dimensional real projective space, defined as the sequential colimit of the RP(n) with the canonical inclusion maps, is equivalent to the Eilenberg-MacLane space K(Z/2Z,1), which here arises as the subtype of the universe consisting of 2-element types. Indeed, the infinite dimensional projective space classifies the 0-sphere bundles, which one can think of as synthetic line bundles. These constructions in homotopy type theory further illustrate the utility of homotopy type theory, including the interplay of type theoretic and homotopy theoretic ideas.Comment: 8 pages, to appear in proceedings of LICS 201

    A Vectorized Algorithm for Molecular Dynamics of Short Range Interacting Particles

    Full text link
    We report on a lattice based algorithm, completely vectorized for molecular dynamics simulations. Its algorithmic complexity is of the order O(N), where NN is the number of particles. The algorithm works very effectively when the particles have short range interaction, but it is applicable to each kind of interaction. The code was tested on a Cray ymp el in a simulation of flowing granular material.Comment: 9 pages, 6 figures, Late

    Molecular dynamics of arbitrarily shaped granular particles}

    Full text link
    We propose a new model for the description of complex granular particles and their interaction in molecular dynamics simulations of granular material in two dimensions. The grains are composed of triangles which are connected by deformable beams. Particles are allowed to be convex or concave. We present first results of simulations using this particle model.Comment: uuencoded compressed PostScript, 40 pages, 19 figures (included
    • …
    corecore