
Automated Reasoning
Workshop

2011

Proceedings

Department of Computing Science
University of Glasgow

April 11th – 12th

Proceedings of ARW 2011

Editors: Alice Miller and Ryan Kirwan

This volume contains the proceedings of the Automated Reasoning Workshop 2011 which
was held at the University of Glasgow on 11th-12th April 2011.

Guest Speakers were Colin Stirling (University of Edinburgh) and Patricia Johann
(University of Strathclyde) who gave fascinating talks on Using Game Theory for Higher
Order Matching and Principled Ways of Deriving Induction Rules for Data Types.

This workshop series provides an informal forum for the automated reasoning com-
munity to discuss recent work, new ideas and current trends. It aims to bring together
researchers from all areas of automated reasoning in order to foster links and facilitate
cross-fertilisation of ideas among researchers from various disciplines; among researchers
from academia, industry and government; and between theoreticians and practitioners.

The series covers the full breadth and diversity of automated reasoning, including top-
ics such as logic and functional programming; equational reasoning; deductive databases;
unification and constraint solving; the application of formal methods to specifying, de-
riving, transforming and verifying computer systems and requirements; deductive and
non-deductive reasoning, including abduction, induction, non-monotonic reasoning, and
analogical reasoning; commonsense reasoning; and the wide range of topics that fall under
the heading of knowledge representation and reasoning.

The workshops in this series are highly interactive, giving all attendees the opportunity
to participate. The workshops contain many open discussion sessions organised around
specific topics, and often contain sessions for displaying posters and presenting system
demonstrations. This is intended to be an inclusive workshop, with participants encour-
aged from the broad spectrum covered by the field of automated reasoning. We encourage
the participation of experienced researchers as well as those new to the field, especially
students.

Contents

Ryan Kirwan and Alice Miller
Abstraction for Model Checking Robot Behaviour . 1

Dmitry Tishkovsky, Renate A. Schmidt and Mohammad Khodadadi
METTEL: A Generic Tableau Prover . 3

Nourah A.S. Shenaiber
Smart Semantic Tree Theorem Prover . 5

Robert Rothenberg
Proof-Theoretic Soundness and Completeness .7

Murdoch J. Gabbay
Metamathematics based on nominal terms and nominal logic: foundations of a nominal
theorem-prover . 9

Fabio Papacchini and Renate A. Schmidt
A Modal Tableau Approach for Minimal Model Generation . 11

Alan Bundy, Gudmund Grov and Yuhui Lin
Productive use of failure in top-down formal methods . 13

Ekaterina Komendantskaya and John Power
Coalgebraic Derivations in Logic Programming . 15

Clare Dixon, Frans Coenen and Muhammad Khan
The Application of AI Techniques to Deformation in Metal Manufacturing 17

Matej Urbas and Mateja Jamnik
Heterogeneous Proofs: Spider Diagrams meet Higher-Order Provers19

Richard Stocker, Louise Dennis, Clare Dixon and Michael Fisher
Towards the Formal Verification of Human-Agent Teamwork . 21

Aliaa Alabdali, Lilia Georgieva and Greg Michaelson
Modelling of Wireless Local Area Network Security Attacks in Alloy24

Liam O’Reilly, Till Mossakowski and Markus Roggenbach
Compositional Reasoning for Processes and Data . 26

Alexander Bolotov and Vasilyi Shangin
Natural Deduction in the Setting of Paraconsistent Logic . 28

Renate Schmidt and Dmitry Tishkovsky
Solving Rule Admissability problem for S4 by a tableau method . 30

Iain McGinniss and Simon Gay
Typestate Modelling and Verification with Hanoi . 32

David Berry, Michael Fisher and Clare Dixon
The Logical Verification of Security Protocols . 34

Abstraction for Model Checking Robot Behaviour

Ryan Kirwan
Department Of Computing Science

University Of Glasgow
kirwanr@dcs.gla.ac.uk

Alice Miller
Department Of Computing Science

University Of Glasgow
alice@dcs.gla.ac.uk

Abstract

We use model checking to verify properties of real systems. These systems consist of robots interacting with obstacles
within an environment and learning to avoid collision. We describe an approach to abstract environments so that all
feasible scenarios are represented, and properties are still applicable. The abstraction is necessary for the verification (and
ultimately, comparison) of learning algorithms and, although currently applied to Promela specifications, is applicable to
other specification formalisms.

1 Introduction
Traditionally, testing and simulation have been used to validate robot behaviour and algorithms defining robot learning
have been measured by repeated simulation. Model checking [1] robot behaviour allows us to formally check properties
and quantify the performance of different learning algorithms. The aim of this paper is to establish model checking as a
valid tool within this context.

Our initial models are specified in Promela [3] and checked using SPIN [3]. Ultimately, we aim to use other model
checkers such as PRISM [2] and Uppal [5] to allow the checking of qualitative properties. However, our current objective
is to define appropriate abstractions of the models to be specified; these abstractions will be relevant for all cases.

Using SPIN we model the behaviour of a robotic agent which learns while interacting with an environment. By
modelling existing systems, which involve a robotic agent [4], we hope to be able to recreate results that were obtained by
simulation and experimentation of a physical system. The robot we are modelling learns to avoid obstacles in a boundless
environment. It has 2 long range “distal” sensors and 2 short range “proximal” sensors; distal sensors are used to avoid
collisions, proximal sensors are used to detect collisions.

1.1 Robot Behaviour
The robot behaviour captured in our models is as defined in [4]. This work looks at how learning is affected by an
environment and by the perception of the learner. Through simulations, the ability of the robot to successfully navigate its
environment is used to assess the learning algorithm used and the robot’s sensor configuration. This field of research relies
on simulations to obtain system properties, which are generated by averaging results from sets of simulated experiments.
By applying model checking we can derive properties by a single search of the state-space (per property).

One of the key factors when creating a model of these systems is the learning of the robot. Learning is greatly simplified
in the model in order to reduce the state-space of the system. A ’K’ value is used to represent how much the robot has
learned and is increased as the robot learns more. This value directly affects the magnitude of response when the robot
encounters an obstacle. Whenever the robot collides with an obstacle the ’K’ value is incremented; this increment causes
a larger response to distal sensor signals.

1.2 Representing the System
There are restrictions on the type of system we can model. An obstacle has a fixed size and shape, as does the robot;
the environment is considered a boundless space. The “complexity“ of the environment is defined by its concentration of
obstacles. The robot’s distal sensors send signals of varying strength depending on how close or far away an obstacle is to
the robot. The robot moves constantly, changing its orientation to avoid obstacles as it moves. If the robot cannot move
forward it will continue to change its orientation until it can proceed.

Obvious problems when representing this system is having a boundless environment to model and that for a given
complexity there are many valid environments. To model this set of boundless environments we have to use a suitable
abstraction. By limiting what is derived from the model to information on how the robot responds to obstacles we can
create an effective abstraction. This abstraction can be visualized in the Polar model in Fig. 1 (left).

1

Figure 1: Polar model and State transition diagram.

We refer to the area in front of the robot as a ”cone of influence“, this is where all relevant system interactions take
place. There are two main ideas behind this abstraction. First, is that the robot only interacts with obstacles when they
contact it’s sensors and second, that the robot’s coordinates are irrelevant. Storing the robot’s coordinates would yield an
infinite state-space. Therefore, our model moves the environment around the robot instead. Using this cone of influence
representation we can model all permutations of obstacles interacting with the robot. We derive the possible permutations
from the complexity of the environment by considering the distance between obstacles. In this way we can represent a set
of environments, of a fixed complexity, in one model. This can be visualized in Fig. 2, below.

Figure 2: Combining environments

All possible permutations of obstacle collisions are considered in one polar model; this covers all possible encounters
in a set of environments of a given complexity. The abstracted state-space is represented in Fig. 1 (right). An approaching
collision state is one of the possible permutations of obstacles that can approach the robot and each has a unique path of
action based on what the robot has learned. Initial experiments with SPIN have shown the state-space to be tractable.

1.3 Future Work
We plan to use PRISM to create similar system models to verify quantitative properties. Principally we want to develop
various models, classifying the benefits and costs of each approach. One further aim is to develop a custom-made tool to
model systems that involve agent-based learning.

References
[1] Jr. Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The MIT Press, February 2000.

[2] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. Prism: A tool for automatic verification of probabilistic
systems. LNCS, 3920, 2006.

[3] G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley Pearson Education, 2004.

[4] Tomas Kulvicius, Christoph Kolodziejski, Tomas Minija Tamosiunaite, Bernd Porr, and Florentin Worgotter. Behav-
ioral analysis of differential hebbian learning in closed-loop systems. 2009.

[5] Kim G. Larsen, Paul Patterson, and Wang Yi. Uppaal in a nutshell. International Journal on Software Tools for
Technology Transfer (STTT), 1997.

2

METTEL: A Generic Tableau Prover∗

Dmitry Tishkovsky?

?University of Manchester
dmitry@cs.man.ac.uk

Renate A. Schmidt†
†University of Manchester
schmidt@cs.man.ac.uk

Mohammad Khodadadi‡
‡University of Manchester

khodadadi@cs.man.ac.uk

Abstract
METTEL is a generic tableau prover for various modal,
description, hybrid, intuitionistic and metric logics. The
core component of METTEL is a logic-independent
tableau inference engine. A novel feature is that users
have the ability to specify the set of tableau rules to be
used in derivations. Termination can be achieved via a
generalisation of a standard loop checking mechanism, or
unrestricted blocking.

1 Introduction
METTEL is a lightweight generic tableau prover imp-
lemented in JAVA. Its main purpose is to provide a
tool for experimenting with tableau calculi for newly in-
vented non-classical logics for which there are no known
sound and complete decision procedures. It enforces
termination with generic loop-checking and the unre-
stricted blocking mechanism introduced in Schmidt and
Tishkovsky (2007).

The first versions of METTEL were designed for decid-
ing logics of metric and topology (Hustadt et al., 2006).
In 2005, when the implementation started, there were
no known tableau calculi for these logics. Much effort
was invested in a generic, modular design of METTEL,
which led to quick implementations of tableau decision
procedures for many other non-classical logics including,
for example, intuitionistic propositional logic, the expres-
sive description logic ALBO (Schmidt and Tishkovsky,
2007), and the extension ALBOid with role identity.
These tableaux have been implemented and provided as
predefined tableau calculi in METTEL.

Most recently, we have extended METTEL with a rule
specification language giving users the facility to define
the tableau rules to be used as input. Also, Skolem terms
have replaced the use of nominals in the rules for expand-
ing existential quantification formulae.

METTEL decides the following logics: classical and
intuitionistic propositional logic, hybrid logic HL (@,u)
with the universal modality, the logic MT of metric
and topology, and all sublogics of the description logic
ALBOid. At the moment, METTEL is the only tableau
prover that can decide logics of metric and topology and
description logics with role negation. Using the facility to
specify tableau rules, METTEL can be used as a prover

∗The work is supported by research grant EP/H043748/1 of the UK
EPSRC.

for many other more expressive or even undecidable log-
ics.

Most closely related to METTEL are the prover engi-
neering platforms LOTREC (Gasquet et al., 2005) and
the Tableau Work Bench (Abate and Gore, 2003). Al-
though METTEL does not give the user the same possi-
bilities for control and programming as these systems, the
rule specification language is more expressive. For ex-
ample, Skolem terms are allowed both in premises and
conclusions of rules.

2 METTEL language

The language for specifying formulae is a many-sorted
language with five sorts, namely, formulae, relational for-
mulae (or roles), nominal terms including Skolem terms,
attributes and rational parameters from metric logic. The
available predefined connectives include negation ~, con-
junction &, disjunction |, logical equivalence <->, impli-
cation ->, modal box and dia (synonyms are description
logic forall and exists), the ‘closer’ operator << of
similarity logic, the @ operator of hybrid logic, and the
relational operators: inverse -, union +, intersection &,
negation ~, composition ;, and reflexive-transitive clo-
sure *. The language also includes the propositional con-
stants FALSE and TRUE and allows arbitrary names for re-
lational constants. For example, although relational iden-
tity id is not a predefined symbol it can be encoded in the
rule specification language. Here are three examples of
formulae specifiable in METTEL:
box box{~(~R | S)}FALSE
(@i dia{R}j & @j dia{R}k) -> @i dia{R}k
exists{a<x;a<y}P -> exists{a<(x+y)}P

The first formula encodes role inclusion R v S in
ALBOid. The second formula defines R as a transitive
relation in hybrid logic. The last formula expresses the
triangle property of metric relations in metric logic.

The tableau rule specification language is designed so
that it closely mirrors the notation used in the literature.
Sample rules are:
@i (P|Q) / { @i P } | { @i Q };
@i ~(dia{R} P) @i dia{R} j / { @j ~P };
@i dia{R}P /

{ @f[i,R,P] P, @i dia{R} f[i,R,P] };
@i P, @i ~P / { FALSE };

The premises and conclusions are separated by / and each
rule is terminated by ;. The first rule is the or rule, defined3

as a branching rule which creates a splitting point adding
@i P to the left branch and @i Q to the right branch. The
other rules are non-branching rules. The third rule is the
standard box rule rewritten in terms of the negated oper-
ator dia. Note the use of the Skolem term f[i,R,P] in
the next rule; it represents the witness created, depending
on i,R,P. Rules, like the last rule, with FALSE belonging
to the conclusion are closure rules.

3 Implementation

All expressions are internally represented as extensions
of the basic MettelExpression interface. For efficiency
reasons, each kind of expression is represented as a sep-
arate JAVA class, which is not parametrised by connec-
tives. At runtime, the creation of expression objects is
managed by means of a factory pattern implemented as
MettelObjectFactory and ensures that each expression is
represented by a single object.

Each class implementing the MettelExpression inter-
face is required to implement two methods. (i) A method
for matching the current object with the expression object
supplied as a parameter, returning the matching unifier.
(ii) A method to return an instance of the current expres-
sion with respect to a given substitution.

Every node of the tableau is represented as a tableau
state object comprising of a set of formulae associated
with the node and methods for manipulating the formulae
and realising rule applications. Each derivation step con-
sists of choosing a rule and applying it to the set of ac-
tive formulae associated with it by matching its premises.
If the rule is branching, the formulae of each branch are
added to a corresponding copy of the current tableau state
object. If the rule is non-branching, the conclusions of the
rule are added to the current state without copying. If a
closure rule is applied then the state is immediately dis-
carded and the derivation returns to the parent state, thus,
discarding the contradictory branch. The next branch is
then explored. The derivation returns to the previous state
also in the case if there are no branches to explore. As
soon as all the rules have been applied within the branch
and there are no more active formulae, the procedure re-
turns the formulae on the branch. This represents a model
for the input problem relative to the tableau calculus used
and means the problem is satisfiable. If all branches have
been found to be contradictory the problem is unsatisfi-
able.

Since matching is computationally expensive, it is per-
formed only once for any given formula and a premise of
a rule we try to associate. This is achieved by maintain-
ing sets of all the substitutions obtained from matching
the selected formula with the rule premise. If the tuple of
the selected formulae match the premises of the rule, the
resulting substitution object is passed to the conclusions
of the rule. The result of a rule application is a set of
branches which are sets of formulae obtained by applying

the substitution to the conclusions of the rule.
Two blocking mechanisms are implemented in

METTEL for detecting ‘loops’ in derivations. The first
blocking mechanism is a generalisation of anywhere
equality blocking. Unlike other blocking techniques, it
does not require all local rules to be applied before rules
that introduce new nominal terms. Instead, it keeps track
of formulae that depend on a given nominal term for ev-
ery rule. Once no more local rules are applicable to any
pair of nominals, the blocking test is performed for the
nominals. If successful, an equality is added to the cur-
rent tableau state for subsequent rewriting. The second
available blocking mechanism is the unrestricted block-
ing mechanism (Schmidt and Tishkovsky, 2007). This is
realised through a branching rule which performs a case
distinction of identifying two nominal terms, or not.

4 Concluding remarks
METTEL gives users the option of either using one of the
several predefined tableau calculi or define their own set
of rules to be used for constructing derivations. In order to
provide a more comprehensive tool to users, we intend to
incorporate the tableau calculus synthesis framework de-
scribed in Schmidt and Tishkovsky (2009) into METTEL.
Then, the user would be able to construct an automated
theorem prover for a specific logic by defining its syntax
and semantics.

METTEL is available from http://www.
mettel-prover.org.

References
P. Abate and R. Gore. The tableaux work bench. In Auto-

mated Reasoning with Analytic Tableaux and Related
Methods, volume 2796 of Lecture Notes in Computer
Science, pages 230–236. Springer, 2003.

O. Gasquet, A. Herzig, D. Longin, and M. Sahade.
LoTREC: Logical tableaux research engineering com-
panion. volume 3702, pages 318–322, 2005.

U. Hustadt, D. Tishkovsky, F. Wolter, and M. Za-
kharyaschev. Automated reasoning about metric and
topology. In Logics in Artificial Intelligence, volume
4160 of Lecture Notes in Computer Science, pages
490–493. Springer, 2006.

R. Schmidt and D. Tishkovsky. Using tableau to decide
expressive description logics with role negation. vol-
ume 4825, pages 438–451. 2007. ISBN 978-3-540-
76297-3.

R. Schmidt and D. Tishkovsky. Automated synthesis of
tableau calculi. In Automated Reasoning with Ana-
lytic Tableaux and Related Methods, volume 5607 of
Lecture Notes in Computer Science, pages 310–324.
Springer, 2009.4

Smart Semantic Tree Theorem Prover
Nourah A. S. Shenaiber

The University of Birmingham
School of Computer Science

N.A.Shenaiber@cs.bham.ac.uk

Abstract

Semantic trees have long been used as a theoretical tool for verifying the unsatisfiability of sets of clauses.
However, on a class of problems they can be used to efficiently prove the unsatisfiability of clauses in first
order predicate logic. The exact proof depends on the Herbrand Base set used to build the semantic tree. The
Herbrand Base (HB) is generated with the help of the Herbrand Universe (HU), which in turn comes from
the base set of clauses in a given theorem. In order to effectively build a closed semantic tree, it is necessary
to make a smart selection of atoms from the Herbrand Base (i.e. that is, it is necessary to make an educated
guess). Proving unsatisfiability using semantic trees (Herbrand’s procedure) suffers from a major drawback
because this method requires successively generating sets of ground instances of the clauses in S and then
successively testing these sets for unsatisfiability. In order to keep these tests as small as possible, we propose
a new approach. Instead of generating the ground instances of the clauses in S in some arbitrarily defined
order, the algorithm computes ground instantiations in an intelligent way. This way it is possible to show the
unsatisfiability in a more efficient way.

1 Introduction

Herbrand gave a very important approach to mechanical theorem proving in 1930. By definition, a valid formula
is a formula that is TRUE under all interpretations. Herbrand developed an algorithm to find an interpretation
that can falsify a given formula. This method is the basis for most modern automatic proof procedures.

In this abstract, an effective technique for building a semantic tree theorem prover named SSTTP (Smart
Semantic Tree Theorem Prover) is presented. SSTTP uses different ways to produce atoms of the Herbrand
base. We present a new technique for producing Herbrand base atoms. It is better than listing Herbrand base
atoms in canonical order as described in (2). This technique gave rise to the Smart Herbrand Base.

2 SSTTP idea

The problem is how to make a smart selection of atoms from the Herbrand Base to build a closed semantic tree
in a more efficient way. The researcher in this field tries to select the proper atoms from the Herbrand Base by
providing some heuristic techniques during the construction of the tree. So it is interesting if someone can prove
that there is a subset of the Herbrand Base for any problem to be solved by constructing a short closed semantic
tree.

The algorithm that generates the Smart Herbrand Base (SHB) is motivated by the Set-of-Support strategy.
It starts like the original SoS with the base set of clauses in S = A1 ∧ A2 ∧ . . . ∧ An ∧ ¬B. But then, it has a
different way of using the resolution technique to generate a SHB in the aim to build closed semantic trees in
an effective way. The algorithm uses the resolution only to check if the given two predicates resolve with each

5

other or not. The steps of the algorithm are shown next:

1. Put the clause(s) of the negated conclusion (denoted by ¬B) in front of axioms, ¬B∧A1∧A2∧· · ·∧An.

2. Then try to resolve the first literal in ¬B denoted by L1 with all literals in axioms after it. If a resolvent
occurs then put the literal L1 (positive predicate) in the updated HB after checking that this literal L1

is a ground predicate (i.e. it does not have any variables). If it has variables then put them in the set
after giving them place holder variables temporarily until they will be substituted by an element from the
Herbrand Universe when the program uses them in the semantic tree.

3. If no resolvent occurs then jump to the next literal L2 in ¬B. If there are no more literals in ¬B, then jump
to next clause Ai after ¬B. If there is no clause to jump to (i.e. end of file), then exit (stop algorithm) else
repeat step 2 with considering Ai as ¬B now.

4. Delete the literal Lj on which the resolution step was based from ¬B and literals that resolved with it
from the axioms.

5. Keep repeating the above four steps as long as the Base Set is not empty.

The outcome of this algorithm is a smart ordering (noncanonical ordering) of atoms in the Herbrand base
(SHB) which leads to a faster construction of closed semantic trees for some tested problems. Let us consider
the following simple example, let S be the following set of clauses:
{¬M(f(a)),¬H(X)|M(X),¬H(X)|H(f(X)),H(a)} SHB = {H(a),M(f(a)),H(f(a))}

Figure 1: Closed semantic tree of example

References

[1] Chang, C., and Lee, R. (1973). Symbolic Logic and Mechanical Theorem Proving, Academic Press.

[2] Newborn, M. (2001). Automated Theorem Proving: Theory and Practice, Springer-Verlag, New York.

6

Proof-Theoretic Soundness and Completeness

Robert Rothenberg?

?School of Computer Science, University of St Andrews, St Andrews, Fife KY16 9SX, Scotland, UK
rr@cs.st-andrews.ac.uk

Abstract

We give a calculus for reasoning about the first-order fragment of classical logic that is adequate for giving the truth
conditions of intuitionistic Kripke frames, and outline a proof-theoretic soundness and completeness proof, which we
believe is conducive to automation.

1 A Semantic Calculus for Intuitionistic Kripke Models
In Rothenberg (2010), we use correspondence theory (Blackburn et al., 2001) to give a cut-free calculus for reasoning
about intuitionistic Kripke models (Kripke, 1965) using a fragment of first-order classical logic.

Definition 1 (Partially-Shielded Formulae). We define the partially-shielded fragment (PSF) of first-order formulae: (1)⊥;
(2) P{x} iff P is an atomic propositional variable, or an atomic first-order formula with a free variable x; (3) A{x}∧B{x}
and A{x}∨B{x}, iff A{x}, B{x} are in PSF; (4)Rxy, whereR is a fixed atomic binary relation (5) ∀y.(Rxy∧A{y}) →
B{y}, iff A{x} and B{x} are in PSF.

We give the calculus G3c/PSF in Figure 1, which is useful for reasoning about sequents of formulae in PSF. A
variant of it was introduced in Rothenberg (2010), based on ideas from a calculus for the guarded fragment (GF) of first-
order formulae given in Dyckhoff and Simpson (2006).

Γ, P⇒P, ∆
Ax

Γ,⊥⇒∆
L⊥

Γ, A,B⇒∆

Γ, A ∧B⇒∆
L∧

Γ⇒A, ∆ Γ⇒B, ∆

Γ⇒A ∧B, ∆
R∧

Γ, A⇒∆ Γ, B⇒∆

Γ, A ∨B⇒∆
L∨

Γ⇒A, B, ∆

Γ⇒A ∨B, ∆
R∨

Γ,Rxz,∀y. . . .⇒A{z}, ∆ Γ,Rxz,∀y. . . . , B{z}⇒∆

Γ,Rxz,∀y.(Rxy ∧A{y}) → B{y}⇒∆
L∀ →

Γ,Rxz, A{z}⇒B{z}, ∆

Γ⇒∀y.(Rxy ∧A{y}) → B{y}, ∆
R∀ →

Figure 1: The calculus G3c/PSF for sequents of partially shielded formulae.

In Figure 1, that the variable y is fresh for the conclusion of the R∀ → rule, and that ∀y. . . . in the premisses of the
L∀ → and R∀ → rules is an abbreviation of “∀y.(Rxy ∧A{y}) → B{y}”.

Proposition 1 (Standard Structural Rules, (Rothenberg, 2010)). The following rules are admissible in G3c/PSF:

Γ⇒∆
Γ, Γ′⇒∆′, ∆

W
Γ, Γ′, Γ′⇒∆′, ∆′, ∆

Γ, Γ′⇒∆′, ∆
C

Γ⇒∆, A A, Γ′⇒∆′

Γ, Γ′⇒∆′, ∆
Cut

Proposition 2 ((Negri, 2007)). Let G3c/PSF∗ be G3c/PSF plus the following (geometric) rules:

Rxx, Γ⇒∆

Γ⇒∆
refl

Rxz,Rxy,Ryz, Γ⇒∆

Rxy,Ryz, Γ⇒∆
tran

Rxy, Px, Py, Γ⇒∆

Rxy, Px, Γ⇒∆
mono

where Px, Py in the mono rule are atomic.

Corollary 3 ((Negri, 2007)). The standard structural rules (Proposition 1) are admissible in G3c/PSF∗.

Remark 1. The labelled sequent calculus G3I Negri (2007) can be thought of as an alternative form of G3c/PSF∗ which
hides the quantifiers.

7

Definition 2 (Translation of Propositional Formulae into PSF).

⊥† =def ⊥ (A ∧B)† =def A† ∧B† (A → B)† =def ∀y.(Rxy ∧A†) → B†

P † =def P̂ x (A ∨B)† =def A† ∨B†

where the translation of A → B requires that the free variable of A†, B† is x, and y 6= x, and P̂ x uniquely corresponds
to P . Recall that R-formulae occur only as strict subformulae in the translation. The extension is adapted to sequents
naturally, where all formulae have the same free variable.

Theorem 4 (Soundness and Completeness, (Rothenberg, 2010)). Let M = 〈W, R,〉 be a Kripke model for Int. Then
M � Γ⇒∆ iff G3c/PSF∗ ` Γ†⇒∆†.

Theorem 5. Let G be a multisuccedent sequent calculus for Int, e.g. m-G3ip (Troelstra and Schwichtenberg, 2000).
Then G ` Γ⇒∆ iff G3c/PSF∗ ` Γ†⇒∆†.

Proof. By induction on the derivation height. An outline of the proof is as follows: (1) Hyperextend (Avron, 1991) G
to a hypersequent calculus HG; (2) Show G ` Γ ⇒ ∆ iff HG ` Γ ⇒ ∆ (straightforward). (3) Extend Definition 2
so that components in hypersequents are translated with unique free variables; (4) Show HG ` Γ⇒∆ iff G3c/PSF∗

` (Γ ⇒ ∆)†. (Note that instances of mono can be eliminated from G3c/PSF∗ proofs of sequents with a single free
variable.)

2 Future Work
We expect that adapting this work to single-succedent calculi, e.g. G3ip (Troelstra and Schwichtenberg, 2000), should be
straightforward. An obvious extension is to adapt this work to hypersequent calculi for superintuitionistic logics, e.g. in
(Avron, 1991). For logics with geometric Kripke semantics (Rothenberg, 2010), this should be straightforward. This work
can be adapted to cut-free sequent calculi for modal logics in a straightforward manner, using similar calculi for guarded
formulae, such as Dyckhoff and Simpson (2006).

Adapting this work to non-Gentzen calculi, such as nested sequents (Brünnler, 2009) should be possible, by applying
translations of their data structures into sequents of partially-shielded formulae, and using a limited form of proof search
on schematic rules. (Such work may be easier, if the data structure allows relations between points in a Kripke frame to be
explicit.)

Acknowledgements
We’d like to thank Roy Dyckhoff for providing a copy of Dyckhoff and Simpson (2006), and for helpful suggestions
regarding G3c/PSF.

References
A. Avron. Hypersequents, logical consequence and intermediate logics for concurrency. Ann. Math. Artif. Intell., 4(3-4):

225–248, September 1991. 〈doi:10.1007/BF01531058〉.

P. Blackburn, M. de Rijke, and Y. Yenema. Modal Logic. Cambridge U.P., 2001.

K. Brünnler. Nested Sequents. Habilitation, Institut für Informatik und angewandte Mathematik, Universität Bern, 2009.

R. Dyckhoff and A. Simpson. Proof theory of guarded logics, 2006. Unpublished Ms.

S. Kripke. Semantical analysis of intuitionistic logic I. In J. Cossley and M. Dummett, editors, Formal Systems and
Recursive Functions, pages 92–129. North Holland, Amsterdam, 1965.

S. Negri. Proof analysis in non-classical logics. In C. Dimitracopoulos, L. Newelski, D. Normann, and J. Steel, editors,
Logic Colloquium 2005, volume 28 of Lecture Notes in Logic, pages 107–128. Cambridge U.P., 2007.

R. Rothenberg. On the relationship between hypersequent calculi and labelled sequent calculi for intermediate logics with
geometric Kripke semantics. PhD thesis, University of St Andrews, St Andrews, Scotland, June 2010.

A.S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge U.P., 2000.

8

Metamathematics based on nominal terms and nominal logic:
foundations of a nominal theorem-prover

Murdoch J. Gabbay?

?Heriot-Watt University

Abstract

We propose nominal terms as the syntax of a theorem-prover, instead of first- or higher-order terms.
Then term-formers can bind, so we can handle binding, but we do not take syntax up to β-equivalence or put functions

directly into our syntax.
This gives us expressivity to axiomatise and reason about higher-order data, the π-calculus, locality, substitution,

specification languages with binding—whose common attribute is the use of binding—but our theorem-prover remains
based on a first-order framework.

1 Nominal terms
Binding naturally appears for instance in axiomatisations involving locality, name-restriction, functions, substitution, and
instantiation. Here are examples:∫

x
f(x) =

∫
y
f(y) (∀x.φ)[x::=t] = ∀x.(φ[x::=t]) provided that x is not free in t

λx.f(x) = λy.f(y) P | νa.Q = νa.(P | Q) provided that a is not free in P

In addition, we often want to reason intensionally about inequality of names (e.g. when specifying α-inequality) or
about renaming names (e.g. when α-converting).

If we use higher-order terms then binding is identified with functional abstraction via λ-abstraction. Thus λx.f(x) is a
term denoting ‘input x, then output f(x)’, and

∫
, ∀, and ν are considered as higher-order constants. This is the approach

taken e.g. by Isabelle, HOL, and mCRL2 (and also by Coq). But this introduces functions directly as primitive in the
meta-language. Furthermore, if names are identified with functional abstraction then we have no intensional access to the
name of a variable; only to the functional argument it represents. We invited binding into our syntax; we did not necessarily
want to invite its friends, simple type theory and even set theory, to the party too.

I argue that nominal terms give us the power to reason intuitively about binding, and intensionally on names, while
remaining first-order. Recent advances have extended nominal terms with first-order quantification. Thus, a theorem-
prover based on nominal terms would be a practical basis for mechanised mathematics.

2 An example: axiomatise functional abstraction
Here, for instance, are axioms for the λ-calculus as they might be specified in a nominal terms theorem-prover e.g. based
on nominal algebra Gabbay and Mathijssen (2009):

(βvar) (λa.a)X = X
(β#) a#Z ` (λa.Z)X = Z
(βapp) (λa.(Z ′Z))X = ((λa.Z ′)X)((λa.Z)X)
(βabs) b#X ` (λa.(λb.Z))X = λb.((λa.Z)X)
(βid) (λa.Z)a = Z

Points to note here are:

• λ is just a term-former, like application, and λa.X decomposes as λ applied to a nominal atoms-abstraction a.x
which is a mathematically strictly smaller and simpler structure than a function.

• We have just axiomatised functions. From a ‘nominal’ point of view, this is just an axiomatic theory. Axioms can
express arbitrary complexity, if we want it.

• a#Z and b#X are freshness side-conditions corresponding to conditions like ‘provided x is not free in t’. Nominal
terms axioms tend to closely parallel informal axioms; reasoning in a theorem-prover based on nominal terms is
likely to be intuitive.

9

For completeness, here are the axioms above written out again as they might be written informally:

(λx.x)r = r
(λx.t)r = t provided that x is not free in t
(λx.(t′t))r = ((λx.t′)r)((λx.t)r)
(λx.(λy.t))r = λy.((λx.t)r) provided that y is not free in r
(λx.t)x = t

This kind of example invites us to think afresh about what it is we are doing when we axiomatise a system with binding,
and about the relationship between syntax and semantics. Axiomatisations in nominal terms are different from those using
higher-order terms, but in what I would argue is a good way: unfamiliar perhaps, but reasonable.

3 Two more examples: inequality of names and on-the-fly renaming
I mentioned that nominal terms are more expressive than higher-order terms. Here are two simple examples of how:

a 6= b φ⇒ π·φ

The first example observes that the name a is not equal to the name b. Nominal terms permit direct intensional reasoning
on names. Higher-order terms cannot not permit this, since variables can always be bound by an outer λ-abstraction (in
other words: ‘variables vary; names do not’).

The second example is a form of α-equivalence, or equivariance. Whenever we write ‘choose some variables x and
y, and prove φ’, we are using equivariance implicitly to say ‘where it does not matter what the names of x and y are’.
Higher-order terms cannot permit direct reasoning on renaming variables—once the user has chosen names for variables
those names are fixed and they cannot be accessed from within the system.1

4 The theorems so far
So far, we have rewriting, equality, and first-order frameworks, called nominal rewriting, nominal algebra, and permissive-
nominal logic (Fernández and Gabbay, 2007; Gabbay and Mathijssen, 2009; Dowek and Gabbay, 2010).

We have used them to axiomatise substitution, the λ-calculus, first-order logic, and arithmetic. But that is not all: we
have also proved these theories correct (Gabbay and Mathijssen, 2008a, 2010, 2008b; Dowek and Gabbay, 2010). That
is, the axioms do not just look like they axiomatise what they look like they axiomatise, but it has also been proved by
arguments on models that they do axiomatise what they look like they axiomatise.

Since substitution, the λ-calculus, first-order logic, and arithmetic are a basis for computer science—at least in theory—
this can be read as a proof-of-concept for nominal mechanised mathematics. Put another way: a nominal theorem-prover
is feasible.

References
Gilles Dowek and Murdoch J. Gabbay. Permissive Nominal Logic. In Proceedings of the 12th International ACM SIG-

PLAN Symposium on Principles and Practice of Declarative Programming (PPDP 2010), pages 165–176, 2010. doi:
http://dx.doi.org/10.1145/1836089.1836111.

Maribel Fernández and Murdoch J. Gabbay. Nominal rewriting (journal version). Information and Computation, 205(6):
917–965, June 2007. doi: http://dx.doi.org/10.1016/j.ic.2006.12.002.

Murdoch J. Gabbay and Aad Mathijssen. Capture-Avoiding Substitution as a Nominal Algebra. Formal Aspects of Com-
puting, 20(4-5):451–479, June 2008a. doi: http://dx.doi.org/10.1007/11921240 14.

Murdoch J. Gabbay and Aad Mathijssen. One-and-a-halfth-order Logic. Journal of Logic and Computation, 18(4):521–
562, August 2008b. doi: http://dx.doi.org/10.1093/logcom/exm064.

Murdoch J. Gabbay and Aad Mathijssen. Nominal universal algebra: equational logic with names and binding. Journal of
Logic and Computation, 19(6):1455–1508, December 2009. doi: http://dx.doi.org/10.1093/logcom/exp033.

Murdoch J. Gabbay and Aad Mathijssen. A nominal axiomatisation of the lambda-calculus. Journal of Logic and Com-
putation, 20(2):501–531, April 2010. doi: http://dx.doi.org/10.1093/logcom/exp049.
1A solution to this is raising. Raising identifies a name with an explicitly numbered functional abstraction. From that point of view, the advantage of

nominal techniques is that its naming is ‘lazy’ and ‘global’, whereas the naming in raised higher-order terms is ‘eager’ and ‘local’.

10

A Modal Tableau Approach for Minimal Model Generation

Fabio Papacchini⋆

⋆ University of Manchester, School of Computer Science
papacchf@cs.man.ac.uk

Renate A. Schmidt†
† University of Manchester, School of Computer Science

schmidt@cs.man.ac.uk

Abstract
Several studies have been performed for minimal model reasoning for classical logics. In contrast, for non-classical

logics like modal logic just few studies have been carried out. We present a modal tableau calculus for minimal model
generation which performs on modal clauses. This calculus returns all and only minimal modal Herbrand models, and
each model exactly once.

1 Introduction

Previous works (e.g. Bry and Yahya (2000); Niemelä (1996))have focused on the creation of tableaux calculi for minimal
model generation for classical logics. Similar studies have also been carried out for non-classical logics, but most ofthem
work on the first-order translation to which are applied already existent calculi (Georgieva et al., 2001). Our aim is to
present a modal tableau calculus generating all and only minimal modal Herbrand models of a set of modal clauses, and
each model no more than once. This calculus works directly onmodal clauses and. Specifically, it works on disjunctions
of labelled formulae and labelled relations which are represented, respectively, byu : φ and(u, v) : R.

A modal Herbrand universe (WU) is the set of all ground terms over a signature composed of a constantw and unary
functional symbolsf3φi

uniquely associated to diamond formulae.WU represents all possible worlds that are part of any
model of the modal input.

A modal Herbrand interpretation I is a set composed of labelled formulae and labelled relations. Specifically, labelled
formulae have the formu : p whereu ∈ WU andp ∈ Σ, and labelled relations have the form(u, v) : R whereu, v ∈ WU .
There exists a close relation between the modal Herbrand interpretation and the standard definition of model for modal
formulae.

If a labelled formulau : φ is true in a modal Herbrand interpretationI, thenI is amodal Herbrand model H of u : φ.
The definition of minimal modal Herbrand model is based on thesubset relationship. LetH be a modal Herbrand model
of a labeled formulau : φ, thenH is a minimal modal Herbrand model iff for every other modal Herbrand modelH ′

of u : φ, if H ′ ⊆ H thenH = H ′.

2 Minimal Modal Model Generation Calculus

As the tableau works on a set of clauses, the modal formula hasto be transformed into clausal normal form. We apply
all classical steps of this transformation with two exceptions. First, we apply the box miniscoping during the conjunc-
tive normal form transformation. Second, we add the labelw during the clause extraction. Thebox miniscoping is the
transformation2(φ1 ∧ φ2) ⇒ 2φ1 ∧2φ2. In this way, a conjunction appears only in the scope of a3 operator.

Our tableau calculus is composed of four expansion rules andthe model constraint (Table 1).
The (3) rule is the union of the standardα and3 rule in modal tableau calculi. There is an important difference

between our rule and the3 rule, in factf3φ(u) is not any created term, but it is uniquely associated to that specific
diamond formula and the term attached to the diamond formula.

The(∨)E rule is the only rule which does not contribute to the model, and it prepares the input for the other rules. The
symbolΦ which appears in this rule represents a generic disjunctionof tableau literals.

The (CS) rule takes as input a disjunction of positive tableau literals. A tableau literal is either a positive labelled
literal of the formu : p or u : 3φ (in Table 1 this kind of modal formulae is represented by the symbolP), or a positive
labelled relation(u, v) : R. The negation of positive labelled literals is obtained by applying the functionneg. neg is
defined as follows:

neg(u,P) =

®

u : ¬p if P = p

(u, f3φ(u)) : ¬R if P = 3φ
.

The(CS) rule selects one of the positive tableau literals and the negation of all the others that appear on the right of the
selected one. This rule is the only branching rule of the calculus. It avoids the creation of a model more than once, and the
model associated to the left-most open, fully expanded and finite branch is minimal.

11

Table 1: Expansion rules and model contraint for the minimalmodal model generation calculus

Expansion Rules

(3)
u : 3(φ1 ∧ . . . ∧ φn)

(u, f3φ(u)) : R

f3φ(u) : φ1

...
f3φ(u) : φn

Whereφ = φ1 ∧ . . . ∧ φn andf3φ is
the uniquely associated functional symbol

(CS)
u1 : P1 ∨ . . . ∨ un : Pn ∨ (v1, w1) : R ∨ . . . ∨ (vm, wm) : R

(u1 : P1) (u2 : P2) (vm, wm) : R

neg(u2,P2)
... . .

.

... (vm, wm) : ¬R

(vm, wm) : ¬R

(∨)E

u : φ1 ∨ . . . ∨ φn ∨ Φ

u : φ1 ∨ . . . ∨ u : φn ∨ Φ
(PUHR)

u1 : p1, . . . , un : pn

(v1, w1) : R, . . . , (vm, wm) : R

(s1, t1) : R, . . . , (sj , tj) : R

u1 : ¬p1 ∨ . . . ∨ un : ¬pn ∨ v1 : 2φ1 ∨ . . .

∨vm : 2φm ∨ (s1, t1) : ¬R ∨ . . . ∨ (sj , tj) : ¬R ∨Ψ

(w1 : φ1) ∨ . . . ∨ (wm : φm) ∨Ψ

Model Constraint

(u1 : ¬p1) ∨ . . . ∨ (un : ¬pn) ∨ (v1, w1) : ¬R ∨ . . . ∨ (vm, wm) : ¬R

This clause is generated from a finite, open and fully expanded tableau branchB, and it is propagated to all the other
branches in the tableau derivation on the right ofB.

The(PUHR) rule is the most complex rule and the only one that can close a branch. The idea behind this rule is that
the elements of a model are only positive, and a clause with negative tableau literals is expanded only if it is necessary.A
negative tableau literal has one of three forms:u : ¬p, u : 2φ or (u, v) : ¬R. The symbolΨ which appears in the main
premise represents a disjunction of positive tableau literals.

In addition to the expansion rules we use minimal model constraints during backtracking to avoid the generation of
non-minimal models. Given a minimal modal Herbrand modelH , themodel constraint extracted fromH is defined as
follows:

u1 : ¬p1 ∨ . . . ∨ un : ¬pn ∨ (v1, w1) : ¬R ∨ . . . ∨ (vm, wm) : ¬R

whereH = {u1 : p1, . . . , un : pn, (v1, w1) : R, . . . , (vm, wm) : R}.
Once a branch is fully expanded, open and finite the model associated to that branch is extracted, and its model

constraint is propagated to all the other branches on the right of the one from which the model has been extracted.
This calculus terminates, generates all and only minimal models (i.e. it is minimal model complete and sound) and

does not create any model more than once. These properties can be proved showing that there exists a bijection between
this calculus and the depth-first minimal model generation procedure presented in Bry and Yahya (2000) applied to the
semantic translation of the modal clauses.

References

François Bry and Adnan Yahya. Positive unit hyperresolution tableaux and their application to minimal model generation.
J. Autom. Reason., 25(1):35–82, 2000.

L. Georgieva, U. Hustadt, and R. A. Schmidt. Computational space efficiency and minimal model generation for guarded
formulae. InProceedings of LPAR’01, Lecture Notes in Artificial Intelligence. Springer, 2001.

Ilkka Niemelä. A tableau calculus for minimal model reasoning. InProceedings of the Fifth Workshop on Theorem Proving
with Analytic Tableaux and Related Methods, pages 278–294. Springer-Verlag, 1996.

12

Productive use of failure in top-down formal methods

Alan Bundy
?School of Informatics
University of Edinburgh

bundy@staffmail.ed.ac.uk

Gudmund Grov
†School of Informatics
University of Edinburgh

ggrov@staffmail.ed.ac.uk

Yuhui Lin
‡School of Informatics
University of Edinburgh

Y.H.Lin-2@sms.ed.ac.uk

Abstract

Proof obligations (POs) arise when applying formal methods (FMs). The undischarged POs can become a bottleneck
in the use of FMs in industry. The work we proposed here, as a part of AI4FM project, aims at increasing the proportion
of discharged POs by analysing failed proofs and related patches to classify POs as families and construct proof strategies,
which can be used to guide proof search for the POs in the same families.

1 Introduction
Commercial use of formal methods (FM) has had great success in many safety-critical domains such as railway and avia-
tion. There is also increased use in other sectors, for example Microsoft has used FMs to verify device drivers. A recent
paper by (Woodcock et al., 2009) provides an up-to-date analysis of a significant number of industrial applications of FMs.

In a top-down approach, FMs are applied early in the development to capture the requirements. The specification
is stepwise refined into the final product, typically a piece of software. Many such methods are posit and prove, where
a designer posits a step of development and then seeks to justify it. This justification is by proof of generated proof
obligations. Examples of such top-down FMs are VDM, B, Event-B and some use of Z.

2 Our approach
As the use of FMs has spread beyond small groups of experts out to far larger groups of industrial engineers, proof automa-
tion has become a bottleneck. Although a large proportion of the POs can be discharged by automatic theorem provers,
5 − 10% still requires user interaction, which often requires (expensive) theorem proving experts. For commercial appli-
cation this can be thousands of proof obligations (POs), requiring many man months or years of work.

We observe that the POs from FMs tend to exhibit a “similarity” in the sense that they can be grouped into “families”
and the same (high-level) proof approach can be successfully applied to all members of the family.To illustrate, an indus-
trial case-study using Event-B generated 300 POs, 100 of these required user-interaction, however they could be handled
by 5 strategies.

Therefore, we hope to explore this notion of proof families. In particular, we believe that the notion of failures by
automatic theorem provers and heuristics can be explored to guide the proof further. Our hypothesis is:

we believe that it is possible to classify families of failed proofs within FMs by analysing the context of failures.
In each family there exist patterns of proof strategies which can be used to guide the proof search of the blocked
proofs.

Our work is inspired by previous work in rippling (Bundy et al., 2005), which is a rewriting technique which works
when the goal is embedded in one of the given. Rippling then forces rewriting towards the given, thus guaranteeing termi-
nation. It was originally developed for inductive proofs, but has been successfully applied to many other domains. Proof
critics have been developed for rippling, where the nature of the failure is explored to propose a patch. For example, cer-
tain failures suggest a generalisation, others suggests a missing lemma or a different induction rule. Rippling is applicable
to certain types of proof obligations, those where a system invariant has to be preserved over the operations. In Grov
et al. (2010) we report on a small experiment where use rippling for such POs arising from an Event-B model. A few
observations can be made there to illustrate our hypothesis:

13

• each rippling step has to reduce some measure (to ensure termination) and to preserve what is known as the skeleton,
which is the given we are rippling towards. Some steps were not measure reducing while preserving the skeleton.
One patch which would have solved this was to introduce a secondary measure on the symbols. In this case the
function updates operator was rewritten to set union.

• most rewrite rules were conditional, hence when rippling terminated; the conditions (which were not rippling goals)
had to be discharged. Separate patches had to be developed for these.

Our approach will be empirical and iterative, and will include analysis of proof failures and related patches to them.
Ideally we would like to use existing (preferable industrial) examples. However, these are the finished articles, which
makes it hard to see the productive use of failure that the expert user (implicitly) used to discharge it. Thus we need to
see the whole search space including places were failed proof attempts were patched, so to explore these search spaces
ourselves.

Through these proofs, we are able to classify POs as families, and extract proof strategies from successful proof
attempts. These proof strategies can be used to guide proof search for POs, which are not discharged, in the same families.
We will most likely implement and evaluate our patches in Isaplanner (Dixon and Fleuriot, 2003), which is an Isabelle
based proof planner, implementing rippling among other methods.

3 Conclusion
We have outlined an approach where we plan to explore the type failures of proofs in top-down formal methods to discover
new patches which can be applied to family of proofs. This work is part to the AI4FM project, where the overall goal is to
learn high-level proof strategies (and patches from failures) from exemplar proofs provided by expert users. This work is a
first step of this project, since we need to understand the typical strategies and patches before we can use machine learning
techniques to automatically derive them.

Acknowledgements
This work is supported by EPSRC grant EP/H024204/1: AI4FM: using AI to aid automation of proof search in Formal
Methods. For more details see http://www.ai4fm.org.

References
A. Bundy, D. Basin, D. Hutter, and A. Ireland. Rippling: Meta-level Guidance for Mathematical Reasoning, volume 56 of

Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2005.

Lucas Dixon and Jaques Fleuriot. IsaPlanner: A Prototype Proof Planner in Isabelle. In Proceedings of CADE’03, volume
2741 of LNCS, pages 279–283, 2003.

Gudmund Grov, Alan Bundy, and Lucas Dixon. A small experiement in event-b rippling. In proceedings of AVoCS 2010
and Rodin User and Developer Workshop 2010, April 2010.

J. Woodcock, P.G. Larsen, J. Bicarregui, and J. Fitzgerald. Formal methods: Practice and experience. ACM Computing
Surveys (CSUR), 41(4):1–36, 2009.

14

Coalgebraic Derivations in Logic Programming

Ekaterina Komendantskaya?

?School of Computing
University of Dundee

katya@computing.dundee.ac.uk

John Power†
†Department of Computer Science

University of Bath
A.J.Power@bath.ac.uk

Abstract

Coalgebra may be used to provide semantics for SLD-derivations, both finite and infinite. We first give such semantics
to classical SLD-derivations, proving results such as adequacy, soundness and completeness. Then, based upon coalge-
braic semantics, we propose a new sound and complete algorithm for parallel derivations. We analyse this new algorithm
in terms of the Theory of Observables, and we prove soundness, completeness, correctness and full abstraction results.

1 Motivation
There are two trends in logic programming that are both desirable and problematic: coinductive definitions and concurrent
computations. We illustrate both using the following example.

Example 1 The program Stream defines the infinite stream of binary bits:

bit(0) ←
bit(1) ←

stream(scons (x,y)) ← bit(x),stream(y)

Stream is a coinductive definition, with proof search for the goal stream(x) resulting in an infinite derivation.
Programs like Stream can be given declarative semantics via the greatest fixed point of the semantic operator TP . But
fixed point semantics is incomplete (Lloyd (1987)) as it fails for some infinite derivations.

Example 2 The program R(x)← R(f(x)) is characterised by the greatest fixed point of the TP operator, which contains
R(fω(a)), although no infinite term is computed by SLD-resolution.

There have been numerous attempts to resolve the mismatch between infinite derivations and greatest fixed point
semantics, e.g., Gupta et al. (2007); Jaume (2002); Lloyd (1987); Paulson and Smith (1989); Simon et al. (2007). But
infinite SLD derivations of both finite and infinite objects have not yet received a uniform semantics.

Another distinguishing feature of logic programming languages is that they allow implicit parallel execution of pro-
grams. The three main types of parallelism used in implementations are and-parallelism, or-parallelism, and their combi-
nation: see Gupta and Costa (1994); Pontelli and Gupta (1995).

Or-parallelism arises when more than one clause unifies with the goal: the corresponding bodies can be executed
in or-parallel fashion. And-parallelism arises when more than one atom is present in the goal. That is, given a goal
G = ← B1, . . . Bn, an and-parallel algorithm of resolution looks for derivations for each Bi simultaneously. And-or
parallelism features both kinds of parallelism. However, many first-order algorithms are P-complete and hence inher-
ently sequential (Dwork et al. (1984); Kanellakis (1988)). This especially concerns first-order unification and variable
substitution in the presence of variable dependencies.

Example 3 The goal stream(cons(x, cons(y,x))), if processed sequentially, will lead to a failed derivation in
three derivation steps. But, if the goal is processed in and-or parallel fashion, the derivation algorithm will not be able to
determine inconsistency between substitutions for x in parallel branches of the derivation tree.

2 Summary of results
We apply the coalgebraic semantics proposed in Komendantskaya et al. (2010); Komendantskaya and Power (2011) to
address the above two problems. Coalgebraic semantics can be used instead of greatest fixed point semantics. Unlike

15

greatest fixed point semantics, coalgebraic semantics yields soundness and completeness results for both finite and infinite
SLD-derivations.

We test our coalgebraic semantics using the theory of observables, Comini et al. (2001). According to this theory,
the traditional characterisation of logic programs in terms of their input/output behavior, successful derivations and their
corresponding fixed point semantics, is not sufficient for program analysis and optimisation. One requires more complete
information about SLD-derivations, such as sequences of goals, most general unifiers and variants of clauses.

The idea of observational semantics for logic programs is to observe equal behaviour of logic programs and to distin-
guish logic programs with different computational behaviour. So the choice of observables and semantic models is closely
related to the choice of equivalence relation defined on logic programs. In the theory of observables, programs P1 and P2

are said to be observationally equivalent if, for any goal G, they yield the same call patterns in the SLD derivations. Given
a suitable semantics, one can prove that if P1 and P2 have equal semantic models, then P1 and P2 are observationally
equivalent (correctness result). The converse is a full abstraction result.

Our coalgebraic semantics yields the correctness result relative to the sequential algorithm of SLD resolution but not the
full abstraction result. The failure of the latter does not mean that coalgebraic semantics is not suitable for characterizing
observational behavior of logic programs. Rather, it indicates the mismatch between the sequential algorithm of SLD
resolution and the concurrent nature of coalgebraic semantics.

We therefore propose a new coinductive derivation algorithm inspired by coalgebraic semantics. The algorithm pro-
vides an elegant solution to the problem of implementing both corecursion and concurrency in logic programming. We
prove soundness, completeness, correctness and full abstraction results for the new coinductive derivations relative to the
coalgebraic semantics of Komendantskaya and Power (2011).

References
M. Comini, G. Levi, and M. C. Meo. A theory of observables for logic programs. Inf. Comput., 169(1):23–80, 2001.

C. Dwork, P.C. Kanellakis, and J.C. Mitchell. On the sequential nature of unification. Journal of Logic Programming, 1:
35–50, 1984.

G. Gupta and V.S. Costa. Optimal implementation of and-or parallel prolog. In Conference proceedings on PARLE’92,
pages 71–92, New York, NY, USA, 1994. Elsevier North-Holland, Inc.

G. Gupta, A. Bansal, R. Min, L. Simon, and A. Mallya. Coinductive logic programming and its applications. In ICLP
2007, volume 4670 of LNCS, pages 27–44. Springer, 2007.

M. Jaume. On greatest fixpoint semantics of logic programming. J. Log. Comput., 12(2):321–342, 2002.

P. C. Kanellakis. Logic programming and parallel complexity. In Foundations of Deductive Databases and Logic Pro-
gramming., pages 547–585. M. Kaufmann, 1988. ISBN 0-934613-40-0.

E. Komendantskaya and J. Power. Coalgebraic semantics for derivations in logic programming. In Submitted to
CALCO’11, 2011.

E. Komendantskaya, G. McCusker, and J. Power. Coalgebraic semantics for parallel derivation strategies in logic program-
ming. In Proc. of AMAST’2010 - 13th Int. Conf. on Algebraic Methodology and Software Technology, volume 6486 of
LNCS, 2010.

J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd edition, 1987.

L.C. Paulson and A.W. Smith. Logic programming, functional programming, and inductive definitions. In ELP, pages
283–309, 1989.

E. Pontelli and G. Gupta. On the duality between or-parallelism and and-parallelism in logic programming. In Euro-Par,
pages 43–54, 1995.

L. Simon, A. Bansal, A. Mallya, and G. Gupta. Co-logic programming: Extending logic programming with coinduction.
In ICALP, volume 4596 of LNCS, pages 472–483. Springer, 2007.

16

The Application of AI Techniques to Deformation in Metal
Manufacturing

Clare Dixon, Frans Coenen and Muhammad Khan,
? Department of Computer Science,

University of Liverpool,
Liverpool, L69 3BX, UK

{cldixon,coenen mskhan}@liverpool.ac.uk

Abstract

We describe the INMA project, part of which aims to use AI techniques to predict and correct shape deformation in
the manufacture of titanium parts using in the aircraft industry.

1 Introduction
The INMA project1 is a multi-partner project funded by the EU2 which brings together engineers, materials scientists,
computer scientists and industrialists and aims to develop and improve manufacturing techniques for the production of
titanium parts to be used in the aircraft industry. Currently the aircraft industry uses complicated and expensive tech-
nologies to shape titanium sheet components. The project proposes technology based on the relatively new technique of
Asymmetric Incremental Sheet Forming (AISF) aiming to obtain increased flexibility, cost reduction, minimised energy
consumption and a speed up in the industrialisation phase.

2 Background
When manufacturing parts using AISF a metal sheet is clamped into a holder and the desired shaped is produced using
the continuous movement of a simple round-headed forming tool. The forming tool is provided with a tool path generated
by a CAD model and the part is pressed out according to the co-ordinates of the tool path. However, due to the nature of
the metal used and the manufacturing process, spring back occurs which means that the geometry of the shaped part is
different from the geometry of the desired part, i.e. some deformation is introduced. Work package 4 of the INMA project
(Liverpool’s part) involves analysing the AISF process parameters, the required shape and the formed shape to predict and
correct the deformation.

Currently we are looking at the background to this problem and solutions adopted elsewhere. For example Dearden
et al. (2006) present an iterative laser forming solution to the problem of correcting such distortion. In Allwood et al.
(2005) the authors consider a number of products that could potentially be formed using AISF and show that the accuracy
of the formed part needs to be improved before this process could be used in a large number of these products. In Hirt
et al. (2004) the authors consider two drawbacks to AISF, namely that of the metal thickness of the resulting shape, and
the geometric accuracy, the latter relating to the problem we study. Regarding the geometric accuracy, a part is produced
and measured. Then the deformation is calculated and the tool path corrected using the inverse of the deformation at each
point. This process is applied iteratively until the deformation is small enough. In Bambach et al. (2009) the authors
propose a multi-stage forming technique, i.e. rather than a single pass by the machine tool several are made. Further, they
consider the effect of different initial geometries with respect to the deformation produced on the desired shape. As a case
study they consider a flat topped pyramid shape. The initial geometry with a corner radius larger than the desired shape
and a number of forming stages produced the least deformation.

3 Proposed Solutions
The main tasks are as follows:

• investigating or developing good representations for the data;

1www.inmaproject.eu
2http://cordis.europa.eu/fetch?CALLER=FP7 PROJ EN&ACTION=D&DOC=1&CAT=PROJ&QUERY=012eb403bac5:d891:5cf7dbdc&RCN=96396

17

• the application and development of AI techniques to the data to propose tool paths that account for the effects of
spring back to minimise deformation;

• experimentation with these techniques and analysis of the best or combination of techniques.

3.1 Representation
Co-ordinate Points Currently the data (both the desired shape and the actual shape) is represented as sets of 3-D (x, y, z)

co-ordinates. Input to the machine tools is a standard CAD/CAM file in APT (Automatically programmed Tool)
code. Due to the volume of data involved we may have to reduce the number of co-ordinate points by considering
points at particular co-ordinates in a mesh rather than the full co-ordinate set.

Registration We need to ensure that the 3-D co-ordinates are relative to the same origin otherwise we won’t be comparing
related parts of the geometry and the deformation may appear larger than expected.

Deformation The deformation of the resultant part with respect to the required part can be calculated a number of ways.
One example is to calculate the difference in z co-ordinates for given x, y co-ordinates. We will need to be able to
provide a measure of overall deformation, for example, the average per point for a grid like-representation to allow
analysis of our results.

Parameters It is likely that a number of parameters will affect the deformation, for example, the type of metal, the
composition of the metal, the processing of the sheets prior to part forming etc. We also need to represent data about
these parameters to investigate whether they do have some affect on the deformation. Additionally we anticipate
having to utilise derived data, for example, to differentiate parts of the shape representing peaks, troughs, ridges, flat
portions etc as we expect the deformation will be affected by such factors.

3.2 Predicting Deformation
Given the data and a representation of this for a specific shape we need a way of predicting the deformation to generate
a new tool path such that the resultant shape, once manufactured, is close enough to the required shape. An obvious first
attempt would be to invert the deformation at each point. That is, if for some x, y point the z co-ordinate for the obtained
shape is h units greater than expected, then to correct this in the new tool path we would subtract h from the z value of the
desired shape. This is the approach taken in Hirt et al. (2004) on which we hope to improve by applying AI techniques.
We will consider a number of techniques but are considering data mining, neural networks, statistical methods. Obviously
the collection of a large amount of data on which to develop and test our ideas is expensive when dealing with titanium.
We hope to be able to initially use data from parts formed in aluminum before moving on to testing with titanium.

3.3 Experimentation and Analysis
Here we would like to compare a number of techniques developed above at predicting and correcting the tool path for a
particular shape and, if possible, combine the best of these.

Acknowledgements This work was supported by the EU project “Innovative Manufacturing of complex Ti Sheet Com-
ponents” (INMA), grant agreement number 266208.

References
J.M. Allwood, G.P.F. King, and J. Duflou. A structured search for applications of the incremental sheet-forming process

by product segmentation. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering
Manufacture, 219(2):239–244, 2005.

M. Bambach, B. Taleb Araghi, and G. Hirt. Strategies to improve the geometric accuracy in asymmetric single point
incremental forming. Production Engineering Research and Development, 3(2):145–156, 2009.

G. Dearden, S.P. Edwardson, E. Abed, K. Bartkowiak, and K.G. Watkins. Correction of distortion and design shape
in aluminium structures using laser forming. In 25th International Congress on Applications of Lasers and Electro
Optics(ICALEO 2006), pages 813–817, 2006.

G. Hirt, J. Ames, M. Bambach, R. Kopp, and R. Kopp. Forming strategies and Process Modelling for CNC Incremental
Sheet Forming. CIRP Annals - Manufacturing Technology, 53(1):203–206, 2004.

18

Heterogeneous Proofs: Spider Diagrams meet Higher-Order Provers

Matej Urbas?

?Computer Laboratory
University of Cambridge

Matej.Urbas@cl.cam.ac.uk

Mateja Jamnik†

†Computer Laboratory
University of Cambridge

Mateja.Jamnik@cl.cam.ac.uk

Abstract

We present an interactive heterogeneous theorem proving framework, which performs formal reasoning by arbitrarily
mixing diagrammatic and sentential proof steps.

We use Isabelle to enable formal reasoning with either traditional sentences or spider diagrams. We provide a mech-
anisation of the theory of abstract spider diagrams and establish a formal link between diagrammatic concepts and the
existing theories in Isabelle.

1 Introduction
Diagrams are often employed as illustrations in “pen and paper” reasoning. In the past, they frequently formed essential
parts of proofs. Eventually, with advent of proof theory, their role became almost exclusively that of a visual help. Still, the
intuitive nature of diagrams motivated the design of formal diagrammatic reasoning systems – for example, spider diagrams
(Howse et al., 2001) and constraint diagrams (Gil et al., 2001). Consequently, some purely diagrammatic theorem provers
have been developed, DIAMOND (Jamnik et al., 1999), Edith (Stapleton et al., 2007) and Dr.Doodle (Winterstein et al.,
2004) are some examples.

Heterogeneous reasoning was the next step in the development of diagrammatic reasoning systems. It merged the
diagrammatic and sentential modes of reasoning and allowed proof steps to be applied to either diagrammatic, sentential
or mixed formulae. In the paper Reasoning with Sentences and Diagrams (Hammer, 1994), Hammer laid the formal
foundations for such heterogeneous reasoning systems.

Later, Barwise and Etchemendy (1998), Barker-Plummer et al. (2008) and Shin (2004) investigated heterogeneous
reasoning software. The result was a framework called Openproof (Barker-Plummer et al., 2008), which uses diagrammatic
representation as an input method. The diagrammatic part of the framework is not formalised within the logic of the
sentential reasoner. Therefore, the diagrammatic and sentential components remain logically separated.

Our goal is to enable formal interactive heterogeneous reasoning in a general purpose theorem prover. We investigate
three aspects of interactive heterogeneous reasoning: a) the direction of proofs (e.g., from a diagrammatic assumption to
a sentential conclusion and vice versa), b) expression of statements that contain mixed sentential and diagrammatic terms,
and c) mixed application of diagrammatic, sentential, and heterogeneous inference steps.

Our key motivation is to provide different representations of formulae and to enable reasoning about diagrams senten-
tially or vice versa. We believe this can improve intuitiveness and readability of formulae and proofs in specific domains
of verification.

In contrast to the approach of Openproof our aim is not to keep the two reasoning systems separated, but to integrate
them using heterogeneous representation and reasoning. In addition, we want to formalise diagrams and some of their
inference rules in the logic of an LCF-style (Gordon et al., 1979) higher-order theorem prover. With this we hope to enable
certified proof reconstruction of heterogeneous proofs.

In order to build a heterogeneous reasoning framework, we first chose an existing diagrammatic reasoning language
called spider diagrams. The second part is the sentential reasoner, for which we chose Isabelle (Wenzel et al., 2008).

We formalised the theory of spider diagrams in Isabelle. This enabled sentential reasoning about diagrams and also
simplified translation from spider diagrams to sentences. Translation from sentences to diagrams, proof automation, and
proof reconstruction, however, is still work in progress. Diagrammatic reasoning on spider diagrams will be performed by
our external diagrammatic reasoner Speedith (currently also in development).

2 Heterogeneous Integration
Ultimately, we want to enable formal graphical reasoning as is depicted in Figure 1. Sentential expressions are drawn
as diagrams if the translation is feasible. More importantly, the external diagrammatic reasoner can be invoked in an
interactive mode within the proof body like any other tactic in Isabelle.

19

Figure 1: A mockup of the resulting heterogeneous framework.

To achieve this we will integrate the diagrammatic reasoner on both the level of reasoning tactics as well as within the
graphical user interface of Isabelle. For this purpose we aim to use Speedith.

The user will be able to invoke the diagrammatic reasoner at any time during the proof, with an option to do so in
an interactive or fully automated mode. Additionally, the currently active statement (lemma or proof obligation) will be
automatically visualised as a diagram in an embedded window of the GUI.

Discussion. We outline a work-in-progress of an integration of a diagrammatic language with diagrammatic inference
rules into a sentential theorem prover. This enables formal heterogeneous reasoning with mixed diagrams and sentences.

In summary, we believe that heterogeneous reasoning can improve the ease of working with specific domains of
verification in general purpose theorem provers.

References
Dave Barker-Plummer, John Etchemendy, Albert Liu, Michael Murray, and Nik Swoboda. Openproof - A Flexible Frame-

work for Heterogeneous Reasoning. LNCS, 5223:347, 2008. doi: {10.1007/978-3-540-87730-1 32}.

Jon Barwise and John Etchemendy. A Computational Architecture for Heterogeneous Reasoning. In TARK, pages 1–11.
Morgan Kaufmann, 1998. doi: {10.1.1.24.5942}.

Joseph Gil, John Howse, and Stuart Kent. Towards a Formalization of Constraint Diagrams. In IEEE Symposia on
Human-Centric Computing Languages and Environments, page 72, 2001. doi: {10.1109/HCC.2001.995227}.

Michael J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth. Edinburgh LCF: A Mechanised Logic of Computation,
volume 78 of LNCS. Springer Berlin / Heidelberg, 1979. doi: {10.1007/3-540-09724-4}.

Eric Hammer. Reasoning with Sentences and Diagrams. NDJFL, 35(1):73–87, 1994.

John Howse, Fernando Molina, John Taylor, Stuart Kent, and Joseph Gil. Spider Diagrams: A Diagrammatic Reasoning
System. JVLC, 12(3):299–324, 2001. doi: {10.1006/jvlc.2000.0210}.

Mateja Jamnik, Alan Bundy, and Ian Green. On Automating Diagrammatic Proofs of Arithmetic Arguments. JOLLI, 8
(3):297–321, 1999.

Sun-Joo Shin. Heterogeneous Reasoning and its Logic. BSL, 10(1):86–106, 2004.

Gem Stapleton, Judith Masthoff, Jean Flower, Andrew Fish, and Jane Southern. Automated Theorem Proving in Euler
Diagram Systems. JAR, 39(4):431–470, 2007. doi: {10.1007/s10817-007-9069-y}.

Makarius Wenzel, Lawrence C. Paulson, and Tobias Nipkow. The Isabelle Framework. In TPHOLs, pages 33–38, 2008.

Daniel Winterstein, Alan Bundy, and Corin A. Gurr. Dr.Doodle: A Diagrammatic Theorem Prover. In IJCAR, pages
331–335, 2004.

20

Towards the Formal Verification of Human-Agent Teamwork ∗

Richard Stocker, Louise Dennis, Clare Dixon and Michael Fisher
?Department of Computer Science, University of Liverpool, UK

Abstract
The formal analysis of computational processes is by now a well-established field. Yet, the problem of dealing with

the interactions with humans still remains. In this work we are concerned with addressing this problem. Our overall goal
is to provide formal verification techniques for human-agent teamwork.

1 Introduction
Computational devices naturally interact with humans. These devices can range from mobile phones or domestic appli-
ances, all the way to fully autonomous robots. In many cases all that the users care about is that the device works well
most of the time. However, in mission critical scenarios we clearly require a more formal, and consequently much deeper
analysis. Specifically, as various space agencies plan missions to the Moon and Mars which involve robots and astronauts
collaborating, then we surely need some form of formal verification for astronaut-robot teamwork. This is needed at least
for astronaut safety (e.g. “the astronaut will never be out of contact with the base”) but also for mission targets (e.g. “three
robots and two astronauts can together build the shelter within one hour”). However, this presents three questions: (1)
How are we to go about this; (2) How can we possibly verify human behaviour; and (3) How can we analyse teamwork?

2 Background
An agent (14) essentially captures the idea of an autonomous entity, being able to make its own choices and carry out
its own actions. Beyond simple autonomy, rational agents are increasingly used as a high-level abstraction/metaphor
for building complex/autonomous space systems (6). Rational agents can be seen as agents that make their decisions in
a rational and explainable way (rather than, for example, purely randomly). The central aspects of the rational agent
metaphor is that such agents are autonomous, but can react to changes in circumstance and can choose what to do based
on their own agenda.

By formal verification we mean analyzing the correctness of a system using mathematical proofs. One technique for
doing so is model-checking (1). Model-checking is the process of checking a specification of the system against a model
representing that system. This model takes the form of a finite state machine i.e. a directed graph consisting of vertices and
edges. The specification is checked on every path within that model. If the specification fails on any path (representing a
potential execution), then this is identified to the designer.

In (3) a formal approach to the problem of human-agent (and so astronaut-robot) analysis was proposed and suggested
the model-checking of Brahms models (8; 13; 11) but provided no details. Brahms is a simulation/modelling language
in which complex human-agent work patterns can be described. Importantly for our purposes, Brahms is based on the
concept of rational agents and the system continues to be successfully used within NASA for the sophisticated modelling
of astronaut-robot planetary exploration teams (5; 10; 9). Thus, it seems natural to want to formally verify the Brahms
language designed to model human activity using rational agents.

3 Proposed Solution
The main tasks are as follows:

• produce a formal semantics of the Brahms language;

• create a tool capable of performing formal verification on Brahms code based on our formal semantics;

• investigating or developing adequately sized scenarios in the Brahms language on which to perform formal verifica-
tion.

∗Work partially funded in the UK through EPSRC grants EP/F033567 and EP/F037201.

21

3.1 Semantics
Until now, the Brahms language had no formal semantics (unless you count the implementation code as this). So, in (12)
we describe the first formal semantics for the Brahms language. These formal semantics provide a route towards formal
verification of Brahms. In particular, they open up the opportunity of using agent verificaiton tools such as AJPF (2). They
also provide a means to aid the creation of a translation tools, so that Brahms may be translated into the input languages
of model-checkers such as Spin (7) and NuSMV (4). Any translation created could be checked against these semantics to
prove its correctness.

3.2 Verification Tool
The ultimate goal of this project is to create a tool which will formally verify human-agent teamwork. By creating a tool
to formally verify Brahms we hope to make a step towards achieving this goal. Currently we are looking at creating a
Brahms parser which will parse Brahms code into Java data structures that reflect the structure of Brahms in our semantics.
Using the transition rules in our semantics we will then be able to create tools which will generate code in the form of
input languages for model-checkers such as Spin (7). Using our semantics in this way will enable us to prove the code our
tool creates is an accurate representation of the Brahms code it was generated from.

3.3 Scenarios
The scenarios for testing and demonstrating our tool need to be chosen very carefully. They need to be big enough to
have a critical nature and show further possible applications, yet small enough so the accuracy of the verification is easily
visible in the results and during demonstrations.

References
[1] C. Baier, and J. P Katoen. Principles of Model Checking. The MIT Press, May 2008.

[2] R. H. Bordini, L. A. Dennis, B. Farwer, and M. Fisher. Automated Verification of Multi-Agent Programs. In Proc.
23rd IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 69–78, 2008.

[3] R. H. Bordini, M. Fisher, and M. Sierhuis. Formal Verification of Human-Robot Teamwork. In Proc. 4th ACM/IEEE
International Conference on Human Robot Interaction (HRI), pages 267–268. ACM Press, 2009.

[4] A. Cimatti, E. M. Clarke, F. Giunchiglia, M. Roveri. NUSMV: A New Symbolic Model Verifier, 1999 Computer
Aided Verification, 11th International Conference, CAV ’99, Trento, Italy, July 6-10, Springer, 1999.

[5] W. Clancey, M. Sierhuis, C. Kaskiris, and R. van Hoof. Advantages of Brahms for Specifying and Implementing
a Multiagent Human-Robotic Exploration System. In Proc. 16th Florida Artificial Intelligence Research Society
(FLAIRS), pages 7–11. AAAI Press, 2003.

[6] L. A. Dennis, M. Fisher, A. Lisitsa, N. Lincoln, and S. M. Veres. Satellite Control Using Rational Agent Program-
ming. IEEE Intelligent Systems, 25(3):92–97, 2010.

[7] G.J. Holzmann Software model checking with SPIN. Advances in Computers, 2005.

[8] M. Sierhuis. Modeling and Simulating Work Practice. BRAHMS: a multiagent modeling and simulation language
for work system analysis and design. PhD thesis, Social Science and Informatics (SWI), University of Amsterdam,
The Netherlands, 2001.

[9] M. Sierhuis. Multiagent Modeling and Simulation in Human-Robot Mission Operations. (See
http://ic.arc.nasa.gov/ic/publications), 2006.

[10] M. Sierhuis, J. M. Bradshaw, A. Acquisti, R. V. Hoof, R. Jeffers, and A. Uszok. Human-Agent Teamwork and
Adjustable Autonomy in Practice. In Proc. 7th International Symposium on Artificial Intelligence, Robotics and
Automation in Space (i-SAIRAS), 2003.

[11] M. Sierhuis and W. J. Clancey. Modeling and Simulating Work Practice: A Human-Centered Method for Work
Systems Design. IEEE Intelligent Systems, 17(5), 2002.

22

[12] R. Stocker, M. Fisher, C. Dixon and L. Dennis. A Formal Semantics for Brahms. (See
http://www.csc.liv.ac.uk/∼rss/publications), 2011.

[13] R. van Hoof. Brahms website: http://www.agentisolutions.com, 2000.

[14] M. Wooldridge. An Introduction to Multiagent Systems. John Wiley & Sons, 2002.

23

Modelling of Wireless Local Area Network Security Attacks in Alloy

Aliaa Alabdali, Lilia Georgieva∗, Greg Michaelson
?MACS, Heriot-Watt University, Edinburgh, EH14 4AS

aa989@macs.hw.ac.uk, lilia@macs.hw.ac.uk, greg@macs.hw.ac.uk

Abstract

We model communication in a wireless local area network (WLAN) in first-order logic. We analyse the model for
security vulnerabilities using the model analyser Alloy. We develop a methodology for representing secure message
exchange on a WLAN and detecting passive and active man in the middle attacks.

1 Introduction
Recently wireless networks have become pervasive. They have millions of users and enable convenient and flexible
information exchange among devices such as notebook computers, PDAs and Tablet PCs, but also among mobile phones,
digital cameras, and hand-held games.

Growing number of users and intensive use revealed vulnerabilities of wireless networks that can be exploited. Secu-
rity of wireless networks can be compromised in a number of ways: the wireless channel can be eavesdropped; the data
transmitted over the network can be altered, identities of the communicated parties can be impersonated, the communica-
tion channel can be overused or jammed (Butty and Hubaux, 2007). Ensuring information security on a wireless network
has been identified as paramount (Pathan et al., 2006; Yang et al., 2005).

Security solutions devised for wired networks cannot be used to protect the wireless ones (Arbaugh, 2004). The rapid
commercialization of new products and services which use wireless networks does not allow enough time for design of
a robust security architecture (Latré et al., 2011). Consequently, the risk of losing and misusing data transmitted over a
wireless network is high (Gritzalis and Lopez, 2009; Clark and Poovendran, 2010).

In the context of wireless networks, preserving information security has three main goals: (i) confidentiality, i.e.
ensuring that nobody but the receiver can see the information; (ii) integrity, i.e. ensuring that the information has not been
modified, and (iii) availability, i.e. ensuring that anytime the information is needed, it would be available (Williams, 2007).

2 Our approach
We study the application of existing tools and mechanisms for preserving the goals of information security over a wireless
network. We model communication exchange in a subset of typed first-order logic and analyse the model using the
lightweight model analyser Alloy (Jackson, 2006).

Lightweight modelling is a design technique in which small, abstract formal models are explored and verified with a
pushbutton tool. We build small, abstract models of a transmission of data over a wireless network, explore the properties
of candidate models using a push-button analysis tool, and we verify aspects of the final model using the same tool.

The modelling language of Alloy is characterised as textual and declarative (Jackson, 2006). In an Alloy model basic
entity types and relations on them are declared, constrains on entities and relations are specified, predicates are defined
and assertions made. An instance of a model is a collection of entities and relations that satisfies all the model constraints.
A scope assigns to each basic type a small integer. This is the maximum number of members that the type can have.

Alloy models contain signature (sig), facts (fact), functions (fun), predicates (pred), and assertions (assert). The
Alloy Analyzer works by enumerating all possible instances of a model within a scope. In this way it can find examples
(instances that satisfy a predicate), counterexamples (instances that falsify an assertion), and verify assertions (within the
given scope, all model instances satisfy the assertion). If there are no instances of a model, then the model is inconsistent.
The concept of time is not built into Alloy, but there is a conventional way to model time, states, and se- quences of events
as done in (Zave, 2009).

Our approach is inspired by network analysis using Alloy which has been shown to be a valuable design technique
for protocols (Zave, 2009). Alloy models allow us to specify communication flow and characterise the participants in the
communication.

∗Corresponding author

24

2.1 Man in the middle attack
We study one of the most common network attacks, the man in the middle (MITM). MITM is an attacker who intercepts
the message exchange by impersonating each end-point. He then controls the communication by making the participants
believe that they are talking to each other directly in secure connection.

Approaches to thwart MITM attacks have been developed, for example cryptographic protocols put a form of endpoint
authentication. SSL uses a mutually trusted certification authority to authenticate the server (Meyer and Wetzel, 2004).

In our network model we model three cases of communication between client and server. The complexity of the models
is incremental.

The first case describes ideal communication between one client and one server in secure scope by sending and receiv-
ing an unencrypted message. The second case, describes the ideal encrypted communication between one client and one
server in secure scope for sending and receiving a message which is encrypted and decrypted using the respective public
and private keys. The third case describes the communication between one client and one server in unsecure scope which
is intercepted by MITM.

We model both active and passive interception. Active interception results in altered communication by impersonation
or changing the data; passive MITM attack is eavesdropping.

Assertions in this model relate to the time a request was sent, to the identities of both server and client, and to the mes-
sage data. We can specify the behaviour of all participants and the sequence of events leading to compromised (unsecure)
communication. We can, for example, specify that a participant in the communication is impersonated by MITM at a given
time, or that MITM has intercepted a packet which includes an encrypted message, is able to decrypt the message using
the server’s private key, eavesdrops it and then encrypts it again using client’s public key that he stored at a certain time in
the communication.

When an assertion is violated, Alloy produces a counterexample which is useful for analysing the security of the
network. For example, we can specify message exchange between one client and one server which use public and private
keys. We use the following concepts: time defined a sequence of discrete events, all participants identifiable by their
respective keys, and specific to the message attributes such as header and data. A signatures can inherit fields and constrains
from another signature and can be defined as a subset of another signature. For example, the signature time extends the
signature packet to inherit its fields and constrains. This allows us to specify that the packet was sent at a given time
and to analyse whether the packet was received at the expected time by the expected recipient and without modification;
the signature IP is defined as a subset of signature header and allows us to specify the source and the destination of
a transmitted packet; the signature key includes three kinds of keys, i.e. the client’s public and private keys, server’s
public and private keys and MITM’s public and private keys which allows us to write assertions about the identity of the
participants in the communication.

References
W. A. Arbaugh. Wired on wireless. IEEE Security & Privacy, 2(3), 2004.

L. Butty and J. Hubaux. Security and cooperation in wireless networks – thwarting malicious and selfish behavior in the
age of ubiquitous computing, 2007.

A. Clark and R. Poovendran. A metric for quantifying key exposure vulnerability in wireless sensor networks. In WCNC,
2010.

D. Gritzalis and J. Lopez, editors. Emerging Challenges for Security, Privacy and Trust, volume 297 of IFIP, 2009.

D. Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press, 2006.

B. Latré, B. Braem, I. Moerman, Ch. Blondia, and P. Demeester. A survey on wireless body area networks. Wireless
Networks, 17(1), 2011.

U. Meyer and S. Wetzel. On the impact of gsm encryption and man-in-the-middle attacks on the security of interoperating
gsm/umts networks. In PIMRC, 2004.

A. Pathan, T. Dai, and C. Hong. An efficient LU decomposition-based key pre-distribution scheme for ensuring security
in wireless sensor networks. In CIT, 2006.

R. Williams. Introduction to information security concepts, 2007.

H. Yang, F. Ye, Y. Yuan, S. Lu, and W. Arbaugh. Toward resilient security in wireless sensor networks. In MobiHoc, 2005.

P. Zave. Lightweight modeling of network protocols in Alloy, 2009.

25

Compositional Reasoning for Processes and Data

Liam O’Reilly?

?Swansea University
Singleton Park, Swansea, SA2 8PP
csliam@swansea.ac.uk

Till Mossakowski†
†DFKI Lab Bremen

Enrique-Schmidt-Str. 5, D-28359 Bremen
Till.Mossakowski@dfki.de

Markus Roggenbach‡

‡Swansea University
Singleton Park, Swansea, SA2 8PP
csmarkus@swansea.ac.uk

Abstract

CSP-CASL is a specification language tailored to the description of distributed systems depending on proper treatment
of data. Here, we discuss how to exploit its specification structure to ease verification.

1 Introduction
Specification in the large allows to model systems using components. In this context, algebraic specification has provided
a rich variety of operators that allow to build complex specifications out of simpler ones (Bergstra et al., 1990). These oper-
ators include the union of specifications, the renaming and hiding of symbols within specifications, as well as parametrized
specifications. In the context of data, these structuring mechanisms with their relations to proof calculi have been studied
extensively (Bidoit et al., 1998). To the best of our knowledge, we are the first to apply these ideas to state based systems.
Here, we develop proof calculi for the language CSP-CASL (Roggenbach, 2006) that exploit the specification structure to
ease verification.

2 CSP-CASL

Distributed computer applications like web services, flight booking systems, and electronic payment systems involve the
parallel processing of data. Consequently, these systems exhibit concurrent aspects (e.g. deadlock-freedom) as well as
data aspects (e.g. functional correctness). Often, these aspects depend on each other. The algebraic specification language
CASL (Mosses, 2004) alone can deal with data aspects, while the process algebra CSP (Roscoe, 2010) is quite capable
of modelling concurrent systems. The mutual dependencies between processes and data, however, require an integrated
language such as CSP-CASL.

A CSP-CASL specification consists of a data part and a process part. The data part establishes the data of the system,
and declares the sorts, operations and predicates available. The process part then establishes the desired behaviour of the
system components. Each component is specified as a CSP process, where CASL terms are used as communications, CASL
sorts denote sets of communications, relational renaming is described by a binary CASL predicate, and the CSP conditional
construct uses CASL formulae as conditions.

3 Structured CSP-CASL

Recently (O’Reilly et al., to appear), we extended CSP-CASL by the structuring mechanisms as known from algebraic
specification. To this end, we formulated the language as a so-called institution. In order to cater for parametrization,
we introduced the notion of “loose processes”. As an example of structured as well as generic CSP-CASL consider the
following specification of an online shopping system:

spec SHOP [RefCl(CUSTOMER)] [RefCl(WAREHOUSE)] [RefCl(PAYMENTSYSTEM)] [RefCl(COORDINATOR)] =
process System : C C, C W, C PS ;

System = Coordinator |[C C, C W, C PS || C C, C W, C PS]|
(Customer |[C C || C W, C PS]|

(Warehouse |[C W || C PS]| PaymentSystem))
end

26

The above describes how the overall System is composed out of four components, i.e. processes, namely Customer, Ware-
house, PaymentSystem, and Coordinator. These are specified separately in specifications CUSTOMER, WAREHOUSE,
PAYMENTSYSTEM, and COORDINATOR. The RefCl operator ensures that any refinement of these component specifica-
tions provides a valid actual parameter for SHOP. Concerning proof support, the question arises if such a parametrized
specification allows for compositional reasoning.

4 Compositional reasoning
In (O’Reilly et al., to appear), we developed a set of proof rules that allow to decompose complex proof obligations on
structured specifications into simpler ones. These rules exploit in a systematic way the specification building operators
such as union, renaming, and hiding. Astonishingly enough, even proof rules out of the CSP context are “well-behaved”
under these specification building operators. Here, we study especially the notions of responsiveness and deadlock-freedom
of networks (Reed et al., 2004). A typical example of one such rule in our calculi is:

Server :: A ResToLiveX Client :: B on J in SP1

Server :: A ResToLiveX Client :: B on J in (SP1 and SP2)

This proof rule (for the union operator, which syntactically is written as and) states that in order to show that a Server is
responsive to a Client in the context of the specification (SP1 and SP2), it is enough to establish responsiveness in the
context of SP1 alone. Here, A, B and J denote sets of events. This rule illustrates how to reduce the specification text
involved in a proof. Others rules work on the processes involved. For example, in order to prove deadlock freedom of
a network, we isolate a single process, establish that it is responsive, and finally prove deadlock freedom for the smaller
network with the isolated process removed. Finally, we have rules that relate refinement and structuring.

5 Proof rules in practice
An extensive specification and verification exercise on the online shop example introduced above demonstrates that our
techniques work in practice. Tool support for the calculi developed is well under way.

References
J.A. Bergstra, J. Heering, and P. Klint. Module algebra. Journal of the ACM, 37(2):335–372, 1990.

M. Bidoit, V.V. Cengarle, and R. Hennicker. Proof systems for structured specifications and their refinements. In Algebraic
Fondations of System Specification. Springer, 1998.

P. D. Mosses, editor. CASL Reference Manual. LNCS 2960. Springer, 2004.

L. O’Reilly, T. Mossakowski, and M. Roggenbach. Compositional modelling and reasoning in an institution for processes
and data. LNCS. Springer, to appear.

J.N. Reed, J.E. Sinclair, and A.W. Roscoe. Responsiveness of interoperating components. Formal Aspect of Computing,
16(4):394–411, 2004.

M. Roggenbach. CSP-CASL: A new integration of process algebra and algebraic specification. Theoretical Computer
Science, 354(1):42–71, 2006.

A.W. Roscoe. Understanding Concurrent Systems. Springer, 2010.

27

Natural Deduction in the setting of Paraconsistent Logic

Alexander Bolotov⋆

⋆University of Westminster
A.Bolotov@wmin.ac.uk

Vasilyi Shangin† ∗

†Moscow State University
shangin@philos.msu.ru

1 Introduction
In this paper we continue our analysis of natural deduction calculi and corresponding proof procedures for non-classical
logics. Our attention is now paid to the framework of paraconsistent logics Priest (2002). These logics are used, in
particular, for reasoning about systems where paradoxes do not lead to the ’deductive explosion’, i.e. where formulae of
the type false ⇒ A, for any A, are not valid. Paraconsistent reasoning has rather old tradition in philosophy, but is quite
young in automated reasoning, perhaps with first works related to 60th-70th Belnap (1977a), Belnap (1977b). Recently
paraconsintent logics have been studied by a wider community with such application areas as inconsistency-tolerant and
uncertainty reasoning than other types of logical systems Chen et al. (2007).

2 A sound and complete natural deduction system NPCont
We fix a standard propositional language L over an alphabet p, q, r, p1, q1, r1,

We adopt the standard definition of an L-formula and the following notation - letters A,B, C,D, A1 . . . denote arbitrary
L-formulae while letters Γ, ∆, Γ1, . . . denote arbitrary finite sets of L-formulae. For brevity we say ‘formula’ instead of
‘L-formula’.

Logic PCont is studied in Rozonoer (1983), see, also, Popov (1989). Natural deduction system NPCont was defined in
Shangin (2010).

In Figure 1 we define the sets of elimination and introduction rules, where prefixes ‘el’ and ‘in’ denote an elimination
and an introduction rule, respectively.

Elimination Rules :

∧ el1
A ∧B

A
∧ el2

A ∧B
B

¬ ∧ el
¬(A ∧B)
¬A ∨ ¬B

∨ el
A ∨B, [A]C, [B]C,

C

¬ ∨ el1
¬(A ∨B)
¬A

¬ ∨ el2
¬(A ∨B)
¬B

⇒ el
A ⇒ B, A

B

¬ ⇒ el1
¬(A ⇒ B)

A
¬ ⇒ el2

¬(A ⇒ B)
¬B

¬ el
¬¬A

A

PCont− ∨ el
[A] C, [¬A] C

C

Introduction Rules :

∧ in
A, B
A ∧B

¬ ∧ in1
¬A

¬(A ∧B)
¬ ∧ in2

¬B
¬(A ∧B)

∨ in1
A

A ∨B
∨ in2

B
A ∨B

¬ ∨ in
¬A,¬B
¬(A ∨B)

⇒ in
[C] B
C ⇒ B

¬ ⇒ in
A,¬B

¬(A ⇒ B)

¬ in
B
¬¬B

Figure 1: NPCont-rules

∗† The second author is supported by Russian Foundation for Humanities, project 10-03-00570a.

28

An inference in the system NPCont is a finite non-empty sequence of formulae with the following conditions: each
formula is an assumption or is derived from the previous ones via a NPCont-rule; by applying⇒in in each formula starting
from the last alive assumption until the result of the application of this rule, inclusively, is discarded from the inference;
by applying ∨el each formula starting from assumption A until formula C, inclusively, as well as each formula starting
from assumption B until formula C, inclusively, is discarded from the inference; by applying PCont− ∨el each formula
starting from assumption A until formula C, inclusively, as well as each formula starting from assumption A until formula
C, inclusively, is discarded from the inference. A proof in the system NPCont is an inference from the empty set of
assumptions.

3 A proof searching algorithm for NPCont
We use heuristics and proof search strategies proposed earlier for classical and non-classical logics Bolotov et al. (June,
2007). We consider this paper as an adaptation of our previous results to paraconsistent logic PCont, i.e. our strategies
defined for the classical setting work in the new setting in the goal-oriented fashion - any application of an introduction
NPCont-rule is determined by the current goal from list-proof . The procedure is shown to be finite, and terminates
either with finding a proof of the desired formula (the initial formula in list-goals) or with providing a counterexample,
i.e. a valuation under which the desired formula is false is extractable from listproof . Therefore, both soundness and
completeness of the proof search procedure are secured.

4 Example
With respect to the formulae which are not classical tautologies, the proof search procedure for NPCont works in the same
way it works for the classical logic which reflects the semantic fact that the characteristic matrixes for PCont invalidate
each formula which is not a classical tautology. Therefore, the distinguished characteristics of the procedure is how
it deals with the formulae which are classical tautologies and are not PCont-valid. An example of such a formula is
(p ⇒ ¬q) ⇒ (q ⇒ ¬p).

list proof list goals
1. p ⇒ ¬q assumption q ⇒ ¬p
2. q assumption ¬p
3. p assumption [p] ¬p, [¬p] ¬p
4. ¬q ⇒ el, 1, 3

Goal [p] ¬p cannot be reached and we can extract a counter example from listproof . However, has this goal been
reached then the PCont- el rule is applicable which would have given us the desired goal ¬p.

References
N. Belnap. A useful four-valued logic: How a computer should think. In J.M. Dunn and G. Epstein, editors, Modern Use

of Multiple-valued Logic. Dordrecht: D. Reidel, 1977a.

N. Belnap. How a Computer Should Think. Oriel Press, comtemporary aspects of philosophy edition, 1977b.

A. Bolotov, O. Grigoriev, and V. Shangin. Automated natural deduction for propositional linear-time temporal logic. In
Proceedings of the Time-2007, International Symposium on Temporal Representation and Reasoning, June, 2007.

Donghuo Chen, Guangquan Zhang, and Jinzhao Wu. First joint ieee/ifip symposium on theoretical aspects of software
engineering, tase 2007, june 5-8, 2007, shanghai, china. In TASE. IEEE Computer Society, 2007.

V. Popov. Sequential formulations for paraconsistent logics. Syntactical and semantic investigations of nonextensional
logics, 1989. (In Russian).

G. Priest. Paraconsistent logic. In Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic, Second Edition,
volume 6. Dordrecht: Kluwer Academic Publishers, 2002.

L. Rozonoer. On finding contradictions in formal theories. Automatica and telemekhanica, (6), 1983. (in Russian).

V. Shangin. Natural deduction systems for logics Par, PCont, PComp and PContPComp. In Logic, methodology: actual
problems and perspectives, 2010. (In Russian).

29

Solving rule admissibility problem for S4 by a tableau method

Renate Schmidt?
?School of Computer Science,

The University of Manchester, UK
renate.schmidt@manchester.ac.uk

Dmitry Tishkovsky†

†School of Computer Science,
The University of Manchester, UK

dmitry.tishkovsky@manchester.ac.uk

Abstract
Rules that are admissible can be used in any

derivations in any axiomatic system of a logic. In
this paper we introduce a method for checking the
admissibility of rules in the modal logic S4. Our
method is based on a standard semantic ground
tableau approach. In particular, we reduce rule ad-
missibility in S4 to satisfiability of a formula in a
logic that extends S4. The extended logic is char-
acterised by a class of models that satisfy a variant
of the co-cover property. The class of models can
be formalised by a well-defined first-order speci-
fication. Using a recently introduced framework
for synthesising tableau decision procedures this
can be turned into a sound, complete and termi-
nating tableau calculus for the extended logic, and
gives a tableau-based method for determining the
admissibility of rules.

1 Introduction
Logical admissible rules were first considered by Loren-
zen (1955). Initial investigations were limited to observa-
tions on the existence of interesting examples of admis-
sible rules that are not derivable. The area gained new
momentum when Friedman (1975) posed the question
whether algorithms exist for recognising whether rules in
intuitionistic propositional logic IPC are admissible. This
problem and the corresponding problem for modal logic
S4 are solved affirmatively in Rybakov (1984).

In this paper we focus on S4 and introduce a new
method for recognising the admissibility of rules. Our
method is based on the reduction of the problem of rule
admissibility in S4 to the satisfiability of a certain for-
mula in an extension of S4. We refer to the extended
logic as S4u,+. S4u,+ can be characterised by a class of
models, which satisfy a variant of the co-cover property
that is definable by modal formulae. This property is ex-
pressible in first-order logic and means that the semantics
of the logic can be formalised in first-order logic. We ex-
ploit this property in order to devise a tableau calculus
for S4u,+ in a recently introduced framework for auto-
matically synthesising tableau calculi and decision proce-
dures (Schmidt and Tishkovsky, 2008, 2009).

The tableau synthesis method of Schmidt and
Tishkovsky (2009) consists of two steps: (i) the user
defines the formal semantics of the given logic in a
many-sorted first-order language so that certain well-
definedness conditions hold, (ii) the method automati-

cally reduces the semantic specification of the logic to
Skolemised implicational forms which are then rewritten
as tableau inference rules. These are combined with some
default closure and equality rules.

The set of rules obtained in this way provides a sound
and constructively complete calculus. Furthermore, this
set of rules automatically has a subformula property with
respect to a finite subformula operator. If the logic can
be shown to admit finite filtration with respect to a well-
defined first-order semantics then adding a general block-
ing mechanism produces a terminating tableau calcu-
lus (Schmidt and Tishkovsky, 2008).

2 A Tableau Method for Testing
Rule Admissibility

The algorithm for testing rule admissibility is based on
two tableau calculi: TS4u for deciding the logic S4u which
extends S4 with universal modality [u] and TS4u,+ for de-
ciding the extended logic S4u,+. The calculus TS4u,+ ex-
tends the calculus TS4u with the infinite set of rules which
ensure the co-cover property. The rules are listed in Fig-
ure 1 and contain a number of Skolem functions hn and
gn for n > 0 and a Skolem constant g0. Notice that these
rules are non-standard since Skolem symbols g0, . . . , gn

occur in their premises. Both calculi are synthesised and
refined with use of the method of Schmidt and Tishkovsky
(2009) and, hence, sound and complete for correspond-
ing logics. By a filtration argument, it can be proved
that S4u and S4u,+ have the bounded finite model prop-
erty. Based on these results, the termination for these cal-
culi is achieved by using the unrestricted blocking mech-
anism (Schmidt and Tishkovsky, 2008).

The algorithm for testing rule admissibility in S4 is
the following:
Step 1. Given an S4-rule α/β, rewrite it to [u]α ∧ ¬β.
Step 2. Use the tableau calculus TS4u to test the satisfia-

bility of [u]α ∧ ¬β in S4u.
Step 3. If TS4u([u]α ∧ ¬β) is closed, i.e., [u]α ∧ ¬β

is unsatisfiable in S4u, then stop and return
‘derivable’.

Step 4. Otherwise (i.e., TS4u([u]α ∧ ¬β) is open), con-
tinue the tableau derivation with the rules in TS4u

plus the rules (cc′0
0), (cc′0

1), (cc′n
0), and (cc′n

1).
In particular, continue the derivation with a finite
open branch of TS4u([u]α ∧ ¬β) using the rules
of TS4u,+ until the derivation stops.

30

(cc′0
0):

@g0g0
(cc′0

1):
@g0♦i, @ip

@g0p
(cc′n

0):
@i1 i1, . . . , @in in

@gn(i)♦i1, . . . , @gn(i)♦in

(cc′n
1):

@gn(i)♦j, @jp

@gn(i)p | @i1♦hn(p, i, j), @hn(p,i,j)p | · · · | @in♦hn(p, i, j), @hn(p,i,j)p

Figure 1: Infinite set of rules to capture the co-cover property.

Step 5. If TS4u,+([u]α ∧ ¬β) is closed then return
‘not derivable and admissible’. Otherwise,
i.e., if TS4u,+([u]α ∧ ¬β) is open, return
‘not admissible’.

The answers returned by the method are either ‘deriv-
able’, ‘not derivable and admissible’, or ‘not admis-
sible’. If a rule is derivable it is also admissible but not
conversely.

3 Concluding Remarks
A major difficulty in dealing with S4-admissibility, is that
the theory of S4-admissible rules does not have the fi-
nite approximation property. Therefore the tableau algo-
rithm that we have introduced in this paper builds open
branches that represent a (possibly) infinite S4-model for
the S4-admissible rules and is a counter-model to a non-
admissible rule. The subsequent filtration provides a finite
model (not necessarily a model for all admissible rules)
witnessing the refutation.

Algorithms deciding admissibility for some transitive
modal logics and IPC, based on projective formulae and
unification, are described in (Ghilardi, 2002). They com-
bine resolution and tableau approaches for finding pro-
jective approximations of a formula and rely on the ex-
istence of an algorithm for theorem proving. A practi-
cally feasible realisation for S4 built on the algorithm for
IPC in (Ghilardi, 2002) is described in (Zucchelli, 2004).
These algorithms were specifically designed for finding
general solutions for matching and unification problems.
In contrast, the original algorithm of Rybakov (1984) can
be used to find only some solution of such problems in
S4. In particular, this can be done through the relation:
an equation α ≡ β is solvable iff a rule α ≡ β/⊥ is not
admissible. We expect that our method can be modified
for finding the general solutions of logical equations as
well.

Rybakov (2007) showed that the logic S4u is decid-
able with respect to admissibility. We strongly believe
that our tableau method can also be extended to rule ad-
missibility in S4u.

In fact, our method of replacing the first-order co-
cover condition with its formulaic variant (which is also
first-order but in the extended language) is not restricted
to S4. We expect that it can be modified to deal with a
number of other modal logics, especially those covered by

the general theory of (Rybakov, 1997). Similarly, it can
be applied to their superintuitionistic counterparts (either
through Gödel’s translation or directly) and to transitive
modal logics augmented with the universal modality.

Full details of the presented results can be found
in (Babenyshev et al., 2010).

References
S. Babenyshev, V. Rybakov, R. A. Schmidt, and

D. Tishkovsky. A tableau method for checking rule ad-
missibility in S4. Electron. Notes Theor. Comput. Sci.,
262:17–32, 2010.

H. Friedman. One hundred and two problems in mathe-
matical logic. J. Symb. Log., 40(3):113–130, 1975.

S. Ghilardi. A resolution/tableaux algorithm for projec-
tive approximations in IPC. Log. J. IGPL, 10(3):229–
243, 2002.

P. Lorenzen. Einführung in die operative Logik und Math-
ematik. Springer, Berlin-Göttingen, Heidelberg, 1955.

V. V. Rybakov. A criterion for admissibility of rules in
modal system S4 and the intuitionistic logic. Algebra
Logic, 23(5):369–384, 1984.

V. V. Rybakov. Admissibility of logical inference rules,
volume 136 of Studies in Logic and the Foundations of
Mathematics. Elsevier, New-York–Amsterdam, 1997.

V. V. Rybakov. Logics with universal modality and ad-
missible consecutions. J. Appl. Non-Classical Log., 17
(3):381–394, 2007.

R. A. Schmidt and D. Tishkovsky. Automated synthe-
sis of tableau calculi. In Proc. TABLEAUX’09, volume
5607 of LNAI, pages 310–324. Springer, 2009.

R. A. Schmidt and D. Tishkovsky. A general tableau
method for deciding description logics, modal logics
and related first-order fragments. In Proc. IJCAR’08,
volume 5195 of LNCS, pages 194–209. Springer, 2008.

D. Zucchelli. Studio e realizzazione di algoritmi per
l’unificazione nelle logiche modali. Laurea specialis-
tica in informatica (Masters Thesis), Università degli
Studi di Milano, July 2004.

31

Typestate modelling and verification with Hanoi

Iain McGinniss?

?School of Computing Science
University of Glasgow

iainmcg@dcs.gla.ac.uk

Simon Gay?

simon@dcs.gla.ac.uk

Abstract

The interface of an object can be viewed as a form of contract between the user of the interface and the implementation
of the interface. Often the details of such contracts in a language like Java are a mixture of formal specification (the
type information of the methods) and informal specification, embedded in javadoc comments. Informal specification is
dangerous for two reasons: ambiguity and opaqueness to automated reasoning tools. We present Hanoi, a specification
language for typestate on Java interfaces. Hanoi models are designed to be readable by both humans and machines, with
a formal semantics to aid verification of interface usage and implementation.

1 Introduction
Object oriented languages, such as Java, provide many complex APIs which are fundamentally stateful — the behaviour
and capabilities of an object representing access to some external entity change as the object is used, and as external
conditions change. This impacts the usage of such objects, in that the set of methods which may legally be called varies over
time. This behaviour can typically be captured by a finite state machine — this is known as “typestate”, the combination
of types and state machines which describe their restrictions (Strom and Yemini, 1986).

It has been recently discovered that Java APIs with typestate restrictions are more frequent than those with generic
parameters (Beckman et al., 2011). Yet, there is no support for expressing typestate restrictions formally in Java and as
such the state transitions and restrictions are documented informally. This prevents any kind of verification, whether static
or dynamic, than an interface is being used as intended by client code. Diligent programmers will write implementations
that defend against invalid usage by manually checking invariants and throwing runtime exceptions if the restrictions are
violated, however writing such code is tedious, error prone and costly.

2 Hanoi
Hanoi is a domain specific language for the specification of finite state machines that control the set of legal methods on
an object, and expressing state transitions in response to method calls. An example of the Hanoi specification for the Java
Iterator interface is shown in Listing 1. Each state defines a set of legal methods and conditional transitions to other states
based upon the value returned when that method is called. The state machine is also hierarchical, in that a child state
inherits the legal set of method calls defined in the parent and can extend and override this sucject to some restrictions.

The Iterator specification in Listing 1 defines four states: CHECK NEXT, NEXT AVAILABLE, CAN REMOVE and
CAN REMOVE MIDDLE. CHECK NEXT is the root state, from which NEXT AVAILABLE and CAN REMOVE inherit which
is indicated by their definition within the body of CHECK NEXT. The definition of CHECK NEXT indicates that the
hasNext() method may be called, and that if it returns true then the object will move to state NEXT AVAILABLE,
otherwise it will remain in the present state. The NEXT AVAILABLE state, adds one extra legal method, next(), while
the CAN REMOVE state allow for the remove() method to be called.

CAN REMOVE provides an example of transition overriding — the successor state after a call to hasNext() when
true is returned is changed from NEXT AVAILABLE to CAN REMOVE MIDDLE. This is legal in Hanoi as the new
successor is a substate of the original state. Essentially, Hanoi requires that the successor state be covariant, in order to
ensure safe substitutability of child states for parent states.

The intention behind Hanoi is that such specifications provide the rules governing the usage of an object in a form
that is unambiguous, and readable by both humans and programs. The syntax and semantics are simple yet allow for the
expression of the typestate restrictions found on most interfaces in Java which have state-based preconditions.

Hanoi differs from existing work through it’s use of a DSL for specification, rather than embedded code annotations
that describe method pre- and post-conditions as in Plural (Bierhoff et al., 2009), or regular expressions that capture illegal
sequences of method calls as in AspectJ trace matches (Allan et al., 2005). We intend to perform a user trial of Hanoi in
the near future to determine whether the use of a DSL makes Hanoi models easier to understand than code annotations.

32

Listing 1: Hanoi model for java.util.Iterator

1 CHECK_NEXT {
2 NEXT_AVAILABLE {
3 CAN_REMOVE_MIDDLE { remove() -> NEXT_AVAILABLE }
4 next() -> CAN_REMOVE
5 }
6 CAN_REMOVE {
7 remove() -> CHECK_NEXT
8 hasNext() :: true -> CAN_REMOVE_MIDDLE
9 }

10 hasNext() :: true -> NEXT_AVAILABLE
11 hasNext() :: <other> -> <self>
12 }

Listing 2: Iterator usage

1 boolean r = shouldRemove();
2 Iterator i = list.iterator(); // state = CHECK_NEXT
3 if(i.hasNext()) {
4 i.next();
5 if(r) {
6 i.remove();
7 } // state = CHECK_NEXT or CAN_REMOVE
8 }

3 Static Analysis of client code
The hierarchical structure and safe substitutability of child states for parent states in Hanoi makes the implementation
of a data flow analysis for Hanoi straightforward - the tree structure of the inheritance hierarchy of the states provides a
natural merge operation. For instance, on Line 7 of Listing 2, after the if statement the iterator will either be in state
CHECK NEXT or CAN REMOVE depending on the value of the boolean r. We can merge these to CHECK NEXT, which is
the least upper bound of both states.

Such static analysis is sound if we can be sure that there are no aliases to the stateful object in question, otherwise
unobserved state changes may occur in another context. Alias control is not part of the Hanoi model, as such the current
implementation is limited to dynamic checking through byte-code weaving. Aliasing guarantees could in principle be
provided by some other static analysis which a Hanoi static analysis could leverage, and we are presently pursuing this
idea as part of our future work.

References
Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Ondej Lhoták, Oege de Moor,

Damien Sereni, Ganesh Sittampalam, and Julian Tibble. Adding trace matching with free variables to AspectJ. In
Proceedings of the 20th annual ACM SIGPLAN conference on Object oriented programming systems languages and
applications - OOPSLA ’05, page 345, New York, New York, USA, 2005. ACM Press. ISBN 1595930310. doi:
10.1145/1094811.1094839. URL http://portal.acm.org/citation.cfm?doid=1094811.1094839.

Nels E. Beckman, Duri Kim, and Jonathan Aldrich. An Empirical Study of Object Protocols in the Wild. In Proceedings
of the European Conference on Object-Oriented Programming (ECOOP ’11), 2011.

K. Bierhoff, N.E. Beckman, and J. Aldrich. Practical API Protocol Checking with Access Permissions. In 23rd European
Conference on Object-Oriented Programming, volume 5653 of Lecture Notes in Computer Science, pages 195–219,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. ISBN 978-3-642-03012-3. doi: 10.1007/978-3-642-03013-0.
URL http://www.springerlink.com/index/10.1007/978-3-642-03013-0.

Robert E Strom and Shaula Yemini. Typestate: A programming language concept for enhancing software reliability. IEEE
Transactions on Software Engineering, 12(1):157–171, 1986.

33

The Logical Verification of Security Protocols

David Berry, Michael Fisher and Clare Dixon

Department of Computer Science,
University of Liverpool,
Liverpool, L69 3BZ, UK

[D.R.Berry, mfisher, cldixon]@liverpool.ac.uk

Abstract

Here we describe the specification and verification of security protocols using temporal logics of knowledge.

1 Introduction
Security protocols are distributed programs which aim to provide secure communication between two or more parties.
This aim is typically achieved through encryption techniques. Techniques such as RSA (Rivest et al., 1978) are based on
computationally hard problems such as the factorisation of large prime numbers. Essentially nothing better than a brute
force attack can break such encryption schemes. It has long been known, however, that one does not have to necessarily
break the encryption to unlock the secret communication. Security protocols are famously difficult to design, subtle flaws
can render a protocol completely vulnerable to one of many attacks. One of the most studied of these vulnerabilities was
discovered in the Needham-Schroeder protocol by Lowe (Lowe, 1996). The Needham-Schroeder protocol is as follows,
message 1. A→ B : {A, na}pkb (A sends his id and fresh nonce to B, encrypted with B’s public key), message 2. B→ A :
{na, nb}pka (B sends na and fresh nonce back to A, encrypted with A’s public key), message 3. A→ {nb}pkb (A sends nb
back to B, encrypted with B’s public key). At first glance this looks secure, Lowe’s attack uses two runs of the protocol,
leading to an intruder finding out all secret messages (the nonces).

Much work has been done on the verification of security protocol, among the most influential is formal methods, in
particular model checking and theorem proving. We will focus on the logical verification of security protocols. In particular
we are interested in specifying protocols in Temporal Logics of knowledge, and using theorem proving techniques to prove
specific properties of these protocols hold. Work in this area is currently very active, some very public examples of flawed
protocols have been highlighted (Murdoch et al., 2010). There is a necessity to formally prove that attacks can not happen
on a protocol.

2 Logical Verification (for security)
The benefit of using logical techniques for the formal verification of security protocols is well established. BAN logic
(Burrows et al., 1990) being the first of many. BAN allows one to reason about simple beliefs and knowledge of the
principals communicating. Subsequently other logics have been applied to the problem of security analysis. Most recently
temporal epistemic logics have been applied. In (Dixon et al., 2004) the authors show how temporal epistemic logic
(LTL + S5) can be used to model a protocol, this is then verified using the TeMP theorem prover. Others have also used
epistemic properties to model the knowledge transferred during the execution of a cryptographic protocol. The MCMAS
tool (Lomuscio et al., 2009), is a model checker which has been used to prove the temporal epistemic properties of security
protocols.

It is believed that having the knowledge axioms of the S5 logic is beneficial in the representation of security protocols.
One aim of this research is to assess the benefits of using this logic in the specification of protocols. Particular attention
will be given to the types of protocol which can be represented in this logic, and the properties which can be checked using
theorem proving techniques. A lot of our initial focus has been specifying security properties in a logical unambiguous
way, eventually we will have a hierarchy of related security properties which can be compared with one another in a similar
way to Lowe’s authentication hierarchy (Lowe, 1997).

A problem encountered in (Dixon et al., 2004), was the specification of a relatively simple protocol (Needham-
Schroeder with public keys) was an arduous, error-prone task leading to a large and complex formalism. This is true
of most formal representations of protocols I have encountered (for example using CSP). In order to counter this problem
several leading tools in security protocol verification, such as CASPER (Lowe, 1998), allow users to specify protocols in

34

a high level abstract representation which is automatically transformed. This is a logical step to take for the verification
technique we are using, many frustrated hours will be saved if a high level language is utilised.

3 High Level Protocol Specification
A number of high level languages have been suggested for the specification of security protocol, notably CAPSL (Millen
and Denker). The syntax of CAPSL is very similar to the Alice-Bob notation many people are familiar with. For example
A → B : {A, na}pkb represents A sending a message “m” to B, encrypted with a key “pkb”. This representation is much
easier to read and write, leading to more concise, shorter and understandable specifications. Currently we are working
with temporal logics of knowledge which leads to a verbose protocol representation. The same message is represented as
follows in our specification language.

send(A, B, encrypt(M1, pkb)) => sometime(receive(B, M1))
receive(B, M1) => K(b, hasValueOf(M1))
(K(b, hasValueOf(M1)) & encrypt(M1, pkb) & decrypt(M1, pkb, m1) & K(b, hasValueOf(skb)))

| K(b, hasValueOf(m1)) <=> next(K(b, hasValueOf(m1)))

This is the core of the message sending, obviously the former representation is much simpler and less error prone.
We are working on a translation tool, which given a protocol in a CAPSL-like language will transform the input into

a temporal epistemic specification. This work is still in preliminary stages with much work still to be done on specifying
and proving a protocol correct in the temporal epistemic logic.

4 Future Direction
Currently the direction of our project is focused on using theorem proving techniques. The logics we are using could be
extended. Incorporating belief into the system would have some obvious advantages in the specification of cryptographic
protocols. We might want to reason about what a principal may believe, a less strict requirement that knowing something to
be true. The aim of the project is to verify that no attacks exists on protocols, if an attack is possible a user friendly diagram
and/or description will be made available. A major part of this research will be tracing the output from the theorem prover
(which is large, confusing and messy) into a form which is intuitive and easier to understand.

References
M. Burrows, M. Abadi, and R. Needham. A Logic of Authentication. ACM TRANSACTIONS ON COMPUTER SYSTEMS,

8:18–36, 1990.

C. Dixon, M. F. Gago, M. Fisher, and W. van der Hoek. Using temporal logics of knowledge in the formal verification
of security protocols. Temporal Representation and Reasoning, International Syposium on, 0:148–151, 2004. ISSN
1530-1311.

A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: A Model Checker for the Verification of Multi-Agent Systems. In
Computer Aided Verification, Lecture Notes in Computer Science, pages 682–688. Springer, 2009.

G. Lowe. Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using FDR. In TACAs ’96: Proceedings of
the Second International Workshop on Tools and Algorithms for Construction and Analysis of Systems, pages 147–166,
London, UK, 1996. Springer-Verlag. ISBN 3-540-61042-1.

G. Lowe. A hierarchy of authentication specifications. Computer Security Foundations Workshop, IEEE, 0:31, 1997. ISSN
1063-6900. doi: http://doi.ieeecomputersociety.org/10.1109/CSFW.1997.596782.

G. Lowe. Casper: A Compiler for the Analysis of Security Protocols. In Journal of Computer Security, pages 53–84.
Society Press, 1998. http://www.comlab.ox.ac.uk/gavin.lowe/Security/Casper/.

J. Millen and G. Denker. CAPSL and MuCAPSL. www.csl.sri.com/˜millen/capsl/papers/jtitpub.ps.

S. J. Murdoch, S. Drimer, R. J. Anderson, and M. Bond. Chip and pin is broken. In IEEE Symposium on Security and
Privacy, pages 433–446, 2010.

R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public key cryptosystems. Commu-
nications of the ACM, pages 120–126, 1978.

35

