
Formalising Responsibility Modelling for
Automatic Analysis

Robbie Simpson and Tim Storer

University of Glasgow

Abstract. Modelling the structure of social-technical systems as a basis
for informing software system design is a difficult compromise. Formal
methods struggle to capture the scale and complexity of the hetero-
geneous organisations that use technical systems. Conversely, informal
approaches lack the rigour needed to inform the software design and
construction process or enable automated analysis.
We revisit the concept of responsibility modelling, which models social
technical systems as a collection of actors who discharge their responsi-
bilities, whilst using and producing resources in the process. Responsibil-
ity modelling is formalised as a structured approach for socio-technical
system requirements specification and modelling, with well-defined se-
mantics and support for automated structure and validity analysis. The
effectiveness of the approach is demonstrated by two case studies of soft-
ware engineering methodologies.

1.1 Introduction

A range of research efforts have highlighted the importance of understanding
the social context that a technical software system is developed for [24]. Baxter
and Sommerville [2] argues that a common cause of failure in software develop-
ment is the focus on the functional requirements for the system at hand, to the
exclusion of an understanding of the wider organisation(s) in which the system
is to be employed. Besnard and Baxter [3] observes that this focus can limit the
ability of users to recover a system when technical components fail. Even when
the importance of the wider organisational context is understood, the methods
available to development teams are inadequate in the face of the scale of modern
systems engineering challenges [10].

As a consequence, a variety of research efforts have been undertaken to de-
velop methods that enable the modelling, analysis and construction of large
scale systems comprised of human, organisational and technical components.
Such systems are often referred to as socio-technical systems [31]. In particular,
responsibilities have been proposed by a variety of research efforts as a suitable
abstraction for capturing the structure of socio-technical systems [4, 8, 9, 11].
Sommerville et al. [29] provided a working definition of a responsibility as:

“A duty, held by some agent, to achieve, maintain or avoid some given
state, subject to conformance with organisational, social and cultural
norms.”



2 Robbie Simpson and Tim Storer

Responsibilities therefore provide a different type of abstraction from other
approaches that have been proposed for modelling socio-technical-systems, such
as goal [18] or activity [1] oriented approaches. Describing a socio-technical sys-
tem in terms of responsibilities is concerned with monitoring and managing some
part of the state of a socio-technical system, rather than the performance of spe-
cific task or activity. Similar to goal-oriented approaches, responsibilities can be
discharged (achieved) in a variety of different ways by a variety of different actors
(whether human, technical, or organisational).

However, responsibilities are distinct from goals, because of the incorporation
of the notion of duty or commitment by the agent to discharge the responsibility.
Goal oriented approaches assume that if an agent has the necessary capabilities
to achieve a goal then it will succeed. However, a responsibility oriented approach
acknowledges the greater complexities of socio-technical systems that may mean
a responsibility is not discharged, even if an actor has the capability to do so. In
this situation, it is possible to model fall back mechanisms, such as consequences
for the agent, or ‘backup’ responsibilities held by other agents.

In addition, Sommerville et al. [27] argues that responsibilities are easier to
elicit from a problem domain through discussion with stakeholders than other
abstractions, such as goals. Stakeholders working within a system may struggle
to explain the goals associated with their work without the description sounding
somewhat artificial: “My goal is to secure the building at night.” Describing the
same work in terms of responsibilities is more intuitive: “I am responsible for
securing the building at night.”

Responsibility modelling has been shown to be effective as a basis for
analysing a variety of socio-technical systems engineering activities, including
analysing organisational roles [9]; risk analysis [22]; capturing security policies
[30]; and requirements engineering [28]. However, much of this work depends on
manual intervention and analysis by the engineer. As a consequence, it is diffi-
cult to use these methods for the construction of proposed systems. They may
also be prove too costly when used for more complex systems involving many
responsibilities.

This paper introduces an extension to the current state of the art in re-
sponsibility modelling. The novel contribution is a formalisation of the graphical
responsibility notation adopted by Lock and Sommerville [21], Sommerville et al.
[29, 28, 27]. The paper demonstrates how a formalisation of the notation as a
language can enhance the automation of analytical techniques and aid in the
construction of socio-technical system designs.

Section 1.2 reviews previous work employing responsibility modelling for
analysing socio-technical systems, as well as other approaches, in greater detail.
Section 1.3 presents our formalisation of the responsibility modelling notation
used in previous research. The notation is formalised as a declarative language
about the responsibilities held in a socio-technical system; the agents that hold
those responsibilities; and the resources required or produced as a result of re-
sponsibility discharge.



1 Formalising Responsibility Modelling for Automatic Analysis 3

Section 1.4 presents and analyses two example responsibility models, based
on standard models of software development team organisation. The example
illustrates how the application of a formal approach to responsibility modelling
can automatically elicit system level vulnerabilities without requiring expert
analysis.

Section 1.5 examines the current tool support for formalised responsibility
modelling. A prototype responsibility modelling software tool is introduced, as
well as several different techniques for automated model analysis.

Finally, Section 1.6 summarises the paper, emphasising difficulties of effec-
tively modelling social-technical systems and highlighting the strengths of for-
malised responsibility modelling as a semi-formal approach that combines flexi-
bility with sufficient rigour for automation.

1.2 Modelling Socio-Technical Systems

Developing modelling techniques for socio-technical systems requires a difficult
trade-off between formal notations that support automated analysis and provide
input for construction techniques such as refinement or static verification; and
notations that enable validation by end-users and other stakeholders of a pro-
posed system. An additional challenge is provide techniques and notations that
are scalable so that a system can be described consistently at several different
levels of granularity, while also managing the complexity and nuances that are
often encountered when modelling socio-technical systems.

Systems modelling techniques such as SysML [16], the Department of De-
fense Architecture Framework (DoDAF) [17] and The Open Group Architecture
Framework (TOGAF) [14] have been developed to support larger scale systems
engineering. SysML is an extension of the Unified Modelling Language (UML)
that is intended for capturing larger scale concerns and support wider systems
engineering efforts that are not addressed by the UML. A particular example is
closer integration of non-functional requirements into design concerns.

Leveson [19], Leveson and Dulac [20] describe an alternative methodology,
STAMP, for analysing interactions between heterogeneous systems components.
In addition to providing a modelling notation based on systems dynamics, the
technique also incorporates a methodology for identifying potential instabilities
in system behaviour that may eventually lead to failure. Leveson illustrates the
technique by re-constructing the causes of the failure of the MilStar Satellite
launch in 1999 [19]. A disadvantage is the need for expert application of the
method to identify weaknesses.

Deontic logic provides a formal basis for reasoning about norms in socio-
technical systems, employing operators such as commitments [23]. Several au-
thors have proposed methods for capturing different aspects of socio-technical
system specification and design based on deontic logic. For example: Garion and
van der Torre [13] proposed a design-by-contract style language for multi-agent
systems based on deontic logic; Padmanabhan et al. [25] proposed the integration
of deontic logic concepts into business process modelling methods and Cholvy



4 Robbie Simpson and Tim Storer

et al. [6] proposed the use of deontic logic as means of formalising concepts of
responsibility. However, we are unaware of work that bridges the gap between
formal expressions of system specifications in a deontic logic and notations that
can be comprehended by non-expert domain stakeholders.

Goal oriented approaches [18], such as KAOS [7] and i* [32] employ a graph-
ical notation to capture the goal seeking behaviours of agents in a system. These
techniques provide a means for decomposing high level system goals into sub-goal
structures to be pursued by actors within a socio-technical system.

Responsibility modelling has been proposed as a means of understanding
a variety of different concerns in socio-technical systems design. Blyth et al. [4]
first proposed the modelling and analysis of responsibilities in the Ordit method-
ology. The aim was to identify and understand organisational requirements for
socio-technical systems. Later, Harper and Newman [15] proposed employing
a structured language approach to defining responsibilities. Although the only
outlined the approach, it shows how responsibility modelling can be useful in
identifying conflicts between different actor-roles in an organisation.

Strens and Dobson [30] first proposed the use of responsibility modelling as a
means of better understanding the appropriate configuration of security policies
in an organisation. Later, Feltus and Petit [12] proposed a formalisation of re-
sponsibility in an organisational context as a means of modelling and reasoning
about organisational policies. Feltus et al. [11] extended this work by developing
a methodology for modelling organisational policies using responsibilities as a
formalism.

In early work in the DIRC1 project, Dobson and Sommerville [9] showed the
use of responsibility models as a means of capturing the different roles under-
taken in a socio-technical system. Sommerville et al. [29] applied the responsibil-
ity modelling techniques developed in the DIRC project to contingency planning
for civil emergencies. The analysis was used to capture the responsibility vul-
nerabilities that caused some of the disruption during the response to a major
civil incident. The paper demonstrated that responsibility modelling could be
applied to an inter-organisational view of a socio-technical system.

Lock and Sommerville [21] also applied responsibility modelling to under-
standing the evolution of larger scale systems and systems. The work showed
that responsibility modelling could be applied to the modelling, analysis and
understanding of risks of collections of systems that are loosely coordinated for
some larger purpose, but remain under autonomous control of independent or-
ganisations.

As noted by Baxter and Sommerville [2], less consideration has been given
to the methods and notations which support the engineering of socio-technical
systems by providing information of use to a systems engineer.

Sommerville et al. [28] began to explore this challenge by using responsibility
models as a means of deriving early stage information systems requirements.
The technique derived requirements based on the likely information needs of
an actor discharging a responsibility. These requirements can then be used to

1 Dependability Interdisciplinary Research Collaboration



1 Formalising Responsibility Modelling for Automatic Analysis 5

support the configuration of information systems based on enterprise resource
planning frameworks, rather than the complete development of new systems.
This approach was illustrated by developing information requirements for an
inter-organisational emergency management system.

In general, previous work on responsibility modelling did not deliver the uni-
fied approach that was hoped for. The graphical representation and underlying
primitives varied between different works; some papers used a large set of enti-
ties, while others paired this down to a common core. Tool support was limited,
and as a result analysis often had to be performed by hand.

1.3 Formalism

1.3.1 Notation

Responsibility modelling uses a simple notation, consisting of responsibilities,
actors and resources as well as the relationships between them. These elements
can either be represented graphically or textually, and tools to convert from one
to the other are under development. Figure 1.1 provides a simple example of the
graphical notation.

Fig. 1.1. Sample responsibility model for a university exam. The exam papers are
produced and consumed; the Sit Exam responsibility is dependent on both the actor
Student and the responsibility Prepare Exam Hall.

Responsibilities Responsibilities are duties that must be discharged by the
system. They are the core of responsibility modelling, with all other artefacts
either discharging these responsibilities; or resources that are produced by or
provide support that enables the responsibility to be discharged. Responsibilities
can be specified at any level of detail from high level abstractions to specific
implementation approaches.



6 Robbie Simpson and Tim Storer

Actors Actors are entities within the system that act to discharge responsibili-
ties. Actors can either be human, technical or organisational. Human actors are
roles within the system (rather than individuals) and technical actors are auto-
mated processes such as software daemons or machinery. The different types of
actors are treated homogeneously in the notation: all actor types can be assigned
to responsibilities, which indicates they have a responsibility to discharge them.

Resources Resources represent objects that are required in order for a respon-
sibility to be discharged, such as documents required to complete a managerial
task or physical equipment required to complete a practical task. Responsibil-
ities cannot be discharged unless the appropriate resources are available, and
resources can either be produced by other responsibilities or can be initialised
as already existing.

1.3.2 Properties & Relations

Assignment Actors are assigned to responsibilities, indicating that the actor
holds a duty to discharge that particular responsibility. In the standard case the
responsibility can be successfully discharged (assuming all other requirements
are met) as long as at least one actor assigned to it is capable, although more
complex behaviour can be modelled using constraints (see Section 1.5).

Decomposition & Delegation Responsibilities can be decomposed into sub-
responsibilities that retain a relationship to their parent. Decomposition allows
for refinement of the model, and allows detailed system models to be produced
and linked back to more abstract designs. When responsibilities are decomposed
in this way they may not be discharged unless all sub-responsibilities have also
been discharged.

Decomposition of responsibilities also introduces a related property, that
of delegation. If an actor is assigned to a high-level responsibility that is de-
composed into sub-responsibilities there is an implied assignment to those sub-
responsibilities as well. However, these sub-responsibilities can also be assigned
to different actors, in which case the responsibility to discharge is delegated.

Supervision When responsibilities are delegated the original actor no longer
plays an active role in discharging those responsibilities. However, they are still
responsible for the high-level responsibility, which cannot be discharged without
also discharging the delegated responsibilities. This creates an implicit relation-
ship of supervision between the actor assigned to the high level goal and the
actors that responsibilities have been delegated to. This enables responsibility
modelling to generate a model of the organisation hierarchy within the model,
despite this not being explicitly specified. In particular, this approach can high-
light when the in-practice hierarchy implied in the system design is different
from the formal managerial structure.



1 Formalising Responsibility Modelling for Automatic Analysis 7

Scope Generally in responsibility modelling the scope of the system is implicit,
relying on those interpreting the model to understand how the system sits in
the wider context. However this approach is subjective, and can easily lead to
ambiguity, especially when refining from a high level model down to an im-
plementation design. Therefore objects on the edge of the system scope can be
explicitly indicated. These objects should not be further refined, and can be con-
sidered to operate as black boxes. They are particularly useful when indicating
the boundary between the system currently modelled and another, interacting
social-technical system.

1.3.3 Applications

Responsibility modelling can be applied at two main levels - requirements analy-
sis and system analysis. When used at the requirements level, responsibility mod-
elling can produce sets of responsibilities, resources and relevant actors based on
business requirements, regulation and legal requirements and technical propos-
als. At the requirements level the model may consist of unrelated fragments that
are not directly linked - for example, there may be a legal requirement for a pilot
to sign-off on a cargo manifest, and a business requirement for cargo contain-
ers to be scanned as they loaded onto the aircraft. These two requirements are
completely separate, but are both in the scope of an aircraft cargo management
system.

At the system analysis level the responsibility model should aim for com-
pleteness. By this stage of development all elements of the system should have
been decided upon, and hence any ambiguity or omissions in the Responsibility
model represent ambiguities and omissions in the system structure itself. Sepa-
rated or unattached sections indicate a lack of integration within the system, or
that certain elements are not related to the core tasks of the system.

1.4 Modelling

This section illustrates the use of responsibility models in formally analysing
the structure of socio-technical systems. For motivating examples, two software
development team models are considered: the surgical team described by Brooks
[5] and the Scrum agile team structure described by Schwaber and Beedle [26].

1.4.1 The Surgical Team

The surgical team is a model for small-scale software development. Figure 1.2
illustrates the surgical team using the responsibility modelling notation described
above.

The model proposes a team structure consisting of ten roles, two of which
are core developers (the surgeon/chief developer and the co-pilot/junior devel-
opment) with the rest comprising a support staff. The surgical team is a not a



8 Robbie Simpson and Tim Storer

Tooling

ToolSupport

Toolsmith

Goal
Setting

Specification
Program
Design

CodingTesting
Documentation

Writing

Surgeon

Copilot

Draft
Documentation

Documentation
Editing

Finalised
Documentation

Editor

Administrator

Test
Cases

Test
Writing

Tester

Program
Clerk

Program

Record
Keeping

Program
Library

Language
Lawyer

Fig. 1.2. Responsibility Model of the surgical team proposed by Brooks [5]
.

software lifecycle model and we do not attempt to model it as such; its focus
is on allocating members of a development team to responsibilities to maximise
productivity and minimise organisational overhead.

Inspecting our model reveals a number of issues with the surgical team con-
cept. The relationship between surgeon and the copilot is not well defined, as
they share responsibility for almost all functions they perform, excepting ad-
ministration. The surgical team proposal does not define the process by which
the surgeon and copilot divide and allocate tasks, which suggests that this is an
additional process that should be implemented when the surgical team is used.

The role of the language lawyer is also shown to be ambiguous. The only
concrete responsibility they are involved in is coding, by optimising routines and
improving the quality of code where possible. While several other roles (such as
acting as an advisor) are suggested they are not formally included.

The record keeping activities of the Program Clerk are shown to be pe-
ripheral to the overall team activities. They are not required to perform the
main responsibilities of the team and their absence does not prevent any of the
core responsibilities from being discharged. We have shown the Program Clerk’s
responsibility to depend on the production of test cases, documentation and
program code, since we assume this responsibility includes curation of these
artefacts. However, this is not made explicit in the description by Brooks [5] .

Responsibility modelling has highlighted the non-explicit and non-core ele-
ments of the system. An absence of assignments or linked responsibilities where
expected highlights the parts of the system that are implicit, revealing sections
that may not operate in practice as the designers of the system intended. It is
also possible to identify non-core actors that are not directly involved with the



1 Formalising Responsibility Modelling for Automatic Analysis 9

key responsibilities, and likewise it is clear which actors are involved with the
core system functions. Additionally, we can identify how the team will function
if lacking certain staff by removing those actors and attempting to meet all the
responsibilities. Undischarged responsibilities will be identified, as well as actors
that will have increased workload.

1.4.2 Scrum

Organising
Product Backlog

Product
Backlog

Sprint
Planning

Sprint
Backlog

Sprint
Done

Increment

Sprint
Review

Done
Increment

Retrospective

Product
Owner

Developer

Scrum
Master

New
Features

Liase With
Stakeholders

Fig. 1.3. Responsibility Model of Scrum.

The Scrum process is an agile development framework for software develop-
ment. Scrum is an iterative approach, where the product is developed in a series
of sprints, and requirements are expressed by a product owner. Additionally,
the Scrum team lacks a hierarchy and does not contain managers or assigned
roles and groupings. Instead all team members take part in all Scrum activities,
which are overseen by a Scrum Master who acts as a facilitator. Our model of
the responsibilities in the Scrum process are illustrated in Figure 1.3.

The figure shows that work is organised around responsibilities for planning,
undertaking and reviewing a sprint. In contrast to the surgical team, the iterative
structure of the responsibilities (and thus the overall process) is evident in the
model.

In addition, the model suggests that Scrum is a more collaborative process
than the Surgical team. Although there are distinct roles for Product Owner
and Scrum Master, these do not hold responsibilities that are analogous to the
Administrator or Surgeon in the Surgical team. Rather, all roles collaborate in
many different responsibilities in different ways. For example, Developers are
responsible in collaboration with the Scrum Master and Product Owner for
Scrum Planning, in which the set of objectives for the next Sprint is decided.
Similarly, all actors collaborate in the conduct of the Retrospective and Sprint
Review, but with distinct sub-responsibilities.



10 Robbie Simpson and Tim Storer

Note that this example demonstrates that actors are roles, not individuals;
in Scrum, it is common for the Scrum Master to also be a Developer. As a result,
extra care (ideally aided by tool support) is necessary when considering the risk
of overload, as one actual individual or organisation may be acting in a number
of different roles.

A responsibility can be decomposed in order to understand how agents col-
laborate to discharge the overall responsibility. Figure 1.4 illustrates how the
Sprint responsibility is decomposed to show the assignment of sub responsibil-
ities. The Developers retain responsibility for undertaking development of new
features or remedy of features, as prioritised during the Daily Scrum. However,
the Scrum Master shares responsibility for coordinating the Daily Scrum. The
exact division of responsibilities within the Daily Scrum may be identified by
further refinement if desired.

Sprint
Backlog

Daily
Scrum

Development
Daily

Objectives

Issues

Done
Increment

Scrum
Master

Developer

Fig. 1.4. Refinement of ’Sprint’ Responsibility.

The figure also illustrates the modelling of heterogeneous human, organisa-
tional and technical components consistently as agents with responsibilities. The
development team is an organisational agent consisting of several (unidentified)
developers. Responsibility for integration testing is delegated to a Continuous
Integration Environment, a software application that is configured to monitor
for changes to the target system’s code base. Problems with the new feature are
reported as Issues that must be resolved before integration is permitted.

The decomposed model is consistent with the overall model presented in
Figure 1.3. Resources that are inputs and outputs to the Sprint responsibil-
ity (Sprint Backlog and Done Increment respectively) are similarly represented
as boundary elements for the decomposed diagram. Similarly, the agents that
hold the overall responsibility for the Sprint (Developer and Scrum Master) are
present in the decomposed diagram. The Continuous Integration environment
does not hold responsibility for conducting the overall Sprint, so only appears
in the sub-diagram in association with its specific responsibilities. Depending on
the modeller’s preference and the target audience, these refinements can either
be presented separately, or used to expand the core responsibility model.



1 Formalising Responsibility Modelling for Automatic Analysis 11

1.4.3 Observations

Many process and structure models (in all types of domains) contain unfor-
malised behaviour that is nonetheless implied or referred to by the formal ele-
ment of the model. This may be an explicit decision to keep parts of the system
out of scope (such as the intra-team behaviour in Scrum) or may reflect un-
certainty over the use of that part in practice (such as the language lawyer of
the surgical team). In some models these unformalised elements are clearly sign-
posted; however, many models do not distinguish them clearly. This opens up
the possibility of inconsistent application of the model and important elements
left undone due to their non-formalised nature. Responsibility modelling can
clearly identify non-formalised or ambiguous formalised elements, allowing clear
discussion of potential issues. Equally, where these variations are not pertinent
to a discussion responsibility modelling provides for convenient abstraction.

Responsibility modelling is especially effective when comparing deployments
or implementations against the theoretical standard. The complexity and varia-
tion of social-technical systems means that many real systems vary significantly
from their conceptual model, but these differences are not regularly formalised.
As a result, analysis is often performed on abstract models of the system that do
not represent real-world usage, leading to analysis that does not capture actual
behaviour and provides a false sense of security.

Responsibility modelling can alleviate this by allowing both high-level and
implementation-level models of the system to be produced using the same
scheme. The well-defined semantics of responsibility modelling will allow sections
of the implementation-level model to be mapped automatically to the relevant
responsibilities in the high-level model, so that the completeness of implemen-
tations can be checked directly against the original specification.

1.5 Prototype Tool Support

A prototype tool for responsibility modelling has been implemented using Eclipse
Sirius, as displayed in Figure 1.5. The tool currently allows the graphical cre-
ation and editing of responsibility models, with all types of objects and relations
supported. Models are created by dragging components from the toolbar, and
once placed in the model they can be rearranged and modified at will. Relations
can be added by selecting the appropriate type and selecting the two objects to
be related. Model elements can also be enabled and disabled, allowing analysts
to examine the effects of individual failures on the wider system. The underlying
representation of models is built using the Eclipse Modelling Framework, which
provides an additional cross-platform XML representation.

Automatic Analysis The existence of a formal structure for responsibility
modelling enables wide ranging analysis to be performed automatically on mod-
els produced with this toolkit, with several analysis techniques implemented and
more planned.



12 Robbie Simpson and Tim Storer

Fig. 1.5. Eclipse-based responsibility modelling tool

Basic analysis can be performed by triggering a model validation, which per-
forms around half a dozen local checks. Entities are checked for their complete-
ness, locating unproduced resources and actors without assignments. In many
cases incomplete elements will indicate that further modelling detail is required,
but they may also indicate fundamental shortcomings in the system being mod-
elled.

Thresholds can be set to determine potentially overloaded actors that hold an
excessive amount of responsibilities, potentially leading to degraded operation.
Actors holding large amounts of responsibilities might become overloaded and
perform poorly if attempting to simultaneously manage different tasks. Likewise,
resources that are consumed by multiple responsibilities highlight potential issues
over resource allocation or exhaustion.

Additionally, for each actor a set of other actors that it relies on is generated
- as actors may hold certain responsibilities, but rely on other actors to ensure
that they are discharged.

Two specialist forms of analysis are also possible, which operate across the
entire model. Criticality analysis detects the most critical entities - the resources,
responsibilities and actors that contribute the most to the system and would
cause the highest number of responsibility failures if they failed to operate.

The second form of model-wide analysis is responsibility discharge detection,
which is augmented with a powerful constraint language. By default, responsi-
bilities are considered to be successfully discharged if all required elements (the
entities to which they are linked by relations) are active. However, sometimes



1 Formalising Responsibility Modelling for Automatic Analysis 13

Fig. 1.6. Analysis in progress, showing reliance, overload and selectively disabled
responsibilities

the discharge criteria for a responsibility are more complicated. A responsibility
may for example be dischargable by either one of two separate actors, or may
rely on the availability of a subset of different resources. In these cases, the more
complex behaviour can be expressed using constraints.

When discharge analysis is performed, initial checks are made on entities
without complex constraints to determine if they can be discharged. After this,
the constraints defined on complex entities are evaluated by a constraint parser,
and responsibilities that fail to discharge are indicated. If combined with the
selective disabling of model elements this technique allows for an effective anal-
ysis of system failure modes. This allows for the examination of fault tolerance
and redundancy within the system, and further automation allows the most se-
rious points of failure to be determined by checking the number of undischarged
responsibilities caused when each object in the system is disabled.

In responsibility modelling actors are intended to be roles or positions, rather
than actual individuals. However, in any actual implemented systems these roles
will clearly be filled by specific actors or organisations. This could lead to vul-
nerabilities not captured by conventional modelling if an actual individual or
organisation takes on the responsibilities of multiple actors. This could lead to
overloading and hence a performance risk, or the same individual may hold ac-



14 Robbie Simpson and Tim Storer

tor roles that conflict or require them to perform multiple tasks simultaneously.
While not currently implemented, we plan to develop tooling that can enable this
to be taken into consideration by providing a model view that allows real-world
entities to be mapped to actors, enabling automatic detection of overloaded en-
tities and a visualisation of potential conflicts of interest.

1.6 Conclusion

Modelling social-technical systems is often a difficult compromise, with infor-
mal methods lacking the rigour needed to enable automatic and semi-automatic
analysis while formal methods can struggle to model the complexity of human
activity within the system.

Responsibility modelling offers many characteristics that make it a suitable
middle ground for modelling social-technical systems, as it combines the flexi-
bility of more informal approaches with a more rigorous structure. In previous
work this rigour has not been fully applied, with responsibility modelling used
more for structured discussion of a system rather than as a complete model.

In this paper, we have shown that responsibility modelling can be formalised
with a fully-defined syntax and consistent semantics. Case studies indicate that it
is possible to model non-trivial social-technical systems with formalised respon-
sibility modelling and that useful analysis of these case studies can be carried
out by analysing the responsibility model without needing expert knowledge of
the problem domain.

Additionally, much of this analysis can be fully automated, or assisted greatly
by the use of software tool support. A prototype tool for responsibility modelling
and analysis has been developed with initial support for modelling construction
and individual analysis, and the well-defined semantics of formalised responsi-
bility modelling allow for a wide range of future tool features, such as automatic
completeness, validity and redundancy checking.

References

[1] Basnyat, S., Chozos, N., Johnson, C., Palanque, P.: Incident and accident
investigation techniques to inform model-based design of safety-critical in-
teractive systems. In: Gilroy, S.W., Harrison, M.D. (eds.) Interactive Sys-
tems, Design, Specification, and Verification, 12th International Workshop
DSVIS 2005, July 2005. Lecture Notes in Computer Science, vol. 3941, pp.
51–66. Springer, Newcastle upon Tyne (2006)

[2] Baxter, G., Sommerville, I.: Learning lessons from the failures of socio-
technical systems design (April 2008), for submission to Interacting with
Computers

[3] Besnard, D., Baxter, G.: Human compensations for undependable systems.
Tech. Rep. CS-TR-819, School of Computing Science, Newcastle University,
Newcastle upon Tyne, UK (November 2003)



1 Formalising Responsibility Modelling for Automatic Analysis 15

[4] Blyth, A.J., Chudge, J., Dobson, J.E., Strens, M.R.: ORDIT: A new
methodology to assist in the process of eliciting and modelling organisa-
tional requirements. In: Kaplan, S. (ed.) Proceedings on the Conference
on Organisational Computing Systems. pp. 216–227. ACM Press, Milpitas,
California, USA (1993)

[5] Brooks, Jr., F.P.: The Mythical Man-Month. Addison Wesley, ninth edn.
(1995)

[6] Cholvy, L., Cuppens, F., Saurel, C.: Towars a logical formalization of re-
sponsibility. In: Proceedings of the 6th international conference on Artificial
intelligence and law. pp. 233–242. ACM Press, Melbourne, Australia (June–
July 1997)

[7] Darimont, R., Delor, E., Massonet, P., van Lamsweerde, A.: GRAIL/KAOS:
an environment for goal-driven requirements engineering. In: Adrion, W.R.
(ed.) ICSE’97: Pulling Together, Proceedings of the 19th International Con-
ference on Software Engineering. pp. 612–613. ACM Press, Boston, Mas-
sachusetts, USA (May 1997)

[8] Dewsbury, G., Dobson, J. (eds.): Responsibility and Dependable Systems.
Springer-Verlag London Ltd (June 2007)

[9] Dobson, J.E., Sommerville, I.: Roles are responsibility relationships really
(October 2005), dIRC Project Technical Report

[10] Feiler, P., Gabriel, R.P., Goodenough, J., Linger, R., Longstaff, T., Kaz-
man, R., Klein, M., Northrop, L., Schmidt, D., Sullivan, K., Wallnau, K.:
Ultra-Large-Scale Systems, The Software Challenge of the Future. Soft-
ware Engineering Institute, Carnegie Mellon University, 4500 Fifth Avenue,
Pittsburgh (June 2006)

[11] Feltus, C., Incoul, C., Aubert, J., Gateau, B., Adelsbach, A., Camy, M.:
Methodology to align business and IT policies: Use case from an IT policy.
In: 2009 International Conference on Availability, Reliability and Security.
IEEE Computer Society, Fukuoka, Japan (March 2009)

[12] Feltus, C., Petit, M.: Building a responsibility model including account-
ability, capability and committment. In: 2009 International Conference on
Availability, Reliability and Security. IEEE Computer Society, Fukuoka,
Japan (March 2009)

[13] Garion, C., van der Torre, L.: Design by contract deontic design language
for multiagent systems. In: Coordination, Organizations, Institutions, and
Norms in Multi-Agent Systems. Lecture Notes in Computer Science, vol.
3913, pp. 170–182. Springer Verlag, Utrecht, The Netherlands (July 2006)

[14] Gerber, A., Kotzé, P., van der Merwe, A.: Towards the formalisation of
the togaf content metamodel using ontologies. In: Filipe, J., Cordeiro, J.
(eds.) ICEIS 2010 - Proceedings of the 12th International Conference on
Enterprise Information Systems. vol. 2, pp. 54–64. SciTechPress, Funchal,
Madeira, Portugal (June 2010)

[15] Harper, R., Newman, W.: Designing for user acceptance using analysis tech-
niques based on responsibility modelling. In: Tauber, M.J. (ed.) CHI 96



16 Robbie Simpson and Tim Storer

Conference Companion on Human factors in computing systems. pp. 217–
218. ACM Press, Vancouver, B.C. (April 1996)

[16] Hause, M.: The sysml modelling language. In: 5th European Systems Engi-
neering Conference. INCOSE, Edinburgh, Scotland, UK (September 2006)

[17] Kobryn, C., Sibbald, C.: Modeling dodaf compliant architectures the telel-
ogic approach for complying with the dod architectural framework. White
paper, Telelogic (October 2004)

[18] Lapouchnian, A.: Goal-oriented requirements engineering: An overview of
the current research. Depth report, Department of Computer Science, Uni-
versity of Toronto (June 2005)

[19] Leveson, N.G.: A systems-theoretic approach to safety in software-intensive
systems. IEEE Transactions on Dependable and Secure Computing 1(1),
66–86 (January 2004)

[20] Leveson, N.G., Dulac, N.: Safety and risk-driven design in complex systems-
of-systems. In: Proceedings of the 1st NASA/AIAA Space Exploration Con-
ference: Continuing the Voyage of Discovery. American Institute of Aero-
nautics and Astronautics, Orlando, Florida, USA (January–February 2005)

[21] Lock, R., Sommerville, I.: Modelling and analysis of socio-technical system
of systems. In: 10th International Conference on Engineering Complex Com-
puter Systems. pp. 224–232. IEEE Computer Society, Oxford, UK. (March
2010)

[22] Lock, R., Storer, T., Sommerville, I.: Responsibility modelling for risk anal-
ysis. In: Proceedings of European SREL (ESREL) 2009. pp. 1103–1109.
Prague, Czech Republic (September 2009)

[23] Meyer, J.J.C., Weiringa, R.J.: Applications of deontic logic in computer
science: A concise overview. In: Meyer, J.J.C., Weiringa, R.J. (eds.) Deontic
Logic in Computer Science: Normative System Specification, pp. 17–45.
John Wiley and Sons Ltd., Chicester, UK. (1993)

[24] Mumford, E.: The story of socio-technical design: reflections on its successe,
failures and potential. Information Systems Journal 16, 317–342 (2006)

[25] Padmanabhan, V., Governatori, G., Sadiq, S., Colomb, R., Rotolo, A.: Pro-
cess modelling: The deontic way. In: Stumptner, M., Hartmann, S., Kiyoki,
Y. (eds.) Proceedings of the 3rd Asia-Pacific conference on Conceptual mod-
elling. Conferences in Research and Practice in Information Technology Se-
ries, vol. 53, pp. 75–84. ACM Press, Hobart, Australia (January 2006)

[26] Schwaber, K., Beedle, M.: Agile Software Development with SCRUM. Pren-
tice Hall (2001)

[27] Sommerville, I., Lock, R., Storer, T.: Information requirements for enter-
prise systems. In: Calinescu, R. (ed.) 17th Monterey Workshop. pp. 266–282.
No. 7539 in Lecture Notes in Computer Science, Springer Verlag (March
2012)

[28] Sommerville, I., Lock, R., Storer, T., Dobson, J.: Deriving information re-
quirements from responsibility models. In: Eck, P.V., Gordijn, J., Wieringa,
R. (eds.) Advanced Information Systems Engineering, 21st International



1 Formalising Responsibility Modelling for Automatic Analysis 17

Conference, CAiSE 2009. Lecture Notes in Computer Science, vol. 5565,
pp. 515–529. Springer Verlag, Amsterdam, Netherlands (June 2009)

[29] Sommerville, I., Storer, T., Lock, R.: Responsibility modelling for civil emer-
gency planning. Risk Management 11(3-4), 179–207 (2009)

[30] Strens, R., Dobson, J.: How responsibility modelling leads to security re-
quirements. In: NSPW ’92-93: Proceedings on the 1992-1993 workshop on
New security paradigms. pp. 143–149. ACM Press, New York, NY, USA
(1993)

[31] Trist, E.: The evolution of socio-technical systems. a conceptual framework
and an action research program. Occasional paper 2, Ontario Quality of
Working Life Centre (June 1981)

[32] Yu, E.S.: Towards modelling and reasoning support for early-phase require-
ments engineering. In: 3rd IEEE International Symposium on Requirements
Engineering (RE’97). pp. 226–235. IEEE Computer Society (1997)


