136 research outputs found

    802.11s QoS Routing for Telemedicine Service

    Get PDF
    The merits of 802.11s as the wireless mesh network standard provide a lowcost and high independent scalability telemedicine infrastructure. However,challenges in degradation of performance as hops increase and the absent of Quality of Service (QoS) provision need to be resolved. The reliability and timely manner are the important factor for successful telemedicine service. This research investigates the use of 802.11s for telemedicine services. A new model of 802.11s based telemedicine infrastructure has been developed for this purpose. A non deterministic polynomial path selection is proposed to provide end-to-end QoS provisioning in 802.11s. A multi-metric called QoS Price metric is proposed as measurement of link quality. The QoS Price is derived from multi layers values that reflect telemedicine traffic requirement and the resource availability of the network. The proposed solution has modified the path management of 802.11s and added resource allocation in distributed scheme.DOI:http://dx.doi.org/10.11591/ijece.v4i2.559

    On the Benefits of a Cooperative Layer-2 based Routing Approach for Hybrid Wireless Mesh Networks

    Full text link
    In a wireless mesh network, the convenience of a routing strategy strongly depends on the mobility of the intermediate nodes that compose the paths. Taking into account this behavior, this paper presents a routing scheme that works differently accordingly to the nodes mobility. In this sense, a proactive routing scheme is restricted to the backbone in order to promote the use of stable routes. On the other hand, the reactive protocol is used to search routes to or from a mobile destination. Both approaches are simultaneously implemented in the mesh nodes so that the routing protocols share routing information that optimize the network performance. Aiming at guaranteeing the IP compatibility, the combination of the two protocols in the core routers is carried out at the Medium Access Control (MAC) layer. Opposite to the operation at IP layer where two routing protocols are not able to concurrently work, the transfer of the routing tasks to the MAC layer enables the use of multiple independent forwarding tables. Simulation results show the goodness of the proposal in terms of packet losses and data delayTriviño, A.; Ariza, A.; Casilari, E.; Cano Escribá, JC. (2013). On the Benefits of a Cooperative Layer-2 based Routing Approach for Hybrid Wireless Mesh Networks. China Communications. 10(8):88-99. doi:10.1109/CC.2013.6633748S889910

    Layer 2 Path Selection Protocol for Wireless Mesh Networks with Smart Antennas

    Get PDF
    In this thesis the possibilities of smart antenna systems in wireless mesh networks are examined. With respect to the individual smart antenna tradeoffs, a routing protocol (Modified HWMP, MHWMP) for IEEE 802.11s mesh networks is presented, that exploits the full range of benefits provided by smart antennas: MHWMP actively switches between the PHY-layer transmission/reception modes (multiplexing, beamforming and diversity) according to the wireless channel conditions. Spatial multiplexing and beamforming are used for unicast data transmissions, while antenna diversity is employed for efficient broadcasts. To adapt to the directional channel environment and to take full benefit of the PHY capabilities, a respective MAC scheme is employed. The presented protocol is tested in extensive simulation and the results are examined.:1 Introduction 2 Wireless Mesh Networks 3 IEEE 802.11s 4 Smart Antenna Concepts 5 State of the Art: Wireless Mesh Networks with Smart Antennas 6 New Concepts 7 System Model 8 Results and Discussion 9 Conclusion and Future Wor

    Towards an Optimized Traffic-Aware Routing in Wireless Mesh Networks

    Get PDF
    International audienceIn this paper we study through simulations the impact of PHY/MAC protocols on higher layers. In a comparative way, we investigate the effectiveness of some protocols when they coexist on a wireless mesh network environment. Results show that PHY/MAC parameters have an important impact on routing performances. Based on these results, we propose two tra c-aware routing metrics based on link availability. The information about the link availability/occupancy is picked up from lower layers using a cross-layer approach. The rst metric is load-sensitive and aims to balance the tra c load according to the availability of a link to support additional ows. The second metric reproduces better the capacity of a link since it is based on its residual bandwidth. Using several real experiments, we have shown that our proposals can accurately determine better paths in terms of throughput and delay. Our experiments are carried out into an heterogeneous IEEE 802.11n based network running with OLSR routing protocol

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Low-Cost UAV Swarm for Real-Time Object Detection Applications

    Get PDF
    With unmanned aerial vehicles (UAVs), also known as drones, becoming readily available and affordable, applications for these devices have grown immensely. One type of application is the use of drones to fly over large areas and detect desired entities. For example, a swarm of drones could detect marine creatures near the surface of the ocean and provide users the location and type of animal found. However, even with the reduction in cost of drone technology, such applications result costly due to the use of custom hardware with built-in advanced capabilities. Therefore, the focus of this thesis is to compile an easily customizable, low-cost drone design with the necessary hardware for autonomous behavior, swarm coordination, and on-board object detection capabilities. Additionally, this thesis outlines the necessary network architecture to handle the interconnection and bandwidth requirements of the drone swarm. The drone on-board system uses a PixHawk 4 flight controller to handle flight mechanics, a Raspberry Pi 4 as a companion computer for general-purpose computing power, and a NVIDIA Jetson Nano Developer Kit to perform object detection in real-time. The implemented network follows the 802.11s standard for multi-hop communications with the HWMP routing protocol. This topology allows drones to forward packets through the network, significantly extending the flight range of the swarm. Our experiments show that the selected hardware and implemented network can provide direct point-to-point communications at a range of up to 1000 feet, with extended range possible through message forwarding. The network also provides sufficient bandwidth for bandwidth intensive data such as live video streams. With an expected flight time of about 17 minutes, the proposed design offers a low-cost drone swarm solution for mid-range aerial surveillance applications

    A Dynamic Application Partitioning and Offloading Framework to Enhance the Capabilities of Transient Clouds Using Mobile Agents

    Get PDF
    Mobile cloud computing has emerged as a prominent area of research, a natural extension of cloud computing that proposes to offer solutions for enhancing the capabilities of smart mobile devices commonly plagued by resource constraints. As one of its promising models, transient clouds aim to address the internet connectivity shortfall inherent in most solutions through the formation of ad hoc networks by devices in close proximity, then the offloading some computations (Cyber Foraging) to the created cloud. However, transient clouds, at their current state, have several limitations, concerning their expansion on a local network having a large number of devices and the management of the instability of the network due to the constant mobility of the devices. Another issue is the fact code partitioning and offloading are not addressed to fit the need of such networks, thereby rendering the distributed computing mechanism barely efficient for the Transient Cloud. In this study, we propose a transient cloud-based framework that exploits the use of multi-agent systems, enabling a dynamic partitioning and offloading of code, and facilitating the movement and the execution of code partition packets in a multi-hop ad-hoc mesh network. When created and deployed, these intelligent mobile agents operate independently or collaboratively and adapt to the continual entry and exit of devices in the neighbourhood. The integration of these trending concepts in distributed computing within a framework offers a new architecture for resource-sharing among cooperating devices that addresses the varied issues that arise in dynamic environments
    corecore