15,839 research outputs found

    CIRSS vertical data integration, San Bernardino study

    Get PDF
    The creation and use of a vertically integrated data base, including LANDSAT data, for local planning purposes in a portion of San Bernardino County, California are described. The project illustrates that a vertically integrated approach can benefit local users, can be used to identify and rectify discrepancies in various data sources, and that the LANDSAT component can be effectively used to identify change, perform initial capability/suitability modeling, update existing data, and refine existing data in a geographic information system. Local analyses were developed which produced data of value to planners in the San Bernardino County Planning Department and the San Bernardino National Forest staff

    Western Mediterranean climate and environment since Marine Isotope Stage 3: a 50,000-year record from Lake Banyoles, Spain

    Get PDF
    We present new stable isotope (δ¹⁸Ocalcite and δ¹³ Ccalcite) and diatom data from a 67-m sediment core (BAN II) from Lake Banyoles, northeastern Spain. We reassessed the chronology of the sequence by correlating stable isotope data with a shorter U-series-dated record from the lake, confirming a sedimentological offset between the two cores and demonstrating that BAN II spans Marine Isotope Stages (MIS) 3–1. Through comparison with previous records, the multi-proxy data are used to improve understanding of palaeolimnological dynamics and, by inference, western Mediterranean climate and environmental change during the past ca. 50,000 years. Three main zones, defined by isotope and diatom data, correspond to the MIS. The basal zone (MIS 3) is characterised by fluctuating δ¹⁸Ocalcite and benthic diatom abundance, indicating a high degree of environmental and climate variability, concomitant with large lake-level changes. During the full glacial (MIS 2), relatively constant δ¹⁸Ocalcite and a poorly preserved planktonic-dominated diatom assemblage suggest stability, and intermittently, unusually high lake level. In MIS 1, δ¹⁸Ocalcite and δ¹³Ccalcite initially transition to lower values, recording a pattern of Late Glacial to Holocene change that is similar to other Mediterranean records. This study suggests that Lake Banyoles responds limnologically to changes in the North Atlantic ocean–atmosphere system and provides an important dataset from the Iberian Peninsula, a region in need of longer-term records that can be used to correlate between marine and terrestrial archives, and between the western and eastern Mediterranean

    Marine tephrochronology: a personal perspective

    Get PDF
    This special volume on marine tephrochronology is remarkable, and timely, because it marks a concerted step towards what might be informally termed ‘phase 3’ of a revolution in Quaternary geosciences that began around 40 years ago. The 10 articles collectively represent a re-focussed examination of tephras and cryptotephras preserved in ocean sediments at various locations and the authors describe their significance for a range of subdisciplines. Eight articles provide a new understanding of the origin, distribution and ages of various tephra and cryptotephra deposits and their stratigraphic inter-relationships; how the terrestrial ages of the tephra/crypotephra deposits relate to those of enclosing sediments and inform the ongoing development of the marine radiocarbon time-scale; mechanisms for the emplacement, remobilization or bioturbation of the tephras or cryptotephras; and volcanic eruption history. Two further articles document the characterization of tephra-derived glass shards using microbeam techniques to analyse 30–40 elements from individual shards as small as 10 µm in diameter. The collection thus provides snapshots of many aspects of the latest developments and directions in tephra studies – volcanology, primary and secondary dispersal, stratigraphy, single-grain characterization, chronology – through the medium of marine sediments. My personal perspective reflects briefly on how this point was reached and identifies a few of the important milestones on the way from ‘phase 1’ to ‘phase 3’. I am privileged to write it. Marine science revolution As an undergraduate in the early-mid 1970s, I recall my first real ‘awakening’ regarding the dynamic nature of science, and of Quaternary geoscience in particular, when told about deep-sea core V28-238 from the equatorial Pacific Ocean (Shackleton & Opdyke 1973; >2650 citations, Google Scholar). Analogous to the opening notes of Beethoven's 5th Symphony, perhaps the most famous quartet of notes in history, the alpha-numerical assemblage ‘V28-

    Revised calendar date for the Taupo eruption derived by š⁴C wiggle-matching using a New Zealand kauri š⁴C calibration data set

    Get PDF
    Taupo volcano in central North Island, New Zealand, is the most frequently active and productive rhyolite volcano on Earth. Its latest explosive activity about 1800 years ago generated the spectacular Taupo eruption, the most violent eruption known in the world in the last 5000 years. We present here a new accurate and precise eruption date of AD 232 ± 5 (1718 ± 5 cal. BP) for the Taupo event. This date was derived by wiggle-matching 25 high-precision ¹⁴C dates from decadal samples of Phyllocladus trichomanoides from the Pureora buried forest near Lake Taupo against the high-precision, first-millennium AD subfossil Agathis australis (kauri) calibration data set constructed by the Waikato Radiocarbon Laboratory. It shows that postulated dates for the eruption estimated previously from Greenland ice-core records (AD 181 ± 2) and putative historical records of unusual atmospheric phenomena in ancient Rome and China (c. AD 186) are both untenable. However, although their conclusion of a zero north–south ¹⁴C offset is erroneous, and their data exhibit a laboratory bias of about 38 years (too young), Sparks et al. (Sparks RJ, Melhuish WH, McKee JWA, Ogden J, Palmer JG and Molloy BPJ (1995) ¹⁴C calibration in the Southern Hemisphere and the date of the last Taupo eruption: Evidence from tree-ring sequences. Radiocarbon 37: 155–163) correctly utilized the Northern Hemisphere calibration curve of Stuiver and Becker (Stuiver M and Becker B (1993) High-precision decadal calibration of the radiocarbon timescale, AD 1950–6000 BC. Radiocarbon 35: 35–65) to obtain an accurate wiggle-match date for the eruption identical to ours but less precise (AD 232 ± 15). Our results demonstrate that high-agreement levels, indicated by either agreement indices or χ² data, obtained from a ¹⁴C wiggle-match do not necessarily mean that age models are accurate. We also show that laboratory bias, if suspected, can be mitigated by applying the reservoir offset function with an appropriate error value (e.g. 0 ± 40 years). Ages for eruptives such as Taupo tephra that are based upon individual ¹⁴C dates should be considered as approximate only, and confined ideally to short-lived material (e.g. seeds, leaves, small branches or the outer rings of larger trees)

    Reconstructions of deltaic environments from Holocene palynological records in the Volga delta, northern Caspian Sea

    Get PDF
    This article was made available through open access by the Brunel Open Access Publishing Fund.New palynological and ostracod data are presented from the Holocene Volga delta, obtained from short cores and surface samples collected in the Damchik region, near Astrakhan, Russian Federation in the northern Caspian Sea. Four phases of delta deposition are recognized and constrained by accelerated mass spectrometry (AMS) radiocarbon ages. Palynological records show that erosive channels, dunes (Baer hills) and inter-dune lakes were present during the period 11,500–8900 cal. BP at the time of the Mangyshlak Caspian lowstand. The period 8900–3770 cal. BP was characterized regionally by extensive steppe vegetation, with forest present at times with warmer, more humid climates, and with halophytic and xerophytic vegetation present at times of drought. The period 3770–2080 cal. BP was a time of active delta deposition, with forest or woodland close to the delta, indicating relatively warm and humid climates and variable Caspian Sea levels. From 2080 cal. BP to the present-day, aquatic pollen is frequent in highstand intervals and herbaceous pollen and fungal hyphae frequent in lowstand intervals. Soils and incised valley sediments are associated with the regional Derbent regression and may be time-equivalent with the ‘Medieval Warm Period’. Fungal spores are an indicator of erosional or aeolian processes, whereas fungal hyphae are associated with soil formation. Freshwater algae, ostracods and dinocysts indicate mainly freshwater conditions during the Holocene with minor brackish influences. Dinocysts present include Spiniferites cruciformis, Caspidinium rugosum, Impagidinium caspienense and Pterocysta cruciformis, the latter a new record for the Caspian Sea. The Holocene Volga delta is a partial analogue for the much larger oil and gas bearing Mio-Pliocene palaeo-Volga delta.Funding for the data collection and field work was provided from the following sources: 1 – IGCP-UNESCO 2003–2008 (Project 481 CASPAGE, Dating Caspian Sea Level Change); 2 – NWO, Netherlands Science Foundation and RFFI, Russian Science Foundation 2005–2008 (Programme: ‘VHR Seismic Stratigraphy and Paleoecology of the Holocene Volga Delta’); and 3 – BP Exploration (Caspian Sea) Sea Ltd. (Azeri-Chirag-Gunashli) 2005–2008 (‘Unravelling the Small-Scale Stratigraphy and Sediment Dynamics of the Modern Volga Delta Using VHR Marine Geophysics’). The palynological work was funded jointly by BP Exploration (Caspian Sea) Ltd., Delft University of Technology and KrA Stratigraphic Ltd. Ostracod analyses were funded by StrataData Ltd. and funding for two additional radiocarbon dates provided by Deltares

    Late Holocene climate and environmental changes in Kamchatka inferred from subfossil chironomid record.

    Get PDF
    This study presents a reconstruction of the Late Holocene climate in Kamchatka based on chironomid remains from a 332 cm long composite sediment core recovered from Dvuyurtochnoe Lake (Two-Yurts Lake, TYL) in central Kamchatka. The oldest recovered sediments date to about 4500 cal years BP. Chironomid head capsules from TYL reflect a rich and diverse fauna. An unknown morphotype of Tanytarsini, Tanytarsus type klein, was found in the lake sediments. Our analysis reveals four chironomid assemblage zones reflecting four different climatic periods in the Late Holocene. Between 4500 and 4000 cal years BP, the chironomid composition indicates a high lake level, well-oxygenated lake water conditions and close to modern temperatures (w13 �C). From 4000 to 1000 cal years BP, two consecutive warm intervals were recorded, with the highest reconstructed temperature reaching 16.8 �C between 3700 and 2800 cal years BP. Cooling trend, started around 1100 cal years BP led to low temperatures during the last stage of the Holocene. Comparison with other regional studies has shown that termination of cooling at the beginning of late Holocene is relatively synchronous in central Kamchatka, South Kurile, Bering and Japanese Islands and take place around 3700 cal years BP. From ca 3700 cal years BP to the last millennium, a newly strengthened climate continentality accompanied by general warming trend with minor cool excursions led to apparent spatial heterogeneity of climatic patterns in the region. Some timing differences in climatic changes reconstructed from chironomid record of TYL sediments and late Holocene events reconstructed from other sites and other proxies might be linked to differences in local forcing mechanisms or caused by the different degree of dating precision, the different temporal resolution, and the different sensitive responses of climate proxies to the climate variations. Further high-resolution stratigraphic studies in this region are needed to understand the spatially complex pattern of climate change in Holocene in Kamchatka and the surrounding region.

    Palaeolimnological evidence for an east-west climate see-saw in the Mediterranean since AD 900

    Get PDF
    During the period of instrumental records, the North Atlantic Oscillation (NAO) has strongly influenced inter-annual precipitation variations in the western Mediterranean, while some eastern parts of the basin have shown an anti-phase relationship in precipitation and atmospheric pressure. Here we explore how the NAO and other atmospheric circulation modes operated over the longer timescales of the Medieval Climate Anomaly (MCA) and Little Ice Age (LIA). High-resolution palaeolimnological evidence from opposite ends of the Mediterranean basin, supplemented by other palaeoclimate data, is used to track shifts in regional hydro-climatic conditions. Multiple geochemical, sedimentological, isotopic and palaeoecological proxies from Estanya and MontcortÊs lakes in northeast Spain and Nar lake in central Turkey have been cross-correlated at decadal time intervals since AD 900. These dryland lakes capture sensitively changes in precipitation/evaporation (P/E) balance by adjustments in water level and salinity, and are especially valuable for reconstructing variability over decadal-centennial timescales. Iberian lakes show lower water levels and higher salinities during the 11th to 13th centuries synchronous with the MCA and generally more humid conditions during the 'LIA' (15th-19th centuries). This pattern is also clearly evident in tree-ring records from Morocco and from marine cores in the western Mediterranean Sea. In the eastern Mediterranean, palaeoclimatic records from Turkey, Greece and the Levant show generally drier hydro-climatic conditions during the LIA and a wetter phase during the MCA. This implies that a bipolar climate see-saw has operated in the Mediterranean for the last 1100. years. However, while western Mediterranean aridity appears consistent with persistent positive NAO state during the MCA, the pattern is less clear in the eastern Mediterranean. Here the strongest evidence for higher winter season precipitation during the MCA comes from central Turkey in the northeastern sector of the Mediterranean basin. This in turn implies that the LIA/MCA hydro-climatic pattern in the Mediterranean was determined by a combination of different climate modes along with major physical geographical controls, and not by NAO forcing alone, or that the character of the NAO and its teleconnections have been non-stationary. Š 2011 Elsevier B.V

    Deglaciation of Fennoscandia

    Get PDF
    To provide a new reconstruction of the deglaciation of the Fennoscandian Ice Sheet, in the form of calendar-year time-slices, which are particularly useful for ice sheet modelling, we have compiled and synthesized published geomorphological data for eskers, ice-marginal formations, lineations, marginal meltwater channels, striae, ice-dammed lakes, and geochronological data from radiocarbon, varve, optically-stimulated luminescence, and cosmogenic nuclide dating. This 25 is summarized as a deglaciation map of the Fennoscandian Ice Sheet with isochrons marking every 1000 years between 22 and 13 cal kyr BP and every hundred years between 11.6 and final ice decay after 9.7 cal kyr BP. Deglaciation patterns vary across the Fennoscandian Ice Sheet domain, reflecting differences in climatic and geomorphic settings as well as ice sheet basal thermal conditions and terrestrial versus marine margins. For example, the ice sheet margin in the high-precipitation coastal setting of the western sector responded sensitively to climatic variations leaving a detailed record of prominent moraines and ice-marginal deposits in many fjords and coastal valleys. Retreat rates across the southern sector differed between slow retreat of the terrestrial margin in western and southern Sweden and rapid retreat of the calving ice margin in the Baltic Basin. Our reconstruction is consistent with much of the published research. However, the synthesis of a large amount of existing and new data support refined reconstructions in some areas. For example, we locate the LGM extent of the ice sheet in northwestern Russia further east than previously suggested and conclude that it occurred at a later time than the rest of the ice sheet, at around 17-15 cal kyr BP, and propose a slightly different chronology of moraine formation over southern Sweden based on improved correlations of moraine segments using new LiDAR data and tying the timing of moraine formation to Greenland ice core cold stages. Retreat rates vary by as much as an order of magnitude in different sectors of the ice sheet, with the lowest rates on the high-elevation and maritime Norwegian margin. Retreat rates compared to the climatic information provided by the Greenland ice core record show a general correspondence between retreat rate and climatic forcing, although a close match between retreat rate and climate is unlikely because of other controls, such as topography and marine versus terrestrial margins. Overall, the time slice reconstructions of Fennoscandian Ice Sheet deglaciation from 22 to 9.7 cal kyr BP provide an important dataset for understanding the contexts that underpin spatial and temporal patterns in retreat of the Fennoscandian Ice Sheet, and are an important resource for testing and refining ice sheet models

    Migration of the Antarctic Polar Front through the mid-Pleistocene transition: evidence and climatic implications

    No full text
    The Antarctic Polar Front is an important biogeochemical divider in the Southern Ocean. Laminated diatom mat deposits record episodes of massive flux of the diatom Thalassiothrix antarctica beneath the Antarctic Polar Front and provide a marker for tracking the migration of the Front through time. Ocean Drilling Program Sites 1091, 1093 and 1094 are the only deep piston cored record hitherto sampled from the sediments of the circumpolar biogenic opal belt. Mapping of diatom mat deposits between these sites indicates a glacial-interglacial front migration of up to 6 degrees of latitude in the early / mid Pleistocene. The mid Pleistocene transition marks a stepwise minimum 7 degree northward migration of the locus of the Polar Front sustained for about 450 kyr until an abrupt southward return to a locus similar to its modern position and further south than any mid-Pleistocene locus. This interval from a “900 ka event” that saw major cooling of the oceans and a ?13C minimum through to the 424 ka Mid-Brunhes Event at Termination V is also seemingly characterised by 1) sustained decreased carbonate in the subtropical south Atlantic, 2) reduced strength of Antarctic deep meridional circulation, 3) lower interglacial temperatures and lower interglacial atmospheric CO2 levels (by some 30 per mil) than those of the last 400 kyr, evidencing less complete deglaciation. This evidence is consistent with a prolonged period lasting 450 kyr of only partial ventilation of the deep ocean during interglacials and suggests that the mechanisms highlighted by recent hypotheses linking mid-latitude atmospheric conditions to the extent of deep ocean ventilation and carbon sequestration over glacial-interglacial cycles are likely in operation during the longer time scale characteristic of the Mid-Pleistocene Transition. The cooling that initiated the “900 ka event” may have been driven by minima in insolation amplitude related to eccentricity modulation of precession that also affected low latitude climates as marked by threshold changes in the African monsoon system. The major thresholds in earth system behaviour through the Mid-Pleistocene Transition were likely governed by an interplay of the 100 kyr and 400 kyr eccentricity modulation of precession
    • …
    corecore