1,331 research outputs found

    Rehabilitative devices for a top-down approach

    Get PDF
    In recent years, neurorehabilitation has moved from a "bottom-up" to a "top down" approach. This change has also involved the technological devices developed for motor and cognitive rehabilitation. It implies that during a task or during therapeutic exercises, new "top-down" approaches are being used to stimulate the brain in a more direct way to elicit plasticity-mediated motor re-learning. This is opposed to "Bottom up" approaches, which act at the physical level and attempt to bring about changes at the level of the central neural system. Areas covered: In the present unsystematic review, we present the most promising innovative technological devices that can effectively support rehabilitation based on a top-down approach, according to the most recent neuroscientific and neurocognitive findings. In particular, we explore if and how the use of new technological devices comprising serious exergames, virtual reality, robots, brain computer interfaces, rhythmic music and biofeedback devices might provide a top-down based approach. Expert commentary: Motor and cognitive systems are strongly harnessed in humans and thus cannot be separated in neurorehabilitation. Recently developed technologies in motor-cognitive rehabilitation might have a greater positive effect than conventional therapies

    Acting and being aware

    Get PDF
    One often assumes that we, rational human beings, first think and than act. This paper is an attempt to describe the mental characteristics governing the performance of regular everyday actions; and shows that no mental act has to precede our actions, instead of consciously thinking before we act, we mostly act while simultaneously overseeing our acting. The case of ball juggling is used to underpin the analysis with practical facts

    Executive attention, task selection and attention-based learning in a neurally controlled simulated robot

    Get PDF
    We describe the design and implementation of an integrated neural architecture, modelled on human executive attention, which is used to control both automatic (reactive) and willed action selection in a simulated robot. The model, based upon Norman and Shallice's supervisory attention system, incorporates important features of human attentional control: selection of an intended task over a more salient automatic task; priming of future tasks that are anticipated; and appropriate levels of persistence of focus of attention. Recognising that attention-based learning, mediated by the limbic system, and the hippocampus in particular, plays an important role in adaptive learning, we extend the Norman and Shallice model, introducing an intrinsic, attention-based learning mechanism that enhances the automaticity of willed actions and reduces future need for attentional effort. These enhanced features support a new level of attentional autonomy in the operation of the simulated robot. Some properties of the model are explored using lesion studies, leading to the identification of a correspondence between the behavioural pathologies of the simulated robot and those seen in human patients suffering dysfunction of executive attention. We discuss briefly the question of how executive attention may have arisen due to selective pressure

    Cognitive control: componential or emergent?

    Get PDF
    The past twenty-five years have witnessed an increasing awareness of the importance of cognitive control in the regulation of complex behavior. It now sits alongside attention, memory, language and thinking as a distinct domain within cognitive psychology. At the same time it permeates each of these sibling domains. This paper reviews recent work on cognitive control in an attempt to provide a context for the fundamental question addressed within this Topic: is cognitive control to be understood as resulting from the interaction of multiple distinct control processes or are the phenomena of cognitive control emergent

    Development of neural mechanisms of conflict and error processing during childhood: implications for self-regulation.

    Get PDF
    Regulation of thoughts and behavior requires attention, particularly when there is conflict between alternative responses or when errors are to be prevented or corrected. Conflict monitoring and error processing are functions of the executive attention network, a neurocognitive system that greatly matures during childhood. In this study, we examined the development of brain mechanisms underlying conflict and error processing with event-related potentials (ERPs), and explored the relationship between brain function and individual differences in the ability to self-regulate behavior. Three groups of children aged 4–6, 7–9, and 10–13 years, and a group of adults performed a child-friendly version of the flanker task while ERPs were registered. Marked developmental changes were observed in both conflict processing and brain reactions to errors. After controlling by age, higher self-regulation skills are associated with smaller amplitude of the conflict effect but greater amplitude of the error-related negativity. Additionally, we found that electrophysiological measures of conflict and error monitoring predict individual differences in impulsivity and the capacity to delay gratification. These findings inform of brain mechanisms underlying the development of cognitive control and self-regulation.Research presented in this article was supported by a grant from the Spanish Ministry of Science and Innovation (ref. PSI2011.27746) to M. Rosario Rueda and a pre-doctoral FPU fellowship from the Spanish Ministry of Science and Innovation awarded to the fist author. The research presented in this paper was part of the doctoral dissertation of the first author
    corecore