1,994 research outputs found

    Multiple instance fuzzy inference.

    Get PDF
    A novel fuzzy learning framework that employs fuzzy inference to solve the problem of multiple instance learning (MIL) is presented. The framework introduces a new class of fuzzy inference systems called Multiple Instance Fuzzy Inference Systems (MI-FIS). Fuzzy inference is a powerful modeling framework that can handle computing with knowledge uncertainty and measurement imprecision effectively. Fuzzy Inference performs a non-linear mapping from an input space to an output space by deriving conclusions from a set of fuzzy if-then rules and known facts. Rules can be identified from expert knowledge, or learned from data. In multiple instance problems, the training data is ambiguously labeled. Instances are grouped into bags, labels of bags are known but not those of individual instances. MIL deals with learning a classifier at the bag level. Over the years, many solutions to this problem have been proposed. However, no MIL formulation employing fuzzy inference exists in the literature. In this dissertation, we introduce multiple instance fuzzy logic that enables fuzzy reasoning with bags of instances. Accordingly, different multiple instance fuzzy inference styles are proposed. The Multiple Instance Mamdani style fuzzy inference (MI-Mamdani) extends the standard Mamdani style inference to compute with multiple instances. The Multiple Instance Sugeno style fuzzy inference (MI-Sugeno) is an extension of the standard Sugeno style inference to handle reasoning with multiple instances. In addition to the MI-FIS inference styles, one of the main contributions of this work is an adaptive neuro-fuzzy architecture designed to handle bags of instances as input and capable of learning from ambiguously labeled data. The proposed architecture, called Multiple Instance-ANFIS (MI-ANFIS), extends the standard Adaptive Neuro Fuzzy Inference System (ANFIS). We also propose different methods to identify and learn fuzzy if-then rules in the context of MIL. In particular, a novel learning algorithm for MI-ANFIS is derived. The learning is achieved by using the backpropagation algorithm to identify the premise parameters and consequent parameters of the network. The proposed framework is tested and validated using synthetic and benchmark datasets suitable for MIL problems. Additionally, we apply the proposed Multiple Instance Inference to the problem of region-based image categorization as well as to fuse the output of multiple discrimination algorithms for the purpose of landmine detection using Ground Penetrating Radar

    A Fuzzy-Logic Approach to Dynamic Bayesian Severity Level Classification of Driver Distraction Using Image Recognition

    Get PDF
    open access articleDetecting and classifying driver distractions is crucial in the prevention of road accidents. These distractions impact both driver behavior and vehicle dynamics. Knowing the degree of driver distraction can aid in accident prevention techniques, including transitioning of control to a level 4 semi- autonomous vehicle, when a high distraction severity level is reached. Thus, enhancement of Advanced Driving Assistance Systems (ADAS) is a critical component in the safety of vehicle drivers and other road users. In this paper, a new methodology is introduced, using an expert knowledge rule system to predict the severity of distraction in a contiguous set of video frames using the Naturalistic Driving American University of Cairo (AUC) Distraction Dataset. A multi-class distraction system comprises the face orientation, drivers’ activities, hands and previous driver distraction, a severity classification model is developed as a discrete dynamic Bayesian (DDB). Furthermore, a Mamdani-based fuzzy system was implemented to detect multi- class of distractions into a severity level of safe, careless or dangerous driving. Thus, if a high level of severity is reached the semi-autonomous vehicle will take control. The result further shows that some instances of driver’s distraction may quickly transition from a careless to dangerous driving in a multi-class distraction context

    Fuzzy Adaptive Tuning of a Particle Swarm Optimization Algorithm for Variable-Strength Combinatorial Test Suite Generation

    Full text link
    Combinatorial interaction testing is an important software testing technique that has seen lots of recent interest. It can reduce the number of test cases needed by considering interactions between combinations of input parameters. Empirical evidence shows that it effectively detects faults, in particular, for highly configurable software systems. In real-world software testing, the input variables may vary in how strongly they interact, variable strength combinatorial interaction testing (VS-CIT) can exploit this for higher effectiveness. The generation of variable strength test suites is a non-deterministic polynomial-time (NP) hard computational problem \cite{BestounKamalFuzzy2017}. Research has shown that stochastic population-based algorithms such as particle swarm optimization (PSO) can be efficient compared to alternatives for VS-CIT problems. Nevertheless, they require detailed control for the exploitation and exploration trade-off to avoid premature convergence (i.e. being trapped in local optima) as well as to enhance the solution diversity. Here, we present a new variant of PSO based on Mamdani fuzzy inference system \cite{Camastra2015,TSAKIRIDIS2017257,KHOSRAVANIAN2016280}, to permit adaptive selection of its global and local search operations. We detail the design of this combined algorithm and evaluate it through experiments on multiple synthetic and benchmark problems. We conclude that fuzzy adaptive selection of global and local search operations is, at least, feasible as it performs only second-best to a discrete variant of PSO, called DPSO. Concerning obtaining the best mean test suite size, the fuzzy adaptation even outperforms DPSO occasionally. We discuss the reasons behind this performance and outline relevant areas of future work.Comment: 21 page

    Development of accident prediction model by using artificial neural network (ANN)

    Get PDF
    Statistical or crash prediction model have frequently been used in highway safety studies. They can be used in identify major contributing factors or establish relationship between crashes and explanatory accident variables. The measurements to prevent accident are from the speed reduction, widening the roads, speed enforcement, or construct the road divider, or other else. Therefore, the purpose of this study is to develop an accident prediction model at federal road FT 050 Batu Pahat to Kluang. The study process involves the identification of accident blackspot locations, establishment of general patterns of accident, analysis of the factors involved, site studies, and development of accident prediction model using Artificial Neural Network (ANN) applied software which named NeuroShell2. The significant of the variables that are selected from these accident factors are checked to ensure the developed model can give a good prediction results. The performance of neural network is evaluated by using the Mean Absolute Percentage Error (MAPE). The study result showed that the best neural network for accident prediction model at federal road FT 050 is 4-10-1 with 0.1 learning rate and 0.2 momentum rate. This network model contains the lowest value of MAPE and highest value of linear correlation, r which is 0.8986. This study has established the accident point weightage as the rank of the blackspot section by kilometer along the FT 050 road (km 1 – km 103). Several main accident factors also have been determined along this road, and after all the data gained, it has successfully analyzed by using artificial neural network

    Pembangunan dan penilaian modul berbantukan komputer bagi subjek pemasaran : Politeknik Port Dickson

    Get PDF
    Kajian ini bertujuan membangunkan Modul Berbantukan Komputer (MBK) bagi subjek Pemasaran. MBK ini dibangunkan dengan menggunakan pensian AutoPlay Media dan Flash MX. Sampel kajian ini terdiri daripada 30 orang pelajar Diploma Pemasaran di Politeknik Port Dickson. Data dikumpulkan melalui kaedah soal selidik dan dianalisis berdasarkan kekerpan, peratusan dan skor min dengan menggunakan perisian Statistical Package For Social Sciene (SPSS) versi 11.0. Dapatan kajian menunjukkan penilaian terhadap pembagunan MBK di dalam proses P&P adalah tinggi. Ini bermakna MBK ini sesuai digunakan di Politeknik Port Dickson di dalam proses P&P

    Automated software quality visualisation using fuzzy logic techniques

    Get PDF
    In the past decade there has been a concerted effort by the software industry to improve the quality of its products. This has led to the inception of various techniques with which to control and measure the process involved in software development. Methods like the Capability Maturity Model have introduced processes and strategies that require measurement in the form of software metrics. With the ever increasing number of software metrics being introduced by capability based processes, software development organisations are finding it more difficult to understand and interpret metric scores. This is particularly problematic for senior management and project managers where analysis of the actual data is not feasible. This paper proposes a method with which to visually represent metric scores so that managers can easily see how their organisation is performing relative to quality goals set for each type of metric. Acting primarily as a proof of concept and prototype, we suggest ways in which real customer needs can be translated into a feasible technical solution. The solution itself visualises metric scores in the form of a tree structure and utilises Fuzzy Logic techniques, XGMML, Web Services and the .NET Framework. Future work is proposed to extend the system from the prototype stage and to overcome a problem with the masking of poor scores

    Applying the structural equation model rule-based fuzzy system with genetic algorithm for trading in currency market

    Get PDF
    The present study uses the structural equation model (SEM) to analyze the correlations between various economic indices pertaining to latent variables, such as the New Taiwan Dollar (NTD) value, the United States Dollar (USD) value, and USD index. In addition, a risk factor of volatility of currency returns is considered to develop a risk-controllable fuzzy inference system. The rational and linguistic knowledge-based fuzzy rules are established based on the SEM model and then optimized using the genetic algorithm. The empirical results reveal that the fuzzy logic trading system using the SEM indeed outperforms the buy-and-hold strategy. Moreover, when considering the risk factor of currency volatility, the performance appears significantly better. Remarkably, the trading strategy is apparently affected when the USD value or the volatility of currency returns shifts into either a higher or lower state.Knowledge-based Systems, Fuzzy Sets, Structural Equation Model (SEM), Genetic Algorithm (GA), Currency Volatility

    Interoperable services based on activity monitoring in ambient assisted living environments

    Get PDF
    Ambient Assisted Living (AAL) is considered as the main technological solution that will enable the aged and people in recovery to maintain their independence and a consequent high quality of life for a longer period of time than would otherwise be the case. This goal is achieved by monitoring human’s activities and deploying the appropriate collection of services to set environmental features and satisfy user preferences in a given context. However, both human monitoring and services deployment are particularly hard to accomplish due to the uncertainty and ambiguity characterising human actions, and heterogeneity of hardware devices composed in an AAL system. This research addresses both the aforementioned challenges by introducing 1) an innovative system, based on Self Organising Feature Map (SOFM), for automatically classifying the resting location of a moving object in an indoor environment and 2) a strategy able to generate context-aware based Fuzzy Markup Language (FML) services in order to maximize the users’ comfort and hardware interoperability level. The overall system runs on a distributed embedded platform with a specialised ceiling- mounted video sensor for intelligent activity monitoring. The system has the ability to learn resting locations, to measure overall activity levels, to detect specific events such as potential falls and to deploy the right sequence of fuzzy services modelled through FML for supporting people in that particular context. Experimental results show less than 20% classification error in monitoring human activities and providing the right set of services, showing the robustness of our approach over others in literature with minimal power consumption

    Model fusion using fuzzy aggregation: Special applications to metal properties

    Get PDF
    To improve the modelling performance, one should either propose a new modelling methodology or make the best of existing models. In this paper, the study is concentrated on the latter solution, where a structure-free modelling paradigm is proposed. It does not rely on a fixed structure and can combine various modelling techniques in ‘symbiosis’ using a ‘master fuzzy system’. This approach is shown to be able to include the advantages of different modelling techniques altogether by requiring less training and by minimising the efforts relating optimisation of the final structure. The proposed approach is then successfully applied to the industrial problems of predicting machining induced residual stresses for aerospace alloy components as well as modelling the mechanical properties of heat-treated alloy steels, both representing complex, non-linear and multi-dimensional environments

    Survey on Neuro-Fuzzy systems and their applications in technical diagnostics and measurement

    Get PDF
    Both fuzzy logic, as the basis of many inference systems, and Neural Networks, as a powerful computational model for classification and estimation, have been used in many application fields since their birth. These two techniques are somewhat supplementary to each other in a way that what one is lacking of the other can provide. This led to the creation of Neuro-Fuzzy systems which utilize fuzzy logic to construct a complex model by extending the capabilities of Artificial Neural Networks. Generally speaking all type of systems that integrate these two techniques can be called Neuro-Fuzzy systems. Key feature of these systems is that they use input-output patterns to adjust the fuzzy sets and rules inside the model. The paper reviews the principles of a Neuro-Fuzzy system and the key methods presented in this field, furthermore provides survey on their applications for technical diagnostics and measurement. © 2015 Elsevier Ltd
    corecore