
University of Louisville
ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

12-2015

Multiple instance fuzzy inference.
Amine Ben Khalifa
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Part of the Artificial Intelligence and Robotics Commons, and the Theory and Algorithms
Commons

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional
Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact
thinkir@louisville.edu.

Recommended Citation
Ben Khalifa, Amine, "Multiple instance fuzzy inference." (2015). Electronic Theses and Dissertations. Paper 2306.
https://doi.org/10.18297/etd/2306

https://ir.library.louisville.edu?utm_source=ir.library.louisville.edu%2Fetd%2F2306&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F2306&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F2306&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=ir.library.louisville.edu%2Fetd%2F2306&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ir.library.louisville.edu%2Fetd%2F2306&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ir.library.louisville.edu%2Fetd%2F2306&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/2306
mailto:thinkir@louisville.edu

MULTIPLE INSTANCE FUZZY INFERENCE

By

Amine Ben Khalifa
B.E., Telecommunications Engineering, Higher School of Communications of Tunis,

2009

A Dissertation
Submitted to the Faculty of the

J.B. Speed School of Engineering of the University of Louisville
in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy in Computer Science and Engineering

Department of Computer Engineering and Computer Science
University of Louisville

Louisville, Kentucky

December 2015

Copyright 2015 by Amine Ben Khalifa

All rights reserved

MULTIPLE INSTANCE FUZZY INFERENCE

By

Amine Ben Khalifa
B.E., Telecommunications Engineering, Higher School of Communications of Tunis,

2009

A Dissertation Approved On

December 2, 2015

by the following Dissertation Committee:

Hichem Frigui, Ph.D., Dissertation Director

Olfa Nasraoui, Ph.D.

Jacek M. Zurada, Ph.D.

Adrian P. Lauf, Ph.D.

Tim Hardin, Ph.D.

ii

ACKNOWLEDGEMENTS

I would like to gratefully and sincerely thank my advisor, Dr. Hichem Frigui, for

giving me the opportunity to conduct research under his supervision. As a mentor he kept

pushing me to challenge the status quo and advance the state of the art of our field. He

worked with me side by side on a daily basis to explain difficult concepts early on in my

studies and to make sure I was on the right track – all while giving me a great degree of

independence to entertain new ideas and explore new avenues. Dr. Frigui, I truly appreciate

all of the financial support you provided for travel to domestic and international conferences

to present our research and represent the Multimedia Research Lab as well as the University

of Louisville. It has been a pleasure working with you. I sincerely hope that we will remain

both collaborators and friends for many years to come.

I would like to thank Dr. Olfa Nasraoui, Dr. Adrian Lauf, Dr. Jacek Zurada and

Dr. Tim Hardin for agreeing to serve on my dissertation committee and being a part of

this special milestone.

I would like to thank my colleagues in the Multimedia Research Laboratory, and the

Computer Engineering and Computer Science Department for their support and friendship.

Finally, and most importantly, I would like to thank my family for their support,

encouragement, and love.

iii

ABSTRACT

MULTIPLE INSTANCE FUZZY INFERENCE

Amine Ben Khalifa

December 2, 2015

A novel fuzzy learning framework that employs fuzzy inference to solve the problem

of multiple instance learning (MIL) is presented. The framework introduces a new class of

fuzzy inference systems called Multiple Instance Fuzzy Inference Systems (MI-FIS).

Fuzzy inference is a powerful modeling framework that can handle computing with knowl-

edge uncertainty and measurement imprecision effectively. Fuzzy Inference performs a non-

linear mapping from an input space to an output space by deriving conclusions from a set

of fuzzy if-then rules and known facts. Rules can be identified from expert knowledge, or

learned from data.

In multiple instance problems, the training data is ambiguously labeled. Instances are

grouped into bags, labels of bags are known but not those of individual instances. MIL

deals with learning a classifier at the bag level. Over the years, many solutions to this prob-

lem have been proposed. However, no MIL formulation employing fuzzy inference exists in

the literature.

In this dissertation, we introduce multiple instance fuzzy logic that enables fuzzy reasoning

with bags of instances. Accordingly, different multiple instance fuzzy inference styles are

proposed. The Multiple Instance Mamdani style fuzzy inference (MI-Mamdani) extends

the standard Mamdani style inference to compute with multiple instances. The Multiple

Instance Sugeno style fuzzy inference (MI-Sugeno) is an extension of the standard Sugeno

iv

style inference to handle reasoning with multiple instances.

In addition to the MI-FIS inference styles, one of the main contributions of this work is an

adaptive neuro-fuzzy architecture designed to handle bags of instances as input and capa-

ble of learning from ambiguously labeled data. The proposed architecture, called Multiple

Instance-ANFIS (MI-ANFIS), extends the standard Adaptive Neuro Fuzzy Inference Sys-

tem (ANFIS).

We also propose different methods to identify and learn fuzzy if-then rules in the context

of MIL. In particular, a novel learning algorithm for MI-ANFIS is derived. The learning is

achieved by using the backpropagation algorithm to identify the premise parameters and

consequent parameters of the network.

The proposed framework is tested and validated using synthetic and benchmark datasets

suitable for MIL problems. Additionally, we apply the proposed Multiple Instance Inference

to the problem of region-based image categorization as well as to fuse the output of multiple

discrimination algorithms for the purpose of landmine detection using Ground Penetrating

Radar.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iii

ABSTRACT iv

LIST OF TABLES x

LIST OF FIGURES xii

LIST OF ALGORITHMS xv

CHAPTER

1 INTRODUCTION . 1

1.1 Multiple Instance Learning . 3

1.2 Fuzzy Logic and Fuzzy Inference Systems 4

1.3 Motivations and Contributions . 6

1.3.1 Motivations . 6

1.3.2 Contributions . 7

2 BACKGROUND . 9

2.1 Multiple Instance Learning . 9

2.1.1 Diverse Density . 11

2.1.2 Multiple Instance Regression 14

2.1.3 Multiple Instance Learning via Embedded Instance Selection

(MILES) . 15

2.1.4 Multiple Instance Neural Networks 16

2.1.5 Multiple Instance RBF Neural Networks 18

2.1.6 Citation K-Nearest Neighbors 20

2.2 Fuzzy Logic . 21

2.2.1 Fuzzy Sets . 22

2.2.2 Fuzzy Propositions . 28

vi

2.2.3 Fuzzy If-Then Rules . 28

2.2.4 Fuzzy Reasoning . 29

2.3 Fuzzy Inference . 31

2.3.1 Mamdani Fuzzy Inference System 31

2.3.2 Sugeno Fuzzy Inference System 33

2.3.3 ANFIS: Adaptive Neuro-Fuzzy Inference System 34

3 MULTIPLE INSTANCE FUZZY LOGIC 42

3.1 Multiple Instance Fuzzy Propositions 42

3.2 Multiple Instance Fuzzy If-Then Rules 45

3.2.1 Multiple Instance Fuzzy Implication 45

3.3 Multiple Instance Fuzzy Reasoning . 46

3.4 Illustrative Example . 48

3.5 Discussion . 48

3.6 Related Work . 49

3.7 Chapter Summary . 51

4 MULTIPLE INSTANCE FUZZY INFERENCE 52

4.1 Multiple Instance Mamdani Style Fuzzy Inference 52

4.2 Multiple Instance Sugeno Style Fuzzy Inference 55

4.3 Learning the Structure and Parameters of Multiple Instance Fuzzy In-

ference Systems . 56

4.3.1 Illustrative Example . 59

4.4 Chapter Summary . 63

5 MI-ANFIS: A MULTIPLE INSTANCE ADAPTIVE NEURO-FUZZY AR-

CHITECTURE . 64

5.1 MI-ANFIS Architecture . 64

5.2 Basic Learning Algorithm . 68

5.2.1 BackPropagation Learning Rule 68

vii

5.3 Illustrative Example . 74

5.4 Preventing Overfitting: Rule Dropout 77

5.5 Multi-Class MI-ANFIS . 83

5.6 Complexity Analysis . 87

5.7 Discussion . 88

6 EXPERIMENTAL RESULTS . 90

6.1 Benchmark Datasets . 90

6.2 Evaluation of MI-MAMDANI and MI-ANFIS algorithms 92

6.3 MCMI-ANFIS . 96

7 APPLICATION : LANDMINE DETECTION USING GROUND PENE-

TRATING RADAR . 102

7.1 Landmine Detection . 102

7.1.1 GPR data . 104

7.1.2 EHDDT and EHDCT algorithms 105

7.1.3 Fisher Vector discrimination algorithms 106

7.1.4 Auxiliary Feature Extraction 108

7.1.5 Data Collection . 112

7.2 Fusion of Multiple Landmine Detection Algorithms Using Traditional

Fuzzy Inference . 113

7.2.1 Fusion of Multiple Landmine Detection Algorithms Using Mam-

dani Fuzzy Inference . 113

7.2.2 Fusion of Multiple Landmine Detection Algorithms Using ANFIS 117

7.2.3 Results . 120

7.3 Fusion of Multiple Landmine Detection Algorithms Using Multiple In-

stance Fuzzy Inference . 122

7.3.1 Fusion of Multiple Landmine Detection Algorithms Using MI-

Mamdani . 123

viii

7.3.2 Fusion of Multiple Landmine Detection Algorithms Using MI-

ANFIS . 124

7.3.3 Results . 125

8 CONCLUSIONS AND POTENTIAL FUTURE WORK 132

8.1 Conclusions . 132

8.1.1 Multiple Instance Fuzzy Logic (MI-FL) 132

8.1.2 Multiple Instance Fuzzy Inference Systems (MI-FIS) 133

8.1.3 Multiple Instance Adaptive Neuro-Fuzzy Inference System (MI-

ANFIS) . 133

8.1.4 Validation . 135

8.2 Potential Future Work . 136

REFERENCES 137

CURRICULUM VITAE 145

ix

LIST OF TABLES

TABLE Page

2.1 Shape and parameters of commonly used parameterized MFs 24

2.2 Most frequently used T-norms and T-conorms operators 26

5.1 Benchmark data sets . 83

6.1 MUSK, Fox, Tiger, and Elephant Datasets 92

6.2 20 Image Categories of the COREL dataset and the Corresponding Average

Number of Instances (regions) . 93

6.3 MI-ANFIS Training Parameters . 94

6.4 Comparison of MI-ANFIS prediction accuracy (in percent) to Naive-ANFIS

on the benchmark data sets (averaged over five runs) 94

6.5 Comparison of MI-ANFIS prediction accuracy (in percent) to other methods

on the benchmark data sets. Results for 3 top performing methods are shown

in bold font. We use reported results, N/A indicated that a given algorithm

was not applied to that dataset . 95

6.6 Comparison of MI-ANFIS running time (in Minutes) to other methods on

the benchmark data sets. 96

6.7 MCMI-ANFIS Training Parameters . 97

6.8 Confusion matrix of MCMI-ANFIS on the region-based image categorization

experiment using Corel-1000 Dataset . 98

6.9 Confusion matrix of MCMI-ANFIS on the region-based image categorization

experiment using Corel-2000 Dataset . 99

6.10 Comparison of MCMI-ANFIS classification accuracy (in percent) to other

methods on the Corel-1000 and Corel-2000 benchmark datasets 100

x

7.1 MI-Mamdani Parameters . 123

7.2 MI-ANFIS Training Parameters . 125

7.3 Data Collections . 130

xi

LIST OF FIGURES

FIGURE Page

1.1 Example of an image represented as a bag of 12 instances 4

1.2 A graphical representation of a FIS and its components. 5

1.3 Linguistic terms of Color Intensity and Vertical Position features. 7

2.1 Difference between standard supervised learning and multiple instance learning 10

2.2 Illustration of a Ramon & Raedt’s multiple instance neural network [1]. . . 18

2.3 Illustration of an RBF-MIP neural network with a single output. 19

2.4 An illustration of the crisp membership function “Young” 23

2.5 An illustration of the fuzzy membership function “Young” 23

2.6 Illustration of α-cut, core, and support of a bell-shaped membership function 25

2.7 Illustration of the fuzzy reasoning process 31

2.8 Illustration of Mamdani fuzzy inference with 2 rules and D inputs. 32

2.9 Illustration of Sugeno fuzzy inference with 2 rules and D inputs. 34

2.10 Architecture of an ANFIS system with two-input and two rules. 35

3.1 Illustration of the proposed multiple instance inference process using the

“max” aggregation operator . 48

4.1 Illustration of the proposed multiple instance Mamdani fuzzy inference system. 54

4.2 Illustration of the proposed multiple instance Sugeno fuzzy inference system 56

4.3 Instances from positive and negative bags drawn from data that have 2 concepts 60

4.4 Illustration of MI-Mamdani fuzzy inference system learned using FCMI . . 61

4.5 Instances from 2 positive and 1 negative bag. 61

4.6 Multiple instance fuzzy inference using the learned MI-Mamdani system. . . 62

xii

5.1 Architecture of the proposed multiple instance Adaptive Neuro-Fuzzy Infer-

ence System . 64

5.2 Root Mean Squared Error of 100 Epochs of MI-ANFIS training. 75

5.3 Input MFs before, during, and after MI-ANFIS training. 76

5.4 Dropout neural network model . 78

5.5 Illustration of Dropout application. 78

5.6 Rule Dropout MI-ANFIS model. 80

5.7 Illustration of Rule Dropout application. Doted lines indicate a rule that has

been dropped. 81

5.8 Training and testing errors for two MI-ANFIS networks with and without

Rule Dropout. 83

5.9 Multi-Class MI-ANFIS with R rules and T classes (outputs). 85

6.1 Images randomly sampled from 20 categories and the corresponding segmen-

tation results. 92

7.1 3-dimensional and 2-dimensional raw GPR data. 103

7.2 Vehicle mounted GPR system. 105

7.3 Sample GPR alarm with dense SIFT features (only first and last features are

shown) . 107

7.4 Target and Non-Target signatures. 110

7.5 Illustration of the identification of the SA and SD points. 111

7.6 Examples of SignatureWidthDT (gprDT) and SignatureWidthCT (gprCT)

features for a target object. 112

7.7 Illustration of the generated Mamdani Fuzzy Rule Base (FRB), showing 4 of

the 21 rules. 117

7.8 Illustration of the generated ANFIS Fuzzy Rule Base (FRB), showing 2 of

the 16 rules. 120

7.9 Comparison of the performances of EHDDT and EHDCT discriminators. . 121

xiii

7.10 Comparison of the individual discriminators and the proposed fuzzy fusion

method. 122

7.11 MI-Mamdami multiple instance fuzzy rules. 124

7.12 MI-ANIFS fusion rules before and after training (Dotted lines indicate the

initial MFs). 126

7.13 A plot of MI-ANFIS RMSE during 150 training epochs. 127

7.14 Comparison of the individual discriminators and all proposed fuzzy fusion

methods. 128

7.15 Comparison of the individual discriminators, the proposed MI-Mamdani ,

Mamdani, and NaiveMamdanifuzzy fusion methods. 128

7.16 Comparison of the individual discriminators, the proposed MI-ANFIS , AN-

FIS, and NaiveANFIS fuzzy fusion methods. 129

7.17 Comparison of all individual discriminators, ANFIS, and the proposed MI-

ANFIS fuzzy fusion methods. 130

7.18 Comparison of the performances of all individual discriminators, ANFIS, and

MI-ANFIS fuzzy fusion methods on the larger collection. 131

xiv

LIST OF ALGORITHMS

ALGORITHM Page

2.1 Multiple-Instance Regression Algorithm . 16

2.2 First Layer’s Clustering Algorithm of RBF-MIP 20

2.3 ANFIS Basic Learning Algorithm . 41

5.1 MI-ANFIS Forward Pass Algorithm . 67

5.2 MI-ANFIS Basic Learning Algorithm . 74

xv

CHAPTER 1

INTRODUCTION

Fuzzy inference is a powerful modeling framework that can handle computing with

knowledge uncertainty and measurements imprecision effectively [2]. It is a process based

on the concepts of fuzzy set theory and fuzzy reasoning. It performs a non-linear mapping

from an input space to an output space by deriving conclusions from a set of fuzzy if-then

rules and known facts [3]. Fuzzy inference has been successfully applied to a wide range

of problems, mainly in system modeling and control [4–14]. Most of the proposed fuzzy

inference methods gained success because of their ability to leverage expert knowledge to

identify the model parameters [15]. This practice simplifies system design and ensures that

the knowledge base (if-then rules) used by the system is easy to interpret [16].

More recently, fuzzy inference has increasingly been applied to more advanced ap-

plications, such as content-based information retrieval [17], image segmentation [18], image

annotation [19], pattern recognition [20], recommender systems [21, 22], and multiple clas-

sifier fusion [23]. The aforementioned applications are more challenging as they require an

extensive knowledge base to accommodate for various scenarios. Since this diverse knowl-

edge base cannot be fully provided by domain experts, data-driven techniques are typically

used to identify and learn the fuzzy inference system’s parameters [24, 25]. In this later

technique, supervised and unsupervised learning algorithms are devised to learn the param-

eters of the fuzzy inference system (i.e. learn the knowledge base) from a set of labeled

training data. For instance, a clustering algorithm (unsupervised learning) can be used to

identify local contexts of the input space, and a linear classifier (supervised learning) can

be used to learn decisions within each of the contexts. Thus, substituting the traditional

expert knowledge based system’s identification methods, with more scalable, adaptive, and

1

broader learning methods.

Typically, in supervised learning problems, access to large labeled training datasets

improves the performance of the devised algorithms by increasing their robustness and

generalization capabilities. Nowadays, access to such large datasets is becoming more con-

venient. In fact, we generate about 2.5 quintillion bytes of data everyday 1 [26, 27]. This

data is continuously collected from sensors that measure environmental information, posts

to social media sites such as flickr [28], digital pictures and videos uploaded to advertise-

ment websites such as Craigslist [29], etc. This trend is not expected to slowdown anytime

soon and is fueled by the drastic decrease in the cost of data storage [30]. However, for a

supervised leaning method to benefit from this data, it needs to be carefully preprocessed,

filtered, and labeled. Unfortunately, this process can be too tedious as the vast portion of

the collected data is unstructured with few tags that label the object at a high level (e.g.

social media images). To overcome this lack of labeled data, many recent developments use

crowdsourcing services such as Amazon Mechanical Turk [31] to hire an on-demand human

workforce over the internet to assign labels to data points. For instance, a tool named

“Labelme” by MIT [32] could be used for this purpose. Similarly, Google started using its

Captcha service, reCaptcha [33], to label address’ digits collected from Street View images

for the purpose of a deep neural network training [34]. Despite the scalability of many

recent machine learning algorithms, they still require the full engaged cognition of a human

being to assign labels at a finer level (e.g. label regions within images). Unfortunately, this

process is ambiguous, subjective, and prone to errors (e.g. difficulty to select an object of

interest within an image).

To summarize, large amounts of data are available and could be used for learning.

However, this data is typically labeled ambiguously and at a coarse level. In fact, labels,

or tags, tend to be associated with collections of samples rather than single samples. For

example, in image annotation, tags could be used as indicators of the existence of objects

of interests within the images (sky, sea, beach,. . .). However, the exact location of those

190% of the data in the world today has been created in the last two years alone.

2

objects is not available and is too tedious to extract for large collection of images. An

alternative and a relatively new framework of learning that tackles the inherent ambiguity

better than supervised learning, is the Multiple Instance Learning (MIL) paradigm [35].

1.1 Multiple Instance Learning

Unlike standard supervised learning, in MIL, an object is not represented by a simple

data point, but rather by a collection of instances, called a bag. Each bag can contain a

different number of instances. In MIL, a bag is labeled negative if all of its instances

are negative, and positive if at least one of its instances is positive (positive bags may

also contain negative instances). Positive bags can encode ambiguity since the instances

themselves are not labeled. Given a training set of labeled bags, the goal of MIL is to learn

a concept that predicts the labels of training data at the instance level and generalizes to

predict the labels of testing bags and their instances [36].

The MIL problem was first formalized by Dietterich et al. [37] providing a solu-

tion to drug activity prediction. Ever since, it has increasingly been applied to a wide

variety of tasks. Some of the applications include content-based information retrieval [38],

drug discovery [39], pattern recognition [40], image classification [41], text classification [42],

region-based image categorization [43], image annotation [44], object tracking [45] and time-

series prediction [35], to name a few. To illustrate the need for MIL, in the following we

analyse how a multiple instance (MI) representation can be applied to image classification.

Consider the simple example of classifying images that contain “sky”. In this prob-

lem, for an input image we want to determine whether a region that contains sky is present

in the image. Using an MIL approach, each training image is represented by a bag of in-

stances where each instance corresponds to a segmented region of interest. These regions

could be obtained by dividing images into patches. A multiple instance representation is

well suited for this purpose because only few regions may contain the object of interest (sky),

that is the positive class. Other patches will be from background or other classes. This

representation is illustrated in Figure 1.1. Traditional, single instance learning methods

3

are based on instance level (patch-level) labels and would require the image to be correctly

segmented and labeled prior to learning.

Figure 1.1: Example of an image represented as a bag of 12 instances. Each instance could
be a feature vector extracted from one patch. The bag is labeled “sky” because at least one
of its instances is sky. However, many other instances are not “sky”. Labels at the instance
level are not available.

1.2 Fuzzy Logic and Fuzzy Inference Systems

Fuzzy logic [4] is a computational framework that makes use of fuzzy set theory and

fuzzy assignment of elements to sets. In classical set theory, also known as crisp sets, an

element is either a member of a set or not. Whereas, in fuzzy set theory, an element is

characterized by a degree of membership, usually a real number between 0 and 1. Fuzzy

logic, in contrast to traditional two-valued (boolean) logic, uses the elements’ membership

degrees to evaluate the degree of truth of logical propositions. Hence, the degree of truth

is non-crisp, or soft. This enables fuzzy logic to be characterized by linguistic terms rather

than by numbers. For example, in fuzzy logic, a fuzzy proposition can have the following

expression: “patch is blue”, in which the linguistic term “blue” is a fuzzy set that describes

color intensity. Fuzzy logic simulates human imprecise understanding of the world, and can

be viewed as a framework for computing with words [46].

A Fuzzy Inference System (FIS) is a paradigm in soft computing which provides

a means of approximate reasoning [47]. A FIS is capable of handling computing with

4

knowledge uncertainty and measurements imprecision effectively [2]. It performs a non-

linear mapping from an input space to an output space by deriving conclusions from a

set of fuzzy if-then rules and known facts. Fuzzy rules are condition/action (if-then) rules

composed of a set of linguistic variables (e.g. patch) which can each take on linguistic terms

(e.g. red, green, blue). For example, the following rules could be used to identify patches

from the image in Figure 1.1:

• If patch is blue then region is sky.

• If patch is blue and patch position is upper half then region is sky.

• If patch is yellow and patch position is lower half then region is beach.

Typically, a FIS is composed of 5 components. First, a Fuzzification unit that

assigns a membership degree to each crisp input dimension in the input fuzzy sets. Second,

a Knowledge Base characterized by fuzzy sets of linguistic terms. Third, a Rule Base

containing a set of fuzzy if-then rules. Fourth, an Inference unit that performs fuzzy

reasoning. Finally, a Deffuzification unit that generates crisp output values. Mamdani

[48] and Sugeno [49] are the two commonly used fuzzy inference systems. A graphical

representation of a generic FIS is shown in Figure 1.2.

Figure 1.2: A graphical representation of a FIS and its components.

5

1.3 Motivations and Contributions

1.3.1 Motivations

Consider the example of sky image classification presented earlier. Let us suppose

we have assembled a training dataset with images labeled as positive if they contain sky,

negative otherwise. Clearly, the data is ambiguously labeled (i.e. labels are available only

at the bag level, and individual patches are not labeled). We want to train a FIS capable of

recognizing images containing sky (i.e. produce a high output when the test image contains

a sky region). To do so, the FIS needs to learn rules capable of describing the concept of

sky. For the human perception, the sky concept can be described as a blue region that is

located in the upper half of the frame. Thus, one possibility is to extract 2 features: Color

Intensity, and Vertical Position of a region. Doing so, features need to be extracted locally

at the patch level. Hence, turning the problem into a multiple instance problem, an image

is a bag of instances (with label only at the bag level). On the other hand, extracting one

global feature vector covering the whole image will lead to confusions and will not be able

to describe concepts effectively because the features will describe non homogenous regions

and will be based on averages. Because of the uncertainty and subjectivity of describing

the color of a patch and its vertical position within the image, the two features are better

represented as fuzzy sets. Color intensity feature can be described by means of 3 linguistic

terms: Red, Green, and Blue. While vertical position can be described with linguistic

terms, Upper Half, Middle, and Lower Half. Figure 1.3 shows a graphical representation of

membership degrees of the 2 features in the different linguistic terms (fuzzy sets).

Clearly, this representation is close to the way humans perceive the patches of the

image in Figure 1.1. Due to the absence of labels at the patch level, and therefore absence

of feedback, FIS training could not be achieved. Nonetheless, in this particular example

the concept of the sky can be considered trivial. Thus, the FIS can be designed by lever-

aging expert knowledge that can lead to using the following rule for the purpose of patch

classification.

6

(a) A graphical representation of 3 fuzzy sets de-
scribing the Color Intensity feature.

(b) A graphical representation of 3 fuzzy sets de-
scribing the Vertical Position feature.

Figure 1.3: Linguistic terms of Color Intensity and Vertical Position features.

• If patch is blue and patch position is upper half then region is sky.

To classify the image correctly, the results of patches’ classification need to be aggregates

to produce a final output.

There are two major limitations that prevent using standard FIS methods with

multiple instance data. First, due to the absence of labels at the instance level, we cannot

use standard FIS learning methods to construct the knowledge base. Second, we need an

effective mechanism to aggregate instances’ confidences and infer at the bag level.

The limitations are due mainly to the inherent architecture of fuzzy inference systems. The

generic inference system shown in Figure 1.2 reasons with individual instances. First, the

system’s input is an individual instance. Second, the rules describe fuzzy regions within

the instances space. Third, the output of the system corresponds to the fuzzy inference

using a single instance. Fourth, labels of the individual instances are required when using

learning techniques to identify the parameters of the system. In summary, traditional fuzzy

inference systems cannot be used effectively within the MIL framework.

To address the above limitations we propose to generalize fuzzy inference to extend

it to reason with bags of instances.

1.3.2 Contributions

In this dissertation, we propose developing a Multiple Instance Fuzzy Inference

framework. In particular, we propose:

7

1. Developing Multiple Instance Fuzzy Logic that generalizes traditional fuzzy logic to

compute with bags of instances. Under this work, we propose multiple instance gen-

eralization of fuzzy propositions, fuzzy if-then rules, fuzzy implication, and fuzzy

reasoning.

2. Extending Mamdani and Sugeno fuzzy inference systems to reason with bags instead

of individual instances using the developed Multiple Instance Fuzzy Logic. We call

the new inference systems Multiple Instance-Mamdani (MI-Mamdani) and Multiple

Instance-Sugeno (MI-Sugeno).

3. Developing methods to identify and learn multiple instance fuzzy if-then rules from

ambiguously labeled data.

4. Extending the standard Adaptive Neuro-Fuzzy Inference System (ANFIS) [50] to rea-

son with bags of instances as input and to learn from ambiguously labeled data. We

call the new neuro-fuzzy architecture Multiple Instance-ANFIS (MI-ANFIS).

5. Developing a learning algorithm to learn the parameters of the proposed MI-ANFIS

neuro-fuzzy inference system.

The remainder of this dissertation is organized as follows. Chapter 2 provides a

review of multiple instance learning, fuzzy logic, and common fuzzy inference systems.

Chapter 3 introduces our proposed multiple instance fuzzy logic framework. Chapter 4

introduces our proposed MI-Mamdani and MI-Sugeno inference systems. Chapter 5 intro-

duces our proposed MI-ANIFS neuro-fuzzy architecture. Chapter 6 provides experimental

results and analysis of the proposed methods. Finally, chapter 7 provides conclusions and

future work.

8

CHAPTER 2

BACKGROUND

In this chapter, we provide background material that is relevant to our research. We

start with a review of the Multiple Instance Learning problem and give brief examples to

motivate the need for this learning paradigm. Next, we provide an overview of fuzzy logic.

Finally, we provide an overview of common fuzzy inference systems.

2.1 Multiple Instance Learning

Multiple Instance Learning (MIL) is a supervised learning paradigm that aims at

solving classification and regression problems by devising algorithms capable of learning

from ambiguously labeled data [51]. In standard supervised learning, each example is

represented by a fixed-length vector of features. In MIL, an example is a collection of feature

vectors (instances), called a bag. Each bag can contain a different number of instances.

Labels of bags are known but not those of individual instances. A bag is labeled negative

if all of its instances are negative, and positive if at least one of its instances is positive.

Positive bags can encode ambiguity since the instances themselves are not labeled. Given

a training set of labeled bags, the goal of MIL is to learn a concept that predicts the labels

of training data and generalizes to predict the labels of testing bags [36]. The difference

between standard supervised learning and multi-instance learning is illustrated in Figure

2.1.

The problem of MIL arises naturally in many scenarios. It was first applied by

Dietterich et al. to provide a solution to drug activity prediction [37]. Ever since, it has

increasingly been applied to a wide variety of tasks such as content-based information re-

trieval [38], pattern recognition [40], image classification [41], text classification [42], region-

9

(a) The standard supervised learning paradigm.

(b) The multiple instance learning paradigm.

Figure 2.1: Difference between standard supervised learning and multiple instance learning.1

based image categorization [43], image annotation [44], object tracking [45] and timeseries

prediction [35], to name a few. MIL has a broader domain of application beyond those

few examples. Maron et al. [35] presented a methodology to transform difficult learning

problems into Multiple-Instance learning problems.

In general, MIL can be applied in two contexts of ambiguity: “polymorphism am-

biguity” and “part-whole ambiguity” [52]. In polymorphism ambiguity, an object can have

multiple forms of expression in the input space and it is not known which form is responsible

for the object label. Whereas, in part-whole ambiguity, an object can be broken into several

parts represented by different feature vectors in the input space. However, only few parts

are responsible for the object label [53]. In the following we briefly describe two application

domains related to the two distinct ambiguity concepts.

1. Polymorphism Ambiguity arise more often in applications related to chemistry

and bioscience. The original MIL application of drug discovery [35, 36] is a case

of polymorphism ambiguity. In this type of applications, typically, the goal is to

classify molecules by looking at their shapes. Each molecule can appear in several

distinct shapes because of binding and twisting that might occur during interactions.

Thus, a molecule can have different forms of expression. However, it is a tedious

process to identify which form is responsible for the molecule behaviour (label). Hence,

1Figure based on [36].

10

the problem is better represented as a multiple instance problem. A more recent

application that presents polymorphism ambiguity is genomic data analyses [54]. In

this type of applications a gene is represented by multiple isoforms, the goal is to

predict the gene-level function. Typically, this problem is a multiple instance problem.

2. Part-whole Ambiguity: This type of ambiguity is more common in pattern recogni-

tion problems. For example, for an image annotation application such as presented in

Section 1.1, usually features are extracted locally (from patches) with labels, or tags,

available only at the image level, making the problem a multiple instance problem.

Another closely related application is object detection. In this application objects of

interest cover only a limited region of the image, the rest could be other objects or

background. For the task of training a classifier to detect the object, traditionally,

tedious human labor is required to extract patches containing the object and labeling

them. As indicated by Viola et al. [55], placing bounding boxes around objects is an

inherently ambiguous task. Thus, it is more convenient to solve the problem of object

detection using the MIL paradigm, which in turn encodes ambiguity effectively. The

part-whole ambiguity also arise in other applications such as computer audition [56]

and text document classification [57]. These applications are similar to object detec-

tion: features are extracted from audio segments or text paragraphs, and labels are

only available at the audio clip level or text document level, respectively.

We now review some of the common algorithms that have been proposed to solve the

multiple instance problem and are related to our research.

2.1.1 Diverse Density

The most commonly referenced MIL algorithm found in the literature is Diverse

Density (DD). It was first introduced by Maron et al. [39]. The objective of DD is to find a

“soft” set that describes the intersection of the positive bags minus the union of the negative

bags. To achieve this, DD attempts to find a concept in the feature space (instance space)

that is close to at least one instance from every positive bag but far away from instances in

11

the negative bags.

If we define diverse density as a measure of how many different positive bags have instances

near a given point of the input space, and how far the negative instances are from that

point, then a concept as defined by Maron et al. [39] as a point with maximum diverse

density.

Formally, if the training data is presented as positive bags, denoted B+
1 , B

+
2 , . . . , B

+
n ,

and negative bags, denoted B−1 , B
−
2 , . . . , B

−
m, the diverse density of a given concept t is

defined as the probability that t is the correct concept.

DD(t) = Pr(t | B+
1 , B

+
2 , . . . , B

+
n , B

−
1 , B

−
2 , . . . , B

−
m). (2.1)

Using Bayes’ rule and under the assumption that all bags are conditionally independent

given the true target concept, it was shown that (2.1) can be decomposed into:

DD(t) =
∏

1≤i≤n
Pr(B+

i | t)
∏

1≤i≤m
Pr(B−i | t). (2.2)

Using Bayes’ rule further and under the assumption of constant priors, Maron showed that

optimizing DD is equivalent to optimizing D̂D, defined as

D̂D(t) =
∏

1≤i≤n
Pr(t | B+

i)
∏

1≤i≤m
Pr(t | B−i). (2.3)

Instead of maximizing D̂D, a common practice is to minimize the negative log-likelihood

given by:

−logD̂D(t) = −

[∑
1≤i≤n

log(Pr(t | B+
i)) +

∑
1≤i≤m

log(Pr(t | B−i))

]
. (2.4)

This formulation is more robust against very small probabilities.

To compute Pr(t | Bi) for a given bag Bi, a conjunction measure of all its instances Bij ,

j = 1, . . . ,M is computed using the noisy-or operator

Pr(t | Bi) = 1−
∏

1≤j≤M
(1− Pr(Bij ∈ t)), (2.5)

where Pr(Bij ∈ t) is computed from a Gaussian distribution centred at the concept point

t.

12

To optimize the above cost function (2.4), gradient descent can be used to find an optimal

target concept t. Another optimization technique that can be used to find the most likely

concept is EM-DD [58]. The basic idea behind EM-DD is to view “the knowledge of which

instance corresponds to the label of the bag as a missing attribute which can be estimated

using the Expectation Maximization (EM) approach”. The EM-DD starts by taking an

initial guess from positive instances as a target concept, then alternates between two steps:

In the first step, the current concept is used to pick one instance from each bag which is

most likely responsible for the bag label, and in the second step, find a new target concept t′

by maximizing the likelihood over all negative instances and the positive instances identified

by the first step.

Once concepts are identified using DD or EM-DD, the label for an unseen bag Bnew

(with M instances) in a given concept t is estimated as following:

Label(Bnew | t) = max
k

{
exp(−(Bnew,k − t)2)

}
, k = 1, . . . ,M. (2.6)

• Multi-target concept Diverse Density (MDD)

The MDD is a new metric developed by Karem and Frigui [59] for the purpose of

fuzzy clustering of multiple instance data (FCMI). This approach extends the stan-

dard Diverse Density (DD) metric established by Maron to accommodate more than

one positive target concept. The governing assumption behind this extension is that

there exist MIL problems for which a single target concept inadequately represents

the feature space.

In MDD, there are multiple target concepts {C1, . . . , Cr}, and each bag is assigned

memberships to multiple target concepts. This membership assignment is conducted

by selecting the concept that maximizes the noisy-or measure (2.5). Once member-

ships are assigned to each bag, the target concepts are optimized separately following

the pattern of the general DD methodology. The MDD metric is given by the follow-

ing:

13

MDD(T,U) =
N∏
n=1

r∏
i=1

[
Pr(Ci|Bn)

]umin . (2.7)

In (4.8), U = [uin] is a membership matrix such that each bag Bn is assigned to

target concept Ci with membership degree uin, and m is a fuzzifier that controls the

fuzziness of the partitions as in the FCM [60]. Pr(Ci|Bn) is the probability that Ci

is a target concept given Bn, and defined as

Pr(Ci|Bn) =

{
1−

∏M
k=1(1− Pr(xnk ∈ Ci)) if label(Bn) = 1,∏M

k=1(1− Pr(xnk ∈ Ci)) if label(Bn) = 0
(2.8)

where label(Bn) is the label of bag Bn and xnk is the kth instance of bag Bn.

Pr(Xnk ∈ Ci) is regarded as the similarity of instance Xnk to target concept Ci, and

its computed using

Pr(Xnk ∈ Ci) = e−(
∑D
j=1 sij(xnkj−cij)2) (2.9)

In (4.5), sij is a scaling parameter that weights the role of feature j in target concept

i [39].

2.1.2 Multiple Instance Regression

Multiple instance regression (MI-regression) was first introduced by Ray and Page

[61]. In MI-regression, bags are associated with real-valued labels instead of the usual

binary class labels (positive/negative). Similarly to the standard regression, the task of

MI-regression is to predict a real-valued bag label.

Ray and Page assumed that every bag has a primary instance responsible for the bag label.

Under this assumption an ideal regression model is a hyperplane Y = Xb such that

b̂ = argmin
b

N∑
i=1

L(yi, Xip,b), (2.10)

where N is the number of bags, yi is the real-valued label of bag Bi, Xip is the primary

instance of the ith bag, and L is a loss function defined by

L(yi, Xij ,b) = (yi −Xijb)2. (2.11)

14

Equation (2.10) assumes that the primary instance Xip is known during training. However,

this is not the case for most MIL problems. To overcome this issue, Ray and Page proposed

to use the “best fit” hyperplane instead:

b̂ = argmin
b

N∑
i=1

min
j

L(yi, Xij ,b), j = 1, . . . ,Mi (2.12)

where Mi is the number of instances of the ith bag.

To find the optimal set of parameters b̂. Ray and Page proposed an algorithm based on

an EM approach. First, a hypothesis hyperplane b̂ is initialized. Then the algorithm alter-

nately iterates between two steps: (1) in the expectation step, from each bag the instance

with the least L-error w.r.t. to b̂ is selected, and (2) in the maximization step, ordinary

regression is performed to find a new hyperplane that best fits the selected instances. The

process continues until convergence. The MI-regression solution is summarized in Algorithm

2.1

2.1.3 Multiple Instance Learning via Embedded Instance Selection (MILES)

MILES was proposed by Chen et al. [43]. The framework converted the MIL problem

into a standard supervised learning problem by mapping each bag into a feature space

defined by the similarity between its instances and a set of target concepts. Formally, for

a given bag Bi of instances Xij , j = 1, . . . ,Mi, the similarity to a given target concept tk,

k = 1, . . . , C (C number of target concepts) is given by:

s(tk, Bi) = max
j

{
exp
(
− ||Xij − tk||2

σ2

)}
, (2.13)

where σ is a scaling factor.

Using (2.13), a bag is mapped into the space induced by the similarity values. i.e. a bag is

represented by the coordinates m(Bi) as following,

m(Bi) = [s(t1, Bi), s(t2, Bi), . . . , s(tC , Bi)]. (2.14)

15

Algorithm 2.1 Multiple-Instance Regression Algorithm

Inputs: B: the set of training bags.
T : the set of training labels.
b: random initial hyperplane.
Mi: the number of instances in bag i.
N : the number of training bags.

Outputs: A hyperplane Y = Xb.

E =∞
Done = flase
repeat
I = ∅
Error = 0
for each bag Bi do

for each instance Xij in Bi do
L(yi, Xij ,b) = (yi, Xijb)2, [Calculate the error of the instance with respect to the
hyperplane]

end for
I = I ∪ {the instance with the lowest error}, Let this error be Lmin
Error = Error + Lmin

end for
if Error ≥ E then
Done = true

else
E = Error
solve (2.12) for b

end if
until Done
return b.

Considering a binary MIL classification problem, with bag labels of +1 and −1,

MILES uses 1-Norm SVM [62] to learn a linear classifier on the mapped space. i.e.,

yi = sign(

C∑
k=1

wks(tk, Bi) + b). (2.15)

where wk is a weight associated with s(tk, Bi) and b a bias parameter.

2.1.4 Multiple Instance Neural Networks

In this approach Zhou and Zhang [63] proposed to adapt the BackPropagation algo-

rithm [64] for multiple instance learning through employing a modified loss function. For a

16

given neural network of one or more hidden layers, a bag Bi of instances Xij , j = 1, . . . ,Mi,

is fed to the network one instance at a time, and for a given instance a partial network error

Eij is computed as following:

Eij =

0 if (Bi is positive) and (0.5 ≤ Oij)

0 if (Bi is negative) and (Oij < 0.5)

1
2(Oij − 0.5)2 otherwise,

(2.16)

where Oij is the network’s computed output when presented with instance Xij .

Given (2.16), the overall network error, Ei, for a given bag Bi is computed using the

following heuristic

Ei =

min

1≤j≤Mi

Eij if (Bi is positive)

max
1≤j≤Mi

Eij if (Bi is negative)
(2.17)

Using the error defined in (2.17), and given the neural network architecture it is straight-

forward to derive a backpropagtion update rule for the network’s weights. To speedup the

training process Zhou suggested that when the partial error, Eij , for a given instance Xij of

bag Bi is equal to zero, the rest of instances should be skipped and not fed to the network.

Even though this solution of MIL is supposed to extend neural networks to reason

with bags, it is still relying on computing with single instances. Another Multiple instance

neural network approach was proposed by Ramon and Raedt [1]. In this work, the authors

proposed a neural network architecture composed of two stages:

1. A first stage composed of an ensemble of subnetworks (multilayered perceptrons),

{Netj}Mi
j=1, with count equals to the number of instances of the input bag Bi. All

subnetworks of the first stage are identical and share the same weights (Hence, also

share the same weight update).

2. A second stage that aggregates the outputs {Oj}Mi
j=1, of all subnetworks. For the

purpose of aggregation, this stage uses a differentiable version of the “max” function,

17

dmax, defined as:

dmaxα(O1, O2, . . . , OMi) =
1

α
ln
(Mi∑
j=1

eαOj
)
, (2.18)

where α is a real-valued parameter that controls the accuracy of the max function

approximation.

To optimize the weights of the network, the authors derived update equations using the com-

monly used BackPropagation algorithm [64]. A multiple instance neural network graphical

representation is shown in Figure 2.2.

Figure 2.2: Illustration of a Ramon & Raedt’s multiple instance neural network [1].

2.1.5 Multiple Instance RBF Neural Networks

Multiple Instance RBF (Radial Basis Function) Neural Networks (RBF-MIP) is an

adaptation of the standard RBF neural network [65] for the problem of multiple instance

learning. This approach was introduced by Zhou and Zhang [66]. Similarly to the standard

RBF network, the RBF-MIP is composed of two layers. However, as opposed to the standard

RBF neural networks where the first layer’s nodes are prototype vectors indicating the

centers of basis functions, the first layer of RBF-MIP corresponds to clusters of training

bags, i.e., each input node of RBF-MIP is a cluster Ck, k = 1, . . . ,K, of training bags. The

second layer of the RBF-MIP network is the same as the standard RBF neural network. A

graphical representation of a typical RBF-MIP neural network is shown in Figure 2.3.

18

Figure 2.3: Illustration of an RBF-MIP neural network with a single output.

In the first layer of a given RBF-MIP network, the clustering of bags is achieved

by merging training bags agglomeratively using the Hausdorff metric to measure distances

between bags and between clusters [67]. Formally, given two bags B1 and B2 of instances

{X1j}M1
j=1 and {X2j}M2

j=1, respectively, the Hausdorff metric between B1 and B2 is defined as

H(B1, B2) = min
X1j∈B1,X2l∈B2

{
dist(X1j , X2l)

}
. (2.19)

where dist is a distance measure of the instance space (e.g. Euclidian distance). To compute

the Hausdorff metric between a bag and a cluster of bags, first the instances from all bags

in the cluster are merged into a new bag and (2.19) is used to compute the metric. The

clustering process is summarized in Algorithm 2.2.

For a given input bag Bi, the first layer’s outputs are computed as follows:

Ok =

exp

(
− H(Bi,Ck)

2

2σ2
k

)
if k 6= 0

1 if k = 0

(2.20)

where σk is a standard deviation parameter whose value controls the smoothness of the kth

input node function. σk is fixed to the same value σ that is the same for all input nodes

19

Algorithm 2.2 First Layer’s Clustering Algorithm of RBF-MIP

Inputs: B: the set of training bags.
N : the number of training bags.
K: number of remaining clusters in the first layer.
H: Hausdorff metric.

Outputs: {Ck}Kk=1 clusters of training bags.

Begin with one cluster per training bag (C1 = {B1}, . . . , CN = {BN})
while there are more than K clusters do

Merge the two clusters Ci, Cj which minimize H(Ci, Cj)
end while
return {Ck}Kk=1.

and is computed by taking the average distance between every pair of clusters. i.e.,

σ = µ×

(∑K−1
i=1

∑K
j=i+1 H(Ci, Cj)

K(K − 1)/2

)
. (2.21)

In (2.21), µ is a scaling factor.

To optimize the weights of the second layer of the RBF-MIP neural network a sum-of-

squared error loss function is minimized similarly to the standard RBF networks [65].

2.1.6 Citation K-Nearest Neighbors

In the standard K-NN classifier (K-Nearest Neighbors), to classify a given instance,

“K” nearest instances are retrieved using a distance measure on the instance space (e.g.

Euclidian distance), then an output label is computed from the labels of the “K” nearest

instances. Using the same approach, Wang and Zucker [67] adapted K-NN for the case of

multiple instances. To determine the nearest neighbors for a given bag, the Hausdorff metric

(defined at (2.19)) is used instead of the Euclidian distance. Then the K-NN algorithm

can be applied directly. Wang and Zucker found that the majority vote method, used by

standard K-NN, often produced sub-optimal results in the multiple instance setting [68]. To

improve the multiple instance K-NN, they proposed a variation called Citation-KNN [68].

Citation-KNN is motivated by the notion of citation from library and information science.

Under this view the authors defined a “C-nearest citers” measure for a given bag. This

measure is defined as following:

20

• For two given bags, B and B′, let Rank(B′, B) equals n if B is the nth nearest

neighbor of B′.

• Then, the C-nearest citers of B are the C bags that return the lowest neighbor ranking

for B. i.e.,

Citers(B,C) = {Bi |Rank(Bi, B) ≤ C, Bi ∈ B}, (2.22)

where B is the set of all training bags.

The decision of Citation-KNN relies on the K-nearest bags as well as the C-nearest

citers. Specifically, a bag is classified as positive if and only if there are strictly more positive

bags than negative bags in the combined K-nearest bags and C-nearest citers. C is usually

set to K+2.

2.2 Fuzzy Logic

Research on fuzzy set theory goes back to 1965 [69]. The first main development

started with Zadeh [69] introducing fuzzy sets to extend classical set theory, and offering

an intuitive approach to model and manipulate data with imprecision and uncertainty. Few

years later, fuzzy logic was introduced by the same author [4]. Fuzzy logic is a computational

framework that makes use of fuzzy set theory and fuzzy assignment of elements to sets. In

classical set theory, also known as crisp sets, an element is either a member of a set or

not. Whereas, in fuzzy set theory, an element is characterized by a degree of membership,

usually a real number between 0 and 1. Fuzzy logic, in contrast to traditional two-valued

(boolean) logic, uses the elements’ membership degrees to evaluate the degree of truth of

logical propositions. Hence, the degree of truth is non-crisp, or soft. This enables fuzzy

logic to be characterized by linguistic terms rather than by numbers. For example, in fuzzy

logic, a fuzzy proposition can have the following expression: “ The temperature is high”, in

which the linguistic term “high” is a fuzzy set that describes the temperature. Fuzzy logic

simulates human imprecise understanding of the world, and can be viewed as a framework

for computing with words [46].

21

2.2.1 Fuzzy Sets

A fuzzy set expresses the degree to which an element belongs to a set. It has a

characteristic function that describes the membership degree of an element in the set and

takes values between 0 and 1.

Let X represent a collection of objects, referred to as the universe of discourse. Formally a

fuzzy set A in X is defined as:

A = {(x, µA(x)) | x ∈ X}, (2.23)

where µA(x) is called the membership function (MF) for fuzzy set A. The MF maps every

element of X to a membership degree, µA(x) ∈ [0, 1].

The difference between a crisp set and a fuzzy set, is that the MF is allowed to take any value

in the interval [0, 1] rather than {0, 1}. A simple interpretation of the degree of membership

is given by:

• µA(x) = 1 if x is totally in A

• µA(x) = 0 if x is not in A

• 0 < µA(x) < 1 if x is partly in A

To clarify this definition, let us consider the subjective example of a person’s age. Clearly,

there is no crisp boundary beyond which a person can be considered “young” or not. If we

model this statement by means of a crisp set, we need to use an expression of the following

form:

Y oung = {x | age(x) ≤ 25, x ∈ X}, (2.24)

where X is the set of all people. An illustration of the crisp membership function of this

example is shown in Figure 2.4. It should be clear that this crisp representation is not

appropriate to model the concept of age. In fact, using this representation, a person who

is 24.9 years old is considered young, while a person who is 25.1 years old is not young.

A fuzzy set representation, however, does not define any hard boundaries. Instead,

it gradually assigns older people to the fuzzy set Y oung in an ordered manner. It can be

22

Figure 2.4: An illustration of the crisp membership function “Young”

described by:

Y oung = {(x, µY oung(x)) | x ∈ X}, (2.25)

where µY oung is the membership function of the fuzzy set Y oung, and is illustrated in Figure

2.5. In Figure 2.5, people of age between 0 and 25 are considered young, whereas people

Figure 2.5: An illustration of the fuzzy membership function “Young”

older than 40 are not considered young. Between the ages of 25 and 40, the membership

degree gradually decreases to 0. This representation is close to the way humans perceive

the statement of a “person is young”.

The construction of a fuzzy set depends on two main factors: the identification

of a suitable universe of discourse, and the specification of an appropriate membership

function [70]. In some applications, such as control, the fuzzy sets are typically designed

by experts using domain knowledge. For other applications, such as pattern recognition,

fuzzy sets can be learned from training data. In this case, the membership functions are

parameterized functions and training data is used to learn the optimal set of parameters

that best fit the data. Some of the common parameterized MFs include triangular MF,

trapezoidal MF, Gaussian MF, and the generalized bell MF. The Shape and parameters of

these MFs are shown in table 2.1.

23

TABLE 2.1

Shape and parameters of commonly used parameterized MFs

MF Equation for µ(x) Parameters Shape

Triangular MF max
(
min

(
x−a
b−a ,

c−x
c−b

)
, 0
)

a, b, c

Trapezoidal MF max
(
min

(
x−a
b−a , 1,

d−x
d−c

)
, 0
)

a, b, d, c

Gaussian MF exp
(
− (x−c)2

2σ2

)
c, σ

Generalized bell MF 1

1+

∣∣∣x−cb ∣∣∣2b a, b,c

A fuzzy set is uniquely identified through its membership function. The α-cut of

fuzzy set A, Aα is usually used to describe membership functions in more details. Aα is

defined as:

Aα = {x ∈ X A(x) ≥ α}, (2.26)

where α ∈ [0, 1], A1 is called the core of A, and A0 is called the support of A. Figure 2.6

illustrates the α-cut, core, and support of a bell-shaped membership function.

As in classical crisp sets, the most basic operations for fuzzy sets are: union, inter-

section, and complement. In the following, let A and B be two fuzzy sets with membership

functions µA(x) and µB(x).

• The union of two fuzzy sets A and B, often called “join”, is a fuzzy set C characterized

by a membership function µC defined as:

µC(x) = µA∨B(x) = max(µA(x), µB(x)). (2.27)

24

Figure 2.6: Illustration of α-cut, core, and support of a bell-shaped membership function

• The intersection of two fuzzy sets A and B, also known as “meet”, is a fuzzy set C

characterized by a membership function µC defined as:

µC(x) = µA∧B(x) = min(µA(x), µB(x)). (2.28)

• The complement of fuzzy set A, denoted by ¬A is defined as:

µ¬A(x) = 1− µA(x). (2.29)

The physical interpretation of the above fuzzy set operators relates to the linguistic concepts

of OR, AND, and NOT. For instance, if the fuzzy sets A and B describe the Y outhfulness

and Tallness of a person respectively, then applying the set operators leads to the following

statements:

• µA∨B(x) = the degree to which x is either “Young” or “Tall”;

• µA∧B(x) = the degree to which x is both “Young” and “Tall”;

• µ¬A(x) = the degree to which x is not “Young”.

We should emphasize here that, in addition to the definitions in (2.27), (2.28), and (2.29),

there are multiple ways to define fuzzy union, intersection, and complement. Most of the

25

TABLE 2.2

Most frequently used T-norms and T-conorms operators

T-norms

Minimum Tmin(a, b) = min(a, b) = a ∧ b
Algebraic product Tap(a, b) = ab

Bounded product Tbp(a, b) = 0 ∨ (a+ b− 1)

Drastic product Tdp(a, b) =

{ a if b = 1
b if a = 1
0 if a, b < 1

T-conorms

Maximum Tcmax(a, b) = max(a, b) = a ∨ b
Algebraic sum Tcas(a, b) = a+ b− ab
Bounded sum Tcbs(a, b) = 1 ∧ (a+ b)

Drastic sum Tcds(a, b) =

{ a if b = 0
b if a = 0
0 if a, b > 0

operators, except complement, fall under two categories. The first one, called T-norms,

is a class of fuzzy intersection operators [70] suitable to carry intersection, cartesian prod-

uct, and as we will see later, fuzzy implication. The second category of operators, called

T-conorms, is a class of fuzzy union operators [70] suitable to carry union and other ag-

gregation operations.

The most frequently used T-norms operators include Minimum, Algebraic product, Bounded

product, and Drastic product. Similarly, T-conorms operators include, Maximum, Algebraic

sum, Bounded sum, and Drastic sum. These operators are defined in table 2.2.

In addition to modeling union, intersection, and complement, fuzzy set theory em-

beds mechanisms to model compensatory operations, i.e., aggregation operators where a

high value in matching one criterion can compensate to some extent for a low value for

another criterion. In the following we list five examples of such operators.

1. Generalized mean: Let a1, a2, . . . , an be the degrees of satisfaction of n criteria.

The generalized mean is defined as:

hα(a1, a2, . . . , an) =
(aα1 + aα2 + . . .+ aαn

n

) 1
α
, (2.30)

where α is a fixed real number. For α = 1, hα implements the arithmetic average.

26

Similarly, when α = −1, hα is the harmonic average, and as α approaches 0, the

generalized mean converges to the geometric mean. All instantiations of the gener-

alized mean produce values between the minimum and maximum of the degrees of

satisfaction of the individual criteria.

2. Fuzzy hybrid operators: Fuzzy hybrid operators, combine different types of fuzzy

set operators into a single equation.

• Arithmetic hybrid operators

A
⊕
γ

B = (1− γ)(A ∩B) + γ(A ∪B), (2.31)

• Multiplicative hybrid operators

A
⊗
γ

B = (A ∩B)1−γ(A ∪B)γ . (2.32)

In (2.31) and (2.32), γ ∈ [0, 1] controls the amount of “mixing” of the union and

intersection components.

3. Zimmermann hybrid operator: is a hybrid operator for multi-criteria aggrega-

tion that was modeled after the compensatory nature of human aggregation. For

a1, a2, . . . , an degrees of satisfaction of n criteria, the Zimmermann hybrid operator is

defined as:

hγ(a1, a2, . . . , an) =

(
n∏
i=1

(ai)
δi

)1−γ(
1−

n∏
i=1

(1− ai)δi
)γ
, (2.33)

where γ ∈ [0, 1] is a mixing coefficient, and δi are weights associated with each criterion

ai, such that
∑n

i=1 δi = n.

4. Ordered Weighted Averaging Operator (OWA) [71]: Let {a1, a2 . . . , an} be

n degrees of satisfaction of a given criteria, and w = (w1, w2, . . . , wn)T be a weight

vector such that wi ∈ [0, 1] and
∑n

i=1wi = 1. Let a(j) indicate the sorted aj from

largest degree of satisfaction to the minmum (i.e., a(1) = max{a1, a2 . . . , an}). The

OWA operator is a mapping function, OWA : Rn → R defined as:

OWA(a1, a2 . . . , an) =

n∑
j=1

wja(j). (2.34)

27

5. Ordered Weighted Geometric Averaging Operator (OWGA) [72]: OWGA

is of similar form to OWA and is defined as:

OWGA(a1, a2 . . . , an) =
n∏
j=1

wja(j). (2.35)

2.2.2 Fuzzy Propositions

In fuzzy logic, a fuzzy proposition is defined as

p : X is A (2.36)

Where X receives values x from a universal set U and A is a fuzzy set on U . For example,

a proposition can be, “temperature is high”, or “patch is blue”. Each fuzzy proposition

has a degree of truth T (p) that is the membership degree of X = x in A, denoted by µA(x).

2.2.3 Fuzzy If-Then Rules

A fuzzy if-then rule is expressed as

if x is A then y is B (2.37)

where A and B are fuzzy sets on universes of discourse X and Y , respectively. The phrase

“x is A” is often called premise (or, antecedent), and the phrase “y is B”, is called conse-

quence. Fuzzy rules can have multiple antecedents and multiple consequences connected

with fuzzy operators. Examples of fuzzy if-then rules include:

• If a person is young then income level is low.

• If temperature is high then turn AC on.

• If time is day and sky is blue then weather is good. (notice the multiple antecedents)

• If pressure is high then volume is small and temperature is high. (notice the multiple

consequences)

Interpreting a fuzzy if-then rule involves two main steps. First, the antecedent part of the

rule is evaluated. This involves fuzzifying the input. The second step consists of applying

28

the results of the antecedent expression to the consequence using fuzzy implication [73]. In

particular, as defined by Ramot et al. [74], a rule represents a fuzzy implication relation be-

tween unconditional fuzzy propositions p and q, where proposition p is the phrase “x is A”,

and q is the phrase “y is B”. For instance, rule (2.37) combines the fuzzy propositions (p,

q) into a logical implication denoted by p→ q, which is sometimes abbreviated as A→ B.

The implication is in essence a fuzzy relation R between p and q on the product space

X × Y . Formally,

R = A→ B = A×B =

∫
X×Y

µA(x) ? µB(y)/(x, y)1 (2.38)

where ? is a T-norm operator and A × B is used to represent the fuzzy relation R. R

has a membership function denoted µA→B(x, y) that represents the degree of truth of the

implication p → q when X = s and Y = y. In the literature, the most commonly used

implication operators are the T-norms “min” and “algebraic product”. In this case, (2.38)

can be written as:

µA→B(x, y) =

∫
X×Y

µA(x) ∧ µB(y)/(x, y) = min[µA(x), µB(y)] (2.39)

or,

µA→B(x, y) =

∫
X×Y

µA(x) · µB(y)/(x, y) = µA(x) · µB(y) (2.40)

2.2.4 Fuzzy Reasoning

Fuzzy Reasoning is “an inference procedure that derives conclusions from a set of

fuzzy if-then rules and known facts” [2, 70]. The inference is carried using the Generalized

Modus Ponens rule [4, 70], which is given by the following scheme

premise if x is A then y is B

fact x is A′

consequence y is B′

1The notation
∫
X
µ(x)/x stands for the union of membership grades, and “/” stands for a marker and

does not imply division.

29

The premise part is a fuzzy rule as defined in (2.37), A and B are fuzzy sets on the universes

of discourse X and Y . The fact is a fuzzy proposition and A′ is in turn a fuzzy set on X. The

consequence part B′ can be derived using the compositional rule of inference introduced by

Zadeh in 1973 [4]. B′ is determined as a composition of the fact and the fuzzy implication

operator. Specifically,

B′ = A′ ◦ (A→ B) (2.41)

or, equivalently,

µB′(y) = maxx(min[µA′(x), µA→B(x, y)]) (2.42)

Using (2.39), (2.42) can be rewritten as,

µB′(y) = maxx(min[µA′(x),min[µA(x), µB(y)]) (2.43)

Further simplification of (2.43) yields:

µB′(y) = min(maxx(min[µA′(x), µA(x)]), µB(y)) (2.44)

The quantity maxx(min[µA′(x), µA(x)]) is known in the literture as rule firing strength.

To summarize, fuzzy reasoning involves the following 3 main steps:

1. Start by computing the proposition degree of truth, i.e. evaluate min[µA′(x), µA(x)];

2. Compute the rule firing strength, or as pointed by Jang [70], the degree of belief for

the antecedent part;

3. Compute the degree of belief of the consequent part by applying the “min” operator.

To better understand the fuzzy reasoning process, we analyze a simple generic ex-

ample that is based on the following fuzzy if-then rule

if x is A then y is B (2.45)

In (2.45), A and B are fuzzy sets on the universes of discourse X, and Y . Given the fact

x is A′, we want to evaluate rule (2.45) using fuzzy reasoning process defined by equation

(2.43). This process is illustrated in Figure 2.7. First we compute the rule firing strength,

maxx(min(µA′1(x), µA(x))). Then we infer the fuzzy set B′ as B clipped by the rule firing

strength.

30

Figure 2.7: Illustration of the fuzzy reasoning process

2.3 Fuzzy Inference

Fuzzy inference is a powerful modeling framework that can handle computing with

knowledge uncertainty and measurements imprecision effectively [2]. Fuzzy Inference is

based on the concepts of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning. It per-

forms a non-linear mapping from an input space to an output space by deriving conclusions

from a set of fuzzy if-then rules and known facts [3]. Fuzzy Inference has been successfully

applied to a wide range of problems, such as control [4–14], time series prediction [75], pat-

tern recognition [20], and more recently classifier fusion [23]. Mamdani [48] and Sugeno [49]

are the two commonly used fuzzy inference systems.

2.3.1 Mamdani Fuzzy Inference System

A Mamdani fuzzy inference system is an effective computing framework [48,76] based

on fuzzy reasoning. This type of inference systems can be totally defined by means of a

fuzzy rule base (FRB) composed of a union of if-then fuzzy rules.

For an input vector x = {xj | j = 1, . . . , D}, a typical Mamdani-style fuzzy rule, Ri, has

the following form:

Ri : If x1 is Ai1 and x2 is Ai2, . . . , and xD is AiD, then oi is Ci. (2.46)

In (2.46) Ri, i = 1, 2, . . . , r, is the ith fuzzy rule of the FRB, Aij is a fuzzy set associated

with the jth input xj , and Ci is the fuzzy set describing the output of the ith rule. These

fuzzy sets consist of linguistic labels characterized by parameterized membership functions.

31

The FRB is the union of all rules, i.e.,

FRB =

r⋃
i=1

Ri. (2.47)

Figure 2.8 is a graphical representation of a two-rule Mamdani fuzzy inference system

and how it derives the output z when subject to a crisp input x = {xj |j = 1, . . . , D}. The

inference starts by fuzzification of x. Fuzzifcation assigns a membership degree to each

input dimension in the rules input fuzzy sets. As shown in in Figure 2.8, x activates the

ith input fuzzy set of the jth rule by a degree of truth wij . Next, an implication process

is executed resulting in the activation of the rules’ output with different degrees. In this

example, we use a simple min operator, and the output of rule Rj will be activated by a

degree wj = mink=1,...,Dwkj . Next, using a simple max operator, the 2 output fuzzy sets

are aggregated to generate one output fuzzy set. Finally, the output set is defuzzified (e.g.

using its centroid) to generate a final crisp output value.

Figure 2.8: Illustration of Mamdani fuzzy inference with 2 rules and D inputs.

The system in Figure 2.8 implements a nonlinear mapping from its input space to an

output space. Each fuzzy rule describes a local context in which the mapping is achieved.

The input and output membership functions can be designed by leveraging expert knowledge

(this practice is common in control problems), or can be learned directly from the data.

32

Specifically, labeled training data can be used to learn the FRB and the parameters of

their membership functions. Typically, grid-based or clustering-based algorithms are used

to partition the input space [70]. Each cluster will be represented by one fuzzy rule that

describes a local context. Input membership functions will be generated based on the

statistics of the input features within each context. Output membership functions can be

generated by considering the distributions of labels within each context [23].

2.3.2 Sugeno Fuzzy Inference System

The Sugeno fuzzy model [49] was the first attempt at learning fuzzy rules from the

training data. Similar to Mamdani system, the Sugeno fuzzy inference system is defined

by means of a fuzzy rule base. However, unlike Mamdani rules, a Sugeno rule does not use

fuzzy sets to describe the consequent part. Instead, it uses a crisp function f() to compute

the output. A typical Sugeno rule is defined as following

Ri : If x1 is Ai1 and x2 is Ai2, . . . , and xD is AiD, then oi = f(x1, x2, . . . , xD). (2.48)

where Ri, i = 1, 2, . . . , r, is the ith Sugeno fuzzy rule, Aij is a fuzzy set associated with the

jth input xj . Typically, f() is polynomial in the input variables x1, . . . , xD. In this case

(2.48) can be rewritten as:

Ri : If x1 is Ai1 and x2 is Ai2, . . . , and xD is AiD, then oi = bi0 +
D∑
k=1

bik · xk. (2.49)

where bi0, ..., b
i
D are the polynomial coefficients. When the polynomial coefficients bi are first

order, The Sugeno fuzzy model is called first order, and zero order when the polynomial

coefficients are zero order.

The choice of a polynomial function makes the Sugeno method computationally effective and

works well with optimization and adaptive techniques. This made Sugeno style inference

very attractive in control problems, particularly for dynamic nonlinear systems [77].

Figure 2.9 illustrates the Sugeno fuzzy inference procedure with 2 rules. The premise

part is evaluated as in the the Mamdani system. Every rule Ri is activated with a degree

33

wi, firing strength. The output of every rule is a crisp value, o1 and o2, the overall output

of the system is obtained by taking the weighted average of rules’ outputs.

Figure 2.9: Illustration of Sugeno fuzzy inference with 2 rules and D inputs.

2.3.3 ANFIS: Adaptive Neuro-Fuzzy Inference System

The Adaptive Neuro-Fuzzy Inference System (ANFIS) [50] is a universal approxi-

mator that combines the learning and modeling power of neural networks and fuzzy logic

into an adaptive inference system. Neural network deals with imprecise data by training,

while fuzzy logic can deal with the uncertainty of human cognition. ANFIS offers an alter-

native to rule identification. The Mamdani and Sugeno fuzzy system identify rules based

on intuition. ANFIS, in contrast, can jointly learn the optimal input space partition and

the optimal output parameters through optimization. ANFIS is a hybrid intelligent system

which implements a Sugeno fuzzy inference system and provides a systematic approach to

generate fuzzy rules from a given input-output dataset. Typically, ANFIS is structred in a

feedforward neural network that contains five layers. Figure 2.10 is a graphical representa-

tion of an ANFIS system with two Sugeno style rules and 2 inputs, given by

R1 : If x1 is M1
1 and x2 is M2

1 then f1 = p1x1 + q1x2 + r1.

R2 : If x1 is M1
2 and x2 is M2

2 then f2 = p2x1 + q2x2 + r2.

(2.50)

34

where Mk
j is a fuzzy set associated with the jth input of rule k, and {pk, qk, rk} are the

consequent parameters of the kth fuzzy rule. Nodes of same layers have similar functions.

Figure 2.10: Architecture of an ANFIS system with two-input and two rules.

We denote the output of the ith node in layer l as Ol,i

Layer 1 known as the fuzzification layer, and is adaptive. It calculates the degree to which

a given input satisfies a fuzzy set M . Every node evaluates the membership degree

of an input in the fuzzy set Mk
j of membership function µMk

j
. Generally, µMk

j
is a

parameterized membership function (MF), for example Gaussian MF, where

µMk
j
(x) = exp(

−(x− ckj)2

2σkj2
), (2.51)

In (2.51) ckj and σkj are the mean and variance of the Gaussian function, and are

referred to as the premise parameters.

Layer 2 is a fixed layer where every node computes the firing strength of a rule. The

output is the product of all incoming inputs.

O2,i = wi =

2∏
j=1

µM i
j
(xj), (2.52)

Layer 3 is called “normalized firing strength”. It calculates the ratio of a rule’s firing

strength to the sum of all rules’ firing strengths.

O3,i = wi =
wi∑r
j=1wj

, (2.53)

where r is the number rules.

35

Layer 4 is an adaptive layer, it calculates each rule’s output according to (2.50).

O4,i = wifi = wi(pix1 + qix2 + ri), (2.54)

Layer 5 is a fixed layer, it computes the overall output which is the summation of all

incoming signals.

O5,i =
∑
i

wifi =
∑
i

wi(pix1 + qix2 + ri), (2.55)

In the following, we assume that we have N D dimensional training observations

{x1, . . . ,xN} with desired output T = {tj |j = 1, . . . , N}. ANFIS is devised to learn its

parameters from training data. This process typically involves two step. 1) A structure

identification and initialization step, and 2) a parameters optimization step. These two

steps are described below.

1. Model structure identification and initialization: This step involves finding

an optimal partition of the input space and initializing the fuzzy if-then rules. This

task can be achieved using input space partitioning method as in the Mamdani FIS.

However, unlike Mamdani inference, ANFIS optimizes the parameters of the fuzzy

sets M j
k . Thus, we need to use parameterized membership functions that are differen-

tiable. Typically, Gaussian membership function is used. This MF can be completely

determined by two scalar parameters (center c and width σ):

µMk
j
(x) = exp(

−(x− ckj)2

2σkj2
), (2.56)

Thus, identifying the structure of the ANFIS network is equivalent to:

(a) Partitioning the N D-dimensional training data into r clusters (i.e. rules). For

this step, standard clustering algorithms such as the FCM algorithm [60] can be

used.

(b) Initializing the premise parameters:

P =
{
cij , σ

i
j | i = 1, 2, · · · r; j = 1, · · · , D

}
36

Typically, ci is set to the center of the ith cluster, and

σij =
1

N
×

N∑
k=1, k*K

√
−(xkj − cij)2

2× log uik
,K =

{
k|uik = 1, k = 1, . . . , N

}
. (2.57)

In (2.57) xkj is the jth component of the kth observation, uik indicates the mem-

bership of observation xk in cluster i.

(c) Initializing the consequent parameters:

C = {pi, qi, ri| i = 1, 2, · · · r}

Typically, a least squares estimator is used to initialize Ci as follows:

Ci = (X TX)−1X TT . (2.58)

where X is the N×(D + 1) matrix of input training data right-padded with a

column vector of all 1’s. T is a column vector of the desired outputs. X T is the

matrix transpose of X .

2. Parameter Optimization: Once the structure of the network is defined and ini-

tialized, an optimization and fine-tuning step of the system parameters is executed.

the hybrid learning rule [50] based on alternating optimization to learn the opti-

mal premise and consequent parameters. During the network forward pass, premise

parameters are fixed and consequent parameters are updated using a least square

estimator (LSE). Then, the consequent parameter are fixed and Gradient descent is

used during back-propagation to optimize the premise parameters. These two steps

are alternated until the network converges to a target training error or a maximum

number of epochs is reached. A detailed description of the two main steps of the

hybrid learning is provided below.

• BackPropagation Learning Rule: In order to determine the update rule for

premise parameters, first, for the pth training pattern, we compute a squared

error measure commonly used in the backpropagation algorithm and defined as

Ep = (tp −Op)2, (2.59)

37

where tp is the desired output, and Op is the computed output of the network

when presented with training sample p. Before we continue with the derivation,

we want to point the reader’s attention that during the backward pass, the

consequents parameters are fixed and only the premise parameters are subject

to optimization.

The overall error measure of the network is given by

E =
N∑
p=1

Ep. (2.60)

To develop the gradient descent optimization on E, we compute the error rate

for the pth training and for each node output Ol,i. This error rate εl,i (1 ≤ l ≤ 5

indicates an ANFIS layer) is defined as follows

εl,i =
∂Ep
∂Ol,i

, l = 1, . . . , 4. (2.61)

The error rate at the output node is given as following

ε5,1 =
∂Ep
∂O5,1

=
∂Ep
∂Op

= −2(tp −Op). (2.62)

For non-output nodes (i.e. internal nodes, l < 5), we use the chain rule to derive

the error rate

εl,i =
∂Ep
∂Ol,i

=

Card(l+1)∑
h=1

∂Ep
∂Ol+1,h

∂Ol+1,h

∂Ol,i
, (2.63)

where Card(l + 1) refers the number of nodes at layer l + 1.

Next, we need to minimize the network error with respect to the premise param-

eters {ckj , σkj | 1 ≤ k ≤ r, 1 ≤ j ≤ D}. First, we compute the error rate with

respect to a generic parameter θ using

∂Ep
∂θ

=
∑
O∗∈S

∂Ep
∂O∗

∂O∗

∂θ
, (2.64)

where S is the set of nodes whose outputs depend on θ.

Given (2.60), we have

∂E

∂θ
=

N∑
p=1

∂Ep
∂θ

. (2.65)

38

The error rate for the premise parameters ckj and σkj can be computed using

∂Ep
∂ckj

=
∂Ep
∂O5

∂O5

∂O4

∂O4

∂O3

∂O3

∂O2

∂O2

∂O1

∂O1

∂ckj
. (2.66)

and,

∂Ep
∂σkj

=
∂Ep
∂O5

∂O5

∂O4

∂O4

∂O3

∂O3

∂O2

∂O2

∂O1

∂O1

∂σkj
. (2.67)

From (2.62), we have

∂Ep
∂O5

= −2(tp −Op). (2.68)

It is also straightforward to show that

∂O5

∂O4
=
∂(
∑r

i=1O4)

∂O4
= 1, (2.69)

and,

∂O4

∂O3
=
∂(fiwi)

∂(wi)
= fi = pix1 + qix2 + ri. (2.70)

Continuing the derivation, we have

∂O3

∂O2
=
∂wi
∂wi

=
∂
(

wi∑r
l=1 wl

)
∂wk

=

∑r
l=1wl − wk(∑r

l=1wl

)2 . (2.71)

Next we compute the derivative from layer 2 to layer 1

∂O2

∂O1
=

∂

(∏D
d=1 µM i

d
(xpd)

)
∂
(
µM i

j
(xpj)

) =

D∏
d=1,d 6=j

µM i
d(xpd)

. (2.72)

Finally, we have

∂O1

∂ckj
=

(xp,j − ckj)
σ2kj

× exp(−
(xp,j) − ckj)2

2σ2kj
). (2.73)

and,

∂O1

∂σkj
=

(xp,j − ckj)2

σ3kj
× exp(−

(xp,j) − ckj)2

2σ2kj
). (2.74)

Thus, the update equations for the parameters ckj and σkj are given by

4ckj = −η ∂E
∂ckj

, (2.75)

39

and,

4σkj = −η ∂E
∂σkj

, (2.76)

where η is a learning rate determined in a similar manner to that of standard

backpropagation algorithm [50].

Equations (2.75) and (2.76) can be used to update ckj and σkj parameters either

on-line, or in a batch mode. Next we develop the update rules for the consequents

parameters.

• LSE: The Least Squares Estimator (LSE) is used to minimise the squared error

||AB−T ||2, where A has the outputs of Layer 3, and B has the set of consequent

parameters subject of optimization. Initially, the parameters are identified using

(2.58). Then, in the subsequent forward passes the consequent parameters are

obtained using the pseudo-inverse of B, i.e.,

B̂ = (ATA)−1ATT , (2.77)

In this type of LSE problems, it may happen that (ATA) is a singular matrix.

To overcome this problem a recursive version of LSE can be used [70].

The derived update equations are used in an iterative algorithm that involves suc-

cessive updates of the premise and consequent parameters. The ANFIS learning

algorithm is summarized in Algorithm 2.3.

40

Algorithm 2.3 ANFIS Basic Learning Algorithm

Inputs: X : the set of training pattern.
T : the set of training labels.
η: the learning rate.
e: number of epochs.

Outputs: bij : the sets of consequent parameters.
cij: the set of membership functions’ centers (premise parameters).
σij : the set of membership functions’ widths (premise parameters).

Initialize bij using (2.58),
Initialize cij using FCM.
Initialize σij using (2.57).
repeat

Update bij using (2.77).
Update cij using (2.73).
Update σij using (2.74).

until parameters do not change significatively or number of epochs is exceeded
return bij , cij , σij

41

CHAPTER 3

MULTIPLE INSTANCE FUZZY LOGIC

In this chapter, we formalize Multiple Instance Fuzzy Logic (MIFL). MIFL is differ-

ent from traditional fuzzy logic in that it allows for an additional dimension of ambiguity

and it enables fuzzy reasoning with bags of instances instead of a single instance at a time.

We introduce multiple instance variations of fuzzy propositions, fuzzy if-then rules, and

fuzzy reasoning, which are the building blocks of our proposed framework. The following

formulation is inspired by the work of Jang et al. [70] on traditional1 fuzzy logic.

3.1 Multiple Instance Fuzzy Propositions

Recall that in traditional fuzzy logic, a fuzzy proposition can be written as

p : X is A (3.1)

where X receives values x from a universal set U and A is a fuzzy set on U . For example,

a proposition can be, “temperature is high”. In traditional fuzzy logic, to evaluate the

proposition p in (3.1), X is assigned a single value, say “temperature = 90”, this will lead

to “p : temperature = 90 is high”. This will work in most cases even if X is a vector in Rn.

In fact, proposition (3.1) is valid as long as X is expressed by a single instance. However,

for multiple instance (MI) data, the universe of discourse consists of bags of instances rather

than single instances and the proposition needs to be generalized to a set of instances. Let

Bi be a bag of Mi instances. The jth instance, xij , is a D dimensional vector with elements

1In the remaining of this proposal previously presented fuzzy logic and fuzzy inference material will be
referred to as “traditional”.

42

xijk corresponding to features, i.e.,

Bi =

xi11 xi12 . . . xi1D

xi21 xi22 . . . xi2D
...

...
. . .

...

xiMi1 xiMi2 . . . xiMiD

. (3.2)

Note that the number of instances can vary between bags (Mi depends on Bi). A bag is

labeled positive if at least one of its instances is positive, and negative if all of its instances

are negative.

Definition 3.1.1. Let B = {Bi|i = 1, . . . , N} be the set of all bags. The universe of

discourse U is the set of all bags of a given problem (U = B). For a given instance xij of a

given bag Bi, we define a “proposition instance” as:

pj : xij is A, (3.3)

Definition 3.1.2. We define a multiple instance fuzzy proposition as the disjunction of

proposition instances, i.e.,

q : Bi is A⇐⇒ q :

Mi∨
j=1

pj ≡
Mi∨
j=1

(xij is A) (3.4)

In (3.4) “
∨

” is a T-conorm (maximum, algebraic sum, bounded sum, etc.), as defined

in [78].

The proposition instance (“xij is A”) in Definition 3.1.1 is evaluated as in (2.36),

and represents the degree of truth of the proposition on a single instance. Not only the bag

has different forms of expression (or instances), the proposition it self has different instances

of truth. It follows that the degree of truth of a multiple instance fuzzy proposition is a

combination of degrees of truth associated with the proposition instances. (3.4) is analogues

to fuzzy information fusion [79,80]. Fuzzy information fusion deals with merging uncertain

observations that are possibly generated by heterogeneous sources. Thus, it is possible to

43

view the combination of degrees of truth of multiple instances as a a fuzzy information

fusion process. In the following, we formalize our truth instances fusion process.

Let µ̃A(Bi) denote the degree of truth of a multiple instance fuzzy proposition. µ̃A(Bi)

indicates the “membership degree” of Bi in A . The expression in (3.4) can be simplified

further using the following theorem.

Theorem 3.1.3. Let B be a collection of M instances drawn form an instance space X,

and let A be a fuzzy set on X. The multiple instance proposition “q: B is A” is equivalent

to the following

q : B is A⇒ ∃x ∈ X | µ̃A(B) = µA(x) (3.5)

Note that x is not necessary an instance of B.

Proof. From (3.4), we have µ̃A(B) =
∨M
j=1 µA(xj), and we know that the T-conorm “

∨
”,

aggregation operator, is closed in [0, 1]. Thus, the aggregation of a given set of membership

grades remains in [0, 1]. It follows that µ̃A(B) =
∨M
j=1 µA(xj) ∈ [0, 1]. Assuming that the

fuzzy set A is normal and its membership function µA(x) is continuous, there exists x ∈ X

such that
M∨
j=1

µA(xj) = µA(x) (3.6)

Hence,
M∨
j=1

µA(xj) = µA(x) = µ̃A(B) (3.7)

If the T-conorm is carried using a max operator, then µ̃A(Bi) reduces to

µ̃A(Bi) = max{µA(xij), j = 1 . . .Mi} (3.8)

In (3.8), µ̃A(Bi) is the highest degree of truth associated with the proposition’s instances.

This formulation is inline with the standard MIL assumption [36, 39], which states that a

bag is positive if and only if one or more of its instances are positive. This relation will be

covered in more details when we introduce multiple instance fuzzy inference in chapter 4.

44

If we consider the example of the image classification task described in Section 1.1.

In this case, Bi is the image shown in Figure 1.1, and instances are the 12 patches (marked

by black squares). In this case, an example of a multiple instance proposition can be

q : image is blue⇐⇒ q :
12∨
j=1

patchj is blue. (3.9)

3.2 Multiple Instance Fuzzy If-Then Rules

Recall that in traditional fuzzy logic a fuzzy if-then rule is expressed as

if x is A then y is B (3.10)

where A and B are fuzzy sets on universes of discourse X and Y , respectively. As presented

in chapter 2, rule (3.10) combines the fuzzy propositions (p, q) into a logical implication

abbreviated as A→ B with membership function µA→B(x, y). The rule in (3.10) is defined

using a premise part that is a single instance traditional fuzzy proposition. Thus, it is not

suitable to carry implications on multiple instance problems. In the following, we introduce

our approach to multiple instance implication that will lead to the development of multiple

instance fuzzy if-then rules and multiple instance fuzzy reasoning.

3.2.1 Multiple Instance Fuzzy Implication

Definition 3.2.1. Similarly to traditional fuzzy if-then rules, we define a multiple instance

fuzzy rule as:

if Bi is A then y is C ⇐⇒ if

Mi∨
j=1

(xij is A) then y is C (3.11)

where A and C are fuzzy sets on the universes of discourse X and Y , respectively. Bi is a

bag of instances xij, and Mi is the number of instances.

The premise part of a multiple instance fuzzy rule (i.e.
∨Mi
j=1(xij is A)) is a multiple

instance proposition, whereas the consequence part is a traditional proposition. An example

rule is given as follows,

if image is blue then class is sky ⇐⇒ if

12∨
j=1

(patchj is blue) then class is sky (3.12)

45

As before, the multiple instance rule combines the premise and consequence parts into a

logical implication. However, since the premise part is a multiple instance proposition we

will refer to this new logical implication as multiple instance implication. It is a fuzzy

relation on the product space B × C (B: bags’ space). Formally,

R = A→ C = A× C =

∫
B×Y

µ̃A(Bi) ? µC(y)/(Bi, y) (3.13)

where ? is a T-norm and A× C is used to represent the fuzzy relation R.

Lemma 3.2.2. There exists a transformation that transforms a multiple instance fuzzy

implication to a traditional fuzzy implication.

Proof. Using theorem (3.1.3) we replace µ̃A(Bi) by µA(x) and rewrite (3.13) as

R = A→ C = A× C =

∫
X×Y

µA(x) ? µC(y)/(x, y) (3.14)

which is the expression of a traditional fuzzy relation.

Thus, multiple instance fuzzy implication can be carried using traditional fuzzy

implication. This result will be used when we develop multiple instance fuzzy reasoning in

the next section.

In (3.13), R has a membership function denoted µA→C(Bi, y) that represents the degree of

truth of the implication when B is equal to Bi and Y is equal to y. Using min and product

as implication operators, we have:

µA→C(Bi, y) =

∫
B×Y

µ̃A(Bi) ∧ µB(y)/(x, y) = min[µ̃A(Bi), µC(y)] (3.15)

and,

µA→C(Bi, y) =

∫
B×Y

µ̃A(Bi) · µC(y)/(x, y) = µ̃A(Bi) · µC(y) (3.16)

3.3 Multiple Instance Fuzzy Reasoning

Multiple instance fuzzy reasoning is needed when the universe of discourse U is a

“bag-space” (i.e. U = B), i.e., every element is a bag of instances rather than a single

instance. In this case, we define the Generalized Modus Ponens as

46

premise if Bi is A then y is C ⇐⇒ if
∨Mi
j=1(Xij is A) then y is C

fact Bi = {Xij}Mi
j=1 and Xi1 is A

′
1, Xi2 is A

′
2,. . . ,XiM is A′Mi

consequence y is C ′

A and {A′j}
Mi
i=j are fuzzy sets on X (the instances space), and C is a fuzzy set on Y . Using

the composition rule of inference, we determine C ′ using

C ′ = (

Mi∨
j=1

A′j) ◦ (A→ C) =

Mi∨
j=1

(A′j ◦ (A→ C)) (3.17)

and we have,

µC′(y) =

Mi∨
j=1

{maxx(min[µA′j (x), µA→C(x, y)])} (3.18)

Using min as implication operator, (3.18) is equivalent to

µC′(y) =

Mi∨
j=1

{maxx(min[µA′j (x),min(µA(x), µC(y))])} (3.19)

further simplification yields

µC′(y) =

Mi∨
j=1

{min[maxx(min[µA′j (x), µA(x)]), µC(y)]} (3.20)

which is equivalent to

µC′(y) = min
[Mi∨
j=1

{maxx(min[µA′j (x), µA(x)])}, µC(y)
]

(3.21)

For instance, if the “max” aggregation operator is used, we have

µC′(y) = min
[
max{maxx(min[µA′j (x), µA(x)])}Mi

j=1, µC(y)
]

(3.22)

The term “max{maxx(min[µA′j (x), µA(x)])}Mi
j=1” in (3.22) can be interpreted as the rule

firing strength [70].

To summarize, the proposed multiple instance fuzzy reasoning involves the following

3 main steps:

1. Compute the multiple instance proposition degree of truth, i.e. evaluate

max{µA′(xij), j = 1 . . .Mi};

2. Compute the rule firing strength, or the degree of belief for the antecedent part;

3. Compute the degree of belief of the consequent part by applying the “min” operator.

47

3.4 Illustrative Example

Let B be a bag of three instances x1, x2, and x3. Let A′1, A
′
2, A

′
3 be the fuzzy sets

associated with the instances. Given this fact we want to evaluate the following multiple

instance rule

if B is A then y is C ⇐⇒ if
3∨
j=1

(xi is A) then y is C (3.23)

where A and C are fuzzy sets, defined as before. Figure 3.1 illustrates the proposed multiple

instance inference process. To compute the rule firing strength we need to evaluate

µC′(y) = min[max{maxx(min[µA′j (x), µA(x)])}3j=1, µC(y)] (3.24)

First, we compute the truth instances (the shaded area in the premise part of Figure 3.1).

Figure 3.1: Illustration of the multiple instance inference process using the
“max” aggregation operator. Legend: (1) = maxx(min(µA′1(x), µA(x))),
(2) = maxx(min(µA′2(x), µA(x))), (3) = maxx(min(µA′3(x), µA(x))), (4) =

max{maxx(min[µA′j (x), µA(x)])}3j=1, (5) = µC′(y)

Then all truth instances are aggregated using the “max” operator, i.e. we select the highest

truth instance as the rule firing strength. Finally the membership function (MF), µC′(y),

for the consequent part is computed as the MF of C clipped by the rule firing strength.

3.5 Discussion

Equation (3.21) defines fuzzy reasoning with bags of instances. To reach this goal, we

have proposed multiple instance variations of fuzzy logic building blocks; i.e. propositions,

48

if-then rules, implications, and Generalized Modus Ponens. Our generalization was derived

using a thoroughly and abstract mathematical formulation. The new findings will be used to

build more advanced and complex fuzzy inference systems as will be shown in the remaining

chapters. It is also worth noting that multiple instance fuzzy logic is a generalization of fuzzy

logic, in fact if we set the number of instances in each bag to 1, all presented approaches

will reduce to those of traditional fuzzy logic.

The difference between our multiple instance framework and fuzzy logic may seem subtle,

but we think there is an important contribution to point out. In his short abstract published

in 2008, titled “Is there a need for fuzzy logic?” [81], Zadeh wrote: “Fuzzy logic is not

fuzzy. Basically, fuzzy logic is a precise logic of imprecision and approximate reasoning”.

We think that fuzzy logic is powerful at modeling knowledge uncertainty and measurements

imprecision. More generally, it is one of the best frameworks to model vagueness. However,

in addition to uncertainty and imprecision, there is a third vagueness concept that fuzzy

logic does not address quiet well, yet. This vagueness concept is due to the ambiguity that

arises when the data have multiple forms of expression, this is the case for multiple instance

problems. Our framework deals with ambiguity by introducing the novel concept of truth

instances: when carrying reasoning using multiple instance fuzzy logic, a proposition will not

only have one degree of truth, it will have multiple degrees of truth, we call truth instances.

Thus, effectively encoding the third vagueness component of ambiguity and increasing the

expressive power of traditional fuzzy logic.

3.6 Related Work

Zadeh introduced fuzzy sets in 1965 [69] and fuzzy logic in 1973 [4]. After that, Mam-

dani and Sugeno followed with substantial additions [48, 49, 76]. Since then, many other

developments and extensions to the fuzzy theory have been proposed. Most of the contribu-

tions can be classified under three categories: 1) contributions that propose variations and

generalizations of fuzzy sets, 2) contributions that develop new fuzzy logic frameworks, and

3) contributions that propose new fuzzy inference schemes. For instance, Yager introduced

49

a new type of fuzzy sets known as fuzzy multisets (fuzzy bags) [82], Atanassov proposed in-

tuitionistic fuzzy sets [83], and more recently Torra proposed hesitant fuzzy sets [84]. These

approaches can be classified under the first category. Work that can be classified under the

second category, include complex fuzzy logic [74, 85, 86] and complex fuzzy reasoning [87].

Under the third category, we can cite the contribution of Kaburlasos et al. [88] that con-

sisted of an extension of fuzzy inference systems based on lattice theory.

To the best of our knowledge, there have been no proposed variations that aimed at refor-

mulating fuzzy logic to support reasoning with multiple instances at the same time. The

only previous work, that have a mention of fuzzy and MIL in the same framework, was pre-

sented by Mahnot et al. at [89]. They used fuzzy operators to compute diverse density [39].

This is by no means a reformulation of fuzzy logic to solve the multiple instance problem.

While there are no directly related approaches to our work, most methods have something

in common as they aim to extend fuzzy logic and broader its domain of applicability. For

instance, fuzzy multisets [82] may seem to be related to our approach because it utilizes

bags of elements to represent objects. A fuzzy multiset can be defined as a fuzzy set where

multiple occurrences of an element are permitted. Within our framework it can be used to

represent the results of bags’ fuzzification; i.e., the membership degrees of each instance in

a given fuzzy set. Also aggregations operators proposed for fuzzy multisets [90] could be

used in our proposed extension.

In fact, other proposed extensions of fuzzy sets could be adapted to the context of multiple

instance fuzzy logic. For example, complex fuzzy sets [85] or complex fuzzy classes [91] are

based on fuzzy sets characterized by complex-valued membership functions. Because of the

two dimensionality nature of a complex fuzzy set, one can think of using it to carry rea-

soning with bags containing two instances at most. This later formulation is not necessary

obvious and is worth investigating in future research projects.

50

3.7 Chapter Summary

In this chapter, we have introduced a new approach for multiple instance fuzzy

logic. This approach extends traditional fuzzy logic to enable reasoning with bags rather

than single instances. In particular, we have introduced multiple instance variations of

fuzzy propositions, fuzzy implication, fuzzy if-then rules, and fuzzy reasoning. We have

also discussed the novel concept of truth instances. In the next chapter, we will use the

presented building blocks to derive new styles of fuzzy inference systems.

51

CHAPTER 4

MULTIPLE INSTANCE FUZZY INFERENCE

In this chapter, we introduce our approach to perform fuzzy inference with multiple

instances. More specifically, we introduce two multiple instance fuzzy inference styles. The

first one, the Multiple Instance Mamdani style fuzzy inference (MI-Mamdani), extends the

traditional Mamdani style inference to account for multiple instances. The second one,

the Multiple Instance Sugeno style fuzzy inference (MI-Sugeno), extends the Sugeno type

inference.

4.1 Multiple Instance Mamdani Style Fuzzy Inference

The traditional Mamdani inference system outlined in chapter 2 is limited to reason

with individual instances. First, the system’s input is an individual instance. Second, the

rules describe fuzzy regions within the instances’s space. Third, the output of the system

corresponds to the fuzzy inference using the D dimensions of a single instance. Fourth,

labels of the individual instances are required to learn the parameters of the system.

In MIL, as outlined in Section 2.1, objects are described by bags of instances, and labels are

available only at the bag level. Thus, the standard Mamdani style fuzzy inference system

cannot be used within the MIL framework.

In the following, we propose a generalization of Mamdani fuzzy inference to extend it to

reason with bags of instances. Similar to the traditional Mamdani system, we formulate the

proposed multiple instance Mamdani system (MI-Mamdani) by means of multiple instance

fuzzy if-then rules that can evaluate bags. As introduced in chapter 3, multiple instance

52

fuzzy rules can be expressed using:

Ri(Bp) :

Mp∨
j=1

(If xpj1 is Ai1 and xpj2 is Ai2, . . . , and xpjD is AiD), then oi is Ci. (4.1)

where Bp is a bag of Mp instances as defined in (3.2). In (4.1), Aik is a fuzzy set associated

with the kth instance feature, and “
∨

” is a T-conorm. The output of the rule is described

by the fuzzy set Ci.

In multiple instance fuzzy reasoning, the antecedent part,
∨Mp

j=1(If xpj1 is Ai1 . . . , and xpjD is AiD),

evaluates the degree to which the antecedent fuzzy sets describe each instance separately,

then all responses are combined into a rule firing strength using a T-conorm. Using this

inference style, the rule will be fired if and only if there exist at least one instance in the

bag that can be described by means of the antecedent fuzzy sets.

The reason behind using a T-conorm for combining individual instances’ responses,

goes back to the standard MIL assumption [36, 39] which states that each instance has a

hidden class label, and under this assumption, an example is positive if and only if one

or more of its instances are positive. Thus, the bag-level class label is determined by the

disjunction of the instance-level class labels. In the context of multiple instance inference, if

a fuzzy rule describes a local region of the instances space that happens to be a positive MIL

concept, and if the rule’s output is high, the multiple instance fuzzy rule will be capable of

classifying positive bags correctly. This is because at least one instance from each positive

bag will activate the rule, leading to a high output (positive label). On the other hand,

negative bags will not be able to significantly activate any rule.

Figure 4.1 illustrates the proposed MI-Mamdani system and its fuzzy inference mechanism

to derive the output z in response to a bag of instances for the simple case of two rules. As

it can be seen, the premise part of the rules evaluates all the bag’s instances simultaneously.

The inference starts by the fuzzification of instances xpm of a given bag Bp. Fuzzification

assigns a membership degree to each input instance dimension in the rules input fuzzy sets.

In Figure 4.1, instance xpm activates the ith input fuzzy set of the jth rule by a degree

of truth wmij . Next, an implication process is executed to combine the activations of

the instances within the bag resulting in the activation of the rules’ output with different

53

Figure 4.1: Illustration of the proposed multiple instance Mamdani fuzzy inference system.

degrees. In this example, we use a simple min operator, and the output of rule Rj will

be partially activated by a degree wmj = mink=1,...,Dwmkj . The wmj (truth instances) are

combined in the premise part using the max T-conorm, resulting in the activation of rule Rj

by a degree wj = maxm=1,...,Mwmj . Next, using a simple max operator, the 2 output fuzzy

sets are aggregated to generate one output fuzzy set. Finally, the output set is defuzziffied

(e.g., using its centroid) to generate a final crisp output value.

The MI-Mamdani inference system allows the use of different T-conorms on different rules.

The choice of the appropriate function should depend on the application and the purpose

of the rule. More specifically: should the rule be activated if at least one instance of the

bag is within the target concept? Or should it be activated only if at least a fixed subset of

the instances are within the target concept?

Finally, we should note here that if we set Mp to 1 (i.e., constraint all bags to

include only one instance), (4.1) reduces to a traditional fuzzy if-then rule commonly used

in Mamdani FIS. Thus, the proposed MI-Mamdani fuzzy inference system, can be considered

as a generalization of the traditional Mamdani system.

54

4.2 Multiple Instance Sugeno Style Fuzzy Inference

The rule in (2.49) is a traditional fuzzy if-then rule. As we showed in chapter 3,

this type of rules is not suitable to solve multiple instance problems. To take advantage

of the Sugeno inference and apply it to problems where objects are described by multiple

instances, we propose the multiple instance Sugeno inference (MI-Sugeno) system.

Similar to the MI-Mamdani system introduced in Section 4.1, the MI-Sugeno system uses

multiple instance fuzzy if-then rules where the consequent part is described by means of a

function C that maps a bag of instances to a crisp numerical value. Specificaly, we define

a multiple instance sugeno rule as:

Ri(Bp) :

Mp∨
j=1

(If xpj1 is Ai1, . . . , and xpjD is AiD), then oi = C(xp1 · bi, xp2 · bi, . . . ,xpMp
· bi) (4.2)

In (4.2), bi = bi0, ..., b
i
D is a set of polynomial coefficients. Similar to the traditional Sugeno

fuzzy model, when the polynomial coefficients bi are first order, our MI-Sugeno fuzzy model

is called first order, and zero order when the polynomial coefficients are zero order.

The premise part of the rule is evaluated as in the MI-Mamdani case. To evaluate the

consequent part, first the linear response of each instance is computed, i.e. xpj ·bi. Then a

function C is used to compute the final output by combining the instances’ response. Many

functions could be used and the choice should be domain-specfic. For instance, the “max”

function has been used in many applications.

The consequent part of the proposed MI-Sugeno style inference system is inspired by the

work of Ray and Page on multiple instance regression [61]. In their work, the authors

proposed a regression framework for predicting bags’ labels. This formulation allows the

linear coefficients bi and the parameters of the combining function C to be learned using

optimazation techniques.

Figure 4.2 illustrates the proposed MI-Sugeno system with 2 rules. The premise part of

this system is equivalent to MI-Mandani (Figure 4.1). Its task is to evaluate each multiple

instance rule firing strength. In the consequent part, the output of each rule, o1 and o2, are

crisp values obtained as output of the combining function C. As in the traditional Sugeno

fuzzy inference system, the overall output of the system is obtained by taking the weighted

55

average of the rules’ outputs.

Figure 4.2: Illustration of the proposed multiple instance Sugeno fuzzy inference system

Similar to traditional fuzzy inference, the premise part of a multiple instance rule

defines a local fuzzy region within the instance space, and the consequent part describes

the characteristics of the system’s output within that region. More specifically, in multiple

instance learning (MIL) problems, a local region describes a positive concept, and the output

of a rule represents the degree of “positivity” of the instances in that local region.

4.3 Learning the Structure and Parameters of Multiple Instance Fuzzy Infer-

ence Systems

The most important task in fuzzy inference with both MI-Mamdani and MI-Sugeno

systems is the identification and learning of the system’s structure and its parameters.

Structure identification consist of identifying the number of multiple instance if-then fuzzy

rules, identifying the membership functions (MFs) of the premise and consequent parts

(i.e. Gaussian MFs or Trapezoidal MFs?), and also the T-conorms (min, max, product

. . .) involved in the multiple instance fuzzy reasoning. After structure, the parameters of

the membership functions need to be learned. For example, for a Gaussian MF we need

56

to specify the mean and the standard deviation. In addition, in the case of an MI-Sugeno

system we need to initialize the polynomial coefficients.

The system’s structure and parameters identification rely mainly on determining the char-

acteristics of the local regions within the instances’ space that characterize positive bags.

In traditional (i.e., single instance representation) fuzzy modeling, this task is achieved

through input space partitioning, typically using grid partitioning and clustering [70]. In

multiple instance inference systems, we need to identify regions that are defined by positive

instances, referred to as positive concepts. Since in MIL, data is labeled at the bag level

and not at the instance level, traditional space partitioning methods could not be used to

learn the multiple instance fuzzy rules.

In the following, we describe our proposed approach to identify multiple instance fuzzy rules

based on a fuzzy clustering algorithm of multiple instance (FCMI) data [59]. FCMI identi-

fies target concepts that correspond to dense regions in the instance space that include as

many positive instances as possible and as few negative instances as possible. In particular,

we define the permise parts of the MI-FIS rules as local contexts within the input space

(instances’ space) that coincide with the identified target concepts.

Assume that we have N training bags, B = {Bi|i = 1, . . . , N}, and the set of their corre-

sponding labels, T = {ti|i = 1, . . . , N}. Let T = {C1, . . . , Cr}, be r target concept points.

Each target concept Ci is characterized by a center ci ∈ RD and a feature relevance scale

vector si ∈ RD. The FCMI algorithm maximizes a fuzzy Multiple Concept Diverse Density

(MDD) measure [59] defined as:

MDD(T,U) =
N∏
n=1

r∏
i=1

[
Pr(Ci|Bn)

]umin . (4.3)

In (4.8), U = [uin] is a membership matrix such that each bag Bn is assigned to target

concept Ci with membership degree uin, and m is a fuzzifier that controls the fuzziness of

the partitions as in the FCM [60]. Pr(Ci|Bn) is the probability that Ci is a target concept

given Bn, and defined as

Pr(Ci|Bn) =

{
1−

∏M
k=1(1− Pr(xnk ∈ Ci)) if lable(Bn) = 1,∏M

k=1(1− Pr(xnk ∈ Ci)) if lable(Bn) = 0
(4.4)

57

where label(Bn) is the label of bag and xnk is the kth instance of bag Bn. Pr(Xnk ∈ Ci) is

regarded as the similarity of instance Xnk to target concept Ci, and its computed using

Pr(Xnk ∈ Ci) = e−(
∑D
j=1 sij(xnkj−cij)2) (4.5)

In (4.5), sij is a scaling parameter that weighs the role of feature j in target concept i [39].

Let {Copti = {copti , sopti }}ri=1 be the optimal target concepts identified by FCMI that max-

imizes (4.8). Let T = {C1, . . . , Cr}, be the r target concept points. For simplicity, we

assume that the MFs of the r multiple instance rules are Gaussian MFs, with centers cij ,

i = 1, . . . , r, and j = 1, . . . , D. For a given multiple instance rule Ri, the centers of the

premise part’s MFs are the centers of the target concepts, i.e.,

cij = Cij , for j = 1, . . . , D. (4.6)

The diverse density of each concept decreases gradually as we move away from Ci. In-

tuitively, the width σij of a given concept Ci along dimension j can be set to the radius

beyond which MDD is lower than a diverse density threshold τi. Formally, the standard

deviations, {σij}, can be computed as following:

σij = min
Z∈I

{
|Cij − Zj | s.t. MDDi(Z) < τi

}
, (4.7)

In (4.7), I is the set of all instances, Z is a D dimensional vector and τi is constant, typically

τi =
1

2
MDDi(Ci) =

N∏
n=1

[
Pr(Ci|Bn)

]umin . (4.8)

To identify the rules’ consequent parts we can employ one of the following two

strategies:

1. The consequents parts of multiple instance fuzzy rules are set to the singleton fuzzy

set {1}. Using this strategy, positive bags that activate a rule, lead to rule’s output

of 1. This is inline with standard MIL assumption given that rules describe positive

concepts.

2. Treat concepts as regular contexts. For each multiple instance fuzzy rule, its con-

sequents fuzzy sets’ parameters are identified by considering the ratio of positive to

58

negative instances within the context described by the multiple instance fuzzy rule.

For example, if a context has 90% instances from positive bags, then a consequent

MF can be set to a Gaussian with center equals to 0.9 and a predefined standard

deviation ε.

4.3.1 Illustrative Example

To illustrate the proposed multiple instance fuzzy rules and the ability to learn

from data without instance-level labels, we use a simple synthetic dataset. The data were

generated from a distribution of two positive contexts, marked with squares in Figure 4.3.

From each positive concept we generated 50 bags. We also generated 50 negative bags

randomly from non concept regions. The number of instances within each bag is a random

number between 2 and 10 instances. The data is shown in Figure 4.3. Instances from

negative bags are shown as “.”, and instances from positive bags are shown as “+” or “M”

depending on the underlying concept. In Figure 4.3, we highlight one bag from Concept

1 by circling all of its instances. As it can be seen, one instance is close to a dense region

of a positive concept while the other instances are scattered around. We note here that

the centers of concepts in Figure 4.3 are shown just for the purpose of explanation and

validation. We do not use this information as it is not available.

First, we run FCMI [59] to identify target concepts. These points are then used to identify

the parameters of the fuzzy rules. Next, for the rules’ consequents identification, we set the

output MFs to the singleton fuzzy set {1}. This will ensure that bags that have instances

within the positive concepts will get assigned high output. Finally, all the rules’ parameters

are used within an MI-Mamdani fuzzy inference system composed of two multiple instance

fuzzy rules, each with two inputs and one output. A graphical representation of this system

is shown in Figure 4.4. It can be seen that the centers of MFs identified using FCMI match

the centers of positive concepts shown in Figure 4.3. To test the system, we generate 3 bags

of instances: 2 positive bags and 1 negative bag. The instances of these bags are displayed

in Figure 4.5. The multiple instance fuzzy inference using the MI-Mamdani system of

59

Figure 4.3: Instances from positive and negative bags drawn from data that have 2 concepts.
Instances from negative bags are shown as “.”, and instances from positive bags are shown
as “+” or “M”. Instances from one sample positive bag are circled.

the 3 test bags is summarized in Figure 4.6. The inference starts by fuzzification of all

the instances at the same time, as illustrated in Figure 4.6a, then multiple instance fuzzy

implication process is executed resulting in the activation of the rules’ output with different

degrees (each degree of activation is a firing strength as defined in Section 3.3). Next, using

a simple max operator, the 2 output fuzzy sets are aggregated to generate one output fuzzy

set. Finally, the output set is defuzzified using its centroid weighted by the maximum rule

firing strength. The weighting ensures that negative bags that do not activate any rule will

always have a low output.

In addition, we notice that while both first and second bags are positive, the inference

process assigned a lower degree of belief to the second bag and as a consequence a lower

output value. This will not impact classification’s results as negative bags will not be able

to activate any of the rules with a significant degree. But it will rather give applications an

60

Figure 4.4: Illustration of MI-Mamdani fuzzy inference system learned using FCMI

Figure 4.5: Instances from 2 positive and 1 negative bag.

assessment about the confidence of the prediction.

61

(a) Inference process with the first positive bag .

(b) Inference process with the second positive bag.

(c) Inference process with the negative bag.

Figure 4.6: Multiple instance fuzzy inference using the learned MI-Mamdani system. The

level of the activation indicates the membership degree of a bag in a given concept (i.e.,

rule). The system defuzzified output is the final confidence value.

62

4.4 Chapter Summary

In this chapter, we used our multiple instance fuzzy logic framework to: 1) derive a

multiple instance Mamdani fuzzy inference style, and 2) derive a multiple instance Sugeno

fuzzy inference style. We have also presented a method to learn multiple instance rules from

data to solve MIL problems. The FCMI algorithm is used to extract concept points in the

instances’ space which are then transformed into multiple instance rules. This approach

is essentially based on intuition. Although premise and consequent parameters of the MI-

Mamdani and MI-Sugeno systems can be learned from data, the processes of identifying

both set of parameters are independent. In the next chapter, we introduce a neuro-fuzzy

architecture capable of learning from ambiguously labeled data without having to use FCMI

to identify multiple instance rules, and can jointly learn the set of the optimal premise and

consequent parameters using the backpropagation algorithm.

63

CHAPTER 5

MI-ANFIS: A MULTIPLE INSTANCE ADAPTIVE NEURO-FUZZY

ARCHITECTURE

In this chapter, we introduce an adaptive neuro-fuzzy architecture based on the

framework of multiple instance fuzzy logic, that is designed to handle reasoning with bags

of instances as input and capable of learning from ambiguously labeled data. The new

architecture called Multiple Instance-ANFIS (MI-ANFIS), is an extension of the standard

Adaptive Neuro Fuzzy Inference System (ANFIS) [50].

In the following, we describe the architecture of the proposed MI-ANIFS and introduce a

corresponding learning algorithm.

5.1 MI-ANFIS Architecture

Figure 5.1: Architecture of the proposed multiple instance Adaptive Neuro-Fuzzy Inference
System

Let Bp be a bag of Mp instances as defined in (3.2). For simplicity, we introduce our

64

MI-ANFIS for the case of two rules. The generalization to an arbitrary number of rules is

trivial. The MI-ANFIS with two Sugeno rules can be described as:

R1(Bp) :

Mp∨
j=1

(If xpj1 is A11, . . . , and xpjD is A1D), then f1 = C(xp1 · b1, . . . ,xpMp
· b1)

R2(Bp) :

Mp∨
j=1

(If xpj1 is A21, . . . , and xpjD is A2D), then f2 = C(xp1 · b2, . . . ,xpMp · b2)

(5.1)

Figure 5.1 illustrates the proposed MI-ANFIS architecture. As in the traditional ANFIS,

nodes at the same layer have similar functions. We denote the output of the ith node in

layer l as Ol,i

Layer 1 is an adaptive layer, it calculates the degree to which a given input instance

satisfies a quantifier A. Every node evaluates the membership degree of an input

instance in the fuzzy set Ak,j of membership function µAk,j . Generally, µAk,j is a

parameterized membership function (MF), for example a Gaussian MF with

µAk,j (x) = exp(
−(x− ckj)2

2σkj2
). (5.2)

In (5.2), ckj and σkj are the mean and variance of the gaussian function, and are

referred to as the premise parameters.

Layer 2 is a fixed layer where every node computes the product of all incoming inputs. It

evaluates the degree of truth of proposition instances, or simply, “truth instances”.

The output of this layer is

O2,i = r⌈
i/Mp

⌉
,i[Mp]

=

D∏
j=1

µA⌈
i/Mp

⌉
,j

(xp,i[Mp],j), (5.3)

where
⌈⌉

is a ceiling operator, and i[Mp] is i mod M . As in the traditional ANFIS,

any T-norm can be used as the node function in this layer.

Layer 3 is a new addition when compared to the traditional ANFIS. Every node aggregates

the truth instances of the previous layer by means of a smooth T-conorm. We use

a smooth approximation of the “max” T-conorm known as the “softmax” function

(Sα):

softmaxα(x1, x2, . . . , xn) = Sα(x1, x2, . . . , xn) =
n∑
i=1

xi · eαxi∑n
j=1 e

αxj
. (5.4)

65

In (5.4), α determines how closely softmax approximates the max operator. As α

approaches ∞ , softmax’s behavior approaches max. When α = 0, it calculates the

mean. As α approaches −∞, softmax’s behavior approaches the min operator. The

outputs of this layer are the firing strength of the multiple instance fuzzy rules defined

by layers 1 through layer 3. i.e.,

O3,i = wi = Sα({ri,j}
Mp

j=1). (5.5)

Layer 3 is also a fixed layer.

Layer 4 is a fixed layer. Every node in this layer calculates the normalized firing

strength of each rule, i.e.,

O4,i = wi =
wi∑|O3|
j=1 wj

, (5.6)

where |O3| is the number of rules.

Layer 5 is an adaptive layer. Every node i in this layer computes the output of the i’th

multiple instance rule using

O5,i = C(xp1 · bi, xp2 · bi, . . . ,xpMp · bi), (5.7)

The parameters {bi}|O3|
i=1 are referred to as the consequent parameters. The only

constraint on C is that it has to be a smooth function to allow for optimization

techniques to be applied. We use the “softmax” as the combining function for this

layer. In this case, (5.7) is equivalent to:

O5,i = wiSα(xp1 · bi, xp2 · bi, . . . ,xpMp · bi), (5.8)

note that the constant α here is not necessary the same as in Layer 3.

Optionally an activation function (such as Tanh or Sigmoid) could be applied to the

individual linear responses (i.e., xpj · bi). This has advantage of protecting against

the exploding gradient problem when using the backpropagation algorithm [92].

66

Layer 6 is a fixed layer with a single node labeled Σ. As in the traditional ANFIS, it

computes the overall output of the system using

O6,1 =

|O3|∑
i=1

O5,i =

|O3|∑
i=1

wiSα(xp1 · bi, xp2 · bi, . . . ,xpMp · bi). (5.9)

Algorithm 5.1 highlights MI-ANFIS frowrad pass.

Algorithm 5.1 MI-ANFIS Forward Pass Algorithm

Inputs: B: the set of training bags.
T : the set of training labels.
M : the number of instances in each bag.
R: the number of rules.
D: the dimensionality of instances.
α: the constant used in the “softmax” function.

Outputs: O6,1: the output of the network.

for each instance do
for j from 1 to D do

for k from 1 to R do
Fuzzification of inputs using (5.2).

end for
end for

end for
for each instance do

for each rule do
Evaluation of truth instances using (5.3).

end for
end for
for each rule do

Compute activation degree using (5.5).
Computed normalized activation degree using (5.6).

end for
for each instance do

for j from 1 to D do
for k from 1 to R do

Evaluate the output of O5,k using (5.7).
end for

end for
end for
Evaluate the overall outputO6,1 using (5.9).
return O6,1

67

5.2 Basic Learning Algorithm

To identify the parameters of the proposed MI-ANFIS network, we propose a varia-

tion of the basic learning algorithm presented by Jang [50] (also outlined in chapter 2 of this

dissertation). Our variation is different from the ANFIS standard backpropagation learn-

ing rule due to the additional layers and the use of “softmax” function. Thus, all update

equations need to be rederived.

5.2.1 BackPropagation Learning Rule

In the following, we assume that we have N training bags, B = {Bp | p = 1, . . . , N},

and their corresponding labels T = {tp | p = 1, . . . , N}. After presenting the pth training

bag, we compute its squared error measure commonly used in the backpropagation algorithm

and defined as

Ep = (tp −Op)2, (5.10)

In (5.10), tp is the desired bag output, and Op is the computed output of the network when

presented with training bag Bp. Equation (5.10) demonstrates the need for MI-ANFIS. In

fact, due to the absence of instances’ labels, errors can be computed only at the bag level.

Errors at the instance level cannot be computed and are not needed as we will show later.

The overall error measure of the network after presenting all N bags is

E =
N∑
p=1

Ep. (5.11)

To develop the gradient descent optimization on E, we compute the error rate for

the pth training bag and for each node output Ol,i. This error rate εl,i (1 ≤ l ≤ 6 indicates

an MI-ANFIS layer) is defined as

εl,i =
∂Ep
∂Ol,i

. (5.12)

The error rate at the output node is given as following

ε6,1 =
∂Ep
∂O6,1

=
∂Ep
∂Op

= −2(tp −Op). (5.13)

68

For non-output nodes (i.e. internal nodes, l < 6), we derive the error rate using the chain

rule

εl,i =
∂Ep
∂Ol,i

=

Card(l+1)∑
h=1

∂Ep
∂Ol+1,h

∂Ol+1,h

∂Ol,i
, (5.14)

where Card(l + 1) refers the number of nodes at layer l + 1.

Next, we seek to minimize the network error with respect to the premise parameters

{ckj , σkj | 1 ≤ k ≤ |O3|, 1 ≤ j ≤ D}, and with respect to consequents parameters {bi}|O3|
i=1 .

The error rate with respect to a generic parameter θ can be computed using

∂Ep
∂θ

=
∑
O∗∈G

∂Ep
∂O∗

∂O∗

∂θ
, (5.15)

where G is the set of nodes whose outputs depend on θ.

Using(5.11), the total error rate is given by

∂E

∂θ
=

N∑
p=1

∂Ep
∂θ

. (5.16)

5.2.1.1 Update Rule For Premise Parameters

First we compute the error rate for the premise parameters ckj and σkj using

∂Ep
∂ckj

=

Mp∑
i=1

∂Ep
∂O(1,i+[(k−1)D+(j−1)]Mp)

∂O(1,i+[(k−1)D+(j−1)]Mp)

∂ckj
. (5.17)

and,

∂Ep
∂σkj

=

Mp∑
i=1

∂Ep
∂O(1,i+[(k−1)D+(j−1)]Mp)

∂O(1,i+[(k−1)D+(j−1)]Mp)

∂σkj
. (5.18)

Using the chain rule defined in (5.14), we have

∂Ep
∂O(1,i+[(k−1)D+(j−1)]Mp)

=
∂Ep
∂O6,1

× ∂O6,1

∂O5,k
×
∂O5,k

∂O4,k
×
∂O4,k

∂O3,k
×

∂O3,k

∂O(2,i+(k−1)Mp)

×
∂O(2,i+(k−1)Mp)

∂O(1,i+[(k−1)D+(j−1)]Mp)
.

(5.19)

Hence, (5.17) is equivalent to

∂Ep
∂ckj

=
∂Ep
∂O6,1

× ∂O6,1

∂O5,k
×
∂O5,k

∂O4,k
×
∂O4,k

∂O3,k

×
Mp∑
i=1

∂O3,k

∂O(2,i+(k−1)Mp)
×

∂O(2,i+(k−1)Mp)

∂O(1,i+[(k−1)D+(j−1)]Mp)
×
∂O(1,i+[(k−1)D+(j−1)]Mp)

∂ckj
.

(5.20)

69

From (5.13), we have

∂Ep
∂O6,1

= −2(tp −Op). (5.21)

It is also straightforward to show that,

∂O6,1

∂O5,k
=
∂(
∑|O3|

i=1 O5,i)

∂O5,k
= 1. (5.22)

and,

∂O5,k

∂O4,k
=
∂(wkSα(xp1 · bk, xp2 · bk, . . . ,xpMp · bk))

∂(wk)
= Sα(xp1 · bk, xp2 · bk, . . . ,xpMp · bk).

(5.23)

Continuing with the derivation

∂O4,k

∂O3,k
=
∂wk
∂wk

=

∂
(

wi∑|O3|
l=1 wl

)
∂wk

=

∑|O3|
l=1 wl − wk(∑|O3|

l=1 wl

)2 . (5.24)

and,

∂O3,k

∂O(2,i+(k−1)Mp)
=
∂Sα({rk,j}

Mp

j=1)

∂rk,(i+(k−1)Mp)
=
eαrk,(i+(k−1)Mp)∑Mp

m=1 e
αrk,m

[
1+α

(
rk,(i+(k−1)Mp)−Sα({rk,m}

Mp

m=1)
)]
.

(5.25)

The details of the derivation of the “softmax” function details can be found at [39].

Next, we need to compute
∂O(2,i+(k−1)Mp)

∂O(1,i+[(k−1)D+(j−1)]Mp)

O(2,i+(k−1)Mp) =

D∏
d=1

µA(⌈
(i+(k−1)Mp)/Mp

⌉
,d

)(xp,(i+(k−1)Mp)[Mp],d

)
. (5.26)

and,

O(1,i+[(k−1)D+(j−1)]Mp) = µAk,j (xp,(i+(k−1)Mp)[Mp],d). (5.27)

Thus,

∂O(2,i+(k−1)Mp)

∂O(1,i+[(k−1)D+(j−1)]Mp)
=

∂

(∏D
d=1 µA(⌈

(i+(k−1)Mp)/Mp

⌉
,d

)(xp,(i+(k−1)Mp)[Mp],d

))

∂
(
µAk,j (xp,(i+(k−1)Mp)[Mp],d)

)
=

D∏
d=1,d 6=j

µA(⌈
(i+(k−1)Mp)/Mp

⌉
,d

)(xp,(i+(k−1)Mp)[Mp],d

)
.

(5.28)

70

Finally, we have

∂O(1,i+[(k−1)D+(j−1)]Mp)

∂ckj
=
∂µAk,j (xp,(i+(k−1)Mp)[Mp],j)

∂ckj
=

(x(p,(i+(k−1)Mp)[Mp],j) − ckj)
σ2kj

× exp(−
(x(p,(i+(k−1)Mp)[Mp],j) − ckj)2

2σ2kj
).

(5.29)

Substituting the derivatives in (5.20), we obtain

∂Ep
∂ckj

= −2(tp −Op)× Sα(xp1 · bk, xp2 · bk, . . . ,xpMp · bk)×
∑|O3|

l=1 wl − wk(∑|O3|
l=1 wl

)2
×

Mp∑
i=1

(
eαrk,(i+(k−1)Mp)∑Mp

m=1 e
αrk,m

[
1 + α

(
rk,(i+(k−1)Mp) − Sα({rk,m}

Mp

m=1)
)]

×
D∏

d=1,d 6=j
µA(⌈

(i+(k−1)Mp)/Mp

⌉
,d

)(xp,(i+(k−1)Mp)[Mp],d

)

×
(x(p,(i+(k−1)Mp)[Mp],j) − ckj)

σ2kj
× exp(−

(x(p,(i+(k−1)Mp)[Mp],j) − ckj)2

2σ2kj
)

)
.

(5.30)

As in the standard ANFIS, an update formula for the parameter ckj is given by

4ckj = −η ∂E
∂ckj

, (5.31)

where η is a learning rate determined in a similar manner to that of the standard backprop-

agation algorithm [50].

The update formula for σkj can be derived in a similar manner. It can be shown

that

∂O(1,i+[(k−1)D+(j−1)]Mp)

∂σkj
=
∂µAk,j (xp,(i+(k−1)Mp)[Mp],j)

∂σkj
=

(x(p,(i+(k−1)Mp)[Mp],j) − ckj)2

σ3kj
× exp(−

(x(p,(i+(k−1)Mp)[Mp],j) − ckj)2

2σ2kj
).

(5.32)

71

Using (5.18), we obtain

∂Ep
∂σkj

= −2(tp −Op)× Sα(xp1 · bk, xp2 · bk, . . . ,xpMp · bk)×
∑|O3|

l=1 wl − wk(∑|O3|
l=1 wl

)2
×

Mp∑
i=1

(
eαrk,(i+(k−1)Mp)∑Mp

m=1 e
αrk,m

[
1 + α

(
rk,(i+(k−1)Mp) − Sα({rk,m}

Mp

m=1)
)]

×
D∏

d=1,d 6=j
µA(⌈

(i+(k−1)Mp)/Mp

⌉
,d

)(xp,(i+(k−1)Mp)[Mp],d

)

×
(x(p,(i+(k−1)Mp)[Mp],j) − ckj)2

σ3kj
× exp(−

(x(p,(i+(k−1)Mp)[Mp],j) − ckj)2

2σ2kj
)

)
.

(5.33)

And the update formula for σkj is as follows

4σkj = −η ∂E
∂σkj

, (5.34)

where η is the same learning rate as in (5.31)

5.2.1.2 Update Rule For Consequent Parameters

The error rate for the consequent parameters {bi = {bi0, ..., biD}, i = 1 . . . |O3|} is

defined as

∂Ep
∂bi

=
(∂Ep
∂bi0

,
∂Ep
∂bi1

, . . . ,
∂Ep
∂biD

)
. (5.35)

where,

∂Ep
∂bij

=
∂Ep
∂O(5,i)

∂O(5,i)

∂bij
, for j = 1, . . . , D. (5.36)

Next, we compute
∂Ep
∂O(5,i)

using the previously defined chain rule in (5.14), and obtain

∂Ep
∂O(5,i)

=
∂Ep
∂O6,1

× ∂O6,1

∂O5,i
. (5.37)

From (5.13), we have

∂Ep
∂O6,1

= −2(tp −Op). (5.38)

And from (5.39), we have

∂O6,1

∂O5,i
= 1. (5.39)

72

Continuing with the derivation, we have

∂O(5,i)

∂bij
=
∂(wiSα(xp1 · bi, xp2 · bi, . . . ,xpMp · bi))

∂bij

=
∂

∂bij

(
wi

Mp∑
m=1

xpm · biexp(αxpm · bi)∑Mp

h=1 exp(αxph · bi)

)
= wi

Mp∑
m=1

∂

∂bij

(xpm · biexp(αxpm · bi)∑Mp

h=1 exp(αxph · bi)

)

= wi

Mp∑
m=1

1(∑Mp

h=1 exp(α(xph · bi − xpm · bi))
)2 [(xpmj Mp∑

h=1

exp(α(xph · bi − xpm · bi)
)

−
(
xpm · bi

Mp∑
h=1

exp(α(xph · bi − xpm · bi)α(xphj − xpmj)
)]
.

(5.40)

Thus, the overall error rate with respect to the consequent parameter bij is given according

to (5.16) as follows

∂E

∂bij
=

N∑
p=1

∂Ep
∂bij

=
N∑
p=1

−2(tp −Op)

× wi
Mp∑
m=1

1(∑Mp

h=1 exp(α(xph · bi − xpm · bi))
)2 [(xpmj Mp∑

h=1

exp(α(xph · bi − xpm · bi)
)

−
(
xpm · bi

Mp∑
h=1

exp(α(xph · bi − xpm · bi)α(xphj − xpmj)
)]
.

(5.41)

Hence, the update formula for consequent parameter bij

4bij = −η ∂E
∂bij

, (5.42)

where η is the same learning rate as in (5.31)

Equations (5.31), (5.34) and (5.42) can be used to update ckj , σkj and bij parameters

either on-line, bag by bag (we want to emphasis here that the on-line learning is not achieved

instance by instance, but rather bag by bag), or off-line in batch mode after presentation

of the entire data set.

The proposed MI-ANFIS basic learning algorithm is summarized in Algorithm 5.2.

73

Algorithm 5.2 MI-ANFIS Basic Learning Algorithm

Inputs: B: the set of training bags.
T : the set of training labels.
M : the number of instances in each bag.
α: the constant used in the “softmax” function.
η: the learning rate.
Emax: number of epochs.
ε: minimum parameters change value.

Outputs: bi: the sets of consequent parameters.
ci: the set of membership functions’ centers.
σi: the set of membership functions’ widths.

Initialize bi, ci, and σi.
repeat

Update bi using (5.42) and bi(new) = bi(old) +4bi.
Update ci using (5.31) and ci(new) = ci(old) +4ci.
Update σi using (5.34) and σi(new) = σi(old) +4σi.

until max(‖bi(new)−bi(old)‖, ‖ci(new)−ci(old)‖, ‖σi(new)−σi(old)‖) < ε or Number of epochs >
Emax
return bi, ci, σi

5.3 Illustrative Example

After deriving the necessary learning algorithms, we now study an example to show

the potential of using MI-ANIFS to learn concepts from ambiguously labeled data. For

this purpose, let us consider the syntectic dataset used in Section 4.3.1. For illustrative

purposes, we only update the premise parameters during the training epochs, and show

that the MI-ANFIS Basic Learning Algorithm (Algorithm 5.2) is capable of identifying

positive concepts as well as their corresponding multiple instance fuzzy rules.

To initialize the premise parameters, we use the FCM [60] algorithm to partition

the instances’ space into 4 clusters1. We use the clusters’ centers as initial centers for the

Gaussian MFs, and we initialize all standard deviation parameters to a default value of 0.5.

We want to emphasize here that the FCM setp is for the purpose of initialization only. It is

used to identify dense regions of the input space, these region can contain positive and/or

negative instances. The learning phase will keep and tune only regions that corresponds to

positive concepts.

1A grid or manual partitioning could also be used

74

The initial fuzzy sets (MFs) of the rules’ premise parts, before training, are displayed

in Figure 5.3a. As it can be seen, the initial 4 clusters simply cover the 4 quadrants of the

2D instance space (if no label information is used, as in this case, data would appear to

have uniform distribution (refer to Figure 4.5)). The updated parameters after 20 training

epochs are shown in Figure 5.3b, and the learned fuzzy sets after convergence are shown in

Figure 5.3c.

Figure 5.2: Root Mean Squared Error of 100 Epochs of MI-ANFIS training.

75

(a) Initial MFs before starting the training process.

(b) Input MFs during MI-ANFIS training (Epoch number 20).

(c) Learned MFs after MI-ANFIS training completed. Rules marked with red crosses are considered

vanished and are pruned. Remaining rules (MI-Rule 2 and MI-Rule 4) correctly describe the positive

concepts of the dataset

.

Figure 5.3: Input MFs before, during, and after MI-ANFIS training.

76

The system has correctly identified the positive concepts, and at the same time

identified irrelevant rules (MI-Rule 1 and MI-Rule 3 marked with red crosses in Figure

5.3c). These rules are considered irrelevant either because some of its fuzzy sets has empty

support (per consequence it cannot be activated), or very narrow fuzzy set support which

may indicate overfitting and will not be general enough to use during testing. After training,

it is recommended to detect and prune such rules to improve the MI-ANFIS testing efficiency

(e.g., requiring minimum support).

5.4 Preventing Overfitting: Rule Dropout

Neural networks with large number of parameters are susceptible to overfitting. MI-

ANFIS is no exception, particularly when using large number of multiple instance fuzzy

rules and relatively small training datasets. In such scenario, some rules could co-adapt to

the training data and degrade the network ability to generalize to unseen examples. In the

previous paragraph we suggested pruning irrelevant rules, in this section, we present a more

general technique, known as Dropout, used to prevent overfitting and rules’ co-adaptation.

Dropout is a new regularization method that was introduced by Hinton et al. [93] to al-

leviate the serious problem of overfitting in deep neural networks. Over the years, many

methods have been developed to reduce overfitting, including using a validation dataset to

stop the training as soon as the performance gets worse, adding weight penalties using L1

and L2 regularization, or artificially augmenting the training dataset using label-preserving

transformations. However, as noted by Hinton [93], the best way to regularize a fixed-size

model is to average the predictions of all possible settings of the parameters weighted by

its posterior probability given the training data. This can be achieved by combining the

predictions of an exponential number of models. Combining several models with different

architectures have the advantage of better generalization and per consequence better test-

ing performance. While generating an ensemble of models is trivial, training them all is

prohibitively expensive.

Generally, Dropout works by setting to 0 the output of each node in a given layer with

77

probability 1 − p (p typically equals 0.5), during training. Nodes that are dropped out

do not contribute to the parameters updates. During testing, all nodes are used but the

outputs are weighted by the probability p. Following this strategy, every time a new train-

ing example is presented, the network samples and trains a different architecture. In other

words, Dropout trains an ensemble of networks (2N networks, N being the number of nodes)

simultaneously leading to an important speedup in training time as compared to traditional

ensemble methods. Figure 5.4 and Figure 5.5 illustrate the Dropout model.

Figure 5.4: Dropout neural network model. (A) is a standard neural network. (B) is the
same network after applying dropout. Doted lines indicate a node that has been dropped.
(source [93])

Figure 5.5: Illustration of Dropout application. (A) a node is dropped with probability 1−p
at training time. (B) at test time the node is always present and its outputs are weighted
by p. (source [93])

We propose to adopt Dropout to regularize MI-ANFIS networks. Typically, over-

fitting occurs in MI-ANFIS networks when a set of multiple instance rules co-adapt to the

provided data early during the training process, making the remaining rules irrelevant to

78

learn. Thus, degrading the network’s generalization capability. While the Dropout tech-

nique could be applied to MI-ANFIS as is (given the inherited neural network nature of

the architecture), care should be exercised when selecting nodes to include in the list of the

randomly dropped out nodes. MI-ANFIS nodes are different from that of standard neu-

ral networks, when grouped into a rule, they model meaning and express linguistic terms.

Dropping few nodes from a given rule could severely handicap the fuzzy inference process.

Hence, Dropout should be executed differently. In deep neural nets, Dropout is applied to

selected layers (vertically), for MI-ANFIS, we propose to apply Dropout on a rule by rule

basis (i.e., horizontally). Either the whole rule is included, or the whole rule is dropped.

This can be achieved by applying Dropout to Layer 5 (see Figure 5.7), i.e., setting to zero

the output of the “to be dropped out” rules. We will refer to this derived technique as

“Rule Dropout”. Using a Rule Dropout strategy to train MI-ANFIS networks is approx-

imatively equivalent to sampling and training 2R (R is the number of rules) ensemble of

networks.

Let p be the probability with which a rule is present, formally, Rule Dropout is

applied to Layer 5 during training as following

hi ∼ Bernoulli(p) (5.43)

O5,i = hiwiSα(xp1 · bi, xp2 · bi, . . . ,xpMp · bi), (5.44)

where hi is a Bernoulli random variable with probability p of being 1. During testing,

Layer 5 output is scaled by p, i.e., O3,i = pwiSα(xp1 · bi, xp2 · bi, . . . ,xpMp · bi). Figure

5.6 and Figure 5.7 show an illustration of an MI-ANFIS network with 3 multiple instance

fuzzy rules and implementing Rule Dropout.

Deriving the new update equations for MI-ANFIS parameters requires taking into

consideration the added Bernoulli random variable, hi. It is straightforward to show that

79

Figure 5.6: Rule Dropout MI-ANFIS model.

the new gradients with respect to premise and consequent parameters are given by

∂Ep
∂ckj

= −2(tp −Op)× hk × Sα(xp1 · bk, xp2 · bk, . . . ,xpMp
· bk)×

∑|O3|
l=1 wl − wk(∑|O3|

l=1 wl

)2
×

Mp∑
i=1

(
eαrk,(i+(k−1)Mp)∑Mp

m=1 e
αrk,m

[
1 + α

(
rk,(i+(k−1)Mp) − Sα({rk,m}

Mp

m=1)
)]

×
D∏

d=1,d6=j

µA(⌈
(i+(k−1)Mp)/Mp

⌉
,d

)(xp,(i+(k−1)Mp)[Mp],d

)

×
(x(p,(i+(k−1)Mp)[Mp],j) − ckj)

σ2
kj

× exp(−
(x(p,(i+(k−1)Mp)[Mp],j) − ckj)2

2σ2
kj

)

)
.

(5.45)

80

Figure 5.7: Illustration of Rule Dropout application. Doted lines indicate a rule that has
been dropped.

and,

∂Ep
∂σkj

= −2(tp −Op)× hk × Sα(xp1 · bk, xp2 · bk, . . . ,xpMp
· bk)×

∑|O3|
l=1 wl − wk(∑|O3|

l=1 wl

)2
×

Mp∑
i=1

(
eαrk,(i+(k−1)Mp)∑Mp

m=1 e
αrk,m

[
1 + α

(
rk,(i+(k−1)Mp) − Sα({rk,m}

Mp

m=1)
)]

×
D∏

d=1,d 6=j

µA(⌈
(i+(k−1)Mp)/Mp

⌉
,d

)(xp,(i+(k−1)Mp)[Mp],d

)

×
(x(p,(i+(k−1)Mp)[Mp],j) − ckj)2

σ3
kj

× exp(−
(x(p,(i+(k−1)Mp)[Mp],j) − ckj)2

2σ2
kj

)

)
.

(5.46)

81

In a similar manner,

∂E

∂bij
=

N∑
p=1

−2(tp −Op)

× hiwi
Mp∑
m=1

1(∑Mp

h=1 exp(α(xph · bi − xpm · bi))
)2 [(xpmj Mp∑

h=1

exp(α(xph · bi − xpm · bi)
)

−
(
xpm · bi

Mp∑
h=1

exp(α(xph · bi − xpm · bi)α(xphj − xpmj)
)]
.

(5.47)

As it can be seen, equations (5.45), (5.46), and (5.47) will get zeroed when the rule is

dropped out (i.e., hk = 0 and hi = 0). Thus, its premise and consequent parameters are

not updated.

In order to demonstrate the gain in generalization acquired by MI-ANFIS when

utilizing Rule Dropout, we train an MI-ANFIS architecture with and without Rule Dropout

on a multiple instance dataset sampled from COREL [94]. The dataset classify whether an

image contains an elephant or not, and consists of 200 images (bags): 100 positive images

containing the target animal and 100 negative images containing other animals. Each image

is represented as a set of patches (instances) and each patch is in turn represented by 230

features describing color, texture and shape information. Before training, we applied PCA

to reduce the dimensionality of the features to 10 dimensions to speedup MI-ANFIS. Table

5.1 summarizes the dataset characteristics. Two MI-ANFIS networks composed of 15 rules

each, with one network employing Rule Dropout (with p = 0.7), were trained on 90% of the

data, and the remaining 10% was used for testing (split was done randomly). Figure 5.8

shows the training and testing errors for both networks during 100 epoches. As it can be

seen, without Rule Dropout, starting at epoch 20, testing performance begins to degrade

while training error continues to decrease. In other words, overfitting begins to occur. On

the other hand, when using Rule Dropout, overfitting is significantly reduced and MI-ANFIS

achieved better testing performance at the end of the training phase (0.1123 testing SSE

with Rule Dropout compared to 0.1451 testing SSE without Rule Dropout).

82

TABLE 5.1

Benchmark data sets

Data set dim.(PCA) No. Bags Positive Negative No.Instances

Elephant 230(10) 200 100 100 2→ 13

Figure 5.8: Training and testing errors for two MI-ANFIS networks with and without Rule
Dropout.

5.5 Multi-Class MI-ANFIS

The basic MI-ANFIS architecture illustrated in Figure 5.1 computes one single out-

put. It is suitable for binary classification problems, and through the use of a sum of squared

error (SSE) loss function, it can effectively be used to solve multiple instance regression prob-

lems. The extension of MI-ANFIS to multiple class classification problems can be achieved

through the use of a set of multiple independent MI-ANFIS networks and using a one versus

the rest training pattern. Formally, for a set of N training bags, B = {Bp | p = 1, . . . , N},

and their corresponding labels T = {tp | p = 1, . . . , N, tp ∈ [1 . . . T]}, where T is the number

of classes of a given multiple class classification problem, we define T different MI-ANFIS

networks, denoted as {nett}T1 . To train each network, bags are relabeled as positive for

83

bags that belong to the positive class, negative otherwise. During testing, a new unseen

bag is fed through the T networks and T outputs are computed, the bag is then assigned

the class with the highest output. While this extension is straightforward and works with

an arbitrary number of classes, it requires an extensive amount of preprocessing to rela-

bel the data and generate networks. Moreover, doing so makes the data unbalanced and

sampling should be used before training. In addition, some classes may share the same

concepts, therefore, training different networks may lead to redundant rules being learned

and wasting CPU cycles. Thus, it is better to restructure MI-ANFIS to support multiple

classes.

In the following, we describe the extended Multi-Class MI-ANFIS (MCMI-ANFIS), and

re-derive the necessary update equations. MCMI-ANFIS employs multiple instance fuzzy

rules and has similar architecture to MI-ANFIS, Figure 5.9 is an illustration of the extended

architecture. Layer 1 through Layer 5 are the same as in MI-ANFIS. Layer 6 is a fully con-

nected layer, it’s composed of T nodes that compute the sum of all incoming signals as

following,

O6,j =

|O3|∑
i=1

vijhiwiSα(xp1 · bi, xp2 · bi, . . . ,xpMp · bi). (5.48)

where vij , are weights as in standard feedforward neural networks. Layer 7 is an additional

layer that computes the log-probabilities of Layer 6’s outputs through the application of

the LogSoftmax function which is given by

O7,j = log
[exp(O6,j)∑T

k=1 exp(O6,k)

]
. (5.49)

The reason behind applying LogSoftmax is to prepare the network’s outputs to be

used with a negative log likelihood criterion that is typically used to train classification

problems with multiple classes. Given this criterion, the loss function of MCMI-ANFIS, for

a given bag Bp with class tp (tp is a class index in [1 . . . T]), is defined by

Ep = −O7,tp (5.50)

84

Figure 5.9: Multi-Class MI-ANFIS with R rules and T classes (outputs).

We now apply the chain rule (5.14) and derive MCMI-ANFIS update equations.

First, we compute the gradients with respect to the premise parameters using (5.17) and

(5.18), we have

∂Ep
∂O(1,i+[(k−1)D+(j−1)]Mp)

=

T∑
t=1

∂Ep
∂O7,t

× ∂O7,t

∂O6,t
× ∂O6,t

∂O5,k
×
∂O5,k

∂O4,k

×
∂O4,k

∂O3,k
×

∂O3,k

∂O(2,i+(k−1)Mp)
×

∂O(2,i+(k−1)Mp)

∂O(1,i+[(k−1)D+(j−1)]Mp)
.

(5.51)

85

It is straightforward to show that

T∑
t=1

∂Ep
∂O7,t

× ∂O7,t

∂O6,t
× ∂O6,t

∂O5,k
= vktp ×

[exp(O6,tp)∑T
k=1 exp(O6,k)

− 1
]
. (5.52)

Thus, the update equations for the premise parameters are as following

∂Ep
∂ckj

= vktp ×
(exp(O6,tp)∑T

k=1 exp(O6,k)
− 1
)
× hk × Sα(xp1 · bk, xp2 · bk, . . . ,xpMp · bk)

×
∑|O3|
l=1 wl − wk(∑|O3|

l=1 wl

)2 × Mp∑
i=1

(
eαrk,(i+(k−1)Mp)∑Mp

m=1 e
αrk,m

[
1 + α

(
rk,(i+(k−1)Mp) − Sα({rk,m}

Mp

m=1)
)]

×
D∏

d=1,d6=j

µA(⌈
(i+(k−1)Mp)/Mp

⌉
,d

)(xp,(i+(k−1)Mp)[Mp],d

)

×
(x(p,(i+(k−1)Mp)[Mp],j) − ckj)

σ2
kj

× exp(−
(x(p,(i+(k−1)Mp)[Mp],j) − ckj)2

2σ2
kj

)

)
.

(5.53)

and,

∂Ep
∂σkj

= vktp ×
(exp(O6,tp)∑T

k=1 exp(O6,k)
− 1
)
× hk × Sα(xp1 · bk, xp2 · bk, . . . ,xpMp · bk)

×
∑|O3|
l=1 wl − wk(∑|O3|

l=1 wl

)2 × Mp∑
i=1

(
eαrk,(i+(k−1)Mp)∑Mp

m=1 e
αrk,m

[
1 + α

(
rk,(i+(k−1)Mp) − Sα({rk,m}

Mp

m=1)
)]

×
D∏

d=1,d 6=j

µA(⌈
(i+(k−1)Mp)/Mp

⌉
,d

)(xp,(i+(k−1)Mp)[Mp],d

)

×
(x(p,(i+(k−1)Mp)[Mp],j) − ckj)2

σ3
kj

× exp(−
(x(p,(i+(k−1)Mp)[Mp],j) − ckj)2

2σ2
kj

)

)
.

(5.54)

Similarly the update equation for the consequent parameters is given by

∂E

∂bij
=

N∑
p=1

vktp ×
(exp(O6,tp)∑T

k=1 exp(O6,k)
− 1
)

× hiwi
Mp∑
m=1

1(∑Mp

h=1 exp(α(xph · bi − xpm · bi))
)2 [(xpmj Mp∑

h=1

exp(α(xph · bi − xpm · bi)
)

−
(
xpm · bi

Mp∑
h=1

exp(α(xph · bi − xpm · bi)α(xphj − xpmj)
)]
.

(5.55)

Finally, the gradients with respect to the fully connected layer weights, vkt, is given

by

86

∂Ep
∂vkt

= hkwkSα(xp1 · bk, xp2 · bk, . . . ,xpMp · bk)×
(exp(O6,tp)∑T

k=1 exp(O6,k)
− 1
)
. (5.56)

Equations (5.53), (5.54), (5.55), and (5.56) can be used to train MCMI-ANFIS either

on-line (e.g., using stochastic gradient descent), or off-line in batch mode.

5.6 Complexity Analysis

We now study the asymptotic complexity for the execution of the proposed MI-

ANFIS algorithms in term of four parameters: the number of training bags N , the average

number of instances per bag M , the dimensionality of instances D, and the number of

the multiple instance rules R. MI-ANFIS performs two passes: (1) a forward pass to

compute the network output, as illustrated in Algorithm 5.1, and (2) a backward pass to

backpropagate the gradients and update the parameters, as illustrated in Algorithm 5.2.

First, for the forward pass, we perform the following sequential operations for each training

bag:

1. Fuzzification of inputs: M ×D ×R operations.

2. Evaluation of truth instances: M ×R operations.

3. Computation of the rules activation degrees: R operations.

4. Normalization of the activation degrees: R operations.

5. Evaluation of Layer 5 outputs: M ×D ×R operations.

6. Evaluation of the overall output: 1 operation.

Thus, the total number of operations during the forward pass for a given bag is

asymptotically given by R× [2M ×D +M + 2] + 1 w O(M ×D ×R). For MCMI-ANFIS

networks we need to take into considerations the two additional layers which contribute an

additional T ×R+T operations (T being the number of classes). In the backward pass, for

87

each training bag we compute the gradients with respect to the premise and consequents

parameters. The number of operations required to compute each gradient is:

1. For MF centers (equation (5.17)): D ×R× (1 + 2M ×D +R).

2. For MF standard deviations (equation (5.18)): D ×R× (1 + 2M ×D +R).

3. For the consequent parameters (equation (5.42)): D ×R× [1 +M × (M ×D)].

4. For MCMI-ANFIS networks, there are R × T × (M × D + T) additional operations

needed to compute the gradients with respect to the fully connected layer weights.

Therefore, the backward step performs approximatively 3DR+4MRD2+2DR2+D2M2R w

O(DR2 + D2M2R) for MI-ANFIS networks, and 3DR + 4MRD2 + 2DR2 + D2M2R +

RDMT + RT 2 w O(DR2 + D2M2R + RT 2) for MCMI-ANFIS networks. The overall

asymptotic running time for a given training dataset with N bags is dominated by the

backward pass and is equal to O(NDR2 +ND2M2R), and O(NDR2 +ND2M2R+NRT 2)

for MCMI-ANFIS.

For problems with large number of training bags, relatively small number of rules, low

dimensionality features, and constant number of instances, the big-O running time of the

network is linear in terms of N , i.e., O(N).

5.7 Discussion

MI-ANFIS deals with ambiguity by introducing the novel concept of truth instances:

when carrying reasoning using a bag of instances at Layer 2 (Figure 5.1), a proposition will

not only have one degree of truth, it will have multiple degrees of truth (rij), we call truth

instances. Thus, effectively encoding the third vagueness component of ambiguity and in-

creasing the expressive power of traditional fuzzy logic.

Learning positive concepts from ambiguously labeled data has been the core task of various

MIL algorithms (e.g. Diverse Density [39]). MI-ANFIS has proven that it can learn positive

concepts effectively while jointly providing a fuzzy representation of such regions. The fuzzy

88

representation is combined into meaningful and simple multiple instance rules that can be

easily visualized and interpreted.

Compared to previously proposed multiple instance neural networks, such as Multiple In-

stance Neural Networks [63] (MI-NN) and Multiple Instance RBF Neural Networks [95]

(RBF-MIP), MI-ANFIS advantage is the use of multiple instance fuzzy logic to learn a

fuzzy representation of true positive concepts. MI-NN only learns standard neural network

weights that do not carry any information regarding concepts. On the other hand, while

standard RBF neural networks have been shown to be equivalent to zero order traditional

Sugeno systems under certain constraints [96], thus, capable of learning a fuzzy representa-

tion of the inputs, RBF-MIP networks have different architecture and they do not employ

adaptive radial basis functions in the first layer. Instead, they represent the inputs by com-

puting their distances to clusters of training bags. This later method is expensive and its

success greatly depends on the quality of the training data as it takes into consideration all

the training examples which my include wrongly (nosily) labeled bags. It does not lead to

learning true positive concepts, only learning other discriminative regions of the bags space.

Moreover, MI-ANFIS learning algorithms can be updated to support a wide range of loss

functions (criterions) such as cross entropy [97], maximum margin [98], etc. MI-NN is de-

signed to use a handcrafted loss function (see section 2.1.4) which is largely responsible for

the multiple instance behavior of the system and cannot be changed without substantially

changing the architecture of MI-NN. This could be disadvantageous if MI-NN is to be used

to solve multiple instance - multiple class classification problems.

Finally, when compared to our proposed MI-Mamdani system, MI-ANFIS is fully indepen-

dent. MI-Mamdani does require positive concepts to be learned using a different algorithm

(e.g. FCMI), or based on intuition. MI-ANFIS does not rely on any traditional MIL algo-

rithms and can learn its rule base from data.

89

CHAPTER 6

EXPERIMENTAL RESULTS

In this chapter, we provide a quantitative evaluation of the proposed farmework by

applying it to benchmark datasets commonly used to evaluate MIL methods. First, we apply

MI-MAMDANI and MI-ANFIS to the MUSK [37], Fox, Tiger, and Elephant datasets [94].

Then, we apply our muliple class MI-ANFIS (MCMI-ANIFS) to solve a 20 class classification

problem derived from the COREL dataset [94]. The datasets are described as following.

6.1 Benchmark Datasets

• The MUSK Dataset:

The MUSK dataset is the most commonly used data in the context of MIL. This MIL

problem is a case of polymorphism ambiguity. The goal is to classify molecules by

looking at their shapes. Each molecule can appear in several distinct shapes because

of binding and twisting that might occur during interactions. Thus, a molecule can

have different forms of expression. The objective is to classify whether a molecule

smells musky [99]. To solve this problem using standard single instance learning, we

first need to identify which form is responsible for the molecule behaviour. However,

this process is tedious. Hence, the problem is better represented as a multiple instance

problem. Two versions of the dataset were released, MUSK1 and MUSK2. In both

datasets, each bag represents a molecule and instances within each bag represent the

different low-energy conformations of the molecule. Each instance is characterized by

166 features. MUSK1 has 92 bags, of which 47 are positive, and MUSK2 has 102

bags, of which 39 are positive.

• Fox, Tiger, and Elephant Datasets:

90

These datasets classify whether an image contains the corresponding animal. Each

dataset consists of 200 images (bags): 100 positive images containing the target animal

and 100 negative images containing other animals. Each image is represented as a set

of patches (instances) and each patch is in turn represented by 230 features describing

color, texture, and shape information [94].

• The COREL Dataset:

To evaluate our proposed multi-class MCMI-ANFIS algorithm, we use it to categorize

images from the COREL image dataset. In particular, we use the Corel-1000 and

Corel-2000. Corel-1000 has 1000 images that cover 10 categories and Corel-2000 has

2000 images with 20 categories, respectively. Each category has 100 images and each

image is represented by a bag consisting of instances obtained via extracting features

from segmented regions of the images. Each instance is a 9-D feature vector charac-

terizing the color, texture, and shape properties of a segmented region. For the sake

of fair comparison we adopted the same data settings and image segmentation algo-

rithm used in previous state of the art work [43]. Figure 6.1 shows images randomly

sampled from the 20 categories and the corresponding segmentation results.

Table 6.1 summarizes the characteristics of the MUSK, Fox, Tiger, and Elephant

Datasets. Table 6.2 describes the categories of the COREL datasets and the corresponding

number of instances. We should note that for each dataset, the bags have a variable number

of instances. For instance, for MUSK1 data, the number of instances per bag varies from

2 to 40. To reduce the dimensionality of the features in order to speedup MI-FIS training

and increase the interpretability of the generated multiple instance fuzzy rules, we apply

the PCA. In Table 6.1 we show both the original and reduced dimensions for each dataset.

91

Figure 6.1: Images randomly sampled from 20 categories and the corresponding segmenta-
tion results. Segmented regions are shown in their representative colors (source [43]).

TABLE 6.1

MUSK, Fox, Tiger, and Elephant Datasets

Dataset dim.(PCA) No. Bags Positive Negative No. Instances - Avg - Median

MUSK1 166(25) 92 47 45 2→ 40 - 5.17 - 4

MUSK2 166(25) 102 39 63 1→ 1044 - 64.69 - 12

Fox 230(10) 200 100 100 2→ 13 - 6.47 - 6

Tiger 230(10) 200 100 100 1→ 13 - 5.44 - 6

Elephant 230(10) 200 100 100 2→ 13 - 7.62 - 7

6.2 Evaluation of MI-MAMDANI and MI-ANFIS algorithms

For all experiments, to learn an MI-Mamdani system from the training data, first,

as outlined in Section 4.3, we apply the FCMI to extract concept points. Next, we generate

multiple instance fuzzy rules from concept points. Finally, the learned rules are combined

into an MI-Mamdani multiple instance fuzzy inference system. We also construct zero-order

MI-ANFIS systems with various number of multiple instance rules. We use Gaussian MFs

92

TABLE 6.2

20 Image Categories of the COREL dataset and the Corresponding Average Number of
Instances (regions)

Category ID Category Name Instances per Image

1 African people and villages 4.84

2 Beach 3.54

3 Historical building 3.1

4 Buses 7.59

5 Dinosaurs 2.00

6 Elephants 3.02

7 Flowers 4.46

8 Horses 3.89

9 Mountains and glaciers 3.38

10 Food 7.24

11 Dogs 3.80

12 Lizards 2.80

13 Fashion models 5.19

14 Sunset scenes 3.52

15 Cars 4.93

16 Waterfalls 2.56

17 Antique furniture 2.30

18 Battle ships 4.32

19 Skiing 3.34

20 Desserts 3.65

to describe the input fuzzy sets. For initialization, we use the FCM [60] algorithm to cluster

the instances of the positive bags into a prefixed number of clusters, and we initialize MFs’

centers as the clusters centers. Table 6.3 summarizes all parameters used in training the

MI-ANFIS. We note that the reason behind using large standard deviations For MUSK1,

MUSK2 datasets is to allow the initial rules to cover the entirety of the input space.

To illustrate the advantage of using MI-ANFIS over the traditional ANFIS, we com-

pare these two algorithms on the first five datasets. Since ANFIS cannot learn from ambigu-

ously labeled data, for the sake of comparison, we consider the naive MIL assumption where

93

TABLE 6.3

MI-ANFIS Training Parameters

Parameter MUSK1 MUSK2 Fox Tiger Elephant

No. of MI Rules 6 3 2 4 3

No. of Inputs 25 25 10 10 10

MF’s σ 100 100 10 10 10

Output parameters 1s 1s 1s 1s 1s

Softmax’s α 1 1 1 1 1

Learning rate 0.1 0.1 0.1 0.1 0.1

TABLE 6.4

Comparison of MI-ANFIS prediction accuracy (in percent) to Naive-ANFIS on the bench-
mark data sets (averaged over five runs)

Algorithms MUSK1 MUSK2 Fox Tiger Elephant

MI-ANFIS 93.49 90.58 66.4 84.5 86.97

±0.76 ±1.31 ±2.77 ±0.61 ±1.10

Naive-ANFIS 67.82 79.43 58.70 77.70 82.2

±4.04 ±5.04 ±1.35 ±0.83 ±0.83

all instances from positive bags are considered positive and all instances from negative bags

are considered negative. We refer to this implementation as Naive-ANFIS. The results are

summarized in Table 6.4 where the performance is reported in terms of prediction accuracy

averaged over all 10 cross validation sets (% of correct ± standard deviation). As it can

be seen, MI-ANFIS outperforms Naive-ANFIS significantly. This is because inaccurately

labeled instances within the positive bags were used for training the Naive-ANFIS.

Table 6.5 shows the performance of the proposed algorithms as compared to state of

art MIL algorithms on the first five benchmark datasets. MI-MAMDANI and MI-ANFIS

were trained and tested using ten fold cross validation. Table 6.6 summarizes the average

running time of cross validation of MI-ANFIS as compared to other algorithms on the

benchmark datasets.

Overall, MI-ANFIS is comparable to other MIL algorithms. In fact, on all tested

94

TABLE 6.5

Comparison of MI-ANFIS prediction accuracy (in percent) to other methods on the bench-
mark data sets. Results for 3 top performing methods are shown in bold font. We use
reported results, N/A indicated that a given algorithm was not applied to that dataset

Algorithms MUSK1 MUSK2 Fox Tiger Elephant

MI-ANFIS 93.49 90.58 66.4 84.5 86.97

±0.76 ±1.31 ±2.77 ±0.61 ±1.10

MILES [100] 86.3 87.7 N/A N/A N/A

APR [37] 92.4 89.2 N/A N/A N/A

DD [39] 88.9 82.5 N/A N/A N/A

DD-SVM [101] 85.8 91.3 N/A N/A N/A

EM-DD [58] 84.8 84.9 56.1 72.1 78.3

Citation-KNN [67] 92.4 86.3 N/A N/A N/A

MI-SVM [94] 77.9 84.3 57.8 84.0 81.4

mi-SVM [94] 87.4 83.6 58.2 78.4 82.2

MI-NN [102] 88.0 82.0 N/A N/A N/A

Bagging-APR [103] 92.8 93.1 N/A N/A N/A

RBF-MIP [95] 91.3 90.1 N/A N/A N/A

±1.6 ±1.7

BP-MIP [63] 83.7 80.4 N/A N/A N/A

RBF-Bag-Unit [104] 90.3 86.6 N/A N/A N/A

MI-kernel [105] 88.0 89.3 60.3 84.2 84.3

PPPM-kernel [106] 95.6 81.2 60.3 80.2 82.4

MIGraph [105] 90.0 90.0 61.2 81.9 85.1

miGraph [105] 88.9 90.3 61.6 86.0 86.8

ALP-SVM [107] 86.3 86.2 66.0 86.0 83.5

MIForest [108] 85.0 82.0 64.0 82.0 84.0

MI-MAMDANI 88.33 ±1.67 74.0±3.2 65.4 ±1.1 79.9 ±1.6 79.5 ±1.5

datasets, MI-ANFIS ranked consistently among the top three. For MUSK1, PPPM-kernel

[106] performed the best (95.6%), but this algorithm did not perform as well for the other

sets. For MUSK2 Bagging-APR [103] achieved the best accuracy, as reported by [100].

MI-ANFIS achieved the best average performance for the Fox and Elephant datasets, and

second best performance after the miGraph [105] and ALP-SVM [107] methods for the Tiger

95

TABLE 6.6

Comparison of MI-ANFIS running time (in Minutes) to other methods on the benchmark
data sets.

Algorithms MUSK1 MUSK2 Fox Tiger Elephant

MI-ANFIS 1.1 8 6 5.5 0.5

MILES [100] 29.1 130.2 N/A N/A N/A

DD [39] 2.85 32 N/A N/A N/A

DD-SVM [101] 612 1740 N/A N/A N/A

EM-DD [58] 3.75 15.5 3.3 14.36 5

Citation-KNN [67] 0.01 2.57 N/A N/A N/A

MI-SVM [94] 0.5 5.3 0.28 0.21 2.43

dataset. On the other hand, MI-MAMDANI performed better than 10 algorithms out of 19

tested on MUSK1, it also showed better performance than 7 algorithms out of 9 algorithms

tested on FOX. However, MI-MAMDANI did not exhibit consistent performance on the rest

of the benchmark datasets. MI-MAMDANI systems are constructed based on transforming

concept points extracted using FCMI (or other MIL methods) into multiple instance fuzzy

rules. In scenarios where bags have large number of instances (such as MUSK2), this

handcrafted method does lead to accurate fuzzy representation of concepts, but further fine

tuning should be used to improve the generated rules’ consequent parts.

6.3 MCMI-ANFIS

Using the COREL dataset we train an MCMI-ANFIS to solve the problem of region-

based image categorization. We adopted the same training and testing settings as other

state of the art algorithms: images within each class were randomly split equally into a

training set and a testing set. In the following, we report average results of five runs.

For both Corel-1000 and Corel-2000 experiments we construct a first order MCMI-

ANFIS with 60 multiple instance fuzzy rules and employing Rule Dropout. Table 6.7

summarizes MCMI-ANFIS properties. The system is then trained for 2000 epoches, Table

6.8 and Table 6.9 report the confusion matrices of the two experiments.

96

TABLE 6.7

MCMI-ANFIS Training Parameters

Parameter Value

No. of MI Rules 60

No. of Inputs 9

MF’s σ 10

Rule Dropout Rate 0.2

Softmax’s α 1

Learning rate 0.1

Analysis of the confusion matrix of the Corel-1000 experiment shows that the largest classi-

fication error occured between category 2 (Beach) and category 9 (Mountains and glaciers):

18.4% of Mountains and glaciers images were classified as beaches and 16.7% of Beach images

were confused as Mountains and glaciers. African people and villages category exhibited

the lowest performance, 65.9%. These observations are inline with pervious work [43], the

large classification errors are due to the semantic richness of these categories as they contain

multiple concepts that are similar to other categories. Analysing the confusion matrix of the

Corel-2000 experiment reveals similar confusions as the Corel-1000, in addition 10% of the

Desserts category images were confused with Beach and 20.9% of Mountains and glaciers

images were misclassified as Waterfalls. Even though these categories are visually similar,

the classification accuracy can be improved through the use of more distinctive features.

However, for fairness of comparison we used the same feature set as previous art.

97

TABLE 6.8

Confusion matrix of MCMI-ANFIS on the region-based image categorization experiments
using Corel-1000 Dataset (showing the run with the best overall accuracy, 83.8%). Each
row shows the percentage of images in one category classified to each of the 10 categories.

Cat. 1 2 3 4 5 6 7 8 9 10

1 65.9 4.9 4.9 0.0 2.4 12.2 2.4 2.4 0.0 4.9

2 4.2 66.7 0.0 4.2 2.1 2.1 0.0 2.1 16.7 2.1

3 5.2 10.3 81.0 0.0 0.0 1.7 0.0 0.0 1.7 0.0

4 0.0 3.6 3.6 89.1 0.0 0.0 0.0 0.0 3.6 0.0

5 0.0 0.0 0.0 0.0 92.9 3.6 0.0 0.0 3.6 0.0

6 0.0 0.0 2.3 0.0 0.0 86.4 0.0 0.0 11.4 0.0

7 2.2 0.0 0.0 0.0 0.0 0.0 97.8 0.0 0.0 0.0

8 3.6 0.0 0.0 0.0 0.0 7.3 0.0 85.5 0.0 3.6

9 2.0 18.4 0.0 0.0 0.0 2.0 0.0 0.0 77.6 0.0

10 2.0 2.0 2.0 0.0 0.0 0.0 0.0 2.0 0.0 91.8

98

TABLE 6.9

Confusion matrix of MCMI-ANFIS on the region-based image categorization experiments using Corel-2000 Dataset (showing the run
with the best overall accuracy, 70.1%). Each row shows the percentage of images in one category classified to each of the 20 categories.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 59.6 0.0 4.3 0.0 0.0 2.1 4.3 0.0 0.0 0.0 6.4 2.1 2.1 4.3 4.3 2.1 0.0 0.0 0.0 8.5

2 2.0 50.0 2.0 0.0 0.0 0.0 0.0 0.0 24.0 2.0 2.0 0.0 0.0 2.0 2.0 0.0 0.0 4.0 4.0 6.0

3 4.2 4.2 70.8 0.0 0.0 2.1 0.0 0.0 2.1 0.0 2.1 2.1 0.0 0.0 0.0 0.0 2.1 4.2 2.1 4.2

4 0.0 3.4 5.1 83.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7 0.0 0.0 3.4 3.4 0.0

5 0.0 0.0 0.0 0.0 86.8 1.9 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.0 0.0 0.0 3.8 0.0 0.0 5.7

6 5.7 3.8 0.0 0.0 1.9 64.2 0.0 0.0 7.5 0.0 1.9 0.0 0.0 0.0 0.0 5.7 1.9 0.0 3.8 3.8

7 0.0 0.0 0.0 0.0 0.0 0.0 88.1 0.0 0.0 0.0 2.4 0.0 0.0 4.8 2.4 0.0 0.0 0.0 2.4 0.0

8 1.7 0.0 0.0 0.0 0.0 1.7 0.0 81.4 0.0 0.0 10.2 5.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

9 0.0 4.7 0.0 0.0 0.0 7.0 0.0 0.0 46.5 0.0 2.3 0.0 0.0 0.0 2.3 20.9 0.0 2.3 9.3 4.7

10 3.8 1.9 0.0 1.9 0.0 0.0 1.9 0.0 0.0 77.4 0.0 3.8 1.9 1.9 3.8 0.0 0.0 1.9 0.0 0.0

11 6.8 0.0 2.3 0.0 0.0 0.0 2.3 4.5 0.0 2.3 63.6 4.5 4.5 2.3 0.0 0.0 0.0 0.0 4.5 2.3

12 3.9 2.0 7.8 0.0 0.0 0.0 0.0 2.0 0.0 0.0 2.0 72.5 0.0 0.0 2.0 0.0 0.0 0.0 3.9 3.9

13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.1 0.0 8.5 0.0 76.6 0.0 0.0 0.0 2.1 0.0 4.3 6.4

14 0.0 0.0 0.0 0.0 0.0 0.0 8.9 0.0 0.0 1.8 0.0 0.0 0.0 66.1 16.1 0.0 0.0 0.0 1.8 5.4

15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.3 0.0 10.0 1.7 10.0 61.7 0.0 5.0 3.3 0.0 5.0

16 2.0 2.0 2.0 0.0 0.0 7.8 0.0 0.0 13.7 0.0 0.0 2.0 0.0 0.0 0.0 70.6 0.0 0.0 0.0 0.0

17 3.8 0.0 1.9 0.0 0.0 1.9 0.0 0.0 0.0 0.0 1.9 0.0 1.9 0.0 0.0 0.0 83.0 0.0 1.9 3.8

18 0.0 4.1 2.0 2.0 0.0 0.0 0.0 0.0 6.1 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 77.6 2.0 4.1

19 0.0 9.6 0.0 0.0 5.8 0.0 0.0 0.0 9.6 0.0 1.9 0.0 1.9 0.0 0.0 1.9 13.5 1.9 53.8 0.0

20 0.0 10.0 0.0 0.0 0.0 3.3 0.0 0.0 6.7 3.3 3.3 0.0 0.0 0.0 0.0 3.3 0.0 6.7 3.3 60.0

99

TABLE 6.10

Comparison of MCMI-ANFIS classification accuracy (in percent) to other methods on the
Corel-1000 and Corel-2000 benchmark datasets

Algorithms Corel-1000 Corel-2000

MCMI-ANFIS 82.1 ±1.5 69.7 ±0.4

MIGraph [105] 83.9 72.1

miGraph [105] 82.4 70.5

MI-Kernel [105] 81.8 72.0

MILES [43] 82.6 68.7

MI-SVM [94] 74.7 54.6

DD-SVM [101] 81.5 67.5

Kmeans-SVM [43] 69.8 52.3

Table 6.10 reports the classification accuracy averaged over five runs (% of correct

± standard deviation). Overall MCMI-ANFIS showed consistent performances on both

datasets and achieved competitive results compared to other MIL methods reported in

the literature. When compared to the top performing method MIGraph [105], MCMI-

ANFIS showed comparable results. In addition, MIGraph, and most other methods, were

trained and tested using one versus all training pattern, whereas MCMI-ANFIS learned

all the concepts in one training pass, which is usually a more difficult task. Also MCMI-

ANFIS performance was better than MILES [43], which was considered the state of the art

algorithm on the Corel dataset until MIGraph and MI-Kernel were published. It is worth

noting that on the binary classification problems of the previous section MI-ANFIS was

better than MIGraph on 4 out of the 5 datasets. In general MI-ANIFS and MCMI-ANFIS

showed competitive and consistent results on all benchmark datasets.

We note that Rule Dropout was necessary to train MCMI-ANFIS. Without Rule Dropout

we observed overfitting, which led to a low 44% accuracy on the Corel-2000 dataset. This

emphasizes the importance of regularization and the need for large datasets to train neural

networks in general. For the Corel experiments, our the MCMI-ANFIS has 2880 parameters1

19×2×60 premise parameters, 10×60 consequent parameters, and 60×20 fully connected layer parameters

100

to be learned, versus only 2000 training bags, making overfitting more likely to occur. Rule

Dropout helped reducing this artifact significantly, leading to competitive performance.

101

CHAPTER 7

APPLICATION : LANDMINE DETECTION USING GROUND PENETRATING

RADAR

In this Chapter, we apply the proposed multiple instance fuzzy inference framework

to fuse multiple landmine detection algorithms. First, we start with an overview of the

landmine detection problem and illustrate the need to solve this problem using multiple

instance learning. Then, we describe the dataset used in the experiments. Next, we show

how the fusion problem can be solved using traditional Mamdani and ANFIS inference.

Finally, we develop fusion methods using our multiple instance fuzzy inference systems and

report the results.

7.1 Landmine Detection

Detection and removal of landmines is a serious problem affecting human beings

worldwide. The world is now littered with an estimated 200-215 million landmines in

91 countries, which maim or kill an estimated 500 people every week, mostly innocent

civilians [109]. The task of detection of buried landmines is of extreme difficulty and this

is mainly due to the large variety of landmine types, different soil type and compaction,

temperature, moisture, shadow, time of day, weather conditions, and varying terrain, to

name a few.

Varieties of sensors have been proposed or are under investigation for landmine

detection. The research problem for sensor data analysis is to determine how well signatures

of landmines can be characterized and distinguished from other objects under the ground

using returns from one or more sensors. Recently, various discrimination algorithms [110–

114] have been proposed for detecting buried objects using ground-penetrating radar (GPR)

102

(a) 3D GPR Raw data
(b) (depth, down-track) and (depth, cross-
track) slices of GPR data

Figure 7.1: 3-dimensional and 2-dimensional raw GPR data.

[115, 116]. GPR offers the promise of detecting landmines with little or no metal content.

The sensor works by emitting an electromagnetic wave covering a large frequency band into

the ground through a wide-band antenna. Reflections from the soil caused by dielectric

variations such as the presence of an object are measured. By moving the antenna, it is

possible to reconstruct an image representing a vertical slice of the soil. The data generated

are 3-dimensional and correspond to depth, down-track, and cross-track (Figure 7.1). Most

discrimination algorithms process only 2-D slices of the 3-D cube: (down-track, depth)

or (cross-track,depth). The performance of the down-track and cross-track discrimination

algorithms can vary significantly depending on the target shape, burial orientation, and

other environmental conditions. In some cases, these algorithms can provide complementary

evidence, while in other cases they provide contradicting evidence. Thus, effective fusion of

these algorithms can achieve higher probability of detection with fewer false alarms.

To train discrimination algorithms, we use data collected with known target loca-

tions. However, only the (down-track, cross-track) position can be extracted. The depth

position is usually unknown as it depends on the burial depth, height of target, type of

soil, height of GPR antenna above the ground, etc. Thus, there is uncertainty in the depth

estimation of the targets that can affect both the training and testing phases of a fusion

103

system. For training, it is very difficult to localize the objects depth automatically, and it

is a very tedious process to do it manually. Similarly, during testing, it is not trivial how

to combine partial confidence values from multiple depths. Therefore, the MIL paradigm is

suitable to solve this problem.

Several landmine discriminators could be used in the fusion system. In this disserta-

tion, we validate our approach using four discrimination algorithms. Two of the algorithms

are based on the Edge Histogram Descriptor (EHD) [117]. The first algorithm processes the

2-D (down-track, depth) slice of the 3-D GPR signal to generate partial confidence values

at different depths, and is referred to as EHDDT (DT indicates down-track). Similarly, the

second algorithm processes the 2-D (cross-track, depth) slice and is referred to as EHDCT

(CT indicates cross-track). The other two discrimination algorithms are based on the Fisher

Vector features [118]. In a like manner to EHD, one of the algorithms, called FisherVec-

torDT, extracts features from the (down-track, depth) view, the second algorithm, called

FisherVectorCT, extracts information for the (cross-track, depth) view.

In the following, we briefly describe the GPR data and present the discrimination

algorithms. More details can be found in [117, 119]. We also outline the extraction of two

additional features that are used to refine the fusion rules when necessary.

7.1.1 GPR data

The data used in our multi-algorithms fusion system was collected using a vehicle

mounted GPR (as shown in Figure 7.2). As the vehicle travels, it generates a 3-Dimensional

matrix of sample values (shown in Figure 7.1a) that correspond to depth, down-track, and

cross-track, S(z, x, y), z = 1, ..., ND;x = 1, ..., NC ; y = 1, ..., NS , where z, x, and y represent

depth, cross-track, and down-track positions respectively, and ND, NC , and NS represents

the collected sample size along depth, cross-track, and down-track dimensions.

104

Figure 7.2: Vehicle mounted GPR system.

7.1.2 EHDDT and EHDCT algorithms

The EHDDT is the same as the standard Edge Histogram Descriptor (EHD) algo-

rithm proposed by Frigui et al. [117]. The EHD uses translation invariant features, that

are based on the histogram of edges in the GPR signatures, and a possibilistic k−Nearest

Neighbors (k−NN) rule for confidence assignment [120]. The EHD is an adaptation of the

MPEG-7 EHD feature [121] which captures the signature’s texture as feature for recogni-

tion. It has been adapted to capture the spatial distribution of the edges within a 3−D

GPR data volume. To keep the computation simple, 2−D edge operators are used, and two

types of edge histograms are computed. The first one is obtained by fixing the cross-track

dimension and extracting edges in the (depth, down-track) plane. The second edge his-

togram is obtained by fixing the down-track dimension and extracting edges in the (depth,

cross-track) plane.

Let S
(x)
zy be the xth plane of the 3−D signature S(z, x, y). First, for each S

(x)
zy , four

categories of edges are computed: vertical, horizontal, 45◦ diagonal, and 135◦ anti-diagonal.

If the maximum of the edge strengths exceeds a preset threshold, the corresponding pixel

is considered to be an edge pixel. Otherwise, it is considered a non edge pixel. Next, each

S
(x)
zy image is vertically subdivided into 7 overlapping sub-images S

(x)
zyi , i = 1, . . . , 7. For

each S
(x)
zyi , a 5 bin edge histogram, H

(x)
zyi , is computed. The bins correspond to the 4 edge

categories, and the non-edge pixels.

105

The EHD is defined as the concatenation of the 7 five-bin histograms. That is,

EHDy(Sxyz) = [Hzy1 Hzy2 Hzy3 . . . Hzy7], (7.1)

where Hzyi is the cross-track average of the edge histograms of sub-image S
(x)
zyi over NC

channels, i.e.,

Hzyi =
1

NC

NC∑
x=1

H
(x)
zyi . (7.2)

The EHDCT is a variation of the standard EHD and follows the same feature extrac-

tion process described above. However, while the EHDDT is mainly based on the (depth,

down-track) slices, the EHDCT focuses only on the (depth, cross-track).

A given test GPR alarm has around 300 to 400 depth values. The buried object

signature is not expected to cover all the depth values. Thus, extracting one global feature

vector from the alarm may not discriminate between object and clutter signatures effectively.

To avoid this limitation, each potential target (identified by a prescreener) needs to be tested

at multiple depth values. Typically, a 30 × 15 × 7 window is slided along the depth axis

with a 50% overlap between 2 consecutive signatures. A total of 17 signatures are extracted

for each target. Thus, each alarm would be represented by a bag of 17 instances. For each

instance the EHD histograms (EHDDT and EHDCT) are extracted. Then, a possibilistic

k−Nearest Neighbors (k−NN) rule is used to assign partial confidence values [120] for each

instance individually. We should note here that the bag representation is used to group

features from multiple depths, and is not used in an MIL context.

7.1.3 Fisher Vector discrimination algorithms

The Fisher Vector (FV) extracts features at multiple depths of the 3-D GPR sig-

natures. First, each 2-D GPR view (i.e., (down-track, depth) or (corss-track, depth)) is

divided into overlapping 60 windows along the depth axis. Next, each window is in turn

divided into a set of sub patches using a grid partitioning. Then, 128-D dense SIFT [118]

features are extracted for each sub patch, a sample window with extracted SIFT feature

106

is shown in Figure 7.3. Finally, the FV is used to aggregate the extracted set of features

into a global feature vector for each window. In total, 60 FV features are extracted for

the (down-track, depth) view and 60 FV features are extracted for the (cross-track, depth)

view.

Figure 7.3: Sample GPR alarm with dense SIFT features (only first and last features are
shown)

The FV patch aggregation mechanism is based on the Fisher Kernel. The Fisher Kernel

characterizes a sub patch by its deviation from a generative model. The deviation is the gra-

dient of the sub patch log-likelihood with respect to the generative model parameters. The

vectorial representation of all the deviations is called the Fisher Vector (FV). For instance,

using the extracted dense SIFT features (descriptors), a generative model, such as Gaussian

107

Mixture Model (GMM) with K words, is learned. It can be regarded as a ”probabilistic

visual vocabulary”. Let I = (x1, . . . ,xN) be a set of D dimensional feature vectors. Let

Θ = (µk,Σk, πk : k = 1, . . . ,K) be the parameters of a GMM fitting the distribution of de-

scriptors, where πk , µk, and Σk are respectively the mixture weight, mean, and covariance

matrix of Gaussian k. The GMM associates each vector xi to a mode k in the mixture with

a strength given by the posterior probability:

qik =
exp

[
−1

2(xi − µk)TΣ−1k (xi − µk)
]∑K

t=1 exp
[
−1

2(xi − µt)TΣ−1k (xi − µt)
] . (7.3)

For each mode k, we compute the mean and covariance deviation vectors

ujk =
1

N
√
πk

N∑
i=1

qik
xji − µjk
σjk

,

vjk =
1

N
√

2πk

N∑
i=1

qik

[(
xji − µjk
σjk

)2

− 1

]
.

where j = 1, 2, . . . , D spans the vector dimensions. The FV of a given GPR window is the

concatenation of the vectors uk and vk for each of the K modes in the Gaussian mixtures,

i.e.,

Φ(I) = [u1 · · ·uk · · ·v1 · · ·vk · · ·] (7.4)

Due to the absence of ground truth at the window level, a simple heuristic was used to label

the data. It consists of assigning positive labels to windows with high energy, and negative

otherwise. Having labeled the windows, SVM is then used to learn a classifier and assign

partial confidences to the extracted 60 windows. Thus, each alarm would be represented by

a bag of 60 instances. Each instance is a 2-D vector composed of FisherVectorDT confidence

value and FisherVectorCT confidence value.

7.1.4 Auxiliary Feature Extraction

In some cases, EHDDT and EHDCT algorithms can provide complementary evi-

dence, while in other cases they provide contradicting evidence. In the later case, a fusion

system needs to trust one algorithm over the other. This can be achieved by learning ap-

propriate linear combination of weights for algorithms within each local context. For this

108

method to be effective, extracted local contexts need to have: (i) a consistent algorithm that

can be trusted and can lead to a better discrimination, or (ii) have a trivial solution due

to context purity (a pure context includes mainly target signatures and only few to none

non-targets signatures, or vice versa). However, because of the low dimensionality of the

available inputs (only 2 dimensions, EHDDT and EHDCT), in some regions of the input

space it may be difficult to obtain contexts in which a combination of the algorithms will

improve the discrimination results. To improve the partition of the input space, we extract

auxiliary features synthesized from the shape of the radar signal at certain depths.

In the following, we outline the extraction of two auxiliary features: SignatureWidth

for Down-track; and SignatureWidth for Cross-Track. As the names indicate, and by

analogy to EHDDT and EHDCT, the two additional features consist of the effective width

of the strong components within the GPR signal along (depth, down-track) slices and the

width along (depth, cross-track) slices.

Let B
(x)
z(i),y be the 2 dimensional signature corresponding to the measured radar

signal collected at a fixed cross-track position (referenced here by x) and encapsulating the

30 depth bins starting at z(i). In other words, B
(x)
z(i),y is one of the 17 signatures (instances)

of one alarm. Similarly, let B
(y)
z(i),x be the 2 dimensional signature at a fixed down-track

position (referenced here by y). Figure 7.4 displays 3 signatures extracted from target and

non-target GPR alarms. As it can be seen, target signatures can be characterized by a

right rising edge (45◦ diagonal), and a left decreasing edge (135◦ anti-diagonal). Typically,

wider structures (covering more than 11 scans) can indicate the presence of an object of

interest (due to known target sizes), and should lead to a higher probability of detection.

SignatureWidth auxiliary features are based on this observation.

To extract the SignatureWidth of a given instance, we use two of the edges com-

puted for the EHD: 45◦ diagonal, and 135◦ anti-diagonal. These diagonal and anti-diagonal

edge strengths are summed along the depth dimension. The resulting 1-D signals, called

hereafter DGStrength and ADStrength respectively, are normalized by the number of

instance depths (i). By thresholding the later signals we can extract two key locations

109

(a) Non target

(b) Target with strong DT signature

(c) Target with strong CT signature

Figure 7.4: Target and Non-Target signatures.

that define the spread of the strongest component within the instance, and thus obtain

the SignatureWidth. These two key locations are respectively the points SD, where the

DGStrength starts rising above a threshold value DGThresh, and SA, where ADStrength

starts decreasing below a threshold value ADThresh.

Formally, SD is defined as

SD = min{i | DGStrengthi > DGThresh} (7.5)

Similarly,

SA = max{i | ADStrengthi > ADThresh} (7.6)

110

Figure 7.5: Illustration of the identification of the SA and SD points.

The SignatureWidth is then defined as

SignatureWidth =

 SA− SD if SA > SD,

0 otherwise
(7.7)

The identification of the SD and SA points are illustrated in Figure 7.5. Examples

of SignatureWidth features are shown in Figure 7.6

Let SignatureWidthDT be the width feature for Down-track and SignatureWidthCT

be the width feature for Cross-Track. Thus, each alarm is represented by a bag of 17 in-

stances extracted at multiple depths. Each instance include 2 features: SignatureWidthDT ,

SignatureWidthCT .

111

(a) Down-Track, width = 13 (b) Cross-Track, width = 6

Figure 7.6: Examples of SignatureWidthDT (gprDT) and SignatureWidthCT (gprCT) fea-
tures for a target object.

7.1.5 Data Collection

GPR data collected at different locations and different dates were used to evaluate

our algorithms. In particular, two collections were used to train and test the proposed

fusion methods. The first collection, Collection-1, was collected from two different sites

and covers a variety of anti-tank mines including 319 encounters of anti-tank with high

metal content(ATHM) and 422 encounters of anti-tank with low metal content (ATLM). In

addition, a variety of clutter objects were surveyed in an effort to test the robustness of the

fusion algorithms. The targets were buried up to 8 inches deep. First, a prescreener [122]

is used to process the GPR data and identify regions of interest to be processed further

by the discrimination algorithms. The prescreener identified 700 target encounters and 330

non-targets (false alarms). Collection-1 is used in the following to perform 10-fold corss-

validation. The second collection, Collection-2, was collected from three different sites. The

first two sites cover 789 target encounters of which 339 were of type ATHM and 450 ATLM,

also 1577 non-targets were identified in the first two sites. The third site of Collection-2

covers 1948 targets (847 ATHM and 1097 ATLM) and 3018 non-targets. In the following,

Site 1 & Site 2 of Collection-2 will be exclusively used for training and Site 3 will be

exclusively used for testing.

In the next section, we describe the fusion system that we have developed based

on a traditional Mamdani inference system [123] and using 4 features: EHDDT, EHDCT,

SignatureWidthDT , SignatureWidthCT .

112

7.2 Fusion of Multiple Landmine Detection Algorithms Using Traditional Fuzzy

Inference

Our goal is to design a system which accepts (as input) arbitrary sets of discrimina-

tion confidence values and additional contextual knowledge (such as SignatureWidth), and

be able to: 1) derive a set of fuzzy rules from the available input knowledge; 2) learn asso-

ciated output fuzzy sets; and 3) output a final confidence value representing the degree to

which a GPR alarm should be considered as a target. To fulfill this functional requirement,

first, we design two traditional fuzzy inference systems, based on Mamdani inference, and

ANFIS. Next, we develop fusion systems using our proposed multiple instance fuzzy infer-

ence framework. In particular, we develop fusion methods based on our MI-Mamdani and

MI-ANFIS and compare their performances to that of traditional fuzzy inference systems.

Given that traditional fuzzy systems cannot learn from ambiguously labeled data,

information about correct target depths need to be provided (i.e., instances need to be

labeled). To do so, for each positive bag we assign a positive label to the instances with the

highest energy (energy can be computed by taking the sum of the absolute values of GPR

signals within an instance), also a human expert is used to validate the labeling. On the

other hand, our multiple instance framework does not require labels at the instance levels

to be available and can learn from ambiguously labeled data. In the following, we show that

even though our framework does not require instances’ labels, it provided better results,

this is because it uses all available information of a given bag to perform fuzzy reasoning.

7.2.1 Fusion of Multiple Landmine Detection Algorithms Using Mamdani Fuzzy

Inference

To learn traditional Mamdani fuzzy rules, first, the input space is partitioned to iden-

tify local contexts. Second, input membership functions are learned based on the statistics

of the partial confidence values of the input features (partial confidence values and auxil-

iary features) within each context. Third, output membership functions are generated by

considering the distributions of targets and non-targets within each context. Finally, the

113

input and output membership functions are combined into a Mamdani-type fuzzy inference

system. The output of the learning process is a fuzzy rule base (FRB) adapted to different

contexts.

For this task, we have generated N = 3050 training observations, from Collection-1,

with desired output T = {tj |j = 1, . . . , N} that correspond to instances processed by differ-

ent discrimination algorithms and/or background features extractors (EHDDT, EHDCT,

SignatureWidthDT , SignatureWidthCT). From each non-target alarm, we selected 5 in-

stances at an equal sampling interval, and from each target alarm we selected 2 instances

intuitively selected based on the highest value of the combined EHDDT and EHDCT con-

fidence values. An expert is used to label the data.

The partial confidence values of a given discriminator d are denoted by Yd = {ydj |j =

1, . . . , N}. Each auxiliary feature e in denoted by Be = {bej |j = 1, . . . , N}. The D (D = 2)

discriminators and E (E = 2) background features are then concatenated to generate one

global descriptor for each observation:

X = (
D⋃
d=1

Yd) ∪ (
E⋃
e=1

Be) = {xj = [y1j , . . . , yDj , b1j , . . . , bEj]|j = 1, . . . , N} . (7.8)

To simplify notation, we will use xij to donate either yij or bij , and rewrite (7.8) using:

X = (
D⋃
d=1

Yd) ∪ (

E⋃
e=1

Be) =
{
xj = [x1j , . . . , x(K=D+E)j]|j = 1, . . . , N

}
. (7.9)

The proposed fusion system can be expressed by means of a fuzzy rule base composed

of a union of if−then fuzzy rules. A typical Mamdani-style fuzzy rule, Ri has the following

form:

Ri : If x1 is M i
1 and x2 is M i

2, . . . , and xK is M i
K , then oi is Ci. (7.10)

In (7.10) Ri, i = 1, 2, . . . , r, is the ith fuzzy rule, M i
j is a fuzzy set associated with

the jth input, and Ci is the fuzzy set describing the output of the ith rule. The FRB is the

union of all rules:

114

FRB =
r⋃
i=1

Ri. (7.11)

The fuzzy sets in (7.10) consist of linguistic labels characterized by parameterized

membership functions M i and Ci. We use trapezoidal membership functions that can be

completely determined by four scalar parameters l, m, h, and u, where l and u locate the

”feet” (support) of the trapezoid and the parameters m and h locate the ”shoulders” (core).

Formally,

M i
k(xk) = max(min(

xk − lik
mi
k − lik

, 1,
uik − xk
uik − hik

), 0). (7.12)

For the rules’ outputs (i.e. Ci), we use Gaussian membership functions:

Ci(y) = e
−(y−cio)

2

2σio
2
, (7.13)

where cio and σio are the mean and variance of the gaussian function.

Identifying the FRB in (7.11) is equivalent to identifying its underlying parameters:

1. Premise parameters: P =
{
lik,m

i
k, h

i
k, u

i
k | i = 1, 2, . . . , r; k = 1, 2, . . . ,K

}
; and

2. Consequent parameters: C =
{
cio, σ

i
o | i = 1, 2, . . . , r

}
To identify the premise parameters we first cluster the N training observations along

each dimension k = 1 . . .K into ri clusters using the K-means algorithm [124]. The K-means

returns a list of clusters’ centers(C) and the set of points associated with each cluster. Then,

the Premise parameters are derived from the clusters’ centers and widths (cik, σ
i
k) along each

input dimension by transforming the Gaussian membership function, defined by the cluster’s

center and width (cik, σ
i
k) to a trapezoidal one using:

lij = cij − α× σij

mi
j = cij − β × σij

hij = cij + β × σij

uij = cij + α× σij

such that α ≥ β (7.14)

115

Trapezoidal membership functions have lager cores and are more suitable for fuzzi-

fication of discriminators’ confidence values. In (7.14), the parameters α and β control the

width of the core and support of the trapezoidal functions.

To learn the consequent parameters we count the number of target and non-target

instances within each region of the input space (i.e., clusters generated by K-means in

the previous step). Then, the proportion of target instances is used as the mean of the

output membership function (i.e., cio) and the width is fixed. Using this assignment, regions

dominated by target instances will have an output closer to 1, while regions dominated by

non-targets will have an output closer to 0.

Once the FRB is identified, we use the inference process described in Section 2.3.1.

For each new depth instance, we start by fuzzification of the input. The fuzzification role is

to determine the membership degree of each input dimension in the rules’ input fuzzy sets.

After this step the implication is executed using the product as a joint (and) operator, this

will lead to some rules being activated with different degrees. Then, the rules’ outputs are

aggregated, and defuzification is executed to produce a crisp confidence value indicating the

degree to which the instance should be considered as a target. To test a GPR alarm, each

depth instance is fed to the system and its partial confidence value is computed . Then a

final confidence value is assigned to the alarm by taking the average of the top 3 instances

with largest confidence values [117].

7.2.1.1 Rule Generation

First, the confidence values of the EHDDT and EHDCT discriminators as well as

SignatureWidthDT and SignatureWidthCT background features are extracted. To parti-

tion the input space using the K-means algorithm, the EHDDT and EHDCT were divided

into 3 fuzzy sets as following: Low, Medium , and High. Whereas the SignatureWidthDT

and SignatureWidthCT were quantized into Narrow, Medium, and Wide fuzzy sets. For

the Gaussian output membership function, we set σ to 0.05. This partitioning generates a

total of 81 clusters. We discard clusters that have few samples (< 10). This results in 21

116

rules.

Figure 7.7: Illustration of the generated Mamdani Fuzzy Rule Base (FRB), showing 4 of
the 21 rules.

The rules obtained are intuitive and easily interpretable. For instance in Figure

7.7, we display 4 of the 21 rules, when the input = [EHDDT = 3.75, EHDCT =

2.61, SignatureWidthDT = 9.73, SignatureWidthDT = 10.3]. Rule 1 and 2 state the

following:

R1 If EHDDT is High and EHDCT is Low and SignatureWidthDT is Medium

and SignatureWidthCT is Wide then o1 is High. (7.15)

R2 : If EHDDT is Low and EHDCT is Low and SignatureWidthDT is Narrow

and SignatureWidthCT is Narrow then o2 is Low. (7.16)

Rule 3 is identical to Rule 2 expect the SignatureWidthDT and SignatureWidthDT are

now both high. As a result, the output increases from Low to Medium.

R3 : If EHDDT is Low and EHDCT is Low and SignatureWidthDT is High

and SignatureWidthCT is High then o3 is Medium. (7.17)

7.2.2 Fusion of Multiple Landmine Detection Algorithms Using ANFIS

In the following, we outline a fusion method based on Adaptive Neuro Fuzzy Infer-

ence Systems (ANFIS) [125] capable of simultaneously identifying local contexts as well as

117

learning optimal weights for combining local expert discriminators.

Given the same training data used to train the previous fusion method (i.e., X and

T), we use ANFIS to iteratively achieve: 1) structure identification, which relates to deter-

mining the number of fuzzy if-then rules and an optimal partition of the input space, and

2) parameter identification, which involves learning of the optimal partitions (contexts) and

combination weights. To learn the rules, first, the input space is partitioned to identify lo-

cal contexts. Second, input membership functions are learned based on the statistics of the

partial confidence values of the individual discriminators as well as additional background

information within each context. Third, the output parameters of the rules are initialized

using a least squares estimator (LSE). Finally, the input and output membership functions

are combined into a Sugeno-type fuzzy inference system. The resulting ANFIS system is

then trained using a hybrid learning algorithm [125]. The output of the learning process is

a fuzzy rule base adapted for different contexts.

As detailed in Section 2.3.3, ANFIS can be expressed by means of a fuzzy rule base

(FRB) composed of a union of Sugeno type if-then fuzzy rules. A typical Sugeno fuzzy rule

has the following form:

Ri : If x1 is M i
1 and x2 is M i

2, . . . , xK is M i
K , thenoi = ai1×x1+ai2×x2+ . . .+aiK×xK +bi.

(7.18)

Where Ri, i = 1, 2, . . . , r, denotes the ith fuzzy rule. M i
j is a fuzzy set associated with the

jth fusion input, aij is a weight assigned to the jth discriminator or background feature,

and bi is a constant. As before, the FRB is then obtained by taking the union of all rules:

FRB =

r⋃
i=1

Ri. (7.19)

In this fusion system, we use gaussian membership functions that can be completely

determined by two scalar parameters c and σ, the center and width of the gaussian function.

M i
j(xj) = exp(−

(xj − cij)2

2× σij
). (7.20)

118

ANFIS parameters are then,

1. Premise parameters:

P =
{
cij , σ

i
j |i = 1, 2, . . . , r; j = 1, 2, . . . ,K

}
; and

2. Consequent parameters:

C =
{
aij , b

i|i = 1, 2, . . . , r; j = 1, 2, . . . ,K
}

To identify the premise parameters (i.e. the parameters of the membership functions

M i), we cluster the N training observations into r clusters using the FCM algorithm [60].

FCM returns a list of clusters’ centers(C) and a partition matrix (U). The premise param-

eter σs are then derived from clusters’s centers and widths using (2.57). To initialize the

rules’ output parameters we use an ordinary least squares estimator as defined in (2.58).

Once the structure of the network is defined and initialized, we continue with the

learning process that yields a network with a fine-tuned membership functions. Thus,

fine-tuned contexts. Each rule can be viewed as a context with its associated optimal

combination weights (consequent parameters). When testing, an instance will activate

certain rules (contexts) to certain degrees and the network output will be the weighted

average off all rules outputs combined.

As before, to test a GPR alarm, each depth instance is fed through the ANFIS network and

its partial confidence value is computed as the defuzzification of all rules outputs. Then a

final confidence value is assigned to the alarm by taking the average of the top 3 instances

with largest confidence values.

7.2.2.1 Rule Generation

First, the conffidence values of the EHDDT and EHDCT discriminators as well as

SignatureWidthDT and SignatureWidthCT auxiliary features are extracted. Then, the

input space is partitioned using the FCM algorithm into 16 clusters. Next, ANFIS param-

eters are identified as described above. Finally, rules’s parameters are fine-tuned using the

hybrid learning algorithm outlined in Section 2.3.3. The output of this process is a rule

base optimized for the fusion of multiple landmine detection algorithms. Figure 7.8 is an

119

illustration of 2 of the 16 learned rules, when the input = [EHDDT = 3.75, EHDCT =

2.61, SignatureWidthDT = 9.73, SignatureWidthDT = 10.3]. Rule 1 and 2 state the

following:

R1 If EHDDT is Low and EHDCT is Low and SignatureWidthDT is Medium

and SignatureWidthCT is Narrow then

o1 = 15.3× EHDDT + 0.1358× EHDCT − 7.681× SignatureWidthDT + 3.921 (7.21)

× SignatureWidthCT − 116.8 (7.22)

R1 If EHDDT is Medium and EHDCT is Medium and SignatureWidthDT is Wide

and SignatureWidthCT is Wide then

o1 = −1.594× EHDDT − 0.05× EHDCT + 0.0058× SignatureWidthDT − 1.686 (7.23)

× SignatureWidthCT + 45.8 (7.24)

Figure 7.8: Illustration of the generated ANFIS Fuzzy Rule Base (FRB), showing 2 of the
16 rules.

ANIFS rules (Sugeno rules in general) are not as interpretable as Mamdani rules.

However, they are more optimized for the desired fusion application and yield better results

as shown in the next section.

7.2.3 Results

Figure 7.9 displays a scatter plot of EHDDT vs. EHDCT. As it can be seen, the

two detectors are consistent for most targets and false alarms (FA). However, there are sev-

eral cases where the confidence values are not consistent. For instance, region R2 includes

120

samples where the EHDDT discriminator performed better than the EHDCT discrimina-

tor. Similarly, EHDCT can help identify targets (e.g., within R1) that may be missed

by EHDDT. In some cases were both discriminators agree on low confidence values, Sig-

natureWidth auxiliary features can help increase the final confidence value as shown in

Mamdani Rule 3 in Figure 7.7.

We compare the performance of the proposed fusion methods (i.e., Mamdani and ANIFS)

to the individual discriminators and two global fusion methods: (i) the first global fusion

method performs the geometric mean of EHDDT and EHDCT, (ii) the second global fu-

sion method performs the geometric mean of EHDDT, EHDCT, SignatureWidthDT , and

SignatureWidthCT .

Figure 7.9: Comparison of the performances of EHDDT and EHDCT discriminators.

The individual discriminators and the proposed fusion were trained and tested using

10-folds cross validation. Figure 7.10 displays the ROC’s of all methods. As it can be seen,

the proposed Mamdani fuzzy fusion method outperformed the two global fusion methods

and all of the individual discriminators. This is due mainly to the localized approach used

by our system to better define local contexts by means of fuzzy rules resulting in a better

121

Figure 7.10: Comparison of the individual discriminators and the proposed fuzzy fusion
method.

combination of the inputs. However, ANFIS gave the best overall performance. In addition

to being a localized approach, ANFIS jointly identify local contexts and learns optimal

weights for combining local discriminators.

7.3 Fusion of Multiple Landmine Detection Algorithms Using Multiple In-

stance Fuzzy Inference

Discrimination algorithms detect target candidates only in two-dimensions (down-

track and cross-track position). Thus, there is uncertainty in the depth estimation of the

targets that can affect both the training and testing phases of a fusion system. For training,

it is very difficult to localize the objects depth automatically, and it is a very tedious process

to do it manually. Similarly, during testing, it is not trivial to combine partial confidence

values from the multiple windows.

The fusion training data are already grouped into bags. Each bag represents a GPR

alarm and has instances extracted at multiple depths. Labels for the bags are available as

binary ground truth: target/non-target (positive/negative). This formulation fits perfectly

122

TABLE 7.1

MI-Mamdani Parameters

Number of MI Rules 5

Number of Inputs 4

Membership functions trapezoidal MFs

MFs’ parameters learned using FCMI

Number of Training bags 1030: 700 positive bags and 330 negative bags

Output parameters singleton fuzzy set {1}.
Truth instances aggregation average of top 3.

the MIL paradigm.

In the following, we develop two multiple instance fuzzy inference systems for the

purpose of discriminators and auxiliary features fusion. The first system is based on the pro-

posed MI-Mamdani inference, and the second system is based on the proposed MI-ANFIS.

In addition we conduct two experiments: In first experiment, as the previous paragraph

we use EHDDT, EHDCT, SignatureWidthDT , and SignatureWidthCT to design a fu-

sion system using MI-FISs. In the second experiment, we fuse the outputs of the EHDDT,

EHDCT, FisherVectorDT and FisherVectorCT discriminators.

7.3.1 Fusion of Multiple Landmine Detection Algorithms Using MI-Mamdani

To learn an MI-Mamdani system from the training data (bags) for the purpose of

fusion of discrimination algorithms, first, we apply the FCMI to extract concept points.

Next, we generate multiple instance fuzzy rules from concept points as outlined in Section

4.3. Finally, the learned rules are combined into an MI-Mamdani multiple instance fuzzy

inference system. We note that to aggregate the truth instances at the rules’ level we used

an Ordered Weighted Averaging Operator (OWA) that outputs the average of the top three

highest truth instances.

After running FCMI, 5 concept points are identified and used to identify the parameters of

5 multiple instance fuzzy rules. The resulting rule base is illustrated in Figure 7.11. Table

7.1 summarizes the parameters used to identify the fusion rules.

The rules of our MI-Mamdani system describe concepts inferred from FCMI concept

123

Figure 7.11: MI-Mamdami multiple instance fuzzy rules.

points. If a given target has an instance that can be described by any of the concepts it

will lead to a high defuzzified output, and eventually to positive detection. However, non-

targets should not have any instance within positive concepts and they will get assigned

low output.

7.3.2 Fusion of Multiple Landmine Detection Algorithms Using MI-ANFIS

For this experiment, we construct a zero-order MI-ANFIS (constant consequent pa-

rameters) having 5 multiple instance rules, and employing Gaussian MFs to describe the

input fuzzy sets. To initialize the system’s parameters, first, we use the FCM algorithm to

cluster the instances that belong to positive bags into 5 clusters, and we initialize the MFs’

centers as the clusters’ centers. Then, we set the standard deviations of the input MFs to

a preset value of 1. Finally, we set the output parameters to 1. Table 7.2 summarizes all

parameters used in training the MI-ANFIS.

After initialization, we run MI-ANFIS basic learning algorithm (Algorithm 5.2) to jointly

learn a fuzzy description of the positive concepts as well as optimal rules’ output. Fig-

ure 7.12 is a graphical representation of the 5 multiple instance rules prior to running the

optimization process (dotted line curves) and the learned rules after training (continuous

curves). Figure 7.13 plots the root mean squared error (RMSE) vs. the training epoch

number. The fuzzy sets of the rules’ antecedents describe the location and the extent of

the positive concepts in the 4-D instance feature space. The rules’ consequent values can

124

TABLE 7.2

MI-ANFIS Training Parameters

Number of MI Rules 5

Number of Inputs 4

Membership functions Gaussian MFs

MFs’ centers initialized using FCM

MFs’ standard deviations preset to 1 (at epoch number 0)

Output parameters constants = 1 ({bi0 = 1}5i=1, at epoch number 0)

Number of Training bags 1030: 700 positive bags and 330 negative bags

Number of Training Epochs 150

Parameter α used in softmax function 2

Learning rate 0.1

be interpreted as an assessment of the “positivity” of each learned concept. For instance,

the MI-ANFIS learned the following two positive concepts to describe targets:

R1 : If EHDDT isMedium and EHDCT isMedium and SignatureWidthDT is High

and SignatureWidthCT is High then o1 = 1.15. (7.25)

R2 : If EHDDT isMedium and EHDCT is Low and SignatureWidthDT is High

and SignatureWidthCT is High then o2 = 0.94. (7.26)

7.3.3 Results

The proposed fusion methods were trained and tested using 10-fold cross validation

on Collection-1. Figure 7.10 displays the ROC’s (averaged over the 10 fold) of all methods.

To provide a quantitative evaluation of the proposed multiple instance fuzzy inference fusion

methods, we compare its performance to the previously presented fusion methods (Mam-

dani, ANIFS and the two global geometric mean methods). We also compare MI-Mamdani

and MI-ANFIS performances to a naive MIL implementation of Mamdani (NaiveMamdani)

and ANFIS (NaiveANFIS) where all instances from positive bags are considered positive

and all instances from negative bags are considered negative.

Figure 7.14 displays the ROC’s of all methods. Figure 7.15 shows the ROC’s of MI-

Mamdani, Mamdani, and NaiveMamdani fusion methods and the individual discriminators.

125

Figure 7.12: MI-ANIFS fusion rules before and after training (Dotted lines indicate the
initial MFs).

Figure 7.16 displays ROC’s of MI-ANFIS, ANFIS, and NaiveANFIS fusion methods as well

as the individual discriminators. As it can be seen in Figure 7.14, MI-ANFIS performed bet-

ter than the standard ANFIS on the large dataset, and as expected NaiveANFIS performed

worse. MI-Mamdani outperformed the individual discriminators (EHDDT and EHDCT)

and the NaiveMamdani fusion method. The standard Mamadani and ANFIS performed

better at low FAR (False Alarms Rate), the reason behind this is that strong Mines are

easy to identify manually and in this case, the ground truth helps. However, weaker mine

signatures are not as easy to localize, so the truth may not be as accurate and can degrade

the performance. Overall, MI-ANFIS outperformed all presented fusion approaches and the

individual discriminators (EHDDT and EHDCT). This is due to the ability of MI-ANFIS

to overcome labeling ambiguity by learning meaningful concepts.

In the second experiment, we used the same settings as before to train the two best

performing algorithms, ANIFS and MI-ANFIS, to fuse the outputs of all discriminators,

i.e., EHDDT, EHDCT, FisherVectorDT and FisherVectorCT. Fisher Vector based methods

extract 60 instances per GPR alarm (bag), whereas EHD based methods extract 17 in-

126

Figure 7.13: A plot of MI-ANFIS RMSE during 150 training epochs.

stances. Thus, Fisher Vector bags contain 60 instances and EHD bags contain 17 instances,

all corresponding to the same GPR alarm. To be able to use the data within our multiple

instance fusion system, we expanded the EHD instances from 17 to 60 (by taking averages of

features extracted at different depths but corresponds to the same window used to generate

the Fisher vector instances). The resulting bag has 60 4-D instances. Since the standard

AFNIS cannot learn from partially labeled data, an expert is used to label all instances of

all bags within the training data. We trained and tested all methods using 10-fold cross

validation on the same data collection as before.

Figure 7.17 illustrates the resulting ROCs. As it can be seen, MI-ANFIS outper-

formed all discriminators and the standard ANFIS significantly. The performance boost

over the individual discriminators is due to the substantial difference between the EHD and

the Fisher Vector features; EHDDT and EHDCT features are derived from the standard

MPEG-7 Edge Histogram Descriptors, whereas Fisher Vector is fundamentally based on

aggregating SIFT features. Besides, EHD and Fisher Vector methods use different classi-

fiers to assign confidence values to instances: EHD methods use a possibilistic KNN rule

127

Figure 7.14: Comparison of the individual discriminators and all proposed fuzzy fusion
methods.

Figure 7.15: Comparison of the individual discriminators, the proposed MI-Mamdani ,
Mamdani, and NaiveMamdanifuzzy fusion methods.

and Fisher Vector methods use SVM. Thus, increasing the amount of information available

to the fusion algorithms and per consequence increasing positive detections while lowering

false alarms rates. On the other hand, the degraded performance of the standard ANIFS is

linked to the degraded quality of the labeling of instances. The number of instances com-

pared to the previous experiment has more than tripled (60 vs 17), making assigning correct

128

Figure 7.16: Comparison of the individual discriminators, the proposed MI-ANFIS , ANFIS,
and NaiveANFIS fuzzy fusion methods.

labels by an expert an increasingly inaccurate process. Hence, the lower performance.

Thus far we have used cross validation to report on the performance of the proposed

algorithms. Typically, cross validation is an adequate technique to predict the performance

of a given model on unseen examples. However, for applications such as landmine detection,

it is important as well to report the results of blind testing to assess how well a model per-

forms on real world situations – outside of lab settings. In the following, we use Collection-2

to train and test our fusion methods. The collection is very large and was collected at three

different sites. The main statistics are summarized in Table 7.3. Collection-1 was used to

train ANIFS and MI-ANFIS to fuse the outputs of all discriminators, i.e., EHDDT, EHDCT,

FisherVectorDT and FisherVectorCT. Collection-2 was exclusively used for testing. Figure

7.18 shows the blind test ROCs.

MI-ANIFS showed consistent performance in the blind test. It outperformed the

individual discriminators and the standard ANFIS fusion. In spite of the fact that, an

expert was used to label the training instances for ANFIS, the system could not overcome

the ambiguity associated with locating the target depths correctly on the testing data.

129

Figure 7.17: Comparison of all individual discriminators, ANFIS, and the proposed MI-
ANFIS fuzzy fusion methods.

TABLE 7.3

Data Collections

Collection-2 Site 1 & Site 2 Site-3

Phase Training Testing

Total alarms 2366 4967

Mine encounters 789 1948

False alarms 1577 3018

Total number of Instances 141,960 297,960

Number of mine instances 47,340 116,880

Number of false alarms instances 94,620 181,080

130

Figure 7.18: Comparison of the performances of all individual discriminators, ANFIS, and
MI-ANFIS fuzzy fusion methods on the larger collection.

131

CHAPTER 8

CONCLUSIONS AND POTENTIAL FUTURE WORK

8.1 Conclusions

In this dissertation, we have introduced a new framework to accomplish fuzzy in-

ference with multiple instance data. In multiple instance problems, the training data is

ambiguously labeled. Instances are grouped into bags, labels of bags are known but not

those of individual instances. Our work generalizes traditional fuzzy logic and fuzzy sys-

tems to enable reasoning with bags rather than single instances. The following sections

summarize our contributions.

8.1.1 Multiple Instance Fuzzy Logic (MI-FL)

First, we have presented our generalization of fuzzy logic to enable fuzzy reasoning

with bags of instances instead of a single instance at a time. In particular, we have in-

troduced multiple instance variations of fuzzy propositions, fuzzy implication, fuzzy if-then

rules, and fuzzy reasoning. These building blocks are then used to derive more complex

fuzzy inference systems. Our formalization was derived using a thoroughly and abstract

mathematical formulation.

Fuzzy logic is powerful at modeling knowledge uncertainty and measurements imprecision.

More generally, it is one of the best frameworks to model vagueness. However, in addition

to uncertainty and imprecision, there is a third vagueness concept that standard fuzzy logic

does not address quiet well. This vagueness concept is due to the ambiguity that arises

when data have multiple forms of expression as is the case for multiple instance problems.

Our framework deals with ambiguity by introducing the novel concept of truth instances:

when carrying reasoning using multiple instance fuzzy logic, a proposition will not only

132

have one degree of truth, it will have multiple degrees of truth, we call truth instances.

Thus, effectively encoding the third vagueness component of ambiguity and increasing the

expressive power of traditional fuzzy logic.

8.1.2 Multiple Instance Fuzzy Inference Systems (MI-FIS)

The traditional Mamdani and Sugeno inference systems outlined in chapter 2 are

limited to reason with individual instances. First, the systems’ inputs are an individual

instance. Second, the rules describe fuzzy regions within the instances’ space. Third, the

outputs of the systems correspond to the fuzzy inference using the D dimensions of a single

instance. Fourth, labels of the individual instances are required to learn the parameters of

the systems. In this dissertation, we have used our multiple instance fuzzy logic framework

to derived multiple instance Mamdani and Sugeno fuzzy inference styles capable of handling

MIL problems effectively. In addition, we have presented a method to learn multiple instance

rules from multiple instance data. First, we use the FCMI algorithm to extract target

concept points in the instances’ space. Target concepts are defined as regions in the instance

space that maximize the density of instances from positive bags and minimizes the density

of instances from negative bags. Next, the target concepts are transformed into multiple

instance fuzzy rules. This approach is essentially based on intuition. Although premise

and consequent parameters of the MI-FISs are learned from training data, the processes of

identifying both set of parameters are independent.

8.1.3 Multiple Instance Adaptive Neuro-Fuzzy Inference System (MI-ANFIS)

Another major contribution of this dissertation is the MI-ANFIS, a novel neuro-fuzzy

architecture that extends the standard Adaptive Neuro-Fuzzy Inference System (ANFIS)

to reason with bags of instances. We first argued that the standard ANFIS can be used

in the context of MIL only if bags are labeled at the instances level. Unfortunately, this

process is tedious, ambiguous, subjective, and prone to errors.

The proposed generalization, MI-ANFIS, deals with ambiguity by using our proposed con-

133

cept of truth instances. Specifically, when carrying reasoning using a bag of instances at

Layer 2 (Figure 5.1), a proposition will not only have one degree of truth, it will have mul-

tiple degrees of truth (rij). Thus, effectively encoding the third vagueness component of

ambiguity and increasing the expressive power of the standard ANFIS. We have also devel-

oped a BackPropagation learning algorithm and showed that the proposed system is capable

of learning meaningful concepts from ambiguously labeled data. Unlike MI-FIS, MI-ANFIS

does not rely on any traditional MIL clustering algorithms and can learn simultaneously its

rule base from data.

8.1.3.1 Rule Dropout

It is well-known fact that neural networks with large number of parameters are

susceptible to overfitting. MI-ANFIS is no exception, particularly when using large number

of multiple instance fuzzy rules and relatively small training datasets. In such scenario,

some rules could co-adapt (memorize) to the training data and degrade the network ability

to generalize to unseen examples. In situations where overfitting is imminent, we have

proposed a regularization technique, we called Rule Dropout, and showed that it could

be used to train MI-ANFIS systems with better generalization. Rule Dropout works by

randomly dropping out few rules (with a fixed probability 1− p) before the presentation of

a given training sample. During testing, all rules are used but the outputs are weighted by

the probability p. Using a Rule Dropout strategy is approximatively equivalent to sampling

and training 2R (R is the number of rules) ensemble of MI-ANFIS networks. As a result, a

more robust generalization can be achieved.

8.1.3.2 Multi-Class MI-ANFIS (MCMI-ANFIS)

Initially the MI-ANFIS has been proposed and developed for the two-class problem.

We have also presented MCMI-ANFIS, a multiple class MI-ANIFS, that could be used

to solve multiple class classification problems effectively. Most MIL methods deal with

these type of problems by using a one versus all training pattern. While this extension

134

is straightforward and works with an arbitrary number of classes, it requires an extensive

amount of preprocessing to relabel the data and generate networks. Moreover, doing so

makes the data unbalanced and sampling should be used before training. In addition,

some classes may share the same concepts, therefore, training different networks may lead

to redundant rules being learned and wasting CPU cycles. The proposed MCMI-ANFIS

minimizes a negative log likelihood criterion to learn all classes simultaneously reducing the

possibility of learning redundant rules.

8.1.4 Validation

Using synthetic and benchmark datasets we showed that the proposed Multiple In-

stance Fuzzy Inference is comparable to state of the art MI machine learning algorithms.

First, using a synthetic dataset with a 150 bags of which 100 are positive, we showed that our

MI-Mamdani and MI-ANFIS can learn meaningful multiple instance fuzzy rules describing

positive concepts. Next, using five benchmark datasets of different sizes (size varies between

92 bags and 200 bags), namely MUSK1, MUSK2, FOX, TIGER, and ELEPHANT datasets,

we compared the performance of our framework to other 19 state of the art MIL algorithms.

MI-ANFIS outperformed all other methods on the FOX and ELEPHANT benchmark, oth-

erwise consistently ranked among the top-3 best algorithms. MI-MAMDANI performed

better than 10 algorithms out of 19 tested on MUSK1, it also showed better performance

than 7 algorithms out of 9 algorithms tested on FOX. However, MI-MAMDANI did not

exhibit consistent performance on the rest of the benchmark datasets. Finally, using the

COREL dataset (2000 bags) we applied our proposed MCMI-ANFIS to the problem of

region-based image categorization and showed that our algorithm exhibited competitive

performance to that of the state of the art.

Additionally, we have applied our proposed multiple instance fuzzy inference frame-

work to fuse the output of multiple discrimination algorithms for the purpose of landmine

detection using Ground Penetrating Radar. In this problem, discrimination algorithms de-

tect target candidates only in two-dimensions (downtrack and cross-track position). Thus,

135

there is uncertainty in the depth estimation of the targets that can affect both the training

and testing phases of a fusion system. For training, it is very difficult to localize the objects

depth automatically, and it is a very tedious process to do it manually. Moreover, each GPR

alarm is represented as a bag of instances extracted at multiple depths. Only labels for the

bags are available as binary ground truth: target/non-target (positive/negative). There-

fore, we have used our multiple instance fuzzy inference framework to solve this problem

effectively. We have used two different GPR data collections to measure the performance

of our algorithms on this problem. The first collection was used for 10-fold cross valida-

tion, whereas the second collection was used for blind testing. In both testing scenarios,

MI-ANFIS outperformed all other fusion methods that we have proposed, namely the MI-

Mamdani, the standard Mamdani, and the standard ANFIS inference systems.

8.2 Potential Future Work

Although our approach is fully developed and has shown promising results, there is

still room for improvement. For instance, MI-ANFIS uses a fixed hyper-parameter α to con-

trol the behavior of the Softmax function in Layer 3 and Layer 5. In our experiments we used

α = 1 to replicate the conditions of the standard MIL assumption [36,39]. Future research

may include learning this hyper-parameter online, during training, which may offer more

flexibility for other non standard applications of MI-ANFIS. Another hyper-parameter that

could be learned, is the Rule Dropout rate p. Rule Dropout deemed important to solve large

problems such as multiple class classification tasks. Learning this hyper-parameter could

improve the overall generalization capability of our system. This task could be achieved

either offline, before training using cross-validation on a subset of data, or online during

training.

Future work may also include the evaluation of our framework on other domains

such as computer audition [56] and text document classification [57]. In these applications,

features are extracted from audio segments or text paragraphs, and labels are only available

at the audio clip level or text document level, respectively, making them MIL problems.

136

REFERENCES

[1] Jan Ramon and Luc De Raedt, “Multi instance neural networks,” 2000.

[2] Lotfi Asker Zadeh, A theory of approximate reasoning (AR), Electronics Research
Laboratory, College of Engineering, University of California, Berkeley, 1977.

[3] Oscar Cordn, “A historical review of evolutionary learning methods for mamdani-type
fuzzy rule-based systems: Designing interpretable genetic fuzzy systems,” Interna-
tional Journal of Approximate Reasoning, vol. 52, no. 6, pp. 894 – 913, 2011.

[4] Lotfi A. Zadeh, “Outline of a new approach to the analysis of complex systems
and decision processes,” Systems, Man and Cybernetics, IEEE Transactions on, vol.
SMC-3, no. 1, pp. 28–44, Jan 1973.

[5] E.H. Mamdani, “Application of fuzzy algorithms for control of simple dynamic plant,”
Electrical Engineers, Proceedings of the Institution of, vol. 121, no. 12, pp. 1585–1588,
December 1974.

[6] R. Babuka and H.B. Verbruggen, “An overview of fuzzy modeling for control,” Control
Engineering Practice, vol. 4, no. 11, pp. 1593 – 1606, 1996.

[7] Chen-Wei Xu and Yong-Zai Lu, “Fuzzy model identification and self-learning for
dynamic systems,” Systems, Man and Cybernetics, IEEE Transactions on, vol. 17,
no. 4, pp. 683–689, July 1987.

[8] Masaharu Mizumoto, “Fuzzy controls under various fuzzy reasoning methods,” In-
formation Sciences, vol. 45, no. 2, pp. 129 – 151, 1988.

[9] C.-C. Lee, “Fuzzy logic in control systems: fuzzy logic controller. i,” Systems, Man
and Cybernetics, IEEE Transactions on, vol. 20, no. 2, pp. 404–418, Mar 1990.

[10] M. Sugeno and T. Yasukawa, “A fuzzy-logic-based approach to qualitative modeling,”
Fuzzy Systems, IEEE Transactions on, vol. 1, no. 1, pp. 7–, Feb 1993.

[11] R.R. Yager and D.P. Filev, “Unified structure and parameter identification of fuzzy
models,” Systems, Man and Cybernetics, IEEE Transactions on, vol. 23, no. 4, pp.
1198–1205, Jul 1993.

[12] E.C. Tacker, “Modeling stabilization policies in financial systems,” in Decision and
Control including the 16th Symposium on Adaptive Processes and A Special Sympo-
sium on Fuzzy Set Theory and Applications, 1977 IEEE Conference on, Dec 1977,
pp. 194–194.

[13] P.K. Singh, S. Bhanot, and H.K. Mohanta, “Optimized adaptive neuro-fuzzy inference
system for ph control,” in Advanced Electronic Systems (ICAES), 2013 International
Conference on, Sept 2013, pp. 1–5.

[14] R. Jager, H. Verbruggen, and P.M. Bruijin, “Fuzzy inference in rule-based control
systems,” in Intelligent Systems Engineering, 1992., First International Conference
on (Conf. Publ. No. 360), Aug 1992, pp. 232–237.

137

[15] C.-C. Lee, “Fuzzy logic in control systems: fuzzy logic controller. ii,” Systems, Man
and Cybernetics, IEEE Transactions on, vol. 20, no. 2, pp. 419–435, Mar 1990.

[16] Jorge Casillas, Interpretability issues in fuzzy modeling, vol. 128, Springer, 2003.

[17] Chih-Yi Chiu, Hsin-Chih Lin, and Shi-Nine Yang, “A fuzzy logic cbir system,” in
Fuzzy Systems, 2003. FUZZ ’03. The 12th IEEE International Conference on, May
2003, vol. 2, pp. 1171–1176 vol.2.

[18] AA Othman, H.R. Tizhoosh, and F. Khalvati, “Efis 2014;evolving fuzzy image seg-
mentation,” Fuzzy Systems, IEEE Transactions on, vol. 22, no. 1, pp. 72–82, Feb
2014.

[19] S.N. Hajimirza and E. Izquierdo, “Gaze movement inference for implicit image anno-
tation,” in Image Analysis for Multimedia Interactive Services (WIAMIS), 2010 11th
International Workshop on, April 2010, pp. 1–4.

[20] H.K. Kwan and L. Y. Cai, “Supervised fuzzy inference network for invariant pattern
recognition,” in Circuits and Systems, 2000. Proceedings of the 43rd IEEE Midwest
Symposium on, 2000, vol. 2, pp. 850–854 vol.2.

[21] Olfa Nasraoui and Christopher Petenes, “Combining web usage mining and fuzzy
inference for website personalization,” Proceedings of the WebKDD workshop, pp.
37–46, 2003.

[22] M.N.M. Adnan, M.R. Chowdury, I Taz, T. Ahmed, and R.M. Rahman, “Content
based news recommendation system based on fuzzy logic,” in Informatics, Electronics
Vision (ICIEV), 2014 International Conference on, May 2014, pp. 1–6.

[23] Amine Ben Khalifa and Hichem Frigui, “Fusion of multiple algorithms for detecting
buried objects using fuzzy inference,” Proc. SPIE, vol. 9072, pp. 90720V–90720V–10,
2014.

[24] Min-You Chen and D.A Linkens, “Rule-base self-generation and simplification for
data-driven fuzzy models,” in Fuzzy Systems, 2001. The 10th IEEE International
Conference on, 2001, vol. 1, pp. 424–427.

[25] D.Z. Saletic, “On data-driven procedure for determining the number of rules in a
takagi-sugeno fuzzy model,” in Computer as a Tool, 2005. EUROCON 2005.The
International Conference on, Nov 2005, vol. 2, pp. 1132–1135.

[26] P. Zikopoulos, D. deRoos, K. Parasuraman, T. Deutsch, J. Giles, and D. Corrigan,
Harness the Power of Big Data – The IBM Big Data Platform, Mcgraw-Hill, 2012.

[27] I.B.M.P. Zikopoulos, C. Eaton, and P. Zikopoulos, Understanding Big Data: Analytics
for Enterprise Class Hadoop and Streaming Data, Mcgraw-hill, 2011.

[28] Yahoo, “flikr,” http://www.flikr.com/, 2014.

[29] “Craigslist,” http://www.craigslist.org/, 2014.

[30] Wei-Tek Tsai, Guanqiu Qi, and Yinong Chen, “Choosing cost-effective configura-
tion in cloud storage,” in Autonomous Decentralized Systems (ISADS), 2013 IEEE
Eleventh International Symposium on, March 2013, pp. 1–8.

[31] A Sorokin and D. Forsyth, “Utility data annotation with amazon mechanical turk,”
in Computer Vision and Pattern Recognition Workshops, 2008. CVPRW ’08. IEEE
Computer Society Conference on, June 2008, pp. 1–8.

138

[32] A Torralba, B.C. Russell, and J. Yuen, “Labelme: Online image annotation and
applications,” Proceedings of the IEEE, vol. 98, no. 8, pp. 1467–1484, Aug 2010.

[33] Luis von Ahn, Benjamin Maurer, Colin McMillen, David Abraham, and Manuel Blum,
“reCAPTCHA: Human-Based Character Recognition via Web Security Measures,”
Science, vol. 321, no. 5895, pp. 1465–1468, Sept. 2008.

[34] Ian Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha Arnoud, and Vinay Shet,
“Multi-digit number recognition from street view imagery using deep convolutional
neural networks,” in ICLR2014, 2014.

[35] Oded Maron, Learning from ambiguity, Ph.D. thesis, Massachusetts Institute of
Technology, 1998.

[36] Thomas G. Dietterich, Richard H. Lathrop, and Toms Lozano-Prez, “Solving the
multiple instance problem with axis-parallel rectangles,” Artificial Intelligence, vol.
89, no. 12, pp. 31 – 71, 1997.

[37] Thomas G Dietterich, Richard H Lathrop, and Tomás Lozano-Pérez, “Solving the
multiple instance problem with axis-parallel rectangles,” Artificial intelligence, vol.
89, no. 1, pp. 31–71, 1997.

[38] Chengcui Zhang, Xin Chen, and Wei-Bang Chen, “An online multiple instance learn-
ing system for semantic image retrieval,” in Multimedia Workshops, 2007. ISMW ’07.
Ninth IEEE International Symposium on, Dec 2007, pp. 83–84.

[39] Oded Maron and Tomás Lozano-Pérez, “A framework for multiple-instance learning,”
in Proceedings of the 1997 Conference on Advances in Neural Information Processing
Systems 10, Cambridge, MA, USA, 1998, NIPS ’97, pp. 570–576, MIT Press.

[40] Andrew Karem and Hichem Frigui, “A multiple instance learning approach for land-
mine detection using ground penetrating radar,” in Geoscience and Remote Sensing
Symposium (IGARSS), 2011 IEEE International. IEEE, 2011, pp. 878–881.

[41] Rouhollah Rahmani and Sally A Goldman, “Missl: Multiple-instance semi-supervised
learning,” in Proceedings of the 23rd international conference on Machine learning.
ACM, 2006, pp. 705–712.

[42] Soumya Ray and Mark Craven, “Supervised versus multiple instance learning: An
empirical comparison,” in Proceedings of the 22nd international conference on Ma-
chine learning. ACM, 2005, pp. 697–704.

[43] Yixin Chen, Jinbo Bi, and J.Z. Wang, “Miles: Multiple-instance learning via embed-
ded instance selection,” Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, vol. 28, no. 12, pp. 1931–1947, Dec 2006.

[44] Changbo Yang, Ming Dong, and Farshad Fotouhi, “Region based image annotation
through multiple-instance learning,” in Proceedings of the 13th annual ACM interna-
tional conference on Multimedia. ACM, 2005, pp. 435–438.

[45] Boris Babenko, Ming-Hsuan Yang, and Serge Belongie, “Robust object tracking with
online multiple instance learning,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 33, no. 8, pp. 1619–1632, 2011.

[46] Lotfi A Zadeh, “Fuzzy logic = computing with words,” Fuzzy Systems, IEEE Trans-
actions on, vol. 4, no. 2, pp. 103–111, May 1996.

139

[47] Pier L Lanzi, Wolfgang Stolzmann, and Stewart W Wilson, Learning classifier sys-
tems: from foundations to applications, Number 1813. Springer, 2000.

[48] Ebrahim H. Mamdani, “Application of fuzzy logic to approximate reasoning using
linguistic synthesis,” Computers, IEEE Transactions on, vol. C-26, no. 12, pp. 1182–
1191, 1977.

[49] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to
modeling and control,” Systems, Man and Cybernetics, IEEE Transactions on, vol.
SMC-15, no. 1, pp. 116–132, 1985.

[50] J-SR Jang, “Anfis: adaptive-network-based fuzzy inference system,” Systems, Man
and Cybernetics, IEEE Transactions on, vol. 23, no. 3, pp. 665–685, 1993.

[51] James Foulds and Eibe Frank, “A review of multi-instance learning assumptions,” .

[52] S. Hofmann T. Andrews, “Multiple-instance learning via disjunctive programming
boosting,” Advances in neural information processing systems., , no. 16, pp. 65–72,
2004.

[53] Boris Babenko, “Multiple instance learning: algorithms and applications,” View
Article PubMed/NCBI Google Scholar, 2008.

[54] Hong-Dong Li, Rajasree Menon, Gilbert S. Omenn, and Yuanfang Guan, “The emerg-
ing era of genomic data integration for analyzing splice isoform function,” Trends in
Genetics, vol. 30, no. 8, pp. 340 – 347, 2014.

[55] Cha Zhang, John C Platt, and Paul A Viola, “Multiple instance boosting for object
detection,” in Advances in neural information processing systems, 2005, pp. 1417–
1424.

[56] Michael I Mandel and Daniel PW Ellis, “Multiple-instance learning for music infor-
mation retrieval,” in ISMIR 2008: Proceedings of the 9th International Conference of
Music Information Retrieval. Drexel University, 2008, pp. 577–582.

[57] Stuart Andrews, Thomas Hofmann, and Ioannis Tsochantaridis, “Multiple instance
learning with generalized support vector machines,” in AAAI/IAAI, 2002, pp. 943–
944.

[58] Qi Zhang and Sally A Goldman, “Em-dd: An improved multiple-instance learning
technique,” in Advances in neural information processing systems, 2001, pp. 1073–
1080.

[59] Andrew Karem and Hichem Frigui, “Fuzzy clustering algorithm of multiple instance
data (fcmi),” in Fuzzy Systems (FUZZ-IEEE), 2015 IEEE International Conference
on.

[60] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum
Press, New York, 1981.

[61] Soumya Ray and David Page, “Multiple instance regression,” in ICML, 2001, vol. 1,
pp. 425–432.

[62] Ji Zhu, Saharon Rosset, Trevor Hastie, and Rob Tibshirani, “1-norm support vector
machines,” Advances in neural information processing systems, vol. 16, no. 1, pp.
49–56, 2004.

140

[63] Zhi-Hua Zhou and Min-Ling Zhang, “Neural networks for multi-instance learning,”
Proceedings of the International Conference on Intelligent Information Technology,
Beijing, China, pp. 455–459, 2002.

[64] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams, “Learning represen-
tations by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.

[65] Christopher M Bishop et al., “Neural networks for pattern recognition,” 1995.

[66] Min-Ling Zhang and Zhi-Hua Zhou, “Adapting rbf neural networks to multi-instance
learning,” Neural Process. Lett., vol. 23, no. 1, pp. 1–26, Feb. 2006.

[67] Jun Wang and Jean-Daniel Zucker, “Solving multiple-instance problem: A lazy learn-
ing approach,” 2000.

[68] James Richard Foulds, Learning instance weights in multi-instance learning, Ph.D.
thesis, The University of Waikato, 2008.

[69] L. A. Zadeh, “Fuzzy sets,” INFCON Information and Control, vol. 8, no. 3, pp.
338–353, 1965.

[70] J.S.R. Jang, C.T. Sun, and E. Mizutani, Neuro-fuzzy and soft computing: a compu-
tational approach to learning and machine intelligence, MATLAB curriculum series.
Prentice Hall, 1997.

[71] Ronald R Yager, “On ordered weighted averaging aggregation operators in multicri-
teria decisionmaking,” Systems, Man and Cybernetics, IEEE Transactions on, vol.
18, no. 1, pp. 183–190, 1988.

[72] ZS Xu and QL Da, “The ordered weighted geometric averaging operators,” Interna-
tional Journal of Intelligent Systems, vol. 17, no. 7, pp. 709–716, 2002.

[73] Michael Negnevitsky, Artificial intelligence: a guide to intelligent systems, Pearson
Education, 2005.

[74] D. Ramot, M. Friedman, G. Langholz, and A. Kandel, “Complex fuzzy logic,” Fuzzy
Systems, IEEE Transactions on, vol. 11, no. 4, pp. 450–461, 2003.

[75] Patricia Melin, Jesus Soto, Oscar Castillo, and Jose Soria, “A new approach for
time series prediction using ensembles of {ANFIS} models,” Expert Systems with
Applications, vol. 39, no. 3, pp. 3494 – 3506, 2012.

[76] E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis with a fuzzy
logic controller,” International Journal of Human-Computer Studies, vol. 51, no. 2,
pp. 135–147, 1975.

[77] H.O. Wang, K. Tanaka, and M.F. Griffin, “An approach to fuzzy control of nonlinear
systems: stability and design issues,” Fuzzy Systems, IEEE Transactions on, vol. 4,
no. 1, pp. 14–23, Feb 1996.

[78] D. Dubois and H.M. Prade, Fuzzy Sets and Systems: Theory and Applications, Math-
ematics in science and engineering. Academic Press, 1980.

[79] Ronald R Yager and Antoine Kelman, “Fusion of fuzzy information with considera-
tions for compatibility, partial aggregation, and reinforcement,” International journal
of approximate reasoning, vol. 15, no. 2, pp. 93–122, 1996.

141

[80] Meimei Xia and Zeshui Xu, “Hesitant fuzzy information aggregation in decision
making,” International Journal of Approximate Reasoning, vol. 52, no. 3, pp. 395–
407, 2011.

[81] Lotfi A Zadeh, “Is there a need for fuzzy logic?,” Information Sciences, vol. 178, no.
13, pp. 2751–2779, 2008.

[82] Ronald R Yager, “On the theory of bags,” International Journal Of General System,
vol. 13, no. 1, pp. 23–37, 1986.

[83] Krassimir T Atanassov, “Intuitionistic fuzzy sets,” Fuzzy sets and Systems, vol. 20,
no. 1, pp. 87–96, 1986.

[84] Vicenç Torra, “Hesitant fuzzy sets,” International Journal of Intelligent Systems,
vol. 25, no. 6, pp. 529–539, 2010.

[85] D. Ramot, R. Milo, M. Friedman, and A. Kandel, “Complex fuzzy sets,” Fuzzy
Systems, IEEE Transactions on, vol. 10, no. 2, pp. 171–186, Apr 2002.

[86] S. Dick, “Toward complex fuzzy logic,” Fuzzy Systems, IEEE Transactions on, vol.
13, no. 3, pp. 405–414, 2005.

[87] Cheng Guosheng and Yang Jianwei, “Complex fuzzy reasoning schemes,” in Infor-
mation and Computing (ICIC), 2010 Third International Conference on, vol. 3, pp.
29–32.

[88] V. G. Kaburlasos and A. Kehagias, “Fuzzy inference system (fis) extensions based on
lattice theory,” Fuzzy Systems, IEEE Transactions on, vol. PP, no. 99, pp. 1–1, 2013.

[89] A. Mahnot and M. Popescu, “Fumil-fuzzy multiple instance learning for early illness
recognition in older adults,” in Fuzzy Systems (FUZZ-IEEE), 2012 IEEE Interna-
tional Conference on, pp. 1–5.

[90] Jaume Casasnovas and Gaspar Mayor, “Discrete t-norms and operations on extended
multisets,” Fuzzy sets and Systems, vol. 159, no. 10, pp. 1165–1177, 2008.

[91] Kandel A. Tamir D.E, “Axiomatic theory of complex fuzzy logic and complex fuzzy
classes,” Int. J. Comput. Commun. Control International Journal of Computers,
Communications and Control, vol. 6, no. 3, pp. 562–576, 2011.

[92] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio, “On the difficulty of training
recurrent neural networks,” arXiv preprint arXiv:1211.5063, 2012.

[93] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov, “Dropout: A simple way to prevent neural networks from overfit-
ting,” The Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958,
2014.

[94] Stuart Andrews, Ioannis Tsochantaridis, and Thomas Hofmann, “Support vector ma-
chines for multiple-instance learning,” in Advances in neural information processing
systems, 2002, pp. 561–568.

[95] Min-Ling Zhang and Zhi-Hua Zhou, “Adapting rbf neural networks to multi-instance
learning,” Neural Processing Letters, vol. 23, no. 1, pp. 1–26, 2006.

[96] J.-S.R. Jang and C.-T. Sun, “Functional equivalence between radial basis function
networks and fuzzy inference systems,” Neural Networks, IEEE Transactions on, vol.
4, no. 1, pp. 156–159, Jan 1993.

142

[97] Ma Yi-de, Liu Qing, and Qian Zhi-Bai, “Automated image segmentation using im-
proved pcnn model based on cross-entropy,” in Intelligent Multimedia, Video and
Speech Processing, 2004. Proceedings of 2004 International Symposium on. IEEE,
2004, pp. 743–746.

[98] Haifeng Li, Tao Jiang, and Keshu Zhang, “Efficient and robust feature extraction by
maximum margin criterion,” Neural Networks, IEEE Transactions on, vol. 17, no. 1,
pp. 157–165, 2006.

[99] Yan Li, David MJ Tax, Robert PW Duin, and Marco Loog, “Multiple-instance
learning as a classifier combining problem,” Pattern Recognition, vol. 46, no. 3, pp.
865–874, 2013.

[100] Yixin Chen, Jinbo Bi, and James Ze Wang, “Miles: Multiple-instance learning via em-
bedded instance selection,” Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on, vol. 28, no. 12, pp. 1931–1947, 2006.

[101] Yixin Chen and James Z Wang, “Image categorization by learning and reasoning
with regions,” The Journal of Machine Learning Research, vol. 5, pp. 913–939, 2004.

[102] Jan Ramon and Luc De Raedt, “Multi instance neural networks,” 2000.

[103] Zhi-Hua Zhou and Min-Ling Zhang, “Ensembles of multi-instance learners,” in Ma-
chine Learning: ECML 2003, pp. 492–502. Springer, 2003.

[104] Abdelhamid Bouchachia, “Multiple instance learning with radial basis function neural
networks,” in Neural Information Processing. 2002, pp. 440–445, Springer.

[105] Zhi-Hua Zhou, Yu-Yin Sun, and Yu-Feng Li, “Multi-instance learning by treating in-
stances as non-iid samples,” in Proceedings of the 26th annual international conference
on machine learning. ACM, 2009, pp. 1249–1256.

[106] Hua-Yan Wang, Qiang Yang, and Hongbin Zha, “Adaptive p-posterior mixture-
model kernels for multiple instance learning,” in Proceedings of the 25th international
conference on Machine learning. ACM, 2008, pp. 1136–1143.

[107] Peter V Gehler and Olivier Chapelle, “Deterministic annealing for multiple-instance
learning,” in International conference on artificial intelligence and statistics, 2007,
pp. 123–130.

[108] Christian Leistner, Amir Saffari, and Horst Bischof, “Miforests: multiple-instance
learning with randomized trees,” in Computer Vision–ECCV 2010, pp. 29–42.
Springer, 2010.

[109] YaBill Morse, “The cambodia landmine museum,” http://www.
cambodialandminemuseum.org/, 2014.

[110] O. Missaoui, H. Frigui, and P. Gader, “Land-mine detection with ground-penetrating
radar using multistream discrete hidden markov models,” Geoscience and Remote
Sensing, IEEE Transactions on, vol. 49, no. 6, pp. 2080–2099, June 2011.

[111] A. Hamdi and H. Frigui, “Landmine detection using an ensemble of continuous hmms
with multiple features,” in Geoscience and Remote Sensing Symposium (IGARSS),
2011 IEEE International, July 2011, pp. 63–66.

[112] P.A. Torrione, K.D. Morton, R. Sakaguchi, and L.M. Collins, “Histograms of oriented
gradients for landmine detection in ground-penetrating radar data,” Geoscience and
Remote Sensing, IEEE Transactions on, vol. 52, no. 3, pp. 1539–1550, March 2014.

143

[113] C.R. Ratto, K.D. Morton, L.M. Collins, and P.A. Torrione, “A hidden markov context
model for gpr-based landmine detection incorporating stick-breaking priors,” in Geo-
science and Remote Sensing Symposium (IGARSS), 2011 IEEE International, July
2011, pp. 874–877.

[114] A.C. Gurbuz, “Determination of background distribution for ground-penetrating
radar data,” Geoscience and Remote Sensing Letters, IEEE, vol. 9, no. 4, pp. 544–548,
July 2012.

[115] Kenneth J Hintz, “Snr improvements in niitek ground-penetrating radar,” in Defense
and Security. International Society for Optics and Photonics, 2004, pp. 399–408.

[116] T. R. Witten, “Present state of the art in ground-penetrating radars for mine detec-
tion,” in SPIE Conf Detection and Remediation Technologies for Mines and Minelike
Targets III, Orlando FL, 1998, pp. 576–586.

[117] Hichem Frigui and Paul Gader, “Detection and discrimination of land mines in
ground-penetrating radar based on edge histogram descriptors and a possibilistic k-
nearest neighbor classifier,” Trans. Fuz Sys., vol. 17, no. 1, pp. 185–199, Feb. 2009.

[118] Jorge Sánchez, Florent Perronnin, Thomas Mensink, and Jakob Verbeek, “Image
classification with the fisher vector: Theory and practice,” International journal of
computer vision, vol. 105, no. 3, pp. 222–245, 2013.

[119] H. T. Kaskett and J. T. Broach, “Automatic mine detection algorithm using ground
penetrating radar signatures,” in SPIE Conf. Detection and Remediation Technologies
for Mines and Minelike Targets, 1999, pp. 942–952.

[120] H. Frigui and P. D. Gader, “Detection and discrimination of land mines based on
edge histogram descriptors and fuzzy k-nearest neighbors,” in Proceedings of the IEEE
International Conference on Fuzzy Systems, Vancouver, BC, Canada, July 2006.

[121] B. S. Manjunath, P. Salembier, and T. Sikora, Introduction to MPEG 7: Multimedia
Content Description Language, John Wiley, 2002.

[122] P.A. Torrione, C.S. Throckmorton, and L.M. Collins, “Performance of an adaptive
feature-based processor for a wideband ground penetrating radar system,” Aerospace
and Electronic Systems, IEEE Transactions on, vol. 42, no. 2, pp. 644–658, April
2006.

[123] Ebrahim H. Mamdani, “Application of fuzzy logic to approximate reasoning using
linguistic synthesis,” Computers, IEEE Transactions on, vol. C-26, no. 12, pp. 1182–
1191, Dec 1977.

[124] J. A. Hartigan and M. A. Wong, “A K-means clustering algorithm,” Applied Statistics,
vol. 28, pp. 100–108, 1979.

[125] Jyh-Shing Roger Jang, Chuen-Tsai Sun, and Eiji Mizutani, “Neuro-fuzzy and soft
computing-a computational approach to learning and machine intelligence [book re-
view],” Automatic Control, IEEE Transactions on, vol. 42, no. 10, pp. 1482–1484,
1997.

144

CURRICULUM VITAE

NAME: Amine Ben Khalifa

ADDRESS: Computer Engineering & Computer Science Department

Speed School of Engineering

University of Louisville

Louisville, KY 40292

EDUCATION:

Ph.D., Computer Science & Engineering

December 2015

University of Louisville, Louisville, Kentucky

B.Eng., Telecommunications Engineering

June 2009

Higher School of Communications of Tunis, Tunis, Tunisia

JOURNAL PUBLICATIONS:

1. A.B. Khalifa and H. Frigui, ”Multiple Instance Fuzzy Inference”, IEEE Transactions

on Fuzzy Systems (Under review).

CONFERENCE PUBLICATIONS:

1. A.B. Khalifa and H. Frigui, ”MI-ANFIS: A Multiple Instance Adaptive Neuro-Fuzzy

Inference System”, IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),

Istanbul, Turkey, August 2015.

2. A.B. Khalifa and H. Frigui, ”A Dataset For Vehicle Make And Model Recognition”,

145

Third Workshop on Fine-Grained Visual Categorization (FGVC3), at CVPR. Boston,

MA. June 2015.

3. A.B. Khalifa and H. Frigui, ”A Multiple Instance Neuro-Fuzzy Inference System For

Fusion of Multiple Landmine Detection Algorithms”, IEEE International Geoscience

and Remote Sensing Symposium (IGARSS), Milan Italy, July 2015.

4. A.B. Khalifa and H. Frigui, ”Fusion of Multiple Landmine Detection Algorithms

Using an Adaptive Neuro Fuzzy Inference System”, IEEE International Geoscience

and Remote Sensing Symposium (IGARSS), Quebec City Canada, July 2014.

5. A.B. Khalifa and H. Frigui, ”Fusion of Multiple Algorithms For Detecting Buried

Objects Using Fuzzy Inference”, SPIE Defense + Security International Society for

Optics and Photonics, April 2014.

HONORS AND AWARDS:

1. IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) Travel Award , Au-

gust 2015.

2. First Place at the University of Louisville E-Expo Graduate Research Competition,

March 2015.

3. Golden Key International Honour Society Member, September 2011.

4. Higher School of Communications of Tunis Travel Award, June 2008.

5. Tunisian National Scholarship for Engineering Studies, September 2006.

146

	University of Louisville
	ThinkIR: The University of Louisville's Institutional Repository
	12-2015

	Multiple instance fuzzy inference.
	Amine Ben Khalifa
	Recommended Citation

	tmp.1449247348.pdf.njZxS

