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ABSTRACT Detecting and classifying driver distractions is crucial in the prevention of road accidents. 
These distractions impact both driver behavior and vehicle dynamics. Knowing the degree of driver 
distraction can aid in accident prevention techniques, including transitioning of control to a level 4 semi-
autonomous vehicle, when a high distraction severity level is reached. Thus, enhancement of Advanced 
Driving Assistance Systems (ADAS) is a critical component in the safety of vehicle drivers and other road 
users. In this paper, a new methodology is introduced, using an expert knowledge rule system to predict the 
severity of distraction in a contiguous set of video frames using the Naturalistic Driving American University 
of Cairo (AUC) Distraction Dataset. A multi-class distraction system comprises the face orientation, drivers’ 
activities, hands and previous driver distraction, a severity classification model is developed as a discrete 
dynamic Bayesian (DDB). Furthermore, a Mamdani-based fuzzy system was implemented to detect multi-
class of distractions into a severity level of safe, careless or dangerous driving. Thus, if a high level of severity 
is reached the semi-autonomous vehicle will take control. The result further shows that some instances of 
driver’s distraction may quickly transition from a careless to dangerous driving in a multi-class distraction 
context. 

INDEX TERMS fuzzy logic systems, driver distraction, severity level, ADAS, Image processing, Dynamic   
Bayesian.

Fuzzy logic allows designers to model complex system 
controls, thus providing a non-complex way of achieving a 
more concrete approach to reducing uncertainty in 
knowledge-based systems. Uncertainties in human behavior 
are typically measured using fuzzy systems, most especially in 
the context of driving behaviour which is highly 
unpredictable. Abnormal behavior from driver distraction is 
the cause of 95% of road accidents [1]. Driver distractions 
have varying impact, and measuring the severity of distraction 
is crucial to enhancing Advanced Driver Assistance Systems 
(ADAS) [1]. Moreover, driver distractions are very difficult to 
predict. A system that can enhance the prediction of driver 
distraction to some degree is crucial to preventing road 
accidents. 

Ohn-Bar et al. 2014 [2] characterized driver activity by 
head, eye, and hand cues using a Multiview vision framework 
that uses two videos, one observing the driver’s hands and the 
other the driver’s head. However, the focus was on a single 
activity and a hand control.  

Indeed, most in driver distraction research that uses activity 
detection and recognition has mainly focused on a single 
activity rather than considering multi-class distractions 
simultaneously. This can compromise the prevention of 
accidents. In a related system, the prediction of vehicle crash 
severity using a fuzzy-logic model has been carried out using 
acceleration data from vehicle dynamics (vehicle jerk) [4]. 
However, here we used a system for the detection and 
classification of multi-class distractions, including hand 
position, face orientation, distraction activity and previous 
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driver distractions. The consideration of all of these factors is 
vital in improving ADAS. Furthermore, we used a naturalistic 
driving study (NDS) as a driving dataset instead of driver-
perceived distraction, because the NDS approach measures 
value or activity more precisely.   

The multi-class distractions can be classified by severity 
level. Safe driving is achieved when the driver can remain 
focused, observe weather conditions and road traffic signs, 
maneuver with both hands on the wheel, paying attention to 
the road ahead, and finally yet most importantly abiding by the 
driving laws. Careless or distracted behavior may consist of 
using a single hand on the wheel, talking on the phone, texting, 
talking to a passenger, or turning the head sideways and not 
paying attention to the road. Increasingly, many drivers can 
engage in multiple distracted behaviors at a given time, 
resulting in distractions that can have a highly severe impact. 
Thus, there is a need to classify distractions into different 
severity levels. The line between careless and dangerous 
driving can be subjective and introduces a lot of uncertainties. 

An NDS video consists of a sequence of images (frames) 
and thus can detect continuous distraction in the driver's 
behavior using different metrics. The driving data images we 
used to predict the severity of driver’s distraction combined 
different metrics using an Image-Based Discrete Dynamic 
Bayesian Fuzzy Logic (Fuzzy Logic-DDB). The validation of 
our driver distraction severity level model using the 
aforementioned metric can thus lead to a severity level 
classification of driver distraction in a semi-autonomous 
vehicle transition situation that could be deployed in ADAS.  

Thus, the main contributions of this study are: 
• A rule-based detection and classification of driver’s 

distractions  
• A dynamic Bayesian fuzzy-logic model for severity 

classification 
• Classification of driver’s distraction into degree of 

severity levels such as safe, careless or dangerous 
driving. 
 

The rest of the sections are organized as follows. Section 
II presents a literature review of related work. Section III 
introduces the case study and data transformation and then 
describes the method to extract the distraction features and 
assign a severity classification. Section IV describes the 
dynamic Bayesian fuzzy-logic model and provides a 
comprehensive evaluation and metrics. Section V describes 
the implementation, and Section VI presents the results and 
discussion. Lastly, Section VII draws the conclusion and 
proposes future work.   

 
II. RELATED WORK 

Sato and Akamatsu [3] stated that driving task difficulty is 
determined by the interaction between driver capacity and task 
demand. As the driver’s perception changes with increased 
tasks, the driver's ability decreases temporarily. In addition, 
fuzzy logic was used to clarify typical driving behaviors using 

perceptions and conditions such as physical space (feelings of 
speed, relative distance) and changes in road and traffic 
conditions. However, the aftermath of distraction event was 
considered, rather than ways to improve ADAS that might 
limit the impact of distraction.  

 
Aksjonov et al. [4] developed a novel method for the 

evaluation of driver distraction while performing a secondary 
task. The system involved a development of a fuzzy inference 
system based on simple matrix operations. A simulation of 
driver’s activity, and performance was evaluated in the vehicle 
measuring the driver’s ability to stay in lane and maintaining 
vehicle velocity. The only secondary distraction considered in 
the study was text messaging, which is a limitation. 

 
 Aksjonov et al. [5] proposed a novel driver performance 

model that is adaptive to every driver using a neuro-fuzzy 
inference system. The proposed method was performed using 
a separate vehicle simulator for each driver. The driver model 
proposed has two inputs: road curvature and road speed limit, 
which together predict speed error and deviation from the lane 
line. The experiment involved 18 participants with valid 
driver’s licenses. They applied an Artificial Neural Network 
(ANN) with 500 neurons and adaptive neuro-fuzzy inference 
system (ANFIS) using a membership function (MF) with 81 
rules generated after training. For each individual driver, 
80,000 nodes were collected. Training and testing data utilized 
were 67% and 33% respectively. The result showed the ANN 
and ANFIS have similar driver modeling results. The ANN 
and ANFIS are compared on the prediction accuracy with the 
ANN performing better than the ANFIS model. The input has 
three Membership Functions (MFs) and the system has two 
class inputs and one output, with nine rules for the fuzzy logic 
evaluator. 

 
Aksjonov et al. [6] also developed a methodology to detect 

normal driving and measuring errors from secondary tasks and 
total distraction evaluation. The measures compare normal 
driving with secondary task using fuzzy logic algorithms. 
Driver distraction in the form of talking on a cell phone was 
observed, and the ability observe speed limits and refrain from 
deviation from the middle lane of the road were measured. The 
result showed that 20% of driver distraction resulted from 
abnormal driving while engaged in during phone activity.  

Subsequently, Eraqi et al. [7] utilized the first publicly 
available dataset, with more distraction postures than existing 
alternatives, to identify drivers distractions. The system 
consisted of a genetically-weighted set of convolutional neural 
networks, demonstrating that a weighted set of classifiers 
using a genetic algorithm provides greater confidence in 
classification. They also researched the effect of different 
visual elements on distraction detection through face and hand 
positions as well as skin segmentation. Finally, they 
introduced an ensemble that can achieve an accuracy of 
classification of 84.64% in real time.  
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Finally, Aboueknaga et al. [8] used the distracted driver 
dataset for posture estimation by proposing a novel system that 
achieves 95.98% accuracy in estimating driving posture 
classification. The adopted Convolutional Neural Network 
(CNN) algorithm for posture classification from regions such 
as face and hands. However, this study did not consider the 
impact of the combination of possible multi-class distraction 
that could highly impact the degree of distractions into 
severity levels.  

Riaz et al 2018 [9] adopted fuzzy logic in driver distraction 
evaluation system in road safety from artificial human driver 
emotions. Their hypothesis is that emotions overrides drivers 
decision making. They proposed an Enabled Cognitive Driver 
Assistance Model (ECDAM) which computes the external 
factors and distraction level of the driver.  The model triggers 
when the driver distraction crosses a threshold by sending two 
sound alerts to the driver to take appropriate actions.  

 
Munyazikwiye et al 2015 [10], predicted vehicle crash 

severity from vehicle data such as acceleration. Fuzzy logic 
was used in analysing crash dynamics using the acceleration 
signal to generate two inputs car jerk and kinetic energy. The 
result shows jerk contributes much to the crash than the kinetic 
energy of vehicle. However, reducing the impact of a vehicle 
crash by reducing driver distractions that could impact vehicle 
dynamics leading to a crash is vital.  

 
Upadhya and Vinothina 2019 [11], adopted the use of fuzzy 

logic for analysing possibility of road accident for different 
distraction parameters. The factors that was used as a metric is 
alcohol consumption, driving speed, drivers age and 
infotainment system usage. The findings show that different 
distractions plays vital role in accidents. However, a study of 
which of the distractions plays a vital role should have been 
considered which is a limitation. 

 
Kim et al 2019 [12], proposed a fuzzy logic systems that 

makes decision and prediction of pedestrian intentions from 
distance, position, movement direction  extracted using 
computer vision. This resulted in a pedestrian protection 
systems leading to a pedestrian’s risk level. However, having 
a system that correlates the drivers behaviour in response to 
pedestrian behaviour will is crucial.  

 
Salleh et al 2017 [13], proposed an Adaptive neuro-fuzzy 

inference system (ANFIS) for estimation model that yields 
results approximately with high degree of accuracy in fields 
such as transportation, engineering and medicine. However, 
a limitation of ANFIS is high computational cost due to 
complex structures. They proposed to remove complexity by 
removing the fourth layer.  
 

Dobbins and Fairclough 2019 [14], proposed the use of 
fuzzy logic Mamdani to estimate different category of 
driving context monitoring stress encountered by drivers. 
The experiment involved only two contextual inputs speed 

and traffic density. However, deducing stress level from 
human activity recognition (HAR) and cognitive perspective 
using techniques such as computer vision, 
electroencephalogram (ECG) and Deep learning is ideal. 
Thus, prevention of behaviour that can lead to aggressive 
driving such as over speeding. 
 

Ondogan and Yavuz 2019 [15], proposed the use of Fuzzy 
logic in the development of an Advanced Driver Assistance 
Systems (ADAS). The application is the development of a 
Lane tracking assist, collision avoidance and Adaptive 
Cruise Control (ACC). This method is based on monitoring 
two key factors, speed and stress levels of the driver, the 
problem with this approach is that driving fast is not 
necessarily stress induced and can relate to a number of 
factors, the driver may be distracted by ulterior motives such 
as being on the phone to potentially get home early or other 
such emotions that can be recognized using image 
recognition that classes these distractions as a severity level. 

 
In our present study, we have adopted an NDS dataset 

which includes activities such as talking to passenger, texting, 
phone usage, adjusting radio, etc. We focused on talking to 
passenger, texting, and phone usage, which are prevalent 
driver distractions. Furthermore, multi-class distraction 
activity was considered in this work, since the aforementioned 
distractions all have a different impact on the driver depending 
on the driving context. 

III. CASE STUDY & DATA ANALYSIS 
We used a data set from the American University in Cairo 
(AUC) Distracted Driver Dataset V2 [16] obtained from the 
Machine Intelligence group at the American University in 
Cairo (MI-AUC). The dataset is the first publicly available 
dataset for distracted driver detection. The study involves 44 
participants from seven different countries: Egypt (37), 
Germany (2), USA (1), Canada (1), Uganda (1), Palestine (1), 
and Morocco (1). Out of all participants, 29 were males and 
15 were females. Some drivers participated in more than one 
recording session at different times of the day, in driving 
conditions, and wearing different clothes. Videos were shot in 
five different cars: Proton Gen2, Mitsubishi Lancer, Nissan 
Sunny, KIA Carens, and a prototyping car. We extracted 
14,478 frames distributed over the following classes: safe 
driving (2,986), phone right (1,256), phone left (1,320), text 
right (1,718), text left (1,124), adjusting radio (1,123), 
drinking (1,076), hair or makeup (1,044), reaching behind 
(1,034), and talking to passenger (1,797). 
 
The sampling is done by inspecting the video files manually 
and giving a distraction label for each frame. The transitional 
actions between each consecutive distraction types are 
manually removed. Table I shows a sample of three of the ten 
classes from the dataset used in this paper. The frame statistics 
selected are ones with the driver performing activity such as 
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Phone right, Text right and talking to passengers sequentially 
for a period of time.  

TABLE I 
Distraction Events Classes and Frame Number 

DISTRACTION 
EVENT CLASSES 

FRAME NUMBER 

Phoning 1,256 
Texting 1,718 
Talking 1,797 

 

A. JUSTIFICATION OF METRICS 
Passenger talk: According to Hole [17], chatty passengers 
seem to pose less danger than mobile phone conversations. 
The second passenger becomes the driver's second pair of 
eyes, moderating the interaction as road hazards occur. 
Therefore, when the driver’s face orientation is on the road 
while talking to passengers, we assign less weight. However, 
in cases where the driver’s face orientation is off the road and 
talking to the passenger, the weight is higher but lower than 
text and telephone use as explained above. Ferdinand and 
Menachemi [18], using empirical articles published between 
1968 and 2012, developed a logistic regression model to find 
the association between driving performance and engagement 
with a secondary task. The result of the analysis shows that 
talking to passengers constitutes about 29.2% of driving 
distractions [18].  
 
In addition, Foss and Goodwin [19] conducted research on 
driving distractions among adolescents by collecting vehicle 
kinematics data from 52 high schools using unobtrusive event-
triggered data recorders obtaining 20 seconds of audio, video 
and vehicle kinematic information when triggered. The 
findings show that electronic devices constitute 6.7% of the 
single source of distraction, with 6.2% from adjusting the 
vehicle and 3.8% from grooming [19]. Furthermore, they 
deduced the driver distractions using the statistical approach 
of detecting and counting the number of occurrences of the 
distractions.  
It can be argued the root of driver distraction comes from three 
inputs: physical (i.e., hands), cognitive activities, and visual. 
Physical activities constitute activities such as texting, phone 
usage, and adjusting infotainment. In contrast, detection of 
distractions that can impact cognitive abilities, thus reducing 
effective decision making, is critical. Such distraction may 
include texting, which can also be classified as a visual 
activity.  
 
Moreover, driving itself is both a visual and cognitive activity. 
However, the visual aspect of driving takes precedence over 
cognition as used in decision making or perception. Cognitive 
distraction may include talking to a passenger or talking on the 
phone, which can be severely impacted by the nature of the 
conversation. Multi-level distraction involving all the three 
inputs may occur, which could increase the severity level (and 

degree) of the distraction. For example, texting involves all 
distraction inputs concurrently, which may have a serious 
impact on the nature of the individual driving. The degree of 
distraction can also be measured over the course of a trip, 
using a time series method to measure the duration and 
frequency of the distraction as well as the level of engagement 
with the source of distraction.  
 

 

FIGURE 1.  Ground truth label of driver activity: talking to passenger, 
face orientation off road, both hands on wheel 
 

 
FIGURE 2.  Ground truth label of driver activity: talking to passenger, 
single hand on wheel 
 

 
FIGURE 3.  Ground truth label of driver activity: talking to passenger, 
face orientation, both hands on wheel 

 
FIGURE 4.  Ground truth label of driver activity: texting, face orientation 
on road, single hand on wheel 
 

 
FIGURE 5.  Ground truth label of driver activity: phoning, face 
orientation off road, single hand on wheel 
 
Texting: According to National Highway Traffic Safety 
Administration (NHTSA), texting is the most severe type of 
distraction with respect to accidents on the road. A test case 
from the NHTSA shows that texting for a period of 5 seconds 
is equivalent to driving at 55 miles per hour (mph) across an 
entire length of a football field with one’s eyes closed [20]. 
Madden and Lenhart [13, 14], stated that 28% of teens 
admitted to using their mobile devices while driving and that 
this adversely reduced their driving ability. Their report 
further stated that 52% said texting at wheel is less common 
but that they talked on a cell phone while driving. The survey 
findings show that teens also admitted texting while driving 
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which means taking their eyes off the road. and that it is not 
safe to text or talk while driving.  
 
Phone Usage: Hole [17] proved that using phone hands-free 
is equally as distracting as holding the mobile device because 
conversations cause the driver to visually imagine what is 
discussed. Hole further stated that the type of discussion at the 
other end of the phone has a significant impact not just on the 
mental processing but also on the facial expression that could 
further increase the distraction level. The duration of use 
(time), discussion type, and frequency of use during the 
journey were used as metrics in the research. In addition, 
talking in person involves non-verbal cues that make the 
conversation less mentally demanding than a phone 
conversation. A phone conversation is much more demanding 
because visual imagination creates competition for the brain’s 
processing capacity, thus drivers miss vital road hazards.  
 
Drews et al. [23] examined the difference between cell phone 
conversation while driving and conversing with passengers. 
They compared how drivers were able to deal with the 
demands of driving when conversing on a cell phone, with a 
passenger, and when driving without any distraction. The 
results showed that there was a higher driving error with cell 
phone usage than with passenger conversation. During a 
phone conversation, the driver’s ability and speech 
coordination decreased in response to an increase in the 
demand of the traffic. The results indicated that passenger 
conversations differ from cell phone conversations not only 
because the surrounding traffic becomes a topic of the 
conversation, thus helping both driver and passenger to share 
awareness, but also because the driving conditions also have a 
direct influence on the complexity of the conversation, thereby 
mitigating the potential negative effects of a conversation on 
the driver’s focus and concentration. In this study, we applied 
weights to our data based on the potential risk of the activity, 
with texting being the most dangerous activity followed by 
phoning and talking to passengers, respectively. However, 
there could be an instance when the activity of talking to a 
passenger in combination with other distractions will be 
equivalent to the danger of texting. 
 

The dataset consists of images that were labeled according 
to the driver’s activities during the driving video, after 
deriving the feature extraction based on the class of the 
distraction. Using MATLAB’s 2019b Image Labeler Toolbox 
and Graphical User Interface (GUI) editor, the images were 
tabulated as ground truth labels and regions of interest (RoI), 
which were then adopted into fuzzy sets for classification of 
the distraction by severity level. Per class, 150 images were 
labeled with a minimum of three behaviors observed (driver 
activity, face orientation, and number of hands on the wheel). 
Figure 1 depicts the ground truth label driver talking to 
passenger, implemented on the dataset in which the driver 
performed the multi-class activity of talking to a passenger, 

face orientation off the road, and both hands on the wheel. In 
Figure 2, the dataset entails the driver performing the multi-
class activity of talking to a passenger, face orientation off-the-
road, and single hand on the wheel. Figure 3 shows the multi-
class activity of talking to a passenger, face orientation on the 
road, and both hands on the wheel. In Figure 4, the multi-class 
activity is texting, face orientation on road, and single hand on 
the wheel. In Figure 5, the multi-class activity is talking on the 
phone, face orientation off road, and single hand on the wheel. 
There were few observed instances of the driver face 
orientation off road, both hands off the wheel and phoning 
consecutively for a period of 1 second (25 fps).  
The dynamic Bayesian model for severity classification is 
narrowed down to the distraction of the physiological features 
that can be detected by our algorithm and distraction present 
in the dataset. 

We considered four inputs for the fuzzy set: hands, face 
orientation, driver activity, and previous driver activity. The 
first frame of change is always where r = 0. When there is no 
change in distraction profile from the previous frame, then r 
increases. Essentially, the value r is the first occurrence of 
the distraction. The distraction severity is computed as (𝑓!"#. 
α) where α is the distraction likelihood function which 
determines how long the distraction has been repeated. The 
likelihood of the first occurrence in a frame is 𝛽$, 𝑓!"# is the 
prior evidence. 

IV.  Dynamic Bayesian Fuzzy-Logic Model 
To build our distraction severity predictive system using 
dynamic Bayesian methodology correctly, we developed a 
formal model for distraction severity based on two 
probability distribution components, namely future 
distraction likelihood and prior beliefs/observation of 
distractions in our dataset. For the distraction type likelihood 
function, the probability of occurrence of the same pattern of 
distraction types over a particular number of sequential 
(contiguous) frames is given by 
𝛼% = 𝛽$ +	'1 −

#
%
*,  (1) 

where	𝛽$ is the likelihood probability of the first occurrence 
of some new distraction type and the exponential function 
'1 − #

%
*	is the probability of its continuous occurrence in 

subsequent frames where r > 0. 

For observation of driver distraction features, prior evidence 
based on ground truth labeling of the belief constitutes the 
second component of probability for the distraction severity 
level classification model. This probability function is 
defined as 

 𝑓(𝑥) ← 𝑓𝑜&#⊕	𝑑𝑎&'⊕ 	ℎ𝑎&(⊕…	𝑂&!	. (2) 
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The distraction severity probability is weighted by the 
normalizing constant 	𝜏), that is, how strongly each element 
of the observatory dataset is believed to contribute to the 
distraction severity level classification (	𝜏), = number of 
observable events). 

In this case, face orientation 𝑓𝑜&#, driver activity 𝑑𝑎&', and 
hands on wheel ℎ𝑎&( are all normalized between the interval 
[0,1] and represent prior evidence for the driver's distraction 
features, namely facial orientation, activity (talking, texting, 
or phoning), and hand gestures (single hand or both hands on 
the wheel). Finally, the overall distraction severity level 
classification prediction is formulated as a discrete dynamic 
Bayesian network (dDBN) model: 

𝑆*(𝑥) = 8
𝑓*"#(𝑥)𝛼% 	𝜏)⁄ , 𝑟 ≥ 2
𝑓*	(𝑥)𝛽$ 	𝜏)⁄ ,			𝑟 = 1

0,				𝑎𝑡	𝑡 = 0
. (3)  

We apply this dynamic Bayesian model to generate our test 
dataset from the greater Distracted Driver Dataset. At the 
first timestamp (i.e. t = 0) in the video frames, we assume the 
severity probability is zero. If this is the first occurrence	𝑟 =
1 of the distraction feature pattern, then only the likelihood 
probability is applied to the computation of the severity. In 
subsequent occurrences, the severity probability is computed 
applying the dynamic Bayesian network model described 
earlier. This transformed test data would form the basis for 
evaluation of our novel fuzzy-logic-based inference system 
for severity classification of driver activities that result in the 
driver being distracted. 

The occurrence of secondary distraction within a certain 
duration can change the degree of severity of an event from 
careless to dangerous. Ideally, there will be the justification of 
the minimum threshold required for a distraction to be 
classified into “safe,” “careless,” and “dangerous” severity 
levels, respectively. For example, detection of an event such 
as a hand gesture (seat belt adjustment, wave to passersby, 
panel adjustment) for a period of 10 seconds could be 
classified to as careless. We proposed different measures for 
the driving performance by considering physiological features 
such as hands, face orientation, and distraction type (talking, 
texting, phoning). Talking, texting, and phoning were 
considered due to the cognitive distraction associated with it. 
For example, in a multi-class distraction, a measure of how 
long the driver has been talking in combination with other 
features such as hand and face orientation can increase the 
severity of distractions. We deduced the time from the rate at 
which the frames were generated at 25 frames per second 
(fps). For example, a sequence of frames with the distraction 
type “talking” was used to measure the duration in which the 
driver was talking. The coding was done such that when a 
threshold of 125 consecutive frames is reached (equivalent to 
5 seconds), then a classification decision is made. 

V. Implementation  
Our system is based on the Mamdani fuzzy inference model 

as shown in Figure 6. The Mamdani approach is commonly 
used for expert knowledge acquisition. It helps us to explain 
experience more intuitively and in a more human way. The 
aforementioned approach is well suited in decision making 
context with uncertainties that requires human expert 
knowledge.  

  

FIGURE 6. Mamdani inference model. 

 
The Mamdani is used to imitate the performance of a real 

driver and his behavior in a driving vehicle. Each input is 
given a specific amount of MFs and a value and then compared 
with other inputs. We developed a multi inference Mamdani 
fuzzy model that attempts to use multi-class distraction 
detection to classify safe, careless and dangerous driving. The 
rule generation process was deduced from supporting 
literature. The justification of weights to each distraction was 
deduced based on literature from experts on each distraction 
type. The feature extraction method involves labeling of the 
RoI, which will be integrated with the fuzzy rules that are 
created. The distraction training data is made up of classes 
with activities such as talking to a passenger, texting, and 
phoning. In addition, we further divided the dataset into 
subclasses (single hand on wheel, talking to a passenger, and 
face orientation off the road), and the same applies for the 
testing data, which are then used for validation. The rules were 
inserted into the fuzzy inference engine for distraction 
detection. The interface engine uses the Mamdani inference 
that conforms to our model architecture. Data pre-processing 
for extracting was done using MATLAB 2019b ground truth 
labeling for feature extraction. Furthermore, MFs, 
associations, and rules were associated with each 
classification. The rules associated with each classification of 
driver distraction was further tested using test datasets.  

The distraction severity level is a measure of the degree of 
the impact of driver distraction on driving performance. In 
addition, classification of the driver’s distraction into severity 
levels is vital in determining the readiness of semi-
autonomous vehicle transitioning when a certain threshold of 
distraction is reached. After all these steps, the fuzzification 
process will begin decomposing a system input and/or output 
into one or more fuzzy sets. Many types of curves and tables 
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can be used, but triangular or trapezoidal-shaped MFs are the 
most common since they are easier to represent in embedded 
controllers. Figure 7 shows a system of fuzzy sets for input 
with triangular MFs. Each fuzzy set spans a region of input (or 
output) values graphed against membership. We restricted our 
scope to activities leading to distractions in driving behavior: 
four parameters were used in detecting severity of the driver 
distraction, namely face orientation 𝑓𝑜&, driver activity 𝑑𝑎&, 
the number of hands on the wheel ℎ𝑎&, and the previous driver 
activity 𝑃𝑑𝑎&. 

 
TABLE II 

Driving severity level for membership functions 
Description Membership 

Function Range 
Example of Driver 

Membership 
Functions 

Distraction Severity 
Level  

No distraction is 
observed 

0 - 0.25 Talking to passenger, 
two hands on wheel or 
single hand on wheel, 

face orientation on 
road 

  

Safe 

Substantial level 
of distraction 

detected 
  

0.25 - 0.75 Texting for less than 2 
seconds, single hand 

on wheel 

Careless 

High level of 
distraction  

0.75 - 1 Texting for more than 
2 seconds but less 

than 5 seconds, single 
hand on the wheel 
  

Dangerous 

 

FIGURE 7.  Inputs and membership functions. 

A. MULTI-CLASS DRIVER DISTRACTION 
SEVERITYSCALE 

The prevalent approach to the analysis of driver distraction 
is through the detection of driver activity. However, the 
physiological features used in driving do have different 
levels of coordination, thus the impacts of their actions are 
not equivalent. In addition, our hypothesis depicts that driver 
distraction may have a different impacts depending on the 
severity level classifications. 

We tested our hypothesis that driver distraction has varying 
severity levels by deducing, from the literature, the 
justification of metrics for different types of distraction 
obtainable in the dataset. The ratings of the severity level of 
each distraction are developed on a 3-point scale (Table II) 
based on the Likert Scale [17,18]. 

The category of the severity level is the output of elements 
represented by MFs: safe driving = 0 - 0.25, representing 
a safe driving with credible false distraction and 
acceptable event such changing gears; careless driving = 
0.25 - 0.75 meaning a multi-class distraction or a 
combination of distractions may occur; and dangerous 
driving = 0.75 - 1.0 signifying a highly critical distraction. 

In fuzzy logic, a rule base is constructed to control the 
output variable. A fuzzy rule is a simple IF-THEN rule 
with a condition and a conclusion. In Table II, sample 
fuzzy rules for the temperature control system in Figure7 
are listed. A sample of 3 of 16 rules of Mamdani fuzzy 
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logic inference system for detecting the driver's distraction 
severity is as follows: 

TABLE III 
Fuzzy Rule Base 

Rule Face 

Orientation 

Driver 

Activity 

Hands Previous 

Driver 

Activity  

Severity 

1 

(system 1) 

Forward No talking to 

passenger 

Two Hands 

  

Safe 

Driving 

0-0.25 

Safe Driving 

9 

(system 1) 

Sideways  Talking to 

passenger 

Two Hands Safe 

Driving 

0.25-0.75 

Dangerous 

Driving 

16 

(system 1) 

Forward Talking with 

passenger 

Single Hand 

  

Safe 

Driving 

0.75-1 

Dangerous 

Driving 

1 

(system 2) 

Forward Not texting 

passenger 

Two hands Safe 

Driving 

0-0.25 

Safe Driving 

9 

(system 2) 

Sideways Texting with 

passenger 

Two Hands Safe 

Driving 

0.25-0.75 

Dangerous 

Driving 

16 

(system 2) 

Forward Texting with 

passenger 

Single Hand Safe 

Driving 

0.75-1 

Dangerous 

Driving 

1 

(system 3) 

Forward Not phoning 

passenger 

Two Hands Safe 

Driving 

0-0.25 

Safe Driving 

9 

(system 3) 

Sideways Phoning 

passenger 

Two Hands Safe 

Driving 

0.25-0.75 

Dangerous 

Driving 

16 

(system 3) 

Forward Phoning 

passenger 

Single Hand Safe 

Driving 

0.25-0.75 

Dangerous 

Driving 

 

VI. RESULTS AND DISCUSSION  

In this section, the outcome of the frame-based rule-based 
fuzzy logic for the driver's distraction severity classification 
is discussed. The results of the driver distraction are 
evaluated by testing the unseen dataset without the fuzzy 
rules.  

The plot in Figure 8(A) represents a comparison between 
face orientation and previous driver activity. In this case, 
observation shows a plateau region of yellow color, referring 
to a uniform level in the severity of driver distraction. The 
steep rise in blue is a result of the face orientation changing 
at around 0.4; this indicates that the driver’s face (and 
therefore gaze) is moving away from the road, leading to a 
higher level of severity. The blue curved region shows driver 
distraction with face orientation on the road level prevalent 

on a scale of 0 to 0.4, and afterwards a change occurred in 
drivers distraction with face orientation off road thus, leading 
to an increased distraction severity level. Even if the 
participant was familiar with the road, the distraction 
exhibited differed, especially in the context of multi-class 
distractions: for example, there was a higher frequency of the 
driver looking sideways. In addition, we detected more 
instances of careless driving than dangerous driving. 
However, we detected a driver who exhibited talking and 
face off the road for more than 5 seconds; this is highly 
severe and could lead to a fatal accident.  

In Figure 8(B), Face orientation is compared against driver 
activity (talking), and distinguished sections can be seen. 
The darker blue represents safe driving, but as the driver 
starts talking with the passenger, the cyan color appears, 
reaching to a high distraction level and potentially leading to 
careless driving. Subsequently, it transitions into a dangerous 
driving when a higher severity level is reached as driver takes 
eyes off the road.   

Figure 8(C) plots hand position against face orientation. The 
curved blue area signifies a steep rise in severity. In addition, 
the yellow region depicts increased severity level of 
distraction, caused by face orientation off road. 

Figure 9(A) depicts how driver face orientation impacts 
distraction severity when the activity (phoning) occurred 
with a long duration. In addition, there was a sharp rise at 0.4 
when the driver’s face orientation turned off the road. Figure 
9(B) shows a steady occurrence of face orientation off the 
road while talking on the phone, thus leading to a higher 
severity level of distraction. Figure 9(C) depicts face 
orientation off road, which persists until 0.4 and changes to 
face orientation on road. In addition, there was a momentary 
occurrence of single hand on wheel while the activity 
persisted and thereafter some instances of no hands-on 
wheel, thus contributing to a sharp rise in the severity level 
of the driver distraction.  

Figure 10(A) shows that face orientation contributes 
significantly to the severity of the activity of texting. Face 
orientation off the road and texting together result in a sharp 
increase in the severity level of driver distraction. In 
addition, Figure 10(B) shows that the driver performed the 
texting activity continuously for a period of 2 seconds, which 
further increased the severity level. Figure 10(C) depicts 
instances of the driver using no hands at 0.3, with face 
orientation off road, and that severely impacts the severity 
level of driver distraction, leading to categorization as 
dangerous driving.  

Collectively, the plots show that there is a correlation of 
distraction severity level between the activity (talking and 
texting) due to the likelihood of the driver’s face orientation 
being off the road.  



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994811, IEEE Access

 

VOLUME XX, 2017  

 
FIGURE 8 A,B,C. Surface plots for talking 

 
FIGURE 9 A,B,C. Surface plots for phoning 

 
FIGURE 10 A,B,C. Surface plots for texting 

Table II defines the input values that are gathered from the 
dataset of image labels. These values are exported from the 
labels and put into binary values, where 0 = false and 1 = 
true. The previous driver activity is determined from 
calculating the previous frame.  

Tables V, VI, and VII depict the multi-level distractions 
input test data, the previous frames distraction severity level, 
and the defuzzification methods outputs. The defuzzification 
methods we used include Smallest of Maxima (SOM), in 
which the defuzzified value is taken as the element with the 
lowest membership values. Middle of Maxima (MOM), in 
which the defuzzified value is taken as the element with the 
median membership values. Largest of Maxima (LOM), is 
the element with the largest amongst all membership values. 
Centroid defuzzification, which returns the center of area 
under the curve, and Bisector, which is the vertical line that 
divides the region into two sub-regions of equal area. 

In Table V, the values that are produced correspond to phoning. 
These values were analyzed in this scenario, where centroid and 
MOM yielded the most accurate result. In terms of the driving 
severity level produced, LOM and SOM underperformed as 
they only picked extreme cases which would create an 
overexaggerated crisp value: LOM produced a very high 
value while SOM produced a very low value that did not 
match up to the severity levels seen in the weights and MFs.  

 
     TABLE IV 

DRIVING SEVERITY LEVELS FOR THE MEMBERSHIP FUNCTIONS 
Face 

Orientation
(fo) 

Driver 
Activity 

(da) 

Hands 
(ha) 

Previous 
Driver Activity 

(pda) 

0 1 1 0 

0 0 1 0.06666666 

0 0 1 0.06666666 

0 1 1 0.33333333 

0 1 1 0.44444444 

0 1 1 0.5 

0 1 1 0.53333333 

0 1 1 0.55555555 

0 1 1 0.57142857 

TABLE V 
DRIVING DISTRACTION SEVERITY DEFUZZIFICATION CRISP OUTPUT VALUES 

FOR TALKING, USING MULTIPLE METHODS 
CENTROID BISECTOR MOM SOM LOM 
0.494678671 0 0.495 0.12 0.87 
0.466961833 0.47 0.495 0.1 0.89 
0.466961833 0.47 0.495 0.1 0.89 
0.596267826 0.64 0.82 0.64 1 
0.71235178 0.76 0.82 0.64 1 

0.807455156 0.81 0.82 0.64 1 
0.807455156 0.81 0.82 0.64 1 
0.81177008 0.81 0.83 0.66 1 

TABLE VI 
DRIVING DISTRACTION SEVERITY DEFUZZIFICATION CRISP VALUES FOR 

PHONING, USING MULTIPLE METHODS. 
CENTROID BISECTOR MOM SOM LOM 

0.494667 0.49 0.495 0.13 0.86 
0.470227 0.47 0.495 0.11 0.88 
0.470227 0.47 0.495 0.11 0.88 
0.591258 0.63 0.825 0.65 1 
0.708797 0.76 0.825 0.65 1 
0.809211 0.81 0.825 0.65 1 
0.809211 0.81 0.825 0.65 1 
0.81177 0.81 0.83 0.66 1 

TABLE VII 
DRIVING DISTRACTION SEVERITY DEFUZZIFICATION CRISP OUTPUT VALUES 

FOR TEXTING, USING MULTIPLE METHODS. 
CENTROID BISECTOR MOM SOM LOM 

0.494679 0.49 0.495 0.12 0.87 
0.467124 0.47 0.495 0.1 0.89 
0.467124 0.47 0.495 0.1 0.89 
0.588455 0.63 0.82 0.64 1 
0.706695 0.75 0.82 0.64 1 
0.806618 0.81 0.82 0.64 1 
0.806618 0.81 0.82 0.64 1 
0.81177  0.81  0.83  0.66  1  
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TABLE VIII 
DRIVING DISTRACTION SEVERITY LEVELS FOR THE MEMBERSHIP 

FUNCTIONS 
Defuzzification 

Method 
RMSE 
Value 

Driver Activity 

CENTROID 0.32 Talking 

CENTROID 0.31 Texting 

CENTROID 0.32 Phoning 

Table VI presents similar results from the dataset; this time 
the defuzzification crisp values that best matched the weights 
were Centroid, Bisector and MOM. This test concluded that 
the distraction severity increases as the duration increases. 
Referring back to Table IV, we can deduce that the number 
of frames that are continuous will affect the next severity 
level – as seen in the pda column, these number are 
progressively higher, and when the action of that driver 
stops, the values decrease as the severity level becomes safer. 

Table VII shows the crisp value output for texting. The 
values were similar to phoning and talking; however, this 
activity had the most severe level, the most accurate 
defuzzification methods were Centroid, Bisector, and MOM. 

The root mean square from the dataset of the timeframes 1-
47 were calculated and driver distraction severity level was 
measured upon calculating the Root Mean Square Error 
(RMSE). The RSME was calculated using the previous 
distraction severity used as the model:  

𝑅𝑀𝑆𝐸 =	'∑ "#!",$$#%!",$	)&'(
$)*

'
 , (4) 

where da,i  is a predicted value of the driver’s activity, pda ,i 

is the previous driver activity (referring to Tables V–VII), 
and n is the number of data. From the observed timeframes, 
the predicted value from the output defuzzification method 
was Centroid, as it provided the most accurate reading of the 
weights assigned to the rules. Table VIII reports the results 
of the RMSE value to have achieved the most accurate error 
prediction of the previous severity frame and present severity 
frame. 
 
The comparison between Sugeno and Mamdani suggests that 
the Mamdani approach performed better in this context in 
terms of restrictive rules, complexity, modelling structure 
and accuracy. A clear advantage Mamdani has over Sugeno 
is that not all possible rule combination is required to 
construct the fuzzy rule base. Thus, Mamdani has ability to 
relate inputs and outputs in a non-linear manner through 
instances of sharp transitions through from distraction 
severity ranging from high to low and low to high value 
which is captured by the fuzzy membership functions.  The 
actual outcome is to change from semi-autonomous take 
over from the driver when a certain threshold is reached.  
 

On the other hand, unsupervised learning using classification 
techniques by using set of rules may be applied to profile 
driver according to severity level. The methods for 
classification develop rules by discovering patterns in 
previous driver’s data or possible prediction of the driver’s 
distraction especially when the driver has to be monitored 
and profiled over a period of driving. Furthermore, a possible 
combination of a Hybrid Fuzzy-Deep learning techniques 
such as Convolutional Neural Network (CNN) will be 
adopted subsequently. 
 
VIII. CONCLUSION 
This paper presents an evaluation method based on fuzzy set 
theory, focusing on driver distractions. We describe a rule-
based fuzzy system deduced from an NDS dataset with 
multi-class distraction detected in the sequence of each 
image. The combination of driver activity, face orientation, 
hand state and previous drivers activity was used to compute 
the severity level of the multi-class distraction. The inference 
systems we designed classified the severity of a multi-class 
distraction using metrics such as distraction type, duration, 
and frequency of the activities. The results show that our 
fuzzy logic inference system was able to detect and classify 
multi-class driver distractions into safe, careless, and 
dangerous driving. Such as approach could be integrated into 
ADAS to reduce impact or mitigate driving distraction. 
Interestingly, the literature shows that driver activities such 
as texting and talking on the phone are dangerous and more 
serious than careless driving. However, our findings show 
that in a multi-class context, talking to a passenger and face 
orientation off the road is almost as dangerous as texting and 
face orientation off the road. This is due to the fact that it is 
common for a driver who is talking to passenger to have their 
face orientation off the road. This results in a similar degree 
of distraction when the driver is either talking to a passenger 
or texting. Finally, this research can be used to determine the 
threshold for transitioning control from the driver to a level 
4 semi-autonomous vehicle. In future work, we will use a 
neural network for the classification of driver distractions.  
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