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Abstract  
 
Both fuzzy logic, as the basis of many inference systems, and Neural Networks, as a powerful computational 
model for classification and estimation, have been used in many application fields since their birth. These two 
techniques are somewhat supplementary to each other in a way that what one is lacking of the other can provide. 
This led to the creation of Neuro-Fuzzy systems which utilize fuzzy logic to construct a complex model by 
extending the capabilities of Artificial Neural Networks. Generally speaking all type of systems that integrate 
these two techniques can be called Neuro-Fuzzy systems. Key feature of these systems is that they use input-
output patterns to adjust the fuzzy sets and rules inside the model. The paper reviews the principles of a Neuro-
Fuzzy system and the key methods presented in this field, furthermore provides survey on their applications for 
technical diagnostics and measurement. 
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1. Introduction 
 
As two important techniques of artificial 
intelligence, Fuzzy Systems (FS) and Artificial 
Neural Networks (ANNs) have many applications 
in various fields such as production, control 
systems, diagnostic, supervision, etc. They evolved 
and improved throughout the years to adapt arising 
needs and technological advancements. As ANNs 
and Fuzzy Systems had been often applied together 
the concept of a fusion between them started to take 
shape. Neuro-Fuzzy systems were born which 
utilize the advantages of both techniques: they have 
learning and generalization capabilities and at the 
same time they reveal the functionality stored in the 
model. To reach this behaviour they are able to 
learn and tune their parameters based on input-
output patterns (learning phase) and then they work 
like a fuzzy logic system (execution phase), too. 
These combined features make this type of systems 
useful when solving complex problems also for 
technical diagnostic and measurement assignments. 
The paper contains seven sections. After the 
introduction the second section presents Neuro-
Fuzzy applications of the last two decades in 
technical diagnostics and measurement. The third 
section describes the two main components of a 
Neuro-Fuzzy system followed by the forth one 
reviewing the progression of the Neuro-Fuzzy 
systems and the modern solutions used today. The 
last three sections are conclusions, 
acknowledgments and references. 
 
 

2. Application of Neuro-Fuzzy Systems to 
Technical Diagnostics and Measurement 
 
This section gives a survey on Neuro-Fuzzy system 
applications in the field of technical diagnostics and 
measurement. Different Neuro-Fuzzy architectures 
are named here, their history and a more detailed 
description are presented in the next sections. At 
the end of this section a table is also presented 
which gives a comprehensive overview of these 
applications and their fields categorically. 
 
2.1. 90s  
 
In the early 90s Neuro-Fuzzy was still a new 
concept to be shaped by different implementations 
and applications. In these years a relatively small 
amount of Neuro-Fuzzy application was published 
and naturally these were unique approaches rather 
than utilisation of existing solutions. For example 
among the pioneers, Ayoubi presented a structure 
that models the fuzzy inference mechanism based 
on neural units [1]. He tested the system on two 
real-world problems: monitoring the state of a 
turbocharger and supervision of air pressure in 
vehicle wheels. The implemented model proved to 
be efficient when the problem space is low-
dimensional; however, when it had significantly 
more dimensions, Multi-Layer Perceptron (MLP) 
performed far better than the fuzzy inference 
mechanism. 
Zhang and Morris also used a Neuro-Fuzzy solution 
for fault diagnosis of continuous stirred tank reactor 
process [2]. The chosen test problem is well known 
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about its highly nonlinear dynamics which is a 
result of the phenomenon that process gain changes 
drastically with any operating condition 
modification. The network applied for this problem 
consists of 4 layers: an input layer, a fuzzification 
layer, a hidden layer and an output layer. The input 
layer has 14 neurons, because the system has 14 
measured signal values, the fuzzification layer has 3 
neurons for each input neuron, because each input 
information is ordered to 3 individual fuzzy 
membership function, the hidden layer has 10 
neurons representing 10 fuzzy rules and the output 
layer has 11 neurons, each corresponding to a 
particular fault. They achieved much better 
performance than with a conventional feed forward 
neural network while the system also provided a 
more interpretable structure. 
 
2.2. 2000s  
 
Neuro-Fuzzy systems became more widespread in 
the 2000s especially in technical diagnostics and 
measurement. For example Sakuntala Mahapatra et 
al. built such systems for adaptive filtering of 
oscillatory signals [3]. The used model proved to be 
more efficient than other alternative fuzzy adaptive 
systems; moreover, it can be used for on-line 
monitoring of signals, independently whether they 
are described by linguistic variables or crisp 
variables. 
Frey et al. used a Neuro-Fuzzy model to control a 
rotary hammer drill [4]. For solving this problem 
the authors had to find the optimal settings of 
rotational speed and strike rate to achieve optimal 
drill penetration. A self-learning Neuro-Fuzzy 
model was developed to intelligently control these 
two variables during the drilling process to achieve 
optimal performance.  
Detecting the onset of damage in gear systems was 
the goal of Wang et al., for which they developed a 
Neuro-Fuzzy based diagnostic system [5]. The 
diagnosis of the gear system is conducted gear-by-
gear, which means that for every gear there is a 
separated Neuro-Fuzzy model. Each model has 
three inputs and one output: the inputs are reference 
functions that reduce the feature dimensions, i.e. 
they aggregate multiple features of the real system 
to one variable; the output is the condition of the 
gear, which can be normal or damaged. To train the 
implemented model they proposed a constrained-
gradient-reliability algorithm which can effectively 
update the membership function parameters and set 
the rule weights. 
Evsukoff and Gentil created a recurrent Neuro-
Fuzzy system for fault detection and isolation in 
nuclear reactors [6]. In their model a fuzzification 
module is linked to a neural network based 
inference module which was adapted to recognize 
related faults based on the process variables. 

One of the first and probably most widespread 
Neuro-Fuzzy architecture is the Adaptive-Network-
based Fuzzy Inference System (ANFIS) which has 
similar accuracy as the Multi-Layer Perceptron 
(MLP) which makes it ideal for function 
approximation. This architecture was used for 
mechanical fault diagnostics of induction motors 
with variable speed drives by Sadeghian and Wu 
[7]. The authors managed to significantly reduce 
the system complexity and learning duration of the 
network by using multiple ANFIS units in their 
model. 
 

 
Fig. 1. Multiple ANFIS units for multiple fault 

diagnostics [7] 
 
Fig. 1. shows the multiple ANFIS units where each 
one is responsible for detecting a specific fault type 
as these fault types have different feature 
coefficients. This modular structure provides an 
easy way to make extensions for detecting other 
fault types and also has the advantage that the units 
can be easily trained due to their simplicity. In 
another application Lei et al. used multiple ANFIS 
combination with genetic algorithm for fault 
diagnostics of rotating machinery [8]. They 
implemented a classifier system where the features 
describing the problem were divided into six 
predetermined and separated groups and individual 
Neuro-Fuzzy classifiers were constructed for each 
group. The final classification result of the system 
is the weighted average of the individual groups. 
During training, genetic algorithm was applied for 
optimising these weights. This method can yield 
better classification result than the member 
classifiers individually. 
Amaral et al. applied a diagnostic technique based 
on the identification of a specified current pattern 
for detection of motor stator fault and used a Neuro-
Fuzzy model for an image feature extraction based 
identification [9]. They used the Neuro-Fuzzy 
strategy to get a better linguistic knowledge about 
the underlying fault detection and diagnosis 
process. 
Machinery malfunctions often reduce productivity 
and increase maintenance costs in various industrial 
fields. Zio and Gole proposed a Neuro-Fuzzy 
approach to solve fault diagnosis of rotating 
machinery by pattern classification while obtaining 
a model which remained easily interpretable [10]. 



 

 
Fig. 2. A sketch of a bearing assembly [10] 

 
Fig. 2. shows components of a bearing assembly 
which can be damaged leading to malfunction. For 
the diagnosis of these components the authors 
created a Neuro-Fuzzy algorithm which consists of 
multiple modules. First, an initial set of fuzzy rules 
are determined, where the initial large number of 
rules is reduced with a heuristic solution based on 
the firing strength of each rule. Then the forward 
algorithm calculates the relative strengths of the 
rules and the next module uses these values for 
creating new rules if necessary. The optimisation 
module tunes the parameters of the member 
functions and finally, a pruning is applied to reduce 
the size of the rule set. After the initial set of rules 
has been established, the algorithm repeats itself 
iteratively until the desired accuracy is reached. 
Chen, Roberts and Weston used Neuro-Fuzzy 
Systems for fault detection and diagnostics of 
railway track circuits [11]. 
 

 
Fig. 3. Scheme of neuro-fuzzy for fault detection 

and diagnosis [11] 
 
Fig. 3. Shows the scheme of the implemented 
model where the measurement data associated with 
different operating conditions is mapped to each 
failure mode. In their solution, they use a 
generalized version of the ANFIS to support 
multiple outputs. Each one of the eleven outputs 
corresponds to a condition (1 healthy and 10 faulty 
condition) while eight current and voltage 
measurements are used as the input variables. 
Another research was aiming at Neuro-Fuzzy based 
state modelling of a flexible robotic arm using real 
sensor data [12]. The authors also utilized improved 

Particle Swarm Optimization (PSO) to improve the 
model’s learning capability. Via this solution, they 
showed that PSO can be effectively employed for 
developing industrial model-based control schemes. 
 
2.3. Nowadays  
 
Nowadays the emphasis of the research of Neuro-
Fuzzy systems is concentrating mainly on their 
applications on wide practical fields. For instance 
Guzinski et al. presented a diagnostic system for 
shaft misalignment detection based on the ANFIS 
model [13]. They used this system in an adjustable 
speed sensorless induction motor drive where the 
model is based on the analysis of the stator current, 
motor speed and load torque processing. The results 
showed that it can effectively indicate the shaft 
misalignment. Karimi and Salahshoor also used the 
ANFIS model and combined it with Principal 
Component Analysis (PCA) for fault detection and 
diagnosis of distillation column [14]. They used 
PCA to extract the most informative features and at 
the same time reduce dimensionality of the 
measured data then fed the reduced data to ANFIS 
to discriminate the occurred fault. They 
demonstrated the effectiveness of the proposed 
method via extensive conducted tests in a 
distillation column benchmark. 
Wali et al. compared intelligent controllers such as 
Fuzzy and Neuro-Fuzzy in the task of monitoring 
and control of novel advanced microwave biodiesel 
reactors [15]. 
 

 
Fig. 4. The basic block diagram for fuzzy controller 

[15] 
 
Fig. 4. shows the block diagram of the fuzzy 
controller which was applied for temperature 
control inside the reactor. The authors found that 
the ANFIS controller is more robust to parameter 
variations while a pure fuzzy solution is able to 
regulate in minimal overshoot. ANFIS model was 
used by Eristi for fault diagnosis of series 
compensated transmission lines, too [16]. 

 



 
Fig. 5. Main structure of the proposed algorithm for fault diagnosis, classification and location isolation [16] 

Fig. 5. shows the structure of the algorithm where 
Vabc denotes the Voltage signal and Iabc denotes the 
Current signal. Eristi utilized Wavelet 
Transformation (WT) and Norm entropy to achieve 
effective feature extraction of the fault signals. To 
test the proposed method an extensive data set of 
23 436 fault cases were used and the results showed 
that the algorithm is effective and robust to 
parameter variations. 
Concentration estimation of volatile organic 
compounds was the goal of Jha et al. [17]. They 
built multiple models to measure and compare their 
performance on the problem. They found that the 
Neuro-Fuzzy system (ANFIS) outperformed both 

the clustering based fuzzy inference system and the 
ANN method and concluded that it is due to the fact 
that ANFIS inherits the advantages of both of the 
other models. 
One of the major factors in catalytic performance is 
the size of the catalyst. In the next application the 
authors used response surface methodology and the 
ANFIS model to quantify the effects of physical 
characteristics of magnetite on Fenton-like 
oxidation efficiency of methylene blue [18]. For 
petroleum products monitoring Roshani et al. 
applied the ANFIS model to predict fluid density 
for a gamma ray densitometer [19]. 

 
Fig. 6. The proposed ANFIS structure to predict fluid density for a gamma ray densitometer [19]

Fig. 6. shows the proposed model where A1-A9 
denotes the membership functions of the pipe 
diameter variable and B1-B9 denotes the 
membership functions of the number of counts (per 
photon) variable. W1-W9, W1-W9 and f1-f9 denotes 

the output values of the corresponding nodes. The 
authors simulated the operation of the densitometer 
device to obtain the testing dataset and after 
application of the model they concluded that it can 
estimate the fluid density with high accuracy. 



In many cases very different application fields are 
targeted by Neuro-Fuzzy solutions as in the case of 
another ANFIS model which was used to detect 
alterations in sleep EEG activity during hypopnoea 
episodes by Übeyli et al. [20]. The authors used the 
ANFIS for classification and they performed 
feature extraction by computing of wavelet 
coefficients. In their case four models was used: 
three were fed directly by measured data on the 
electrodes and the fourth had the purpose of 
improving diagnostic accuracy by gaining its inputs 
from the outputs of the other three systems. Lee and 
Lim also used hybrid fuzzy neural methods to 
compare Deep Brain Stimulation (DBS) and 
levodopa as two treatments of Parkinsonian resting 
tremors [21]. 
 

 
Fig. 7. Velocity laser recording of resting tremor 

[21] 
 
Fig. 7. shows a method for recording resting 
tremors which was applied to 16 subjects to build a 
dataset. The study not only showed that DBS is 
more effective than levodopa but it did it in a way 
that is less time-consuming and less expensive than 
MRI and other medical expert dependant solutions. 
In another case ANN and Neuro-Fuzzy based 
models were applied to classify earthquake 
damages in buildings which can be utilized to help 
engineers decide whether some structures are 
remained safe or not [22]. The presented 
classification models used 20 seismic parameters of 
accelerograms to estimate 4 damage categories. 
 

 
Fig. 8. Artificial seismic accelerogram processed to 

classify earthquake damages in buildings [22] 

Fig. 8. shows a typical artificial accelerogram from 
which the 20 parameters were extracted. The 
proposed models were able to produce 98% 
recognition rate and thus their application can be 
tested in real circumstances. 
Benyamin Khoshnevisan et al. adopted an ANFIS 
and an ANN based system to predict potato yield 
from energy inputs [23]. The purpose of the study 
was to create model which helps farmers to 
estimate the level of production in advance and 
make an appropriate plan for the future. The authors 
evaluated various topologies to find the optimal 
one; moreover they compared the ANN and ANFIS 
models and found that the latter one is more capable 
of overcoming the problem of inconsistent data 
because of its rule based architecture. 
Another application aimed at prediction of vertical 
stress transmission in real soil profile using ANFIS 
[24]. The authors built multiple models with 
different membership function types and for this 
specific dataset the gauss membership function 
proved to be the most efficient. Moharana et al. also 
used the ANFIS model to estimate the roughness 
coefficients of a meandering channel [25]. This is a 
complex problem because the coefficients depend 
on many hydraulic, geometric and roughness 
parameters.  They compared the result with earlier 
studies and concluded that the Neuro-Fuzzy model 
is more effective than others in terms of estimation 
accuracy. 
There is a wide variety of other applications where 
this kind of systems was successfully implemented 
from the fields of biology and environment to fault 
detection and diagnostics as by Kar et al. [26]. 
 
Neuro-Fuzzy applications are widely used for 
technical diagnosis and measurement purposes; 
however, neural and fuzzy methods are often used 
individually, too. For instance Bilski used an 
artificial intelligence-based model for diagnostics of 
analog systems [27]. He preprocessed the training 
and testing data sets using statistical methods to 
minimize the amount of information to be measured 
in order to optimize the performance of the 
Artificial Neural Network (ANN) diagnostic 
modules. 
In another application Catelani and Ciani analysed 
the problem of disturbance induced by high energy 
particles on electronic devices and developed a 
model to determine whether a system respond to 
specific requirements [28]. 
 
2.4. Overview of Neuro-Fuzzy System applications 
to Technical Diagnostics and Measurement 
  
Table 1 gives a comprehensive structure to all 
overviewed applications appointing the main 
functionalities and application fields and the related 
publications. 



 
Table 1 
Applications functionalities, with their fields and related publications 

Functionality Application field Authors and Reference 

Monitoring and 
supervision 

Turbocharger state, air pressure of vehicle wheels Ayoubi [1] 
Fenton-like oxidation efficiency Pouran et al. [18] 
fluid density for a gamma ray densitometer Roshani et al. [19] 
Analogue systems Bilski [27] 

Fault diagnosis 

Continuous stirred tank reactor process Zhang and Morris [2] 
Gear systems Wang et al. [5] 
Nuclear reactors Evsukoff and Gentil [6] 

Induction motors 
Wu [7] 

Guzinski et al. [13] 

Rotating machinery 
Lei et al. [8] 

Zio and Gole [10] 
Railway track circuits Chen et al. [11] 
Distillation column Karimi and Salahshoor [14] 
Series compensated transmission lines Eristi [16] 
Disturbance induced by high energy particles Catelani and Ciani [28] 

Adaptive filtering Oscillatory signal Sakuntala Mahapatra et al. [3] 

Control 
Rotary hammer drill Frey et al. [4] 
Microwave biodiesel reactors Wali et al. [15] 

Pattern identification Motor stator Amaral et al. [9] 
System state modelling Flexible robotic arm Amitava et al. [12] 

Variable estimation 

Volatile organic compounds Jha et al. [17] 
Potato yield Khoshnevisan et al. [23] 
Soil profile Hamid Taghavifar et al. [24] 
Meandering channel Moharana et al. [25] 

Variable change 
detection 

Sleep EEG activity during hypopnoea episodes Übeyli et al. [20] 
Parkinsonian resting tremors Lee and Lim [21] 

Damage classification Earthquake damages in buildings Alvanitopoulos et al. [22] 
 
 
3. Prelude of Neuro-Fuzzy Systems 
 
This section discusses the techniques that provided 
the theoretical basis and allowed the concept of 
Neuro-Fuzzy system to be formed. These 
techniques are the Neural Networks and the Fuzzy 
Systems which will be presented in the following 
paragraphs. 
 
3.1. Artificial Neural Networks (ANNs) 
 

 
Fig. 9. An artificial neuron 

 
The concept of the ANN was established seven 
decades ago and, as the name suggests, it was 

inspired by the behaviour of biological neural 
networks inside the human brain. An ANN 
implements the functionality of the biological 
neural networks by building up a network of 
autonomous computational units (neurons) and 
connecting them via weighted links defined by the 
first pioneers W. S. McCulloch and W. Pitts [29]. 
Such a computational unit e.g. an artificial neuron 
is shown on Fig. 9. It consists of input links (special 
neurons sometimes don’t have any input links), a 
transfer function, an activation function and an 
optional memory component while the weighted 
links between them are represented by real 
numbers. In Fig. 9. x1-xn denotes the input values of 
the neuron, oj denotes the output value and w1j-wnj 
denotes the weights of the input links. The transfer 
function aggregate the outputs of the other neurons 
connected via the input links weighted with the 
strength of the links. The activation function 
produces the output value based on the output of 
the transfer function and the memory serves as a 
container to store previous states of the neuron (in 
many cases it is not used or only a part of the state 
is stored). When a neuron fires the signal 
propagates through the output links to the 
connected neurons and the weight of a link 



(represented by a real number) determines the 
strength of the connection and weakens the signal 
accordingly. 
In 1957 Frank Rosenblatt created the perceptron 
algorithm for supervised classification of an input 
into one of two possible outputs [30]. This is a type 
of linear classifier and at the time, only the single-
layer perceptron could be trained. 
18 years later Werbos created the backpropagation 
algorithm for training the MLP [31]. 

 
Fig. 10. The MuliLayer Perceptron model 

 
Fig. 10. shows an MLP model where the neurons 
are organized into layers and each layer is fully 
connected with the next one. Supervised training of 
an MLP means repeated adjustment of the weight 
of each link to receive more and more favourable 
output on specific neurons (output neurons) while 
stimulating other neurons (input neurons). The 
backpropagation algorithm achieves this by 
calculating the derivatives of the network’s error 
with respect to all of its weights and adjusting the 
weights to a position where, based on the 
derivatives, the error is smaller e.g. moving the 
weights in the direction of the descent of the 
derivatives where the error is a measure of the 
difference between the network’s output and the 
target values for the same input. 
After 1975 the MLP became more popular and 
widespread and during the years many other, but 
not so highly popular ANN model types were 
defined, moreover, currently the basic research in 
the field of neural networks is emphasising on the 
study of biological neural systems and define new 
learning algorithms and architectures that are maps 
of the biological brain systems. One of these new 
types is the Self-Organizing Map (SOM) which can 
be trained by unsupervised learning to produce a 
low dimensional representation of the input space 
[32]. They are mainly used for visualizing high 
dimensional data in low dimensional views. 
Another type is the Recurrent Neural Network 
(RNN), they are different from the common 
feedforward networks as they allow circles in their 
structure e.g. some links propagate the signal back 
to such neurons that sent the original signal. This 
feature allows them to establish an internal memory 
which can be used to process arbitrary sequences of 

inputs. 
Yet another class of ANNs is the Radial Basis 
Function Network (RBFN) which uses radial basis 
functions as the activation function of the neurons 
[33]. Their training algorithms are extended to 
adjust not only the network’s weights but the 
activation function parameters, too. They have 
many uses such as function approximation, time 
series prediction, classification, etc. 
Over the decades ANNs proved to be powerful 
computational models for solving complex 
estimation and classification problems as they are 
robust and are capable of high level generalization, 
moreover they can already handle incomplete data, 
too [34]. However no information can be extracted 
from a trained ANN about the connections between 
the parameters, e.g. a generic ANN model can only 
approximate the output parameters but cannot tell 
what kind of connections exist between the input 
and output parameters. This is a key disadvantage 
of the Neural Network model which led to the 
creation of Neuro-Fuzzy Systems. 
 
3.2. Fuzzy Systems  
 
Real life problems often have the tendency to be not 
discrete but continuous in nature. A somewhat 
special case of this phenomenon is to categorize 
objects or theoretical entities because in many 
cases, categories don’t have precisely defined 
criteria of membership. To solve this problem Lofti 
Zadeh [35] introduced fuzzy set theory, where the 
membership of an element is no longer a binary 
state but a continuous value e.g. instead of saying 
that a is an element of A set and not element of B, 
we can say that a is an element of A fuzzy set by 
0.67 degree and element of B by 0.23 degree. 
Fuzzy logic is a type of logic that uses fuzzy sets to 
represent truth values and consequently it provides 
an effective way to represent human knowledge in a 
mathematical language. Fuzzy logic uses fuzzy 
inference rules which are able to process the 
continuous truth values and produce an also 
continuous output. Each rule has the form of 
 

if <premise> then <consequent>, 
 
that uses linguistics variables with symbolic terms. 
Each term represents a fuzzy set. The terms of the 
input space (typically 5-7 for each linguistic 
variable) compose the fuzzy partition. The fuzzy 
inference mechanism consists of three stages: in the 
first stage, the values of the numerical inputs are 
mapped by a function according to a degree of 
compatibility of the respective fuzzy sets; this 
operation can be called fuzzification. In the second 
stage, the fuzzy system processes the rules in 
accordance with the firing strengths of the inputs. 
In the third stage, the resultant fuzzy values are 



transformed again into numerical values; this 
operation can be called defuzzification. Essentially, 
this procedure makes possible the use fuzzy 
categories in representation of words and abstracts 
ideas of the human beings in the description of the 
decision taking procedure [36]. 
Fuzzy inference systems have two main type based 
on the mathematical calculation of the inference. 
These are the Mamdani type inference [37] and the 
Takagi-Sugeno-Kang (TSK) type inference [38]. A 
Mamdani type fuzzy rule can be described as 
 

if A is X1 and B is X2 then C is X3, 
 
where A, B, C are variables and X1, X2, X3 are 
fuzzy sets. In contrast to the Mamdani type, a TSK 
rule has the form of 
 

if A is X1 and B is X2 then C = aA + bB + c, 
 
where a, b and c are constants. As a result of the 
form of the rules the Mamdani type inference 
systems are more interpretable because both the 
premises and consequents of the rules are fuzzy sets 
while the Takagi-Sugeno-Kang types are more 
accurate and computationally efficient, e.g. they 
build up more accurate models, however, here, only 
the premises of the rules are fuzzy sets. 
All in all, Fuzzy Systems have the advantage that 
the fuzzy rules, which store the information, are 
easily interpretable. Furthermore they provide a 
simple interface for extending the system with new 
information (by adding new rules) or manipulating 
the existing rules. The problem with Fuzzy Systems 
lies in the fact that they completely depend on the 
experts who design them. It only uses the 
information which were encoded in the system and 
cannot learn on its own and it is incapable of 
generalization. The described nature of Fuzzy 
Systems indicates that a fusion with ANNs may 
possibly lead to a new powerful computational 
model. 
 
4. Neuro-Fuzzy System Architectures 
 
The previous section briefly described the concept 
of the two main components building up a Neuro-
Fuzzy system individually, so in this section the 
different architectures can be discussed to show 
how different approaches managed to combine 
ANNs with Fuzzy Systems. At the end of this 
section a table is also presented summarizing the 
advantages and drawbacks of each presented 
architecture. 
 
4.1. ANFIS Architecture  
 
One of the first Neuro-Fuzzy Systems was 
introduced by Jang in year 1993 [39][40]. This 

architecture is called ANFIS and it uses the Takagi-
Sugeno-Kang inference system. 
 

 
Fig. 11. The ANFIS architecture [39] where x and y 
denote the input variables and z denotes the output 

variable 
 
Fig. 11. shows the ANFIS architecture consisting of 
six layers. The first layer contains two nodes for 
input x and y, the second layer is responsible for 
mapping input values to the membership functions. 
The nodes of the third layer correspond to the fuzzy 
rules in the form of production functions; their 
output values are the firing strengths of each rule 
while the nodes in the fourth layer calculate the 
ratio to the sum of all rules’ firing strengths. 
Defuzzification happens in the fifth layer and the 
sixth layer’s output nodes sum their input values. 
Iterative learning of ANFIS is composed of two 
stages. In the first stage the parameters of the 
consequent functions (in the fifth layer) are tuned 
via a least mean square method. During the second 
stage the parameters of the premise functions (in 
the second layer) are adjusted by a backpropagation 
algorithm. These two stages are repeated iteratively 
for training of the system. It is also worth to 
mention that this model has the best estimation 
accuracy based on various benchmarking and 
application results. 
 
4.2. FALCON Architecture  
 
Approximately in the same time as ANFIS, the 
Fuzzy Adaptive Learning Control Network 
(FALCON) architecture was introduced, which is a 
system with five layers and uses Mamdani type 
inference [41]. 
Fig. 12. shows the FALCON architecture. Input 
nodes are located in the first layer; second layer has 
term nodes which represent the membership 
functions for the input values. Each node of the 
third layer acts as a fuzzy rule. The fourth layer also 
consists of term nodes; these represent the 
membership functions for the outputs. Finally the 
fifth layer is the output layer; here for every output 
there are two nodes: one is for training data which 
is the desired output and the other is for decision 
signal which is the actual output. 



 
Fig. 12. The FALCON architecture 

 
Training is done by a two-phase-algorithm. The 
first phase is responsible for finding the initial 
membership functions by a self-organized learning 
scheme. In the second phase the parameters of the 
membership functions are adjusted using 
supervised learning. During the training nodes and 
links can be deleted or merged reforming the 
structure of the network. 
 
4.3. GARIC Architecture  
 
Another early Neuro-Fuzzy model is the 
Generalized Approximate Reasoning based 
Intelligence Control (GARIC) system, which is 
composed of three components: the Action 
Selection Network (ASN), the Action Evaluation 
Network (AEN) and the Stochastic Action Modifier 
(SAM) [42]. 
 

 
Fig. 13. The ASN component of the GARIC 

architecture [42] 
 

Fig. 13. shows the ASN component. The ASN is a 
five layer network which is responsible for 
selecting an action based on the current state of the 
system using fuzzy inference. Input nodes are in the 
first layer and the second one holds the membership 
functions. Each node in the third layer represents a 
fuzzy rule and nodes of the forth layer correspond 
to consequent labels, e.g. if a consequent label is in 
a rule then there is a link between the label’s node 
and the rule’s node. The fifth layer’s nodes 
calculate the real output values based on the rules’ 
firing strength and the forth layer’s outputs. The 
AEN component of this architecture is a simple 
feedforward network which predicts reinforcements 
based on the state variables of the system. And the 
SAM component stochastically generates an action 
from based on the recommendation of the AEN 
GARIC uses gradient descending and 
reinforcement learning to adjust its internal 
parameters. 
 
4.4. NEFCON Architecture  
 
In parallel with the models mentioned earlier, the 
Neural Fuzzy Controller (NEFCON) architecture 
had been created, which has three layers and 
implements a Mamdani type inference system [43].  

 
Fig. 14. The NEFCON architecture where x1 and x2 
denote the input variables and c denotes the output 

variable 
 
Fig. 14. Shows the NEFCON architecture where the 
circles indicate the nodes which are forming the 
layers and the rectangles indicate the shared 
weights of the network. The first layer consists of 
the input nodes, in the second layer the nodes 
represent the fuzzy rules and the third layer holds 
the output nodes. In this architecture the links 
connecting the nodes are weighted with fuzzy sets. 
The learning procedure uses reinforcement learning 
with backpropagation algorithm to either learn the 
rule base from the beginning or to optimise an 
initially defined rule base. Two other systems were 
developed based on NEFCON which are 



specialized versions of the original architecture. 
These systems are the NEFCLASS [44] which is 
specialized in classification problems and the 
NEFPROX [45] which was created for function 
approximation. 
 
4.5. SONFIN Architecture  
 
Self-Constructing Neural Fuzzy Inference Network 
(SONFIN) is a Takagi-Sugeno-Kang-type fuzzy 
rule-based model which consists of six layers [46]. 
 

 
Fig. 15. The SONFIN architecture [46] where x1 
and x2 denote the input variables, y1 denotes the 

output variable, R1-R3 denotes the rule nodes and x 
represents the input vector 

 
Fig. 15. shows the SONFIN architecture which, in 
fact, is similar to the ANFIS. Layer 1-4 and 6 are 
functioning as they are in the ANFIS architecture. 
The fifth, consequent layer can hold two types of 
nodes. The first type represents the fuzzy sets by 
membership functions while the second type is 
optional and gains its inputs from the first and 
fourth layer. 
Constructing of SONFIN happens concurrently by a 
structure and a parameter learning method. The 
structure learning identifies both the precondition 
and consequent parts of the rules by minimizing the 
number of rules and membership functions for the 
input and by optimally generating new membership 
functions for the output variables. Parameter 
learning uses LMS or RLS algorithms to adjust 
consequent parameters and backpropagation for 
precondition parameters. 
 
4.6. dmEfuNN Architecture  
 
The Dynamic Evolving Fuzzy Neural Network 
(dmEfuNN) is a system with five layers which uses 
the Takagi-Sugeno fuzzy inference mechanism 
[47]. The predecessors of this model are FuNN [48] 
and EFuNN [49] which both uses the Mamdani 

type inference. 
 

 
Fig. 16. The dmEfuNN architecture 

 
Fig. 16. shows the dmEfuNN architecture. The first 
layer contains the input nodes and membership 
functions are in the second layer. Fuzzy rules are 
represented by the nodes in the third layer. Fourth 
layer selects a number of rules from the third layer 
which are the closest to the fuzzy inputs and the 
fifth layer does the defuzzification and produces 
real outputs. 
The dmEfuNN can optimize global generalization 
error and local generalization error in contrast to 
MLP and ANFIS which can only optimize global 
error. As the name suggests the number of nodes 
and links in the structure can dynamically increase 
or decrease during the on-line learning while off-
line training uses a given structure and optimizes 
internal parameters. 
 



4.6. Comparison of the Neuro-Fuzzy architectures  
 
Table 2 gives a comprehensive comparison to all 

overviewed Neuro-Fuzzy system types appointing 
the main advantages and drawbacks of each 
architecture. 

 
 
Table 2 
Advantages and drawbacks of the presented architectures. 
Architecture Advantages Drawbacks 
ANFIS  As it implements a Takagi-Sugeno-

Kang inference mechanism, it is a 
very accurate model (most accurate 
among the presented architectures and 
more accurate than Multi-Layer 
Perceptron and pure Fuzzy systems) 

 Cannot handle multiple output systems 
 Only fully defined structures can be trained  
 There is no dynamic rule creation or reduction 

FALCON  It has a learning phase for building up 
its initial structure (number of rules 
and membership functions can be 
determined via training) 

 Its Mamdani type inference makes it 
more interpretable 

 Its Mamdani type inference makes it less 
accurate especially for parameter estimation 

GARIC  It is one of the earliest presented 
Neuro-Fuzzy system 

 Isn’t a single model but consists of multiple 
components 

NEFCON  It is able to reduce the number of 
rules during its training 

 Its Mamdani type inference makes it 
more interpretable 

 Its Mamdani type inference makes it less 
accurate especially for parameter estimation 

SONFIN  There are no initial rules but rules are 
created and adapted as on-line 
learning proceeds via simultaneous 
structure and parameter identification 

 The number of generated rules and 
membership functions is small even 
for modelling of a sophisticated 
system 

 Not as accurate as the ANFIS (which has the 
most similar structure to this) 

dmEfuNN  During its on-line training it can 
increase or decrease the number of 
rules in the system 

 Not as accurate as the ANFIS 

 
5. Conclusions 
 
Different applications of Neuro-Fuzzy Systems 
were discussed to show their high potential in 
technical diagnostics and measurement. This survey 
summarizes in a comprehensive overview the 
Neuro-Fuzzy applications in technical diagnostics 
and measurement with appointing the generalized, 
main, typical functionalities and with highlighting 
their great variety of application areas. 
These systems are successful because of their 
nature that they reveal the nature of the important 
interdependence between the parameters of the 
modelled system while they are, in fact, powerful 
approximators. Their ability to discover 
connections between parameter intervals can be 
extremely useful when applying the model for 
diagnostic and control tasks because entirely 
different rules can be used to specific subsets of the 
problem, e.g. these systems have the capability to 

work differently in different parts of the parameter 
space providing a more detailed and somehow 
distributed model instead of a general solution. 
The paper briefly reviewed the concept of Artificial 
Neural Networks and Fuzzy Systems as 
computational models and how they inspired the 
creation of Neuro-Fuzzy Systems. As it was 
discussed this fusion can unite the generalization 
capabilities of Neural Networks with the easy 
interpretability and high expressive power of fuzzy 
rules in an effective way. 
Six different architectures were presented and it can 
be concluded that these are the most important ones 
although there are other structure variations, too. 
Usually each architecture organizes its nodes a 
slightly different way and consequently they use 
specific learning algorithms which are adapted to 
the different structures. The different Neuro-Fuzzy 
models were also compared and a table is also 
presented summarizing the advantages and 



drawbacks of each presented architecture. 
All in all it can be said that ANFIS architecture is 
the most popular and widespread among the Neuro-
Fuzzy systems for various applications in the field 
of diagnostics, control or for medical research, civil 
engineering, etc. This is mainly because the ANFIS 
model has higher accuracy than the other Neuro-
Fuzzy model types which compensates its less 
interpretable structure. 
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