157 research outputs found

    Quantum and spin-based tunneling devices for memory systems

    Get PDF
    Rapid developments in information technology, such as internet, portable computing, and wireless communication, create a huge demand for fast and reliable ways to store and process information. Thus far, this need has been paralleled with the revolution in solid-state memory technologies. Memory devices, such as SRAM, DRAM, and flash, have been widely used in most electronic products. The primary strategy to keep up the trend is miniaturization. CMOS devices have been scaled down beyond sub-45 nm, the size of only a few atomic layers. Scaling, however, will soon reach the physical limitation of the material and cease to yield the desired enhancement in device performance. In this thesis, an alternative method to scaling is proposed and successfully realized. The proposed scheme integrates quantum devices, Si/SiGe resonant interband tunnel diodes (RITD), with classical CMOS devices forming a microsystem of disparate devices to achieve higher performance as well as higher density. The device/circuit designs, layouts and masks involving 12 levels were fabricated utilizing a process that incorporates nearly a hundred processing steps. Utilizing unique characteristics of each component, a low-power tunneling-based static random access memory (TSRAM) has been demonstrated. The TSRAM cells exhibit bistability operation with a power supply voltage as low as 0.37 V. Various TSRAM cells were also constructed and their latching mechanisms have been extensively investigated. In addition, the operation margins of TSRAM cells are evaluated based on different device structures and temperature variation from room temperature up to 200oC. The versatility of TSRAM is extended beyond the binary system. Using multi-peak Si/SiGe RITD, various multi-valued TSRAM (MV-TSRAM) configurations that can store more than two logic levels per cell are demonstrated. By this virtue, memory density can be substantially increased. Using two novel methods via ambipolar operation and utilization of enable/disable transistors, a six-valued MV-TSRAM cell are demonstrated. A revolutionary novel concept of integrating of Si/SiGe RITD with spin tunnel devices, magnetic tunnel junctions (MTJ), has been developed. This hybrid approach adds non-volatility and multi-valued memory potential as demonstrated by theoretical predictions and simulations. The challenges of physically fabricating these devices have been identified. These include process compatibility and device design. A test bed approach of fabricating RITD-MTJ structures has been developed. In conclusion, this body of work has created a sound foundation for new research frontiers in four different major areas: integrated TSRAM system, MV-TSRAM system, MTJ/RITD-based nonvolatile MRAM, and RITD/CMOS logic circuits

    Design of robust spin-transfer torque magnetic random access memories for ultralow power high performance on-chip cache applications

    Get PDF
    Spin-transfer torque magnetic random access memories (STT-MRAMs) based on magnetic tunnel junction (MTJ) has become the leading candidate for future universal memory technology due to its potential for low power, non-volatile, high speed and extremely good endurance. However, conflicting read and write requirements exist in STT-MRAM technology because the current path during read and write operations are the same. Read and write failures of STT-MRAMs are degraded further under process variations. The focus of this dissertation is to optimize the yield of STT- MRAMs under process variations by employing device-circuit-architecture co-design techniques. A devices-to-systems simulation framework was developed to evaluate the effectiveness of the techniques proposed in this dissertation. An optimization methodology for minimizing the failure probability of 1T-1MTJ STT-MRAM bit-cell by proper selection of bit-cell configuration and access transistor sizing is also proposed. A failure mitigation technique using assistsin 1T-1MTJ STT-MRAM bit-cells is also proposed and discussed. Assist techniques proposed in this dissertation to mitigate write failures either increase the amount of current available to switch the MTJ during write or decrease the required current to switch the MTJ. These techniques achieve significant reduction in bit-cell area and write power with minimal impact on bit-cell failure probability and read power. However, the proposed write assist techniques may be less effective in scaled STT-MRAM bit-cells. Furthermore, read failures need to be overcome and hence, read assist techniques are required. It has been experimentally demonstrated that a class of materials called multiferroics can enable manipulation of magnetization using electric fields via magnetoelectric effects. A read assist technique using an MTJ structure incorporating multiferroic materials is proposed and analyzed. It was found that it is very difficult to overcome the fundamental design issues with 1T-1MTJ STT-MRAM due to the two-terminal nature of the MTJ. Hence, multi-terminal MTJ structures consisting of complementary polarized pinned layers are proposed. Analysis of the proposed MTJ structures shows significant improvement in bit-cell failures. Finally, this dissertation explores two system-level applications enabled by STT-MRAMs, and shows that device-circuit-architecture co-design of STT-MRAMs is required to fully exploit its benefits

    Towards Oxide Electronics:a Roadmap

    Get PDF
    At the end of a rush lasting over half a century, in which CMOS technology has been experiencing a constant and breathtaking increase of device speed and density, Moore's law is approaching the insurmountable barrier given by the ultimate atomic nature of matter. A major challenge for 21st century scientists is finding novel strategies, concepts and materials for replacing silicon-based CMOS semiconductor technologies and guaranteeing a continued and steady technological progress in next decades. Among the materials classes candidate to contribute to this momentous challenge, oxide films and heterostructures are a particularly appealing hunting ground. The vastity, intended in pure chemical terms, of this class of compounds, the complexity of their correlated behaviour, and the wealth of functional properties they display, has already made these systems the subject of choice, worldwide, of a strongly networked, dynamic and interdisciplinary research community. Oxide science and technology has been the target of a wide four-year project, named Towards Oxide-Based Electronics (TO-BE), that has been recently running in Europe and has involved as participants several hundred scientists from 29 EU countries. In this review and perspective paper, published as a final deliverable of the TO-BE Action, the opportunities of oxides as future electronic materials for Information and Communication Technologies ICT and Energy are discussed. The paper is organized as a set of contributions, all selected and ordered as individual building blocks of a wider general scheme. After a brief preface by the editors and an introductory contribution, two sections follow. The first is mainly devoted to providing a perspective on the latest theoretical and experimental methods that are employed to investigate oxides and to produce oxide-based films, heterostructures and devices. In the second, all contributions are dedicated to different specific fields of applications of oxide thin films and heterostructures, in sectors as data storage and computing, optics and plasmonics, magnonics, energy conversion and harvesting, and power electronics

    Utilizing Magnetic Tunnel Junction Devices in Digital Systems

    Get PDF
    The research described in this dissertation is motivated by the desire to effectively utilize magnetic tunnel junctions (MTJs) in digital systems. We explore two aspects of this: (1) a read circuit useful for global clocking and magnetologic, and (2) hardware virtualization that utilizes the deeply-pipelined nature of magnetologic. In the first aspect, a read circuit is used to sense the state of an MTJ (low or high resistance) and produce a logic output that represents this state. With global clocking, an external magnetic field combined with on-chip MTJs is used as an alternative mechanism for distributing the clock signal across the chip. With magnetologic, logic is evaluated with MTJs that must be sensed by a read circuit and used to drive downstream logic. For these two uses, we develop a resistance-to-voltage (R2V) read circuit to sense MTJ resistance and produce a logic voltage output. We design and fabricate a prototype test chip in the 3 metal 2 poly 0.5 um process for testing the R2V read circuit and experimentally validating its correctness. Using a clocked low/high resistor pair, we show that the read circuit can correctly detect the input resistance and produce the desired square wave output. The read circuit speed is measured to operate correctly up to 48 MHz. The input node is relatively insensitive to node capacitance and can handle up to 10s of pF of capacitance without changing the bandwidth of the circuit. In the second aspect, hardware virtualization is a technique by which deeply-pipelined circuits that have feedback can be utilized. MTJs have the potential to act as state in a magnetologic circuit which may result in a deep pipeline. Streams of computation are then context switched into the hardware logic, allowing them to share hardware resources and more fully utilize the pipeline stages of the logic. While applicable to magnetologic using MTJs, virtualization is also applicable to traditional logic technologies like CMOS. Our investigation targets MTJs, FPGAs, and ASICs. We develop M/D/1 and M/G/1 queueing models of the performance of virtualized hardware with secondary memory using a fixed, hierarchical, round-robin schedule that predict average throughput, latency, and queue occupancy in the system. We develop three C-slow applications and calibrate them to a clock and resource model for FPGA and ASIC technologies. Last, using the M/G/1 model, we predict throughput, latency, and resource usage for MTJ, FPGA, and ASIC technologies. We show three design scenarios illustrating ways in which to use the model

    Extending Memory Capacity in Consumer Devices with Emerging Non-Volatile Memory: An Experimental Study

    Full text link
    The number and diversity of consumer devices are growing rapidly, alongside their target applications' memory consumption. Unfortunately, DRAM scalability is becoming a limiting factor to the available memory capacity in consumer devices. As a potential solution, manufacturers have introduced emerging non-volatile memories (NVMs) into the market, which can be used to increase the memory capacity of consumer devices by augmenting or replacing DRAM. Since entirely replacing DRAM with NVM in consumer devices imposes large system integration and design challenges, recent works propose extending the total main memory space available to applications by using NVM as swap space for DRAM. However, no prior work analyzes the implications of enabling a real NVM-based swap space in real consumer devices. In this work, we provide the first analysis of the impact of extending the main memory space of consumer devices using off-the-shelf NVMs. We extensively examine system performance and energy consumption when the NVM device is used as swap space for DRAM main memory to effectively extend the main memory capacity. For our analyses, we equip real web-based Chromebook computers with the Intel Optane SSD, which is a state-of-the-art low-latency NVM-based SSD device. We compare the performance and energy consumption of interactive workloads running on our Chromebook with NVM-based swap space, where the Intel Optane SSD capacity is used as swap space to extend main memory capacity, against two state-of-the-art systems: (i) a baseline system with double the amount of DRAM than the system with the NVM-based swap space; and (ii) a system where the Intel Optane SSD is naively replaced with a state-of-the-art (yet slower) off-the-shelf NAND-flash-based SSD, which we use as a swap space of equivalent size as the NVM-based swap space

    GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration of Basecalling and Read Mapping

    Full text link
    Nanopore sequencing is a widely-used high-throughput genome sequencing technology that can sequence long fragments of a genome into raw electrical signals at low cost. Nanopore sequencing requires two computationally-costly processing steps for accurate downstream genome analysis. The first step, basecalling, translates the raw electrical signals into nucleotide bases (i.e., A, C, G, T). The second step, read mapping, finds the correct location of a read in a reference genome. In existing genome analysis pipelines, basecalling and read mapping are executed separately. We observe in this work that such separate execution of the two most time-consuming steps inherently leads to (1) significant data movement and (2) redundant computations on the data, slowing down the genome analysis pipeline. This paper proposes GenPIP, an in-memory genome analysis accelerator that tightly integrates basecalling and read mapping. GenPIP improves the performance of the genome analysis pipeline with two key mechanisms: (1) in-memory fine-grained collaborative execution of the major genome analysis steps in parallel; (2) a new technique for early-rejection of low-quality and unmapped reads to timely stop the execution of genome analysis for such reads, reducing inefficient computation. Our experiments show that, for the execution of the genome analysis pipeline, GenPIP provides 41.6X (8.4X) speedup and 32.8X (20.8X) energy savings with negligible accuracy loss compared to the state-of-the-art software genome analysis tools executed on a state-of-the-art CPU (GPU). Compared to a design that combines state-of-the-art in-memory basecalling and read mapping accelerators, GenPIP provides 1.39X speedup and 1.37X energy savings.Comment: 17 pages, 13 figure
    corecore