
Washington University in St. Louis
Washington University Open Scholarship
Engineering and Applied Science Theses &
Dissertations McKelvey School of Engineering

Spring 5-15-2015

Utilizing Magnetic Tunnel Junction Devices in
Digital Systems
Michael James Hall
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds

Part of the Engineering Commons

This Dissertation is brought to you for free and open access by the McKelvey School of Engineering at Washington University Open Scholarship. It has
been accepted for inclusion in Engineering and Applied Science Theses & Dissertations by an authorized administrator of Washington University Open
Scholarship. For more information, please contact digital@wumail.wustl.edu.

Recommended Citation
Hall, Michael James, "Utilizing Magnetic Tunnel Junction Devices in Digital Systems" (2015). Engineering and Applied Science Theses &
Dissertations. 89.
https://openscholarship.wustl.edu/eng_etds/89

https://openscholarship.wustl.edu?utm_source=openscholarship.wustl.edu%2Feng_etds%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng?utm_source=openscholarship.wustl.edu%2Feng_etds%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=openscholarship.wustl.edu%2Feng_etds%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds/89?utm_source=openscholarship.wustl.edu%2Feng_etds%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

WASHINGTON UNIVERSITY IN ST. LOUIS

School of Engineering and Applied Science
Department of Computer Science and Engineering

Dissertation Examination Committee:
Dr. Roger D. Chamberlain, Chair

Dr. Ron Cytron
Dr. George Engel
Dr. Viktor Gruev
Dr. Robert Morley
Dr. Dave Richard

Utilizing Magnetic Tunnel Junction Devices in Digital Systems
by

Michael J. Hall

A dissertation presented to the
Graduate School of Arts and Sciences

of Washington University in
partial fulfillment of the

requirements for the degree
of Doctor of Philosophy

May 2015
Saint Louis, Missouri

© 2015, Michael J. Hall

Table of Contents

List of Figures . v

List of Tables . x

List of Abbreviations . xii

Acknowledgments . xiv

Abstract . xviii

Chapter 1: Introduction . 1
1.1 Uses of MTJs . 3
1.2 Virtualized hardware . 7
1.3 List of contributions . 8
1.4 Outline of the dissertation . 10

Chapter 2: Background and Related Work . 11
2.1 MTJ devices . 11
2.2 MTJ read circuits . 14
2.3 Current conveyor operation . 16
2.4 Magnetologic circuits . 17
2.5 C-slow transformation . 19
2.6 Hardware virtualization . 20
2.7 Queueing notation . 22
2.8 Vacation model . 23

Chapter 3: MTJ Read Circuit Theory . 25
3.1 Analysis of a current-mode read circuit . 26

3.1.1 Methodology . 27
3.1.2 Noise analysis . 30
3.1.3 Validation . 33
3.1.4 Design guidance . 38
3.1.5 Discussion . 40

3.2 Current conveyor structures . 42
3.2.1 Basic . 42

ii

3.2.2 P-cascode . 51
3.2.3 NP-cascode . 58
3.2.4 Generalized . 64

3.3 Read circuit design . 67
3.3.1 Area . 70
3.3.2 Transient response . 71
3.3.3 Power . 74
3.3.4 Jitter . 76
3.3.5 Discussion of simulated circuits . 76

Chapter 4: MTJ Read Circuit Experimentation in 0.5µm Process 79
4.1 Prototype chip . 80

4.1.1 Read circuit testing . 83
4.1.2 Global clock testing . 86
4.1.3 Fabrication . 88

4.2 Test setup . 90
4.2.1 PCB design . 93
4.2.2 FPGA board . 95
4.2.3 Software . 96

4.3 Experimental results . 98
4.3.1 Functional and performance testing 98
4.3.2 Static measurements . 107
4.3.3 Stability and dynamic measurements 115

4.4 Summary . 119

Chapter 5: Virtualization of Hardware Logic Circuits 121
5.1 Clock model . 125

5.1.1 Model development of the expectation of the maximum of C samples
of random variable X . 127

5.1.2 Model of tCLK and investigation of model 132
5.2 M/D/1 queueing model development . 134

5.2.1 Queueing model . 135
5.2.2 Validation . 139

5.3 M/G/1 queueing model development with vacation model 140
5.3.1 Vacation waiting time model . 142
5.3.2 Service time model . 147
5.3.3 Queueing model . 148
5.3.4 Validation . 151

5.4 Calibration of clock and resource models for three C-slowed applications . . 152
5.4.1 Synthetic cosine application with added feedback (COS) 155
5.4.2 Advanced Encryption Standard (AES) cipher in cipher-block chaining

mode . 160
5.4.3 Secure Hash Algorithm (SHA-2) with 256 and 512 bit digests 165

iii

5.5 Analytic model results . 169
5.5.1 Design Scenario 1: Fix C, optimize for latency (WT) 169
5.5.2 Design Scenario 2: Fix N , tune C, optimize for latency (WT) 173
5.5.3 Design Scenario 3: Optimize for throughput-slice/area efficiency . . . 177

5.6 Summary . 181

Chapter 6: Conclusions and Future Work . 183
6.1 Conclusions . 184
6.2 Future work . 188

References . 191

Appendix A Read Circuit Design Guidance Validation 197

Appendix B Summary of Queueing Model Equations 203

Vita . 207

iv

List of Figures

Figure 1.1: A magnetic tunnel junction (MTJ) device that encodes state informa-
tion in the magnetic orientation of the free layer 2

Figure 1.2: Magnetic clocking across a chip using an external magnetic field . . . 5

Figure 1.3: Pipelined magnetologic circuit with feedback 6

Figure 1.4: Application of the C-slow technique to a non-pipelined circuit 7

Figure 2.1: Magnetic tunnel junction (MTJ) device 12

Figure 2.2: Read circuit block diagram for an MTJ 14

Figure 2.3: Basic current conveyor . 17

Figure 2.4: Hardware virtualization approaches 21

Figure 2.5: M/G/1 queueing model with vacations 24

Figure 3.1: Noise model of the current-mode read circuit for sensing MTJ resistance 28

Figure 3.2: DC transfer function validation with analytical and simulation results 34

Figure 3.3: Thermal noise spectrum validation with analytical and simulation re-
sults . 35

Figure 3.4: Total integrated output noise validation with analytical and simula-
tion results . 38

Figure 3.5: Basic current conveyor . 43

Figure 3.6: Simulation of the basic current conveyor 51

Figure 3.7: P-cascode current conveyor . 52

v

Figure 3.8: Simulation of the P-cascode current conveyor 58

Figure 3.9: NP-cascode current conveyor . 59

Figure 3.10: Simulation of the NP-cascode current conveyor 64

Figure 3.11: Resistance-to-voltage (R2V) read circuit in the 3M2P 0.5µm process 68

Figure 3.12: Layout of the R2V read circuit in the 3M2P 0.5µm process 71

Figure 3.13: Transient response of the R2V read circuit at 10 MHz frequency . . . 72

Figure 3.14: Node N1 peak-to-peak voltage of the R2V read circuit from 1 MHz to
100 MHz frequency in the 3M2P 0.5µm process 74

Figure 3.15: Average power and power breakdown plots of the R2V read circuit in
the 3M2P 0.5µm process . 75

Figure 3.16: Jitter histogram and quantile-quantile (QQ) plot of the rising/falling
edges of MCLK of the R2V read circuit in the 3M2P 0.5µm process 77

Figure 4.1: Prototype test chip schematic (overview) 81

Figure 4.2: Chip bonding diagram . 82

Figure 4.3: Magnetic sense circuit (MSC) . 84

Figure 4.4: MSC decode logic . 84

Figure 4.5: Digital shift register . 87

Figure 4.6: Simulated phase detector response plot in the 3M2P 0.5µm process . 88

Figure 4.7: Prototype test chip layout . 89

Figure 4.8: System overview of test setup . 90

Figure 4.9: Custom printed circuit board (PCB) for testing and interfacing to the
prototype test chip . 93

Figure 4.10: Functional test of the MTJ read circuit in each quadrant 99

Figure 4.11: Performance test of the MTJ read circuit in quadrant 0 for external
resistors at 43 MHz . 102

vi

Figure 4.12: Performance test of the MTJ read circuit in quadrant 0 for internal
resistors at two clock frequencies . 103

Figure 4.13: Linearity plots of the read circuit for internal resistors with nominal
values RL = 500 Ω and RH = 1 kΩ 110

Figure 4.14: Linearity plots of the read circuit for external resistors with nominal
values 470 Ω, 1 kΩ, and 4.7 kΩ . 111

Figure 4.15: Ideal current limits for a theoretical current comparator 113

Figure 4.16: Dynamic stability plots showing the stable region of Ith currents . . . 117

Figure 4.17: Output waveforms demonstrating oscillations and stable operation for
multiple Ith currents at the rising/falling edges 118

Figure 4.18: Output waveform demonstrating stable operation at midway Ith =
263µA . 118

Figure 5.1: Hardware virtualization for N distinct data streams that perform the
same computation . 122

Figure 5.2: General virtualized hardware configuration and queueing model . . . 124

Figure 5.3: C-slowed circuit . 126

Figure 5.4: Stage-to-stage delay model . 127

Figure 5.5: Empirical simulation of E [max (X)] and its upper bound for C ran-
dom samples . 128

Figure 5.6: Curve-fit of Model 1 and 2 with samples drawn from normal distribu-
tion N (10, 52) . 129

Figure 5.7: Curve-fit of Model 3 and 4 with samples drawn from normal distribu-
tion N (10, 52) . 131

Figure 5.8: Curve-fit of tCLK (C) model with samples drawn from a normal dis-
tribution (tCL = 100, σ = 5) . 132

Figure 5.9: Curve-fit of tCLK (C) model with samples drawn from various distri-
butions (tCL = 100, σ = 5) . 133

Figure 5.10: Equivalent distributions for M/D/1 model equations 139

vii

Figure 5.11: Discrete-event simulation of latency vs. schedule period for two sets
of parameters for the M/D/1 queueing model 140

Figure 5.12: Single queueing station of system . 141

Figure 5.13: Sub-model distributions used in the derivation of the vacation waiting
time model . 142

Figure 5.14: Discrete-event simulation of latency vs. schedule period for two sets
of parameters for the M/G/1 queueing model 152

Figure 5.15: Block diagram of synthetic cosine application with added feedback . 156

Figure 5.16: Calibrated total achievable throughput plot of the virtualized Cosine
application with feedback on an FPGA 157

Figure 5.17: Calibrated total achievable throughput plot of the virtualized Cosine
application with feedback on an ASIC 158

Figure 5.18: Calibrated total slices plot of the virtualized Cosine application with
feedback on an FPGA . 159

Figure 5.19: Calibrated total core area plot of the virtualized Cosine application
with feedback on an ASIC . 160

Figure 5.20: Block diagram of AES encryption cipher application in the CBC block
mode . 161

Figure 5.21: Calibrated total achievable throughput plot of the virtualized AES
encryption cipher application on an FPGA 162

Figure 5.22: Calibrated total achievable throughput plot of the virtualized AES
encryption cipher application on an ASIC 163

Figure 5.23: Calibrated total slices plot of the virtualized AES encryption cipher
application on an FPGA . 164

Figure 5.24: Calibrated total core area of the virtualized AES encryption cipher
application on an ASIC . 165

Figure 5.25: Block diagram of SHA-2 cryptographic hash application 166

Figure 5.26: Calibrated total achievable throughput plot of the virtualized SHA-2
cryptographic hash application on an FPGA for SHA-256 and SHA-512 167

viii

Figure 5.27: Calibrated total slices plot of the virtualized SHA-2 cryptographic
hash application on an FPGA for SHA-256 and SHA-512 168

Figure 5.28: Analytic latency prediction and optimization plots for MTJ technol-
ogy with the SHA application for design scenario 1 171

Figure 5.29: Analytic latency prediction plots vs. offered load for MTJ technology
with the SHA application for design scenario 1 172

Figure 5.30: Analytic latency prediction and optimization plots for FPGA technol-
ogy with the COS application for design scenario 1 173

Figure 5.31: Analytic latency prediction and optimization plots for ASIC technol-
ogy with the AES application for design scenario 1 174

Figure 5.32: Analytic latency prediction and optimization plots for the COS appli-
cation for design scenario 2 . 175

Figure 5.33: Analytic latency prediction and optimization plots for the AES appli-
cation for design scenario 2 . 176

Figure 5.34: Analytic latency prediction and optimization plots for the SHA appli-
cation in FPGA technology for design scenario 2 177

Figure 5.35: Analytic total achievable throughput, total slices/area, and efficiency
plots for the COS application for design scenario 3 179

Figure 5.36: Analytic total achievable throughput, total slices/area, and efficiency
plots for the AES application for design scenario 3 179

Figure 5.37: Analytic total achievable throughput, total slices, and efficiency plots
for the SHA application in FPGA technology for design scenario 3 . 180

Figure A.1: 2k factorial experimental design for output characteristic fp1 200

Figure A.2: 2k factorial experimental design for output characteristic R3 200

Figure A.3: 2k factorial experimental design for output characteristic Cmtj,dp,min . 201

Figure A.4: 2k factorial experimental design for output characteristic
√
I2
out,tot,n . 201

ix

List of Tables

Table 3.1: DC transfer functions from noise source to output 31

Table 3.2: Resistance at each node . 32

Table 3.3: Capacitance at each node . 32

Table 3.4: Validation of node resistances . 36

Table 3.5: Analytical calculation of pole frequencies 36

Table 3.6: Design guidance for tuning circuit performance 39

Table 3.7: Comparison of relevant process parameters for the R2V read circuit . 70

Table 3.8: Rise/fall times (10–90%) and propagation delay of the R2V read circuit 73

Table 3.9: Summary of results for the R2V read circuit 78

Table 4.1: Parameters that can be set . 91

Table 4.2: Measured propagation delay of the read circuit in the test chip using
external and internal input resistances 104

Table 4.3: Internal resistor value estimates in each quadrant of the test chip . . 108

Table 4.4: Vmtj node and output buffer calibration 109

Table 4.5: Summary of the linear range of Vbias of the read circuit for each resistor 112

Table 4.6: Measured operating ranges of the current comparator threshold current 114

Table 4.7: Dynamic stability ranges . 116

Table 5.1: Curve-fit p values of the tCLK (C) model for various distributions and
parameters . 134

x

Table 5.2: Applications implemented using C-slow techniques 153

Table A.1: Factors used in the 2k factorial experimental design 198

Table A.2: Metrics used in the 2k factorial experimental design 198

Table A.3: Summary of the relative dependence of output characteristics to input
factors . 202

Table B.1: Queueing model definition of terms 203

Table B.2: Summary of M/D/1 queueing model equations 205

Table B.3: Summary of M/G/1 queueing model equations 206

xi

List of Abbreviations

3M2P 3 metal 2 poly

5M1P 5 metal 1 poly

AES Advanced Encryption Standard

API Application programming interface

ASIC Application-specific integrated circuit

BJT Bipolar junction transistor

CBC Cipher-block chaining

CIMS Current-induced magnetic switching

CMOS Complementary metal-oxide semiconductor

DAC Digital-to-analog converter

DRAM Dynamic random-access memory

FIFO First In, First Out

FIMS Field-induced magnetic switching

FPGA Field-programmable gate array

FPLD Field-programmable logic device

GPU Graphics processing unit

IID Independent and identically distributed

M/D/1 Markovian, or memoryless, arrival process; Deterministic service process; 1
server

M/G/1 Markovian, or memoryless, arrival process; General service process; 1 server

MOSFET Metal-oxide semiconductor field-effect transistor

MRAM Magnetoresistive random-access memory

xii

MSC Magnetic sense circuit

MTJ Magnetic tunnel junction

NMOS n-channel MOSFET

PC Personal computer

PCB Printed circuit board

PLL Phase-locked loop

PMOS p-channel MOSFET

QQ Quantile-quantile

R2V Resistance-to-voltage

RA Resistance-area

SHA Secure Hash Algorithm

SMT Simultaneous multithreading

SPI Serial peripheral interface

SRAM Static random-access memory

STT Spin-torque transfer

TMR Tunneling magnetoresistance ratio

USB Universal serial bus

xiii

Acknowledgments

I am pleased to thank those who made this thesis possible as well as those who have supported

me along the way. I am especially grateful to my research advisor Dr. Roger Chamberlain

who has provided me with guidance, advice, and help during my years as a graduate student.

He has been very patient and encouraging. I am also grateful to my co-advisor Dr. Viktor

Gruev for the guidance he has given in anything pertaining to circuit design.

This thesis would not be possible without the support of funding sources. The research was

supported by the Air Force Office of Scientific Research (AFOSR) under the Discovery Thrust

Program, contract no. FA9550-08-1-0473; the National Science Foundation (NSF) through

grants CCF-0427794, CNS-0751212, and CNS-0931693; Exegy, Inc.; and VelociData, Inc.

Thanks to the members of my dissertation committee for agreeing to serve on the committee;

our collaborators at Organ State University who introduced us to magnetic tunnel junctions

(MTJs) and provided us with a Verilog-A simulation model of the MTJ; Dr. Roch Guérin,

the department chair, who steered me towards a vacation model to improve our queueing

model; and VelociData with Dr. Joe Lancaster, my peer and supervisor, for the opportunity

to work in a summer internship to build the SHA-2 application that is included in this

dissertation.

It has been a pleasure also to work with Dr. Raj Jain periodically throughout my studies

as a teaching assistant for his class and editor for his book. The knowledge and techniques

learned from the class and book have been invaluable in my research work. I have applied

xiv

them to develop queueing models included in this dissertation and to analyze experimental

results. These techniques, no doubt, will continue to be useful in my career, and I am

especially grateful for the collaboration I have had with him.

Further, thanks to Washington University, the Computer Science & Engineering department,

the staff and faculty, and those who have been supportive of me which include my parents,

siblings, relatives, friends, and church community. Thanks also to my academic mentor

Dr. George Engel from Southern Illinois University Edwardsville (SIUE) who encouraged

me to pursue a Ph.D.

Finally, I would like to express my deepest thanks to God whom I love and who is an integral

part of my life. God has been with me constantly throughout my Ph.D. studies and has

always been one that I can turn to in prayer. Through prayer, I have daily offered up my

work to God for sanctification.

Michael J. Hall

Washington University in Saint Louis

May 2015

xv

Dedicated to the three people who have been tremendous influences in my life:

my mother, father, and academic mentor Dr. George Engel.

The people who have been the most influential in my life in pursuing a computer engineering

career are my parents Gerald and Janet Hall, whom I dearly love, and my academic mentor

Dr. George Engel. I am especially grateful to my parents for all of their love, help, and

encouragement. My mother raised me in my Catholic faith and taught me morals and

values that guide me through life. My father worked with me and helped me in my projects,

and inspired me in my interest in computers. When I came to my parents in 2nd grade and

asked them to give me math problems to solve, my dad said, “You can write a program to

do that.” Well, we did just that, and I have been playing with computers ever since. Finally,

I thank my academic mentor Dr. George Engel, at SIUE, for encouraging me to go on to

pursue a Ph.D.

xvi

xvii

ABSTRACT OF THE DISSERTATION

Utilizing Magnetic Tunnel Junction Devices in Digital Systems
by

Michael J. Hall
Doctor of Philosophy in Computer Engineering

Washington University in St. Louis, 2015
Professor Roger D. Chamberlain, Chair

The research described in this dissertation is motivated by the desire to effectively utilize

magnetic tunnel junctions (MTJs) in digital systems. We explore two aspects of this: (1) a

read circuit useful for global clocking and magnetologic, and (2) hardware virtualization that

utilizes the deeply-pipelined nature of magnetologic.

In the first aspect, a read circuit is used to sense the state of an MTJ (low or high resistance)

and produce a logic output that represents this state. With global clocking, an external mag-

netic field combined with on-chip MTJs is used as an alternative mechanism for distributing

the clock signal across the chip. With magnetologic, logic is evaluated with MTJs that must

be sensed by a read circuit and used to drive downstream logic. For these two uses, we

develop a resistance-to-voltage (R2V) read circuit to sense MTJ resistance and produce a

logic voltage output. We design and fabricate a prototype test chip in the 3 metal 2 poly

0.5µm process for testing the R2V read circuit and experimentally validating its correctness.

Using a clocked low/high resistor pair, we show that the read circuit can correctly detect

the input resistance and produce the desired square wave output. The read circuit speed is

measured to operate correctly up to 48 MHz. The input node is relatively insensitive to node

capacitance and can handle up to 10s of pF of capacitance without changing the bandwidth

of the circuit.

xviii

In the second aspect, hardware virtualization is a technique by which deeply-pipelined cir-

cuits that have feedback can be utilized. MTJs have the potential to act as state in a

magnetologic circuit which may result in a deep pipeline. Streams of computation are then

context switched into the hardware logic, allowing them to share hardware resources and

more fully utilize the pipeline stages of the logic. While applicable to magnetologic using

MTJs, virtualization is also applicable to traditional logic technologies like CMOS. Our in-

vestigation targets MTJs, FPGAs, and ASICs. We develop M/D/1 and M/G/1 queueing

models of the performance of virtualized hardware with secondary memory using a fixed,

hierarchical, round-robin schedule that predict average throughput, latency, and queue oc-

cupancy in the system. We develop three C-slow applications and calibrate them to a clock

and resource model for FPGA and ASIC technologies. Last, using the M/G/1 model, we

predict throughput, latency, and resource usage for MTJ, FPGA, and ASIC technologies.

We show three design scenarios illustrating ways in which to use the model.

xix

Chapter 1

Introduction

Thin-film magnetic devices based on the magnetic tunnel junction (MTJ) are actively being

researched for applications in memory [1], field-programmable gate arrays (FPGAs) [2], and

logic computation [3], and have been developed as early as the 1980s [4]. These devices can

store information non-volatilely in a magnetic field that retains its value across power cycles.

Fabrication of these devices is compatible with the complementary metal-oxide semiconduc-

tor (CMOS) process allowing them to be integrated on a CMOS chip. Integration improves

area efficiency, lowers wire resistance and capacitance, and reduces power. Further, these

devices can scale down with the CMOS process and have been shown to be fabricated in a

45 nm process node with a size of 40 nm along the short axis and an aspect ratio, long vs.

short, of ∼ 2.5 to 3 [5]. The write endurance, or the number of times a stored value can

change without failure in the device, is practically infinite. They also have potentially short

read and write times, allowing stored data to be accessed quickly [6].

A basic illustration of the MTJ device is shown in Figure 1.1 with a write-strap that pro-

grams the MTJ using an induced magnetic field. The MTJ device is constructed using two

ferromagnetic layers separated by a thin insulator such as MgO that is the tunnel barrier.

The top ferromagnetic layer, called the free layer, can have a magnetic orientation in one of

1

Figure 1.1: A magnetic tunnel junction (MTJ) device that encodes state information in the
magnetic orientation of the free layer. The state is programmed with a current (+I) and
accessed as a resistance (Rmtj) between the two electrodes.

two directions as indicated in the figure. The bottom ferromagnetic layer, called the fixed

layer, has its magnetic orientation in one direction that is pinned during the manufacturing

process. The resistance, Rmtj, as seen across the electrodes of the device, is dependent on

the magnetic orientation of the free layer relative to the fixed layer. When the orientations

of both layers are parallel (in the same direction), the resistance seen through the MTJ is

low (RL). In contrast, when the orientations of both layers are anti-parallel (in opposite

directions), the resistance seen through the MTJ is high (RH). Thus, the state is accessed

as a resistance. The orientation of the free layer can be set by applying a magnetic field of

sufficient strength through the free layer. The magnetic field can be generated externally or

induced by sourcing a current through the write-strap [4].

2

1.1 Uses of MTJs

The first use of MTJs is memory. Memory technology has developed rapidly to serve different

needs: static random-access memory (SRAM) for high-speed data storage, dynamic random-

access memory (DRAM) for low-cost data storage, and Flash memory for high-density, non-

volatile data storage. All three technologies have their advantages and disadvantages. Re-

searchers are working to develop a universal memory technology that combines the best

aspects of all three. That is, a memory that is non-volatile, has a high-write endurance, low

read/write energy, and high read/write speed [7]. Magnetoresistive random-access memory

(MRAM) using MTJs is one such promising universal memory technology [8, 9, 10]. MRAM

is actively being researched and improved; Everspin Technologies, a spin-off company from

Freescale Semiconductor formed in 2008, is actively commercializing MRAM memory and is

today selling 64 Mb MRAM chips [11]. MRAM circuits typically use current conveyors for

readout of the MRAM cells. While there is still research to be accomplished in the area of

MRAM memory design, that is not the focus of this dissertation.

The second use of MTJs is configuration memory in FPGAs. FPGAs currently use SRAM

cells to store the programmed configuration data used to configure the lookup tables in the

reconfigurable logic. However, these memory cells are volatile and lose their data values

across power cycles, requiring them be reprogrammed at power-up. If they are replaced with

MRAM cells, then the configuration memory will be able to retain its data values across

power cycles due to the non-volatile nature of MRAM. This consequently means that the

configuration memory will only need to be programmed once [2]. The MRAM cells are based

on the same structure as the SRAM cells. They use an SRAM-based sense amplifier, which

is an unbalanced magnetic flip-flop in voltage-mode, to sense a stored data value from a

3

differential pair of MTJs [12]. As with MRAM, this dissertation will not investigate the use

of MTJs as configuration memory in FPGAs.

The third use of MTJs is clocking which is a new use of MTJs not previously proposed in

the literature. Synchronous logic circuits in digital systems need to receive a common clock

signal at the same time across a chip. Clock distribution trees are the predominant way to

distribute the clock from a single source. They use a tree-like structure and clock buffers to

balance the signal propagation of the clock to every flip-flop in synchronous logic circuits.

On modern processors, clock power is significant, consuming on the order of 25% of total

chip power [13]. Clock skew with the clock distribution tree can be significant as the clock is

driven at higher frequencies, contributing to 3.8% of the clock period in the Cell processor

running at 3.2 GHz [13]. Replacing the clock distribution tree with an equivalent mechanism

that can distribute the clock to all flip-flops has the potential to yield benefits in area, speed,

and on-chip power dissipation.

A global external magnetic field combined with on-chip MTJs is an alternative mechanism

for distributing the clock across a chip as illustrated in Figure 1.2. We proposed this in [14].

This is similar to optical clock distribution in free-space as proposed in the literature [15]. A

resistance-to-voltage read circuit is necessary for sensing MTJ resistance state. The MTJs,

when distributed across the chip, sense a global magnetic field, and, using a read circuit,

produce local clock signals that drive nearby synchronous logic circuits. In this way, a global

clock distribution tree is not needed, however, local clock distribution is still necessary. This

should result in reduced on-chip power dissipation and area. If the global clock is relatively

insensitive to process variations in the MTJ devices and corresponding read circuits such that

the jitter between local clocks is small, then clock skew will decrease, resulting in increased

circuit speed. The external magnetic field generated off-chip, however, will consume power.

It is an open question as to whether or not there is a net power benefit in the system. This

4

Figure 1.2: Magnetic clocking across a chip using an external magnetic field. A chip is
partitioned into regions that contain a Magnetic Clock Generator (MG) and a Digital Logic
(DL) region. The MG contains an MTJ and a read circuit that senses the external field and
generates a local clock. The local clock drives nearby digital logic. Because the local clocks
are synchronous, interconnections can be made from any DL region to any other DL region
(only regular connections are illustrated).

dissertation will investigate the design of the resistance-to-voltage read circuit and present

experimental results from a prototype test chip. The read circuit can be used to produce

local clock signals generated from an external oscillating magnetic field. This dissertation

will also describe the design of the prototype chip to be used for testing global clocking.

However, due to the inaccessibility of obtaining MTJs, this dissertation will not present

experimental results demonstrating a functional globally clocked chip.

The fourth use of MTJs is logic. Logic circuits designed using MTJs depend on the type of

MTJ device used. These types include field-induced, toggle, thermally-assisted, and spin-

torque transfer [4]. Several approaches have been proposed in the literature for constructing

fundamental magnetologic circuits (e.g. gates) including device threshold logic [16], serially-

connected devices for complex logic [3, 12, 17, 18], cascading device logic [19], and resistive-

based lookup tables with MTJ storage elements [20]. This dissertation will not investigate

how to build fundamental magnetologic circuits.

5

Figure 1.3: Pipelined magnetologic circuit with feedback. Four MTJ logic gates are shown,
each acting as a pipeline stage with state. It takes 4 clock cycles to compute a single result
with the feedback path.

There are commonalities in the way fundamental magnetologic circuits are built. First, each

MTJ device acts as a latch to whatever data is written to it. This gives it the potential to

act as state in the pipeline stage of a logic circuit as shown in Figure 1.3. We want to exploit

the latching property of fundamental magnetologic circuits for constructing deeply-pipelined

logic. Second, data is accessed as a resistance between the terminals of the MTJs. A read

circuit, therefore, is commonly needed to sense this resistance.

To exploit the deeply-pipelined nature of magnetologic circuits when feedback is present,

context switching can be used to fully utilize the pipeline stages of the deeply-pipelined logic,

allowing them to compute multiple data streams. This allows the hardware (a.k.a. the logic)

to be virtualized, meaning that each data stream shares the hardware resource. The circuits

are sequential logic circuits with pipelined combinational logic. The pipelined combinational

logic adds latency and decreases single stream throughput since it takes multiple clock cycles

(corresponding to the number of pipeline stages) to compute a single result and feed it back

to the input. If the number of pipeline stages is C, then this circuit is said to be C-

slowed [21] since a single computation runs C times slower. C-slow is a technique described

by Leiserson by which every register is replaced by C registers and then retimed to balance the

registers throughout the combinational logic. Application of the C-slow technique is shown

in Figure 1.4. Exploiting this characteristic allows processing multiple different contexts or

data streams in a fine-grain way using the same hardware logic. The number of fine-grain

6

Figure 1.4: Application of the C-slow technique to a non-pipelined circuit. The non-pipelined
sequential circuit is shown on the left. C-slow is applied to this circuit by replacing the
register with C registers and distributing it amongst the combinational logic (CL) shown on
the right. x is the input, y is the feedback, and z is the output.

contexts supported equals the pipeline depth. Context switching the hardware can utilize

all the pipeline stages, and if they are evenly spaced, improve the clock frequency as well.

Virtualization of the hardware is akin to simultaneous multithreading (SMT) in a processor

where fast context switches allow executing multiple threads simultaneously on the hardware,

also sharing the hardware resource [22]. Graphics processing units (GPUs) regularly use this

technique, frequently supporting large numbers of threads per core. Asymptotic models

that employ this technique have been introduced by Ma et al. [23, 24]. This dissertation will

investigate hardware virtualization using context switching as a way to exploit the deeply-

pipelined nature of magnetologic circuits.

1.2 Virtualized hardware

Virtualized hardware using context switching is more widely applicable than its use in mag-

netologic. It can also be used in existing FPGA and ASIC technologies. Context switching is

a technique by which hardware resources are reused to support processing multiple computa-

tions. It can be fine- or coarse-grain. Context switching using deeply-pipelined or C-slowed

7

logic circuits is fine-grain. Context switching using a secondary memory and explicitly swap-

ping contexts in and out at an infrequent rate is coarse-grain.

There are three main benefits of context switching hardware: (1) the ability to reuse hardware

resources for doing computation on multiple data streams, (2) an increase in the clock

frequency when the combinational logic is evenly pipelined, and (3) an increase in the total

throughput of all computations when total hardware resources are limited. For the first

benefit, reusing hardware for computation is beneficial when available resources for a design

are limited such as on an FPGA or when the cost to build hardware is high such as on an

ASIC. For the second benefit, the clock frequency increases because the combinational logic

is broken up more finely, allowing signals to propagate faster between pipeline stages. For

the third benefit, total throughput increases because more computation can be done on a

fixed amount of resources than could otherwise be done and as the clock frequency increases

the throughput also increases.

This dissertation will investigate the design of virtualized hardware, model its performance,

and optimize a schedule for context switching. The model will predict circuit performance

and resource usage, and provide guidance in selecting design parameters.

1.3 List of contributions

In this dissertation, the following contributions are made:

• Noise analysis of a basic current-mode read circuit [25] and design guidance of perfor-

mance tradeoffs

• Transistor sizing equations of several different current conveyor structures

8

• Design, layout, and simulation of a resistance-to-voltage (R2V) read circuit [26]

• Design, layout, and fabrication of a prototype test chip for testing the R2V read circuit

and aspects of global clocking

• Design, layout, and fabrication of a printed circuit board (PCB) for testing the proto-

type chip

• Construction of the PCB and test setup for testing the prototype chip

• Experimental results and characterizations of the R2V read circuit in the prototype

chip

• Automated tool scripts and infrastructure for synthesizing virtualized hardware logic

circuits and exploring the design space

• Development of a clock period model based on a randomized model of logic delay

• Development of M/D/1 [27, 28] and M/G/1 queueing models for predicting perfor-

mance in virtualized hardware logic circuits

• Design of 3 C-slow applications for virtualization

– Synthetic cosine application implemented via a Taylor series expansion with added

feedback

– Advanced Encryption Standard (AES) cipher in cipher-block chaining (CBC)

mode for encryption [27]

– Secure Hash Algorithm (SHA-2) with 256 and 512 bit digests (SHA-256 and SHA-

512)

• Calibration of the 3 C-slow applications to the clock period model and a resource model

9

• Demonstration of ways to use the performance model (queueing model + clock period

model + resource model) to predict performance in virtualized hardware logic circuits

[27]

1.4 Outline of the dissertation

The outline of the dissertation is as follows. Chapter 2 provides relevant background infor-

mation about MTJ devices, MTJ read circuits, current conveyor operation, magnetologic

circuits, C-slow transformation, hardware virtualization, queueing notation, and vacation

models. Chapter 3 describes MTJ read circuit theory including a noise analysis of a current-

mode read circuit, transistor sizing equations for several different current conveyor structures,

and the design and simulation of a resistance-to-voltage (R2V) read circuit. Chapter 4 de-

scribes MTJ read circuit experimentation including the design of a prototype system and

experimental results of the R2V read circuit in the prototype system. Chapter 5 investigates

hardware virtualization which includes the design, modeling, and optimization of virtual-

ized hardware logic circuits, and presents results with three example applications. Last,

Chapter 6 presents conclusions and future work.

10

Chapter 2

Background and Related Work

2.1 MTJ devices

The magnetic tunnel junction (MTJ) device, illustrated in Figure 2.1, is a small thin-film

magnetic device that is constructed using two ferromagnetic layers such as CoFeB (top layer)

and CoFe (bottom layer) separated by a thin insulator such as MgO that is the tunnel barrier

[4]. The figure is similar to the one illustrated in Figure 1.1, but without the write strap. The

ferromagnetic layers can take on one of two magnetic orientations. Usually one of the layers is

pinned during fabrication so that its magnetic orientation is fixed while the other layer is free

to rotate. These layers are called the fixed layer and free layer, respectively. Pinning is done

by placing an antiferromagnetic layer below the fixed layer (not shown) constructed using a

material such as IrMn that prevents the fixed layer from switching at ambient temperature

[4]. The free layer effectively stores one bit of state information determined by its magnetic

orientation. Since it requires no power to sustain a particular magnetic orientation, the state

information is non-volatile.

Reading the MTJ device state can be accomplished by sensing a resistance output. The

output is sensed via the two electrodes of the device whose resistance is determined by the

11

Figure 2.1: Magnetic tunnel junction (MTJ) device. Basic construction consists of two ferro-
magnetic layers (free and fixed layer) and an insulator. The fixed layer magnetic orientation
is pinned whereas the free layer magnetic orientation is free to switch. For field-induced
magnetic switching (FIMS), an additional write strap may be added above or below the
MTJ. Current passing through the write strap induces a magnetic field to switch the free
layer. For current-induced magnetic switching (CIMS), current instead passes through the
MTJ device itself to switch the free layer. The state of the device is accessed as a resistance
seen looking between the two electrodes.

relative magnetic orientations of the free and fixed layers. A device is characterized by its

resistance-area (RA) product, which can range from 10 Ω · µm2 [29] to 7.6 kΩ · µm2 [1]. When

the magnetic orientations are parallel, that is, oriented in the same direction, the resistance

is low (RL). Likewise, when they are anti-parallel, that is, oriented in opposite directions,

the resistance is high (RH). Sensing this low/high resistance provides a means for reading

the device state. A tunneling magnetoresistance ratio (TMR) is defined as TMR = RH−RL

RL

that characterizes the separation between resistance states. The TMR is dependent on the

bias voltage, Vbias, across the electrodes of the device. Large bias voltages result in small

TMR and a high rate of device failure [4].

Writing to the MTJ device can be done via one of two basic write mechanisms: field-induced

magnetic switching (FIMS), and current-induced magnetic switching (CIMS). With FIMS,

a write strap is added over the MTJ device and bidirectional current is applied through the

write strap. This induces a magnetic field that permeates through the free layer and sets its

magnetic orientation. The fixed layer, however, does not switch because the pinning layer

below it prevents it from doing so. The applied current has to exceed the switching threshold

of the free layer. Alternatively, this field might be induced by an externally generated global

12

field. With CIMS, a bidirectional current is applied directly through the electrodes of the

MTJ device which becomes spin-polarized and sets the magnetic orientation of the free layer.

A critical current has to be exceeded for switching to occur [4]. The field strength needed

to switch an MTJ is at least 4 times the Earth’s geomagnetic field [14].

Field-induced magnetic switching (FIMS) devices: There are three different types

of MTJ devices that use the FIMS write mechanism: conventional, toggle, and thermally-

assisted [4]. Conventional devices frequently have two write straps (easy and hard axis)

that cross each other at a 90◦ angle. The hard axis lowers the threshold for magnetic

switching, and the easy axis magnetically switches the free layer. Toggle devices are similar

to conventional devices, but are constructed to prevent a device from being only half-selected

(where a field is applied along one axis but not the other). This is done by performing a

4-phase rotation to toggle the device. Thermally-assisted devices, on the other hand, are

constructed to lower the write energy required by preheating the device with a heat current

prior to inducing a field to switch the free layer.

Current-induced magnetic switching (CIMS) devices: Spin-torque transfer (STT)

devices utilize the CIMS write mechanism [4, 10]. They have a few benefits that do not

exist in FIMS devices. One, STT devices do not suffer from cross-talk between fields, and

therefore, they can be placed closer together for greater density. Two, STT devices scale

well with power. As the process dimensions decrease, the power required to write to the

device decreases as well. Many STT devices have two terminals which are used for both

reading and writing. For reading, a large MTJ resistance is desirable for determining its

state. For writing, a small MTJ resistance is desirable so that the voltage drop across the

device due to the write current is small. A three-terminal STT device was constructed by

Braganca et al. [30] that achieves this by providing a low-resistance write terminal and a

13

Figure 2.2: Read circuit block diagram for an MTJ. The read circuit senses an MTJ resistance
and compares this to a reference to produce an output.

high-resistance read terminal. According to their simulations, the 3-terminal STT device

requires approximately the same write current as a 2-terminal STT device, but with a lower

voltage drop.

2.2 MTJ read circuits

An MTJ device is accessed as a resistance as seen through its tunnel junction. This resistance

represents the logic state of the device, whether low or high. In order to read the state, a

read circuit is necessary to convert the resistance into a corresponding logic voltage output.

A read circuit can be designed in many ways. It can be voltage- or current-clamped, use

a voltage- or current-mode comparator, use a single MTJ with a reference or a pair of

differential MTJs, and be sampled or continuous in time. Several read circuits have been

designed in the literature to accomplish this task. We describe several below. A block

diagram for a basic read circuit is shown in Figure 2.2.

Current conveyor with voltage comparator [31]: This read circuit uses a differential

current conveyor with a voltage comparator for sensing data in an MRAM cell. There are

two inputs to the differential current conveyor: an MTJ device with a low/high resistance,

and a reference with a midpoint resistance. The current conveyor clamps both inputs to a

14

fixed voltage and produces currents according to Ohm’s law (I = V
R
). These currents are

then converted to voltages and compared by a voltage comparator.

Current conveyor with current comparator [32]: This read circuit is similar to the

one in [31]. It uses a differential current conveyor with a current comparator for sensing

data in an MRAM cell and is designed to be low power. There are two inputs to the

differential current conveyor: an MTJ device with a low/high resistance and a reference

with a midpoint resistance. The current conveyor clamps both inputs to a fixed voltage and

produces currents according to Ohm’s law. These currents are then compared by a current

comparator to produce the final voltage output. This is the type of MTJ read circuit that

is investigated in this dissertation.

Voltage-mode sense amplifier [12]: This read circuit is used to compare networks of

MTJ devices in a structure called the basic field-programmable logic device (FPLD). It works

by first applying a constant sense current, Isens, to both the positive and negative terminals of

the sense amplifier in the FPLD. This then produces corresponding terminal voltages across

the MTJ networks according to Ohm’s law. Comparing these terminal voltages, the sense

amplifier then produces a final voltage output. The FPLD structure is used to construct

complex Boolean logic expressions.

Differential unbalanced flip-flop circuit [12]: This read circuit is a reconfigurable

static latch cell that consists of a differential pair of inverters connected with feedback to

form a flip-flop. This is based on the static random-access memory (SRAM) cell circuit

[33]. A complementary pair of MTJs are connected in series with the inverters to ground.

This causes the flip-flop to be unbalanced due to the difference in MTJ resistance of the

15

complementary pair. A sense transistor, connected between the inverter outputs, shorts

them together when closed and senses the MTJs when opened. When the sense transistor

is opened, the inverters swing low and high based on the relative MTJ resistances. This

samples the MTJ state discretely in time.

2.3 Current conveyor operation

The current conveyor, shown in a black box representation in Figure 2.3a, is a 3-terminal

circuit introduced by Smith and Sedra [34] that provides current amplification with unity

gain. A voltage V applied at Y appears at X, causing current I to flow out at X. In a dual

manner, the same current I also flows out at Y . The current at X is also conveyed out at Z

with high impedance. This circuit thus allows current to be conveyed from one source (X)

to another (Z) while holding the voltage potential constant (at X).

An implementation of the basic current conveyor circuit using complementary metal-oxide

semiconductor (CMOS) transistors [35, 36] is shown in Figure 2.3b which is used in our design

of the MTJ read circuit for sensing MTJ resistance and producing an output current. The

current conveyor is a feedback circuit consisting of two current mirror circuits between the

left and middle branches connected together in a feedback loop and a high impedance output

current out from the right branch. Transistors M1,3,5 form the PMOS current mirror circuits

and transistors M2,4 form the NMOS current mirror circuit. The supplied Vref voltage then

clamps the Vin voltage to Vref potential over the input resistance Rin. This in turn produces

a current Iin through the left branch according to Ohm’s Law that is inversely-proportional

to the input resistance by the equation Iin = Vref/Rin. The currents are mirrored between

each branch (left, middle, and right) with a 1:1 gain which is achieved by matching the width

16

(a) Black box representation (b) Circuit implementation

Figure 2.3: Basic current conveyor.

and length of the transistors in the current mirrors [37], thus making
(
W
L

)
1

=
(
W
L

)
3

=
(
W
L

)
5
,(

W
L

)
2

=
(
W
L

)
4
, and Iin = Isd,1 = Isd,3 = Isd,5 = Ids,2 = Ids,4.

2.4 Magnetologic circuits

There are several different ways to construct fundamental magnetologic circuits (e.g. basic

gates), some of which may require CMOS support circuitry. These include device threshold

logic, serially-connected devices for complex logic, cascading device logic, and lookup tables.

Each approach is discussed separately; however, they are not all mutually exclusive. Some

can be combined and used together.

Device threshold logic [12, 16]: This is a way to build simple magnetologic gates using

threshold logic. Inputs combine as either currents or fields to switch the free layer of the

device when the device threshold is exceeded. Since the free layer is only conditionally

switched, threshold logic is implemented using a preset and evaluate phase. In the preset

17

phase, the MTJ device is preset to a value that selects the logic function to be evaluated

(such as AND or OR). Then, in the evaluate phase, the logic is evaluated using threshold

logic. The state of the free layer then represents the logic output which is accessed as a

resistance. Device threshold logic needs read/write circuits to connect between gates.

Serially-connected devices for complex logic [12, 18, 38]: This is a way to build

complex magnetologic gates using CMOS support circuitry. It is constructed using two

strings of MTJ devices whose output resistances are serially connected to the V+ and V-

nodes of a voltage sense amplifier. Logic inputs to this complex gate drive the MTJ devices’

write lines to set their state. Based on their state, logic is evaluated when the strings of

devices are sensed. A Boolean expression representing the logic function can be derived from

the equation of the voltage sense amplifier. Simple logic functions can be implemented in

multiple ways from this complex Boolean expression. Further, serially-connected devices can

be combined with device threshold logic to construct even more complex logic gates [18].

Cascaded device logic [19]: This is a way to build simple magnetologic gates without

CMOS support circuitry. It relies on device threshold logic with 3-terminal spin-torque

transfer (STT) devices. With cascaded device logic, the read current of one device acts as

the write current to the next device. Since device threshold logic conditionally switches the

free-layer, cascaded device logic requires preset and evaluate phases to operate. Simple logic

gates such as AND, OR, NAND, and NOR can be implemented.

Lookup tables [20]: This is a way to build reconfigurable magnetologic gates using CMOS

support circuitry to implement arbitrary logic functions from a truth table. The truth table

is specified by the values stored in MTJ devices and looked up via a multiplexor tree. The

18

multiplexer tree selects one of the devices based on a given input and accesses the device’s

resistance which is then sensed by a sense amplifier. The sense amplifier then produces the

final output value. These lookup tables can be used in reconfigurable logic arrays such as

field-programmable gate arrays (FPGAs) and in resistive computing [39].

2.5 C-slow transformation

C-slow is a transformation described by Leiserson [21] whereby every register in a digital

logic circuit is replaced by C registers as illustrated in Figure 1.4. This allows sequential logic

circuits, which have feedback paths, to be pipelined and retimed. Retiming is a technique for

improving the clock frequency of a circuit by moving pipeline registers forward and backwards

through the combinational logic to shorten the critical path of the circuit. Retiming a C-

slowed circuit can theoretically give up to C times improvement in the clock frequency.

C-slow circuits, by their very nature, are multi-processing. They have C pipeline registers in

the feedback path allowing them to process multiple data streams interleaved into a single

stream. It takes C clock cycles to compute an output for a single data stream and to

feed it back to the input to be processed with the next data value. Multiple data streams

can be processed at different stages in the pipeline, allowing the pipeline to be more fully

utilized. For a single stream, the throughput, measured as data values per clock cycle, will

be C times slower (in terms of clock cycles) than before the C-slow transformation. For all

streams combined, the total throughput will be the same.

The design of C-slow circuits has several constraints relative to traditional synchronous

circuit designs [40]. They cannot use asynchronous sets or resets. They cannot use a global

synchronous reset as it creates too many constraints in the retiming process. And, they

19

cannot use the enable input of a flip-flop. Rather, reset and enable can be expressed as logic,

allowing contexts to still be reset and enabled.

Several applications have been implemented using the C-slow technique. In 2003, Weaver

et al. applied C-slow to three applications: AES encryption, Smith/Waterman sequence

matching, and LEON 1 synthesized microprocessor core [40]. They designed an automatic

C-slow retiming tool that would replace every register in a synthesized design with C regis-

ters and retime the circuit. AES encryption achieved a speedup of 2.4 for a 5-slow by hand

implementation. Smith/Waterman achieved a speedup of 2.2 for a 4-slow by hand imple-

mentation. And, the LEON 1 SPARC microprocessor core achieved a speedup of 2.0 for a

2-slow automatically C-slowed design implementation. In 2007, Su et al. applied C-slow to

an LDPC decoder for a throughput-area efficient design [41]. In 2012, Akram et al. applied

C-slow to a processor to execute multiple threads in parallel using a single datapath of an

instruction set processing element. For a 3-slow microprogrammed finite-state machine, a

speedup of 2.59 times in clock frequency was achieved [42].

2.6 Hardware virtualization

Plessl and Platzner in 2004 [43] wrote a survey paper on hardware virtualization on FPGAs

where they described three different approaches: temporal partitioning, virtualized execu-

tion, and virtual machine. Chuang in 2008 [44] described another type of temporal partition-

ing whereby hardware logic can be reused by temporally shared state. A diagram illustrating

the hardware virtualization approaches is shown in Figure 2.4.

20

Figure 2.4: Hardware virtualization approaches. White boxes are described by Plessl and
Platzner [43]. Gray boxes are described by Chuang [44].

Temporal partitioning of net lists [43]: This is described by Plessl and Platzner as

a technique for virtualizing a hardware design described by a net list that would otherwise

be too large to physically fit onto an FPGA. This is done by partitioning the net list and

swapping it like virtual memory. Only one part of the computation is allowed to run at a

time. Each part must, therefore, run sequentially to perform the complete computation with

logic reconfiguration done between parts. This allows the design to better utilize resources

on the FPGA and gives the illusion of having more resources than are physically available.

Temporal partitioning of state [44]: This is a way to share hardware by temporally

swapping its state so as to compute multiple streams of computations on the same hardware

(i.e., a single net list). The logic is fixed, and the state is swapped (context switched),

allowing it to operate on independent streams. The context switch can be either fine- or

coarse-grain. Fine-grain context switching is done by applying the C-slow transformation on

the hardware logic, allowing different contexts to be processed in each pipeline stage of the C-

slowed hardware. Coarse-grain context switching is done by swapping the state infrequently

to and from a memory. Temporal partitioning of state is the type of virtualization that this

dissertation investigates in Chapter 5.

21

Virtualized execution [43]: This is where a programming model is used to specify ap-

plications. Any application developed in this programming model can run on any hardware

that supports this model of execution. One example programming model is the instruc-

tion set of a processor. Code written for this instruction set can execute on any processor

that supports the instruction set. Another example is PipeRench [45], which has a pipelined

streaming programming model where the application is decomposed into stripes and executes

in a pipeline. An unlimited number of virtual stripes are supported by context switching

the stripes in a pipelined manner on the hardware. Therefore, any hardware computation

that is written for PipeRench can be temporally context switched in this virtual execution

and can be arbitrarily large.

Virtual machine [43]: This is different from the rest in that it does not perform any kind

of context switching of the hardware. A virtual machine defines a generic abstract architec-

ture that hardware can be designed on. Designs targeted to a generic FPGA architecture

are remapped to the actual architecture of a specific FPGA device.

2.7 Queueing notation

Queueing theory is an analytical study of waiting in queues. It models queue occupancy of

different types of queues to predict queue lengths and waiting times. Kendall introduced a

notation to classify queueing models [46]. This notation is of the form A/S/c where A is the

arrival process, S is the service time distribution, and c is the number of servers.

Arrival process (A): The arrival process describes the arrival of jobs into the system. If

jobs arrive at times t1, t2, . . ., tj, then interarrival times can be defined as τj = tj−tj−1.

22

The interarrival times can be described as a random variable with a given distribution.

It is generally assumed that the interarrival times, τj, are independent and identically

distributed (IID). The most common arrival process is Poisson with interarrival times

that are IID and exponentially distributed [47].

Service time distribution (S): The time spent receiving service is called the service time.

This is commonly modeled as a random variable that is IID with a given distribution.

Number of servers (c): The system may have one or more servers. This parameter sets

the number of servers that are providing service in the queueing system.

The distributions for the interarrival and service times are denoted by a one letter symbol.

A few of them listed are as follows:

M Exponential

D Deterministic

G General

The exponential distribution is denoted with an M because it is memoryless, also called

Markovian. Using Kendall’s notation, we can describe a queue that has a Markovian, or

memoryless, arrival process; Deterministic service process; and 1 server as M/D/1.

2.8 Vacation model

The vacation model is an approach to analyzing systems where the server is not continuously

available (e.g., the server is serving some other job). Bertsekas and Gallager [48] describe

M/G/1 queues (Markovian, or memoryless, arrival process; General service process; 1 server)

where the server can go on “vacation” for some random interval of time. This is illustrated in

23

Figure 2.5: M/G/1 queueing model with vacations. During busy periods, the server is
servicing jobs. During vacation periods, the server is “away” and jobs may be waiting in the
queue.

Figure 2.5. Here, Xj represents the service time of the jth job and Vk represents the vacation

time of the kth vacation. The model is as follows. When a job is waiting in the queue, the

server will begin servicing the job and enter a busy period represented by Xj. When the

queue is empty, the server will go on vacation and enter a vacation period represented by Vk.

If a new arrival enters an idle system, rather than going immediately into service, it waits

for the end of a vacation period, and then enters service. If there is no new arrival into the

system, then the server, after returning from a vacation, will immediately go into another

vacation period.

24

Chapter 3

MTJ Read Circuit Theory

Magnetic tunnel junction (MTJ) devices can be used in clocking and/or logic circuits, op-

erating as sensors (to sense a magnetic field), memory (to store state), or logic gates (to

evaluate logic expressions). For each of these uses, a read circuit is necessary to sense the

resistance state of the MTJ device and convert it to a voltage. Our goal is to design a

resistance-to-voltage read circuit for sensing the resistance state of the MTJ device and to

produce a logic voltage output. We want this circuit to operate correctly and to perform fast

in the presence of large input capacitance (which may come from off-chip wire bonding). We

will be using this circuit in a prototype chip, which will be discussed further in Chapter 4. In

this chapter, MTJ read circuit theory is defined as including both analytical and simulation

results.

There are several basic designs for a resistance-to-voltage (R2V) read circuit. The read

circuit can operate in the voltage- or current-mode, and it can have single or differential

inputs. A voltage-mode read circuit operates by applying a constant current through the

MTJ resistance and comparing the voltage output using a comparator to produce a logic

voltage output. A current-mode read circuit, in contrast, operates by applying a constant

voltage over the MTJ resistance and comparing the current output using a comparator to

25

produce a logic voltage output. A single input read circuit reads a single MTJ resistance and

compares its value to a given threshold. A differential input read circuit, however, reads two

complementary MTJ resistances (that have opposite resistance states) and compares them

to each other to determine the logic voltage output.

In this chapter, we will design the resistance-to-voltage read circuit to operate in current-

mode and use a single resistance input. Current-mode avoids actively charging and discharg-

ing the MTJ node and therefore can operate fast in the presence of large input capacitance

(this will be shown in the analysis in Section 3.1). Reading a single input and thresholding

it gives us more flexibility during experimentation of a prototype chip. The development of

the read circuit will be presented in three parts. First, in Section 3.1, we will develop and

analyze a current-mode read circuit (that reads an input resistance and produces an output

current). Second, in Section 3.2, we will analyze several different current conveyor structures

for sizing the transistors and improving the read circuit performance through the use of cas-

code structures. Last, in Section 3.3, we will present a completed design for the read circuit

that uses a P-cascode current conveyor and includes an additional current comparator (to

compare the output current to a threshold current) and output buffer to produce the desired

logic voltage output. The read circuit performance is then characterized in simulation.

3.1 Analysis of a current-mode read circuit

To operate in current-mode, a current conveyor circuit is used. A current conveyor [35] is a

current-mode circuit which can be used for reading the state of an MTJ device. It operates

by clamping the voltage, Vbias, across the MTJ allowing the current I = Vbias

Rmtj
to flow through

the MTJ. This current is then mirrored to the output, optionally with amplification, in order

to use downstream.

26

Noise in the read circuit can affect the ability to correctly distinguish the logical state (0

or 1) of the MTJ device. It is therefore necessary to analyze circuit noise and to establish

noise margins at the output for reliable operation.

A simple set of noise equations aimed at a broad family of circuits (both class A and AB

current conveyors) were presented in [49] and then used to make qualitative conclusions.

We present a noise analysis of a class A current conveyor circuit that is used for sensing

the MTJ resistance. The resultant equations allow us to predict the output noise for the

current conveyor and use them as design equations for tuning circuit parameters to meet

noise performance requirements. First, the methodology employed in the noise analysis is

given. Second, the noise analysis of the current-mode read circuit is described. Third, the

analytical expressions derived in the noise analysis are validated via simulation. Fourth,

design guidance into how to tune characteristics of the circuit for performance is described,

and last, a general discussion of the noise model is given.

3.1.1 Methodology

The methodology used to perform the noise analysis of the current conveyor under consider-

ation, shown in Figure 3.1, involves several steps. The first step is to extend the circuit with

current sources added in parallel with every transistor and resistor that models the noise cur-

rent of these circuit components. The second step is then to construct a small-signal model

of the circuit from which a frequency-independent DC transfer function, Hdc,i, is derived for

each current source i to the output, making approximations as allowed to get a simplified

form. The noise spectrum, Si (f), of each source is referred to the output, Sout,i (f), by the

equation

Sout,i (f) = |Hi (s)|2 · Si (f) (3.1)

27

Figure 3.1: Noise model of the current-mode read circuit for sensing MTJ resistance. Current
sources, I1−5 and Imtj, are added in parallel with transistorsM1−5 and resistor Rmtj to model
the noise contribution of each component, respectively. Circuit nodes 1−3, which are referred
to in the analysis, are labeled with a circled number.

where s = j2πf . At DC, Sout,i (0) = |Hdc,i|2 Si (0).

The third step is to determine the pole frequency, fp,m, at each nodem which limits the band-

width of the circuit and bounds the circuit noise. The pole frequency requires determining

the resistance and capacitance seen at each node:

fp,m = 1
2πRmCm

. (3.2)

The resistance seen at a node is determined by applying a test current, Itest, into the node

and calculating

Rm = Vm
Itest

(3.3)

where Vm is the voltage at the node. The capacitance seen at a node is determined by adding

up all capacitance contributions at the node to ground. Capacitances that are coupled to

other nodes are transformed to Miller capacitances that are a function of the capacitance

and the small-signal voltage gain between the two nodes [37].

28

The frequency-dependent transfer function Hi (s) is a 3-pole system that can be modeled as

Hi (s) = Hdc,i(
1 + s

2πfp1

) (
1 + s

2πfp2

) (
1 + s

2πfp3

) . (3.4)

The fourth step is to calculate the total integrated noise power, I2
out,i,n, of each source referred

to the output:

I2
out,i,n =

ˆ f=∞

f=0
|Hi (j2πf)|2 Si (f) df. (3.5)

There are two predominant noise spectra: thermal and 1/f noise. We only consider thermal

noise for simplicity in validating our results. Thermal noise has a flat noise spectrum inde-

pendent of frequency and 1/f noise has a spectrum with an inverse relationship to frequency.

For a resistor, the thermal noise spectrum is Si,t = 4kT
R

[
A2

Hz

]
[37], where k is Boltzmann’s

constant, T is the temperature, and R is the resistance. For a transistor, the thermal noise

spectrum is Si,t = 4kTγgm
[

A2

Hz

]
[37], where γ is a coefficient that is typically equal to 2/3 for

long-channel transistors, and gm is the transconductance of the transistor.

The fifth step is to add all noise power contributions at the output to get the total noise

power, I2
out,tot,n:

I2
out,tot,n =

∑
i

I2
out,i,n. (3.6)

The square root of the noise power gives the standard deviation of the noise current present

at the output.

29

3.1.2 Noise analysis

The current-mode read circuit used for sensing the resistance of an MTJ device, as shown in

Figure 3.1, is constructed using a current conveyor. The current conveyor (M1−4) clamps the

voltage, Vbias, from the source of M4 to the source of M2 across the resistance, Rmtj. This

voltage produces a current through Rmtj which is mirrored to the output using a current-

mirror formed by M1,5 with unity gain. Each transistor is a current source operating in the

saturation region.

The small-signal model of the current-mode read circuit was constructed with several simpli-

fications. First, all NMOS transistors M2,4 have small signal parameters gm,n and gds,n, and

all PMOS transistorsM1,3,5 have small signal parameters gm,p and gsd,p, since the NMOS and

PMOS transistors have the same aspect ratios
(
W
L

)
n
and

(
W
L

)
p
, respectively, and the same

drain currents. Second, the bulk-modulation effect of transistors M2,4 is neglected. Third,

the resistance Rmtj is represented as a conductance, gmtj = 1
Rmtj

.

From the small-signal model, the DC transfer function of each noise source, modeled by

current sources I1−5 and Imtj in Figure 3.1, to the output are presented in Table 3.1. In the

table, two sets of equations are derived. The high accuracy equations are approximated with

the assumptions {gm,n ∨ gm,p} � {gds,n ∨ gsd,p}. The simple equations are approximated

with additional assumptions that gmtj . {gm,n ∨ gm,p} (i.e., of the same order or smaller).

The transfer function is derived by considering one noise source at a time and calculating

the current gain Hdc,i = Iout

Ii
from that source to the output. The output noise spectrum is

then referred to the output by (3.1) at DC.

Next, the pole frequencies, fp,1−3, are determined by deriving R and C at each node. The

derived resistance equations for the current-mode read circuit are presented in Table 3.2. In

30

Table 3.1: DC transfer functions from noise source to output. The high accuracy equations
are approximated with the assumptions {gm,n ∨ gm,p} � {gds,n ∨ gsd,p}. The simple equa-
tions are approximated with additional assumptions gmtj . {gm,n ∨ gm,p} (i.e., of the same
order or smaller).

Equations

Term High Accuracy Simple

Hdc,M1
−1

gm,n
gm,n+gmtj

+gmtj
gds,n+gsd,p
gm,n+gmtj

(
1

gm,n
+ 1

gm,p

) −
(
1 + gmtj

gm,n

)
Hdc,M2

1
gm,n
gmtj

+(gds,n+gsd,p)
(

1
gm,n

+ 1
gm,p

) gmtj

gm,n

Hdc,M3 Hdc,M2 Hdc,M2

Hdc,M4 −Hdc,M2 −Hdc,M2

Hdc,M5 1 (exact) 1 (exact)
Hdc,Rmtj

1
1+gmtj

gds,n+gsd,p
gm,n

(
1

gm,n
+ 1

gm,p

) 1

this table, as before, two sets of equations are derived: high accuracy and simple. The same

approximations, previously described, were applied to derive these equations.

The capacitance seen at each node is determined by considering the gate-to-source (Cgs),

gate-to-drain (Cgd), source-to-bulk (Csb), and drain-to-bulk (Cdb) capacitances of each tran-

sistor connected to the node and the capacitance associated with the MTJ (Cmtj). The

gate-to-bulk (Cgb) capacitance is neglected because all transistors are operating in satura-

tion. Capacitances that are connected to a small-signal ground are simply added together.

Those capacitances that are coupled to other nodes are replaced with corresponding Miller

capacitances that are a function of the capacitance and the small-signal voltage gain (vout

vin
)

between the two nodes [37]. For a prototype chip, wire bond capacitance associated with

the MTJ device is accounted for in Cmtj which is typically about 3 pF [37]. The derived

capacitance equations are presented in Table 3.3.

31

Table 3.2: Resistance at each node. The high accuracy equations are approximated with the
assumptions {gm,n ∨ gm,p} � {gds,n ∨ gsd,p}. The simple equations are approximated with
additional assumptions gmtj . {gm,n ∨ gm,p} (i.e., of the same order or smaller).

Equations

Resistance High Accuracy Simple

R1
1

gm,ngm,p
gm,n+gmtj

+
gmtj gsd,p

gm,n+gmtj

(
1+ gm,p

gm,n

)
+gds,n

(
gm,p
gm,n

+
gm,p+gmtj
gm,n+gmtj

) gm,n+gmtj

gm,ngm,p

R2
1

g2
m,n

gm,n+gmtj
+(gds,n+gsd,p)

(
1+

gm,ngmtj

(gm,n+gmtj)gm,p

) gm,n+gmtj

g2
m,n

R3 Rmtj ‖
((gds,n+gsd,p)(gm,n+gm,p)

gm,pg2
m,n

) (gds,n+gsd,p)(gm,n+gm,p)
gm,pg2

m,n

Table 3.3: Capacitance at each node.

Capacitance Equation

C1

Cgs1 + Cdb1

+ Cdb2 + Cgd2
(
1− vg2

vd2

)
+ Cgs3 + Cgd3

(
1− vd3

vg3

)
+ Cgs5 + Cgd5

C2

Cgd2
(
1− vd2

vg2

)
+ Cgs2

(
1− vs2

vg2

)
+ Cdb4 + Cgs4

+ Cdb3 + Cgd3
(
1− vg3

vd3

)
C3 Cmtj + Csb2 + Cgs2

(
1− vg2

vs2

)

32

The pole frequency at each node is then calculated using (3.2). Using the frequency-

dependent transfer function in (3.4), the total integrated noise referred at the output is

calculated by (3.5). For thermal noise, which has a flat noise spectrum independent of f ,

this is equal to

I2
out,i,nt = |Hdc,i|2 · Si,t ·Bn (3.7)

where the noise bandwidth [37], Bn, is

Bn = fp1fp2fp3 (fp1 + fp2 + fp3)
(fp1 + fp2) (fp1 + fp3) (fp2 + fp3)

π

2 . (3.8)

3.1.3 Validation

We simulated the current-mode read circuit of Figure 3.1 using a 3 metal 2 poly (3M2P)

0.5µm process model to verify the equations derived in Section 3.1.2. The circuit is modeled

in the Cadence Design Environment and simulated using Spectre. Small-signal parameters,

gm and gds, and capacitances Cgs, Cgd, Csb, and Cdb are extracted from the DC operating

points of the circuit. Small-signal voltage gains vd2
vg2

, vd3
vg3

, and vs2
vg2

are determined in an AC

simulation by applying an AC test current in the circuit and measuring the AC voltage

gain and phase between two nodes at DC (very low frequency). The sign of the gain is

determined from the phase at DC, which is either 0◦ (positive gain) or 180◦ (negative gain).

These parameters are then used in the analytical expressions for the output noise. The

noise of devices M1−5 and Rmtj are modeled with thermal noise only. In the equation of the

thermal noise spectrum, St, of a transistor, γ = 1.0 is chosen in agreement with simulation.

The bias voltage, Vbias, across the MTJ is chosen to be 0.1 V in order to maintain a large

tunneling magnetoresistance ratio (TMR). Rmtj = 1 kΩ unless specified otherwise.

33

100 1K 10K 100K
−8

−6

−4

−2

0
Hdc,1

100 1K 10K 100K
0

2

4

6

8
Hdc,2

Simulation

Analytical

100 1K 10K 100K
0

2

4

6

8
Hdc,3

100 1K 10K 100K
−8

−6

−4

−2

0
Hdc,4

100 1K 10K 100K
0.0

0.4

0.8

1.2

1.6
Hdc,5

100 1K 10K 100K
0.0

0.4

0.8

1.2

1.6
Hdc,mtj

Rmtj [Ω] Rmtj [Ω]

C
u
rr

e
n
t

g
a
in

C
u
rr

e
n
t

g
a
in

C
u
rr

e
n
t

g
a
in

Figure 3.2: DC transfer function validation with analytical and simulation results. Six plots
are presented, one for each transfer equation, H1−5 and Hmtj, corresponding to the current
gain from each current source to the output at DC. The X-axis shows the MTJ resistance,
Rmtj, swept from 500 Ω to 100 kΩ. The Y-axis shows the current gain for simulation (blue
with a ◦) and analytical (green with an ×) results.

DC Transfer Function Validation

The DC transfer functions in Table 3.1 are validated in Figure 3.2 with analytical and

simulation results. Simulation results are attained by measuring the current gain of current

source, Ii, to the output in an AC analysis. The results are plotted versus the MTJ resistance,

Rmtj, varied from 500 Ω to 100 kΩ. The six plots show the DC transfer function Hdc,i for each

source. The analytical results were derived using first-order approximations which show the

same trend as simulation and remain within 3 dB throughout the range of MTJ resistances.

34

M1 M2 M3 M4 M5 Rmtj

Noise Sources

0

2

4

6

8

10

12

S
p

o
t

N
o
is

e
 [
p
A
/�

H
z
]

Simulation

Analytical

Figure 3.3: Thermal noise spectrum validation with analytical and simulation results. The
noise spectrum of each source referred to the output is evaluated in simulation at 1 kHz.

DC Spot Noise Validation

The thermal noise spectrum of each noise source is validated in Figure 3.3 with analytical and

simulation results. Analytical results are attained by calculating the thermal noise spectrum

of each noise source and referring it to the output using (3.1) at DC. Simulation results are

attained by measuring the spot noise of each circuit component, modeled with thermal noise,

at 1 kHz. The analytical results are shown to be within 3 dB of the simulation results for

each noise source.

Node Resistance Validation

The resistance equations in Table 3.2 are validated in Table 3.4 with analytical and simulation

results. Simulation results are attained by applying an AC test current into the node in the

small-signal model and calculating the resistance by (3.3). The analytical results are in

agreement with the simulation results for each node.

35

Table 3.4: Validation of node resistances.

Result R1 R2 R3

Simulation 39.4 kΩ 44.6 kΩ 231 Ω
Analytical 45.9 kΩ 51.9 kΩ 311 Ω

Table 3.5: Analytical calculation of pole frequencies.

Node m Rm Cm fp,m

1 45.9 kΩ 136 fF 25.5 MHz
2 51.8 kΩ 48 fF 63.9 MHz
3 311 Ω 3.28 pF 156 MHz

Dominant Pole Validation

The dominant pole is the lowest frequency pole in the circuit. This can be determined by

measuring the 3 dB bandwidth at the output. In simulation, we evaluated the dominant

pole of the current-mode read circuit to be 23.6 MHz. To compare this to analytical results,

we then calculated the resistance and capacitance seen at each node (assuming Cmtj = 3 pF

for wire bond capacitance) and using these, determined the corresponding pole frequencies,

fp,m, using (3.2). The results are shown in Table 3.5. We can observe from the table that

the analytical dominant pole is 25.5 MHz, which agrees well with 23.6 MHz from simula-

tion. Further, using (3.8), we can determine the noise bandwidth from the calculated pole

frequencies to be 27.5 MHz.

Wire bonding capacitance associated with the MTJ (Cmtj) will add to the capacitance on

node 3 which we will assume dominants the node capacitance. A simple analysis using (3.2)

36

gives the minimum capacitance necessary to form a dominant pole on this node.:

Cmtj >
1

2πR3,simBW3 dB,sim
(3.9)

' 29 pF

where R3,sim = 231 Ω is the resistance in simulation at node 3 and BW3 dB,sim = 23.6 MHz

is the 3 dB bandwidth in simulation at the output corresponding to the dominant pole.

Total Integrated Output Noise Validation

The total integrated output noise is validated in Figure 3.4 with analytical and simulation

results. Analytical results are attained by calculating the thermal noise spectrum of each

noise source, referring it to the output, integrating the spectrum using (3.7), and then

computing the square root to get the noise current. Simulation results are attained by

measuring the total integrated noise of each noise source, modeled with thermal noise, from

1 Hz to 1 GHz to get the noise power and then again computing the square root to get the

noise current. The noise contribution of M5 is not bounded because the current source I5 is

connected directly in series with the output in the noise model. A downstream circuit will,

however, bound this noise term. The total noise of all noise sources is computed using (3.6)

and is presented in the last column of the plot as a noise current. The analytical results

differ from the simulation results for two reasons. One, a higher DC current gain, except

Imtj, is predicted as compared to simulation giving an increase in the total integrated output

noise. Two, a higher dominant pole frequency is predicted as compared to simulation also

contributing to an increase in the total integrated output noise. The results are within 2.5 dB

of simulation for each noise source.

37

M1 M2 M3 M4 Rmtj Total

Noise Sources

0

20

40

60

80

100

In
te

g
ra

te
d

 N
o
is

e
 [
n
A
]

Simulation

Analytical

Figure 3.4: Total integrated output noise validation with analytical and simulation results.
The noise spectrum of each source referred to the output is integrated from 1 Hz to 1 GHz.

3.1.4 Design guidance

The equations derived in the analytical model characterize the circuit and provide insight into

how input parameters affect the circuit performance. However, even with approximations,

they are still fairly complex. We can greatly simplify our intuition within the noise anal-

ysis by determining trends and relationships between input parameters and output circuit

characteristics. This is shown summarized in Table 3.6.

In the table, input parameters are shown along the columns and output circuit characteristics

are shown along the rows. Of the input parameters, L, W , and Vbias are circuit parameters

that the designer can adjust to tune circuit performance. Rmtj is an external parameter

determined by the MTJ resistance that the designer may not have direct control over its

value. For the output circuit characteristics, a designer may be interested in tuning circuit

bandwidth determined by the dominant pole at fp1, tuning the range of input capacitances of

the MTJ node determined by Cmtj,dp,min, and tuning total integrated output noise determined

by
√
I2
out,tot,n.

38

Table 3.6: Design guidance for tuning circuit performance. Output circuit characteristics are
given along the rows and input parameters along the columns. Rmtj is an external parameter
that the designer may not have direct control over. In the table, “S” means strong and “w”
weak. “↑” means they trend together in the same direction. “↓” means they trend inversely
to each other. A blank means the parameter may not have a significant impact.

Input Parameters

Output Circuit
Characteristic L W Vbias Rmtj

fp1 S↓ w↓ S↑ w↓
R3 S↓

Cmtj,dp,min S↑ S↑ S↓√
I2
out,tot,n S↓ w↓ w↑ S↓

In the cross-section between the input parameters and output characteristics, the following

notation is used. “S” means strong and “w” weak which indicates that the output charac-

teristic is either strongly or weakly dependent on the input parameter. “↑” means that the

output characteristic trends in the same direction as the input parameter. “↓” means that

they trend inversely to each other. A blank means the parameter may not have a significant

impact.

Input capacitance is relatively insensitive to the bandwidth of the circuit since node 1 forms

the dominant pole. The term Cmtj,dp,min is the minimum capacitance needed to form a

dominant pole on node 3 containing the MTJ as determined in (3.9) and illustrates the

range of input capacitances that can be present without affecting the circuit bandwidth.

This term is a function of the R3 node resistance and fp1 dominant pole (which primarily

determines the circuit bandwidth). As shown in the table, Cmtj,dp,min can be increased by

increasing L or W or decreasing Vbias. However, increasing L or decreasing Vbias will also

drop the bandwidth. Therefore, tuning W only will keep the bandwidth relatively constant

(it only weakly decreases bandwidth) while increasing the input capacitance range.

39

The bandwidth, as determined primarily by the dominant pole fp1, can be increased by

decreasing L, W , or Rmtj, or increasing Vbias. It is strongly dependent on L and Vbias while

only weakly dependent on W and Rmtj. Vbias strongly affects the bandwidth because it

adjusts the Ids and Isd currents of the transistors. Rmtj weakly affects the bandwidth due to

some partial cancellation of the Rmtj term.

The total integrated output noise,
√
I2
out,tot,n, can be decreased by increasing L, W , or Rmtj,

or decreasing Vbias. It is strongly dependent on L and Rmtj while only weakly dependent on

W and Vbias.

The design guidance developed in the table was derived from the analytical equations and

empirically validated from the analytical model using a 2k factorial experimental design [47].

The experimental design is a statistical technique that analyzes a system containing k factors

with 2 levels per factor and determines variations in the output metrics due to each factor

and their interactions. Validation of the design guidance is given further in Appendix A.

3.1.5 Discussion

We have provided a noise analysis of a current-mode read circuit for a magnetic tunnel

junction device. The noise analysis presented here is only valid for nodes with low-pass

transfer functions. The analytical expressions for noise at the output are validated against

simulation results for the CMOS process we will be using for prototype fabrication.

While the numerical noise values presented in the simulation validation are limited to thermal

noise for simplicity, the methodology generalizes for an arbitrary noise spectrum, Si(f).

There are well known expressions for Si(f) to model 1/f noise, and as a general noise model

becomes available for an MTJ device, it can be substituted for Si(f) as well.

40

One of the uses of this type of noise analysis is to bound the operating points of the system

in terms of a noise margin. With an MTJ resistance of RH = 1 kΩ, the read circuit will

output a low current, IL = Vbias

RH
= 100µA, and with an MTJ resistance of RL = 500 Ω, the

read circuit will output a high current, IH = 200µA. For this case, IH − IL � 10σ, which

indicates that thermal noise in this circuit is not significantly limiting the noise margin.

Note that noise margins must also take into account part-to-part variations and externally

induced noise in addition to the internal noise analyzed here. The noise current present

at the output bounds how close these two quantities can be, while still maintaining a safe

distance between them, e.g., we might choose to bound IH − IL > 6σ.

One of the advantages of current-mode operation is the relative insensitivity to load ca-

pacitance that might be present connecting the MTJ device to the CMOS circuit. While

production fabrication is integrated, our prototype will use wire bonding. Due to the low

impedance at node 3 in Figure 3.1 (relative to node 1), parasitic capacitance of 1 to 5 pF will

not significantly impact the noise performance or bandwidth of the circuit. This is consistent

with node 1 rather than node 3 being the dominant pole in the circuit.

The analysis of the current-mode read circuit was simplified by using a non-cascoded current

conveyor. The operation of the current conveyor circuit, however, can be improved by adding

cascode structures. In the next section, a number of current conveyor structures will be

discussed and analyzed, first starting with the non-cascoded structure and then building

upon it with cascoded structures.

41

3.2 Current conveyor structures

The current-mode read circuit, previously discussed, uses a current conveyor to pin the

voltage across an MTJ and read its resistance as a current. There are several variations of

the current conveyor circuit that trade-off between area, speed, and linearity.

The current conveyor, for example shown in Figure 3.5, consists of two current mirror circuits

that mirror the current between the left and right branches in a feedback loop [36]. The

transistors in the current mirror act as current sources by operating in the saturation-mode.

Their output can be modeled as an ideal current source in parallel with an output resistance.

The higher the output resistance, the more closely the current source acts like an ideal source

which improves linearity of the circuit. The output resistance of a current source can be

improved in two ways. One, by increasing length L of the transistor (which reduces the

effects due to channel length modulation), and two, by adding a cascode stage to the current

mirror circuit (which multiplies the output resistance) [37].

In this section, we consider basic, P-cascode, and NP-cascode current conveyors and develop

design equations for sizing the transistors appropriately so that they operate in saturation-

mode given a target Rmtj resistance and Vbias voltage. We further generalize the design

equations for any number of N or P cascode stages added to the basic current conveyor

circuit.

3.2.1 Basic

The basic current conveyor structure, shown in Figure 3.5, is formed by transistors M1−4.

TransistorsM1−2 form the PMOS current mirror circuit and transistorsM3−4 form the NMOS

current mirror circuit. These are connected together in a feedback topology that clamps the

42

Figure 3.5: Basic current conveyor.

voltage Vmtj to Vbias potential, and, applying Ohm’s Law, produces an Imtj current down

through the left branch that is inversely-proportional to the input resistance by the equation

Imtj = Vbias/Rmtj. The currents are mirrored between branches with a 1:1 gain which is

achieved by matching the widths and lengths of the transistors in the current mirrors [37],

thus making
(
W
L

)
1

=
(
W
L

)
2
,
(
W
L

)
3

=
(
W
L

)
4
, and Imtj = Isd,1 = Isd,2 = Ids,3 = Ids,4.

We can now show that Vmtj = Vbias by setting Ids,3 = Ids,4:

1
2KN

(
W

L

)
3

(Vgs,3 − VTN)2 = 1
2KN

(
W

L

)
4

(Vgs,4 − VTN)2

(Vgs,3 − VTN)2 = (Vgs,4 − VTN)2

Vgs,3 = Vgs,4. (3.10)

Then, equating Vg,3 = Vg,4 (which are on the same node), we get

Vmtj + Vgs,3 = Vbias + Vgs,4

Vmtj = Vbias. (3.11)

43

Condition for saturation

In order for the transistors to operate in saturation-mode, they need to satisfy the condition

for saturation [37]. For an NMOS transistor, the condition is

Vds > Vds,sat where Vds,sat = Vgs − VTN . (3.12)

And for a PMOS transistor, the condition is

Vsd > Vsd,sat where Vsd,sat = Vsg − |VTP | . (3.13)

Proof of saturation for diode-connected transistors

Diode-connected transistors have connected gate and drain terminals that force them to

always be in saturation-mode. Transistors M1,4 are diode-connected PMOS and NMOS

transistors, respectively, and are therefore always in saturation. To prove this, set Vd = Vg

and then apply the condition for saturation to show that it is always true. For a diode-

connected NMOS transistor,

Vds > Vds,sat

Vgs > Vgs − VTN

VTN > 0. (3.14)

Since the threshold voltage VTN for the NMOS is always greater than 0 (which is true in the

3M2P 0.5µm process we are targeting), this condition is always true. Thus, the transistor

44

is always in saturation. Similarly, for a diode-connected PMOS transistor,

Vsd > Vsd,sat

Vsg > Vsg + VTP

VTP < 0. (3.15)

Again, since the threshold voltage VTP for the PMOS is always less than 0, this condition is

always true. Thus, this transistor also is always in saturation. Note, it is typical to represent

VTP as a positive number by taking the absolute value as |VTP |. This allows equations for

the NMOS and PMOS transistors to remain symmetrical and is the notation used in this

chapter.

Apply saturation condition for transistor M3

Next, we are going to apply the saturation condition for transistor M3 and solve for the

minimum shape factor that enables it operate in saturation-mode. To simplify the notation

in this analysis, the shape factors
(
W
L

)
i
will be replaced using the variable si. Also, we can

define Von as the “on” voltage of a transistor, which is the extra voltage above a threshold

that a transistor is turned on [50]. It is equivalent to the saturation voltage and is defined as

Von = Vds,sat = Vgs − VTN for an NMOS and Von = Vsd,sat = Vsg − |VTP | for a PMOS. For an

NMOS transistor in saturation, the Von voltage can be determined from the Ids equation as

Ids = 1
2KN · s · (Vgs − VTN)2

Ids = 1
2KN · s · V 2

on

Von =
√

2Ids
KN · s

. (3.16)

45

Likewise, for a PMOS, the Von voltage can be determined from the Isd equation as

Isd = 1
2KP · s · (Vsg − |VTP |)2

Isd = 1
2KP · s · V 2

on

Von =
√

2Isd
KP · s

. (3.17)

To apply the saturation condition, we need to determine the voltages Von,3, Vd,3, and Vs,3.

First, Von,3 can be determined by setting Ids,3 to Imtj and substituting it into back into (3.16):

Ids,3 = Imtj = Vbias
Rmtj

. (3.18)

Thus,

Von,3 =
√

2Vbias
Rmtj ·KN · s3

. (3.19)

Next, we can determine Vd,3 by equating Isd,1 = Ids,3 and solving for Vsg,1:

1
2KP · s1 · (Vsg,1 − |VTP |)2 = 1

2KN · s3 · V 2
on,3

Vsg,1 =
√
KN · s3

KP · s1
Von,3 + |VTP | .

Then, we can calculate Vd,3 as

Vd,3 = VDD − Vsg,1

Vd,3 = VDD −
√
KN · s3

KP · s1
Von,3 − |VTP | . (3.20)

46

The source voltage, Vs,3, is simply Vbias. Applying the saturation conditions for M3, we get

Vds,3 > Vds,sat,3

Vd,3 − Vbias > Von,3

VDD −
√
KN · s3

KP · s1
Von,3 − |VTP | − Vbias > Von,3.

Rearranging terms,

VDD − |VTP | − Vbias > Von,3 ·
(

1 +
√
KN · s3

KP · s1

)
.

Substituting Von,3 using (3.19),

VDD − |VTP | − Vbias >
√

2Vbias
Rmtj ·KN · s3

·
(

1 +
√
KN · s3

KP · s1

)

VDD − |VTP | − Vbias >
√

2Vbias
Rmtj

·
(

1√
KN · s3

+ 1√
KP · s1

)
1√

KN · s3
+ 1√

KP · s1
<
VDD − |VTP | − Vbias√

2Vbias

Rmtj

.

To simplify this, let x = KN · s3 = KP · s1:

2√
x
< (VDD − |VTP | − Vbias) ·

√
Rmtj

2Vbias

x >
8Vbias

Rmtj · (VDD − |VTP | − Vbias)2 . (3.21)

47

Finally, we can substitute the value of x back in and calculate s3 as

KN · s3 >
8Vbias

Rmtj · (VDD − |VTP | − Vbias)2

s3 >
8Vbias

KN ·Rmtj · (VDD − |VTP | − Vbias)2 (3.22)

with

s1 = KN

KP

s3. (3.23)

Apply saturation condition for transistor M2

Next, we are going to solve for the minimum shape factor needed to operate transistor M2

in saturation-mode. To apply the saturation condition, we need to determine the voltages

Von,2, Vd,2, and Vs,2. Von,2 can be determined by setting Isd,2 to Imtj and substituting it into

back into (3.17):

Von,2 = Vsd,sat,2 =
√

2Vbias
Rmtj ·KP · s2

. (3.24)

To find Vd,2, we first solve the Ids,4 current equation for Vgs,4 as

Ids,4 = 1
2KN · s4 · (Vgs,4 − VTN)2

Vgs,4 =
√

2Ids,4
KN · s4

+ VTN

48

and then calculate Vd,2 as

Vd,2 = Vg,4

= Vgs,4 + Vs,4

Vd,2 =
√

2Ids,4
KN · s4

+ VTN + Vbias. (3.25)

The source voltage, Vs,2, is VDD. Now, we apply the saturation condition for transistor M2:

Vsd,2 > Vsd,sat,2

VDD − Vd,2 >
√

2Vbias
Rmtj ·KP · s2

. (3.26)

Then, substituting (3.25) into (3.26) with Ids,4 = Vbias/Rmtj gives

VDD −
√

2Vbias
Rmtj ·KN · s4

− VTN − Vbias >
√

2Vbias
Rmtj ·KP · s2√

2Vbias
Rmtj

(
1√

KN · s4
+ 1√

KP · s2

)
< VDD − VTN − Vbias

1√
KN · s4

+ 1√
KP · s2

<

√
Rmtj

2Vbias
· (VDD − VTN − Vbias) .

To simplify this, let y = KN · s4 = KP · s2:

2
√
y
< (VDD − VTN − Vbias) ·

√
Rmtj

2Vbias

y >
8Vbias

Rmtj · (VDD − VTN − Vbias)2 . (3.27)

49

Finally, we can substitute the value of y back in and calculate s4 as

KN · s4 >
8Vbias

Rmtj · (VDD − VTN − Vbias)2

s4 >
8Vbias

KN ·Rmtj · (VDD − VTN − Vbias)2 (3.28)

with

s2 = KN

KP

s4. (3.29)

Summary of Design Equations

A summary of all design equations for the basic current conveyor is as follows:

s1 = s2 = KN

KP

s3 = KN

KP

s4, (3.30)

s3 >
8Vbias

KN ·Rmtj · (VDD − |VTP | − Vbias)2 , (3.31)

s4 >
8Vbias

KN ·Rmtj · (VDD − VTN − Vbias)2 , (3.32)

which can be combined as

s3,4 >
8Vbias

KN ·Rmtj · (VDD −max (|VTP | , VTN)− Vbias)2 . (3.33)

Simulation Result

To evaluate the performance of the basic current conveyor circuit, the circuit was designed

and simulated in the 3M2P 0.5µm process in the Cadence Design Environment using the

50

10 100 1K 10K 100K 1M 10M 100M

Rmtj [Ω]

0.00

0.05

0.10

0.15
V

o
lt

a
g

e
 [
V
]

Vmtj Vbias

10 100 1K 10K 100K 1M 10M 100M

Rmtj [Ω]

0

50

100

150

200

250

300

C
u
rr

e
n
t

[µ
A

]

Isd,1

Isd,2

Figure 3.6: Simulation of the basic current conveyor. (Left) shows the Vmtj and Vbias voltages
and (right) shows the Isd,1 and Isd,2 branch currents. For this circuit, Vbias = 0.1 V, Rmtj =
1 kΩ, L = 2µm, sN = 1.5, and sP = 4.65.

Spectre simulator. The design equations (developed above) were used to size the transistors,

targeting Vbias = 0.1 V and Rmtj = 500 Ω, and using transistor lengths of 2µm for all

transistors. The shape factors chosen were sN = 1.5 (for the NMOS transistors) and sP =

4.65 (for the PMOS transistors). The circuit was then simulated using Vbias = 0.1 V and

Rmtj = 1 kΩ, producing the simulation result shown in Figure 3.6. Here, the Vmtj and Vbias

voltages are compared in the left plot and the Isd,1 and Isd,2 currents are compared in the

right plot to see how well they match. The resistance was swept from 50 Ω to 100 MΩ.

This shows that at low Rmtj resistance, the Vbias voltage cannot be maintained across Rmtj

until about 500 Ω. And, at high resistance, the Vmtj node follows Vbias, but has an offset of

about 18 mV.

3.2.2 P-cascode

The P-cascode current conveyor, shown in Figure 3.7, is formed by transistors M1−6. Tran-

sistors M1−4 form a cascoded PMOS current mirror circuit and transistors M5−6 form a

basic current mirror circuit. The P-cascode current conveyor operates similarly to the basic

current conveyor circuit. Voltage Vmtj is clamped to Vbias potential and produces current

51

Figure 3.7: P-cascode current conveyor.

Imtj down through the left branch by equation Imtj = Vbias/Rmtj. The currents are mirrored

between branches with a 1:1 gain with the widths and lengths of the transistors matched,

however, with the addition of the P-cascode structure, thus making s1 = s2, s3 = s4, s5 = s6,

and Imtj = Isd,1 = Isd,2 = Isd,3 = Isd,4 = Ids,5 = Ids,6.

To solve for the conditions that will keep all transistors in saturation, we first observe that

transistorsM1,3,6 are diode-connected and, according to (3.14, 3.15), are always in saturation.

We can show that Vmtj = Vbias by setting Ids,5 = Ids,6 and assuming that M2,4,5 are in

saturation:

1
2KN · s5 · (Vgs,5 − VTN)2 = 1

2KN · s6 · (Vgs,6 − VTN)2

Vgs,5 = Vgs,6. (3.34)

52

Then,

Vmtj + Vgs,5 = Vbias + Vgs,6

Vmtj = Vbias. (3.35)

Apply saturation condition for transistor M5

To apply the saturation condition, we need to determine voltages Von,5, Vd,5, and Vs,5. Von,5

can be determined by setting Ids,5 to Imtj and substituting it back into (3.16):

Von,5 = Vds,sat,5 =
√

2Vbias
Rmtj ·KN · s5

. (3.36)

Next, we find the source to drain voltage of transistors M1,3:

Vsd,1 = Von,1 + |VTP | ,

Vsd,3 = Von,3 + |VTP | .

Then, we find the drain voltage of transistor M5:

Vd,5 = VDD − Vsd,1 − Vsd,3

= VDD − Von,1 − Von,3 − 2 |VTP | . (3.37)

53

The source voltage, Vs,5 is Vbias. Now, we can apply the condition for saturation as

Vds,5 > Vds,sat,5

Vd,5 − Vbias > Von,5

VDD − Von,1 − Von,3 − 2 |VTP | − Vbias > Von,5

VDD − 2 |VTP | − Vbias > Von,1 + Von,3 + Von,5. (3.38)

Note, this expression can be generalized as the following:

VDD −
p∑
i=1
|VTP,i| − Vbias >

p∑
i=1

Von,i + Von,nmos (3.39)

where p = # of PMOSs on the left branch and Von,nmos is the “on” voltage for the NMOS

transistor (which replaces Von,5). Next, we can substitute in the value for each Von,i voltage

and factor:

VDD − 2 |VTP | − Vbias >
√

2Vbias
Rmtj

·
(

1√
KP · s1

+ 1√
KP · s3

+ 1√
KN · s5

)
.

Let x5 = KP · s1 = KP · s3 = KN · s5, then

VDD − 2 |VTP | − Vbias >
√

2Vbias
Rmtj

·
(

3
√
x5

)

x5 >
18Vbias

Rmtj · (VDD − 2 |VTP | − Vbias)2 . (3.40)

Substituting x5 = KN · s5 back in, we get

s5 >
18Vbias

KN ·Rmtj · (VDD − 2 |VTP | − Vbias)2 (3.41)

54

with

s1 = s3 = KN

KP

s5. (3.42)

Apply saturation condition for transistor M2

To apply the saturation condition for transistor M2, we must determine the voltage Vd,2 and

Vs,2. Since s1 = s2 and Isd,1 = Isd,2, then Von,1 = Von,2 and Vsg,1 = Vsg,2. Also, since s3 = s4

and Isd,3 = Isd,4, then Von,3 = Von,4 and Vsg,3 = Vsg,4. The drain voltage of transistor M2 can

be determined as

Vd,2 = VDD − Vsg,1 − Vsg,3 + Vsg,4

= VDD − Vsg,1

= VDD − Von,1 − |VTP | . (3.43)

The source voltage, Vs,2, is VDD. Now, we can apply the condition for saturation

Vsd,2 > Von,2

VDD − (VDD − Von,1 − |VTP |) > Von,2

|VTP | > 0, (3.44)

showing that transistor M2 is always in saturation.

55

Apply saturation condition of transistor M4

For this transistor, we need to know Vd,4 and Vs,4 to apply the saturation condition. We can

determine Vd,4 as follows:

Vd,4 = Vbias + Vgs,6

= Vbias + Von,6 + VTN . (3.45)

The source voltage, Vs,4, is equal to Vd,2 which is given by (3.43). Now, we can apply the

saturation condition as

Vsd,4 > Vsd,sat,4

Vs,4 − Vd,4 > Von,4

(VDD − Von,1 − |VTP |)− (Vbias + Von,6 + VTN) > Von,4

VDD − |VTP | − VTN − Vbias > Von,2 + Von,4 + Von,6.

Substituting in for each Von,i voltage, we get

VDD − |VTP | − VTN − Vbias >
√

2Vbias
Rmtj

(
1√

KP · s2
+ 1√

KP · s4
+ 1√

KN · s6

)

VDD − |VTP | − VTN − Vbias >
√

2Vbias
Rmtj

(
3
√
x4

)

where x4 = KP · s2 = KP · s4 = KN · s6. Then

x4 >
18Vbias

Rmtj · (VDD − |VTP | − VTN − Vbias)2 . (3.46)

56

Substituting in x4 = KN · s6, we get

s6 >
18Vbias

KN ·Rmtj · (VDD − |VTP | − VTN − Vbias)2 (3.47)

with

s2 = s4 = KN

KP

s6.

Summary of Design Equations

A summary of all design equations for the P-cascode current conveyor is as follows:

s1 = s2 = s3 = s4 = KN

KP

s5 = KN

KP

s6, (3.48)

s5 >
18Vbias

KN ·Rmtj · (VDD − 2 |VTP | − Vbias)2 , (3.49)

s6 >
18Vbias

KN ·Rmtj · (VDD − |VTP | − VTN − Vbias)2 , (3.50)

which can be combined as

s5,6 >
18Vbias

KN ·Rmtj · (VDD − |VTP | −max (|VTP | , VTN)− Vbias)2 . (3.51)

Simulation Result

To evaluate the performance of the P-cascode current conveyor circuit, the circuit was de-

signed and simulated in the 3M2P 0.5µm process in the Cadence Design Environment using

the Spectre simulator. The above design equations were used to size the transistors, targeting

57

10 100 1K 10K 100K 1M 10M 100M

Rmtj [Ω]

0.00

0.05

0.10

0.15
V

o
lt

a
g

e
 [
V
]

Vmtj Vbias

10 100 1K 10K 100K 1M 10M 100M

Rmtj [Ω]

0

50

100

150

200

C
u
rr

e
n
t

[µ
A

]

Isd,1

Isd,2

Figure 3.8: Simulation of the P-cascode current conveyor. (Left) shows the Vmtj and Vbias
voltages and (right) shows the Isd,1 and Isd,2 branch currents. For this circuit, Vbias = 0.1 V,
Rmtj = 1 kΩ, L = 2µm, sN = 4.0, and sP = 12.4.

Vbias = 0.1 V and Rmtj = 500 Ω, and using transistor lengths of 2µm for all transistors. The

shape factors chosen were sN = 4.0 (for the NMOS transistors) and sP = 12.4 (for the PMOS

transistors). The circuit was then simulated using Vbias = 0.1 V and Rmtj = 1 kΩ, producing

the simulation result shown in Figure 3.8. The Vmtj and Vbias voltages are compared in the

left plot and the Isd,1 and Isd,2 currents are compared in the right plot to see how well they

match. The resistance was swept from 50 Ω to 100 MΩ. At low Rmtj resistance, the Vbias

voltage cannot be maintained across Rmtj until about 500 Ω. And, at high resistance, the

Vmtj node follows Vbias, this time with a smaller offset than the basic current conveyor of up

to 10 mV.

3.2.3 NP-cascode

The NP-cascode current conveyor, shown in Figure 3.9, is formed by transistors M1−8.

Transistors M1−4 form a cascoded PMOS current mirror circuit and transistors M5−8 for

a cascoded NMOS current mirror circuit. The NP-cascode current conveyor also operates

similarly to the basic and P-cascode current conveyor circuits. Voltage Vmtj is clamped to

Vbias potential and produces current Imtj down through the left branch with Imtj = Vbias/Rmtj.

58

Figure 3.9: NP-cascode current conveyor.

The currents are mirrored between branches with a 1:1 gain with the widths and lengths of

the transistors matched. With the addition of the N-cascode structure, s1 = s2, s3 = s4,

s5 = s6, s7 = s8, and Imtj = Isd,1 = Isd,2 = Isd,3 = Isd,4 = Ids,5 = Ids,6 = Ids,7 = Ids,8.

To solve for the conditions that will keep all transistors in saturation, we first observe that

transistors M1,3,6,8 are diode-connected, and according to (3.14, 3.15), are always in satu-

ration. Without going through a full-proof (as in the previous section), if Isd,1 = Isd,2 and

s1 = s2, then M2 is in saturation. Also, if Ids,7 = Ids,8 and s7 = s8, then M7 is in saturation.

Setting Ids,7 = Ids,8, then Vmtj = Vbias, without going through a full proof again.

59

Apply saturation condition for transistor M5

First, find the drain voltage of transistor M5:

Vd,5 = VDD − Vsg,1 − Vsg,3

= VDD − (Von,1 + |VTP |)− (Von,3 + |VTP |) . (3.52)

Next, find the source voltage of transistor M5. We can note that Vgs,5 = Vgs,6 because

transistors M5,6 are identical with the same current. This gives

Vs,5 = Vbias + Vgs,8 + Vgs,6 − Vgs,5

= Vbias + Vgs,8

= Vbias + (Von,8 + VTN) . (3.53)

Then apply the condition for saturation:

Vds,5 > Vds,sat,5

Vd,5 − Vs,5 > Von,5

VDD − 2 |VTP | − VTN − Vbias > Von,1 + Von,3 + Von,5 + Von,7.

Note, Von,8 was substituted with Von,7 which it is equal to. Next, let x = KP · s1 = KP · s3 =

KN · s5 = KN · s7. This gives

VDD − 2 |VTP | − VTN − Vbias >
√

2Vbias
Rmtj

(
1√

KP · s1
+ 1√

KP · s3
+ 1√

KN · s5
+ 1√

KN · s7

)

VDD − 2 |VTP | − VTN − Vbias >
√

2Vbias
Rmtj

(
4√
x

)
.

60

Solving for x, we get

√
x >

√
2Vbias
Rmtj

(
4

VDD − 2 |VTP | − VTN − Vbias

)

x >
32Vbias

Rmtj · (VDD − 2 |VTP | − VTN − Vbias)2 . (3.54)

Substituting x = KN · s5 back in, gives

s5 >
32Vbias

KN ·Rmtj · (VDD − 2 |VTP | − VTN − Vbias)2 (3.55)

with

s1 = s3 = KN

KP

s5 = KN

KP

s7. (3.56)

Apply saturation condition of transistor M4

First, find the drain voltage of transistor M4:

Vd,4 = Vbias + Vgs,8 + Vgs,6

= Vbias + (Von,8 + VTN) + (Von,6 + VTN) . (3.57)

Next, find the source voltage of transistor M4. We can note that Vsg,3 = Vsg,4 because

transistors M3,4 are identical with the same current. This gives

Vs,4 = VDD − Vsg,1 − Vsg,3 + Vsg,4

= VDD − Vsg,1

= VDD − (Von,1 + |VTP |) . (3.58)

61

Then apply the condition for saturation:

Vsd,4 > Vsd,sat,4

Vs,4 − Vd,4 > Von,4

VDD − |VTP | − 2VTN − Vbias > Von,2 + Von,4 + Von,6 + Von,8.

Note, Von,1 was substituted with Von,2 which it is equal to. Next, let x = KP · s2 = KP · s4 =

KN · s6 = KN · s8. This gives

VDD − |VTP | − 2VTN − Vbias >
√

2Vbias
Rmtj

(
1√

KP · s2
+ 1√

KP · s4
+ 1√

KN · s6
+ 1√

KN · s8

)

VDD − |VTP | − 2VTN − Vbias >
√

2Vbias
Rmtj

(
4√
x

)
.

Solving for x, we get

√
x >

√
2Vbias
Rmtj

(
4

VDD − |VTP | − 2VTN − Vbias

)

x >
32Vbias

Rmtj · (VDD − |VTP | − 2VTN − Vbias)2 . (3.59)

Substituting x = KP · s4 back in, gives

s4 >
32Vbias

KP ·Rmtj · (VDD − |VTP | − 2VTN − Vbias)2 (3.60)

with

s2 = s4 = KN

KP

s6 = KN

KP

s8. (3.61)

62

Summary of Design Equations

A summary of all design equations for the NP-cascode current conveyor is as follows:

s1 = s2 = s3 = s4 = KN

KP

s5 = KN

KP

s6 = KN

KP

s7 = KN

KP

s8, (3.62)

s5 >
32Vbias

KN ·Rmtj · (VDD − 2 |VTP | − VTN − Vbias)2 , (3.63)

s6 >
32Vbias

KN ·Rmtj · (VDD − |VTP | − 2VTN − Vbias)2 , (3.64)

which can be combined as

s5,6 >
32Vbias

KN ·Rmtj · (VDD − |VTP | − VTN −max (|VTP | , VTN)− Vbias)2 . (3.65)

Simulation Result

To evaluate the performance of the NP-cascode current conveyor circuit, the circuit was

designed and simulated in the 3M2P 0.5µm process in the Cadence Design Environment

using the Spectre simulator. The above design equations were used to size the transistors,

targeting Vbias = 0.1 V andRmtj = 500 Ω, and using transistor lengths 2µm for all transistors.

The shape factors chosen were sN = 12.0 (for the NMOS transistors) and sP = 37.2 (for the

PMOS transistors). The circuit was then simulated using Vbias = 0.1 V and Rmtj = 1 kΩ,

producing the simulation result shown in Figure 3.10. The Vmtj and Vbias voltages are

compared in the left plot and the Isd,1 and Isd,2 currents are compared in the right plot to

see how well they match. The resistance was swept from 50 Ω to 100 MΩ. At low Rmtj

63

10 100 1K 10K 100K 1M 10M 100M

Rmtj [Ω]

0.00

0.05

0.10

0.15
V

o
lt

a
g

e
 [
V
]

Vmtj Vbias

10 100 1K 10K 100K 1M 10M 100M

Rmtj [Ω]

0

100

200

300

400

500

C
u
rr

e
n
t

[µ
A

]

Isd,1

Isd,2

Figure 3.10: Simulation of the NP-cascode current conveyor. (Left) shows the Vmtj and Vbias
voltages and (right) shows the Isd,1 and Isd,2 branch currents. For this circuit, Vbias = 0.1 V,
Rmtj = 1 kΩ, L = 2µm, sN = 12.0, and sP = 37.2.

resistance, the Vbias voltage cannot be maintained across Rmtj until about 250 Ω or so. And,

at high resistance, the Vmtj node follows Vbias very closely, with virtually no offset.

3.2.4 Generalized

We can generalize these results to produce a set of design equations for sizing the transistors

for any number of N or P cascode stages. First, the saturation condition of transistor Mi on

a branch containing transistor set T is

VDD −
∑
j ∈ T

j 6= i

VT,j − Vbias >
∑
j∈T

Von,j, (3.66)

or

V1 >
∑
j∈T

Von,j

64

where V1 = VDD −
∑

j ∈ T

j 6= i

VT,j − Vbias. Expanding the Von,j terms, we get

V1 >

√
2Vbias
Rmtj

·
∑
j∈T

 1√
Kj · sj

 . (3.67)

From this, we can get a generalized result:

∑
j∈T

 1√
Kj · sj

 <

√√√√Rmtj · (V1)2

2Vbias
, (3.68)

or √
K1 · s1 || . . . ||

√
K|T | · s|T | >

√√√√ 2Vbias
Rmtj · (V1)2 . (3.69)

Continuing from (3.67), let x = Kj · sj for each j = 1, . . . , |T |. Then

V1 >

√
2Vbias
Rmtj

·
∑
j∈T

(
1√
x

)

V1 >

√
2Vbias
Rmtj

· |T |√
x

x >
2 |T |2 Vbias
Rmtj · (V1)2 . (3.70)

Substituting x = Kj · sj back in, we get

sj >
2 |T |2 Vbias

Kj ·Rmtj · (V1)2 . (3.71)

65

Assuming that VTN and VTP are constant for all NMOS and PMOS transistors, respectively,

we can make a simplification of the design equations. Along one branch,

n = # of NMOSs

p = # of PMOSs

where n+ p = |T |. Then,

sN >
2 (n+ p)2 Vbias

KN ·Rmtj · (V1)2 (3.72)

where

V1 = VDD − (p− 1) |VTP | − (n− 1)VTN −max (|VTP | , VTN)− Vbias, (3.73)

sP = KN

KP

sN . (3.74)

To use these equations, simply set n and p appropriately for the chosen cascode structure.

For the basic current conveyor, n = 1 and p = 1. For the P-cascode current conveyor,

n = 1 and p = 2. And, for the NP-cascode current conveyor, n = 2 and p = 2. Other

combinations of cascode structures can be explored by further changing n and p. Once these

two parameters are chosen, then the sN and sP equations will provide the necessary shape

factors of the transistors so that they will operate with the given Vbias voltage and Rmtj

resistance.

66

3.3 Read circuit design

We now present the design of a resistance-to-voltage (R2V) read circuit based on the current-

mode read circuit design from Section 3.1. It works by performing a continuous read to sense

an input resistance and produce a rail-to-rail logic voltage output. Then, we present area,

transient response, power, and jitter characterizations with simulation results of the read

circuit in the 3M2P 0.5µm process and compare these results to a second implementation

in a 5 metal 1 poly (5M1P) 0.18µm process.

The design of the resistance-to-voltage (R2V) read circuit is shown in Figure 3.11 in the

3M2P 0.5µm process. It consists of three parts: current conveyor, current comparator, and

rail-to-rail output buffer. The current conveyor pins a voltage across the input resistance

and produces an output current inversely proportional to the input resistance. That current

is compared to a threshold current, Ith, by the current comparator, and then amplified

rail-to-rail by the output buffer.

Current conveyor: The current conveyor circuit, formed by transistors M1−6, is the P-

cascode type from Section 3.2.2. It consists of two back-to-back current mirrors; one formed

by a PMOS-cascode structure and the second one by an NMOS one. It is designed to have

equal currents flowing through both branches.

Recapping the P-cascode current conveyor derivation in Section 3.2.2, this circuit operates

by clamping the voltage Vmtj to Vbias over the resistance Rmtj at the input. The current

Imtj that flows through M1−3 and Rmtj is Imtj = Vbias

Rmtj
. Imtj is then mirrored to the current

comparator through the current mirror formed by M1,2 and M7,8. All transistors operate in

the saturation region satisfying the conditions Vds > Vds,sat for NMOS and Vsd > Vsd,sat for

PMOS. Transistors M1,2,6 are diode-connected and therefore always operate in saturation.

67

Figure 3.11: Resistance-to-voltage (R2V) read circuit in the 3M2P 0.5µm process.

Transistors M3,4,5 are determined by design equations and are biased such that they operate

at the edge of the saturation region in order to get the smallest aspect ratio. Body and

lambda effects are not considered:

W
L 3 >

18Vbias

KNRmtj

(VDD − |VTP | −max (|VTP | , VTN)− Vbias)2 , (3.75)

W
L 4,5 >

18Vbias

KPRmtj

(VDD − |VTP | −max (|VTP | , VTN)− Vbias)2 . (3.76)

Here, all aspect ratios for NMOS transistors are equal (W
L 3 = W

L 6) and all aspect ratios

for PMOS transistors are equal (W
L 1 = W

L 2 = W
L 4 = W

L 5). VDD is the supply voltage, VTN

is the NMOS threshold voltage, VTP is the PMOS threshold voltage, KN is the NMOS

68

transconductance parameter, KP is the PMOS transconductance parameter, Vbias is the

input bias voltage, and Rmtj is the input MTJ resistance.

It is good to note that since the read circuit is designed to distinguish between two discrete

resistance inputs, it has significant tolerance for error in the read current. Small transistors

may be able to be used while still allowing the read circuit to correctly distinguish between

two input states.

Current comparator: The current comparator, formed by transistors M7−10, compares

an output current to a threshold current, Ith, and converts it to a logic voltage output [51].

M1,2 current is copied and sourced by transistors M7,8. Likewise, M15,16 current is copied

and sunk by transistors M9,10. The output voltage VN1 at node N1 will swing depending

on which current is greater. The voltage swing is determined analytically (using 1st order

approximations) as

2

√√√√ 2Ith
W
L 9,10 ·KN

+ VTN < VN1 < VDD − 2

√√√√ 2Imtj
W
L 7,8 ·KP

− |VTP | (3.77)

where Imtj is the current through Rmtj, Ith is the threshold current, and W
L i

is the aspect

ratio of the ith transistor.

Rail-to-rail output buffer: The last stage of the read circuit is the rail-to-rail output

buffer formed by transistorsM11−14. This buffer performs voltage amplification of the current

comparator output voltage VN1 to get a rail-to-rail logic voltage output MCLK used to drive

downstream logic. The buffer is designed to drive a 600 fF capacitive load with 1 ns rise/fall

times (10–90%).

69

Table 3.7: Comparison of relevant process parameters for the R2V read circuit.

Process

Parameter 3M2P 0.5µm 5M1P 0.18µm
VDD 5.0 V 1.8 V

KN/KP 110/32 µA
V2 342/74 µA

V2

VTN/VTP 0.77/–0.95 V 0.5/–0.49 V

We laid out and simulated the R2V read circuit in the 3M2P 0.5µm process and the 5M1P

0.18µm process to compare how circuit characteristics change at smaller process dimensions.

Table 3.7 compares the relevant process parameters. The circuit is characterized in terms of

area, transient response, power, and jitter in the Cadence Design Environment using Spectre

simulator.

3.3.1 Area

The R2V read circuit is designed using the smallest transistors that will operate in the

saturation region and still perform well. The layout of the circuit is shown in Figure 3.12.

The dimensions of the circuit are 31.35µm by 40.20µm.

For the 5M1P 0.18µm process implementation, the read circuit is redesigned with transistor

aspect ratios set according to (3.75) and (3.76) to ensure the current conveyor transistors

operate in the saturation region. The current conveyor and comparator transistors change as

follows: W
L p

= 18µm
0.6µm to 18µm

0.18µm and W
L n

= 6µm
0.6µm to 4.005µm

0.18µm . The transistors stay at about the

same width but scale down in length. This is primarily due to both process circuits supplying

the same Imtj current for a constant Rmtj. The rail-to-rail output buffer transistors are scaled

0.5µm/0.18µm = 2.77 times smaller which is the scaling factor between the two processes. The

new layout has dimensions 8.28µm by 27.27µm. The area of the current conveyor and

70

Figure 3.12: Layout of the R2V read circuit in the 3M2P 0.5µm process. The sub-circuits
highlighted in black boxes are (left) current conveyor, (middle) current comparator, and
(right) rail-to-rail output buffer.

current mirror sub-circuits scale roughly linearly. The rail-to-rail output buffer may scale

quadratically.

3.3.2 Transient response

The transient response of the circuit limits the maximum frequency at which the read circuit

can be clocked by an external magnetic field and the performance of downstream circuits

clocked by this read circuit. For the R2V read circuit implemented in the 3M2P 0.5µm

process, the transient response is shown in Figure 3.13. The input resistance Rmtj is clocked

at 10 MHz with values 500 Ω and 1 kΩ. An appropriately chosen area and resistance-area

(RA) product of an MTJ device will yield these values. The bias voltage Vbias is set to 0.1 V

which is pinned at Vmtj. The variation in Vmtj is due to non-linearities in the current conveyor

71

0
500

1,000
1,500

R
m
tj

[Ω
]

500

1000

0.0
0.1
0.2
0.3

V
m
tj

[V
]

0.115

0.130

0

150

300

I m
tj

[µ
A

]

178

230

130

0
2
4
6

N
1

[V
]

4.32

0.47

0
2
4
6

N
2

[V
]

0.00

5.00

0 50 100 150 200 250 300 350 400

Time [ns]

0
2
4
6

M
C

L
K

[V
] 5.00

0.00

Figure 3.13: Transient response of the R2V read circuit at 10 MHz frequency. Rmtj is the
input resistance, Vmtj is the voltage over Rmtj, Imtj is the current through Rmtj, N1 is the
current comparator output, N2 is the first inverter output, and MCLK is the read circuit
output. Threshold current, Ith, is indicated by the dashed line on Imtj.

circuit. Imtj is simulated to be 230 and 130µA for each Rmtj, respectively. These states are

distinguished by comparing Imtj to a threshold current Ith indicated by the dashed line in

the figure. Node N1 is not rail-to-rail since voltage drops are needed from drain-to-source

of transistors M7−10 to keep them turned on.

Rise/fall times can be used to identify which node limits the maximum clock frequency of

the global external magnetic field. The rise/fall times, simulated from 10% to 90% between

signal low and high, for N1 , N2 , and MCLK are shown in Table 3.8 for implementations

in both the 3M2P 0.5µm and 5M1P 0.18µm process technologies. Node N1 of the current

comparator is shown to be the bottleneck node with a rise/fall time of 9.275/7.767 ns in the

3M2P 0.5µm process. This is primarily due to the high impedance of the cascoded output

72

Table 3.8: Rise/fall times (10–90%) and propagation delay of the R2V read circuit.

Process

3M2P 0.5µm 5M1P 0.18µm
Node trise tfall trise tfall

N1 9.275 ns 7.767 ns 5.430 ns 5.240 ns
N2 2.702 ns 2.694 ns 0.805 ns 0.809 ns

MCLK 0.977 ns 0.964 ns 0.225 ns 0.230 ns
Characteristic tp,rise2fall tp,fall2rise tp,rise2fall tp,fall2rise

Prop. Delay 7.215 ns 6.691 ns 4.625 ns 2.403 ns

stage of the current comparator that gives large RC time constants. If speed is important,

a faster current comparator such as in [52] can be used to improve performance.

The propagation delay of the R2V read circuit assesses the latency of reading the input

resistance as sensed at the output. These are shown in Table 3.8. tp,rise2fall is the propagation

delay from a rising transition of Rmtj to a falling transition of MCLK . Conversely, tp,fall2rise

is the propagation delay from a falling transition of Rmtj to a rising transition of MCLK . The

propagation delay is closely related to the rise/fall time bottleneck of the current comparator

node N1 . Therefore, reducing the rise/fall time of N1 should also decrease the propagation

delay of the circuit.

The clock frequency is limited by the high impedance and moderate capacitance at node

N1 . This is observed in Figure 3.14 where the frequency is swept from 1 MHz to 100 MHz.

The peak-to-peak voltage of node N1 decreases as the frequency increases beyond about

30 MHz since the node can no longer fully charge and discharge. The 3 dB point is simulated

to be about 67 MHz, which is an estimate of the maximum frequency at which the circuit

can operate.

73

1.0 3.2 10.0 31.6 100.0

Freq [MHz]

1.5

2.0

2.5

3.0

3.5

4.0
4.5

P
k
-t

o
-P

k
 V

o
lt

a
g

e
 [
V
]

3.86

67 MHz

Figure 3.14: Node N1 peak-to-peak voltage of the R2V read circuit from 1 MHz to 100 MHz
frequency in the 3M2P 0.5µm process. The 3 dB point is 67 MHz which indicates the maxi-
mum frequency of operation.

In the 5M1P 0.18µm process, the rise/fall times and propagation delays are shorter with

smaller transistor dimensions and node N1 having less capacitance. The 3 dB point is sim-

ulated to be about 105 MHz.

3.3.3 Power

The average power of the R2V read circuit is shown in Figure 3.15a as a function of frequency

from 1 MHz to 100 MHz. As the frequency increases, the total average power consumed

increases roughly linearly. At 100 MHz, the circuit is exceeding its maximum frequency as

determined earlier and is unable to switch fast enough. Since the internal node N1 never

fully charges or discharges, the subsequent output buffer begins to also not fully charge or

discharge, thus there is overall less power consumed.

The power consumed by the read circuit limits the number of read circuits that can be built

in a given power budget. The circuit continuously sinks current and consumes power. The

power consumed is 3.21/1.98 mW when Rmtj is low/high (500 Ω/1 kΩ). During switching,

the instantaneous power spikes up due to dynamic power consumption in the output buffer.

The average power consumed by this circuit at 10 MHz is 3.15 mW. If we exclude the output

74

0 20 40 60 80 100

Freq [MHz]

2

3

4

5

6

7

8
P
o
w

e
r

[m
W

]

(a) Average power plot

Current
Conveyor

Current
Comparator

Output
Buffer

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
o
w

e
r

[m
W

]

100 kHz

1 MHz

10 MHz

50 MHz

(b) Power breakdown plot

Figure 3.15: Average power and power breakdown plots of the R2V read circuit in the 3M2P
0.5µm process. The average power plot is shown on the left and sweeps the frequency from
1 MHz to 100 MHz. The power breakdown plot is shown on the right.

buffer, the average power is 2.59 mW. A breakdown of the average power of each sub-circuit

at varying clock frequencies is shown in Figure 3.15b.

In this figure, the current conveyor and current comparator consume about the same power

independent of varying clock frequencies whereas the output buffer exhibits dynamic power

that is linearly proportional to the clock frequency. The current conveyor consumes more

than twice the power of the current comparator. This is due to current flowing through two

branches in the current conveyor versus one in the comparator. Also, the average current in

the comparator is a little less than that in the current comparator since the current flowing

through the comparator cannot be greater than Ith.

For the 5M1P 0.18µm process, the current flowing through each branch of the current

conveyor and current comparator remains the same, but the power supply is now operating

at 1.8 V instead of 5 V. This results in less overall power consumed. At 10 MHz, the total

average power is 0.65 mW. Again, if we exclude the output buffer, the average power is

0.63 mW.

75

3.3.4 Jitter

Noise from the transistors in the R2V read circuit contribute to jitter, an uncertainty in

time, in the MCLK output. Jitter on MCLK contributes to phase delay between two or

more outputs. A Monte Carlo simulation is used to simulate the time-domain noise in the

read circuit. Each noise source is replaced by a random variable and simulated in time. In

the 3M2P 0.5µm process technology, this simulation was done for 100 runs with thermal

noise sources from 100 kHz to 1 GHz frequency. The jitter is calculated by measuring the

delta time between when MCLK output crosses VDD/2 compared to the average crossing time.

A histogram of the time jitter is shown in Figure 3.16a for rising and falling edges with an

overlaid Gaussian probability density function. The standard deviation, σ, of the jitter for

the rising and falling edges is 10.47± 0.74 ps and 10.15± 0.72 ps, respectively.

A normal quantile-quantile plot, shown in Figure 3.16b, is a better way to test if the data are

from a Gaussian normal distribution. In this plot, jitter quantiles are compared to Gaussian

normal quantiles. Since the data form a straight line, it is determined to be Gaussian normal

distributed. For a Gaussian normal distribution, 99.7% of all random samples occur within

±3σ. Therefore, the jitter can be as high as 6σ ≈ 62.8 ps for the rising edge or 6σ ≈ 60.9 ps

for the falling edge.

3.3.5 Discussion of simulated circuits

We have designed an R2V read circuit to interface with MTJ devices. This circuit is charac-

terized in terms of area, transient response, power, and jitter in the 3M2P 0.5µm and 5M1P

0.18µm process technologies. As the process scales down to smaller dimensions, the area de-

creases, rise/fall times decrease, propagation times decrease, maximum frequency increases,

76

−20−10 0 10 20

Time [ps]

0

5

10

15

20

25

C
o
u
n
t

σ = 10.47 ± 0.74 ps

Rising Edge

−20−10 0 10 20

Time [p�]

σ = 10.15 ± 0.72 ps

Falling Edge

(a) Jitter histogram

−3−2−1 0 1 2 3

Normal Quantile

−40
−30
−20
−10

0
10
20
30
40

Ji
tt

e
r

Q
u
a
n
ti

le
 [
p
s
] Rising Edge

−3−2−1 0 1 2 3

Normal Quantile

Falling Edge

(b) Normal QQ plot

Figure 3.16: Jitter histogram and quantile-quantile (QQ) plot of the rising/falling edges of
MCLK of the R2V read circuit in the 3M2P 0.5µm process.

power consumption decreases, and jitter decreases. A summary of these results is given in

Table 3.9.

From this investigation, we learned that the R2V read circuit has several areas for improve-

ment. One, node N1 in the current comparator has the highest rise/fall times, creating a

performance bottleneck. A faster current comparator such as in [52] can be used to im-

prove performance. And two, the power consumed and circuit area can be further reduced.

Transistors M1−3 must provide Imtj current flowing through it. But, transistors M4−10 could

operate on less current, thus allowing these transistors to be made smaller.

77

Table 3.9: Summary of results for the R2V read circuit.

Process

Characteristic 3M2P 0.5µm 5M1P 0.18µm
Dim. of Layout 31.35× 40.20µm 8.28× 27.27µm
Area of Layout 1, 260µm2 226µm2

fN1,3dB 67 MHz 105 MHz
tN1,r/f (10–90%) 9.275/7.767 ns 5.430/5.240 ns
tN2,r/f (10–90%) 2.702/2.694 ns 0.805/0.809 ns
tMCLK,r/f (10–90%) 0.977/0.964 ns 0.225/0.230 ns

tp,r2f/f2r 7.215/6.691 ns 4.625/2.403 ns
Pavg@10 MHz 3.15 mW 0.65 mW

σMCLK,jitter,r/f
10.47± 0.74 ps /
10.15± 0.72 ps

8.67± 0.62 ps /
12.70± 0.90 ps

r = rise, f = fall

78

Chapter 4

MTJ Read Circuit Experimentation

in 0.5µm Process

A test chip was designed and fabricated in the 3 metal 2 poly (3M2P) 0.5µm process for

testing the MTJ read circuit designed in Chapter 3 and to evaluate the feasibility of mag-

netic global clocking. The design was done using the Cadence Design Environment tools

and simulated using the Spectre simulator. The chip was designed such that the magnetic

tunnel junction (MTJ) devices can be replaced with resistors, thus allowing testing without

MTJs. Due to us being unable to attain MTJs for testing, we are therefore limited to only

experimentally testing the MTJ read circuit (which can use resistors) but not the magnetic

global clocking (which needs actual MTJs for sensing the magnetic field).

In this chapter, we first describe the prototype chip containing test circuits for testing the

read circuit and magnetic global clocking, and then describe the test setup and infrastruc-

ture which includes a custom printed circuit board (PCB), a field-programmable gate array

(FPGA) board with custom firmware, and custom software to control the test setup. Last,

we present performance results from experimentation of the MTJ read circuit.

79

4.1 Prototype chip

The prototype test chip, implemented in a complementary metal-oxide semiconductor

(CMOS) process, is designed to test the MTJ read circuit and magnetic global clocking

with circuitry dedicated to each. An overview of the chip is shown in Figure 4.1. This

chip has dimensions 1.5 mm x 3.0 mm, which is the size of 2 tiny chips in the 3M2P 0.5µm

process. There are 58 total assigned pins with 8 pins on the bottom for MTJ wire bonded

connections. Each pin can be defined as either analog (a) or digital (d), and as an input (in),

output (out), or in/out (io). Therefore, e.g. a pin labeled as “(ain)” represents an analog

input pin.

The test chip contains 4 quadrants and the common circuitry. Each quadrant contains a

magnetic sense circuit (MSC), a shift register (SR), a 2x1 clock input select multiplexer for

the shift register, and a 4x1 data input select multiplexer for the shift register. Collectively, a

single quadrant forms a local “clock domain”. The common circuitry contains biasing circuits

(Biasing), a configuration shift register (Config SR), a bank of phase detectors (PD), a 4x1

voltage analog multiplexer (for probing the MTJ load voltage), and a 5x1 current analog

multiplexer (for probing the MTJ current from the read circuit).

The chip contains a number of pins for power, biasing, configuration, test input/outputs,

MTJ connections, and reset. Power pins include MSCVDDx (individual MSC power inputs

which can be measured in testing), AVDD (analog power), DVDD (digital power), GND

(ground), and MTJGND (the ground for the MTJ devices). One biasing pin, IBUF_BIAS,

is a biasing current that biases the MTJ load voltage buffer. Configuration pins include

SIN (serial input), SOUT (serial output), and SCLK (serial clock). Test input pins include

CLKIN (clock input), SRINx (serial register input), ITHx (threshold current), and VBIAS

(common bias or reference voltage for all read circuits). Test output pins include SROUTx

80

Figure 4.1: Prototype test chip schematic (overview). The test chip has dimensions 1.5 mm
x 3.0 mm (2 tiny chips) with 58 total assigned pins and 8 pins on the bottom for MTJ wire
bonded connections. The chip is divided into 4 quadrants, each containing a read circuit,
and the common circuitry in the middle with a configuration register and additional test
circuitry.

81

Figure 4.2: Chip bonding diagram. The CMOS test chip is fabricated in the size of 2 tiny
chips (3.0 mm x 1.5 mm) and wire bonded to a die with fabricated MTJ devices.

(serial register output), MCLKx (magnetic clock output), PDxy (phase detector output),

IOUT_MUX (multiplexed read circuit output current), and MTJOUT (multiplexed MTJ

load voltage buffered output). MTJ connection pins are the bottom 8 MTJx+/- pins. And

one reset pin, RST, performs a global, asynchronous reset of all digital circuits (which include

the configuration register in the common circuitry and all shift registers in the quadrants).

The configuration register is located in the common circuitry and consists of a chain of D

flip-flop registers that form a shift register. It is programmed and read via the SIN, SOUT,

and SCLK pins. This register is used to configure multiplexers and switches on the chip that

control test circuits for testing the read circuit and magnetic global clocking. The register is

logically divided into sections for configuring the common circuitry and each quadrant. In

the common circuitry, there are multiplexers for reading out the buffered MTJ load voltage

and the MTJ read current from one of the quadrants. In each quadrant, there are switches

that control the MSC, and multiplexers for selecting clock and data input sources for the

shift registers.

The chip is designed to be wire bonded to MTJs that have been fabricated on another die.

The setup for this is shown in Figure 4.2 where the CMOS chip is arranged longways on the

left and the die containing the MTJs on the right. The MTJs are then wire bonded to the

MTJ pins on the CMOS chip. This setup allows the CMOS chip and MTJs to be fabricated

separately with connections made post-fabrication. Fabrication of MTJ devices directly on

the CMOS die has been demonstrated by Durlam et al. [1].

82

4.1.1 Read circuit testing

The read circuit is contained in the magnetic sense circuit (MSC) of each quadrant. The

MSC, shown in Figure 4.3, interfaces with an MTJ device or other resistive load and generates

the output MCLK. The MTJ device is interfaced through the MTJx+/- pins located at the

bottom of the chip. MTJ+ connects into the MSC whereas MTJ- connects to ground supplied

by the MTJGND pin. The MSC consists of the read circuit, a bank of input sources, a bank

of capacitors, and an output buffer. The read circuit, which is shown in Figure 3.11, has three

inputs: the MTJ load (MTJ_LOAD), the VBIAS voltage, and the ITH threshold current.

The MTJ load is connected to a network of switches that allow different resistive sources

and load capacitances to be connected to the read circuit. This voltage can be monitored

during testing via the MTJ_BUF output. The VBIAS voltage in the read circuit pins the

voltage over the MTJ load. This in turn produces a current through the MTJ load which is

compared to the ITH threshold current. The result of this comparison produces the digital

logic voltage output at MCLK.

There are 11 switch options that are programmable in the MSC via the configuration register.

Switches S0 – S2 control the input source selected. Switch S3 controls the connecting of the

next section of switches. Switches S4 – S9 control the amount of extra load capacitance that

can be added to the MTJ load. And, switch S10 controls the connecting of the output buffer

for monitoring the MTJ load node voltage. Switches S1 and S2 connect a pair of integrated

(i.e., internal) resistors and external resistors, respectively, that can be toggled within a pair

via the CLKIN pin. This is done using decode logic, shown in Figure 4.4, which splits S1

and S2 into pairs of signals, producing S1L, S1H, S2L, and S2H. These in turn drive the

switches in the MSC.

83

Figure 4.3: Magnetic sense circuit (MSC). This consists of a read circuit, a bank of input
sources, a bank of capacitors, and an output buffer.

Figure 4.4: MSC decode logic. This logic decodes the S1 and S2 select signals further based
on the logic value of the CLKIN signal to select which resistor in a pair is active.

84

Each switch has an associated “on” resistance that is added in series with the connection

it makes. This resistance varies depending on the size of the transistor implementing the

switch. Increasing W/L of the transistor reduces this “on” resistance. This is only necessary,

however, for switches that must carry current or need to switch quickly. Since switches

S0 – S9 have this requirement, large transistors are used to implement them (W
L

is 45µm
0.6µm)

with an “on” resistance of ≈ 41 Ω. Switch S10 carries no current and therefore is designed

with minimum size.

In the MSC, there are three input sources that can be selected for the MTJ load: MTJ+ pin,

integrated resistors, and external resistors. S0 selects the MTJ+ pin which is the wire bonded

connection to the MTJ. S1 selects the integrated resistors which are integrated on the chip

and have nominal values RL = 500 Ω and RH = 1 kΩ. The bottom of the integrated resistors

are connected to MTJGND. Last, S2 selects the external resistors which are settable off-chip

via the EXRL (low resistance) and EXRH (high resistance) pins. These different modes of

selecting the input provide the capability of testing the read circuit with and without MTJs.

The load capacitance bank provides the capability to add extra capacitance to the MTJ load

by enabling switch S3 and programming the amount of capacitance by switches S4 – S9. The

capacitance bank can be programmed from 0 to 31 with a unit capacitance of C = 1 pF,

thus allowing a range of 0 to 31 pF of extra capacitive load. This provides a way to test the

relative insensitivity of the input node to capacitance as was determined as a result of the

analysis in Section 3.1.

The MTJ load voltage can be monitored from the MTJ_BUF output by enabling switches S3

and S10. This in turn connects the buffer to the MTJ load voltage, which allows it to be read

off-chip. The buffer is implemented as a P-source follower and incurs a gate-to-source offset

in the voltage output. The amount of offset depends on the biasing of the P-source follower.

85

The P-source follower is biased by sourcing a current into the source of the transistor which

is set via the current supplied into the IBUF_BIAS pin. Disabling S10, the buffer is driven

with ground potential allowing the offset to be measured.

4.1.2 Global clock testing

In a magnetic global clocking system, read circuits distributed on a chip can be used to

generate multiple clock signals that are synchronous to a global magnetic clock. Variations

in the MTJ devices and transistors, circuit noise/jitter, and wire delays can all contribute to

clock skew or phase delay between clock signals. To measure this phase delay and test global

clocking, we have developed the test chip with multiple distributed read circuits and a phase

detecting circuit. The test chip, shown earlier in Figure 4.1, is designed with four quadrants,

each containing a read circuit (which is interfaced to an MTJ), a digital shift register, and

two multiplexers (for selecting data and clock input sources to the shift register); and a phase

detector circuit located in the center of the chip (for measuring phase delay between read

circuits).

The read circuit senses an oscillating global magnetic field and produces a digital clock

output called MCLK. The digital shift register shifts a bit pattern and is clocked by either

CLKIN (from a pin) or MCLK (from the read circuit) through the clock multiplexer. The

data input can be the SRINx pin of the quadrant or the output of the digital shift register

of another quadrant selectable by the data multiplexer. This programmability in the data

input allows interconnections to be made between quadrants, thus allowing global clocking

to be tested with a long shift register formed by these interconnections.

The digital shift register in the quadrant, shown in Figure 4.5, consists of four D flip-flops

which are clocked synchronously by CLK (the clock input set via the clock multiplexer) and

86

Figure 4.5: Digital shift register. This is constructed using a chain of four D flip-flops which
are clocked synchronously by CLK and reset globally by RST.

reset globally by RST. The shift register can easily be tested in the lab for correctness by

supplying a bit pattern at the input and observing the same bit pattern at the output. A

string of shift registers formed by interconnections between each quadrant (for testing global

clocking) can be tested for correctness in the same way.

Phase measurements are made between read circuits by the phase detector circuit located

in the center of the chip. The main purpose of the phase detector is to measure large phase

differences due to process variations in the MTJs or in the read circuits. The output of each

read circuit is routed to the phase detector using equal length wire runs in order to have

equal propagation delay of the distributed clock (i.e., the global magnetic field). The phase

detector is designed using an array of symmetric XOR gates followed by buffers. The XOR

gates are designed to be symmetric so that they will produce the same pulse output whether

rising or falling edges occur, or whether one input arrives first or the other. The buffer is

designed to drive a pin capacitance of 8 pF with 1 ns rise/fall time.

The range of the phase detector sets the smallest phase difference that can be detected.

Since the speed of the buffer affects the pulse output, we consider the range of both the

XOR gate and the buffer. A plot of the simulated phase detector response is shown in

Figure 4.6. The input phase delay is set by adjusting the time between input resistance

changes. The pulse width is measured by determining the difference in time of the rising

and falling edges at the VDD/2 voltage crossing point. In the plot, the response becomes

non-linear at small pulse widths due to the pulse being too short to charge all the way to

87

P
u
ls

e
 w

id
th

 [
n
s
]

0

2

4

6

8

y = 1.004x + 0.1030 ns

XOR output

0 1 2 3 4 5 6 7

Input phase delay [ns]

0

2

4

6

8

y = 1.012x − 0.0165 ns

Buffer output

Figure 4.6: Simulated phase detector response plot in the 3M2P 0.5µm process. The top
plot shows the XOR output which detects as low as 0.25 ns and is linear above 0.4 ns. The
bottom plot shows the buffer output which detects as low as 1.25 ns and is linear above 2 ns.

VDD. With this in mind, the smallest detectable pulse width is 0.25/1.25 ns for the XOR and

buffer outputs, respectively and are linear above 0.4/2 ns. The resistance-to-voltage (R2V)

read circuit jitter, measured in simulation at σ ≈ 10 ps (see Section 3.3.4) is insignificant

compared to the smallest detectable phase delay. Hence, we anticipate any measured phase

delay to be principally due to variations in MTJ devices.

4.1.3 Fabrication

The prototype test chip was fabricated in the 3M2P 0.5µm process to produce five chips

for testing. The layout of the chip is shown in Figure 4.7. Three chips were packaged and

wire bonded by the manufacturer while the remaining two chips were left unpackaged (dies

only). The three packaged, wire bonded chips are for testing the chip without MTJs with

the MTJx+/- pads on the die wire bonded to package pins for testing purposes. The two

unpackaged dies are for manually packaging and wire bonding the chip with MTJs connected

directly to the MTJx+/- pads on the die.

88

Figure 4.7: Prototype test chip layout.

89

Figure 4.8: System overview of test setup. This includes a personal computer (PC) with
software to control the test setup, an FPGA board with custom firmware to communicate
with the PC and generate test signals to the custom printed circuit board (PCB), and the
custom PCB to interface to the fabricated test chip.

4.2 Test setup

We have developed testing infrastructure for testing the fabricated prototype chip. An

overview of the system is shown in Figure 4.8 which includes a personal computer (PC), an

FPGA board, and a custom printed circuit board (PCB). The PC controls the entire test

setup. Software written on the PC initializes the FPGA, PCB, and test chip; and controls

experimentation of the circuits on the test chip. The PC interfaces to the FPGA board via

a universal serial bus (USB) link. The FPGA board has I/O connectors that connect to the

custom PCB that hosts the test chip. All test signals to the PCB and test chip are generated

by the FPGA. The PCB hosts the test chip and contains test circuitry for supplying the

necessary bias voltage, bias current, threshold currents, etc. to the test chip. Test points are

provided on the PCB to observe signals to and from the test chip.

Parameters that can be set

There are several parameters that can be set in the system, shown in Table 4.1. The valid

values of each parameter are given in the table. VBIAS is the bias voltage that is common to

all read circuits in the test chip. This voltage pins the voltage over the MTJ load or resistance

source, which sets the current flowing through the resistance. ITH is the threshold current

90

Table 4.1: Parameters that can be set.

Parameter Values Description

VBIAS 0 to 2 V Common bias voltage
ITH<0:3> 0 to 575µA Quadrant threshold current
IBUF_BIAS 0 to 340µA Common buffer bias current

CLKIN DC to 50+ MHz Clock in test signal
Resistance
source<0:3>

Integrated, external resistors,
and/or MTJ

Quadrant resistance source(s);
multiple selectable

Capacitance
load<0:3>

0 to 31 pF Quadrant extra capacitance
load added to MTJ load node

Data mux<0:3> Local SRIN or another
quadrant SROUT

Quadrant shift register data
input multiplexer

Clock mux<0:3> CLKIN, MCLK Quadrant shift register clock
input multiplexer

IOUT mux Quadrants 0 to 3 or
unconnected

Output current multiplexer

MTJ_OUT mux Quadrants 0 to 3 MTJ load output multiplexer

which is settable for each quadrant, and used to compare the output current to produce

a digital logic voltage output. IBUF_BIAS is a buffer biasing current that is supplied

once into the chip and mirrored to each buffer (one in each quadrant) for reading out the

MTJ load node voltage. CLKIN is the clock input signal and is programmable from DC to

approximately 50 MHz.

The resistance source is selectable via switches in each quadrant as was previously shown

in Figure 4.3. These switches (S0 – S2) are programmed via the configuration register and

can allow 0, 1, or more resistance sources to be connected. The capacitance load is a

bank of capacitors that can be added to the MTJ load node. The data multiplexer selects

which data input to connect to the shift register in the quadrant. The clock multiplexer

likewise selects which clock input to connect to the shift register in the quadrant. The IOUT

91

multiplexer selects which IOUT (output current from the read circuit) to supply out to a pin

for measurement. Last, the MTJ_OUT multiplexer selects which MTJ_OUT (the buffered

MTJ load node voltage) is brought out to a pin for measurement.

Signals that can be measured

The following is a (non-comprehensive) list of signals that we can measure in our test setup:

• Current flow into the MSC of a quadrant

• Direct voltage of the MTJ load node under certain conditions

• IOUT of a quadrant (the output current)

• MTJOUT of a quadrant (buffered MTJ load node voltage)

• MCLK of a quadrant (magnetic clock output from read circuit)

• SROUT of a quadrant (digital shift register output)

• PDxy (phase difference between xy combination of MCLKs)

• SOUT of the configuration register (serial output)

Direct voltage measurement of the MTJ load node is possible since it can be accessed through

a switch with zero current flow. Therefore, activating a switch in Figure 4.3 that is unused

and accessible outside of the chip (e.g. S0 or S2) can be used to take a direct voltage

measurement.

92

Figure 4.9: Custom printed circuit board (PCB) for testing and interfacing to the prototype
test chip. The test chip is populated into a PGA65 socket on the board. On the bottom
side, the PCB is connected to an FPGA board.

4.2.1 PCB design

The PCB is a custom board designed in Cadence Allegro PCB Designer and manufactured

using Sunstone PCBexpress. This board is needed in order to test and interface to the

prototype test chip and is shown in Figure 4.9. It provides test circuitry for supplying the

necessary power supplies, bias voltage, bias current, threshold currents, etc. needed to test

the prototype test chip. The chip is seated into a PGA65 socket that is soldered onto the

board. The socket allows the chip to be inserted and removed as needed which also allows

multiple chips to be tested.

There are two serial-input, voltage-output digital-to-analog converter (DAC) chips on the

PCB: a single-channel DAC that sources VBIAS, and an 8-channel DAC that sources voltages

that generates the ITH<0:3> and IBUF_BIAS currents for the test chip. The currents are

generated using bipolar junction transistors (BJTs). For an individual BJT, the output

voltage from the 8-channel DAC drives the base of the BJT through a series resistor. This

in turn produces an emitter current through the BJT that is a function of the base current.

The DAC code needed to produce a desired current can be determined by performing a

calibration of the DAC code to an observed output current. This is done later in software

in Section 4.2.3.

93

Two 80-pin I/O connecters are placed on the PCB to connect to the FPGA board. The two

boards then connect together vertically via these connectors. This allows test signals to be

generated by the FPGA that can be used on the PCB. The FPGA operates at 3.3 V and

some components, like the test chip, operate at 5 V. Therefore, logic level translation chips

are needed to translate between these two voltage levels. The logic level translation chips

used on the PCB are bidirectional.

The PCB supplies power using four voltage regulators. These are digital 3.3 V, analog 3.3 V,

digital 5 V, and analog 5 V. The analog and digital power supplies are isolated so as to

prevent digital circuits from inducing noise in the analog power supply due to switching.

Power is distributed on the PCB via a partitioned power plane where each partition dis-

tributes a separate power net. The test chip also uses multiple power supplies that isolate

analog and digital power, and the power to each MSC in the quadrants. Isolating the power

to each MSC allows individual power measurements to be taken of the read circuit during

experimentation. Jumpers are placed on the PCB for each MSC power supply to allow cur-

rent measurements to be taken using a multimeter. Power can then calculated as voltage

times current.

External resistors for the read circuit are wired on the PCB board via two 16-pin sockets.

The RL resistors for all four quadrants are supplied via one socket, and the RH resistors for

all four quadrants are supplied via the other socket. Equal length wire runs are made from

the sockets to the test chip pins so as to keep equal wire resistance and propagation delay.

This is done in the layout editor by specifying an electrical constraint on the layout.

The MTJ+ connection in the test chip is also brought out to a pin for each quadrant. To

access these inputs, axial resistor footprints are placed on the PCB that are connected to

the MTJ+/- pins of the chip. These connections are routed with equal length wire runs.

94

Test points are placed on the PCB that give access to various input and output signals that

are desired during testing. These include MCLK<0:3>, SROUT<0:3>, SOUT, MTJOUT,

CLKIN, and PDxy. The wire runs for MCLK<0:3> are also made using equal length

wire runs.

4.2.2 FPGA board

The FPGA board is an XEM6010 USB integration module manufactured by Opal Kelly [53]

based on the Xilinx Spartan-6 FPGA. This board interfaces to the PCB via two 80 pin I/O

connectors that connect FPGA pins to PCB signals and to the PC via a USB controller that

allows the FPGA to transfer data to/from the PC.

FPGA firmware is written to receive commands from the PC and to interface with the

PCB to configure components and generate test signals. Hardware modules are written to

accomplish this. Commands sent by the software on the PC are received by a command

module on the FPGA. The command module contains a finite-state machine that processes

and executes the commands. The commands include configuring two DACs on the PCB that

program VBIAS, ITH<0:3>, and IBUF_BIAS; programming the configuration register in

the test chip; generating the CLKIN signal used to stimulate the read circuit in the test chip

for experimentation; and sending reset to the test chip. The two DACs and configuration

register are programmed via a serial peripheral interface (SPI) which is handled by an SPI

module on the FPGA for each of them. This module receives data from the command module

and serially shifts the data into the target component which programs it.

The CLKIN signal is generated from one of five sources selectable via a multiplexer. The

five sources are (1) a 250 kHz fixed frequency clock, (2) a programmable clock derived from

the FPGA clock (running at 100 MHz) using a divide-by-n counter, (3) the logic 0, (4) the

95

logic 1, and (5) a phase-locked loop (PLL) programmable clock. The PLL programmable

clock is provided on the FPGA board and is programmable with parameters P , Q, and

a divider, Div, such that the resultant frequency is 48 MHz × P/ (Q ·Div). Appropriately

selected parameters allow for a wide variety of frequencies that can be generated, particularly

high frequencies above 1 MHz nearing the FPGA clock frequency that cannot be generated

by the divide-by-n counter.

4.2.3 Software

The PC interfaces with the FPGA board via a USB link and provides high-level test control

for the system. The software on the PC is written in Python. Opal Kelly provides an

application programming interface (API) library that contains methods to interface directly

with the hardware modules on the FPGA. We use this library in our Python software to

build the high-level test control of the system.

The Python software consists of three parts. The first part is a board class and sub-classes

that provide high-level methods for interfacing to the FPGA, PCB and test chip. They

provide high-level test control of the entire system. The second part is calibration. The

DACs on the PCB are used to generate voltages and currents, however, the input to each

DAC is a code. Calibration of the DAC code to the generated voltage or current allows us

to specify a function that can map a desired voltage or current back to the necessary DAC

code. This allows us to provide methods in the board class that can take these voltages and

currents as input and directly produce them on the PCB for the test chip. The third part is

testing. With a written board class, test functions can now use the board class to setup the

test chip, configure parameters, and run an experiment. Measurements can then be taken

using lab equipment.

96

The board class is the top class that interfaces to the FPGA, PCB, and test chip. It utilizes

sub-classes for accessing and programming the DAC chips and the configuration register in

the test chip. High-level methods are provided that program the CLKIN signal; that set

VBIAS, IBUF_BIAS, and ITH<0:3>; and that program the configuration register in the

test chip. CLKIN can be selected from one of five sources as was described in the previous

section. If a programmable source is used (either the divide-by-n counter or PLL), methods

are provided that can set the desired frequency by calculating the appropriate count or

algorithmically searching for the PLL parameters needed. The VBIAS, IBUF_BIAS, and

ITH<0:3> signals are set using calibration functions that calculate the DAC code needed

to produce the desired values. The configuration register is programmed from a bit string

that is constructed from several classes that model the parameters of the chip. Once those

parameters are set, the bit string can be assembled and programmed.

Calibration is accomplished by cycling through a set of DAC codes and measuring the ob-

served output. When the output is a voltage (such as for VBIAS), the input/output relation-

ship is linear because the voltage-output DAC is linear. Therefore, a simple linear regression

can be used to obtain the input/output relationship. When the output is a current (such

as for IBUF_BIAS and ITH<0:3>), the input/output relationship is non-linear. Therefore,

linear regression cannot be used. Instead, interpolation using curves (C-spline) is applied to

determine the values in-between measured points. Interpolation works well in the forward

direction when interpolating the current, but not so well in the reverse direction when inter-

polating the DAC code. To work around this, we interpolate in the forward direction, but

use a numeric solver to determine the reverse DAC code needed to get the desired current

output.

97

4.3 Experimental results

We now present experimental results for the prototype test chip on the MTJ read circuit.

4.3.1 Functional and performance testing

Functional testing

We first test the functionality of the MTJ read circuit in all four quadrants of the prototype

test chip. The read circuit in each quadrant is connected to a pair of internal resistors that

are integrated inside the chip with nominal resistance values RL = 500 Ω and RH = 1 kΩ.

The actual fabricated values of the internal resistors are measured empirically in Table 4.3.

Vbias is set to 50 mV and CLKIN is switched at fCLKIN = 250 kHz. There are four waveforms

shown in Figure 4.10 for each quadrant of the test chip. The first, Rmtj, is the input resistance

to the MTJ read circuit; the second, Vmtj, is the voltage over Rmtj; the third, Iout, is the

output current (equal to the current flowing through Rmtj); and the fourth, MCLK, is the

magnetic clock (digital) output voltage. The Rmtj and Vmtj waveforms are synthesized and

shown in green. The Iout waveform is a derived measurement and shown in dark cyan. And,

the MCLK waveform is a direct measurement from the oscilloscope and shown in blue. All

measurements captured from the oscilloscope are taken with 16 averages. The low/high

values of each waveform, as well as the nominal and threshold values, are annotated on the

plot adjacent to the waveforms.

In the operation of the read circuit, the CLKIN signal switches the input resistance, Rmtj,

low and high between two values (RL and RH). Since Rmtj cannot be directly measured, we

instead determine these values individually at DC (see Section 4.3.2 below) and then create

98

200

400

600

800

1,000

R
m
tj

[Ω
]

463

783

0.00

0.04

0.08

0.12

V
m
tj

[V
]

0.101

0.095

0.050

0

100

200

300

I o
u
t

[µ
A

]

212

115
161

−8 −6 −4 −2 0 2 4 6 8

Time [µs]

−2
0
2
4
6

M
C

L
K

[V
]

(a) Quadrant 0

200

400

600

800

1,000

R
m
tj

[Ω
]

472

796

0.00

0.04

0.08

0.12

V
m
tj

[V
] 0.071

0.067

0.050

0

100

200

300

I o
u
t

[µ
A

]

146

78
111

−8 −6 −4 −2 0 2 4 6 8

Time [µs]

−2
0
2
4
6

M
C

L
K

[V
]

(b) Quadrant 1

200

400

600

800

1,000

R
m
tj

[Ω
]

465

783

0.00

0.04

0.08

0.12

V
m
tj

[V
]

0.096

0.091

0.050

0

100

200

300

I o
u
t

[µ
A

] 201

109
154

−8 −6 −4 −2 0 2 4 6 8

Time [µs]

−2
0
2
4
6

M
C

L
K

[V
]

(c) Quadrant 2

200

400

600

800

1,000

R
m
tj

[Ω
]

460

776

0.00

0.04

0.08

0.12

V
m
tj

[V
]

0.086

0.079

0.050

0

100

200

300

I o
u
t

[µ
A

] 184

98
138

−8 −6 −4 −2 0 2 4 6 8

Time [µs]

−2
0
2
4
6

M
C

L
K

[V
]

(d) Quadrant 3

Figure 4.10: Functional test of the MTJ read circuit in each quadrant. The read circuit
is connected to a pair of internal resistors with Vbias = 50 mV and switched at fCLKIN =
250 kHz. Measurements were taken with 16 averages on the oscilloscope.

99

the Rmtj waveform with rising/falling edges determined by the CLKIN waveform and with

low/high values set to the calculated RL and RH values. The Vmtj waveform is generated

similarly with low/high values determined from DC measurements. Vmtj should nominally

be equal to Vbias which is drawn as a solid red line. However, due to second-order effects

and circuit variations, we can see in the plots that Vmtj is higher than the nominal value and

varies significantly between quadrants. This accounts for the variation in the output current

which scales by this voltage.

The Iout waveform is derived based on the voltage over a load resistor measured on the

oscilloscope. In the test setup, IOUT_MUX is a pin that comes out of the test chip. It

is connected to a load resistor with a value of Rload = 4, 669 Ω. The current therefore is

calculated as Viout,mux/Rload where Viout,mux is the voltage over the load resistor and at the

IOUT_MUX pin. Inverting Rload, we get 1/Rload = 214.2µf, which is a factor by which

Viout,mux can be multiplied to calculate the Iout current in µA. For each quadrant, the Iout

waveform is low or high, depending on Rmtj. An appropriate mid-way threshold current, Ith,

is chosen for each and is indicated as a dashed red line. The MCLK waveform is directly

measured from the oscilloscope which shows the successful logical reading of the Rmtj input

resistance.

We simulated the read circuit earlier in the transient response plot shown in Figure 3.13.

The Vbias used in that simulation was different, equaling 0.1 V. This means that we cannot

do a quantitative comparison between the two results, but rather a qualitative one. We can

see that the transient response of the measured results of the physical test chip are essentially

the same as that shown in simulation. Rmtj is stimulated in the same way. Vmtj, through

feedback, is set near to the Vbias voltage. Iout shows a similar response. And, MCLK shows

the same square wave response. Of some of the differences, the measured internal resistors

on the test chip are all lower than the nominal values in simulation. The measured Vmtj

100

voltage on the test chip tends to show higher values above the nominal than in simulation.

This consequently results in a higher measured Iout current on the test chip. And, the

measured Vmtj voltage shows significant variation between quadrants on the test chip. With

an appropriately chosen Ith threshold, both simulation and measured results produce the

same MCLK output.

Performance testing

Next, we test the performance of the read circuit using external and internal resistors to

see how fast the read circuit can be clocked and still give a stable MCLK waveform output.

Note, in our test setup, CLKIN is designed to operate at a maximum of 50 MHz.

The first performance test of the read circuit uses external resistors with values RL = 498 Ω

and RH = 995 Ω. In the test setup, Vbias = 0.1 V, Ith = 237.5µA, and 64 averages are

taken from the oscilloscope trace. These input clock frequency is gradually increased until

the MCLK output waveform is no longer stable. The highest stable clock frequency found

with no jitter on the oscilloscope trace was fCLKIN = 43 MHz. The results are shown in

Figure 4.11. In this figure, CLKIN is the input clock which toggles the input resistance

low/high, MCLK is the magnetic clock output signal from the read circuit, and the dashed

gray lines are the power supply rails. The figure shows that the quality of the square wave

for both CLKIN and MCLK is diminished at 43 MHz, but is still producing a correct result.

The second performance test of the read circuit uses internal resistors with measured values

RL = 466 Ω and RH = 789 Ω. In the test setup, Vbias = 0.1 V, Ith = 263µA, and there

is no averaging of the oscilloscope trace. The input clock frequency is again gradually

increased until the MCLK output waveform is no longer stable. The highest stable clock

frequency found with no jitter on the oscilloscope trace was fCLKIN = 48 MHz, which is

101

−4

−2

0

2

4

6

8

C
L
K

IN

[V
]

−80 −60 −40 −20 0 20 40 60 80

Time [ns]

−4

−2

0

2

4

6

8

M
C

L
K

[V
]

Figure 4.11: Performance test of the MTJ read circuit in quadrant 0 for external resistors at
43 MHz. The external resistors are measured at RL = 498 Ω and RH = 995 Ω. Vbias = 0.1 V
and Ith = 237.5µA with 64 averages. CLKIN is the input clock, MCLK is the output of the
read circuit, and the gray dashed lines are the power supply rails.

shown in Figure 4.12a. Pushing the clock frequency further, and above the maximum design

specification of 50 MHz, we start to get jitter in the MCLK waveform. We are able to go as

high as fCLKIN = 57 MHz with jitter while still producing a valid MCLK waveform output

that goes rail-to-rail. This is shown in Figure 4.12b. Again, in these figures, CLKIN is

the input clock, MCLK is the magnetic clock output signal from the read circuit, and the

dashed gray lines are the power supply rails. We can see in the 48 MHz plot that MCLK

still resembles a square wave somewhat, but looks like a triangle wave in the 57 MHz plot.

Using these performance plots, we can now empirically measure the propagation delay from

input to output and compare these results to those predicted in simulation. To do this,

we measure two propagation delay values. One is from the rising edge of CLKIN to the

falling edge of MCLK labeled as tp,rise2fall. The other is from the falling edge of CLKIN to

the rising edge of MCLK labeled as tp,fall2rise. We do this for the performance plot with

external resistors at 43 MHz and the performance plot with internal resistors at 48 MHz,

102

−4

−2

0

2

4

6

8

C
L
K

IN

[V
]

−80 −60 −40 −20 0 20 40 60 80

Time [ns]

−4

−2

0

2

4

6

8

M
C

L
K

[V
]

(a) fCLKIN = 48 MHz

−4

−2

0

2

4

6

8

C
L
K

IN

[V
]

−80 −60 −40 −20 0 20 40 60 80

Time [ns]

−4

−2

0

2

4

6

8

M
C

L
K

[V
]

(b) fCLKIN = 57 MHz

Figure 4.12: Performance test of the MTJ read circuit in quadrant 0 for internal resistors at
two clock frequencies. The internal resistors are measured at RL = 466 Ω and RH = 789 Ω,
Vbias = 0.1 V, and Ith = 263µA with no averaging. CLKIN is the input clock, MCLK is the
output of the read circuit, and the gray dashed lines are the power supply rails. On the left
is the max stable frequency with no jitter in MCLK. On the right is the max frequency that
MCLK is valid but has jitter.

which both have a stable MCLK waveform output. The results of these measurements

are shown in Table 4.2. From these results, we can observe that the external resistors

have higher propagation delays than the internal resistors. This is reasonable because the

external resistors have additional wire resistance and capacitance for the connection off-chip

that can slow down the read circuit. Comparing these results to the simulation results in

Table 3.8, we can observe that the measured propagation delays are about twice as large

as the simulation results. The simulation results, repeated here, are tp,rise2fall = 7.215 ns

and tp,fall2rise = 6.691 ns in the 3M2P 0.5µm process. These measured propagation delays

compared to simulation are also reasonable because there are many real-world effects missing

in simulation that add delay in the physical measurement.

103

Table 4.2: Measured propagation delay of the read circuit in the test chip using external and
internal input resistances.

Performance Tests

Characteristic External @ 43 MHz Internal @ 48 MHz
tp,rise2fall 16.99 ns 12.43 ns
tp,fall2rise 15.26 ns 11.97 ns

Power measurements

Last, we experimentally measure the power consumed by the read circuit by (1) doing a

static analysis, and (2) dynamically generating CLKIN with a square wave and measuring

the power via a pin. There are four MSCVDD power pins, one for each quadrant, that provide

a way to take direct power measurements of the read circuit in each quadrant of the test

chip. The MSCVDD power supply is internally connected to the read circuit and the output

current transistors (which are accessible via the IOUT_MUX pin). Power measurements can

be taken by measuring the average MSCVDD voltage and current during circuit operation.

To exclude dynamic power effects due to switching, the circuit is tested at low frequency

(1 kHz). This causes the power due to the output buffer to be negligible (with nearly zero

current flow).

We start by doing a static analysis of the circuit. For our test setup, we use internal resistors

in quadrant 0 with nominal values 500 Ω and 1 kΩ (the actual resistances are estimated to be

RL = 466 Ω and RH = 789 Ω). Vbias = 0.1 V and Ith = 263µA. Then, we directly measure

the power supply voltage to be VDD = 4.989 V, and the current through the low/high

resistances to be IRL,out = 328.1µA and IRH,out = 187.6µA. Also in our test setup, the

IOUT_MUX current is connected from the read circuit in the quadrant to the PCB via an

internal multiplexer. This will contribute to the total power and must be taken into account.

104

We can calculate the total power as (current conveyor + current comparator + IOUT_MUX

current)·VDD. In each term of this expression, we need to calculate the average current

flowing.

The average current flowing through the current conveyor is the average of IRL,out and IRH,out

times two (since there are two branches). This gives the following equation:

Icurrent,conveyor = IRL,out + IRH,out. (4.1)

Next, the average current flowing through the current comparator is the average of the

smallest current, IRH,out, and the threshold current, Ith. This is because the current flow in

the current comparator is limited by Ith. We then get the following equation:

Icurrent,comparator = IRH,out + Ith
2 . (4.2)

Last, the average current flowing out from the IOUT_MUX pin is

Iout,mux = IRL,out + IRH,out
2 . (4.3)

From these three expressions, total power is then calculated as

Ptotal = (Icurrent,conveyor + Icurrent,comparator + Iout,mux) · VDD

=
(

(IRL,out + IRH,out) +
(
IRH,out + Ith

2

)
+
(
IRL,out + IRH,out

2

))
· VDD

=
(3

2IRL,out + 2IRH,out + 1
2Ith

)
· VDD (4.4)

= 4.98 mW. (4.5)

105

Note, this equation does not include the output buffer which we can neglect because our

power measurements are performed at low frequency.

Next, we measure the power using a dynamic test by generating CLKIN with a square wave

and measuring the average current flowing into the MSCVDD pin for quadrant 0. For the

CLKIN square wave, we set the frequency to fCLKIN = 1 kHz. We then measure the average

current flowing into MSCVDD to be 994µA. Multiplying this by the VDD power supply

voltage measured above, we get a total power of 4.96 mW. This value is nearly identical to

the total power calculated in the static analysis in (4.5), which verifies that our equations

above are correct and that the read circuit is operating as expected.

What we are really interested in is the total power of the read circuit without the IOUT_MUX

current. To calculate this, we merely exclude that term from the static analysis above. Doing

so gives the following revised equation and result:

Ptotal = (Icurrent,conveyor + Icurrent,comparator) · VDD

=
(

(IRL,out + IRH,out) +
(
IRH,out + Ith

2

))
· VDD

=
(
IRL,out + 3

2IRH,out + 1
2Ith

)
· VDD (4.6)

= 3.70 mW. (4.7)

This result is comparable to our earlier simulation result in Section 3.3.3 of 2.59 mW, although

it is higher. The measured power is higher because the input resistances and the Vmtj voltage

on the fabricated chip are higher than expected. This consequently produced high output

currents, resulting in a higher average power measured on the chip.

106

4.3.2 Static measurements

Next, we take static measurements to learn about the static characteristics and response of

the read circuit.

Internal resistor value estimates

The internal resistors in each quadrant of the test chip are designed to be nominally RL =

500 Ω and RH = 1 kΩ and are in series with a transistor switch. Due to the resistance

added by the switch and variability in the fabrication process, their actual measured values

are something different. We can determine the effective resistance values empirically by

measuring the Vmtj node voltage and the Iout current, and then calculating the resistance

as Rmtj = Vmtj

Iout
. The Vmtj node voltage is measured directly by first enabling the external

resistor or MTJ connection in the MSC and then measuring the voltage via that connection.

Since there is zero current flow, the measured voltage will accurately represent the Vmtj node

voltage. The Iout current is measured directly using an ammeter via the IOUT_MUX pin.

The estimated internal resistor values for both low (RL) and high (RH) resistances are shown

in Table 4.3. They are determined across values of Vbias and all four quadrants of the test

chip (indicated by Q0-3) and are measured to be within 466±6 Ω and 787±11 Ω, respectively.

The estimated values for both RL and RH are shown to be less than their nominal values by

varying amounts. This contributes to higher output currents than otherwise expected. As

Vbias varies, we can observe that the internal resistor values vary only slightly. This variation

occurs due to the non-linear resistance of the series switch and second order effects in the

Iout current that are dependent on Vbias (i.e., the Iout current is not a perfect copy of the

MTJ current). Between quadrants, we can also observe that the resistance values vary only

107

Table 4.3: Internal resistor value estimates in each quadrant of the test chip. The estimates
are a function of Vbias and vary between quadrants. The four quadrants are indicated by Q0-3.

Nom. 500 Ω Nom. 1 kΩ
RL [Ω] RH [Ω]

Vbias [V] Q0 Q1 Q2 Q3 Q0 Q1 Q2 Q3

0.010 459 468 460 455 774 791 773 763
0.050 463 472 465 460 783 796 783 776
0.100 466 473 468 464 789 800 789 783
0.200 470 476 472 468 796 803 796 790

slightly and remain about the same. These results show that the effective internal resistance

is relatively stable across both Vbias and the chip quadrants.

Vmtj node and output buffer calibration

The output buffer in the MSC provides a way to read out the Vmtj node voltage in an indirect

way. The P-source follower incurs a gate-to-source offset in the voltage output that has to

be compensated for. The amount of offset depends on the amount of biasing current that is

passed through the P-source follower. For our test setup, we choose to use a biasing current

of 10µA. By measuring the direct Vmtj node voltage and the Vmtj,buf output voltage, a

linear regression can be performed between the two to convert the output voltage Vmtj,buf

back to the original Vmtj voltage. The Vmtj node voltage is accessed by enabling the MTJ

connection switch (S0) in the MSC. Using internal resistors, Vbias is swept from 0 to 1 V, and

the voltages Vmtj and Vmtj,buf are measured. This is performed for all four quadrants.

The result of the linear regression to calibrate Vmtj is shown in Table 4.4 with equation

Vmtj,Q = mQ · Vmtj,buf,Q + bQ (4.8)

108

Table 4.4: Vmtj node and output buffer calibration. A linear regression is performed to
convert Vmtj,buf back to Vmtj. The slope, intercept, and R2 values are shown here for each
quadrant.

Quadrant, Q Slope, mQ Intercept, bQ [V] R2
Q

0 1.0489 -1.0375 0.999946
1 1.0530 -1.0380 0.999951
2 1.0539 -1.0440 0.999960
3 1.0525 -1.0511 0.999984

where Q is the quadrant number. The table shows that the slope is close to unity with a

slight gain, the intercept is adjusting for offset in the P-source follower, and, R2 is almost

exactly 1 (out to 4 decimal places), which shows that the calibration result is a good fit.

Linearity plots

The read circuit is designed to be linear within its operating region. The current conveyor

circuit is designed to handle the current required for Vbias = 0.1 V and Rmtj = 500 Ω which

is 200µA. This is expected to be the most demanding case. Therefore, transistor sizes are

chosen to handle this current and operate in the saturation region. We test the linearity

of the read circuit by sweeping Vbias and measuring directly the Vmtj,buf voltage and Iout

current at DC using a voltmeter and ammeter. The Vmtj node voltage is then computed

using the calibration equations determined previously. The read circuit operates linearly

when Vmtj ≈ Vbias.

Linearity plots of the read circuit for internal resistors are shown in Figure 4.13. The nominal

resistor values are RL = 500 Ω and RH = 1 kΩ with measurements taken for quadrant 0. The

top set of subplots show the calculated Vmtj node voltage (measured values are indicated by

blue ×’s) with Vbias overlaid as a solid green line for comparison. The bottom set of subplots

109

0.0

0.2

0.4

0.6

0.8

1.0

V
m
tj
 [
V
]

RL, Nom. 500 Ω

0.0 0.2 0.4 0.6 0.8 1.0

Vbias [V]

0

100

200

300

400

500

600

700

I o
u
t
[µ
A

]

RH, Nom. 1 kΩ

0.0 0.2 0.4 0.6 0.8 1.0

Vbias [V]

Figure 4.13: Linearity plots of the read circuit for internal resistors with nominal values
RL = 500 Ω and RH = 1 kΩ. These are for quadrant 0. The top plot shows the calculated
Vmtj node voltage and the bottom plot shows the measured Iout current. In the top plot, the
solid green line is the ideal Vbias voltage which Vmtj should correspond to when linear.

show the measured Iout current. We can see in the top set of subplots that Vmtj is initially

linear (following Vbias), but eventually plateaus. For RL, it becomes nonlinear above about

0.2 V of Vbias, and for RH , it becomes nonlinear above about 0.4 V of Vbias. In the bottom set

of subplots, we can see that the measured Iout current follows the same curve and bend as

the Vmtj node voltage. For both values of Vbias (for each resistor), Iout corresponds to about

500µA, above which it also becomes nonlinear.

Linearity plots of the read circuit for external resistors are shown in Figure 4.14. The nominal

resistor values are 470 Ω, 1 kΩ, and 4.7 kΩ with measured values 459, 996, and 4,611Ω,

respectively. These are again for quadrant 0. We can see in the top set of subplots that Vmtj

is linear up until about Vbias = 0.2, 0.4, and 1.2 V, respectively. These correspond in the

bottom set of subplots to about Iout = 450, 400, and 250µA, respectively. These maximum

110

0.0

0.5

1.0

1.5

2.0
V
m
tj
 [
V
]

Nom. 470 Ω

0.0 0.2 0.4 0.6 0.8 1.0

Vbias [V]

0

100

200

300

400

500

600

700

I o
u
t
[µ
A

]
Nom. 1 kΩ

0.0 0.2 0.4 0.6 0.8 1.0

Vbias [V]

Nom. 4.7 kΩ

0.0 0.5 1.0 1.5 2.0

Vbias [V]

Figure 4.14: Linearity plots of the read circuit for external resistors with nominal values
470 Ω, 1 kΩ, and 4.7 kΩ. These are for quadrant 0. The top plot shows the calculated Vmtj
node voltage and the bottom plot shows the measured Iout current. In the top plot, the solid
green line shows the ideal Vbias voltage which Vmtj should correspond to when linear.

Iout currents for linear operation vary between resistor values because the linearity of the

read circuit is also a function of Vbias. Vbias and Vmtj are connected to the bottom of the

current conveyor in the read circuit. Increasing these voltages consequently decreases the

operating range of the current conveyor, which further limits Iout.

A summary of the linear range of Vbias of the read circuit for each resistor is shown in

Table 4.5. The Vbias range given in the table is approximate based on the above plots. This

shows that for low Rmtj values, the read circuit must operate at low voltage for Vbias, but,

for high Rmtj values, it can operate correctly at low or high voltage for Vbias.

111

Table 4.5: Summary of the linear range of Vbias of the read circuit for each resistor.

Type Rmtj (nom.) Vbias range (approx.)
Internal 500 Ω 0 to 0.2 V
Internal 1 kΩ 0 to 0.4 V
External 470 Ω 0 to 0.2 V
External 1 kΩ 0 to 0.4 V
External 4.7 kΩ 0 to 1.2 V

Ideal current limits for a theoretical current comparator

For a theoretical current comparator, we can predict the effective range of Ith by plotting the

Iout current for both RL and RH resistors on the same plot. This is shown in Figure 4.15 for

internal resistors for all four quadrants of the test chip with nominal values RL = 500 Ω and

RH = 1 kΩ. The Vbias range is limited on the plots to the linear range of the read circuit.

The data points each represent an experiment to measure the Iout current at varying values

of Vbias and Rmtj. The data points are connected to form two piecewise lines (one for RL

and the other for RH). They represent the ideal current limits for the theoretical current

comparator. The acceptable range of threshold currents is expected to be between these two

lines.

We can compare all four quadrants in these plots. First, we can see that they all follow the

same trend. They are each linear and increasing. And second, we can see that they are

similar in value, although they do vary slightly. At low Vbias, the Iout current can vary quite

significantly, but at high Vbias, it varies much less. This is primarily due to differences in offset

of the Vmtj node voltage for each quadrant. At Vbias = 50 mV, the Vmtj offset is measured

for RL for each quadrant to be 0.051, 0.021, 0.046, and 0.036 V, respectively. For RH , the

Vmtj offset is measured for each quadrant to be 0.045, 0.017, 0.041, and 0.029 V, respectively.

112

0.00 0.05 0.10 0.15 0.20

Vbias [V]

0

100

200

300

400

500

600

I o
u
t
[µ
A

]

RL

RH

(a) Quadrant 0

0.00 0.05 0.10 0.15 0.20

Vbias [V]

0

100

200

300

400

500

600

I o
u
t
[µ
A

] RL

RH

(b) Quadrant 1

0.00 0.05 0.10 0.15 0.20

Vbias [V]

0

100

200

300

400

500

600

I o
u
t
[µ
A

]

RL

RH

(c) Quadrant 2

0.00 0.05 0.10 0.15 0.20

Vbias [V]

0

100

200

300

400

500

600

I o
u
t
[µ
A

] RL

RH

(d) Quadrant 3

Figure 4.15: Ideal current limits for a theoretical current comparator. These plots show all
four quadrants using internal resistors with nominal values RL = 500 Ω and RH = 1 kΩ in
the linear range of Vbias (from 0 to 0.2 V).

Variation in these offsets account for significant deviation in Iout between quadrants for low

Vbias, but little deviation in Iout at high Vbias.

Current comparator threshold testing

We now test the physical current comparator in the read circuit using static measurements

to determine the operating range of the threshold current, Ith, at DC. This is done by first

selecting a value of Vbias and Rmtj to test with. This produces an output current (from

the current conveyor) that is supplied to the top branch of the current comparator. The

113

Table 4.6: Measured operating ranges of the current comparator threshold current. These
are for internal resistors in quadrant 0 with nominal resistance values RL = 500 Ω and
RH = 1 kΩ.

Vbias [V] IRH,out [µA] Ith,L [µA] Ith,H [µA] IRL,out [µA]
0.1 187.6 196.0 334.0 328.1
0.2 312.5 334.0 503.0 497.5

threshold current, which is controlled in our test setup, is supplied to the bottom branch

of the current comparator. Then, Ith is swept from low to high to determine the switching

point of the current comparator to produce a valid, stable, logic output (through the output

buffer). The result of this testing is summarized in Table 4.6.

The table shows the operating ranges of the current comparator threshold current measured

at DC that gives stable output. These measurements are for internal resistors in quadrant 0.

The output currents, IRH,out and IRL,out, are reproduced in the table for both resistances,

which represent the ideal current limits. The operating range of threshold currents are given

by Ith,L and Ith,H . Outside this range where Ith is nearly equal to Iout, the current comparator

output (through the output buffer) may become unstable and produce oscillations.

The results show that the Ith,L and Ith,H currents are near in value to the IRH,out and IRL,out

currents, respectively. There is great overlap between the two ranges, however, the operating

range of threshold currents is not a subset of the ideal current limits as might be expected.

Ith,H is greater than the upper current limit IRL,out, which maybe due to an offset in the

current comparator.

114

4.3.3 Stability and dynamic measurements

In this section, we will perform dynamic tests of the read circuit by stimulating it with a

square wave CLKIN signal and then observing the stability of the read circuit to determine

the stable region of Ith currents that it can operate within. Note, these dynamic tests will

give a stable region of Ith currents that is different from those in the static measurement

tests. The dynamic tests will capture the dynamic behavior of the read circuit.

Dynamic tests of the read circuit were performed for both internal and external resistors

with nominal resistance values RL = 500 Ω and RH = 1 kΩ for all four quadrants on the

test chip. To do this, CLKIN is set to a low frequency, and Ith is swept from low to high

current. The first (low) current to produce a correct, stable MCLK output (no oscillations

or glitching) is recorded as Ith,L. The last (high) current to produce a correct, stable MCLK

output is recorded as Ith,H . These currents form the stability region of Ith and are shown in

Table 4.7 for each experiment. For these measurements, Vbias = 0.1 V. Also reproduced in

the table are the output currents, IRH,out and IRL,out, which are the ideal current limits of

Ith. Outside of the stability region, the output shows glitching or oscillations on the MCLK

output waveform at the edge where Ith is near one of the output current limits.

We can make a number of observations in these results. One, the IRH,out and IRL,out currents

vary quite significantly between quadrants, which is primarily due to variation in the Vmtj

node voltage. Two, stable ranges are found for internal resistors for all quadrants. Three,

the stable threshold ranges of the internal resistors vary quite significant between quadrants.

There is not a clear common threshold (around the middle of the ranges) that could be set

among them all. Rather, each quadrant needs its own threshold current. This is partly

due to the variation in the offset of the current comparator in each quadrant which has

a significant effect on the output current at low Vbias. Four, the stable threshold ranges

115

Table 4.7: Dynamic stability ranges. For these measurements, Vbias = 0.1 V, and the resistors
(both internal and external) have nominal values RL = 500 Ω and RH = 1 kΩ. Testing
includes both internal and external resistors for all four quadrants.

Type Quadrant IRH,out [µA] Ith,L [µA] Ith,H [µA] IRL,out [µA]
Internal 0 187.6 221.0 304.0 328.1
Internal 1 149.7 157.0 221.0 264.3
Internal 2 182.0 202.0 258.0 314.4
Internal 3 170.8 195.0 275.0 302.2
External 0 137.5 235.0 240.0 258.8
External 1 108.9 105.0 122.0 209.2
External 2 133.8 - - 249.4
External 3 125.0 - - 239.9

of the internal resistors are pretty wide, making it easier to choose a threshold for correct

operation. And five, the stable threshold ranges of the external resistors are pretty narrow

in quadrants 0 and 1 and nonexistent in quadrants 2 and 3. This may in part be due to

extra wire capacitance and resistance of the connections to the external resistors.

Overlaying the stable threshold ranges with the ideal current limit plots, we get the plots

shown in Figure 4.16. These show all four quadrants and use internal resistors. Here, the

ideal current limits are drawn as solid blue lines. These are simply the IRL,out and IRH,out

currents plotted on the graph for RL and RH resistors, respectively. And, the measured

current limits, Ith,L and Ith,H , are drawn as green ×’s. We can see that the measured current

limits remain between the ideal current limits. This quantifies the range of current threshold

values over which the circuit operates as intended.

Next, we can drill down further to investigate what the MCLK output waveform looks like

in the stable and unstable regions. To do this, we select three values of Ith. The first is below

the low Ith,L current, but above IRH,out. The second is set midway between Ith,L and Ith,H .

116

0.00 0.05 0.10 0.15 0.20

Vbias [V]

0

100

200

300

400

500

600

I l
im

it
s
 [
µ
A

] RL

RH

(a) Quadrant 0

0.00 0.05 0.10 0.15 0.20

Vbias [V]

0

100

200

300

400

500

600

I l
im

it
s
 [
µ
A

]

RL

RH

(b) Quadrant 1

0.00 0.05 0.10 0.15 0.20

Vbias [V]

0

100

200

300

400

500

600

I l
im

it
s
 [
µ
A

] RL

RH

(c) Quadrant 2

0.00 0.05 0.10 0.15 0.20

Vbias [V]

0

100

200

300

400

500

600

I l
im

it
s
 [
µ
A

] RL

RH

(d) Quadrant 3

Figure 4.16: Dynamic stability plots showing the stable region of Ith currents. These plots
show all four quadrants using internal resistors with nominal values RL = 500 Ω and RH =
1 kΩ. The lines are the ideal current limits for a theoretical current comparator. The green
×’s are the measured current limits of the stable range for the actual current comparator in
the dynamic test.

And the third is above the high Ith,H current, but below IRL,out. We zoom in on the rising

and falling edges to observe the oscillations that occur in the unstable waveforms. These

waveforms, me

asured using an oscilloscope at the MCLK output, are shown in Figure 4.17. The rising

and falling edges of MCLK are aligned relative to the falling and rising edges of CLKIN,

respectively.

117

−2

0

2

4

6

I t
h
 =

 2
0

0
 µ
A

M
C

L
K

[V
]

OSCILLATIONS

Rising edge Falling edge

−2

0

2

4

6

I t
h
 =

 2
6

3
 µ
A

M
C

L
K

[V
]

STABLE

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

Time [µs]

−2

0

2

4

6

I t
h
 =

 3
2

5
 µ
A

M
C

L
K

[V
]

OSCILLATIONS

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

Time [µs]

Figure 4.17: Output waveforms demonstrating oscillations and stable operation for multiple
Ith currents at the rising/falling edges. This is using internal resistors in quadrant 0 with
nominal resistance values RL = 500 Ω and RH = 1 kΩ. Vbias = 0.1 V.

−20 −15 −10 −5 0 5 10 15 20

Time [µs]

−2

0

2

4

6

M
C

L
K

[V
]

Figure 4.18: Output waveform demonstrating stable operation at midway Ith = 263µA.
This is using internal resistors in quadrant 0 with nominal resistance values RL = 500 Ω and
RH = 1 kΩ. Vbias = 0.1 V.

118

In the figure, the three values of Ith chosen are 200, 263, and 325µA. Internal resistors are

used in quadrant 0 of the test chip with Vbias = 0.1 V. At Ith = 200µA, the threshold is set

low. This causes oscillations when Iout falls low to IRH,out which occurs on the falling edge of

MCLK. This is observed in the plot. At Ith = 325µA, the threshold is set high. This again

causes oscillations when Iout rises high to IRL,out which occurs on the rising edge of MCLK.

For Ith = 263µA, which is the midway threshold point, MCLK is stable on both edges. The

full waveform for this threshold current is shown in Figure 4.18. We can see that there is no

glitching or oscillations and that the read circuit is working as intended.

The current comparator in the read circuit is designed using a current source and current

sink that pull against each other. A buffer (which is two series inverters) thresholds the

internal voltage of the current comparator to produce the digital MCLK output. There is no

hysteresis built into this circuit design. Therefore, the circuit output is sensitive to the effects

of noise in the current comparator which can cause the output buffer to flip multiple times

if the internal voltage of the current comparator is near the threshold of the output buffer.

Redesigning the current comparator with hysteresis may help alleviate this problem and

extend the stable region of threshold currents in the read circuit. This may be particularly

helpful for external resistors in cases where no stable region could be found.

4.4 Summary

We were able to test the resistance-to-voltage read circuit using our fabricated prototype

test chip. The read circuit was shown to operate correctly. In the results, we see that Vmtj

follows Vbias, but with an offset. That offset accounts for a higher than expected output

current. The offset also varies between quadrants on the chip. Testing the read circuit

for performance, we found that it can operate as fast as 48 MHz using internal resistors in

119

quadrant 0 of the test chip (which was fabricated in a 3M2P 0.5µm process). Above this

frequency of switching, the output waveform is unstable.

We measured the propagation delay of the read circuit using the internal resistors to be

about 12 ns. This is on par with the simulation results at about 7 ns. We further measured

the average power consumed by the read circuit to be 3.70 mW. This also is on par with the

simulation results at about 2.59 mW. It is higher because the output currents on the test

chip were higher than expected.

We estimated empirically the internal resistor values and found that their measured values

are lower than nominal, within 466 ± 6 Ω and 787 ± 11 Ω. This is one factor that accounts

for the higher than expected output currents on the chip.

Last, we found a range of Ith over which the read circuit operates correctly to produce a

good stable waveform output. Outside of this range, Ith approaches one of the current limits

and causes the output of the current comparator to oscillate.

120

Chapter 5

Virtualization of Hardware Logic

Circuits

Virtualization of computational resources provides a way by which hardware resources can be

reused, which is commonly known as resource sharing. In magnetologic technology, an MTJ

device, which is used to construct a magnetologic gate, acts as a latch to whatever data is

written to it. This gives it the potential to act as state in the pipeline stage of a logic circuit.

We want to exploit the latching property of these fundamental magnetologic circuits for

constructing deeply-pipelined circuits, using virtualization as a means of effectively utilizing

the hardware logic. Sharing is a common technique used for utilizing available hardware

resources for computing such as DSP blocks [54], memory controllers, memory bandwidth,

and IP cores.

In this chapter, we model the performance of a virtualized fixed logic computation and tune

a schedule for optimal performance. Our interest is in supporting a set of distinct data

streams that all wish to perform the same computation. Virtualizing the logic computation

involves sharing hardware resources and context switching each distinct data stream into

the hardware. This context switch can be either fine-grained (in which context is changed

121

Figure 5.1: Hardware virtualization for N distinct data streams that perform the same
computation. The N streams are multiplexed into a shared hardware (HW) block, processed,
and then demultiplexed back into N streams.

each clock cycle) or coarse-grained (in which the state of the computation is swapped out to

a secondary memory). Good candidates for virtualization are logic computations with long

combinational paths (i.e., substantial computational requirements). We will approach virtu-

alization from this perspective of pipelining combinational logic, however, for magnetologic,

the computation is naturally pipelined and the pipeline depth is fixed.

To virtualize a function, consider the hardware block (HW) shown in Figure 5.1 that has

an Nx1 input multiplexer and 1xN output demultiplexer. This HW block is a function

implemented in custom logic. N distinct data streams (each with a dedicated input and

output port) share the single instance of the HW block. These data streams are then multi-

plexed into the custom logic block, processed, and then demultiplexed back into independent

streams. For our purposes, we are not considering I/O bound computations, but rather as-

sume there is sufficient bandwidth at the input and output ports of Figure 5.1. When the

logic function is purely combinational (i.e., feed-forward), any input from any data stream

can be presented to the HW block at any clock cycle, even if it is deeply-pipelined. In this

case, there are no constraints on scheduling. When the logic function is sequential (i.e., has

feedback) and has been deeply-pipelined, this imposes scheduling constraints. Once a data

element from a particular stream has been delivered to the HW block, the stream has to

wait a number of clock ticks equal to the pipeline depth before it can provide a subsequent

data element from that same stream.

122

Pipelined logic circuits with feedback can be context switched to compute multiple data

streams concurrently. Essentially, the circuit can be thought of as a sequential logic circuit

with pipelined combinational logic. The pipelined combinational logic adds latency and

decreases single stream throughput since it takes multiple clock cycles (corresponding to

the number of pipeline stages) to compute a single result and feed it back to the input. If

the number of pipeline stages is C, then this circuit is said to be C-slowed since a single

computation takes C times more clock cycles (often mitigated by a higher clock rate). C-

slow is a technique described by Leiserson and Saxe [21] by which each register is replaced

by C registers and then retimed to balance the registers throughout the combinational logic.

Exploiting this characteristic allows processing multiple different contexts or data streams in

a fine-grain way using the same hardware logic. The number of fine-grain contexts supported

equals the pipeline depth.

When the number of contexts to be supported, N , is greater than the pipeline depth, C,

coarse-grained context switching can be used, swapping out whatever state is stored in the

circuit to a secondary memory. In general, this will incur some cost, representing the over-

head of a context switch. While the fine-grained context switching of the C-slowed circuit

naturally uses a round-robin schedule, there are a richer set of scheduling choices available

when building a coarse-grain context switched design. In this work, we constrain our consid-

eration to round-robin schedules and explore the performance impact of the schedule period.

The general virtualized hardware configuration that we consider is shown in Figure 5.2a. An

arbitrary sequential logic circuit (i.e., the HW block) with input x, state y, and output z has

been C-slowed and augmented with a secondary memory that can load and unload copies

of state y to/from the “active” state register. N FIFO, or First In, First Out, buffers are

present at the inputs to store data stream elements that are awaiting being scheduled. The

123

Figure 5.2: (a) General virtualized hardware configuration with a C-slowed sequential logic
circuit and secondary memory supportingN data input/output streams. (b) Queueing model
of this circuit with N queueing stations (one for each data stream). Each queueing station
consists of a FIFO queue and associated server representing one virtual copy of the hardware
computation.

circuit consumes one data element (from an individual input specified by the schedule) each

clock tick.

A queueing model of this circuit can be developed to predict system performance. Inputs to

the model and model assumptions are described first. The number of input data streams is

denoted byN . Each data stream, i, is assumed to provide elements with a known distribution

and given mean arrival rate λi elements/s. We will assume the input distribution is Poisson.

The HW block logic is characterized as follows. The total combinational propagation delay is

given as tCL. The pipelining depth is C (corresponding to a C-slowed design). We model the

combinational propagation delay between the pipeline registers as a random variable X with

mean µX = tCL/C and standard deviation σX . The clock period, tCLK , is predicted by the

expectation of the maximum of the stage-to-stage delay. We assume that both the secondary

memory and input buffers operate at the clock rate of the pipeline. State transfers to/from

secondary memory take a given S clock cycles (enabling the model to support a range of

context switch overheads), and the buffers are assumed to have single-cycle enqueue and

dequeue capability (i.e, they do not limit the performance of the system).

124

With the above inputs available, we represent the performance of the context switched

hardware via an open queueing network model with effective service rates determined by the

clock frequency achievable by the C-slowed circuit. This queueing model is illustrated in

Figure 5.2b. Each individual queueing station represents one virtual copy of the hardware

computation. The arrival rate at each queue is λi elements/s.

In the sections that follow, we investigate and model the clock period of a C-slowed circuit

which will be used in the queueing model. Second, we develop queueing model equations

to predict system performance. Third, we measure empirical data for three C-slowed appli-

cations on two technologies and calibrate the clock period model and a resource model to

the data. Last, we present analytic performance model prediction results for three design

scenarios, showing different ways in which to apply the model.

5.1 Clock model

The clock period will be modeled for a C-slowed circuit. A C-slowed circuit, shown in

Figure 5.3, consists of a sequential logic circuit (i.e., a circuit with combinational logic

and a feedback path) that is pipelined with C pipeline stages. The pipeline stages are to

be distributed evenly throughout the combinational logic and have a stage-to-stage delay

modeled as a random variable. If tCL is the total combinational logic delay for a non-

pipelined circuit, then the mean stage-to-stage combinational logic delay will be tCL/C.

There is variation in the stage-to-stage delay due to the placement of logic and the routing

of signals between logic, which we will model stochastically. The clock period, tCLK , is then

determined by the worst-case logic path, which is the maximum stage-to-stage delay in the

C-slowed circuit. Therefore, we can model tCLK as the expectation of the maximum of C

samples of a random variable X where X is the stage-to-stage delay.

125

Figure 5.3: C-slowed circuit.

In the clock period model development that will follow, we start by formulating an initial

model for the expectation of the maximum of X by first using order statistics to establish

an upper bound on X based on a square root function. This bound is a general result and

gives us a starting place for developing a model. Empirical simulation will show that this

model does not match the shape of the expectation of the max very well, particularly at

a low value of C. This can be improved, however, by adding a power term to bend the

shape of the model curve. Next, we assume that X is a normal (or Gaussian) distribution

and establish a tighter bound on the expectation of the max based on the square root of a

logarithmic function. We again add a power term to allow bending the shape of the model

curve and remove the square root (which is subsumed in the power term). This model is

shown to better match the shape of the expectation of the max and is used to build the tCLK

model. The tCLK model is then evaluated with various random distributions to ensure that

it is a good curve-fit for each distribution. Last, a study is performed on tCL and σ for each

random distribution to determine their effect on the fitted power term in the model. It is

found that the power term is distribution dependent and, for some distributions, constant.

126

5.1.1 Model development of the expectation of the maximum of

C samples of random variable X

In the model development of the expectation of the max, we model the stage-to-stage com-

binational logic delay for C pipeline stages in Figure 5.4. Here, there are C random samples,

x1, x2, . . . , xC , one for each stage-to-stage delay drawn from a distribution defined by ran-

dom variable X with mean µX and standard deviation σX . The maximum delay is then

max (x1, x2, . . . , xC), which corresponds to the critical path.

Figure 5.4: Stage-to-stage delay model. Delays are modeled with random variable X.

Using bound equation from order statistics

Using order statistics [55], we can establish a bound on the expectation of the maximum of

C samples from X as

E [max (X)] ≤ µX + σX
√
C − 1. (5.1)

Note, this bound is general for any probability distribution of X and does not assume

independence or identical distribution of samples.

To see how this bound equation compares to the estimated expectation of the maximum

of X, we estimate the expectation of the max using a Monte Carlo simulation. In the

simulation, X is generated from a normal distribution, N (10, 52), across 10,000 ensembles

(where µX = 10 and σX = 5). For each ensemble, max (X) is calculated and then averaged

across all ensembles to estimate E [max (X)]. The estimated E [max (X)] and the bound

127

0 20 40 60 80 100

Number of samples, C

10

20

30

40

50

60

70

80

E[max(X)] est

µX +σX ·

�

C−1

Figure 5.5: Empirical simulation of E [max (X)] (blue) and its upper bound (green) for C
random samples. X is generated from a normal distribution, N (10, 52). For each value of
C, E [max (X)] is calculated from 10,000 ensembles.

equation is shown in Figure 5.5. The simulation shows that the bound curve trends with

E [max (X)].

Using the bound in (5.1) as a guide, the expectation of the maximum of X can be modeled

(Model 1) as

f1 (C) = k1 + k2
√
C − 1 (5.2)

where k1 and k2 are curve-fit parameters of the model. Note, we can observe that when

C = 1 in this model, then k2
√
C − 1 will be 0, and only k1 will be returned. Therefore k1

should curve fit to approximately µX .

In Figure 5.6a, we curve fit the model in (5.2) to the simulated E [max (X)]. The resulting

plot shows that the model does not match the shape of E [max (X)] very well and has an

R2 value of only 0.8681. Also, k1 = 14.9 which overestimates µX = 10. We observe that the

shape of the model curve needs to be bent down to match E [max (X)]. This can be done by

replacing the square root term with an arbitrary power p that can bend the curve as needed.

This gives the following revised model equation (Model 2):

f2 (C) = k1 + k2 (C − 1)p . (5.3)

128

0 20 40 60 80 100

Number of samples, C

10

15

20

25

30

f1(C)=14.9+0.851 ·
�

C−1

R2 =0.8681

E[max(X)] est

f1(C) model

(a) Model 1: f1 (C) = k1 + k2
√

C − 1

0 20 40 60 80 100

Number of samples, C

10

15

20

25

30

f2(C)=9.32+5.38 ·(C−1)0.201

R2 =0.9758

E[max(X)] est

f2(C) model

(b) Model 2: f2 (C) = k1 + k2 (C − 1)p

Figure 5.6: Curve-fit of Model 1 and 2 with samples drawn from normal distribution
N (10, 52).

In Figure 5.6b, we now curve fit the revised model in (5.3) to the simulated E [max (X)].

This curve-fit is much better with an R2 value of 0.9758. The power, p, determined by the

curve-fit regression is 0.201 which is approximately 1/5, and k1 = 9.32 which is closer to

µX = 10, making it a better estimator than the previous model. However, the shape of the

curve is still off, particularly at low values of C.

Using bound equation for a Gaussian distribution

If we assume that the distribution is normal (or Gaussian), then we can compute a tighter

bound on the expectation of the maximum of random variable X as

E [max (X)] ≤ µX + σX
√

2 · ln (C). (5.4)

Note, this bound is based on the square root of a natural logarithmic function of C instead

of square root of C − 1 which will give a different shape for the model curve.

129

To derive the bound equation, we can apply Jensen’s inequality [56]. If we define Z =

max1≤i≤C (Xi) where Xi are C i.i.d. random variables of a Gaussian distribution N (µ, σ),

then we can apply Jensen’s inequality as follows:

et·E[Z] ≤ E
[
et·Z

]
(5.5)

= E
[
max

(
et·Xi

)]
. (5.6)

Using the union bound [57], we can bound the maximum as a sum:

et·E[Z] ≤
C∑
i=1

E
[
et·Xi

]
. (5.7)

Last, this summation and expectation can be evaluated from the moment generating function

of a Gaussian as C · et·µ+t2σ2/2. This simplifies to

E [Z] ≤ µ+ ln (C)
t

+ t · σ2

2 . (5.8)

We can further minimize the expression by setting t =
√

2·ln(C)
σ

, which is computed by

calculating the derivative and setting it equal to 0. The simplified expression then becomes:

E [Z] ≤ µ+ σ
√

2 · ln (C). (5.9)

Replacing the constants with variables k1 and k2, we get the following model equation

(Model 3):

f3 (C) = k1 + k2

√
ln (C). (5.10)

Note, as was the case in (5.2), when C = 1, then k2

√
ln (C) will be 0, and only k1 will be

returned. k1 will continue to curve fit to µX .

130

0 20 40 60 80 100

Number of samples, C

10

15

20

25

30

f3(C)=7.62+6.87 ·

�

ln(C)

R2 =0.9804

E[max(X)] est

f3(C) model

(a) Model 3: f3 (C) = k1 + k2
√

ln (C)

0 20 40 60 80 100

Number of samples, C

10

15

20

25

30

f4(C)=9.84+4.35 ·

(lnC)0.705

R2 =0.9989

E[max(X)] est

f4(C) model

(b) Model 4: f4 (C) = k1 + k2 (ln C)p

Figure 5.7: Curve-fit of Model 3 and 4 with samples drawn from normal distribution
N (10, 52).

In Figure 5.7a, we curve fit the model in (5.10) to the simulated E [max (X)]. Compared to

Figure 5.6b, the model curve more closely matches the data and R2 improves from 0.9758 to

0.9804. However, visually, we can still see there is room for improvement. The model curve

raises too quickly and flattens more than it should. This indicates a similar problem as with

the
√
C − 1 model in (5.2) in that the model needs to be bent or reshaped. Therefore, we

can accomplish this by replacing the square root in (5.10) with an arbitrary power p. This

results in the following revised model (Model 4):

f4 (C) = k1 + k2 · (lnC)p . (5.11)

In Figure 5.7b, we curve fit the revised model in (5.11) to the simulated E [max (X)]. Here,

the p parameter reshapes the curve so that the model curve more closely matches the data

for all values of C. The resulting R2 is 0.9989. The optimal p value turned out to be 0.705

(≈
√

1/2) instead of 1/2 (for a square root).

131

0 20 40 60 80 100

Pipeline depth, C

0

20

40

60

80

100

120

tCLK(C)=99.7/C+4.27 ·(lnC)0.709

R2 =1−4.9 ·10−5

E[tCLK] est

tCLK(C) model

Figure 5.8: Curve-fit of tCLK (C) model with samples drawn from a normal distribution
(tCL = 100, σ = 5).

5.1.2 Model of tCLK and investigation of model

Using Model 4 in (5.11), we can now model the clock period, tCLK , as

tCLK (C) = k1

C
+ k2 · (lnC)p , (5.12)

replacing k1 with k1/C. Here, C is the number of pipeline stages, and k1, k2, and p are curve-

fit parameters of the model. k1 represents the curve-fit total combinational logic delay of the

circuit (which should be approximately equal to tCL), so that as C increases, k1/C decreases.

k1/C is the mean stage-to-stage delay for combinational logic that is evenly pipelined with

C pipeline stages.

In Figure 5.8, we curve-fit the tCLK model in (5.12) to the simulated tCLK . In the simulation,

10,000 ensembles were generated to compute the expectation of the maximum of the delay

for C pipeline stages with tCL = 100 and σ = 5. This plot shows that the model matches the

simulation data with an R2 value of 1−4.9 ·10−5. The fitted p value is 0.709 which is similar

to that in Figure 5.7b. We can also observe that k1 approximately estimates tCL = 100.

132

0

20

40

60

80

100

120

tCLK(C)=99.2/C+5.26 ·

(lnC)0.333

R2 =0.9994

Uniform

tCLK(C)=99.9/C+3.83 ·

(lnC)1.113

R2 =1.0000

Exponential

0 20 40 60 80 100

Pipeline depth, C

0

20

40

60

80

100

120

tCLK(C)=101/C+2.21 ·

(lnC)1.724

R2 =0.9982

Gamma

0 20 40 60 80 100

Pipeline depth, C

tCLK(C)=99.2/C+4.67 ·

(lnC)0.910

R2 =0.9973

Log-normal

Figure 5.9: Curve-fit of tCLK (C) model with samples drawn from various distributions
(tCL = 100, σ = 5).

So far, the model has been tested only for a Gaussian distribution. Our next question is, if we

vary the distribution, will the model still fit the empirical simulation results? To determine

this, we simulate the the stage-to-stage delays using uniform, exponential, gamma, and log-

normal distributions. For each distribution, tCL = 100 and σ = 5. The simulation results

and corresponding curve-fits to the tCLK model are shown in Figure 5.9. These plots show

that the shape of the curve changes based on the distribution. The p parameter, as expected,

changes to match the shape of the curves accordingly. All curve-fits match the data well

with R2 values ≥ 0.9973.

Last, we investigate the effect of varying tCL and σ on the curve-fit parameter p. To do

this, we simulate each distribution again with 3 different sets of values for tCL and σ, and

report the fitted p parameter. The experimental results are shown in Table 5.1. We can

observe that p is distribution dependent and, for some distributions, constant. For normal

133

Table 5.1: Curve-fit p values of the tCLK (C) model for various distributions and parameters.

Parameters

tCL = 10
σ = 1

tCL = 100
σ = 1

tCL = 100
σ = 10

Distribution Curve-fit p values

Normal 0.7096 0.7115 0.7108
Uniform 0.3339 0.3326 0.3332
Exponential 1.1185 1.1132 1.1172
Gamma 1.0782 2.0024 1.0782
Log-normal 0.5557 2.0696 0.5454

(Gaussian), uniform, and exponential distributions, p is approximately constant. However,

for gamma and log-normal distributions, it is approximately constant only when tCL/σ is

constant.

We anticipate that the distribution will likely be a Gaussian distribution, and that we can

use a constant p value of approximately 0.7 for modeling tCLK . This gives the following

modified equation that will be used in Section 5.4 as the basis for calibrating tCLK :

tCLK (C) = k1

C
+ k2 · (lnC)0.7 . (5.13)

5.2 M/D/1 queueing model development

In this section, we will develop an M/D/1 queueing model of the general virtualized hardware

configuration (C-slow + secondary memory) of Figure 5.2(a) to predict system performance.

Outputs of the model include total achievable throughput, latency, and queueing occupancy.

134

5.2.1 Queueing model

To model the effective service rate, we first consider the case where N = C (i.e., only fine-

grained context switching is employed, and there is no secondary memory). This uses a

fixed, round-robin schedule (since there are no context switches to secondary memory) with

data elements dequeued from each input at a fixed rate of µs = fCLK/C. This corresponds

to a deterministic service process for each server, with mean service rate µs elements/s. This

implies we can treat each context as an independent M/D/1 queueing station (Markovian,

or memoryless, arrival process; Deterministic service process; 1 server) [58]. For thisM/D/1

system, the maximum achievable throughput (per stream) is

µs = 1
C · tCLK

(5.14)

and the total achievable throughput is

TTOT = C · µs. (5.15)

The average (mean) waiting time of each data element in the queue is [58]

Wq = 1
µs
· ρ

2 (1− ρ) , (5.16)

where ρ = λ/µs (the utilization). The (deterministic) time in the pipelined circuit is

Ws = 1
µs

= C · tCLK , (5.17)

135

and therefore the average latency,WT , (elapsed time from arrival to completion of processing;

we assume one output is generated per input) for each data element is

WT = Wq +Ws = 1
µs
· ρ

2 (1− ρ) + C · tCLK . (5.18)

The average (mean) occupancy of each queue is [58]

Nq = λWq = ρ2

2 (1− ρ) . (5.19)

The second case to consider is when N > C, and we are exploiting both fine- and coarse-

grained context switching. We will make the simplifying assumption that N is an integer

multiple of C. The schedule is a fixed, hierarchical, round-robin schedule with period RS

(for each stream) that acts as follows:

1. a set of C input streams is chosen to share the hardware resource and within that set,

a round-robin schedule is used;

2. after RS rounds, the current set of input streams’ state is swapped out to secondary

memory and the next set of C input streams’ state is swapped in (the time required

to complete this operation is given as S clock cycles), this set is then scheduled to use

the hardware in round-robin fashion;

3. the entire collection of N/C input stream sets is also chosen in round-robin fashion

(hence the label hierarchical, round-robin schedule), such that once every individual

input stream has had RS input elements processed the high-level schedule returns to

the first set of C input streams.

136

The impact of N > C on the queueing model starts with the effective service rate expression.

The number of clock cycles to complete a full round of the hierarchical schedule (during which

each server services RS elements) is RSN + SN/C. This implies the effective service rate is

µs = RS

(RSN + SN/C) · tCLK
elements/s, (5.20)

which simplifies to (5.14) when S = 0 (i.e., context switches are free) and N = C. The total

achievable throughput, TTOT , is now N · µs, or

TTOT = N ·RS

(RSN + SN/C) · tCLK

= RS

(RS + S/C) · tCLK
elements/s. (5.21)

To develop an expression for the average (mean) time that each data element waits in

one of the input buffers, we start by using (5.16), the M/D/1 expression for mean queue

waiting time, and add a term, Wh, to reflect the additional time waiting in the queue due

to the hierarchical, round-robin schedule. The additional waiting time is experienced by

the fraction of data elements that arrive when their input stream is swapped out (i.e., not

receiving service). This fraction is RS(N−C)+SN/C
RSN+SN/C , or the number of clocks a stream is swapped

out divided by the number of clocks in a full schedule round. The average additional time

experienced by this fraction of input elements is one half of the time the stream is swapped

out, (RS (N − C) + SN/C) · tCLK/2. Multiplying the additional time by the fraction that

experience the additional time yields

Wh = (RS (N − C) + SN/C) · tCLK
2 · RS (N − C) + SN/C

RSN + SN/C

= (RS (N − C) + SN/C)2 · tCLK
2 (RSN + SN/C) . (5.22)

137

The time in the pipelined circuit does not change from Ws = C · tCLK , and therefore the

average latency from arrival to completion of processing is

WT = Wq +Wh +Ws

= 1
µs
· ρ

2 (1− ρ) + (RS (N − C) + SN/C)2 · tCLK
2 (RSN + SN/C) + C · tCLK . (5.23)

Note that the expression for time in the server, Ws, no longer equals 1/µs, because the

waiting time due to coarse-grained context switching is accounted for in the expression for

Wh rather than Ws. The expression for the average (mean) queue occupancy, Nq, does not

change from (5.19); however, the expression for µs, the effective service rate, has changed to

(5.20). The mean number of elements waiting in the buffer due to the hierarchical, round-

robin scheduling is Nh = λWh.

The above discussion provides analytic performance expressions for total achievable through-

put, TTOT , and the average latency experienced by each data element, WT , both in the

buffer, Wq + Wh, and in computation, Ws. Also available is the average occupancy of the

buffer, Nq + Nh. For a summary of these queueing model equations, see Table B.2 in Ap-

pendix B.

The effective service rate, µs, in (5.20) can also be derived from an equivalent service time

distribution shown in Figure 5.10a with random variable X where µs = 1
E[X] . Also, the sum

of the additional time waiting in the queue and the time in the server, Wh + Ws, in (5.17,

5.22) can be derived from an equivalent distribution shown in Figure 5.10b with random

variableWHS where Wh +Ws = E [WHS]. In both figures, TV is the total vacation time for

a full round of the hierarchical schedule equal to RS (N − C) + SN/C, TT is the total time

for a full round of the hierarchical schedule equal to RSN + SN/C, and pv is the fraction of

time that the server is in a vacation period equal to TV

TT
.

138

(a) Equivalent service time distribu-
tion, X

(b) Equivalent Wh+Ws distribution,WHS

Figure 5.10: Equivalent distributions for M/D/1 model equations. (a) µs = 1
E[X] , and (b)

Wh +Ws = E [WHS].

5.2.2 Validation

To validate these modeling expressions, we developed a cycle-accurate discrete-event sim-

ulation of the system and measured the average latency of data elements from when they

enter the input queue to when they exit the system. Consider a candidate design with 4

fine-grained contexts (C = 4), 8 total contexts (N = 8), and a 4 clock overhead to perform

a coarse-grained context switch (S = 4). Figure 5.11a plots the total latency, WT , predicted

by (5.23) vs. the schedule period, RS, for two different offered loads. The points on the graph

correspond to empirical results from the discrete-event simulation run with the same param-

eters. The offered load is defined as the ratio of the aggregate arrival rate (of all streams)

to the peak service rate of the system (i.e., when S = 0). Offered load then evaluates to

N · λ · tCLK . We draw two conclusions from this figure. First, there is good correspondence

between the analytical model and the empirical simulation results. This bolsters our confi-

dence that the analytic model is reasonable. Second, as is readily apparent in the graph, the

schedule period that optimally minimizes latency is different for different offered loads. At

low offered load (0.16) minimum latency is experienced with schedule period RS = 2; and

at a higher offered load (0.48) one must increase the schedule period to RS = 4 to achieve

minimum latency.

139

0 5 10 15 20

Schedule Period, R
S

0

40

80

120

160

200

L
a
te

n
c
y
,
W

 [
c
lk
s
] Offered Load=0.48

Offered Load=0.16

(a) C = 4, N = 8, S = 4

0 5 10 15 20

Schedule Period, R
S

0

1,000

2,000

3,000

4,000

5,000

L
a
te

n
c
y
,
W

 [
c
lk
s
] Offered Load=0.08

(b) C = 10, N = 100, S = 100

Figure 5.11: Discrete-event simulation of latency vs. schedule period for two sets of param-
eters for the M/D/1 queueing model. The curves are analytically generated from (5.23) and
the points are empirically measured via the discrete-event simulation.

Likewise, we consider a second candidate design with 10 fine-grain contexts (C = 10),

100 total contexts (N = 100), and a 100 clock cycle overhead to perform a coarse-grained

context switch (S = 100) to validate the analytic model against a different set of parameters.

Figure 5.11b plots the total latency, WT , with an offered load of 0.08. Again, we see that

there is good correspondence between the analytical model and the empirical simulation

results with minimum latency occurring at RS = 3.

5.3 M/G/1 queueing model development with vaca-

tion model

We now consider a model of the system with an independent M/G/1 queueing station

(Markovian, or memoryless, arrival process; General service process; 1 server) where the

server can go on vacation for some time. In this model, the server distribution is general

and, during a vacation, the server is not servicing any of its queued data elements.

140

Referring back to the queueing model in Figure 5.2b, the system consists of N queueing

stations which all share a single physical server which is represented as being N “virtual”

servers. We employ the same fixed, hierarchical, round-robin schedule as was used in the

M/D/1 model. A set of C input streams share the hardware resource and execute in a round-

robin fashion in the server (in the computation pipeline). After RS rounds, the current set of

C input streams’ state is swapped out (context switched) to secondary memory with cost S

and the next set is swapped in. The collection of input stream sets are also context switched

in a round-robin fashion.

When the server takes a vacation, it is one of two kinds: short or long. Short vacations are

due to fine-grain context switching and are taken when the server is idle (i.e., the FIFO queue

is empty). They occur for C clock cycles at a time. Long vacations are due to coarse-grain

context switching and are taken when the schedule has completed RS rounds of the current

set of C input streams and context switches to execute the other N − C input streams, all

according to the fixed schedule. They occur for the duration of the vacation period. During

these times, no new elements are processed until the vacation is complete.

A single queueing station of the system, shown in Figure 5.12, consists of a FIFO queue

and “virtual” server. Here, Wq is the mean waiting time in the queue and Ws is the time

spent in the server. When the server takes a vacation, this produces an additional waiting

time at the head of the queue, Wh. Wh is included in Wq and emphasized in bold in the

figure. It is derived from a vacation waiting time V whose distribution is determined by the

fixed, hierarchical, round-robin schedule and defined below. Ws is modeled by a fixed service

time X.

Figure 5.12: Single queueing station of system.

141

5.3.1 Vacation waiting time model

To model the vacation waiting time, V , we define two sub-model distributions. The first

is for an empty queue shown in Figure 5.13a for waiting time, Ve, and the second is for a

non-empty queue shown in Figure 5.13b for waiting time, Vn.

For the case of an empty queue, the probability density function, fVe (ve), in Figure 5.13a,

shows the distribution of the vacation waiting time for continuous random variable Ve. In this

figure, TV is the time in a long vacation period (i.e., during a coarse-grain context switch), ps

is the fraction of time in a service period, and pv is the fraction of time in the long vacation

period. Additionally, y1 and y2 are height levels to be solved for, which depend on the areas

of the two rectangles. Along the x-axis, ve is measured in time, but is normalized to clocks

(by dividing by tCLK).

(a) For an empty queue (b) For a non-empty queue

Figure 5.13: Sub-model distributions used in the derivation of the vacation waiting time
model.

We start the model by defining the total number of clocks to complete a full round of the

hierarchical schedule as

TT = RSN + SN/C. (5.24)

142

The number of clocks in a long vacation period, which is the time during which the server

has context switched to process other contexts, is

TV = TT −RSC

= RS (N − C) + SN/C. (5.25)

The fraction of time in a service period is

ps = RSC/TT , (5.26)

and the fraction of time in a long vacation period is

pv = 1− ps

= 1−RSC/TT . (5.27)

Returning to Figure 5.13a, fVe (ve), is defined as two stacked rectangles with areas ps and

pv and height levels y1 and y2. Since the sum of the areas must equal 1, we can use this to

calculate the height levels.

We first calculate y1 from the pv area as

pv = (TV · tCLK) · y1

y1 = pv
TV · tCLK

= 1− ps
TV · tCLK

. (5.28)

143

Likewise, we calculate y2 from y1 and the ps area as

ps = C · tCLK · (y2 − y1)

y2 = ps
C · tCLK

+ y1

=
(
ps
C

+ 1− ps
TV

)
· 1
tCLK

. (5.29)

From these results, we can define the probability density function [59], fVe (ve), as

fVe (ve) =

(
ps

C
+ 1−ps

TV

)
· 1
tCLK

0 ≤ ve ≤ C · tCLK ,

1−ps

TV ·tCLK
C · tCLK < ve ≤ TV · tCLK ,

0 otherwise.

(5.30)

Writing this using step functions (u (x) notation) [59], we get

fVe (ve) =
(1− ps
TV · tCLK

)
·[u (ve)− u (ve − TV · tCLK)]+

(
ps

C · tCLK

)
[u (ve)− u (ve − C · tCLK)]

(5.31)

where

u (x) =

0 x < 0,

1 x ≥ 0.

144

Integrating fVe (ve) across all time should give a total probability of 1:

ˆ ∞
−∞

fVe (ve) dve =
(1− ps
TV · tCLK

)
[TV · tCLK] +

(
ps

C · tCLK

)
[C · tCLK]

= 1− ps + ps

= 1

True.

Next, for the case of a non-empty queue, the probability density function, fVn (vn), in Fig-

ure 5.13b, shows the distribution of the vacation waiting time for continuous random variable

Vn. In this figure, the impulses defined at 0 and TV · tCLK are Dirac delta functions (δ (x)

notation) [59] where

dε (x) =

1/ε −ε/2 ≤ x ≤ ε/2,

0 otherwise,

δ (x) = lim
ε→0

dε (x) ,

and
´∞
−∞ δ (x) dx = 1. Along the x-axis, vn is measured in time, but is normalized to clocks

(by dividing by tCLK).

Here, the two impulses define the vacation waiting time (and are normalized to the total

number of jobs, RS, in a full round of the hierarchical schedule). The first impulse, at

vn = 0 (i.e., no wait time), defines a group of RS − 1 jobs being serviced consecutively.

When these jobs complete, the server goes on a long vacation, and the next job waits for the

vacation to complete. The wait time of the one job is then modeled by the second impulse,

at vn = TV · tCLK .

145

The probability density function, fVn (vn), is then

fVn (vn) = RS − 1
RS

δ (vn) + 1
RS

δ (vn − TV · tCLK) . (5.32)

Integrating fVn (vn) across all time should give a total probability of 1:

ˆ ∞
−∞

fVn (vn) dvn = RS − 1
RS

+ 1
RS

= 1

True.

Since the queueing station is using the fixed, hierarchical schedule, the probability of the

queue being empty changes depending on whether the server is in a service or vacation period.

Although it might change, we will assume that this probability is fixed for the purposes of

combining the probability density functions, fVe (ve) and fVn (vn), into a single approximate

function, fV (v). When we do this, we get

fV (v) = p0 · fVe (v) + (1− p0) · fVn (v)

= p0 ·
[1− ps
TV · tCLK

[u (v)− u (v − TV · tCLK)] + ps
C · tCLK

[u (v)− u (v − C · tCLK)]
]

+ (1− p0) ·
[
RS − 1
RS

δ (v) + 1
RS

δ (v − TV · tCLK)
]

(5.33)

where p0 = 1− ρ, the probability of an empty queue.

146

Integrating fV (v) across all time should give a total probability of 1:

ˆ ∞
−∞

fV (v) dv = p0 ·
[1− ps
TV · tCLK

TV · tCLK + ps
C · tCLK

C · tCLK
]

+ (1− p0)
[
RS − 1
RS

+ 1
RS

]

= p0 · [1− ps + ps] + (1− p0) · [1]

= p0 + 1− p0

= 1

True.

Calculating the expected value [59], E [V], of the vacation waiting time to get the mean

vacation waiting time, we get the following:

E [V] =
ˆ ∞
−∞

v · fV (v) dv = p0 ·
[1− ps
TV · tCLK

1
2
[
(TV · tCLK)2

]
+ ps
C · tCLK

1
2
[
(C · tCLK)2

]]

+ (1− p0) ·
[
0 + 1

RS

· TV · tCLK
]

=
[1
2p0 · [(1− ps) · TV + ps · C] + (1− p0) ·

[
TV
RS

]]
· tCLK . (5.34)

The mean vacation waiting time will be denoted as V and will be used later in the derivation

of the queueing model equations.

5.3.2 Service time model

The model for the service time, X, is fixed and deterministic. For every job that enters the

computational pipeline, it always takes exactly C clock cycles to complete service of that

job. Therefore, the service time can be modeled as a single impulse function at x = C · tCLK .

147

The resulting probability density function, fX (x), is

fX (x) = δ (x− C · tCLK) . (5.35)

Integrating fX (x) across all time should give a total probability of 1:

ˆ ∞
−∞

fX (x) dx = 1

True.

Next, we can calculate E [X], the expected service time, as

E [X] =
ˆ ∞
−∞

x · fX (x) dx = C · tCLK . (5.36)

As part of the queueing model, we also need to know the second moment of the service time,

E [X2]. This is calculated as

E
[
X2
]

=
ˆ ∞
−∞

x2fX (x) dx = C2 · t2CLK . (5.37)

We will denote E [X] as X and E [X2] as X2 and will use them in the development of the

queueing model equations that follow.

5.3.3 Queueing model

The queueing equations developed here will be for the general case (N > C) and will include

effects due to vacations. They can easily be reduced to the N = C case by setting S = 0.

148

First, we start by defining the (deterministic) time in the pipelined circuit as

Ws = X = C · tCLK . (5.38)

The effective service rate, µs, of a “virtual” server is not equal to 1/Ws, but has to take

into account the long vacation time due to a coarse-grain context switch. We can do this by

defining the service rate as the number of jobs processed by a stream in one full period of

the hierarchical schedule. Therefore, for this M/G/1 system, the service rate, which is also

the maximum achievable throughput (per stream), is

µs = RS

TT · tCLK

= RS

(RSN + SN/C) · tCLK
. (5.39)

The total achievable throughput is then TTOT = N · µs, or

TTOT = RS

(RS + S/C) · tCLK
. (5.40)

The average (mean) waiting time of each data element for an M/G/1 system (without

vacations) is determined by the Pollaczek-Khinchin (P-K) formula as Wq = λX2

2(1−ρ) where

ρ = λ/µs, λ is the arrival rate, and X2 is the second moment of the service time [48]. To

account for vacations in this formula, we need to add an additional waiting time at the head

of the queue (Wh):

Wq = λX2

2 (1− ρ) +Wh.

To determine Wh, we need to use equation 3.46 in [48] of the P-K formula derivation which

uses a mean residual time, R, to solve for the wait time in the queue. The wait time formula

then becomes Wq = R + 1
µs
Nq where R = 1

2λX
2 and Nq = λWq (Little’s Theorem [58]).

149

Now, we can add the mean vacation waiting time, V , to Wq and apply Little’s Theorem:

Wq = R + 1
µs
λWq + V .

Solving for Wq then gives

Wq = R + V

1− ρ

= λX2

2 (1− ρ) + V

1− ρ. (5.41)

Therefore, we can determine that Wh = V
1−ρ .

Next, the average latency (elapsed time from arrival to completion of processing; we assume

one output is generated per input) for each data element is

WT = Wq +Ws = λX2

2 (1− ρ) + V

1− ρ +X

=
[
C2 (λ · tCLK)

2 (1− ρ) + 1
2 [(1− ps) · TV + ps · C] + ρ

1− ρ ·
[
TV
RS

]
+ C

]
· tCLK . (5.42)

The average (mean) occupancy of each queue is Nq = λWq [58].

The expression for the average latency consists of 5 terms that model the delay through

the system. The first term (λC
2t2CLK

2(1−ρ)) models service queueing delay. The second term

(1
2 (1− ps)TV · tCLK) models long vacation delay during a vacation period. The third term

(1
2ps · C · tCLK) models short vacation delay during a service period for an empty queue.

The fourth term (ρ
1−ρ

TV ·tCLK

RS
) models vacation queueing delay. And the fifth term (C · tCLK)

models service time delay. Of these delays, those due to the long vacation period (the

second and fourth terms) have the greatest impact on the average latency. The vacation

queueing delay (fourth term) accounts for large initial latency at low RS due to the effect

150

of S, but decreases when RS increases (by amortizing the effect of S). The long vacation

delay (second term) accounts for a gradual increase in latency with increasing RS since TV

increases with RS.

Referring back to the M/D/1 model, the average latency expression in (5.23) models queueing

delay (with both the service and vacation periods lumped together), long vacation delay, and

service time delay. These account for the greatest effects to the latency. In comparison, the

M/G/1 model separately models queueing delay for the service period (in the first term of

(5.42)) and vacation period (in the fourth term). It also models the additional effect of short

vacation delay during a service period for an empty queue (in the third term).

Analytical performance expressions were derived using an M/G/1 model with vacations

by defining distributions for the vacation waiting time and service time. These include

additional effects that were not considered in the M/D/1 model. We have performance

equations for the total achievable throughput, TTOT , the average latency, WT , experienced

by a data element, and the average occupancy of the buffer, Nq. For a summary of these

queueing model equations, see Table B.3 in Appendix B.

5.3.4 Validation

To validate these modeling expressions, we compare in Figure 5.14a the analytical expression

for latency, WT , in (5.42) to the empirical simulation results of the cycle-accurate discrete-

event simulation of the system (first introduced in Section 5.2.2) for the candidate design

with 4 fine-grain contexts (C = 4), 8 total contexts (N = 8), and 4 clock overhead due to a

coarse-grain context switch (S = 4). We can observe that the analytical curves and empirical

results are in good alignment. Compared to Figure 5.11a, the M/G/1 curves predict slightly

151

0 5 10 15 20

Schedule Period, R
S

0

40

80

120

160

200

L
a
te

n
c
y
,
W

 [
c
lk
s
] Offered Load=0.48

Offered Load=0.16

(a) C = 4, N = 8, S = 4

0 5 10 15 20

Schedule Period, R
S

0

1,000

2,000

3,000

4,000

5,000

L
a
te

n
c
y
,
W

 [
c
lk
s
] Offered Load=0.08

(b) C = 10, N = 100, S = 100

Figure 5.14: Discrete-event simulation of latency vs. schedule period for two sets of parame-
ters for the M/G/1 queueing model. The curves are analytically generated from (5.42) and
the points are empirically measured via the discrete-event simulation.

higher latency. This is expected because the M/G/1 model includes more effects in the

latency equation.

We also consider the second candidate design in Figure 5.14b with 10 fine-grain contexts

(C = 10), 100 total contexts (N = 100), and 100 clock overhead for a coarse-grain context

switch (S = 100). We can observe again that the analytical curve and empirical results

are in good alignment, with the analytical curve being slightly higher than the curve in

Figure 5.11b.

5.4 Calibration of clock and resource models for three

C-slowed applications

We use three applications across two technologies to validate and calibrate (5.13), the model

for tCLK , and a resource model. Once calibrated, they can be used in analytic model pre-

diction results presented in Section 5.5. The three applications, listed in Table 5.2, are (1) a

152

Table 5.2: Applications implemented using C-slow techniques.

Abbr. Name Description

COS Cosine application Synthetic cosine application implemented via a Taylor
series expansion with added feedback

AES AES application Advanced Encryption Standard (AES) cipher in
cipher-block chaining (CBC) mode for encryption

SHA SHA-2 application Secure Hash Algorithm (SHA-2) with 256 and 512 bit
digests (SHA-256 and SHA-512)

synthetic cosine application implemented via a Taylor series expansion with added feedback,

(2) the Advanced Encryption Standard (AES) cipher in cipher-block chaining (CBC) mode

for encryption, and (3) the Secure Hash Algorithm (SHA-2) with 256 and 512 bit digests

(SHA-256 and SHA-512). These applications were chosen because they each have a long

combinational logic path with feedback from output to input, thus making simple pipelining

alone insufficient to effectively utilize their logic blocks. This makes them good candidates

for C-slow (pipelining) with virtualization where independent streams are scheduled for ex-

ecution in the pipeline stages.

The applications are implemented on field-programmable gate array (FPGA) and applica-

tion-specific integrated circuit (ASIC) technologies with measurements taken of the design

speed and resource usage. The logic is C-slowed to support C streams of computation with

N = C total streams (no secondary memory). For FPGA technology, we target two different

parts and use two different tools. For the Cosine and AES applications, we target a Xilinx

Virtex-4 XC4VLX100 FPGA and use the Xilinx ISE 13.4 tools for synthesis, place, & route of

the hardware designs. For the SHA-2 application, we target a Xilinx Virtex-7 XC7VX485T

FPGA and use the Xilinx Vivado 2013.4 tools. For ASIC technology, we target a 5M1P

0.18µm process using the Virginia Tech VLSI for Telecommunications (VTVT) standard

cell library and use the Cadence RTL Compiler 8.10 and Cadence Encounter 9.14 tools to

153

synthesize, place, & route the hardware designs. Only the Cosine and AES applications are

implemented in ASIC technology. The clock period is unconstrained in the runs for both

technologies.

Depending on the application, we use one of two interfaces. The first is the parallel stream

interface in Figure 5.1 with N parallel streams multiplexed into the virtualized hardware and

demultiplexed back out. In this interface, as the number of streams grows, resource usage

grows due to the multiplexer/demultiplexer growing in size. The second is a single stream

interface with one input stream. The input stream contains fields within record-oriented

data that are independent of each other. Each field then can be processed independently of

any other field in the virtualized hardware. An upfront buffer queues up data elements for

each field and extracts them using a multiplexer from any position in the buffer. A reorder

queue at the output can reorder the field results back into their original order. The Cosine

and AES applications use the parallel stream interface, and the SHA-2 application uses the

single stream interface.

We calibrate a clock and resource model for each application and technology. The clock

model is calibrated based on (5.13). The resource model is calibrated based on the equation

Resource (L,C) = k1 + k2 · L+ k3 · C (5.43)

(valid only for a C-slowed circuit with no secondary memory; that is, N = C) where L is

a parameter proportional to the combinational logic path length, and C is the number of

streams supported in the system or the pipeline depth. The resource being modeled depends

on the technology. For FPGA technology, the resource is the total slices used to implement

the design. For ASIC technology, the resource is the total area of the core (i.e., the space

inside the ring of pads). In this equation, k1 models the fixed slices/area of the design, k2

154

models the additional slices/area due to the combinational logic length, L, of the virtualized

computation, and k3 models the additional slices/area due to the number of streams, C,

being supported or pipeline depth. For C-slowed applications that use the parallel interface,

we expect k3 to model the delta growth in slices/area of the multiplexer and demultiplexer

in the interface as C increases.

5.4.1 Synthetic cosine application with added feedback (COS)

The Cosine application, illustrated in Figure 5.15, consists of a cosine function, an output

register, a feedback path, and an adder to mix the input with the output feedback. This

is a synthetic application built to have a long combinational logic path through the cosine

function via a configurable number of Taylor series terms, Nt, that approximate the cosine.

The cosine function is pipelined with a configurable number of pipeline stages, C, to improve

the clock period and to support C virtual streams of computation. These streams are

provided in parallel to the cosine function (via the parallel stream interface) and are accessed

one at a time via an input multiplexer. They are fed back out via a demultiplexer at

the output. To accommodate for different values of Nt, which controls the length of the

combinational logic path, the clock period model in (5.13) is modified as follows:

tCLK (Nt, C) = k11 + k12 ·Nt

C
+ (k21 + k22 ·Nt) · (lnC)0.7 . (5.44)

In this equation, coefficients k1 and k2 are expanded with linear terms to model the effect of

Nt on the clock period. Thus, k1 → k11 + k12 ·Nt and k2 → k21 + k22 ·Nt.

In the resource model of (5.43), we can replace L with Nt for the Cosine application:

Resource (Nt, C) = k1 + k2 ·Nt + k3 · C. (5.45)

155

Figure 5.15: Block diagram of synthetic cosine application with added feedback. The cosine
function is approximated with a Taylor series expansion of Nt terms which form a long
combinational logic path. With the added feedback path, this will determine the achievable
clock rate.

Clock model

In an experiment, we measure tCLK on 10 independent runs first for an FPGA with Nt

ranging from 2 to 24 terms, and C ranging from 1 to 44 streams. Curve fitting the model in

(5.44) across all of the data sets concurrently yields:

tCLK (Nt, C) =
[−11.5 + 11.8 ·Nt

C
+ (1.47 + 0.0079 ·Nt) · (lnC)0.7

]
ns. (5.46)

Comparing this expression to (5.13) shows that we are modeling the curve-fit total combi-

national logic delay, k1, as −11.5 ns + 11.8 ns
term ·Nt, and k2 as 1.47 ns + 0.0079 ns

term ·Nt.

To validate this model, we compute the total achievable throughput, TTOT , as 1/tCLK (which

is equivalent to (5.40) when S = 0 and N = C), and plot the observed data values from

the synthesis, place, & route runs with the model prediction in Figure 5.16. Blue ×’s are

included in the model and green ×’s are excluded from the model. The reason for excluding

the green data points is because the pipeline stages are uneven and retiming does not do a

good job at evenly distributing the pipeline registers in the combinational logic. We can see

that the green ×’s consequently plateau until the last data point (which is at the maximum

C and uses all the pipeline registers in the design).

156

0 1 2 3
0

50

100

150

200
Nt =2

0 1 2 3 4 5

Nt =3

0 2 4 6 8

Nt =4

0 3 6 9 12 15

Nt =8

0 5 10 15 20 25
0

50

100

150

200
Nt =12

0 6 12 18 24 30

Nt =16

0 8 16 24 32 40

Nt =20

0 10 20 30 40 50

Nt =24

Number of Streams, C

A
c
h
.

T
p

u
t,

 T
T
O
T
 [
M
el
em

s/
s]

Figure 5.16: Calibrated total achievable throughput plot of the virtualized Cosine application
with feedback on an FPGA. Nt is the number of Taylor series terms in the cosine function.
C refers to the number of streams supported or the pipeline depth of the computation with
N = C (i.e., no secondary memory). For each value of C, data points were taken from 10
tool flow runs. Blue ×’s are included in the model. Green ×’s are excluded from the model.

We make several observations about the total achievable throughput of the virtualized de-

signs. First, the model does a reasonably good job of characterizing the shape of the curve.

Second, throughput initially increases linearly (at low stream counts) but eventually starts

to level off and adding additional streams does not provide as significant throughput gains.

Essentially, the clock rate gains (due to deeper pipelining) are approaching their maxi-

mum benefit.

Next, we curve fit tCLK for the ASIC technology. The resulting model yields:

tCLK (Nt, C) =
[−40.4 + 28.5 ·Nt

C
+ (6.52− 0.13 ·Nt) · (lnC)0.7

]
ns. (5.47)

Comparing this expression to (5.13) shows that we are modeling the curve-fit total combi-

national logic delay, k1, as −40.4 ns + 28.5 ns
term · Nt, and k2 as 6.52 ns − 0.13 ns

term · Nt. The

plot of the empirical performance results with the model prediction of the total achievable

157

0 1 2 3
0

20

40

60

80

100
Nt =2

0 1 2 3 4 5

Nt =3

0 2 4 6 8

Nt =4

0 3 6 9 12 15

Nt =8

0 5 10 15 20 25
0

20

40

60

80

100
Nt =12

0 6 12 18 24 30

Nt =16

0 8 16 24 32 40

Nt =20

0 10 20 30 40 50

Nt =24

Number of Streams, C

A
c
h
.

T
p

u
t,

 T
T
O
T
 [
M
el
em

s/
s]

Figure 5.17: Calibrated total achievable throughput plot of the virtualized Cosine application
with feedback on an ASIC. Nt is the number of Taylor series terms in the cosine function.
C refers to the number of streams supported or the pipeline depth of the computation with
N = C (i.e., no secondary memory). For each value of C, data points were taken from 10
tool flow runs. Blue ×’s are included in the model. Green ×’s are excluded from the model.

throughput for the ASIC design is shown in Figure 5.17. The observations made with FPGA

technology clearly still hold with the ASIC technology.

Resource model

For FPGA technology, we curve fit the total slices to (5.45) to yield the following model:

Slices (Nt, C) = 91.0 + 12.6 ·Nt + 90.1 · C. (5.48)

We can see in this equation that the fixed number of slices used is 91, that every additional

term in the Taylor series of the cosine function uses 12.6 slices, and that every additional

stream (which requires more multiplexer/demultiplexer logic) uses 90.1 slices. The plot of

the empirical results with the model prediction of the slices is shown in Figure 5.18. We can

158

0 1 2 3
0

1,000

2,000

3,000

4,000

5,000

6,000
N
t
=2

0 1 2 3 4 5

N
t
=3

0 2 4 6 8

N
t
=4

0 3 6 9 12 15

N
t
=8

0 5 10 15 20 25
0

1,000

2,000

3,000

4,000

5,000

6,000
N
t
=12

0 6 12 18 24 30

N
t
=16

0 8 16 24 32 40

N
t
=20

0 10 20 30 40 50

N
t
=24

Number of Streams, C

T
o
ta

l
S

li
c
e
s

Figure 5.18: Calibrated total slices plot of the virtualized Cosine application with feedback
on an FPGA. Nt is the number of Taylor series terms in the cosine function. C refers to the
number of streams supported or the pipeline depth of the computation with N = C (i.e., no
secondary memory). For each value of C, data points were taken from 10 tool flow runs. All
data points are included in the model.

observe that the slices follow a linear trend with the number of streams (C) and terms (Nt),

and that the model prediction aligns well with the measured slices data.

Next, we curve fit the total core area for ASIC technology to yield the following area model:

Area (Nt, C) = [−0.365 + 0.225 ·Nt + 0.069 · C] mm2. (5.49)

Here, we can see that the fixed area cost is −0.365 mm2, that every additional term in

the Taylor series of the cosine function accounts for 0.225 mm2 of the area, and that every

additional stream accounts for 0.069 mm2 of the area. The plot of the empirical results with

the model prediction of the area is shown in Figure 5.19. The observations made with FPGA

technology still hold with the ASIC technology.

159

0 1 2 3
0

2

4

6

8

10
N
t
=2

0 1 2 3 4 5

N
t
=3

0 2 4 6 8

N
t
=4

0 3 6 9 12 15

N
t
=8

0 5 10 15 20 25
0

2

4

6

8

10
N
t
=12

0 6 12 18 24 30

N
t
=16

0 8 16 24 32 40

N
t
=20

0 10 20 30 40 50

N
t
=24

Number of Streams, C

T
o
ta

l
A

re
a
 (

C
o
re

)
[m
m

2
]

Figure 5.19: Calibrated total core area plot of the virtualized Cosine application with feed-
back on an ASIC. Nt is the number of Taylor series terms in the cosine function. C refers
to the number of streams supported or the pipeline depth of the computation with N = C
(i.e., no secondary memory). For each value of C, data points were taken from 10 tool flow
runs. All data points are included in the model.

5.4.2 Advanced Encryption Standard (AES) cipher in cipher-block

chaining mode

Next, we use an AES encryption cipher [60] in CBC block mode (that has a feedback path)

illustrated in Figure 5.20 to calibrate the clock and resource models. In our implementation,

the AES encryption cipher is fully unrolled forming a long combinational logic path with up to

14 rounds (the AES 256-bit standard), enabling us to investigate the impact of short vs. deep

combinational logic functions. The number of rounds, Nr, in the cipher is configurable,

which controls the length of the combinational logic. The AES block cipher is shown in

the middle of the figure. Operating in cipher-block chaining (CBC) mode, an initialization

vector (IV) is XOR’d with a plaintext block to produce the input to the cipher. The output

is registered which contains the ciphertext output. The ciphertext is then fed back, through

a multiplexer, to be mixed again with the next block of plaintext. Also, the AES encryption

160

Figure 5.20: Block diagram of AES encryption cipher application in the CBC block mode.
With a fully unrolled block cipher and no pipelining (initially), the highlighted feedback
path will determine the achievable clock rate.

cipher has a configurable number of pipeline stages, C, to improve the clock period and to

support C virtual streams of computation. This is implemented via outer loop pipelining

[61]. These streams are provided in parallel to the AES encryption cipher (via the parallel

stream interface) and are accessed one at a time via an input multiplexer and fed back out

via a demultiplexer at the output. To accommodate for different values of Nr, the clock

period model in (5.13) is modified as follows:

tCLK (Nr, C) = k11 + k12 ·Nr

C
+ (k21 + k22 ·Nr) · (lnC)0.7 . (5.50)

In this equation, coefficients k1 and k2 are expanded with linear terms to model the effect of

Nr on the clock period. Thus, k1 → k11 + k12 ·Nr and k2 → k21 + k22 ·Nr.

In the resource model of (5.43), we can replace L with Nr:

Resource (Nr, C) = k1 + k2 ·Nr + k3 · C. (5.51)

161

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

120

140

160
Nr =4

0 4 8 12 16 20 24 28 32

Nr =14

Number of Streams, C

A
c
h
.

T
p

u
t,

T
T
O
T
 [
M
el
em

s/
s]

Figure 5.21: Calibrated total achievable throughput plot of the virtualized AES encryption
cipher application on an FPGA. Nr is the number of rounds in the cipher. C refers to the
number of streams supported or the pipeline depth of the computation with N = C (i.e.,
no secondary memory). For each value of C, data points were taken from 10 tool flow runs.
Blue ×’s are included in the model. Green ×’s are excluded from the model.

Clock model

In an experiment, we measure tCLK on 10 independent runs for an FPGA for Nr = 4 and 14,

and C ranging from 1 to 28 streams (i.e., up to 2 pipeline registers are included per round).

Curve fitting the model in (5.50) across all of the data sets concurrently yields:

tCLK (Nr, C) =
[1.8 + 5.2 ·Nr

C
+ (2.56− 0.038 ·Nr) · (lnC)0.7

]
ns. (5.52)

Comparing this expression to (5.13) shows that we are modeling the curve-fit total combi-

national logic delay, k1, as 1.8 ns + 5.2 ns
rnd ·Nr, and k2 as 2.56 ns− 0.038 ns

rnd ·Nr. The plot of

the empirical performance with the model prediction of the total achievable throughput for

this FPGA design is shown in Figure 5.21. We can observe that the model matches closely

to the observed data values.

Next, we curve fit tCLK for the ASIC technology. The resulting model yields:

tCLK (Nr, C) =
[6.6 + 6.3 ·Nr

C
+ (5.34 + 0.026 ·Nr) · (lnC)0.7

]
ns. (5.53)

162

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80
Nr =4

0 4 8 12 16 20 24 28 32

Nr =14

Number of Streams, C

A
c
h
.

T
p

u
t,

T
T
O
T
 [
M
el
em

s/
s]

Figure 5.22: Calibrated total achievable throughput plot of the virtualized AES encryption
cipher application on an ASIC. Nr is the number of rounds in the cipher. C refers to the
number of streams supported or the pipeline depth of the computation with N = C (i.e.,
no secondary memory). For each value of C, data points were taken from 10 tool flow runs.
Blue ×’s are included in the model. Green ×’s are excluded from the model.

Comparing this expression to (5.13) shows that we are modeling the curve-fit total combi-

national delay, k1, as 6.6 ns + 6.3 ns
rnd ·Nr, and k2 as 5.34 ns + 0.026 ns

rnd ·Nr. The plot of the

empirical performance results with the model prediction of the total achievable throughput

for the ASIC design is shown in Figure 5.22. The observations made with FPGA technology

again still hold with the ASIC technology.

Resource model

For FPGA technology, we curve fit the total slices to (5.51) to yield the following model:

Slices (Nr, C) = 1,097 + 1,434 ·Nr + 799 · C. (5.54)

We can see in this equation that the fixed number of slices used is 1,097, that every additional

round of the AES encryption cipher uses 1,434 slices, and that every additional stream (which

requires more multiplexer/demultiplexer logic) uses 799 slices. The plot of the empirical

results with the model prediction of the slices is shown in Figure 5.23. We can observe that

163

0 1 2 3 4 5 6 7 8 9
0

10,000

20,000

30,000

40,000

50,000

N
r
=4

MAX RESOURCES

0 4 8 12 16 20 24 28 32

N
r
=14

MAX RESOURCES

Number of Streams, C

T
o
ta

l
S

li
c
e
s

Figure 5.23: Calibrated total slices plot of the virtualized AES encryption cipher application
on an FPGA. Nr is the number of rounds in the cipher. C refers to the number of streams
supported and the pipeline depth of the computation with N = C (i.e., no secondary mem-
ory). For each value of C, data points were taken from 10 tool flow runs. All data points
are included in the model.

the slices follow a linear trend with the number of streams, C, and the number of rounds,

Nr, and that the model prediction aligns well with the measured slices data.

Next, we curve fit the total core area for ASIC technology to yield the following model:

Area (Nr, C) = [0.11 + 3.73 ·Nr + 0.56 · C] mm2. (5.55)

Here, we can see that the fixed area cost is 0.11 mm2, that every additional round of the

AES encryption cipher accounts for 3.73 mm2 of the area, and that every additional stream

accounts for 0.56 mm2 of the area. The plot of the empirical results with the model prediction

of the area is shown in Figure 5.24. The observations made with FPGA technology still hold

with the ASIC technology.

164

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100
N
r
=4

0 4 8 12 16 20 24 28 32

N
r
=14

Number of Streams, C

To
ta

l
A

re
a

(C
o
re

)
[m
m

2
]

Figure 5.24: Calibrated total core area of the virtualized AES encryption cipher application
on an ASIC. Nr is the number of rounds in the cipher. C refers to the number of streams
supported or the pipeline depth of the computation with N = C (i.e., no secondary memory).
For each value of C, data points were taken from 10 tool flow runs. All data points are
included in the model.

5.4.3 Secure Hash Algorithm (SHA-2) with 256 and 512 bit di-

gests

Last, we use an SHA-2 cryptographic hash application [62] (that has a feedback path for

processing multiple blocks in a stream) illustrated in Figure 5.25 to calibrate the clock

and resource models. In our implementation, the SHA-2 core is fully unrolled forming a

long combinational logic path with 64 rounds (for SHA-256) and 80 rounds (for SHA-512).

The core is shown in the middle of the figure. To start, an initialization vector (IV) is

provided with the first block of data to the input of the core (or hash function). The

output is registered and eventually becomes the hash output after all data blocks have

been processed. While processing each block, the intermediate hash values are fed back,

through a multiplexer, to be mixed again with the next data block. The SHA-2 core has

a configurable number of pipeline stages, C, to improve the clock period and to support

C virtual computations at a time. The SHA-2 application uses the single stream interface

where the input stream contains arbitrary fields within record-oriented data that can be

processed independently of each other. An upfront content addressable queue then buffers

165

Figure 5.25: Block diagram of SHA-2 cryptographic hash application. With a fully unrolled
SHA-2 core and no pipelining (initially), the highlighted feedback path will determine the
achievable clock rate.

block data from each field which can be accessed at any position via a multiplexer. The

buffer is fixed in size, independent of C.

We fix the number of rounds in SHA for the SHA-256 and SHA-512 hash standards. There-

fore, we directly calibrate the clock period model to (5.13). And, for the resource model, we

drop the L term giving the modified equation:

Resource (C) = k1 + k2 · C. (5.56)

Since the buffer size is fixed and therefore independent of C, we expect the resource model

to be flat for SHA.

Clock model

In an experiment, we measure tCLK on 10 independent runs for an FPGA for SHA-256 and

SHA-512 with C ranging from 1 to 81 streams (i.e., up to 1 pipeline register per round

166

0 8 16 24 32 40 48 56 64 72
0

50

100

150

200

250
SHA-256

0 10 20 30 40 50 60 70 80 90

SHA-512

Number of Streams, C

A
c
h
.

T
p

u
t,

T
T
O
T
 [
M
el
em

s/
s]

Figure 5.26: Calibrated total achievable throughput plot of the virtualized SHA-2 crypto-
graphic hash application on an FPGA for SHA-256 and SHA-512. C refers to the number of
streams supported or the pipeline depth of the computation with N = C (i.e., no secondary
memory). For each value of C, data points were taken from 1 tool flow run. For SHA-256, the
maximum number of pipeline stages is 65. For SHA-512, the maximum number of pipeline
stages is 81. Blue ×’s are included in the models. Green ×’s are excluded from the models.

plus 1). Curve fitting the model in (5.13) across data sets concurrently yields:

tCLK,SHA256 (C) =
[264.6
C

+ 0.66 · (lnC)0.7
]

ns, (5.57)

tCLK,SHA512 (C) =
[375.1
C

+ 0.78 · (lnC)0.7
]

ns. (5.58)

Comparing this expression to (5.13) shows that, for SHA-256, we are modeling the curve-fit

total combinational logic delay, k1, as 264.6 ns, and k2 as 0.66 ns, and for SHA-512, we are

modeling the curve-fit total combinational logic delay, k1, as 375.1 ns, and k2 as 0.78 ns.

The plot of the empirical performance with the model prediction of the total achievable

throughput for this FPGA design is shown in Figure 5.26. We can observe that the model

matches closely to the observed data values.

167

0 8 16 24 32 40 48 56 64 72
0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

SHA-256

MAX RESOURCES

0 10 20 30 40 50 60 70 80 90

SHA-512

MAX RESOURCES

Number of Streams, C

T
o
ta

l
S

li
c
e
s

Figure 5.27: Calibrated total slices plot of the virtualized SHA-2 cryptographic hash appli-
cation on an FPGA for SHA-256 and SHA-512. C refers to the number of streams supported
and the pipeline depth of the computation with N = C (i.e., no secondary memory). For
each value of C, data points were taken from 1 tool flow run. For SHA-256, the maximum
number of pipeline stages is 65. For SHA-512, the maximum number of pipeline stages is
81. All data points are included in the models.

Resource model

For FPGA technology, we curve fit the total slices for SHA-256 and SHA-512 to (5.56) to

yield the following models:

SlicesSHA256 (C) = 20,737, (5.59)

SlicesSHA512 (C) = 49,652 + 30 · C. (5.60)

We can see in this equation that the fixed number of slices used for SHA-256 is 20,737 with

no additional slices per stream, and that the fixed number of slices used for SHA-512 is

49,652 with an additional 30 slices per stream. The plot of the empirical results with the

model prediction of the slices is shown in Figure 5.27. We can observe that the slices are

approximately constant as a function of C, and that the model prediction aligns well with

the measured slices data.

168

5.5 Analytic model results

We have application and technology independent queueing model equations, and calibrated

clock and resource sub-models for three applications (COS, AES, and SHA) and two tech-

nologies (FPGA and ASIC). We are going to use the M/G/1 queueing model equations

previously developed in Section 5.3 with the calibrated clock and resource models curve-

fitted in Section 5.4 to predict the performance of virtualized logic computations for fine-

and coarse-grain contexts for a variety of design goals. We will predict the performance

of a theoretical MTJ technology where every logic gate is potentially a pipeline stage by

determining the number of logic gate levels needed to implement an application and setting

the pipeline depth, C, to this number accordingly. We will present results for three design

scenarios. First, we will fix C and then optimize for minimum latency. This will emulate

an MTJ technology with a fixed pipeline depth or an already implemented hardware design

where C has been chosen and is fixed. Second, we will fix N , tune C, and then optimize

again for minimum latency. In this case, the hardware is being designed and C is a tunable

design parameter. Third, we will tune C, fix N = C, and then co-optimize throughput and

slices/area for an efficient design. In this case, throughput and slices/area are important but

not latency.

5.5.1 Design Scenario 1: Fix C, optimize for latency (WT)

For the first design scenario, we are given a circuit, technology, the total number of contexts

(N), the pipeline depth (C), and the cost of a context switch (S), and have a varying offered

load (OL). We can tune the schedule period (RS). We now want to optimize for minimum

latency (WT). For this design scenario, we present latency and optimization results for MTJ,

FPGA, and ASIC technologies.

169

The first result we present will be for MTJ technology (magnetologic) which is a natural fit

for this design scenario. As a reminder, magnetologic refers to logic circuits built using MTJ

devices. Since MTJs are magnetic and are capable of storing information in a magnetic field,

then every logic gate in magnetologic has the potential to be a pipeline stage in combinational

logic. On this basis, we can then set C equal to the number of logic gate levels in the longest

combinational logic path of an application circuit. For this technology, we target the SHA

application. For SHA-256, we estimate 491 logic levels. For SHA-512, we estimate 1,025

logic levels. (These estimates were taken from post-route timing summary reports for SHA

on a Xilinx Virtex-7 XC7VX485T FPGA part using the Xilinx Vivado 2013.4 tools.)

The results for MTJ technology are shown in Figure 5.28a for SHA-256 and Figure 5.28b for

SHA-512. In these results, we assume one output is generated per input (as in, hashes are

computed immediately from each block input into SHA). In each figure, there is a latency

and optimization plot. In the latency plot, the queueing model predicts mean latency (WT)

across a range of schedule periods (RS) and three offered loads (OL). Since we are predicting

theoretical results for an MTJ technology, tCLK is unknown but is expected to be constant.

Therefore, we measure latency in clocks (i.e., setting tCLK = 1 which effectively drops tCLK

out of the equations). Offered load, as was previously defined in Section 5.2.2 and is repeated

here, is the ratio of the aggregate arrival rate (of all streams) to the peak service rate of the

system (i.e., when S = 0). It evaluates to N · λ (where λ is in elements
clock).

Returning to the latency plot, there are three regions of interest. The first region is the

high latency on the left which drops steeply. This high latency is due to queueing delay.

The beginning of this region marks the minimum RS needed for a given offered load. As

RS increases, total achievable throughput increases, causing queueing to decrease. The

second region is at the knee of the curve. In this region, RS is optimal and gives minimum

latency performance. The third region is to the right where latency gradually increases.

170

0 20 40 60 80 100

Schedule Period, R
S

0

4,000

8,000

12,000

16,000

20,000
L
a
te

n
c
y
,
W

 [
c
lk
s
]

OL=0.1 OL=0.6 OL=0.8

0.0 0.2 0.4 0.6 0.8 1.0

Offered Load, OL

0

20

40

60

80

100

S
c
h
e
d

u
le

 P
e
ri

o
d

,
R
S

Minimum R
S

Optimal R
S

(a) SHA-256 with C = 491

0 20 40 60 80 100

Schedule Period, R
S

0
6,000

12,000
18,000
24,000
30,000
36,000

L
a
te

n
c
y
,
W

 [
c
lk
s
]

OL=0.1 OL=0.6 OL=0.8

0.0 0.2 0.4 0.6 0.8 1.0

Offered Load, OL

0

20

40

60

80

100

S
c
h
e
d

u
le

 P
e
ri

o
d

,
R
S

Minimum R
S

Optimal R
S

(b) SHA-512 with C = 1,025

Figure 5.28: Analytic latency prediction (top) and optimization (bottom) plots for MTJ
technology with the SHA application for design scenario 1. The optimal RS for minimum
latency is indicated by a dot. In these plots, C is calibrated to the logic levels of the SHA-256
and SHA-512 implementations, N = 2C, and S = 2,000.

This increase is due to the wait time incurred during a vacation period by the hierarchical,

round-robin schedule as RS increases. It now takes longer for a data stream to be serviced.

We can observe for SHA-256 with an OL = 0.8, the minimum latency is about 12,500 clocks,

whereas for SHA-512, it is about 18,000 clocks. This larger latency is expected due to the

additional logic levels in SHA-512.

In the optimization plot, latency is optimized continuously across a range of offered loads

swept from 0 to 1. There are two curves. The solid blue curve shows the minimum RS

needed to service a given offered load (that is, ρ < 1). The dashed green curve shows the

optimal RS that minimizes latency at the given offered load. We can see that at low offered

load, the optimal RS is small, then gradually increases until about 0.8 (left) or 0.9 (right),

and finally increases steeply.

171

0.0 0.2 0.4 0.6 0.8 1.0

Offered Load, OL

0

2,500

5,000

7,500

10,000

12,500

15,000

L
a
te

n
c
y
,
W

 [
c
lk
s
]

R
S
=10 R

S
=20 R

S
=40

(a) SHA-256 with C = 491

0.0 0.2 0.4 0.6 0.8 1.0

Offered Load, OL

0

5,000

10,000

15,000

20,000

25,000

30,000

L
a
te

n
c
y
,
W

 [
c
lk
s
]

R
S
=10 R

S
=20 R

S
=40

(b) SHA-512 with C = 1,025

Figure 5.29: Analytic latency prediction plots vs. offered load for MTJ technology with the
SHA application for design scenario 1. C is calibrated to the logic levels of the SHA-256 and
SHA-512 implementations, N = 2C, and S = 2,000. A 3 dB point is drawn for each curve
above the minimum latency to approximate the knee of the curve. The dashed black curve
is a lower bound of the optimal latency for RS optimized at each offered load.

Suppose we choose a value of RS from the optimization plot. We can then plot the latency

for this fixed RS versus the offered load to show a performance curve across all loads. This is

shown in Figure 5.29a for SHA-256 and in Figure 5.29b for SHA-512 for three values of RS.

We can see that the latency is initially flat at low offered loads, but then increases steeply

at some point. The “knee” of these curves, indicated by a black dot, we can approximate to

be 3 dB above the minimum latency of each curve. Beyond the knee, the latency increases

sharply. As RS varies, the latency curve changes in two ways. First, it changes in the value

of the latency in the flat part of the curve (low RS gives low latency). Second, it changes the

position of the knee of the curve (high RS pushes the knee out further, allowing a large range

of loads to be handled). This indicates a tradeoff. If we expect the load on the system to be

small, we can sacrifice range to get low latency. Otherwise, we can sacrifice low latency for a

large range. Optimizing RS continuously across all offered loads, we can attain the minimum

latency for each offered load. This is shown as the dashed black curve, which establishes a

lower bound on the latency.

172

0 20 40 60 80 100

Schedule Period, RS

0

25

50

75

100

125
L
a
te

n
c
y
,
W

 [
µ
s
]

OL=0.001 OL=0.4 OL=0.7

0.0 0.2 0.4 0.6 0.8 1.0

Offered Load, OL

0

20

40

60

80

100

S
c
h
e
d

u
le

 P
e
ri

o
d

,
R
S

Minimum RS

Optimal RS

Figure 5.30: Analytic latency prediction (left) and optimization (right) plots for FPGA
technology with the COS application for design scenario 1. In these plots, C = 10, N = 100,
S = 100, and Nt = 20.

Next, we present results for FPGA technology with tCLK calibrated to (5.46) for the COS

application. The latency and optimization plots are shown in Figure 5.30 for offered loads

of 0.001, 0.4, and 0.7. In these plots, C = 10, N = 100, S = 100, Nt = 20 (the number of

Taylor series terms approximating the cosine function), and tCLK evaluates to 25.3 ns (which

is 39.5 MHz). The general trends observed with MTJ technology are clearly present here

as well.

Last, we present results for ASIC technology with tCLK calibrated to (5.53) for the AES

application. The latency and optimization plots are shown in Figure 5.31 for offered loads

of 0.001, 0.4, and 0.7. In these plots, C = 10, N = 200, S = 150, Nr = 14 (the number

of cipher rounds), and tCLK evaluates to 19.6 ns (which is 50.9 MHz). The general trends

observed with MTJ technology are clearly present here as well.

5.5.2 Design Scenario 2: Fix N , tune C, optimize for latency (WT)

For the second design scenario, we are given a circuit, technology, the total number of

contexts (N), the cost of a context switch (S), and the arrival rate (λ). We can tune the

173

0 20 40 60 80 100

Schedule Period, RS

0

40

80

120

160

200

240
L
a
te

n
c
y
,
W

 [
µ
s
]

OL=0.001 OL=0.4 OL=0.7

0.0 0.2 0.4 0.6 0.8 1.0

Offered Load, OL

0

20

40

60

80

100

S
c
h
e
d

u
le

 P
e
ri

o
d

,
R
S

Minimum RS

Optimal RS

Figure 5.31: Analytic latency prediction (left) and optimization (right) plots for ASIC tech-
nology with the AES application for design scenario 1. In these plots, C = 10, N = 200,
S = 150, and Nr = 14.

pipeline depth (C) and the schedule period (RS). We now want to optimize for minimum

latency (WT). For this design scenario, we present latency and optimization results for the

COS, AES, and SHA applications on FPGA and ASIC technologies.

First, we present results for the COS application in Figure 5.32a for FPGA technology with

the clock period, tCLK , calibrated to (5.46) and in Figure 5.32b for ASIC technology with

tCLK calibrated to (5.47). In each figure, there is a latency and optimization plot with

parameters N = 60, S = 10C, Nt = 20 (the number of Taylor series terms approximating

the cosine function), and λ = 30 Kelems
s . tCLK depends on the value of C.

In the latency plot, the queueing model again predicts mean latency, WT , across a range

of schedule periods, RS, however, this time for three values of C (instead of offered load).

The shape of the latency plot is the same as before (initially high, drops steeply to an

optimal point, then increases gradually). However, we can see that as C increases, overall

latency decreases (lower is better). This is due to having more pipeline stages running more

contexts concurrently in the hardware, thus parallelizing the computation. Because there are

more stages (evenly distributed throughout the combinational logic), stage-to-stage delay is

reduced. This improves overall throughput, and therefore reduces latency.

174

0 5 10 15 20 25 30 35 40

Schedule Period, RS

0
15
30
45
60
75
90

L
a
te

n
c
y
,
W

 [
µ
s
] C=4 C=10 C=30

0 5 10 15 20 25 30

Pipeline depth, C

0
2
4
6
8

10
12
14

S
c
h
e
d

u
le

 P
e
ri

o
d

,
R
S

Minimum RS

Optimal RS

(a) FPGA

0 5 10 15 20 25 30 35 40

Schedule Period, RS

0

40

80

120

160

200

L
a
te

n
c
y
,
W

 [
µ
s
] C=4 C=10 C=30

0 5 10 15 20 25 30

Pipeline depth, C

0
8

16
24
32
40
48

S
c
h
e
d

u
le

 P
e
ri

o
d

,
R
S

Minimum RS

Optimal RS

(b) ASIC

Figure 5.32: Analytic latency prediction (top) and optimization (bottom) plots for the
COS application for design scenario 2. In these plots, N = 60, S = 10C, Nt = 20, and
λ = 30 Kelems

s .

In the optimization plot, the schedule period, RS, is optimized for minimum latency, this

time as a function of C. We can see that the optimal RS is initially high at low C, then

decreases as C increases. This is because when C, the number of pipeline stages, increases,

the overall throughput also increases. When this happens, RS no longer needs to be as high

to handle the load. We also notice that the optimal RS starts to curve back up slightly at

high C. We can understand this by making a simple observation in the latency plot. As C

increases in the latency plot, the slope of the region to the right of the optimal RS point

decreases. Since this slope is less pronounced, it causes the optimal RS to shift to the right

(increase) slightly.

Next, we present results for the AES application in Figure 5.33a for FPGA technology with

tCLK calibrated to (5.52) and in Figure 5.33b for ASIC technology with tCLK calibrated to

(5.53). In these plots, N = 60, S = 10C, and λ = 30 Kelems
s . The number of rounds, Nr,

is set to 14 which is the standard for AES-256. The value of tCLK again depends on the

175

0 5 10 15 20 25 30 35 40

Schedule Period, RS

0
5

10
15
20
25
30

L
a
te

n
c
y
,
W

 [
µ
s
] C=4 C=10 C=30

0 5 10 15 20 25 30

Pipeline depth, C

0

2

4

6

8

10

S
c
h
e
d

u
le

 P
e
ri

o
d

,
R
S

Minimum RS

Optimal RS

(a) FPGA

0 5 10 15 20 25 30 35 40

Schedule Period, RS

0
8

16
24
32
40
48

L
a
te

n
c
y
,
W

 [
µ
s
] C=4 C=10 C=30

0 5 10 15 20 25 30

Pipeline depth, C

0

2

4

6

8

10

S
c
h
e
d

u
le

 P
e
ri

o
d

,
R
S

Minimum RS

Optimal RS

(b) ASIC

Figure 5.33: Analytic latency prediction (top) and optimization (bottom) plots for the
AES application for design scenario 2. In these plots, N = 60, S = 10C, Nr = 14, and
λ = 30 Kelems

s .

value of C. We can see in these figures that the general shape and observations made of

the latency and optimization curves remain the same except that the optimal RS (in the

optimization plot) does not appear as high at low C.

Last, we present results for the SHA application for FPGA technology in Figure 5.34a

for SHA-256 with tCLK calibrated to (5.57) and in Figure 5.34b for SHA-512 with tCLK

calibrated to (5.58). In these plots, N = 60, S = 10C, and λ = 30 Kelems
s . The value of

tCLK again depends on the value of C. We can also see in these figures that the general

shape and observations made of the latency optimization curves are the same as for the COS

application.

176

0 5 10 15 20 25 30 35 40

Schedule Period, RS

0

20

40

60

80

100
L
a
te

n
c
y
,
W

 [
µ
s
] C=4 C=10 C=30

0 5 10 15 20 25 30

Pipeline depth, C

0

3

6

9

12

15

18

S
c
h
e
d

u
le

 P
e
ri

o
d

,
R
S

Minimum RS

Optimal RS

(a) SHA-256

0 5 10 15 20 25 30 35 40

Schedule Period, RS

0
25
50
75

100
125
150

L
a
te

n
c
y
,
W

 [
µ
s
] C=4 C=10 C=30

0 5 10 15 20 25 30

Pipeline depth, C

0
5

10
15
20
25
30
35

S
c
h
e
d

u
le

 P
e
ri

o
d

,
R
S

Minimum RS

Optimal RS

(b) SHA-512

Figure 5.34: Analytic latency prediction (top) and optimization (bottom) plots for the SHA
application in FPGA technology for design scenario 2. In these plots, N = 60, S = 10C,
and λ = 30 Kelems

s .

5.5.3 Design Scenario 3: Optimize for throughput-slice/area effi-

ciency

For the third design scenario, we are given a circuit and technology and will only be using

fine-grain context switching (i.e., no secondary memory). Thus, N = C (total contexts

equals the pipeline depth) and S = 0 (no context switch cost). We can tune the pipeline

depth (C). We now want to optimize for the maximum throughput-slice/area efficiency of

the design. Throughput-slice/area efficiency is defined as the ratio of the total achievable

throughput to the total slices (FPGA) or area (ASIC). A more efficient design is one that has

a high throughput and low slice count or circuit area. For this design scenario, we present

throughput, slices/area, and efficiency results for the COS, AES, and SHA applications on

FPGA and ASIC technologies. C will be constrained up to the maximum number of pipeline

stages that are implemented for each application.

177

First, we present results for the COS application in Figure 5.35a for FPGA technology and in

Figure 5.35b for ASIC technology. In each figure, there is a total achievable throughput, total

slices/area, and efficiency plot. In these plots, Nt = 20 (the number of Taylor series terms

approximating the cosine function). We model two parameters in this design scenario: clock

period (tCLK) and total slices/area. tCLK is calibrated using (5.46, 5.47) and total slices/area

is calibrated using (5.48, 5.49). Since C varies, tCLK also varies because it depends on C.

In the total achievable throughput plot, the queueing model predicts TTOT across a range of

pipeline depths, C, up to the maximum pipeline depth Cmax = 2Nt− 1 = 39 (for COS). We

can see that the throughput increases almost linearly as C increases, but starts to bend over.

In the total slices/area plot, the slices/area increases linearly with C. We then derive the

efficiency plot as the ratio of these two plots. A higher efficiency is better which co-optimizes

for high throughput and low slices/area. In Figure 5.35a, we can see that the efficiency is

initially low, increases sharply to an optimal point at about C = 14, and then gradually

decreases with larger C. In Figure 5.35b, there is a similar trend, except that the pipeline

depth, C, reaches its maximum before reaching a peak. Therefore, the optimal point is

at Cmax = 39.

Next, we present results for the AES application in Figure 5.36a for FPGA technology and

in Figure 5.36b for ASIC technology. In these plots, the number of rounds, Nr, is set to 14

which is the standard for AES-256. tCLK is calibrated using (5.52, 5.53), and total slices/area

is calibrated using (5.54, 5.55). The maximum pipeline depth, Cmax, is 2Nr = 28. We can

see that the optimal efficiency in both Figures 5.36a and 5.36b is about C = 17.

Last, we present results for the SHA application (implemented only on FPGA technology)

in Figure 5.37a for SHA-256 and in Figure 5.37b for SHA-512. tCLK is calibrated using

(5.57, 5.58) and total slices are calibrated using (5.59, 5.60). The maximum pipeline depth,

Cmax, depends on the number of rounds, Nr, for each hash type of the SHA-2 standard. For

178

0
15
30
45
60
75
90

105

A
c
h
.

T
p

u
t

[M
el
em

s/
s]

0
600

1,200
1,800
2,400
3,000
3,600
4,200

To
ta

l
S

li
c
e
s

0 5 10 15 20 25 30 35 40

Pipeline depth, C

8
12
16
20
24
28
32
36

E
ff

ic
ie

n
c
y

(a) FPGA

0
8

16
24
32
40
48

A
c
h
.

T
p

u
t

[M
el
em

s/
s]

4.0
4.5
5.0
5.5
6.0
6.5
7.0

To
ta

l
A

re
a

(C
o
re

)
[m

m
2

]

0 5 10 15 20 25 30 35 40

Pipeline depth, C

0
1
2
3
4
5
6
7

E
ff

ic
ie

n
c
y

(b) ASIC

Figure 5.35: Analytic total achievable throughput (top), total slices/area (middle), and
efficiency (bottom) plots for the COS application for design scenario 3. N = C, S = 0, and
Nt = 20. Efficiency is the ratio of throughput to total slices (left) or area (right).

0
20
40
60
80

100
120
140

A
c
h
.

T
p

u
t

[M
el
em

s/
s]

20,000
24,000
28,000
32,000
36,000
40,000
44,000

To
ta

l
S

li
c
e
s

0 5 10 15 20 25 30

Pipeline depth, C

0.5
1.0
1.5
2.0
2.5
3.0
3.5

E
ff

ic
ie

n
c
y

(a) FPGA

8
16
24
32
40
48
56
64

A
c
h
.

T
p

u
t

[M
el
em

s/
s]

52.5
55.0
57.5
60.0
62.5
65.0
67.5
70.0

To
ta

l
A

re
a

(C
o
re

)
[m

m
2

]

0 5 10 15 20 25 30

Pipeline depth, C

0.15
0.30
0.45
0.60
0.75
0.90
1.05

E
ff

ic
ie

n
c
y

(b) ASIC

Figure 5.36: Analytic total achievable throughput (top), total slices/area (middle), and
efficiency (bottom) plots for the AES application for design scenario 3. N = C, S = 0, and
Nr = 14. Efficiency is the ratio of throughput to total slices (left) or area (right).

179

0
25
50
75

100
125
150
175

A
c
h
.

T
p

u
t

[M
el
em

s/
s]

0
5,000

10,000
15,000
20,000
25,000
30,000

To
ta

l
S

li
c
e
s

0 10 20 30 40 50 60 70

Pipeline depth, C

0.0
1.5
3.0
4.5
6.0
7.5
9.0

E
ff

ic
ie

n
c
y

(a) SHA-256

0
25
50
75

100
125
150

A
c
h
.

T
p

u
t

[M
el
em

s/
s]

0

15,000

30,000

45,000

60,000

75,000

To
ta

l
S

li
c
e
s

0 10 20 30 40 50 60 70 80 90

Pipeline depth, C

0.0
0.5
1.0
1.5
2.0
2.5
3.0

E
ff

ic
ie

n
c
y

(b) SHA-512

Figure 5.37: Analytic total achievable throughput (top), total slices (middle), and efficiency
(bottom) plots for the SHA application in FPGA technology for design scenario 3. N = C,
and S = 0. Efficiency is the ratio of throughput to total slices.

SHA-256, there are Nr = 64 rounds making Cmax = Nr + 1 = 65, and for SHA-512, there

are Nr = 80 rounds making Cmax = Nr + 1 = 81. Observing the total slices plot, we can

see that the slices are relatively constant, or independent of the pipeline depth, C. This

is due to the SHA-2 implementation having a single stream interface containing fields (to

be hashed) within record-oriented data. Elements from each field are then accessed via a

content addressable queue. This logic is independent of C. Therefore, the efficiency plot

always shows that the optimal pipeline depth for maximum efficiency will be at the same

point for maximum throughput which is Cmax.

180

5.6 Summary

We developed virtualized hardware using C-slow techniques to effectively utilize hardware

and to compute multiple data streams concurrently. The virtualized hardware is pipelined

with C pipeline stages which we were able to model to develop a clock period model. Using

queueing theory, we modeled the performance of the virtualized hardware using M/D/1 and

M/G/1 queueing models to predict total throughput, latency, and queue occupancy. These

models were validated via a discrete-event simulation.

We developed three C-slow applications: COS, AES, and SHA. Using the clock period model

and a resource model, we calibrated these applications using simulation results to the models.

The models were shown to fit well to the simulation results.

Last, we used the M/G/1 queueing model to predict the total throughput, latency, and queue

occupancy of our three applications for MTJ, FPGA, and ASIC technologies. We showed

several ways in which to use the model that allow a designer to optimize the performance of

a virtualized circuit.

181

182

Chapter 6

Conclusions and Future Work

The research described in this dissertation is motivated by the desire to effectively utilize

magnetic tunnel junctions (MTJs) in digital systems. Two potential uses of MTJs are clock-

ing and logic. In clocking, a global external magnetic field combined with on-chip MTJs

is used as an alternative mechanism for distributing the clock signal across the chip. This

requires a read circuit to sense the MTJ and produce the clock output. In logic, MTJs are

used to construct logic circuits, also called magnetologic. MTJs are written via a current or

a magnetic field and are accessed via a resistance. This therefore requires support circuitry

in order to read the MTJ and write to a downstream device. For both of these uses, a

read circuit is needed to determine the state of the MTJ. For this purpose, we developed

a resistance-to-voltage (R2V) read circuit to sense the MTJ resistance and produce a logic

voltage output.

Magnetologic circuits have the potential to act as state in the pipeline stage of a logic

circuit. This is because each MTJ device acts as a latch to whatever data is written to

it. This consequently means that magnetologic circuits have the potential to become very

deeply-pipelined. Since most applications are sequential (i.e., they have feedback), this

can make digital design very challenging. We want to exploit the latching property of

183

magnetologic circuits. Therefore, we investigated virtualization of hardware as a way to

more fully utilize deeply-pipelined circuits. Virtualization involves context switching the

hardware logic to allow computing multiple data streams in the same logic circuit. While

applicable to magnetologic using MTJs, virtualization is also applicable to traditional logic

technologies like CMOS. Our virtualization investigation targets MTJs, FPGAs, and ASICs.

6.1 Conclusions

Resistance-to-voltage (R2V) read circuit

We designed, analyzed, simulated, laid out, fabricated, and tested an R2V read circuit. In

the analysis, we developed a noise model for a current-mode read circuit designed with a

basic current conveyor to predict its noise performance at the output. The model relates

several circuit parameters to circuit performance. We learned from the model that the input

node is relatively insensitive to node capacitance. This allows the input node to have high

capacitance without degradation of overall circuit performance.

From the model, we developed design guidance for tuning circuit performance. This tells us

that the output noise current depends strongly on transistor length and Rmtj, and weakly

on transistor width and Vbias. Therefore, to decrease the output noise, the transistor length

and Rmtj (if tunable), which yield the greatest effect, should be increased.

We analyzed several current conveyor structures and developed design equations for sizing

their transistors. We learned that linearity is improved by adding cascode structures and/or

increasing transistor length (while preserving the shape factor). The tradeoffs are that

(1) cascode structures increase the number of transistors in the design and require wider

184

transistors in order to keep operating in the saturation region; and (2) increasing transistor

length (while preserving the shape factor) increases the transistor size in quadrature.

We designed the R2V read circuit that was fabricated using a P-cascode current conveyor

with minimum length transistors, a P-cascode current comparator, and an output buffer.

This design balances tradeoffs in linearity, area, and speed.

We simulated the R2V read circuit and characterized it in terms of area, transient response,

power, and jitter. We found that when the process scales down to smaller dimensions, the

area decreases, rise/fall times decrease, propagation times decrease, maximum frequency

increases, power consumption decreases, and jitter decreases. Further, we found that the

performance bottleneck of the read circuit is in the current comparator. This indicates that

read circuit performance could be improved with a faster current comparator circuit. Also,

we observed that the current comparator current need not be the same current as the current

conveyor current. Rather, it could be scaled down to save power and area.

We designed and fabricated a prototype test chip in the 3 metal 2 poly 0.5µm process for

testing the R2V read circuit and to evaluate the feasibility of magnetic global clocking.

However, due to being unable to attain MTJs, magnetic global clocking was not tested.

We experimentally tested the R2V read circuit on the prototype test chip to evaluate its

functionality and performance. Using a clocked low/high resistor pair, the read circuit is

shown to correctly detect the input resistance and produce the desired square wave output

for MCLK. We observed second-order effects in the Vmtj node voltage that caused an offset,

from Vmtj to Vbias, to appear on this node in the order of 17 to 51 mV. At low Vbias, such

as 50 mV, this offset is significant because it is of a similar order to Vbias. This consequently

causes the Iout current to vary significantly from its nominal value. Between quadrants, we

observed significant variation between Vmtj node offsets, causing significant variation in the

185

ranges of low/high Iout currents at low Vbias. This prevents a single common threshold to

be selected between all the quadrants and requires that each quadrant be set individually.

We tested the read circuit for its maximum operating frequency and found it to be about

48 MHz for internal resistors with Vbias = 0.1 V.

We empirically measured the actual values of the internal resistors to be within 466 ± 6 Ω

and 787±11 Ω across Vbias and all quadrants. These values are less than their nominal values

of 500 Ω and 1 kΩ, which results in higher output current than expected. The variation in

the internal resistors is small, making the resistor values close to constant across Vbias and

all quadrants.

We tested the linearity of the read circuit across a range of Vbias and for multiple resistors.

The read circuit remains linear up to a maximum Vbias and then plateaus in the Iout current.

In the linear region, the transistors operate in saturation and Vmtj correctly follows Vbias.

This in turn produces linear Iout current. The circuit is designed to operate correctly at

Rmtj = 500 Ω and Vbias = 0.1 V, however, it is shown to operate correctly up to twice the

range of Vbias = 0.2 V for the same resistor value.

We established current limits for the read circuit that the threshold current must be between.

These are defined to be the values of the Iout current measured for the low/high resistors.

We then measured statically a range of stable threshold currents over which the current

comparator operates correctly at DC. We last tested the dynamic operation of the read

circuit (by clocking the input resistance between low/high values) and determined a range of

parameters over which the read circuit operates correctly. For internal resistors, this range

was wide, but for external resistors, it was narrow or non-existent. Outside of the stable

range, we observed that the MCLK output oscillates when Ith is close to the current limits.

186

Virtualization of hardware logic circuits

We investigated virtualization techniques for deeply-pipelined hardware logic circuits. We

developed a clock period model and empirically validated it via Monte Carlo simulations. To

better fit the model to the empirical result, a power term p was added to bend the shape of

the model curve. The shape depends on the random distribution and, for some distributions,

their parameters as well. For a Gaussian distribution, p is ≈ 0.7 and is constant regardless

of the parameters of the distribution.

We developed M/D/1 and M/G/1 queueing models of the performance of virtualized hard-

ware with secondary memory using a fixed, hierarchical, round-robin schedule. These models

predict average throughput, latency, and queue occupancy in the system.

We discovered when applying the C-slow technique (i.e., replacing every register with C

registers and then retiming) to virtualize a hardware circuit that the retiming tools did not

do a good job at evenly distributing logic throughout the pipeline stages. Evenly distributed

pipeline stages are necessary to improve the clock frequency to maximize total throughput

performance. To accomplish this, manual pipelining was used instead.

We developed three C-slow applications and calibrated them to the clock model and a

resource model for FPGA and ASIC technologies. Both models show good correspondence

to the empirical results. The clock model is input to the queueing models. The resource

model is combined with the queueing models to evaluate the efficiency of performance to

resource usage.

Using the M/G/1 model, we predict throughput, latency, and resource usage for MTJ,

FPGA, and ASIC technologies. We show three design scenarios illustrating ways in which to

use the model. The first two predict latency. We are able to determine an optimal schedule

187

in each that minimizes the latency in each design scenario. The third design scenario predicts

throughput and total slices/area. We are able to determine an optimal pipeline depth that

maximizes throughput-slice/area efficiency.

6.2 Future work

Since we were unable to attain MTJs for experimentation, future work is to attain actual

MTJ devices, wire bond them to the prototype test chip, and measure the effectiveness of

magnetic global clocking in the presence of an oscillating magnetic field using the global

clocking circuits on the chip.

During experimentation of the read circuit, we observed oscillations near threshold and offset

in the Vmtj node voltage. There were also aspects of the read circuit that were not fully

explored such as the impact of load capacitance on the input node. Further investigation

is needed on the properties of the read circuit. Future work is to determine the cause

of the oscillations observed near threshold, investigate the use of hysteresis in the current

comparator as a way to reduce the oscillations, investigate the separation (offset) between

Vmtj and Vbias both within a quadrant and across quadrants, determine the impact of load

capacitance on the input node, and from these determine ways in which the read circuit can

be improved.

In hardware virtualization, we explored applying the C-slow technique to a hardware circuit

to improve performance and utilize deeply-pipelined logic. Our investigation primarily used

a parallel interface (i.e., streams are in parallel at the input and output) and a fixed sched-

ule, and explored the use of secondary memory in the development of a queueing model.

188

Future work is to expand the set of context switch designs which includes supporting sec-

ondary memory, adding flow control in the data stream, and context switching using dynamic

schedules; and to develop queueing models for these designs. In the SHA-2 application, an

upfront content addressable queue was used to buffer the input data stream. Future work

is to model the content addressable queue and its workload, and from the model determine

how large it should be sized. Last, in the queueing model, we assume the arrival process is

exponential. This may not be the case in many real world applications. Future work is to

evaluate this assumption and determine its impact on the accuracy of the queueing models.

189

190

References

[1] M. Durlam, P. Naji, A. Omair, M. DeHerrera, J. Calder, J. Slaughter, B. Engel,
N. Rizzo, G. Grynkewich, B. Butcher, C. Tracy, K. Smith, K. Kyler, J. Ren, J. Molla,
W. Feil, R. Williams, and S. Tehrani, “A 1-Mbit MRAM based on 1T1MTJ bit cell
integrated with copper interconnects,” IEEE Journal of Solid-State Circuits, vol. 38,
no. 5, pp. 769–773, May 2003.

[2] W. Zhao, E. Belhaire, C. Chappert, B. Dieny, and G. Prenat, “TAS-MRAM-based low-
power high-speed runtime reconfiguration (RTR) FPGA,” ACM Trans. Reconfigurable
Technol. Syst., vol. 2, no. 2, pp. 1–19, 2009.

[3] S. Lee, G. Lee, H. Lee, S. Lee, and H. Shin, “Design of reconfigurable
logic circuits based on Single-Layer Magnetic-Tunnel-Junction elements,” Japanese
Journal of Applied Physics, vol. 47, pp. 3264–3268, Apr. 2008. [Online]. Available:
http://jjap.ipap.jp/link?JJAP/47/3264/

[4] J. Slaughter, “Materials for magnetoresistive random access memory,” Annual Review
of Materials Research, vol. 39, no. 1, pp. 277–296, Apr. 2009.

[5] C. Lin, S. Kang, Y. Wang, K. Lee, X. Zhu, W. Chen, X. Li, W. Hsu, Y. Kao, M. Liu
et al., “45nm low power CMOS logic compatible embedded STT MRAM utilizing a
reverse-connection 1T/1MTJ cell,” in IEEE International Electron Devices Meeting
(IEDM). IEEE, 2009, pp. 1–4.

[6] W. Reohr, H. Honigschmid, R. Robertazzi, D. Gogl, F. Pesavento, S. Lammers,
K. Lewis, C. Arndt, Y. Lu, H. Viehmann, R. Scheuerlein, L.-K. Wang, P. Trouilloud,
S. Parkin, W. Gallagher, and G. Muller, “Memories of tomorrow,” IEEE Circuits and
Devices Magazine, vol. 18, no. 5, pp. 17–27, Sep. 2002.

[7] J. Åkerman, “Toward a universal memory,” Science, vol. 308, no. 5721, pp. 508–510,
2005. [Online]. Available: http://www.sciencemag.org/content/308/5721/508.short

[8] X. Dong, X. Wu, G. Sun, Y. Xie, H. Li, and Y. Chen, “Circuit and microarchitecture
evaluation of 3D stacking magnetic RAM (MRAM) as a universal memory replacement,”
in DAC ’08: Proceedings of the 45th Annual Design Automation Conference. New York,
NY, USA: ACM, 2008, pp. 554–559.

[9] M. Durlam, P. Naji, M. DeHerrera, S. Tehrani, G. Kerszykowski, and K. Kyler, “Non-
volatile RAM based on magnetic tunnel junction elements,” in IEEE International Solid-
State Circuits Conference. Digest of Technical Papers., 2000, pp. 130–131.

191

http://jjap.ipap.jp/link?JJAP/47/3264/
http://www.sciencemag.org/content/308/5721/508.short

[10] R. Takemura, “Low-power NV-RAM,” in Green Computing with Emerging Memory.
Springer, 2013, pp. 111–140.

[11] Everspin Technologies, Inc. [Online]. Available: http://www.everspin.com

[12] W. C. Black and B. Das, “Programmable logic using giant-magnetoresistance and spin-
dependent tunneling devices (invited),” Journal of Applied Physics, vol. 87, no. 9, pp.
6674–6679, May 2000.

[13] N. Ranganathan and N. Jouppi, “Evaluating the potential of future on-
chip clock distribution using optical interconnects,” Hewlett-Packard Development
Company, Tech. Rep. HPL-2007-163, Oct, 2007. [Online]. Available: http:
//www.hpl.hp.com/techreports/2007/HPL-2007-163.html

[14] M. Hall, A. Jander, R. D. Chamberlain, and P. Dhagat, “Globally clocked magnetic
logic circuits,” in Digest of Papers Int’l Conf. on Magnetics, May 2009.

[15] J. Goodman, F. Leonberger, S.-Y. Kung, and R. Athale, “Optical interconnections for
VLSI systems,” Proceedings of the IEEE, vol. 72, no. 7, pp. 850–866, Jul. 1984.

[16] A. Ney, C. Pampuch, R. Koch, and K. H. Ploog, “Programmable computing with a
single magnetoresistive element,” Nature, vol. 425, no. 6957, pp. 485–487, Oct. 2003.
[Online]. Available: http://dx.doi.org/10.1038/nature02014

[17] S. Lee, S. Choa, S. Lee, and H. Shin, “Magneto-logic device based on a single-layer
magnetic tunnel junction,” IEEE Transactions on Electron Devices, vol. 54, no. 8, pp.
2040–2044, Aug. 2007.

[18] S. Lee, S. Seo, S. Lee, and H. Shin, “A full adder design using serially connected
single-layer magnetic tunnel junction elements,” IEEE Transactions on Electron De-
vices, vol. 55, no. 3, pp. 890–895, Mar. 2008.

[19] B. Buford, A. Jander, and P. Dhagat, “Digital logic using 3-terminal spin transfer torque
devices,” Arxiv preprint arXiv:1101.3222, 2011.

[20] D. Suzuki, M. Natsui, S. Ikeda, H. Hasegawa, K. Miura, J. Hayakawa, T. Endoh,
H. Ohno, and T. Hanyu, “Fabrication of a nonvolatile lookup-table circuit chip us-
ing magneto/semiconductor-hybrid structure for an immediate-power-up field pro-
grammable gate array,” in Symposium on VLSI Circuits, Jun. 2009, pp. 80–81.

[21] C. Leiserson and J. Saxe, “Retiming synchronous circuitry,” Algorithmica, vol. 6, pp.
5–35, Jun. 1991.

[22] D. M. Tullsen et al., “Exploiting choice: instruction fetch and issue on an implementable
simultaneous multithreading processor,” in Proc. of 23rd Int’l Symp. on Computer Ar-
chitecture, May 1996, pp. 191–202.

192

http://www.everspin.com
http://www.hpl.hp.com/techreports/2007/HPL-2007-163.html
http://www.hpl.hp.com/techreports/2007/HPL-2007-163.html
http://dx.doi.org/10.1038/nature02014

[23] L. Ma, K. Agrawal, and R. D. Chamberlain, “A memory access model for highly-
threaded many-core architectures,” Future Generation Computer Systems, vol. 30, pp.
202–215, Jan. 2014.

[24] L. Ma, K. Agrawal, and R. D. Chamberlain, “Analysis of classic algorithms on GPUs,”
in Proc. of the 12th ACM/IEEE Int’l Conf. on High Performance Computing and Sim-
ulation (HPCS), 2014.

[25] M. J. Hall, V. Gruev, and R. D. Chamberlain, “Noise analysis of a current-mode read
circuit for sensing magnetic tunnel junction resistance,” in 2011 IEEE International
Symposium on Circuits and Systems (ISCAS), May 2011.

[26] ——, “Performance of a resistance-to-voltage read circuit for sensing magnetic
tunnel junctions,” in 2012 IEEE 55th International Midwest Symp. on Circuits
and Syst. (MWSCAS), Aug. 2012, pp. 639–642. [Online]. Available: http:
//dx.doi.org/10.1109/MWSCAS.2012.6292101

[27] M. J. Hall and R. D. Chamberlain, “Performance modeling of virtualized custom logic
computations,” in Proc. of 24th ACM Int’l Great Lakes Symposium on VLSI, 2014.

[28] ——, “Performance modeling of virtualized custom logic computations,” in IEEE 25th
International Conference on Application-specific Systems, Architectures and Processors
(ASAP), Jun. 2014, pp. 72–73.

[29] W. Zhao, C. Chappert, V. Javerliac, and J.-P. Noziere, “High speed, high stability and
low power sensing amplifier for MTJ/CMOS hybrid logic circuits,” IEEE Transactions
on Magnetics, vol. 45, no. 10, pp. 3784–3787, Oct. 2009.

[30] P. Braganca, J. Katine, N. Emley, D. Mauri, J. Childress, P. Rice, E. Delenia, D. Ralph,
and R. Buhrman, “A three-terminal approach to developing spin-torque written mag-
netic random access memory cells,” IEEE Transactions on Nanotechnology, vol. 8, no. 2,
pp. 190–195, Mar. 2009.

[31] P. Naji, M. Durlam, S. Tehrani, J. Calder, and M. DeHerrera, “A 256 kb 3.0 V 1T1MTJ
nonvolatile magnetoresistive RAM,” in IEEE International Solid-State Circuits Confer-
ence. Digest of Technical Papers., 2001, pp. 122–123, 438.

[32] E. K. S. Au, W.-H. Ki, W. H. Mow, S. T. Hung, and C. Y. Wong, “A novel current-
mode sensing scheme for magnetic tunnel junction MRAM,” IEEE Transactions on
Magnetics, vol. 40, no. 2, pp. 483–488, Mar. 2004.

[33] S.-M. Kang and Y. Leblebici, CMOS Digital Integrated Circuits: Analysis and Design,
3rd ed. McGraw-Hill, 2003.

[34] K. C. Smith and A. Sedra, “The current conveyor–a new circuit building block,” Proc.
IEEE (Letters), vol. 56, pp. 1368–1369, Aug. 1968.

193

http://dx.doi.org/10.1109/MWSCAS.2012.6292101
http://dx.doi.org/10.1109/MWSCAS.2012.6292101

[35] E. Bruun, “Class AB CMOS first-generation current conveyor,” Electronics Letters,
vol. 31, no. 6, pp. 422–423, Mar. 1995.

[36] A. Ismail and A. Soliman, “Wideband CMOS current conveyor,” Electronics Letters,
vol. 34, no. 25, pp. 2368–2369, Dec. 1998.

[37] B. Razavi, Design of Analog CMOS Integrated Circuits. New York, NY, USA: McGraw-
Hill, Inc., 2001.

[38] H. Meng, J. Wang, and J.-P. Wang, “A spintronics full adder for magnetic CPU,” IEEE
Electron Device Letters, vol. 26, no. 6, pp. 360–362, Jun. 2005.

[39] X. Guo, E. Ipek, and T. Soyata, “Resistive computation: avoiding the power wall
with low-leakage, STT-MRAM based computing,” in Proceedings of the 37th Annual
International Symposium on Computer Architecture. New York, NY, USA: ACM,
2010, pp. 371–382. [Online]. Available: http://doi.acm.org/10.1145/1815961.1816012

[40] N. Weaver, Y. Markovskiy, Y. Patel, and J. Wawrzynek, “Post-placement C-slow retim-
ing for the Xilinx Virtex FPGA,” in Proc. of 11th Int’l Symp. on Field Programmable
Gate Arrays, 2003, pp. 185–194.

[41] M. Su, L. Zhou, and C.-J. Shi, “Maximizing the throughput-area efficiency of fully-
parallel low-density parity-check decoding with C-slow retiming and asynchronous deep
pipelining,” in Proc. of 25th Int’l Conf. on Computer Design, Oct. 2007, pp. 636–643.

[42] M. A. Akram, A. Khan, and M. M. Sarfaraz, “C-slow technique vs multiprocessor in
designing low area customized instruction set processor for embedded applications,”
International Journal of Computer Applications, vol. 36, no. 7, 2012. [Online].
Available: http://arxiv.org/abs/1204.1179

[43] C. Plessl and M. Platzner, “Virtualization of hardware – Introduction and survey,” in
Proc. of 4th Int’l Conf. on Engineering of Reconfigurable Systems and Algortihms, 2004,
pp. 63–69.

[44] K. K. Chuang, “A virtualized quality of service packet scheduler accelerator,” Master’s
thesis, Georgia Institute of Technology, Aug. 2008.

[45] S. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and R. Taylor, “PipeRench:
a reconfigurable architecture and compiler,” Computer, vol. 33, no. 4, pp. 70–77, Apr.
2000.

[46] M. Kendall and W. Buckland, A Dictionary of Statistical Terms. Edinburgh and
London: Published for the International Statistical Institute by Oliver & Boyd, Ltd.,
1957.

194

http://doi.acm.org/10.1145/1815961.1816012
http://arxiv.org/abs/1204.1179

[47] R. Jain, The Art of Computer System Performance Analysis: Techniques for Experi-
mental Design, Measurement, Simulation and Modeling. New York: John Wiley &
Sons, Inc., 1991.

[48] D. Bertsekas and R. Gallager, Data Networks, 2nd ed. Prentice Hall, Inc., 1992.

[49] E. Bruun, “Analysis of the noise characteristics of CMOS current conveyors,” Analog
Integrated Circuits and Signal Processing, vol. 12, pp. 71–78, 1997.

[50] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, 2nd ed. Oxford Univ.
Press, 2002.

[51] D. Freitas and K. Current, “CMOS current comparator circuit,” Electronics Letters,
vol. 19, no. 17, pp. 695–697, 18 1983.

[52] L. Chen, B. Shi, and C. Lu, “A robust high-speed and low-power CMOS current com-
parator circuit,” in The IEEE Asia-Pacific Conference on Circuits and Systems, 2000,
pp. 174–177.

[53] Opal Kelly XEM6010. [Online]. Available: https://www.opalkelly.com/products/
xem6010

[54] A. Canis, J. H. Anderson, and S. D. Brown, “Multi-pumping for resource reduction
in FPGA high-level synthesis,” in Proc. of Conf. on Design, Automation and Test
in Europe, 2013, pp. 194–197. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2485288.2485338

[55] B. C. Arnold and N. Balakrishnan, Relations, Bounds, and Approximations for Order
Statistics. Springer-Verlag, 1989.

[56] J. Jensen, “Sur les fonctions convexes et les inégalités entre les valeurs moyennes,”
Acta Mathematica, vol. 30, no. 1, pp. 175–193, 1906. [Online]. Available:
http://dx.doi.org/10.1007/BF02418571

[57] C. E. Bonferroni, Teoria statistica delle classi e calcolo delle probabilita. Libreria
internazionale Seeber, 1936.

[58] L. Kleinrock, Queueing Theory, Volume 1. Wiley-Interscience, 1975.

[59] R. D. Yates and D. J. Goodman, Probability and Stochastic Processes: A Friendly
Introduction for Electrical & Computer Engineers, 2nd ed. John Wiley & Sons, Inc.,
May 2004.

[60] NIST, “FIPS-197: Advanced Encryption Standard,” Federal Information Processing
Standards (FIPS) Publications, Nov. 2001.

195

https://www.opalkelly.com/products/xem6010
https://www.opalkelly.com/products/xem6010
http://dl.acm.org/citation.cfm?id=2485288.2485338
http://dl.acm.org/citation.cfm?id=2485288.2485338
http://dx.doi.org/10.1007/BF02418571

[61] P. R. Chodowiec, “Comparison of the hardware performance of the AES candidates
using reconfigurable hardware,” Master’s thesis, George Mason University, 2002.
[Online]. Available: http://bass.gmu.edu/reports/Pawel_Chodowiec_MS_Thesis.pdf

[62] NIST, “FIPS 180-4: Secure Hash Standard (SHS),” Federal Information Processing
Standards (FIPS) Publications, Mar. 2012.

196

http://bass.gmu.edu/reports/Pawel_Chodowiec_MS_Thesis.pdf

Appendix A

Read Circuit Design Guidance

Validation

The design guidance presented in Section 3.1.4 is derived based on a 2k factorial experimental

design [47] for the noise analysis of the basic current conveyor circuit in Section 3.1. The

experimental design is a statistical technique that analyzes a system containing k factors

with 2 levels per factor and determines variations in the output metrics due to each factor

and their interactions.

In the experimental design, we have five factors, listed in Table A.1. These factors are input

parameters W , L, Rmtj, Cmtj, and Vbias from the noise analysis and are assigned letters

A – E. For each factor, there are two levels such that they are a multiple of two. W and

L are the width and length of the transistors in the current conveyor circuit. Rmtj is the

MTJ resistance. Cmtj is the additional capacitance on the MTJ node. And, Vbias is the bias

voltage set over the MTJ.

We choose four metrics or output characteristics, listed in Table A.2, that a designer may

be interested in tuning. These metrics include fp1, R3, Cmtj,dp,min, and
√
I2
out,tot,n. fp1 is

the dominant pole frequency of the circuit which contributes the most to the overall circuit

197

Table A.1: Factors used in the 2k factorial experimental design.

Factor Input Parameter Description

A W Transistor width
B L Transistor length
C Rmtj MTJ resistance
D Cmtj MTJ node capacitance
E Vbias Bias voltage over MTJ

Table A.2: Metrics used in the 2k factorial experimental design.

Metric Description

fp1 Dominant pole frequency of circuit
R3 Node 3 resistance

Cmtj,dp,min Minimum MTJ capacitance for a dominant pole√
I2
out,tot,n Total integrated output noise

bandwidth. R3 is the equivalent resistance of node 3. Cmtj,dp,min is the minimum capacitance

needed to form a dominant pole on node 3 containing the MTJ, and is a function of fp1 and

R3. And,
√
I2
out,tot,n is the total integrated output noise of the circuit.

Applying the experimental design technique, results are shown in Figures A.1 through A.4

for each output metric. Effects are along the x-axis and represent the effect of each factor

and their interactions on the output metric. There are two subplots. The top subplot shows

the quantity of the effects with “I” representing the mean quantity of all effects and all others

being the difference from the mean effect. The bottom subplot shows the percent variation

explained by each effect. (Note, percent variation is meaningless for mean “I”.)

Design guidance is determined by observing the effects with the greatest percent variation

and determining their trend (increasing or decreasing) by the sign of the quantity of the

198

effect. For example, we can observe in Figure A.1 for output characteristic fp1 that factors B

and E exhibit the greatest percent variation in the output. B is the transistor length which

decreases fp1 when increased. E is the Vbias voltage which increases fp1 when increased.

The relative dependence of output characteristics to input factors can be estimated empir-

ically by observing the change in output due to a change in input, and then fitting this to

power p in the equation y2 = y1
(
x2
x1

)p
where x2/x1 is the ratio change in the input parameter,

y2/y1 is the ratio change in the output characteristic, and p is a power term that determines

the strength of the dependence of the output characteristic to the input factor. If |p| is 1,

then the ratio change at the input is the same ratio change at the output. If |p| is greater

than one, then the input parameter has a stronger than linear effect on the output. If |p|

is less than one, then the output is not affected as much by the change in input. If p is

positive, this indicates a direct trend between the input factor and the output characteristic.

In contrast, if p is negative, this indicates an inverse trend.

A summary of the relative dependence of output characteristics to input factors is shown in

Table A.3. (Note, input parameter Cmtj is not shown because its effect is negligible.) The

values in the table are estimated values of power p. To make an observation from the table,

we can see that for output circuit characteristics fp1 and Cmtj,dp,min, the transistor length,

L, has nearly a square relationship to them. In contrast, for Vbias, it is about linear.

199

−40

−20

0

20

40

60

80

Q
u
a
n
ti

ty

I

A B C D E

A
B

A
C

A
D

A
E

B
C

B
D

B
E

C
D

C
E

D
E

A
B

C

A
B

D

A
B

E

A
C

D

A
C

E

A
D

E

B
C

D

B
C

E

B
D

E

C
D

E

A
B

C
D

A
B

C
E

A
B

D
E

A
C

D
E

B
C

D
E

A
B

C
D

E

Effects

0

10

20

30

40

50

60

70

%
 V

a
ri

a
ti

o
n

Figure A.1: 2k factorial experimental design for output characteristic fp1.

−40

−20

0

20

40

60

80

100

Q
u
a
n
ti

ty

I

A B C D E

A
B

A
C

A
D

A
E

B
C

B
D

B
E

C
D

C
E

D
E

A
B

C

A
B

D

A
B

E

A
C

D

A
C

E

A
D

E

B
C

D

B
C

E

B
D

E

C
D

E

A
B

C
D

A
B

C
E

A
B

D
E

A
C

D
E

B
C

D
E

A
B

C
D

E

Effects

0

20

40

60

80

100

%
 V

a
ri

a
ti

o
n

Figure A.2: 2k factorial experimental design for output characteristic R3.

200

−20

−10

0

10

20

30

40

50

Q
u
a
n
ti

ty

I

A B C D E

A
B

A
C

A
D

A
E

B
C

B
D

B
E

C
D

C
E

D
E

A
B

C

A
B

D

A
B

E

A
C

D

A
C

E

A
D

E

B
C

D

B
C

E

B
D

E

C
D

E

A
B

C
D

A
B

C
E

A
B

D
E

A
C

D
E

B
C

D
E

A
B

C
D

E

Effects

0

10

20

30

40

50

60

%
 V

a
ri

a
ti

o
n

Figure A.3: 2k factorial experimental design for output characteristic Cmtj,dp,min.

−50

0

50

100

150

200

Q
u
a
n
ti

ty

I

A B C D E

A
B

A
C

A
D

A
E

B
C

B
D

B
E

C
D

C
E

D
E

A
B

C

A
B

D

A
B

E

A
C

D

A
C

E

A
D

E

B
C

D

B
C

E

B
D

E

C
D

E

A
B

C
D

A
B

C
E

A
B

D
E

A
C

D
E

B
C

D
E

A
B

C
D

E

Effects

0

10

20

30

40

50

60

%
 V

a
ri

a
ti

o
n

Figure A.4: 2k factorial experimental design for output characteristic
√
I2
out,tot,n.

201

Table A.3: Summary of the relative dependence of output characteristics to input factors.
The values in the table are estimated powers, p, in the equation y2 = y1

(
x2
x1

)p
where x2/x1

is the ratio change in an input parameter, and y2/y1 is the ratio change in the output
characteristic.

Input Parameters

Output Circuit
Characteristic L W Vbias Rmtj

fp1 -1.7 -0.2 0.9 -0.2
R3 -0.1 -0.9 0.0 0.1

Cmtj,dp,min 1.8 1.1 -0.9 0.1√
I2
out,tot,n -0.6 -0.2 0.2 -0.7

202

Appendix B

Summary of Queueing Model

Equations

Presented in this appendix is a definition of terms used in the M/D/1 and M/G/1 queueing

model equations that were developed in Chapter 5 for the general virtualized hardware

configuration in Figure 5.2. This is shown in Table B.1. Next, a summary of the M/D/1

and M/G/1 queueing model equations are shown in Tables B.2 and B.3.

Table B.1: Queueing model definition of terms.

Term Label Definition

N Number of data
streams

Total number of data streams or contexts in the system

C Pipeline depth Total number of pipeline stages or fine-grain contexts in
the system

S Context switch cost Number of clocks to context switch a group of fine-grain
contexts

RS Schedule period Number of rounds that a group of fine-grain contexts
are executed before doing a coarse-grain context switch

λ Mean arrival rate Mean arrival rate at the queue of an individual stream

203

tCLK Clock period Length of the critical path of the stage-to-stage delay

TT Total schedule time Total number of clocks to complete a full round of the
hierarchical schedule

TV Vacation time Number of clocks in a long vacation period

ps Service time fraction Fraction of time in a service period for a group of
fine-grain contexts

p0 Empty queue
probability

Probability that the input queue is empty for an
individual stream

V Mean vacation
waiting time

Mean waiting time of vacations for an individual virtual
server

X Mean service time Mean service time for an individual virtual server

X2 Service time second
moment

Service time second moment for an individual virtual
server

µs Service rate Mean service rate of an individual virtual server

ρ Utilization Utilization of an individual virtual server

TTOT Total achievable
throughput

Total aggregate achievable throughput of all streams in
the system

Wq Queue wait time Latency in the queue for an individual stream

Wh Head of queue wait
time

Additional latency at the head of the queue due to
coarse-grain context switching or vacations; for M/D/1
this is separate; for M/G/1 this is included in Wq

Ws Service wait time Latency in the server (i.e., the pipelined circuit) for an
individual stream

WT Total wait time Latency in the system for an individual stream

Nq Number in queue Number of data elements in the queue for an individual
stream

Ns Number in service Number of data elements in the server for an individual
stream

204

NT Number in system Total number of data elements in the system for an
individual stream

Table B.2: Summary of M/D/1 queueing model equations.

Case

Term N = C* N > C

µs
1

C·tCLK

RS

(RSN+SN/C)·tCLK

ρ λ
µs

same

TTOT C · µs = 1
tCLK

N · µs = RS

(RS+S/C)·tCLK

Wq
1
µs
· ρ

2(1−ρ) same

Wh 0 (RS(N−C)+SN/C)2·tCLK

2(RSN+SN/C)

Ws
1
µs

= C · tCLK C · tCLK (note, not 1/µs)

WT Wq +Wh +Ws same

Nq λWq = ρ2

2(1−ρ) same

Nh λWh = 0 λWh = ρ · RS ·(RS(N−C)+SN/C)2

2(RSN+SN/C)2

Ns λWs = ρ λWs = ρ · RSC
RSN+SN/C

NT Nq +Nh +Ns = λWT same

* Note, when N = C, set S = 0.

205

Table B.3: Summary of M/G/1 queueing model equations.

Case

Term N = C* N > C

TT RSN RSN + SN/C

TV 0 TT −RSC = RS (N − C) + SN/C

ps 1 RSC
TT

= RSC
RSN+SN/C

p0 same 1− ρ

V 1
2p0 · C · tCLK

[
1
2p0 · [(1− ps)TV + ps · C] + (1− p0)

[
TV

RS

]]
tCLK

X C · tCLK C · tCLK

X2 C2t2CLK = 1
µ2

s
C2t2CLK

µs
1

C·tCLK
= 1

X

RS

TT ·tCLK
= RS

(RSN+SN/C)·tCLK

ρ same λ
µs

TTOT C · µs = 1
tCLK

N · µs = RS

(RS+S/C)·tCLK

Wq
λ

2µ2
s(1−ρ) + V

1−ρ
λX2

2(1−ρ) + V
1−ρ

Wh same V
1−ρ

Ws X = C · tCLK X = C · tCLK (note, not 1/µs)

WT same Wq +Ws

Nq λWq = ρ2

2(1−ρ) + λV
1−ρ λWq = λ2X2

2(1−ρ) + λV
1−ρ

Ns λWs = ρ λWs = ρ · RSC
RSN+SN/C

NT same Nq +Ns = λWT

* Note, when N = C, set S = 0.

206

Vita
Michael J. Hall

Degrees Ph.D. Computer Engineering, May 2015
M.S. Electrical Engineering, December 2007
B.S. Computer Engineering, May 2006

Professional
Societies

Institute of Electrical and Electronics Engineers

Publications Hall, Michael and Roger Chamberlain. “Performance modeling of
virtualized custom logic computation,” in Proc. of IEEE 25th Int’l
Conf. on Application-specific Systems, Architectures and Processors
(ASAP), Jun. 2014, pp. 72–73.

Hall, Michael J. and Roger D. Chamberlain. “Performance model-
ing of virtualized custom logic computations,” in Proc. of 24th Great
Lakes Symp. on VLSI (GLSVLSI). New York, NY, USA: ACM, 2014,
pp. 89–90.

Hall, Michael J., Viktor Gruev, and Roger D. Chamberlain. “Per-
formance of a resistance-to-voltage read circuit for sensing magnetic
tunnel junctions,” Proc. of IEEE 55th Int’l Midwest Symp. on Cir-
cuits and Syst. (MWSCAS), Aug. 2012, pp. 639–642.

Hall, Michael J., Viktor Gruev, and Roger D. Chamberlain. “Noise
analysis of a current-mode read circuit for sensing magnetic tunnel
junction resistance,” Proc. of IEEE Int’l Symp. on Circuits and
Systems (ISCAS), May 2011.

Chamberlain, Roger D., Mark A. Franklin, Eric J. Tyson, James H.
Buckley, Jeremy Buhler, Greg Galloway, Saurabh Gayen, Michael
Hall, E.F. Berkley Shands, and Naveen Singla. “Auto-pipe: Stream-
ing applications on architecturally diverse systems,” Computer, vol.
43, pp. 42–49, Mar. 2010.

Engelbrecht, Linda M., Albrecht Jander, Pallavi Dhagat, Michael
J. Hall. “A toggle MRAM bit modeled in Verilog-A,” Solid-State

207

Electronics, vol. 54, no. 10, pp. 1135–1142, Oct. 2010. Selected
Papers from ISDRS 2009.

Engel, George, Michael J. Hall, Justin Proctor, Jon Elson, Lee
Sobotka, R. Shane, and Robert Charity. “Design and performance
of a multi-channel, multi-sampling, PSD-enabling integrated circuit,”
Nuclear Instruments and Methods in Physics Research Section A: Ac-
celerators, Spectrometers, Detectors and Associated Equipment, vol.
612, no. 1, pp. 161–170, Dec. 2009.

Njuguna, Raphael, Michael Hall, and Viktor Gruev. “Low power
CMOS image sensor with programmable spatial filtering,” in Proc.
of IEEE Sensors, Oct. 2009, pp. 189–192.

Hall, Michael, Albrecht Jander, Roger D. Chamberlain, and Pallavi
Dhagat. “Globally clocked magnetic logic circuits,” Digest of Papers
International Conference on Magnetics, May 2009.

Singla, Naveen,Michael Hall, Berkley Shands, and Roger D. Cham-
berlain. “Financial monte carlo simulation on architecturally di-
verse systems,” in Workshop on High Performance Computational
Finance, 2008. WHPCF 2008., 16-16 2008, pp. 1–7.

Hall, Michael J. “Design Considerations in Systems Employing
Multiple Charge Integration for the Detection of Ionizing Radiation,”
M.S. Thesis, Dept. of Electrical Engineering, Southern Illinois Uni-
versity Edwardsville, Dec. 2007.

May 2015

208

	Washington University in St. Louis
	Washington University Open Scholarship
	Spring 5-15-2015

	Utilizing Magnetic Tunnel Junction Devices in Digital Systems
	Michael James Hall
	Recommended Citation

	List of Figures
	List of Tables
	List of Abbreviations
	Acknowledgments
	Abstract
	Chapter Introduction
	Uses of MTJs
	Virtualized hardware
	List of contributions
	Outline of the dissertation

	Chapter Background and Related Work
	MTJ devices
	MTJ read circuits
	Current conveyor operation
	Magnetologic circuits
	C-slow transformation
	Hardware virtualization
	Queueing notation
	Vacation model

	Chapter MTJ Read Circuit Theory
	Analysis of a current-mode read circuit
	Methodology
	Noise analysis
	Validation
	Design guidance
	Discussion

	Current conveyor structures
	Basic
	P-cascode
	NP-cascode
	Generalized

	Read circuit design
	Area
	Transient response
	Power
	Jitter
	Discussion of simulated circuits

	Chapter MTJ Read Circuit Experimentation in [0.5]m Process
	Prototype chip
	Read circuit testing
	Global clock testing
	Fabrication

	Test setup
	PCB design
	FPGA board
	Software

	Experimental results
	Functional and performance testing
	Static measurements
	Stability and dynamic measurements

	Summary

	Chapter Virtualization of Hardware Logic Circuits
	Clock model
	Model development of the expectation of the maximum of C samples of random variable X
	Model of tCLK and investigation of model

	M/D/1 queueing model development
	Queueing model
	Validation

	M/G/1 queueing model development with vacation model
	Vacation waiting time model
	Service time model
	Queueing model
	Validation

	Calibration of clock and resource models for three C-slowed applications
	Synthetic cosine application with added feedback (COS)
	Advanced Encryption Standard (AES) cipher in cipher-block chaining mode
	Secure Hash Algorithm (SHA-2) with 256 and 512 bit digests

	Analytic model results
	Design Scenario 1: Fix C, optimize for latency (WT)
	Design Scenario 2: Fix N, tune C, optimize for latency (WT)
	Design Scenario 3: Optimize for throughput-slice/area efficiency

	Summary

	Chapter Conclusions and Future Work
	Conclusions
	Future work

	References
	Appendix Read Circuit Design Guidance Validation
	Appendix Summary of Queueing Model Equations
	Vita

