130,637 research outputs found

    The OSIRIS-REx Visible and InfraRed Spectrometer (OVIRS): Spectral Maps of the Asteroid Bennu

    Full text link
    The OSIRIS-REx Visible and Infrared Spectrometer (OVIRS) is a point spectrometer covering the spectral range of 0.4 to 4.3 microns (25,000-2300 cm-1). Its primary purpose is to map the surface composition of the asteroid Bennu, the target asteroid of the OSIRIS-REx asteroid sample return mission. The information it returns will help guide the selection of the sample site. It will also provide global context for the sample and high spatial resolution spectra that can be related to spatially unresolved terrestrial observations of asteroids. It is a compact, low-mass (17.8 kg), power efficient (8.8 W average), and robust instrument with the sensitivity needed to detect a 5% spectral absorption feature on a very dark surface (3% reflectance) in the inner solar system (0.89-1.35 AU). It, in combination with the other instruments on the OSIRIS-REx Mission, will provide an unprecedented view of an asteroid's surface.Comment: 14 figures, 3 tables, Space Science Reviews, submitte

    Air Treatment Techniques for Abatement of Emissions from Intensive Livestock Production

    Get PDF
    Intensive livestock production is connected with a number of environmental effects, including emissions of ammonia (NH3), greenhouse gases (CH4 and N2O), odour, and particulate matter (PM10 and PM2.5). Possible strategies for emission reduction include feed management, adaptation of housing design, and, in case of mechanically ventilated animal houses, the application of end-of-pipe air treatment, viz acid scrubbers and bioscrubbers. Air treatment techniques can achieve very high emission reductions (up to 100% ammonia removal for acid scrubbers). Furthermore, air treatment offers the possibility to achieve removal of not just one compound but of a combined removal of a variety of pollutants (ammonia, odour and particulate matter) at the same time. The successful application of scrubbers is of increasing importance as intensive livestock operations have to comply with ever stricter regulations and emission limits. Research is needed to address topics such as reduction of costs (both investment and operational costs), improvement of process control to guarantee stable removal efficiencies, decrease of N2O production in bioscrubbers, and increase of odour removal efficienc

    Methods of using carbon nanotubes as filter media to remove aqueous heavy metals

    Get PDF
    Although carbon nanotubes (CNTs) are well known to have a strong affinity to various heavy metals in aqueous solution, little research has been dedicated to exploit their use in fixed-bed water treatment systems (e.g., trickling filters). In this work, batch sorption and fixed-bed experiments were conducted to examine the ability of functionalized multi-walled CNTs as filter media to remove two heavy metal ions (Pb2+ and Cu2+) from infiltrating water. Batch sorption experiments confirmed the strong sorption affinity of the CNTs for Pb2+ and Cu2+ in both single and dual metal solution systems. In addition, sonication-promoted dispersion of the CNT particles enhanced their heavy metal sorption capacity by 23.9–32.2%. For column experiments, laboratory-scale fixed-bed columns were packed with CNTs and natural quartz sand by three different packing: layered, mixed, and deposited. While all the three packing methods enhanced the fixed-bed filtering efficiency of Pb2+ and Cu2+ from single and dual metal systems, the CNT-deposited packing method was superior. Although the amount of the CNTs added into the fixed-bed columns was only 0.006% (w/w) of the sand, they significantly improved the fixed-bed’s filtering efficiency of Pb2+ and Cu2+ by 55–75% and 31–57%, respectively. Findings from this study demonstrate that functionalized multi-walled CNTs, together with natural sand, can be used to effectively and safely remove heavy metals from water

    Unraveling the active microbial populations involved in nitrogen utilization in a vertical subsurface flow constructed wetland treating urban wastewater

    Get PDF
    The dynamics of the active microbial populations involved in nitrogen transformation in a vertical subsurface flow constructed wetland (VF) treating urban wastewater was assessed. The wetland (1.5 m2) operated under average loads of 130 g COD m- 2 d- 1 and 17 g TN m- 2 d- 1 in Period I, and 80 g COD m- 2 d- 1 and 19 g TN m- 2 d- 1 in Period II. The hydraulic loading rate (HLR) was 375 mm d- 1 and C/N ratio was 2 in both periods. Samples for microbial characterization were collected from the filter medium (top and bottom layers) of the wetland, water influent and effluent at the end of Periods I (Jun–Oct) and II (Nov–Jan). The combination of qPCR and high-throughput sequencing (NGS, MiSeq) assessment at DNA and RNA level of 16S rRNA genes and nitrogen-based functional genes (amoA and nosZ-clade I) revealed that nitrification was associated both with ammonia-oxidizing bacteria (AOB) (Nitrosospira) and ammonia-oxidizing archaea (AOA) (Nitrososphaeraceae), and nitrite-oxidizing bacteria (NOB) such as Nitrobacter. Considering the active abundance (based in amoA transcripts), the AOA population revealed to be more stable than AOB in both periods and depths of the wetland, being less affected by the organic loading rate (OLR). Although denitrifying bacteria (nosZ copies and transcripts) were actively detected in all depths, the denitrification process was low (removal of 2 g TN m- 2 d- 1 for both periods) concomitant with NOx-N accumulation in the effluent. Overall, AOA, AOB and denitrifying bacteria (nosZ) were observed to be more active in bottom than in top layer at lower OLR (Period II). A proper design of OLR and HLR seems to be crucial to control the activity of microbial biofilms in VF wetlands on the basis of oxygen, organic-carbon and NOx-N forms, to improve their capacity for total nitrogen removal.Peer ReviewedPostprint (author's final draft

    Increased Oxidative Burden Associated with Traffic Component of Ambient Particulate Matter at Roadside and Urban Background Schools Sites in London

    Get PDF
    As the incidence of respiratory and allergic symptoms has been reported to be increased in children attending schools in close proximity to busy roads, it was hypothesised that PM from roadside schools would display enhanced oxidative potential (OP). Two consecutive one-week air quality monitoring campaigns were conducted at seven school sampling sites, reflecting roadside and urban background in London. Chemical characteristics of size fractionated particulate matter (PM) samples were related to the capacity to drive biological oxidation reactions in a synthetic respiratory tract lining fluid. Contrary to hypothesised contrasts in particulate OP between school site types, no robust size-fractionated differences in OP were identified due high temporal variability in concentrations of PM components over the one-week sampling campaigns. For OP assessed both by ascorbate (OPAA m−3) and glutathione (OPGSH m−3) depletion, the highest OP per cubic metre of air was in the largest size fraction, PM1.9–10.2. However, when expressed per unit mass of particles OPAA µg−1 showed no significant dependence upon particle size, while OPGSH µg−1 had a tendency to increase with increasing particle size, paralleling increased concentrations of Fe, Ba and Cu. The two OP metrics were not significantly correlated with one another, suggesting that the glutathione and ascorbate depletion assays respond to different components of the particles. Ascorbate depletion per unit mass did not show the same dependence as for GSH and it is possible that other trace metals (Zn, Ni, V) or organic components which are enriched in the finer particle fractions, or the greater surface area of smaller particles, counter-balance the redox activity of Fe, Ba and Cu in the coarse particles. Further work with longer-term sampling and a larger suite of analytes is advised in order to better elucidate the determinants of oxidative potential, and to fuller explore the contrasts between site types.\ud \u

    Effect of membrane character and solution chemistry on microfiltration performance

    Get PDF
    To help understand and predict the role of natural organic matter (NOM) in the fouling of low-pressure membranes, experiments were carried out with an apparatus that incorporates automatic backwashing and long filtration runs. Three hollow fibre membranes of varying character were included in the study, and the filtration of two different surface waters was compared. The hydrophilic membrane had greater flux recovery after backwashing than the hydrophobic membranes, but the efficiency of backwashing decreased at extended filtration times. NOM concentration of these waters (7.9 and 9.1 mg/L) had little effect on the flux of the membranes at extended filtration times, as backwashing of the membrane restored the flux to similar values regardless of the NOM concentration. The solution pH also had little effect at extended filtration times. The backwashing efficiency of the hydrophilic membrane was dramatically different for the two waters, and the presence of colloid NOM alone could not explain these differences. It is proposed that colloidal NOM forms a filter cake on the surface of the membranes and that small molecular weight organics that have an adsorption peak at 220 nm but not 254 nm were responsible for “gluing” the colloids to the membrane surface. Alum coagulation improved membrane performance in all instances, and this was suggested to be because coagulation reduced the concentration of “glue” that holds the organic colloids to the membrane surface

    Recycling of solvent used in a solvent extraction of petroleum hydrocarbons contaminated soil.

    Get PDF
    The application of water washing technology for recycling an organic composite solvent consisting of hexane and pentane (4:1; TU-A solvent) was investigated for extracting total petroleum hydrocarbons (TPH) from contaminated soil. The effects of water volume, water temperature, washing time and initial concentration of solvent were evaluated using orthogonal experiments followed by single factor experiments. Our results showed that the water volume was a statistically significant factor influencing greatly the water washing efficiency. Although less important, the other three factors have all increased the efficacy of water washing treatment. Based on a treatment of 20g of contaminated soil with a TPH concentration of 140mgg(-1), optimal conditions were found to be at 40°C, 100mL water, 5min washing time and 660mgg(-1) solvent. Semi-continuous water extraction method showed that the concentration of the composite solvent TU-A was reduced below 15mgg(-1) d.w. soil with a recovery extraction efficiency >97%. This finding suggests that water washing is a promising technology for recycling solvent used in TPH extraction from contaminated soil

    Fate of drugs during wastewater treatment

    Get PDF
    This is the post-print version of the final paper published in TrAC Trends in Analytical Chemistry. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2013 Elsevier B.V.Recent trends in the determination of pharmaceutical drugs in wastewaters focus on the development of rapid multi-residue methods. This review addresses recent analytical trends in drug determination in environmental matrices used to facilitate fate studies. Analytical requirements for further fate evaluation and tertiary process selection and optimization are also discussed.EPSRC, Northumbrian Water, Anglian Water, Severn Trent Water, Yorkshire Water, and United Utilities

    Manganese-oxidizing bacteria mediate the degradation of 17α-ethinylestradiol

    Get PDF
    Manganese (II) and manganese-oxidizing bacteria were used as an efficient biological system for the degradation of the xenoestrogen 17 alpha-ethinylestradiol (EE2) at trace concentrations. Mn(2+)-derived higher oxidation states of Mn (Mn(3+), Mn(4+)) by Mn(2+)-oxidizing bacteria mediate the oxidative cleavage of the polycyclic target compound EE2. The presence of manganese (II) was found to be essential for the degradation of EE2 by Leptothrix discophora, Pseudomonas putida MB1, P. putida MB6 and P. putida MB29. Mn(2+)-dependent degradation of EE2 was found to be a slow process, which requires multi-fold excess of Mn(2+) and occurs in the late stationary phase of growth, implying a chemical process taking place. EE2-derived degradation products were shown to no longer exhibit undesirable estrogenic activity

    Predicting the conformations of peptides and proteins in early evolution. A review article submitted to Biology Direct

    Get PDF
    Considering that short, mainly heterochiral, polypeptides with a high glycine content are expected to have played a prominent role in evolution at the earliest stage of life before nucleic acids were available, we review recent knowledge about polypeptide three-dimensional structure to predict the types of conformations they would have adopted. The possible existence of such structures at this time leads to a consideration of their functional significance, and the consequences for the course of evolution
    corecore