52 research outputs found

    Object identification and characterization with hyperspectral imagery to identify structure and function of Natura 2000 habitats

    Get PDF
    Habitat monitoring of designated areas under the EU Habitats Directive requires every 6 years information on area, range, structure and function for the protected (Annex I) habitat types. First results from studies on heathland areas in Belgium and the Netherlands show that hyperspectral imagery can be an important source of information to assist the evaluation of the habitat conservation status. Hyperspectral imagery can provide continuous maps of habitat quality indicators (e.g., life forms or structure types, management activities, grass, shrub and tree encroachment) at the pixel level. At the same time, terrain managers, nature conservation agencies and national authorities responsible for the reporting to the EU are not directly interested in pixels, but rather in information at the level of vegetation patches, groups of patches or the protected site as a whole. Such local level information is needed for management purposes, e.g., exact location of patches of habitat types and the sizes and quality of these patches within a protected site. Site complexity determines not only the classification success of remote sensing imagery, but influences also the results of aggregation of information from the pixel to the site level. For all these reasons, it is important to identify and characterize the vegetation patches. This paper focuses on the use of segmentation techniques to identify relevant vegetation patches in combination with spectral mixture analysis of hyperspectral imagery from the Airborne Hyperspectral Scanner (AHS). Comparison with traditional vegetation maps shows that the habitat or vegetation patches can be identified by segmentation of hyperspectral imagery. This paper shows that spectral mixture analysis in combination with segmentation techniques on hyperspectral imagery can provide useful information on processes such as grass encroachment that determine the conservation status of Natura 2000 heathland areas to a large extent. A limitation is that both advanced remote sensing approaches and traditional field based vegetation surveys seem to cause over and underestimations of grass encroachment for specific categories, but the first provides a better basis for monitoring if specific species are not directly considered

    Synergetic use of Sentinel-1 and Sentinel-2 for assessments of heathland conservation status

    Get PDF
    Habitat quality assessments often demand wall‐to‐wall information about the state of vegetation. Remote sensing can provide this information by capturing optical and structural attributes of plant communities. Although active and passive remote sensing approaches are considered as complementary techniques, they have been rarely combined for conservation mapping. Here, we combined spaceborne multispectral Sentinel‐2 and Sentinel‐1 SAR data for a remote sensing‐based habitat quality assessment of dwarf shrub heathland, which was inspired by nature conservation field guidelines. Therefore, three earlier proposed quality layers representing (1) the coverage of the key dwarf shrub species, (2) stand structural diversity and (3) an index reflecting co‐occurring vegetation were mapped via linking in situ data and remote sensing imagery. These layers were combined in an RGB‐representation depicting varying stand attributes, which afterwards allowed for a rule‐based derivation of pixel‐wise habitat quality classes. The links between field observations and remote sensing data reached correlations between 0.70 and 0.94 for modeling the single quality layers. The spatial patterns shown in the quality layers and the map of discrete quality classes were in line with the field observations. The remote sensing‐based mapping of heathland conservation status showed an overall agreement of 76% with field data. Transferring the approach in time (applying a second set of Sentinel‐1 and ‐2 data) caused a decrease in accuracy to 73%. Our findings suggest that Sentinel‐1 SAR contains information about vegetation structure that is complimentary to optical data and therefore relevant for nature conservation. While we think that rule‐based approaches for quality assessments offer the possibility for gaining acceptance in both communities applied conservation and remote sensing, there is still need for developing more robust and transferable methods

    Monitoring of Natura 2000 sites using hyperspectral remote sensing : quality assessment of field and airborne data for Ginkelse & Ederheide and Wekeromse Zand

    Get PDF
    In 2007, an airborne imaging spectroscopy campaign was organized in the frame of the HABISTAT project. Airborne data with the AHS sensor were acquired in the Netherlands and Belgium. One test site in Belgium was recorded, the Kalmthoutse Heide and one in the Netherlands: the Edese and Ginkelse Heide and the Wekeromse Zand. This report describes the quality assessment of the field and airborne data for the Edese and Ginkelse Heide and the Wekeromse Zand site. The results for the Kalmthoutse Heide will be presented in a separate report (INBO, 2008)

    Assessing the role of EO in biodiversity monitoring: options for integrating in-situ observations with EO within the context of the EBONE concept

    Get PDF
    The European Biodiversity Observation Network (EBONE) is a European contribution on terrestrial monitoring to GEO BON, the Group on Earth Observations Biodiversity Observation Network. EBONE’s aims are to develop a system of biodiversity observation at regional, national and European levels by assessing existing approaches in terms of their validity and applicability starting in Europe, then expanding to regions in Africa. The objective of EBONE is to deliver: 1. A sound scientific basis for the production of statistical estimates of stock and change of key indicators; 2. The development of a system for estimating past changes and forecasting and testing policy options and management strategies for threatened ecosystems and species; 3. A proposal for a cost-effective biodiversity monitoring system. There is a consensus that Earth Observation (EO) has a role to play in monitoring biodiversity. With its capacity to observe detailed spatial patterns and variability across large areas at regular intervals, our instinct suggests that EO could deliver the type of spatial and temporal coverage that is beyond reach with in-situ efforts. Furthermore, when considering the emerging networks of in-situ observations, the prospect of enhancing the quality of the information whilst reducing cost through integration is compelling. This report gives a realistic assessment of the role of EO in biodiversity monitoring and the options for integrating in-situ observations with EO within the context of the EBONE concept (cfr. EBONE-ID1.4). The assessment is mainly based on a set of targeted pilot studies. Building on this assessment, the report then presents a series of recommendations on the best options for using EO in an effective, consistent and sustainable biodiversity monitoring scheme. The issues that we faced were many: 1. Integration can be interpreted in different ways. One possible interpretation is: the combined use of independent data sets to deliver a different but improved data set; another is: the use of one data set to complement another dataset. 2. The targeted improvement will vary with stakeholder group: some will seek for more efficiency, others for more reliable estimates (accuracy and/or precision); others for more detail in space and/or time or more of everything. 3. Integration requires a link between the datasets (EO and in-situ). The strength of the link between reflected electromagnetic radiation and the habitats and their biodiversity observed in-situ is function of many variables, for example: the spatial scale of the observations; timing of the observations; the adopted nomenclature for classification; the complexity of the landscape in terms of composition, spatial structure and the physical environment; the habitat and land cover types under consideration. 4. The type of the EO data available varies (function of e.g. budget, size and location of region, cloudiness, national and/or international investment in airborne campaigns or space technology) which determines its capability to deliver the required output. EO and in-situ could be combined in different ways, depending on the type of integration we wanted to achieve and the targeted improvement. We aimed for an improvement in accuracy (i.e. the reduction in error of our indicator estimate calculated for an environmental zone). Furthermore, EO would also provide the spatial patterns for correlated in-situ data. EBONE in its initial development, focused on three main indicators covering: (i) the extent and change of habitats of European interest in the context of a general habitat assessment; (ii) abundance and distribution of selected species (birds, butterflies and plants); and (iii) fragmentation of natural and semi-natural areas. For habitat extent, we decided that it did not matter how in-situ was integrated with EO as long as we could demonstrate that acceptable accuracies could be achieved and the precision could consistently be improved. The nomenclature used to map habitats in-situ was the General Habitat Classification. We considered the following options where the EO and in-situ play different roles: using in-situ samples to re-calibrate a habitat map independently derived from EO; improving the accuracy of in-situ sampled habitat statistics, by post-stratification with correlated EO data; and using in-situ samples to train the classification of EO data into habitat types where the EO data delivers full coverage or a larger number of samples. For some of the above cases we also considered the impact that the sampling strategy employed to deliver the samples would have on the accuracy and precision achieved. Restricted access to European wide species data prevented work on the indicator ‘abundance and distribution of species’. With respect to the indicator ‘fragmentation’, we investigated ways of delivering EO derived measures of habitat patterns that are meaningful to sampled in-situ observations

    Remote sensing in support of conservation and management of heathland vegetation

    Get PDF

    Master of Science

    Get PDF
    thesisVegetation phenology results in seasonal changes in spectral reflectance. Phenology is often underutilized in hyperspectral vegetation mapping due to a lack of repeat imagery of the same region over time. Vegetation classification at the species level could benefit from introducing phenological information to spectral libraries. New missions, such as the proposed Hysperspectral Infrared Imager (HyspIRI) mission, could potentially provide easy access to multi-temporal datasets. The availability of these data will require new approaches to building spectral libraries for species classification. This paper explores the use of Iterative Endmember Selection (IES), an automated method for selecting endmembers from an image-derived spectral library, to create single-date and multitemporal endmember libraries. Multiple Endmember Spectral Mixture Analysis (MESMA) was used to classify vegetation species and land cover, applying single-date and multitemporal libraries to Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data acquired on five dates in the same year. Three applications of endmember libraries were tested for their ability to classify single date AVIRIS images: 1) single-date libraries that matched the image date (same-date libraries), 2) single-date libraries that were not matched to the image date (mismatched-date libraries), and 3) a combined multitemporal library containing spectra from all dates applied to all image dates. Results indicate that multitemporal, seasonally-mixed spectral libraries achieved similar overall classification accuracy compared to single-date libraries, and in some cases, resulted in improved classification accuracy. Several species had increased producer's or user accuracy using a multitemporal library, while others had reduced accuracy compared to same-date classifications. The image dates of selected endmembers from the multitemporal library were examined to determine if this information could improve our understanding of phenological spectral differences for specific species. Results demonstrate that multitemporal endmember libraries may provide a more robust alternative to single-date endmember libraries for mapping vegetation species across time and space. Multitemporal endmember libraries could provide a means for mapping species in data where phenology, climatic variability, or spatial gradients are not known in advance or may not be easily accounted for by endmembers from a single date

    Hyperspectral vs. Multispectral data: Comparison of the spectral differentiation capabilities of Natura 2000 non-forest habitats

    Get PDF
    Identification of the Natura 2000 habitats using remote sensing techniques is one of the most important challenges of nature conservation. In this study, the potential for differentiating non-forest Natura 2000 habitats from the other habitats was examined using hyperspectral data in the scope of VNIR (0.4–1 µm), SWIR (1–2.5 µm) and simulated multispectral data (Sentinel-2). The aim of the research was also to determine the most informative spectral ranges from the optical range. Five different Natura 2000 habitats common in Central Europe were analysed: heaths (code 4030), mires (code 7140), grasslands (code 6230) and meadows (codes 6410 and 6510). In order to guarantee the objectivity and transferability of the results each habitat was tested in two areas and in three campaigns (spring, summer, autumn). Hyperspectral data was acquired using HySpex VNIR-1800 and SWIR-384 scanners. The Sentinel-2 data was resampled based on HySpex spectral reflectance. The overflights were performed simultaneously with ground reference data – habitats and background polygons. The Linear Discriminant Analysis was performed in iterative mode based on spectral reflectance acquired from hyperspectral and multispectral data. This resulted in distribution of correctness rate values and information about the most differentiating spectral bands for each habitat. Based on the results of our experiments we conclude that: (i) hyperspectral data (both VNIR and SWIR) obtained from May to September was useful for differentiation of habitats from background with efficiency reaching over 90%, regardless of the area; (ii) the most useful spectral ranges are: in VNIR − 0.416–0.442 µm and 0.502–0.522 µm, in SWIR − 1.117–1.165 µm and 1.290–1.361 µm; (iii) the potential of multispectral data (Sentinel-2) in distinguishing Natura 2000 habitats from the background is diverse; higher for heaths and mires (comparable to hyperspectral data) lower for meadows (6410, 6510) and grasslands (6230); (iv) in case of meadows and grasslands, the correctness rate for the Sentinel-2 data was on average about 20% lower compared to the hyperspectral data

    Remote sensing methods for biodiversity monitoring with emphasis on vegetation height estimation and habitat classification

    Get PDF
    Biodiversity is a principal factor for ecosystem stability and functioning, and the need for its protection has been identified as imperative globally. Remote sensing can contribute to timely and accurate monitoring of various elements related to biodiversity, but knowledge gap with user communities hinders its widespread operational use. This study advances biodiversity monitoring through earth observation data by initially identifying, reviewing, and proposing state-of-the-art remote sensing methods which can be used for the extraction of a number of widely adopted indicators of global biodiversity assessment. Then, a cost and resource effective approach is proposed for vegetation height estimation, using satellite imagery from very high resolution passive sensors. A number of texture features are extracted, based on local variance, entropy, and local binary patterns, and processed through several data processing, dimensionality reduction, and classification techniques. The approach manages to discriminate six vegetation height categories, useful for ecological studies, with accuracies over 90%. Thus, it offers an effective approach for landscape analysis, and habitat and land use monitoring, extending previous approaches as far as the range of height and vegetation species, synergies of multi-date imagery, data processing, and resource economy are regarded. Finally, two approaches are introduced to advance the state of the art in habitat classification using remote sensing data and pre-existing land cover information. The first proposes a methodology to express land cover information as numerical features and a supervised classification framework, automating the previous labour- and time-consuming rule-based approach used as reference. The second advances the state of the art incorporating Dempster–Shafer evidential theory and fuzzy sets, and proves successful in handling uncertainties from missing data or vague rules and offering wide user defined parameterization potential. Both approaches outperform the reference study in classification accuracy, proving promising for biodiversity monitoring, ecosystem preservation, and sustainability management tasks.Open Acces
    corecore