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A B S T R A C T   

Identification of the Natura 2000 habitats using remote sensing techniques is one of the most important chal-
lenges of nature conservation. In this study, the potential for differentiating non-forest Natura 2000 habitats from 
the other habitats was examined using hyperspectral data in the scope of VNIR (0.4–1 µm), SWIR (1–2.5 µm) and 
simulated multispectral data (Sentinel-2). The aim of the research was also to determine the most informative 
spectral ranges from the optical range. Five different Natura 2000 habitats common in Central Europe were 
analysed: heaths (code 4030), mires (code 7140), grasslands (code 6230) and meadows (codes 6410 and 6510). 
In order to guarantee the objectivity and transferability of the results each habitat was tested in two areas and in 
three campaigns (spring, summer, autumn). Hyperspectral data was acquired using HySpex VNIR-1800 and 
SWIR-384 scanners. The Sentinel-2 data was resampled based on HySpex spectral reflectance. The overflights 
were performed simultaneously with ground reference data – habitats and background polygons. The Linear 
Discriminant Analysis was performed in iterative mode based on spectral reflectance acquired from hyperspectral 
and multispectral data. This resulted in distribution of correctness rate values and information about the most 
differentiating spectral bands for each habitat. Based on the results of our experiments we conclude that: (i) 
hyperspectral data (both VNIR and SWIR) obtained from May to September was useful for differentiation of 
habitats from background with efficiency reaching over 90%, regardless of the area; (ii) the most useful spectral 
ranges are: in VNIR − 0.416–0.442 µm and 0.502–0.522 µm, in SWIR − 1.117–1.165 µm and 1.290–1.361 µm; 
(iii) the potential of multispectral data (Sentinel-2) in distinguishing Natura 2000 habitats from the background 
is diverse; higher for heaths and mires (comparable to hyperspectral data) lower for meadows (6410, 6510) and 
grasslands (6230); (iv) in case of meadows and grasslands, the correctness rate for the Sentinel-2 data was on 
average about 20% lower compared to the hyperspectral data.   

1. Introduction 

The Pan-European Ecological Network Natura 2000 is nowadays one 
of the most important initiatives supporting biodiversity protection in 
all of the EU Member States. Based on the Council Directive 92/43/EEC, 
Natura 2000 areas are created to preserve the most valuable natural 

habitats in the EU. One of the challenges for nature conservation is 
monitoring the conservation status of these habitats and searching for 
new potential areas that should be protected. This is a perfect applica-
tion where remote sensing tools proved to be very useful for both 
mapping and monitoring the Natura 2000. The EU supports the identi-
fication of habitats based on aerial or satellite images (Ichter et al., 

Abbreviations: HS, Hyperspectral; MS, Multispectral; LDA, Linear Discriminant Analysis; ALS, Airborne Laser Scanner. 
* Corresponding author at: Department of Biogeography, Paleoecology and Nature Conservation, Faculty of Biology and Environmental, University of Lodz, 90-237 
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2014) and has been developing very dynamically in recent years. The 
first classifications of the Natura 2000 habitat based on remote sensing 
images was performed in 2008 (Díaz Varela et al., 2008). Consecutively, 
a number of studies has been conducted in order to identify or model the 
habitat patches based on remote sensing data acquired at different 
seasons and from various altitudes: UAV (Belcore et al., 2021), airborne 
(Sławik et al., 2019) or satellite (Tarantino et al., 2021). 

In previous studies, different types of data were also employed to 
identify habitats, including airborne laser scanning (ALS) data and 
multispectral (MS) and hyperspectral (HS) images. High classification 
accuracies were achieved based on different sensors, e.g.: HS data (Haest 
et al., 2017), fusion of HS and ALS data (Hladik et al., 2013), using 
multitemporal HS (Marcinkowska-Ochtyra et al., 2019) or MS datasets: 
RapidEye and Sentinel-2 (Rapinel et al., 2020; Schuster et al., 2015; 
Stenzel et al., 2014). Moreover, single ALS data was also used success-
fully (Zlinszky et al., 2014). The acquired classification accuracies dis-
played high diversity depending on the habitats, but also within a single 
habitat. Generally, in case of heathlands, accuracies varied from F1 =
28% based on MS data (Haest et al., 2010) to 83% using RGB camera and 
DTM (Gonçalves et al., 2016); for meadows F = 39% for 6430 based on 
LiDAR products (Zlinszky et al., 2014) to F1 81–99% for 6410 and 6510 
using MS data (Rapinel et al., 2020); for grasslands (habitat 6230) from 
F1 = 0% based on MS images (Haest et al., 2010) to 93% sing RGB 
camera and DTM (Gonçalves et al., 2016); and for peatlands F1 from 
34% for habitat 7140 using MS images (Stenzel et al., 2014) to around 
90% for 7140 and 7230 based on HS data (Szporak-Wasilewska et al., 
2021). From the above study, it cannot be concluded that the Natura 
2000 habitat classification on MS data will have significantly lower 
accuracy than on HS data. This is due to the fact that there were no early 
studies that directly compared the accuracy of Natura 2000 non-forest 
habitat classifications on HS and MS data. Meanwhile, indirect com-
parison based on the result of different analysis is not possible due to 
many differentiating variables: different study sites (area and vegetation 
diversity); spatial and spectral resolution; training and validation data-
sets; date of data acquisition; classification method; verification process. 
All the above-mentioned factors hinder the comparison of the classifi-
cation results, therefore, preventing from drawing conclusions and 
giving recommendations regarding issues such as optimal dataset. 

Additionally, the habitats are very floristically diverse within 
different areas, and most studies are solely conducted within a single 
study site. All the above factors may lead to conclusions that are not 
universal on the scale of the habitat’s range. The motivation for our 
study was to find out the actual difference in informativeness of HS and 
MS data for Natura 2000 habitat identification under conditions that 
ensure correctness and universality of conclusions. For this reason, it 
was also decided not to conduct the analysis in this research using real 
Sentinel-2 data but resampled based on HS data. Studied Natura 2000 
habitats are characterised by high spectral changeability during the 
season resulting from agricultural use and phenological variability. 
Comparability of results from real Sentinel-2 and HS data would require 
synchronicity of both collections. Taking into account the high number 
of cloudy days during the growing season in Central Europe, the size of 
the study areas (number of areas) and the desire to repeat the study in 
three seasons these analyses were not feasible on real Sentinel-2 data 
and no other free satellite data. One solution to compare the data was to 
resample the HS data acquired from the aircraft. It was decided to 
perform the resampling to the Sentinel-2 data rather than to other sat-
ellite data, considering the fact that due to its temporal, spatial and 
spectral resolution, it is objectively the best potential source of free 
available satellite data used for monitoring the Pan-European Natura 
2000 network. Moreover, Sentinel-2 data is currently most commonly 
used for Natura 2000 habitats monitoring in many ongoing projects 
funded by the European Commission; e.g.: (“Possibilities for updating 
map layers of NATURA 2000 biotopes using advanced remote sensing 
methods - Faculty of Environmental Sciences CZU Prague,” 2020), 
(“Using satellite images to improve the operation of the Natura 2000 

network: A prototype for monitoring Natura2000 sites habitats with 
Copernicus 2021,” 2021). 

Hyperspectral data provides substantial information, but at the same 
time neighbouring bands are correlated, whereas some of the bands 
contain mostly noise. The feature selection is important in reducing the 
dimensionality of the data, and leads to better understanding of crucial 
spectral ranges for vegetation classification. This is also key information 
for designing new sensors (Chan and Paelinckx, 2008). There have been 
no studies conducted in order to compare the information in different 
spectral ranges, VNIR and SWIR, that would make it possible to 
discriminate Natura 2000 habitats from the background. Only one study 
determined spectral ranges useful in recognising three non-forest habi-
tats: in the VNIR range (0.4–0.8 µm) and in the SWIR range (1.05–1.10, 
1.25–1.40, 1.95–2.05 and 2.25–2.40 µm) (Demarchi et al., 2020). 
However, it is important to analyse whether these ranges are stable 
during vegetation season and in different areas. 

The aim of our study was to define the potential of HS data (HySpex) 
in VNIR and SWIR ranges and simulated MS data (HySpex resampled to 
Sentinel-2 resolution) to identify selected non-forest Natura 2000 hab-
itats. The analyses were performed using Linear Discriminant Analysis 
(LDA) as a feature selection method to define spectral ranges essential 
for habitat differentiation from the background. The conclusions were 
drawn based on two study sites and three seasons for each habitat. Each 
of the Natura 2000 habitats was studied in two independent areas, 
which ensured the universality of results for individual habitats. Addi-
tionally, in order to take care of the transferability of results, the study 
covered protected habitats relatively most common at the scale of 
Central Europe. It was assumed that for monitoring these habitats at the 
EU scale remote sensing is particularly applicable. 

Different methods of bands selection for vegetation analysis were 
proposed, for example based on mutual information (Guo et al., 2006), 
principal component analysis, lambda–lambda R2 models, stepwise 
discriminant analysis, and derivative greenness vegetation indices 
(Thenkabail et al., 2004) or Random Forest and Adaboost tree-based 
selection methods (Chan and Paelinckx, 2008). In this study, the LDA 
was performed in order to find the spectral ranges differentiating Natura 
2000 habitats from the background (He and Wang, 2021). The back-
ground includes all habitats not protected by the Natura 2000 network 
and areas without vegetation. The LDA is a supervised method of 
dimensionality reduction. It searches for the optimal projection of the 
analysed classes, at the same time, reducing the dimensions of the data, 
for example, by selecting the most differentiating spectral bands by 
reducing their number (Gao and Xu, 2016). The method calculates the 
directions - linear discriminators that represent axes which maximise 
separation between multiple signal sources (Gite et al., 2019). The LDA 
is based on maximising the ratio of inter-class to intra-class spread in the 
data - Fisher linear discriminator, (Jayaprakash et al., 2018). This 
method has already been used to find data differentiating selected plant 
species from the environment (Jarocińska et al., 2021; Zagajewski et al., 
2017). In addition, it was used to classify tree species based on hyper-
spectral data and simulated multispectral data WorldView-3 (Ferreira 
et al., 2016). With the use of LDA, it was possible to determine spectral 
ranges that are sufficient to differentiate the Natura 2000 habitats. 

2. Materials and methods 

The data for habitat has been processed separately and using the 
same method (Fig. 1). Images and field data were acquired and pre- 
processed to create the database with spectral reflectance. In order to 
find the most separative bands, the statistical analyses were performed 
including removal of the most correlated bands and LDA in the iterative 
mode. Further visualisation resulted in recommendations concerning 
the possibility of habitat identification. 
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2.1. Study areas 

The study was conducted in some of the most valuable areas in 
Poland in the terms of conservation status and biodiversity of non-forest 
ecosystems. All seven study sites are located on the territory of Poland in 
the continental biogeographic area (Fig. 2) and they are protected as 
Natura 2000 sites. The total area of investigated areas is 228 km2. 

Study sites were selected in such a way that each of the five habitats 
was analysed at two geographically distant locations. As a result, the 
study also took into account the geographic variation of each habitat. 
Moreover, the study sites differ significantly in the diversity of non- 
forest ecosystems and intensity of agricultural use. An important 

feature that differentiates the areas is that in area BI1 and BU4 there are 
only few other types of natural and semi-natural non-forest ecosystems 
apart from the studied habitats, whereas in the remaining areas, the 
diversity of non-forest ecosystems referring physiognomically to the 
studied habitats is significantly higher (from 7 to 14, see also Table 1.). 

2.2. Natura 2000 habitats 

Five Natura 2000 non-forest habitats were included in the study. The 
selected habitats represent different types of non-forest ecosystems 
(heaths, grasslands, meadows and peatlands), and are among the most 
common non-forest Natura 2000 habitats in the continental 

Fig. 1. The overview of data acquiring and analysis for each Natura 2000 habitat.  
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Fig. 2. Location of study areas and distribution of reference polygons of analysed habitats. Each habitat was analysed in two areas: 4030 (BU4, LJ3), 6230 (BU2, 
KR1), 6410 (BU2, KR1), 6510 (NI1, SA1) and 7140 (BI1, LJ3). 
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biogeographical region (Fig. 3). As these habitats host many valuable 
and protected species, the conservation of these habitats is a key to the 
conservation of biodiversity in the Central European Lowlands. Addi-
tionally, the selected habitats differ significantly in their species struc-
ture so that the aspect of different internal structure and physiognomy of 
the habitat could be taken into account in the study. 

2.2.1. European dry heaths (Natura 2000 habitat code − 4030) 
Shrub communities, with a small number of species and varied cover, 

associated with oligotrophic sandy substrate, occurring in different 
topographic positions; most often there is one dominant species Calluna 
vulgaris, less often other species - Arctostaphyllos uva-ursi. Patches of 
Pohlio-Callunetum Shimwell 1973 em Brzeg 1981 are identified as 
habitat code 4030 in area LJ3, while in area BU4 Arctostaphylo-Callu-
netum R.Tx. et Prsg 1940. 

2.2.2. Species-rich Nardus grasslands (Natura 2000 habitat code 6230) 
A semi-natural grassland community with a loose sward of low 

species diversity (dominated by Nardus stricta), often with a clump 
structure, developed in various topographic locations on moderately 
moist soils under conditions of long-term extensive grazing and limited 
fertilisation. Including the following patches of Polygalo-Nardetum Prsg 
1953; Nardo-Juncetum squarrosi Nordh. 1920; Calluno-Nardetum strictae 
Hrync. 1959. In area BU2 poor patches dominate with a very high and 
constant share of Nardus stricta, area KR1 is distinguished by the sig-
nificant habitat variability. On site KR1, patches of all three commu-
nities forming the habitat were found. 

2.2.3. Molinia meadows (Natura 2000 habitat code 6410) 
Meadow communities, semi-natural, with sward, rich in dicotyle-

donous perennials (e.g. Betonica officinalis) and clump grasses (Molinia 
caerulea), geographically diversified, developed on deforested areas, on 
soils of different fertility and trophicity levels and of variable moisture 
content, under conditions of an extensive mowing. Patches of the 
following communities are identified as habitat code 6410: Junco- 

Molinietum Prsg 1951; Selino carvifoliae-Molinietum Kuhn 1937; Galio 
veri-Molinietum Kącki 2007; Ranunculo polyanthemi-Filipenduletum vulgari 
Hundt 1958. In both areas the habitat shows very high variability with 
respect to dominant species. 

2.2.4. Lowland hay meadows (Natura 2000 habitat code 6510) 
Meadow communities developing on rich, fresh mineral soils, 

maintained as a result of an extensive hay cutting; the sward is 
composed of grass species admixed with dicotyledonous perennials. 
Patches of the following communities are identified as habitat code 
6510: Arrhenatheretum elatioris Br.-Bl. ex Scherr. 1925; communities of 
Poa pratensis-Festuca rubra Fijałk. 1962. In both studied areas dominate 
patches of the Arrhenatheretum elatioris complex, whereas patches 
belonging to the Poo-Festucetum rubrae complex occur considerably less 

Table 1 
The analysed number of pixels for each class on each habitat is an area given for 
one campaign.  

Class/Natura 2000 
code 

Number of pixels for each class 
/ number of subclasses (only for “background”) 

BI1 BU2 BU4 KR1 LJ3 NI1 SA1 

Natura 2000 habitats 
Dry heaths/4030   144  136   
Nardus grasslands/ 

6230  
138  132    

Molinia meadows/ 
6410  

130  136    

Hay meadows/ 
6510      

134 135 

Mires/7140 132    140   
Background - other habitats 
Other meadows  538/ 

4  
551/ 
4  

669/ 
5 

270/ 
2 

Other grasslands  131/ 
1 

138/ 
1  

138/ 
1 

133/ 
1  

Rushes 132/ 
1 

137/ 
1   

169/ 
2 

170/ 
2 

133/ 
1 

Other mires      132/ 
1  

Nitrophilous tall 
herb  

135/ 
1  

138/ 
1 

135/ 
1 

368/ 
2 

141/ 
1 

Forest 134 135 137 140 136 131 139 
Background - areas without vegetation 
Bare soil 142 136 135 132 124 134 137 
Water 134 140  135 123 136 133 
Number of pixels 

for each 
campaign 

674 1620 554 1364 1201 2007 1088  

Fig. 3. Analysed Natura 2000 habitats.  
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frequently. 

2.2.5. Transition mires and quaking bogs (Natura 2000 habitat code 7140) 
Peat-forming communities developing on overgrown lakes and 

ponds and in flooded valleys on peat substrate, under conditions of 
permanent, stable moisture and oligo- and mesotrophic rainwater sup-
ply; varied vegetation, with a well-developed layer of mosses 
(Sphagnum sp.), numerous low sedges (Carex sp.), Cottongrasses (Erio-
phoprum sp.), as well as trees and shrubs. Patches of the association 
Menyantho-Sphagnetum teretis Warén 1926 are identified as habitat code 
7410 in the BI1 area, whereas patches of the association occur in the LJ3 
area, where the habitat is more diversified: Caricetum lasiocarpae Koch 
1926, Eriophoro angustifolii-Sphagnetum recurvi Jasnowski 1968; Car-
icetum rostratae Rübel 1912; Rhynchosporetum albae Koch 1926; Erio-
phoro vaginati-Sphagnum recurvi HUECK 1925. In both areas, patches are 
related to raised bogs Oxycocco-Sphagnetea Br.- Bl. et R.Tx. 1943. 

2.3. Airborne data 

For each habitat, the airborne and ground reference data were ac-
quired in 2017, in two areas and three campaigns. The first campaign 
(C1) was carried out in spring (from the middle of May to the end of 
June), the second campaign (C2) was conducted in full summer (July- 
August), and the last (C3) in early autumn, in September or in early 
October. The time of overflights and on-ground botanical surveys were 
selected based on the phases of vegetation development within the 
analysed habitats to find the largest differences in spectral signatures of 
habitats and background, as well as to capture different development 
phases of the dominant species (Fig. 4). 

The hyperspectral images were acquired using two HySpex cameras 
from the Norwegian Norsk Elektro Optikk (NEO): VNIR-1800 (0.4–0.9 
µm) with 182 spectral bands with spectral sampling 3.26 nm, and SWIR- 
384 (0.9–2.5 µm) with 288 bands with spectral sampling 5.45 nm 
(“HySpex,” 2021). The radiometric resolution was equal to 16 bits. The 
scanners were placed on the Cessna CT206H aeroplane, and the over-
flight was performed on the altitude of 730 m a.s.l. (Sławik et al., 2019). 
During each overflight, Airborne Laser Scanner data with a density of 7 
points/m2 was also acquired. The hyperspectral images (HS) simulta-
neously with the ALS data was obtained for one area in a single 
campaign during one overflight. In this way, we performed 21 over-
flights - on seven areas in three campaigns. 

Firstly, radiometric calibration was performed in the HySpex RAD 
software provided by the manufacturer. Parametric geocoding for each 
image was established in PARGE software (“PARGE Airborne Image 
Rectification,” 2021) based on parameters acquired during the over-
flights and Digital Surface Model developed from points clouds from 
ALS. The images from two scanners were combined into a single one in 
0.935 µm and one image with 451 bands with 1 m spatial resolution was 
created. Atmospheric correction was executed in ATCOR-4 software 
(ReSe Apps) using the MODTRAN model (Richter and Schlapfer, 2020). 
A Savitzky-Golay filter with a range of 13 bands was used to smooth the 
spectral reflectance. Finally, the mosaicking was performed with an 
OrthoVista product in INPHO software (“OrthoVista,” 2020). Due to 
disturbances in bands where the absorption of radiation by water occurs, 
the last 21 bands were removed and images with 430 bands were ac-
quired. In some studies, also bands from the beginning of the blue 
spectrum were removed (Lenhard et al., 2015). On the other hand, the 
blue light was noticed as important in vegetation analysis (Çimtay and 
İlk, 2018; Demarchi et al., 2020; Jarocińska et al., 2021). There is no 
clear conclusion concerning the use of the beginning of visible light 
using HySpex data, that is why in this study only the end of SWIR bands 
was removed. Details of pre-processing can be found in previous studies 
(Jarocińska et al., 2021; Sławik et al., 2019). 

2.4. Ground reference data 

Simultaneously with the overflights, ground surveys were conducted 
in each area in three campaigns. The aim was to establish ground 
reference polygons in each area: for Natura 2000 habitats and back-
ground (other non-forest vegetation communities). The field survey was 
only used to indicate the coordinates of each habitat and background 
type. The areas thus determined were then used to extract spectral 
reflectance curves from the data. Field surveys were one possible 
method for obtaining reference polygons. Localisation of reference 
polygons by photointerpretation on acquired HS or any types of airborne 
data was not possible, because the surveyed habitats do not visually 
differentiate from other types of low semi-natural vegetation (beyond 
habitat 4030). 

The permanent reference plots established during the first campaign 
(C1) were checked in two other campaigns (C2 and C3) where the 
polygons were not changed in structure or physiognomy, for example, 
due to land use changes or agrotechnical treatment. In order to 

Fig. 4. The date of acquiring data: F - overflight, R - ground reference data.  
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determine the location, the centre of polygons was registered using a 
GPRS recorder (model: MobilerMapper 120, Spectra Pecision) with the 
precision of 0.1–0.5 m. All polygon centres for habitats and background 
were located at least 4 m away from the border of the vegetation patch. 
Polygons of both habitats and other plant communities (background) 
were established only in well-developed patches (with dominance of 
indicator species). In total, 1448 unique polygons were acquired with 
259 covering the analysed Natura 2000 habitats. It was assumed that 
reference polygons should be as evenly spaced as possible, and 

therefore, the minimum values of the analysed habitats and types of 
background were equal to 10. This approach provided a guarantee that 
the minimum number of pixels for each class would be higher than 100. 

Moreover, background polygons (10 polygons for forest, bare soil 
and water respectively) were located based on visual interpretation of 
airborne images (see chapter 2.3.). Only in area BU4 two classes were 
located (forest and bare ground) as there were no reservoirs. 

Fig. 5. Spectral characteristics of the objects for the example area KR1 in campaign one (C1), two (C2) and three (C3).  
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2.5. Spectral reflectance databases 

The process of creating the spectral reflectance databases was 
divided into several stages. Firstly, polygons were rounded, based on the 
polygon’s centre location with a radius of 2 m. Then, the polygons were 
rasterised using the Region of Interest tool in ENVI 5.3. software. In 
order to avoid not spectrally clear pixels, only pixels with at least 50% 
coverage in analysed polygons were added to the database. Finally, the 
number of pixels for each class varied from 123 to 144 per class 
(Table 1). In total, the same 8508 pixels were analysed for each 
campaign. The spectral reflectance was acquired for each pixel from the 
database using HySpex images with 430 bands and saved in ASCII 
format. 

Then, 64 spectral bands, where water absorbs light, were removed 
from the HS database: bands from 240 to 263 (1.366–1.490 µm) and 
from 316 to 355 (1.780–1.990 µm) (Gates, 1970; Jensen, 1983; Richter 
and Schlapfer, 2020). As a result, 366 hyperspectral bands (HS) were 
remaining. The HS database was divided into two parts: HS_VNIR 
(0.4–1 µm) and HS_SWIR (1–2.5 µm). The HS_VNIR consisted of 172 
bands and the HS_SWIR − 194 bands. For the purpose of the reference 
the following graphs show the average spectral reflectance for the 
sample site KR1, which included two Natura 2000 habitats (Nardus 
grasslands − 6230 and Molinia meadows − 6410) and background 
subclasses used for LDA analysis (dry grassland, wet grassland, grassland 
with Caltha palustris, grassland with Alopecurus pratensis, tall-herb 
communities, bare ground, water and forest). The graphs respectively 
show the surveyed habitats and background in campaign one (C1), two 
(C2) and three (C3) respectively (Fig. 5.). 

Subsequently, the multispectral dataset (MS) was created based on 
hyperspectral data. The HS dataset was imported to ENVI 5.3 software as 
ASCII file and saved as a spectral library file. This spectral library was 
resampled to Sentinel-2 resolution using ENVI 5.3 filters. In this pro-
cedure, only wavelengths of band centres were provided, therefore, the 
software assumes critical sampling and applies a Gaussian model with 
an FWHM equal to the band spacing. The last step was the export to 
ASCII format. 

As a result, three databases were further analysed: HS_VNIR, 
HS_SWIR and MS. 

2.6. Statistical analysis 

The HS and MS databases thus prepared were statistically processed 
using LDA in order to determine which spectral bands differentiate 
habitat from background across the study areas in the three campaigns. 
LDA has been used in this article as a linear feature selection approach to 
reduce the number of variables (Song et al., 2010). The use of LDA 
enabled to specify the linear combination of features that characterises 
or separates two or more classes of objects or events. As a pattern 
recognition technique, LDA maximises the ratio of between-class vari-
ance to the within-class variance in any particular data set in order to 
obtain a maximum discrimination (Tharwat et al., 2017). The first step 
of the algorithm is to find the directions (called linear discriminants, 
which are a linear combination of predictor variables) that maximise the 
separation between classes, and in the following step the algorithm uses 
these directions to predict class (Friedman, 1989). 

The analyses were performed for three datasets: HS_VNIR, HS_SWIR 
and MS. The first step was to check all input datasets in order to search 
for a correlation of spectral bands using the Tau-Kendal test. All spectral 
bands whose pairwise correlation coefficient was greater than 0.99 were 
removed. This step was crucial to conduct any analysis using LDA, as the 
redundancy introduced by highly correlated bands could significantly 
degrade the ability to correctly select variables. 

Afterwards, the LDA was conducted in iteration mode. In 100 iter-
ations stratified, a random sampling was performed: 30 pixels for the 
analysed habitat and 30 pixels for each background class (Table 1), 
which were part of the study area. The pixels were drawn independently 

from the reference polygons, so that each pixel could be located in a 
different polygon or several pixels in a single polygon. A value was 
assigned to each spectral band in order to measure how often it was 
considered differentiating (frequency of occurrence), while for each 
iteration, a correctness rate value was calculated to determine the cor-
rectness of the matching band. The correctness rate refers to the prob-
ability of correct detection bands differentiation of the habitat from the 
background. The LDA correctness rate with a higher value, maximum 
approaching to 1, shall confirm their highest importance in differenti-
ating between species. 

The maximum number of bands per iteration, selected by LDA as 
differentiating, was limited to 40 in order to speed up the process; on the 
other hand, the analysis did not identify more than 40 bands as differ-
entiating. As a final result of the statistical analysis, each habitat was 
characterized by 100 correctness coefficient values, which demonstrates 
the effectiveness of differentiation, and frequency of occurrence of the 
bands that were selected by LDA as most differentiating habitat from 
background in 100 iterations. This information was provided for two 
study areas and three campaigns. Thus, for each dataset, we were able to 
rank layers - bands, based on their order of selection by LDA and their 
overall contribution to the correctness rate. The analyses were per-
formed in an R (James et al., 2013) software environment using caret 
(Kuhn et al., 2021), klaR (Roever et al., 2020), MASS (Ripley et al., 
2021) and vegan (Oksanen et al., 2019) libraries. 

For the HS datasets, diagrams were developed to analyse the suit-
ability of individual bands for the differentiation of the habitat from the 
background. Bands that were marked as differentiating in at least 50 
iterations were defined as differentiating bands. Values for occurrence 
frequency for bands with frequency above 50 were marked on the dia-
grams with colours varying from green to purple. Therefore, as a sum-
mary, these spectral bands were analysed depending on three factors: 
campaign, area, and universality. The differentiating bands were 
defined for each campaign to verify if they are dependent on the time of 
vegetation season. The bands were marked on the diagram accordingly, 
if they appeared to be differentiating for campaign in both areas. 

To analyse the differences between areas, bands that were differen-
tiating in the three campaigns for a given area were marked on the di-
agram. This analysis was conducted to verify if the spectral range is 
dependent on the background classes occurring on the study site. The 
last part demonstrates that some of the bands can be regarded as uni-
versal - differentiating the habitat from the background, regardless of 
the area and campaign. In this section, the ranges that differentiate in 
both areas and in each of the three campaigns have been marked. 

We compare the MS and HS data by the number of differentiating 
bands within season and study area in the specified spectral ranges. The 
number of differentiating bands for HS and MS data were summed up 
within the following ranges: 0.40–0.50 µm (blue light), 0.50–0.60 µm 
(green light), 0.60–0.68 µm (red light), 0.68–0.75 µm (RedEdge), 
0.75–1.00 µm (NIR), and two SWIR ranges: 1.00–1.50 µm and 
1.50–2.45 µm. The diagrams show the sum of differentiating bands in 
the defined ranges in seasons (the band was considered differentiating if 
it was significant for both areas in a given campaign) and in areas 
(differentiating, if it was significant for each campaign in a given area) 
for HS and MS data. 

In the results section, in order to simplify the description by referring 
to the specific bands spectral ranges the band centre was given (of the 
full width at half maximum), and not to the entire spectral range. 

3. Results 

3.1. European dry heaths - Natura 2000 habitat code 4030 

The highest average correctness rate values were acquired for 
HS_SWIR data, regardless of the area and campaign. These values were 
very high, from 0.990 in the BU4 area in C2 to 0.999 in the LJ3 area in 
C3 (Fig. 6). Lower values, although still high and quite stable, were 
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observed for the HS_VNIR data. On the other hand, values of average 
correctness rate calculated for MS datasets were lower, more diverse and 
differed within areas. For the BU4 area, the values were high and similar 
to HS_VNIR data, while for the LJ3 area values were significantly lower 
for each campaign (the average value for single campaigns was between 
0.617 and 0.793). 

Based on LDA, seven bands from the HS_SWIR (including five bands 
from 1.138 to 1.160 µm, band 1.496 µm and band 1.773 µm) were found 
differentiating habitat 4030 from the background regardless of season 
and area (Fig. 7). The highest number of differentiating bands (51) was 
acquired for the C3 autumn campaign for the LJ3 area, whereas the 
lowest (16) in spring (C1) for BU4.Fig. 8 

The stability of acquired results for each campaign (calculated by 
dividing the number of differentiating bands on both areas to the sum of 
differentiating bands for at least one area) was the lowest for C1 − 21% 
and higher for C2 − 27% and C3 − 38%. 

The HS_SWIR database presented the highest number of differenti-
ating bands for habitat 4030. Bands differentiating in each campaign 
were only noticed in HS data. The range from 0.40 to 0.60 μm was more 
important for the LJ3 area than for BU4. 

3.2. Species-rich Nardus grasslands - Natura 2000 habitat code 6230 

Regardless of the campaign and the area, the mean value of the 
correctness rate for MS data did not exceed 0.668 (C2 in the KR1 area). 
Moreover, the values for MS were significantly more diverse compared 
to HS databases. Average correctness rate for both HS ranges were high 
and similar - above 0.9: the lowest average value of 0.903 was observed 
for VNIR in C2 on KR1; whereas the maximum, at the level of − 0.986 
was noted for SWIR in C2 on area BU2. The correctness values obtained 
do not indicate differences in the effectiveness of the habitat differen-
tiation between neither the areas nor the campaigns. 

Only three spectral bands in the 0.416–0.423 µm range (HS_VNIR) 
were differentiating habitat 6230 from the background for every 
campaign and both areas (Fig. 9). Based on the LDA analysis, it can be 
concluded that they were independent of the area and the date of the 
analysis. More differentiating bands were noticed for the BU2 area than 
in KR1: 6 bands in the 1.127–1.160 µm range. The most significant 
bands were noticed for the C3 campaign and only four for C1 (beginning 
of the blue light). The most differentiating bands were located in the 
blue range light both for HS and MS databases and also in the SWIR 
range - in the case of HS data it is was the range of 1.0–1.5 µm, and for 
the MS − 1.5–2.5 µm. 

For the habitat 6230 the correctness rate values were much lower for 
MS compared to both HS datasets (Fig. 6). 

The stability of the results acquired for each campaign (calculated by 
dividing the number of differentiating bands on both areas to the sum of 
differentiating bands for at least one area) was the lowest for C1 − 15%, 
as well as for C2 − 16%, and significantly higher for C3 − 50%. 

3.3. Molinia meadows - Natura 2000 habitat code 6410 

The differentiation efficiency was distinct for HS and MS data 
(Fig. 6). The average correctness rate for HS data regardless of the area 
and campaign was higher than 0.910 for the VNIR and SWIR ranges. The 
highest values were observed for the KR1 area in the C2 campaign in 
VNIR – with the average of 0.946, while the lowest for KR1 in the C1 
campaign for VNIR – average of 0.910. In the case of the MS database, 
the correctness rates were significantly lower (not exceeding 0.671) for 
every campaign and area, showing the mean values ranged between 
0.532 and 0.671. In the case of MS data, a difference in the correctness 
values between the areas was also observed. In C1 and C2 campaigns the 
mean correctness values were higher for BU2 and lower for KR1. A 
higher diversity within values was also detected for KR1. 

Based on LDA, it can be stated that differentiating ranges are located 
in 0.40–0.60 μm and 1.00–1.50 μm (Fig. 10). In total, 22 bands were 

Fig. 6. The values of correctness rate for habitats calculated for hyperspectral 
(HS_VNIR, HS_SWIR) and multispectral (MS) data for two separate areas and 
repeated in three seasons (C1 - Spring, C2 - Summer, C3 - Autumn). The values 
were calculated based on 100 iterations of LDA analysis. 
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found, of which 13 were from HS_SWIR and 9 from HS_VNIR. Among 
these, only 6 were universal, they were therefore differentiating for 
every campaign and both areas. For the MS database all bands were 
differentiating, but none was universal. Moreover, significant differ-
ences between the areas were observed. 

Based on HS data, the stability of acquired results for each campaign 
(calculated by dividing the number of differentiating bands on both 
areas to the sum of differentiating bands for at least one area) was 
relatively high: for C1 − 52%, for C2 − 63% and for C3 − 67%. 

3.4. Lowland hay meadows - Natura 2000 habitat code 6510 

The average correctness values for 6510 were considerably lower for 
MS data compared to HS - and equal to those of 6230 and 6410 habitats 
(Fig. 6). For the VNIR database, the values ranged from 0.902 (SWIR, 
SA1, C1) to 0.947 (SWIR, NI1, C2). In general, there were no differences 
between the parameter values for VNIR and SWIR. On the contrary, the 
differences between areas based on the MS dataset were substantial: the 
values were higher for SA1 - the average from 0.747 for C1 to 0.815 for 
C3, compared to NI1 - from 0.402 for C2 to 0.501 for C3. In the case of 
HS data, the correctness values for SA1 were lower and more diverse, 
but the differences between the two areas were not significant. 

Only five bands at the beginning of blue light were found universal, 
thus differentiating regardless of area and campaign, based on the LDA 
(Fig. 11). Moreover, an additional eight bands were defined for the NI1 
area: in the HS_VNIR four at 0.432–0.442 µm, and in the SWIR: one band 
1.003 µm and three in the range 1.138–1.149 µm. Almost all differen-
tiating bands were noticed in the spring campaign (C1). Apart from blue 
light, two bands were the most differentiating: from the 0.502 µm and 
1.496 µm. 

Comparing the results of MS and HS analysis, different conclusions 
can be drawn. For MS data no universal bands were noticed. In the SA1 

area all bands except bands 5 (0.703 µm) and 12 (2.203 µm) were 
differentiating the habitat from the background. Apart from that, all 
bands were found differentiating for the C3 campaign. It should be noted 
that the results for MS are less reliable than for HS based on the cor-
rectness values. 

By comparing the number of differentiating bands in both areas to 
the sum of differentiating channels in a given campaign at least in one 
area, the stability of conclusions for C1 can be determined at 25%, C2 −
30% and C3 − 22%. 

3.5. Transition mires and quaking bogs - Natura 2000 habitat code 7140 

The results for correctness for habitat 7140 were largely diverse and 
different, particularly between the two areas (Fig. 6). The tendency in 
correctness rate values for LJ3 was similar to previously described 
habitats: the values for HS were high (the average varied from 0.933 for 
SWIR in C1 to 0.988 for VNIR in C2), and considerably lower and more 
diverse for MS (the average varied from 0.726 for C1 to 0.813 for C3). 
For HS, the results were similar for each campaign. Completely different 
relationships were noticed for the BI1 area: the values for HS and MS 
were relatively similar and high, especially in C1 (from 0.954 for VNIR 
to 0.970 for MS) and C2 (from 0.942 for VNIR to 0.997 for SWIR). 

Two bands were found universal for differentiating habitat 7140 
from background for each campaign in the two areas: 0.416 µm and 
1.138 µm (Fig. 12). The highest number of differentiating bands were 
discovered in C3: two bands in the range 0.419–0.423 µm, one with a 
wavelength of 0.439 µm, and five bands in the range of 1.127–1.149 µm. 
Another four bands were noticed for C1: 0.419 µm, 0.429 µm and two in 
the 0.512–0.515 µm range. The habitat 7140 was the only one where 
universal bands were noticed, regardless of the term and area for the MS 
dataset: first three bands in the 0.444–0.559 µm. For the MS data for LJ3 
five more bands in the range 0.419–0.432 µm differentiate the habitat. 

Fig. 7. Bands that differentiate habitat 4030 from the background classes were calculated based on HS_VNIR and HS_SWIR databases for three seasons (C1 - Spring, 
C2 - Summer, C3 - Autumn) and two areas (BU4 and LJ3). The bands were defined as differentiating when the frequency of occurrence value was above 50 out of 100 
LDA iterations. In the summary, the following are presented: Campaign - a band was selected if it was differentiating in both areas for a certain campaign; Area - a 
band was selected if it was differentiating in three campaigns for a specific area; Universality - a band was selected if it was differentiating in both areas in each 
campaign. The number of differentiating bands is given at the bottom of the figure. 
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In the case of MS data, the results were similar: three bands in the range 
0.444–0.559 µm were universal, while the next 3: 0.664 µm, 1.613 µm 
and 2.203 µm differentiated the habitat from the background in the LJ3 
area. 

By comparing the number of differentiating bands in both areas to 
the sum of differentiating channels in a given campaign in at least one 
area, the stability of conclusions for C1 can be determined at 38%, C2 −
11% and C3 − 22%. 

4. Discussion 

4.1. The efficiency of separation and the most useful spectral ranges 

Based on the research conducted, it can be concluded that for each 
Natura 2000 habitat studied in each area and campaign, bands which 
differentiate habitats from background were noticed (Fig. 13). Most of 
the HySpex bands (271 out of 366) did not differentiate any habitat from 
the background, which means that only 95 bands (26%) were useful 

Fig. 8. The number of bands differentiating each habitat from the background calculated for the HS and MS dataset dependent on spectral range. The analysis was 
calculated for three seasons (C1 - Spring, C2 - Summer, C3 - Autumn; marked as differentiating, if it was significant for both areas in a given campaign) and two areas 
(differentiating if it was significant for each campaign in a given area). 
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(differentiating at least one habitat from the background in at least one 
area and in at least one campaign). On the other hand, 22 bands were 
useful for every habitat. 

Most of the bands differentiating the habitats from the background 
were located in the blue light 0.416–0.442 µm (VNIR) and 1.117–1.165 
µm (SWIR). The beginning of green light, 0.502–0.522 µm, as well as 
around 1.290–1.361 µm, were also useful. Additionally, 37 bands 
differentiated only one habitat from the background; these bands 
covered most of the optical domain except the near infrared (0.7–1.0 
µm). Similar spectral ranges were noticed as useful for vegetation dif-
ferentiation, especially in green light and around 1.3 µm (Thenkabail 
et al., 2004). Also, quite similar results were acquired for ecotope 
mapping using two methods: Adaboost and Random Forest (Chan and 
Paelinckx, 2008). 

The number of universal bands (which differentiate certain habitats 
in each campaign and in both areas) was low: the minimum of 2 for 
habitat 7140 and the maximum of 8 for 4030. Studies on the importance 
of bands were previously conducted for habitats 6120, 6440, and 6510, 
however, the goal was to identify habitats, not to determine useful bands 
(Demarchi et al., 2020). The most important bands were defined as 
0.4–0.8 µm, mainly the blue and the red range, part of NIR (1.05–1.10 
µm), and of SWIR (1.25–1.40 µm, 1.65–1.80 µm, 1.95–2.05 µm and 
2.25–2.40 µm). These ranges mostly overlap with ranges mentioned in 
this study. 

Most bands deemed useful were observed for habitat 4030: 76 out of 
366 bands for the whole optical domain, 25 out of 172–15% in VNIR and 
51 out of 194–26% in SWIR. For heaths high accuracies of classification 
were also acquired (Gonçalves et al., 2016; Haest et al., 2017). For mires 
7140, 15% of the bands from HS datasets were differentiating it from the 
background, and 20% of the SWIR and 10% of the VNIR range. The 

lowest number of differentiating bands was noticed for habitat 6410: 
10% in the entire optical range, 12% of VNIR and only 9% of SWIR. In 
general, it can be concluded that in the case of meadows and grasslands, 
fewer bands were defined as differentiating than in the case of mires and 
heaths. Also, classification accuracies for the meadows achieved in other 
studies were not always high (Buck et al., 2015). Thus, it can be 
concluded that there is a positive relationship between the number of 
differentiating bands with the classification accuracies. 

More differentiating bands were found in the SWIR range (66 out of 
194 bands − 34%) than in the VNIR range (29 out of 172 channels −
17%). Based on the correctness values it can be assumed that only one of 
the ranges, VNIR or SWIR, allow for the habitat differentiation. Previ-
ously performed classifications were mostly based on images from the 
whole optical range or its parts: VIS and NIR, i.e. using the RapidEye 
(Schuster et al., 2015; Stenzel et al., 2014). While no studies using only 
the SWIR range data were previously published, our results indicate that 
the SWIR range is also useful for differentiating (Figs. 6, 8 and 13). Based 
on correctness values, the differences between VNIR and SWIR differ-
entiation results are relatively minor. Only for habitat 4030, the highest 
and more stable correctness values were noticed for SWIR compared to 
VNIR (Fig. 6), therefore, using the images from SWIR resulted in better 
classification accuracies achieved. On the other hand, results for VNIR 
were also satisfying, so using only VNIR data could also give good 
classification results for heaths. Similarly, mires 7140 are characterised 
by higher correctness values for the SWIR range than for the VNIR for 
one area BI1 in C2 and C3 campaigns (Fig. 6). This may be related to 
differences in the background classes (Table 1). The background classes 
are different on areas LJ3 and BI1: on LJ3 polygons are dominated by 
dry vegetation, whereas on BI1 by hydrogenic habitats. At LJ3, the SWIR 
range, which is an indicator of water content, is therefore more 

Fig. 9. Bands that differentiate habitat 6230 from the background classes were calculated based on HS_VNIR and HS_SWIR databases for three seasons (C1 - Spring, 
C2 - Summer, C3 - Autumn) and two areas (BU2 and KR1). The bands were defined as differentiating when the frequency of occurrence value was above 50 out of 100 
LDA iterations. In the summary, the following are presented: Campaign - a band was selected if it was differentiating in both areas for a certain campaign; Area - a 
band was selected if it was differentiating in three campaigns for a specific area; Universality - a band was selected if it was differentiating in both areas in each 
campaign. The number of differentiating bands is given at the bottom of the figure. 
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influential in differentiating habitat from background because, unlike 
BI1, the background at LJ3 is mainly composed of dry vegetation. 

Results from the two areas are generally consistent for most of the 
habitats, so it can be assumed that the background vegetation is not 
affecting the results in a significant way and the conclusions drawn will 
be universal. On the other hand, there are differences in the differenti-
ating spectral ranges between individual areas. For habitat 6410 no 
differences between spectral ranges were noticed, whereas for habitat 
7140 were the highest. This can be related to the fact that in case of 7140 
vegetation, also the background classes differ much between the two 
analysed areas (see Sections 2.1 and 2.2). 

Based on the correctness results, habitats differentiate from the 
background that was similar in individual campaigns, and differenti-
ating bands were found. It can be stated that there is a possibility to 
distinguish habitat from the background using HS data. Similar con-
clusions were drawn from the previous studies focusing on classification 
of Natura 2000 habitats based on HS and ALS data (Demarchi et al., 
2020; Szporak-Wasilewska et al., 2021). 

4.2. The efficiency of habitats differentiating using simulated 
multispectral data 

When entering the study, we assumed that HS would have had better 
accuracies than MS. Such a general statement could have been assumed 
in advance to be true and did not require testing. The new knowledge 
which our study provides is related to the variable potential to identify 
individual Nature 2000 habitats. The highest values were acquired for 
habitat 4030, and for 7140 in the BI1 area. Previous studies showed that 
it is possible to identify mires and heaths based on multispectral images. 
High accuracies (determination coefficient R2 = 0.94, OA = 84%, and 

kappa = 63%) were achieved for habitat 4030 using combined data 
Sentinel-2 with Sentinel-1 (Schmidt et al., 2018). Mires were success-
fully classified using RapidEye data, e.g. 7120 with accuracy of F1 equal 
91% (Stenzel et al., 2014). It can be concluded that these habitats, under 
some conditions, can be classified based on the MS data at a high level of 
accuracy. 

On the other hand, it should be stated that the efficiency in habitat 
differentiation using MS data is relatively diverse and dependent on the 
areas, especially for 6510 and 7140 (Fig. 14). Significant differences 
between the differentiating bands were noticed for 6410 and 6510. As 
well as for the area, the differences were noticed for three campaigns 
within one habitat, therefore, it is impossible to define the most efficient 
campaign. The classification of Natura 2000 habitats based on the MS 
data is less efficient compared to the HS data and can be dependent on 
data and background classes. 

The differentiating MS bands were covering most of the analysed 
bands. On the other hand, the correctness values were much lower 
compared to the HS data. Perhaps, the number of MS bands is too low for 
an accurate habitat differentiation, whereas the number of HS bands is 
too high. Based on the frequency of occurrence of the MS data, no uni-
versal differentiating bands could be determined for any habitat. The 
determined bands vary within habitats, areas, and campaigns. Gener-
ally, the most useful is the band 0.444, which appears to be similar to the 
results of the HS data (Fig. 13). 

There are no published analyses which would compare HS and MS 
data for Natura 2000 habitat classification, therefore, the conducted 
studies are pioneering in this research area. For almost all cases, the HS 
(HS_VNIR or HS_SWIR) data was more efficient in habitat differentiation 
from the background compared to the MS data, which was proven based 
on correctness values. The only exception was habitat 7140 in the BI1 

Fig. 10. Bands that differentiate habitat 6410 from the background classes were calculated based on HS_VNIR and HS_SWIR databases for three seasons (C1 - Spring, 
C2 - Summer, C3 - Autumn) and two areas (BU2 and KR1). The bands were defined as differentiating when the frequency of occurrence value was above 50 out of 100 
LDA iterations. In the summary, the following are presented: Campaign - a band was selected if it was differentiating in both areas for a certain campaign; Area - a 
band was selected if it was differentiating in three campaigns for a specific area; Universality - a band was selected if it was differentiating in both areas in each 
campaign. The number of differentiating bands is given at the bottom of the figure. 
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area in C1 and C2 campaigns (Fig. 14). One of the possible reasons for 
this result is lower quality of HS images caused by unstable lighting 
conditions in this area in C1 and C2, compared to other HS images. It is 
likely that resampling to Sentinel-2 resolution reduced the issue, 
whereas in narrow bands of HS images the problem was visible even 
after the pre-processing. 

Worse differentiation results using MS compared to HS data may be 
caused by too low number of bands and especially lack of SWIR bands in 
the Sentinel-2 spectral resolution. The obtained results showed that it is 
possible to differentiate habitats from background even if using only 
SWIR data. Different ranges, apart from blue light, were determined as 
useful for HS and MS datasets. On the other hand, it is not fully correct to 
compare ranges for HS and MS data due to completely different spectral 
resolution of the Sentinel-2 and HySpex data. The reflectance values in 
the band of both sensors can be related to different vegetation 
biochemical and biophysical properties. 

What is more, the LDA analysis was performed on typical polygons 
(conservation status - Favourable - FV) for each habitat, without tran-
sition zones, patches in poor condition or degraded. All mentioned 
habitat patches should be identified as a habitat in the classification 
process. This can cause difficulties in classification, even for the habitats 
with high correctness values and many differentiating bands. The MS 
data can be used for classification under certain conditions:  

• the method identifies a single habitat, not the mixture of different 
habitats,  

• the background on classified area has different spectral properties 
then the habitat,  

• habitat has uniform structure and species composition. 

4.3. Application of acquired results 

Conclusions regarding the significance of specific spectral regions 
(VNIR, SWIR) or comparison of HS and MS data were based on studies 
conducted in two separate areas (Table 1). Due to the methodology 
adopted in this way, conclusions concerning the possibility of identi-
fying individual Natura 2000 habitats are universal. 

Based on the results, it can be stated that acquiring HS images from 
May to September is optimal to differentiate the habitat from the 
background. The differences in the average correctness rate between 
individual campaigns are low and vary from 90% to 100% (Fig. 14). 
Correctness values for the MS data are much more diverse during the 
vegetation season, the minimum average correctness value was around 
40% (NI1 area, campaign 2, habitat 6510). It is not known yet what is 
the reason for such high variability in the results for the MS data. This 
may be caused by different spectral similarity of the habitat to the 
background in different areas. The NI1 area is characterized by very 
different meadows communities, which can be similar to the habitat 
patches (Table 1). In this case, use of MS data seems to be ineffective. 
This limits the use of the MS data to identify Natura 2000 habitats, 
especially, in the case of commercial satellite data, where the use of 
multitemporal data is limited. Identification results based on only one 
MS image may result in low classification accuracy. 

However, it should be noted that for MS data, an increase in classi-
fication accuracy can occur as a result of using multi-temporal data. The 
effective use of multitemporal data fusion has been proven, for example, 
on satellite RapidEye data (Schuster et al., 2015) or Sentinel-2 (Tar-
antino et al., 2021). Multitemporal fusion using HS data was used less 
frequently due to limited availability of HS data and large amount of 
datasets, which make classification long lasting (Marcinkowska-Ochtyra 

Fig. 11. Bands that differentiate habitat 6510 from the background classes were calculated based on HS_VNIR and HS_SWIR databases for three seasons (C1 - Spring, 
C2 - Summer, C3 - Autumn) and two areas (NI1 and SA1). The bands were defined as differentiating when the frequency of occurrence value was above 50 out of 100 
LDA iterations. In the summary, the following are presented: Campaign - a band was selected if it was differentiating in both areas for a certain campaign; Area - a 
band was selected if it was differentiating in three campaigns for a specific area; Universality - a band was selected if it was differentiating in both areas in each 
campaign. The number of differentiating bands is given at the bottom of the figure. 
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et al., 2019). Acquiring hyperspectral data is also expensive. 
The conducted research provided knowledge about the relation be-

tween analysed habitats and reflectance. Such information can be useful 
for the development of new hyperspectral sensors dedicated to specific 
applications. 

5. Conclusions 

The above study analysed the discrimination of five selected non- 
forest Natura 2000 habitats (heaths, mires, meadows and grasslands) 
using hyperspectral data in the range of VNIR (0.4–1.0 μm) and SWIR 

Fig. 12. Bands that differentiate habitat 7140 from the background classes were calculated based on HS_VNIR and HS_SWIR databases for three seasons (C1 - Spring, 
C2 - Summer, C3 - Autumn) and two areas (BI1 and LJ3). The bands were defined as differentiating when the frequency of occurrence value was above 50 out of 100 
LDA iterations. In the summary, the following are presented: Campaign - a band was selected if it was differentiating in both areas for a certain campaign; Area - a 
band was selected if it was differentiating in three campaigns for a specific area; Universality - a band was selected if it was differentiating in both areas in each 
campaign. The number of differentiating bands is given at the bottom of the figure. 

Fig. 13. The HS bands useful for five habitats differentiation from the background. The band was marked as useful if it was differentiating in at least one campaign 
for at least one area. 
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(1.0–2.5 μm) as well as multispectral data resampled to the Sentinel-2 
spectral resolution. 

The research described above, related to Natura 2000 habitats 
identification, resulted in the following conclusions:  

• The potential of the MS data (Sentinel-2) is diverse and dependent on 
the habitat and background classes present in the analysed area. The 
MS data (Sentinel-2) could be efficient in differentiation of 4030 
(heaths - average correctness rate 0.81) and 7140 (mires - average 
correctness rate − 0.87). In case of meadows (6410, 6510 - average 
correctness value 0.61) and grasslands (6230 - average correctness 
value 0.59), the efficiency of differentiation is significantly lower.  

• For the HS data (both VNIR and SWIR range) acquired from May to 
September, very high and stable (reaching over 90%) discrimination 
of Natura 2000 habitat from the background was observed, regard-
less of the examined area.  

• Differentiation spectral ranges were identified, regardless of the 
habitat type, season, and area. It included the following ranges: 
0.416–0.442 µm 0.502–0.522 µm for VNIR and 1.117–1.165 µm, 
1.290–1.361 µm for SWIR.  

• The analyses conducted in this study were performed on typical 
polygons (with favourable conservation status) for each Natura 2000 
habitat, excluding transition zones, patches in poor condition or 
degraded. Therefore, the acquired correctness value could possibly 
be lower while analysing this sort of patches. 
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