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Abstract

Habitat quality assessments often demand wall-to-wall information about the

state of vegetation. Remote sensing can provide this information by capturing

optical and structural attributes of plant communities. Although active and pas-

sive remote sensing approaches are considered as complementary techniques,

they have been rarely combined for conservation mapping. Here, we combined

spaceborne multispectral Sentinel-2 and Sentinel-1 SAR data for a remote sens-

ing-based habitat quality assessment of dwarf shrub heathland, which was

inspired by nature conservation field guidelines. Therefore, three earlier pro-

posed quality layers representing (1) the coverage of the key dwarf shrub spe-

cies, (2) stand structural diversity and (3) an index reflecting co-occurring

vegetation were mapped via linking in situ data and remote sensing imagery.

These layers were combined in an RGB-representation depicting varying stand

attributes, which afterwards allowed for a rule-based derivation of pixel-wise

habitat quality classes. The links between field observations and remote sensing

data reached correlations between 0.70 and 0.94 for modeling the single quality

layers. The spatial patterns shown in the quality layers and the map of discrete

quality classes were in line with the field observations. The remote sensing-

based mapping of heathland conservation status showed an overall agreement

of 76% with field data. Transferring the approach in time (applying a second

set of Sentinel-1 and -2 data) caused a decrease in accuracy to 73%. Our find-

ings suggest that Sentinel-1 SAR contains information about vegetation struc-

ture that is complimentary to optical data and therefore relevant for nature

conservation. While we think that rule-based approaches for quality assessments

offer the possibility for gaining acceptance in both communities applied conser-

vation and remote sensing, there is still need for developing more robust and

transferable methods.

Introduction

Central European lowland heathlands occur largely as a

replacement-vegetation of forests triggered by past land-

use and current conservation management. These heath-

lands are characterized by a low woody vegetation layer

that is typically formed by a single ericaceous species,

Calluna vulgaris (L.) Hull, interspersed by open soil and

sparse vegetation. Most Calluna shrublands are of conser-

vation interest and protected within the Natura 2000 con-

servation network, which requires periodic monitoring

reports about the habitats’ state.

As demonstrated in earlier studies, remote sensing can

be a potentially useful tool to support such monitoring

tasks (e.g. Bock et al. 2005; F€orster et al. 2008; Vanden

Borre et al. 2011). Most earlier studies used only passively

recorded optical imagery while only few studies in the

field supplemented optical information with data from

active sensors like LiDAR (e.g. Leutner et al. 2012; Kep-

fer-Rojas et al. 2015; Zlinszky et al. 2015) and synthetic

aperture radar (SAR). LiDAR and SAR data are comple-

mentary to optical sensors, as their measurements mostly

relate to the physical structure of the vegetation which is

only partly described by the optical signal.
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Only few studies have examined SAR data for mapping

purposes in dwarf shrub heathlands or herbaceous vegeta-

tion. These studies include an analysis of time series of

TerraSAR-X backscatter information to detect swath

events in grasslands (Schuster et al. 2011) as well as for

the differentiation of grassland types (Schuster et al.

2015). Very accurate classifications between grassland and

crops were reported by Dusseux et al. (2014) when using

multitemporal optical imagery and polarimetric SAR

products in combination. Bargiel (2013) achieved high

accuracies for classifying vegetation types, such as shrub

patches and grassland based on a multichannel TerraSAR-

X time series. SAR time series from ERS-2 and ASAR

enabled Millin-Chalabi et al. (2013) to detect a fire scar

in a upland moorland. To obtain information on shrub

growth in the Sub-Artic, Duguay et al. (2015) applied

TerraSAR-X and Radarsat-2 in combination with in situ

data. They compared the backscatter signal of both sen-

sors concerning their sensibility for detecting shrub den-

sity and height.

Fusing actively and passively sensed data provides

information about both the structure and the material

content of the depicted objects. The synergistic use of

SAR and optical remote sensing was applied in several

studies for describing vegetation in diverse ecosystems,

for example, forests (Montesano et al. 2013; Reiche et al.

2015), wetlands (Rodrigues and Souza-Filho 2011; Hong

et al. 2015), agricultural areas (Hill et al. 2005; Peters

et al. 2011), upland vegetation types (Barrett et al. 2016)

and also to differentiate broad land cover classes (Ull-

mann et al. 2014). However, up to now, there are no

studies attempting to exploit SAR-optical synergies for

mapping and characterizing conservation areas.

Although several studies have been dealing with the

development of remote sensing-based approaches for the

European monitoring procedures of the Natura 2000

framework (see Corbane et al. 2015 for a synthesis), these

methods are still not widely applied in an operational

context. One reason for this might have been the lack of

suitable, operational datasets. European Union’s new sen-

sor systems Sentinel-1 (S1) and Sentinel-2 (S2) might

help to increase the applicability of remote sensing-based

procedures in practical monitoring tasks. There have

already been vegetation-focused studies using Sentinel

data (e.g. Immitzer et al. 2016; Clevers et al. 2017; Del-

gado-Aguilar et al. 2017), but there is no work directly

dealing with conservation mapping based on Sentinel

data, even though Feilhauer et al. (2014) proved S2 ima-

gery to be potentially useful for Natura 2000 monitoring

when applying simulated data.

In our study, we jointly analyze multispectral Sentinel-

2 and Sentinel-1 SAR data of EU’s Copernicus mission

for habitat mapping and monitoring purposes. For an

example of dwarf shrub heathland habitats, we use com-

bined SAR multispectral datasets to create a habitat map

that suits the monitoring demands of the European Habi-

tat Directive. To achieve that, we adapt an approach pro-

posed by Schmidt et al. (2017b) who transferred field

mapping guidelines to a remote sensing approach. This

earlier approach bases on remote sensing proxies from

airborne data reflecting wall-to-wall information on (1)

the key species, (2) stand structural diversity and (3) co-

occurring vegetation. Here, we combine spaceborne

remote sensing data and field samples to obtain the same

three variables and finally derive spatial representations of

continuous habitat states and discrete conservation status

classes.

Materials and Methods

Study area and occurring habitats

The study was conducted in the Oranienbaum Heath

located near Dessau, Saxony-Anhalt, Germany (N

51.77350°, E 12.36120°; Fig. 1). For a detailed description

of the study area see Schmidt et al. (2017a).

The dominant communities of the non-forested areas

in the study include dwarf shrub associations (Natura

2000 habitat types H-2310 and H-4030) characterized by

high coverages of Calluna vulgaris (henceforth simply

Calluna). These habitats are characterized by the aging-

cycle of Calluna where the plants undergo a cyclic succes-

sion of different phases, each with a characteristic species

composition (Watt 1947; Gimingham 1972). In terms of

conservation, heathland patches in optimal states feature

mosaics of these phases being interspersed by cryptogams

and sparse grassland (Ausden 2007).

Besides the dwarf shrub habitats, grassland occurs in

varying forms. Open pioneer grasslands (H-2330 with

Corynephorus and Agrostis) appear on inland dunes. Cal-

careous sandy grasslands (H-6120) mainly occur in the

south of the study area and are featuring a high species

diversity. They are often neighboring other low-nutrient

grasslands or Calluna heath patches, thereby forming a

mosaicked vegetation. Heathland degraded by grass

encroachment of Calamagrostis epigejos can mainly be

found in the northern and central part.

Data

Vegetation assessments in the field

Three field datasets were used for calculating the quality

layers that provide the basis for an integrated assessment

of habitat quality (Fig. 2). Coverage ratios of vascular

plants were recorded in 85 plots measuring 10 9 10 m in
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August 2014. The samples were located in the field with a

stratified random approach using an earlier mapping by

Felinks et al. (2012) to ensure that all occurring heathland

habitats were considered. In the following, we will refer

to this dataset as ‘species dataset’. These plots served as

basis for calculating a species index as described below

and for validating the habitat mask.

Coverage values of Calluna were documented for 400

plots measuring 10 9 10 m in July 2015 (‘Calluna data-

set’). In 160 of these samples, we additionally sampled

mean height and standard deviation of the height from

15 measurements of the vegetation height within the sam-

ple plot (‘structure dataset’). The plot locations were cho-

sen by stratified random samplings based on the habitat

map from Schmidt et al. (2017b) to ensure that the target

habitat is captured in all its specificities.

Independent from that, another field mapping was con-

ducted in July 2015 where 350 plots measuring 10 by 10

m that represent Calluna habitats were checked for their

conservation status (‘conservation status dataset’). This

dataset was split into a training and a validation dataset

(50/50) based on stratified random sampling. The training

set was used for calibrating the rule-based decision tree,

while the validation set served as basis for validating the

resulting conservation status classification.

SAR data

Sentinel-1 (S1) is a dual polarization radar (VV and VH)

that measures two-dimensional surface backscattering

using a C-band SAR with 6 cm wavelength (ESA, 2016a).

Being a short wavelength SAR, the signal of Sentinel-1

interacts with the upper part of vegetation canopies

allowing for retrieving biophysical vegetation parameters.

We acquired level-1 products (Ground Range Detected

with high resolution) from the end of June / beginning of

July, recorded in interferometric wide swath mode. The

processing of the SAR imagery in SNAP (ESA, 2016c)

1 km

N
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Backscatter

Oranienbaum
Heath

GermanyA B C

D

Figure 1. The study site Oranienbaum Heath is located near Dessau, Saxony-Anhalt, Germany (A). Panel B gives an impression of the

multispectral data used in this study (Sentinel-2; RGB-bands: 4, 3, 2). Forests are masked. SAR backscatter information from Sentinel-1 provided

information on the vegetation structure (C; mean of ascending and descending VH backscatter). As the target habitat Calluna heathland is mainly

found in the central and southern part of the study, we focus on these areas when mapping the habitat quality (D).
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included the application of an orbit file, geometric cali-

bration, terrain correction and speckle filtering. As it has

been shown in other applications that a fusion of ascend-

ing and descending SAR data can minimize geometric

distortions (e.g. Goering et al. 1995 for noise removal;

Gernhardt and Bamler 2012 for detecting building defor-

mation; Deo et al. 2015 for DEM generation), we applied

scenes that were acquired in two different orbits

(Table 1). Additionally, we fused the SAR images by

applying an weighted average approach (Carrasco et al.

1997; Sansosti et al. 1999; Crosetto 2002).

The six bands (VV and VH for two passes plus the

respective means) were merged in a stack featuring a spa-

tial resolution of 10 m. In addition, we calculated the

textural features variance and entropy in R (package gclm;

Zvoleff 2015) based on 3 9 3 gray-level co-occurrence

matrices (Haralick et al. 1973) for each band but the

mean layers. The SAR imagery served as basis for creating

a threshold-based forest mask where the threshold was

identified by visual interpretation.

In order to check for transferability, the classification

procedure was also conducted on a second set of SAR

images that were acquired around 25 days before the cali-

bration image set (Table 1).

Multispectral imagery

As multispectral dataset, we applied a Sentinel-2 (S2)

(ESA, 2016b) image that was acquired on 28th of June

2016. We used the ten bands with 10 and 20 m spatial

resolution that cover the spectrum from 490 nm to

2190 nm, scaling those with 20 m pixels down to 10 m.

The original S2 data were re-projected and processed

using SNAP. The textural feature contrast was calculated

and, finally, the SAR-based forest mark was applied.

The transferability check was performed based on a

second multispectral image, which was acquired 20 days

before the calibration image (Table 1).

Methods

Transfer of the field guidelines to remote sensing

According to the regional mapping guidelines (LAU,

2010), the habitat status of Calluna areas should be

described based on three criteria: a primary requirement

of an area to qualify as Calluna habitat is a minimum

coverage of the key species Calluna of 30%. Furthermore,

the occurrence of different successional phases of Calluna

at short distance is considered to indicate a favorable con-

servation status. This situation can be described with a

high structural diversity. A further indicator for a high

conservation quality class are sparse grasslands as co-

occurring vegetation. Hence, species typically found in

sparse grasslands are listed as indicators of favorable habi-

tat conditions. They include, for example, Anthoxanthum

odoratum, Festuca ovina, Koeleria macrantha, Rumex ace-

tosella and Thymus pulegioides. Negative habitat pressure

is represented by bush or grass encroachment as well as

the occurrence of neophytes or species indicating

eutrophication. According to the field guidelines, these

three criteria should be assessed in the field and summa-

rized in a categorical vote including the classes “favor-

able” (A), “inadequate” (B) or “bad” (C), that is, the

conservation status.

These guidelines for mapping Calluna habitats in the

field were transferred to a remote sensing approach by

Schmidt et al. (2017b) who proposed to approximate the

Figure 2. Workflow of the study. We created three independent

models representing the quality layers named (1) Calluna coverage

(using both multispectral and SAR data), (2) stand structural diversity

(using SAR) and (3) a species index (using multispectral imagery). The

three spatial layers were used for a continuous graphical

representation of the three quality layers determining the habitat

conservation status. Afterwards, the actual conservation status classes

were derived by rule-based classification conducted on pixel-level.

Table 1. Satellite data used in this study.

Dataset Sensor Date DOY Pass

Calibration S2 2016-06-28 180 D

S1 2016-06-30 182 A

2016-07-09 191 D

Transfer S2 2016-06-08 160 D

S1 2016-06-08 160 D

2016-06-11 163 A

S2: Sentinel-2, S1: Sentinel-1, D: descending orbit, A: ascending orbit.
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field mapping parameters by three remote sensing proxies

(quality layers): (1) coverage of the key species Calluna,

(2) stand structural diversity and (3) a species index

reflecting co-occurring vegetation. All information that is

needed for assigning the conservation status is potentially

captured either by a single remote sensing-based quality

layer or a combination of several of them.

In this remote sensing approach, a continuous layer

representing cover ratios of Calluna (Calluna cover per

pixel) serves to create a mask of the target habitat by

excluding areas that do not have an appropriate fraction

of Calluna cover (<30%) and therefore do not qualify as

target habitat. Afterward, wall-to-wall information about

stand structure and vegetation co-occurring with Calluna

is used for discriminating the quality classes within the

remaining areas. Mean canopy height is combined with

the standard deviation in order to jointly represent stand

structural diversity. A species index proposed by Schmidt

et al. (2017b) is then used to describe the vegetation that

co-occurs with Calluna. The index is defined as a simple

ratio between the coverage of indicator species for “favor-

able” and “bad” conservation status: i = nf log (cf)-nb log

(cb); where nf and cf are the number and the cover species

indicating a “favorable” status, while nb and cb are the

corresponding values of species indicating a “bad” status.

Standardization is achieved by dividing the index by its

maximum value.

By applying thresholds based on expert judgment to

the modeled quality layers, the final categorical status

classes are derived. This map depicting the pixel-wise

conservation status was then compared to mapping

results from an independent field dataset. This procedure

is following the principle proposed by Regan et al. (2004)

who suggested to formalize experts’ decision making pro-

cesses as common in the conservation status assessment

under the Habitats Directive, in order to transfer the rules

to remote sensing products. We assume the concept to be

transferable to shrublands that have similar characteristics.

Technical descriptions how the remote sensing proxies

were calculated follow below.

Model building

We applied Support Vector Machines (SVM) regressions

to obtain all three quality layers. We selected SVM as a

nowadays conventional method for treating higher

dimensional remote sensing data (i.a. Fassnacht et al.

2014; Mack et al. 2016; Schuster et al. 2015). A good

description of SVM in the context of remote sensing is

given by Mountrakis et al. (2011).

We applied SVM regression with a radial basis func-

tion kernel based on the R package kernlab (Karatzoglou

et al. 2004). The SVM applications were performed in R

(R Development Core Team, 2013) using the caret

package (Kuhn 2016). The tuning parameters sigma and

cost were kept constantly with 0.1 and 1, respectively.

The model fits of SVM are reported in R², root-mean-

square deviation (RMSD), and normalized root-mean-

square error (nRMSE) as obtained by 10-fold cross-vali-

dation with 30 repeats. A normalized RMSE allows for

comparisons between the models as the result is dimen-

sionless (expressed in percentage). Following Pi~neiro

et al. (2008), we also documented intercept and slope of

a linear model between observed and predicted values

as well as the results of testing the equality to 0 (inter-

cept) and 1 (slope), respectively, based on regression

scatter plots of observed versus predicted values (OP).

The influence of the different input variables on

model performance was assessed via variable importance

evaluation.

For creating the habitat mask, Calluna coverages were

calculated by regressing coverage values of the Calluna

dataset (n = 400) against fused SAR and multispectral

data. As stand structure is represented by both canopy

height and its diversity, we calculated two SVM models

based on the 160 field samples of the structure dataset.

The mean of 15 values per field sample was considered

for modeling the mean canopy height, whereas standard

deviation was considered for modeling the height diver-

sity. Combining these two spatial representations helped

to separate areas that feature a similar canopy height

but differ in their structural diversity, as well as the

other way around. Furthermore, the key species index

reference values (species dataset, n = 85) were regressed

against the S2 multispectral imagery to achieve informa-

tion about the co-occurring vegetation for the whole

study area.

Creating the habitat mask

For the designation of the target habitat, only pixels

with more than 30% Calluna coverage were considered.

To ensure that fringes of Calluna heathland habitats are

included in the evaluation (like in field mapping), the

mask was slightly smoothed by applying a mean filter

(3 9 3). For validating this remote sensing-derived habi-

tat mask, we compared it with field-based vegetation

clusters from the species dataset. The isopam algorithm

(Schmidtlein et al. 2010) was used to differentiate vege-

tation into four types: Calluna heathland, calcareous

sandy grassland, open sandy grassland and degraded

heathland dominated by Calamagrostis epigejos. The

three clusters that are not associated with Calluna heath-

land were merged. Here, 76 out of 85 plots were consid-

ered; nine were masked due to the application of the

forest mask.
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Visualizing Calluna habitat states and deriving
the conservation status

To depict the final habitat status of the heathlands, we

followed two approaches: On the one hand, we combined

the single quality layers in a Red-Green-Blue (RGB) color

composite map. Within this RGB map, the coverage of

Calluna is represented in red, stand structural diversity in

green and the species index in blue. Stand structural

diversity is represented by the coefficient of variation

between the standard deviation and the mean vegetation

height. This map illustrates the variety of habitat states as

gradients in the landscape.

On the other hand, discrete quality classes were derived

in a procedure very similar to the field assessment. The cov-

erage of Calluna was only crucial for identifying the habitat

type, not for assessing the habitat quality. Then co-occur-

ring vegetation and stand structural diversity served as

parameters in a decision tree approach (Fig. 3). The thresh-

olds were approached by gradually changing the values in

order to achieve the highest possible agreement between

the field data (training set) and the remote sensing result;

the fit was assessed by a confusion matrix (using the valida-

tion set). We intentionally name that step “comparison”

(resulting in a “fit” instead of “accuracy”) as we assume

that it is rather a matching test than validating a dataset

with a true reference dataset (Foody 2008; and further dis-

cussed in Schmidt et al. 2017b).

Transferability check

In order to test the transferability of the proposed

method and to assess the influence of short-term varia-

tion in image attributes and weather on the results, we

transferred the workflow to another remote sensing data-

set acquired around 3 weeks before.

Results

Modeling results

Modeling the Calluna coverage resulted in an R² of 0.94 and
a RMSD of 13.92 (Fig. 4A, Table 2). The obtained %cover

values varied between �6% and 97%. Values below 0

occurred in large sandy areas with high reflectance values.

Judging from the SVM predictor importance measure, mul-

tispectral bands (especially from the visible region as well as

the beginning of red edge and SWIR) were important for the

SVM regression, whereas the associated contrast-textures

were not meaningful (see Table S1 for variable importance

results of all SVM regression models). Three SAR-bands

were prominent: VH of the descending pass, the mean VH-

band, and the ascending VV texture variance.

The models for canopy height (mean height and stan-

dard deviation) reached R2s of 0.71 (RMSD = 8.49) and

0.70 (6.0), respectively (Fig. 4B and C). Highest mean

canopy height of around 40 cm was predicted for the

dense Calluna stands, lowest was found in light meadows

and open sandy sites (ca. 7 cm). High structural diversity

(standard deviation of vegetation height) with values

above 25 was found for edge regions of dense Calluna

patches as well as for the mosaicked vegetation of shrubs

and grassland. Grassland generally featured low values

around 10. Although the importance-scores varied for

both models, the mean VH-band and the variance-tex-

tures of ascending VH and VV were comparably impor-

tant.

The spatial representation of co-occurring vegetation is

based on a model with an R² of 0.77 and a RMSD of 0.2

(Fig. 4D). The sparse calcareous meadows in the South-

east of the study area show highest species index values of

up to 0.95. Lowest values around 0.1 can be observed in

areas featuring severe grass encroachment. Two bands in

the red edge (740, 783 nm) showed high importance val-

ues in this model.

The model outcomes of the transfer remote sensing

dataset were similar to the reference dataset. The model

results for both remote sensing datasets are summarized

in Table 2.

Figure 3. Rule-based decision tree for separating the three

conservation status classes based on the mean vegetation height,

coefficient of variation of the height and the species index. The latter

was particularly important for separating quality class ‘A’ from both

‘B’ and ‘C’. Classes ‘B’ and ‘C’ could be well distinguished based on

the mean height. The coefficient of variation of the vegetation height

was useful for minor adaptions.
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Habitat mask, habitat state and
conservation status

The habitat mask enabled us to separate Calluna heath-

land from the other habitats with an accuracy of 84%

(Kappa = 0.63). Calluna heathland covered an area of

158 ha (33% of the study area). As 34 plots of the test

dataset were found to be outside the habitat mask, we

proceeded with 316 reference plots for assessing the fit of

the conservation status mapping.

The three quality layers Calluna coverage (R), structural

diversity (G) and key species index (B) span the RGB color

space in Figure 5A. This continuous map reveals gradients

of habitat states described by different stand attributes. This

continuous illustration was not validated in a statistical

manner, but examined visually. The displayed spatial pat-

terns of varying Calluna habitat states predominantly

agreed to what was expected from fieldwork.

Concerning the derived conservation status classes

(Fig. 5B), we found that tall and less-structured vegetation

Figure 4. Scatterplots between observed and predicted values of the four SVM models. An overestimation of the extreme values can be

observed for modeling Calluna coverages (A), whereas for the height models (B, C) extreme values seem to be rather underestimated.
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with the absence of characteristic co-occurring species leads to

a ‘C’-assignment (“bad” conservation status, 37% of the habi-

tat). This is mostly the case for old, dense Calluna stands.

Areas that show rather low values for the species index, but

feature a more diverse stand structure are considered as “inad-

equate” (‘B’, 29%). The situation mostly occurred in moder-

ately degraded heathland, where grass encroachment already

suppresses the occurrence of low-growing grasses and herbs.

Class ‘A’ (“favorable”, 34%) is found when there is a high

score of characteristic co-occurring vegetation, expressed by a

medium to high species index. In an ideal case, this coincides

with a heterogeneous stand structure; a case that is often

found in peripheral zones of dense Calluna stands. Summa-

rized, Calluna habitats in the southern part of the study area

are mainly in a “favorable” status (due to favorable co-occur-

ring vegetation according to the nature conservation guideli-

nes) except for some patches of overaged heather. This

classification result was compared with the field estimates

from the validation dataset (n = 158) resulting in an overall

fit of 76% and a Kappa of 0.64 (Table 3).

By transferring the procedure to a second remote sens-

ing dataset from beginning of June, another set of quality

layers could be obtained with comparable correlations

(Table 2). Applying the decision tree with the same

parameters resulted in a fit of 73% (Kappa = 0.60) in

comparison to the field samples. It can be seen from

Fig. 6 that the general patterns of conservation status

classes are similar between both datasets. Problematic dif-

ferences between the two maps (switch from ‘C’ to ‘A’)

are observable in the upper part of the northern subarea.

Discussion

The aim of this study was to derive conservation status

classes of dwarf shrub heathland using remotely sensed

habitat quality layers (describing vegetation properties)

and a rule-based classification procedure. Continuous

quality layers were obtained from regressing in situ data

against spaceborne multispectral Sentinel-2 and Sentinel-1

SAR imagery. The single quality layers on their own pro-

vide useful information for ecologists and site managers;

in combination they reveal a variety of stand attributes

describing habitat states in a spatially continuous way.

This allows for detecting transitions and gradients that

are not apparent in patch-wise conservation status repre-

sentations as required by reports according to the Euro-

pean Flora Fauna Habitat convention. The procedure

allows after-the-fact revisions of thresholds used to define

the conservation status which is hardly possible with

field-based assessments.

The overall fit of 76% in the estimation of conservation

status classes was comparably high regarding the result of

65% achieved by Schmidt et al. (2017b) following a simi-

lar procedure based on airborne hyperspectral remote

sensing. This is remarkable, as only ten S2 bands were

used in this study in contrast to the hyperspectral AISA-

sensor applied in Schmidt et al. (2017b). This confirms

earlier reported observations concerning the high poten-

tial of the S2 bands for efficient vegetation analyses (Cla-

sen et al. 2015).

Contribution of the single quality layers

The derived quality layers showed limitations in some parts

of the study area. For example, we encountered problems

in areas with low Calluna coverages. Some pixels with no

or very low Calluna coverage values were predicted to have

coverages of up to 20%. It is likely, that at very low Calluna

coverages the contribution of the Calluna vegetation to the

observed spectral signal is too low to build robust model.

Furthermore, overexposure effects caused by areas with

high amounts of sand or litter (Nagler et al. 2000) presum-

ably contributed to the reduced performance of the regres-

sion models in these areas. On the contrary, Calluna

coverages above 25% were slightly underpredicted. Other

approaches such as spectral unmixing (Delalieux et al.

Table 2. (A) Regression results (SVM) for the single quality layers for the calibration imagery from the end of June / beginning of July. (B) Regres-

sion results (SVM) for the single quality layers for the transfer imagery from beginning of June.

Product RS data Ref. (n) Pred. (n) R² RMSD nRMSE (%) Interc. Sign. (b = 0) Slope Sign. (a = 1)

(A)

Calluna cover Multisp. & SAR 400 34 0.94 13.92 8.3 �1.82 <0.001 1.15 <0.001

Mean height SAR 160 14 0.71 8.49 10.9 �2.52 0.057 1.14 <0.001

SD height SAR 160 14 0.70 6.00 10.8 �5.65 <0.001 1.26 <0.001

Key Species Multisp. 85 20 0.77 0.20 11.4 �0.06 0.068 1.12 <0.001

(B)

Calluna cover Multisp. & SAR 400 34 0.95 13.11 7.8 �1.35 0.001 1.13 <0.001

Mean height SAR 160 14 0.71 8.68 11.1 �3.16 0.023 1.17 <0.001

SD height SAR 160 14 0.60 6.69 12.1 �2.97 0.061 1.14 <0.001

Key Species Multisp. 85 20 0.76 0.20 11.7 �0.05 0.126 1.11 <0.001
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2012) might be worth to be examined as an alternative

approach to estimate Calluna cover. However, we assume

that the reported inaccuracies in the Calluna cover layer do

not affect our classification result as the habitat mask sum-

marizes zones with values above 30%. Differing from the

approach of Schmidt et al. (2017b), who included Calluna

cover into the quality assessment, we used the Calluna layer

only for identifying the target habitat; habitat quality

assessment was based on stand structure and co-occurring

vegetation. This procedure is also more similar to what is

described in the field guidelines.

The patterns represented by the species index were in

agreement with what we expected from our field surveys.

The depicted gradient from the species-rich calcareous

Figure 5. The habitat state of Calluna heathland is visualized via an RGB-representation (A) in two subareas of the study site (Fig. 1D). A habitat

mask was applied based on Calluna cover ratios above 30%. Pixel colors correspond to the three remote sensing proxies Calluna coverage (red),

stand structure (green; represented by the coefficient of variation between standard deviation and mean vegetation height) and co-occurring

vegetation (blue). Reddish colors indicate mono Calluna stands. Green pixels feature a high structural diversity with low Calluna coverage and a

low species index. This mainly applies to species poor zones influenced by grass encroachment. Less structured meadows that are home to many

characteristic species are shown in blue. Although they lack sufficient Calluna coverage (<30%), they appear as fringes of Calluna heathland in

the map due to the smoothing of the habitat mask. Apart from that, transitional zones between these three extremes can be found, appearing in

yellow, cyan and pink. Areas where there is co-occurrence of high scores of the three layers appear in brighter colors. Thresholds from expert

judgment were applied to the three quality layers in a rule-based procedure for classifying the conservation status per pixel (B). As Calluna

coverage does not directly affect the conservation status classification, there might be cases where a shift between two classes can be seen in (B)

that is not apparent in (A).
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grassland in the south of the study area to the degraded

heathland in the north, where characteristic species only

occur in small numbers, have also been observed in the pre-

vious work of Schmidt et al. (2017a) who mapped plant

functional traits using airborne hyperspectral data.

Although the index does not directly tell us whether ade-

quate numbers of characteristic species are present, it pro-

vides information on the probability of their occurrence. A

high species index indicates that the pixel is more likely to

represent good habitat conditions in terms of co-occurring

vegetation (Neumann et al. 2015). The species index was

mainly useful for separating the habitat quality class ‘A’ from

both other classes; classes ‘B’ and ‘C’ often featured similar

scores. Stand structure, on the other hand, is crucial for sep-

arating ‘B’ and ‘C’. It is apparent that there is often no grad-

ual change from ‘A’ over ‘B’ to ‘C’, but a direct transition

from ‘A’ to ‘C’. For example, peripheral zones (‘A’) are

directly neighboring overaged Calluna patches (‘C’).

Modeling the mean vegetation height delivered sound

results. The corresponding quality layer allowed for iden-

tifying patches of old and tall Calluna plants as well as

meadows of grasses and herbs in between. The standard

deviation of the vegetation height was meaningful when

used in combination with the mean height (as the coeffi-

cient of variation). Considered individually, the patterns

were rather inconclusive. The combination of both height

layers served as good indicator of the occurrence of Cal-

luna growth phases.

Transfer of the decision tree between
calibration and test dataset

When applying the decision tree to the test dataset, the fit

decreased to 73% (calibration reference = 76%). Studies

that examined the transferability of decision tree classifica-

tions can rarely be found (Kalantar et al. 2017), and, if any,

with respect to object-based analysis (Hofmann et al. 2011).

Modeling results of the quality layers were comparable

between both remote sensing datasets. Here, we are in

agreement with Feilhauer and Schmidtlein (2011) who

reported minor deviations in model accuracies for differ-

ent dates when examining similar habitats. Thus, short-

term variation in image attributes due to slight changes

in phenology probably had a minor impact on model

performance. However, the optical-based species index

representation most likely caused the switch from class

‘C’ to ‘A’ in larger patches in the upper part of Fig-

ure 6C. The deviation of one class is partly attributed to

the poor performance of modeling the standard deviation

of vegetation height for the transfer dataset.

To achieve more robust results, using multitemporal

remote sensing information (Schuster et al. 2011; Buck

et al. 2013; Zlinszky et al. 2015) and also the inclusion of

multiseasonal data (Stenzel et al. 2014; Mack et al. 2016;

Tarantino et al. 2016) could be examined in future work.

Applicability to Natura 2000 monitoring
scheme

The general modeling scheme shows the possibility to

monitor heathland habitats based on the mapping guide-

line of the Habitats Directive and Copernicus products.

However, since the Natura 2000 guidelines have not been

developed considering the potential application of remote

sensing data, the underlying parameters have to be

slightly adapted for this use (Schmidt et al. 2017b).

From a conservationist’s perspective, an object-based

monitoring product might be preferred, since the report-

ing obligations often require clear patch-wise representa-

tions. However, converting pixel-wise to object-based

results is connected to a loss of information due to gener-

alization. Especially if extreme conservation status classes

“favorable” and “bad” occur in close proximity, condi-

tions might average in the intermediate class (“inade-

quate”). We believe that the focus on larger patches in

current conservation guidelines is borne from a limitation

of field-based approaches that need to refer to such units

because continuous mapping in the field is difficult. In

remote sensing-based approaches, the original spatial

information can be reported without loss. Hence,

although an aggregation of pixels is feasible we recom-

mend to report the original pixel information when

working with remote sensing data.

The overall fit of the result of 76% seems to indicate

that there is room for improvement regarding the accu-

racy. Although this is certainly the case, one has to keep

in mind the challenge of differentiating the conservation

status of heathland, a task that is challenging even in a

field-based study. According to Nieland et al. (2015), the

reasons in mismatching field-based data and remote sens-

ing data (besides methodological uncertainties and field-

based mapping errors) are given in an improper

Table 3. Confusion matrix for assessing the fit of the conservation

status map.

Classified Data

Reference Data

Total

User’s

accuracyA B C

A 49 10 9 68 0.72

B 2 22 5 28 0.79

C 6 6 49 61 0.80

Total 56 38 63 158

Producer’s

Accuracy

0.88 0.58 0.78

Overall fit = 76%, Kappa = 0.64. Correct classifications are indicated

by bold values.
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scale-match between field data and the resolution of the

remotely sensed data (Small 2001). This can either pro-

duce smoothing effects or a high intra-class variation.

Moreover, the field-based sampling strategies, even when

intentionally aligned to the pixel-size of the sensor, do

not fit perfectly to the pre-defined classes of the conserva-

tion status. This is less obvious, when we observe homo-

geneous classes with large spatial coverage. If the classes

are spatially heterogeneous and spectrally similar, the task

becomes more challenging. For these reasons, we assume

the results as acceptable in terms of practical use for nat-

ure conservation purposes.

Differences to related studies

Neumann et al. (2015) were able to map probabilities for

both habitat types and conservation status classes by

using a species-based ordination space. In this study, con-

servation status probabilities were not translated into dis-

crete classes. However, this would be easy to realize by

means of thresholds. The applicability of rule-based

approaches has been demonstrated in other studies (e.g.

Villa et al. 2015; Zlinszky et al. 2015). Haest et al. (2017)

also applied knowledge-based rule sets for the quality

assessment of Natura 2000 heathland habitats. In their

Figure 6. Conservation status map derived with the imagery from end of June / beginning of July (A; same as Fig. 5B) in comparison to the

result from the dataset acquired around 3 weeks before (B). Deviation between both classification maps is shown in (C). An agreement of 60%

between both results can be observed. Pixels with confusions between neighboring classes and extreme classes accounted for 23% and 17%,

respectively. The habitat mask that was developed based on the calibration dataset from end of June was applied to all three maps to enhance

comparability.
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study, they suggested a patch-wise mapping of conserva-

tion status indicators, such as cover of encroaching

grasses and trees. Subsequently, they assigned a status

class (“favorable” or “unfavorable”) to each indicator by

applying exact thresholds from the field guidelines. They

conclude that the application of thresholds upon habitat

quality indicators represents a sound approximation of a

rather complex assessment procedure that monitoring

experts are accustomed to.

Similarly, Regan et al. (2004) formalized experts’ deci-

sion process; in this case for conservation status assess-

ments of single species. They explain that subjective

assessments are often inconsistent and can hardly be

repeated as they are influenced by, i.a., personal judg-

ments and systematic biases (Tversky and Kahneman

1982; Plous 1993; Burgman 2001) and because the under-

lying reasoning is almost impossible to visualize (Keith

and Ilowski 1999; Rush and Roy 2001). It is concluded

that capturing the logical ordering of information,

assumptions and reasoning, and transferring them into

explicit rules allows for critical evaluation, refinement and

reapplications. We consider our approach to be in agree-

ment with this statement as thresholds to derive the con-

servation status can be revised after-the-fact, whereas this

is hardly possible with field-based assessments.

The presented approach is in our perspective not

restricted to Natura 2000 shrublands, but transferable to

similar ecosystems characterized by a dominant shrub

layer featuring few (or even one) dominant species. For

example, Xian et al. (2015) also mapped single quality

layers for heathlike landscapes in the USA, which they

called “shrubland components”, such as coverage of

shrubs and herbaceous vegetation as well as vegetation

height attributes. However, these products were in a

much larger geographic extent and no quality assessment

was included.

Conclusion

In this study, we transferred rule-based field guidelines

for quality assessment of dwarf shrub heathland to remote

sensing-based quality layers (describing vegetation proper-

ties) using fused spaceborne Sentinel-1 SAR and multi-

spectral Sentinel-2 remote sensing data.

The results indicate that the conservation status assess-

ment by means of the three modeled quality layers does

reflect field recorded habitat status information. Accord-

ing to our findings, co-occurring vegetation (besides the

key species Calluna) is crucial for separating pixels repre-

senting a “favorable” conservation status from those rep-

resenting an “inadequate” or “bad” conservation status,

while the latter classes could be distinguished by means of

the stand structure.

We recommend that future remote sensing-based map-

pings of habitat quality should more frequently consider

including SAR data as it can deliver complementary infor-

mation to optical imagery and is now freely and regularly

available over the European Union’s Copernicus system.

In our study, the strong orientation toward the field

guidelines was thought to help bridging the often men-

tioned gap between applied conservation and the remote

sensing community that mainly exists due to communica-

tion problems (Skidmore et al. 2015). Our approach

could be used for a quick wall-to-wall characterization of

a conservation area and thus provides a useful tool for

site managers and decision makers. It still relies on field

work (for model calibration) but the process of mapping

is, in comparison to field work, less prone to biases and

more capable to depict spatial mosaics.

We conclude that transferring operational field-based

assessments into remote sensing approaches can be realized

and is a promising option to avoid the development of

completely new approaches. Existing assessment guidelines

could be re-formulated in joint endeavors between field

scientists and remote sensing experts in order to improve

their compatibility with remotely sensed data. The essential

biodiversity variables (EBVs; Pettorelli et al. 2016; Pereira

et al. 2013) could play a key role in this respect.
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