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ABSTRACT

 Vegetation phenology results in seasonal changes in spectral reflectance. Phenology 

is often underutilized in hyperspectral vegetation mapping due to a lack of repeat imagery of 

the same region over time. Vegetation classification at the species level could benefit from 

introducing phenological information to spectral libraries. New missions, such as the proposed 

Hysperspectral Infrared Imager (HyspIRI) mission, could potentially provide easy access to multi-

temporal datasets. The availability of these data will require new approaches to building spectral 

libraries for species classification. This paper explores the use of Iterative Endmember Selection 

(IES), an automated method for selecting endmembers from an image-derived spectral library, to 

create single-date and multitemporal endmember libraries. Multiple Endmember Spectral Mixture 

Analysis (MESMA) was used to classify vegetation species and land cover, applying single-date 

and multitemporal libraries to Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data 

acquired on five dates in the same year. Three applications of endmember libraries were tested 

for their ability to classify single date AVIRIS images: 1) single-date libraries that matched the 

image date (same-date libraries), 2) single-date libraries that were not matched to the image 

date (mismatched-date libraries), and 3) a combined multitemporal library containing spectra 

from all dates applied to all image dates. Results indicate that multitemporal, seasonally-mixed 

spectral libraries achieved similar overall classification accuracy compared to single-date 

libraries, and in some cases, resulted in improved classification accuracy. Several species had 

increased producer’s or user accuracy using a multitemporal library, while others had reduced 

accuracy compared to same-date classifications. The image dates of selected endmembers 

from the multitemporal library were examined to determine if this information could improve our 

understanding of phenological spectral differences for specific species. Results demonstrate 

that multitemporal endmember libraries may provide a more robust alternative to single-date 

endmember libraries for mapping vegetation species across time and space. Multitemporal 

endmember libraries could provide a means for mapping species in data where phenology, 

climatic variability, or spatial gradients are not known in advance or may not be easily accounted 

for by endmembers from a single date. 
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1. INTRODUCTION

One of the challenges of classifying vegetation using remote sensing techniques is 

the changing spectral response of vegetation due to phenology. Phenology is the seasonal 

change in biological life as a result of changing environmental conditions (Lieth, 1974). Spectral 

libraries, while readily applied to features that tend not to change greatly over time (e.g., geologic 

features, urban materials), are more difficult to apply to vegetation because of seasonal and 

climate-induced changes. Several studies have found that phenology plays an important role 

in vegetation classification and suggest careful consideration of phenology in timing of image 

acquisition and spectral collection to maximize separability between species (Cole, McMorrow, & 

Evans, 2014; Dennison & Roberts, 2003a; Dong et al., 2013; Peña-Barragán, López-Granados, 

Jurado-Expósito, & García-Torres, 2006; Somers & Asner, 2013). It may be possible, through 

the use of a large multitemporal combined spectral library, to better identify vegetation at the 

species level regardless of the particular seasonality of a given image. This study considers the 

use of a combined hyperspectral multitemporal endmember library to assess single-date image 

classification capabilities. 

The phenological cycle of vegetation contains useful information about broad plant 

species composition and vegetation health. Species composition, phenoregion modeling, 

and plant functional type classification can be reasonably carried out using multitemporal 

vegetation indices from coarse resolution sensors such as the Moderate Resolution Imaging 

Spectroradiometer (MODIS) (Potgieter, Apan, Dunn, & Hammer, 2007; Wardlow & Egbert, 

2010; Zhang, Zhang, & Xu, 2012). Hyperspectral imagery has been successfully used to map 

vegetation at the species level, including tree taxa in the Amazon Basin (Papeş, Tupayachi, 

Martínez, Peterson, & Powell, 2010), invasive species in the California Delta ecosystem (Hestir 

et al., 2008), seven tropical tree species in Costa Rica (Clark, Roberts, & Clark, 2005) and 

several species in southern California chaparral (Dennison & Roberts, 2003a; Roberts et al., 

1998). Hyperspectral datasets have also been used to determine spectral separability between 

vegetation types in Hawaiian forests (Asner, Jones, Martin, Knapp, & Hughes, 2008) and coastal 

wetlands (Schmidt & Skidmore, 2003). Relatively little research has been conducted on the 
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capability of hyperspectral multitemporal imagery to identify vegetation at the species level, 

primarily due to a lack of repeated sampling of large areas (Dennison & Roberts, 2003a). 

This study used a combined multitemporal library created from joining five single-date, 

image-derived spectral libraries to assess the potential for species mapping compared to single-

date spectral libraries. Endmembers, “pure” spectra used to represent surface materials, were 

chosen for inclusion in the multitemporal and single-date endmember libraries using Iterative 

Endmember Selection (IES). Images were then classified using Multiple Endmember Spectral 

Mixture Analysis (MESMA). Multiple Airborne Visible Infrared Imaging Spectrometer (AVIRIS) 

image dates covering the same area reflect different phenological conditions within a single year. 

Improvements in vegetation identification and classification accuracy from high spectral and 

temporal resolution sensors could facilitate the study of vegetation changes caused by climate 

variability and disturbance. Repeat hyperspectral data could also improve the monitoring of 

invasive species, which have sometimes been found to demonstrate a different phenology than 

native vegetation (Somers & Asner, 2013). 



2. BACKGROUND

2.1 Hyperspectral Data

Multispectral remote sensing data typically contain a small number of wide spectral bands. 

For example, Landsat (5) Thematic Mapper (TM) has six reflected solar bands with bandwidths 

ranging from 60 nm to over 200 nm (Jensen, 2006). Data from hyperspectral sensors are 

capable of showing discrete responses in narrow spectral bandwidths (typically around 10 nm), 

with hundreds of contiguous bands. AVIRIS produces data with 224 separate bands, 10 nm 

bandwidth, and covers wavelengths ranging approximately from 400 nm to 2,500 nm (Vane 

et al., 1993). Hyperspectral sensors are better suited for vegetation identification compared to 

multispectral sensors because spectral differences between many species are too subtle to 

discern in multispectral imagery (Asner et al., 2008; López-Granados, Jurado-Expósito, Peña-

Barragan, & García-Torres, 2006). 

Multispectral and hyperspectral comparisons have shown that hyperspectral data 

have several advantages over broadband multispectral data. Asner and Heidebrecht (2002) 

established that hyperspectral sensors such as AVIRIS are better able to separate photosynthetic 

vegetation (PV), non-photosynthetic vegetation (NPV), and bare soil in shrub and grassland 

areas compared to Landsat TM, MODIS, and ASTER broadband sensors, due to the increased 

spectral fidelity of endmembers in the 2.0 to 2.3 µm range. Lee, Cohen, Kennedy, Maiersperger, 

and Gower (2004) also found improvements in AVIRIS hyperspectral analyses of leaf area 

index in four different biomes because of the narrow band advantages of hyperspectral data 

in red-edge regions that broadband sensors do not detect. With hyperspectral data, spectral 

separability between plant species is often a result of a combination of multiple bands and 

spectral regions (Asner et al., 2008) rather than any single spectral band. Hyperion hyperspectral 

imagery has been used to successfully classify five different tree taxa in the Amazon Basin by 

using 25 narrow spectral bands (Papeş et al., 2010). Hyperspectral Digital Imagery Collection 

Experiment (HyDICE) data have been found capable of classifying seven tropical rain forest tree 

species at leaf and crown scales with accuracies up to 100% (Clark et al., 2005). Hyperspectral 

field spectroscopy carried out by Schmidt and Skidmore (2003) showed promise in differentiating 
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between 27 different types of saltmarsh vegetation types, with statistically significant differences 

between spectra for a majority of vegetation types. Dennison and Roberts (2003b), using 

MESMA and endmember average root mean square error, were able to reach species 

classification accuracies of 88.6% from AVIRIS imagery. Hyperspectral imagery is increasingly 

used to map invasive species in order to facilitate early detection and respond to threats to native 

vegetation. Asner et al. (2008) found that invasive species in Hawaii tended to have significant 

differences in spectral response due to differences in leaf pigment, nutrient, structure, and leaf 

area compared to native vegetation. Dehaan, Louis, Wilson, Hall, and Rumbachs (2007) found 

that classification accuracies of 92% are possible for identifying the Australian invasive shrub, 

Rubus fruticosus, in open canopies using hyperspectral imagery and image derived spectra.

Much research has been carried out to explore the limits of current hyperspectral 

capabilities for identifying vegetation at the species level, yet some studies have proposed 

that phenology may be a more important component than spectral resolution in classifying 

species. Hestir et al. (2008) found that the life history of vegetation species under study was an 

important component in classification, and that identification based on known flowering, fruiting, 

and senescing timing of certain species improved classification accuracy. Hyperspectral data, 

while an important component in species-level spectral separability, may not be as effective as 

broadband multitemporal data for classifying land cover in forested areas. A study by Mannel 

and Price (2012) compared land cover classification accuracy between summer AVIRIS and 

two season (spring/fall) Landsat TM imagery using decision tree classification for Black Hills, 

South Dakota. The study found that, while summer AVIRIS data provided the best single date 

accuracy (85%), accuracies for the combined multitemporal Landsat TM dataset were higher 

(89%), despite its lack of spectral resolution. Mannel and Price (2012) concluded that seasonality 

may be a more important factor for identifying land cover types than hyperspectral data alone. 

Hyperspectral data with seasonal repeat coverage, such as what the proposed Hyperspectral 

Infrared Imager (HyspIRI) mission may one day offer, could be a potent method for classifying 

land cover and vegetation types.

2.2 Spectral Mixture Analysis (SMA) and Multiple Endmember  
SMA (MESMA)

All pixels in remotely sensed data will have some amount of spectral mixing (Somers, 

Asner, Tits, & Coppin, 2011). Spectral mixing occurs when the spatial resolution of a sensor 

is coarse enough that differing surface materials appear within the same pixel (Keshava & 
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Mustard, 2002). At both coarse and fine spatial scales, spectral mixing of vegetation occurs 

when the spectral components, which comprise a pixel, are mixed from different sources, such 

as leaf, branch, and ground surface spectra. At coarse resolutions, multiple species as well as 

ground cover may be present in a single pixel. Spectral Mixture Analysis (SMA) is a method 

for analyzing and separating out the constituent components of a pixel by determining the 

fraction of endmembers which contribute to the spectral signature in a given pixel (Keshava & 

Mustard, 2002). Endmembers are representative spectra used as proxies to identify materials 

on the ground (Tompkins, Mustard, Pieters, & Forsyth, 1997), and are sometimes referred to 

as “pure” spectra of the reference material used for SMA. Endmembers can be selected from 

imagery (Somers, Zortea, Plaza, & Asner, 2012; Youngentob et al., 2011), collected from field 

spectroscopy (Okin, Clarke, & Lewis, 2013), extracted from laboratory measurements (Roberts, 

Smith, & Adams, 1993), or simulated with radiative transfer models (Sonnentag et al., 2007).  

SMA can be leveraged to model spectral variability in an image to identify subpixel 

information from multispectral and hyperspectral imagery (Tompkins et al., 1997). Linear SMA 

models assume that the light reflecting off materials within a pixel only interact with a single 

material and that the resulting mixture can be modeled as a linear sum of each endmember 

weighted by its fractional cover (Borel & Gerstl, 1994; Keshava & Mustard, 2002; Ray & Murray, 

1996). Nonlinear SMA models assume spatial associations which are intimately associated, 

and that light interactions will typically occur with more than one component before returning to 

the sensor (Keshava & Mustard, 2002; Ray & Murray, 1996; Somers et al., 2011). In linear SMA 

spectra are modeled through summation of endmembers which are weighted by the fractional 

endmember components (Equation 1) required to produce the spectral mixture observed 

(Adams, Smith, & Gillespie, 1993): 

         

where         is the reflectance of a pixel and is the sum of the reflectance of each endmember  

        within a pixel, where N is the number of endmembers, multiplied by its fractional cover if . 

The unmodeled portions of the spectrum are expressed in the residual term,      . Root mean 

square error (RMSE) is calculated to determine the model fit (Equation 2):

 

  


i

N

i
if *'

1

(Equation 1)
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where B is the number of bands and k is the band number. 

The limitations of SMA include fractional errors caused by incorrect type or number of 

endmembers used to unmix a class, and failure to account for spectral variability in endmembers 

of the same class (Roth, Dennison, & Roberts, 2012). MESMA is a spectral mixing model which 

allows endmembers to vary in type and number on a per pixel basis (Dennison & Roberts, 

2003b; Roberts et al., 1998). MESMA improves on SMA by unmixing images with the best fit 

combinations of endmembers for each pixel. MESMA can also require that modeled pixels 

meet minimum spectral fit, fraction, and residual constraints (Roberts et al., 1998). MESMA-

based spectral unmixing methods have been used to successfully study coal mining effects in 

different ecosystems (Fernández-Manso, Quintano, & Roberts, 2012), assess semi-arid shrub, 

heathlands, and scrub vegetation (Delalieux et al., 2012; Hamada, Stow, Roberts, Franklin, & 

Kyriakidis, 2012; Liao, Zhang, & Liu, 2012; Roberts et al., 1998; Thorp, French, & Rango, 2013), 

map urban and impervious areas (Franke, Roberts, Halligan, & Menz, 2009; Powell, Roberts, 

Dennison, & Hess, 2007; Roberts, Quattrochi, Hulley, Hook, & Green, 2012), research coastal 

marshes and wetlands (Li, Ustin, & Lay, 2005; Michishita, Gong, & Xu, 2012; Rosso, Ustin, 

& Hastings, 2005), and monitor invasive species (Somers & Asner, 2012, 2013). Using a two 

endmember model (one shade endmember and one nonshade endmember), MESMA can be 

used as a classification method that accounts for variations in brightness between endmembers 

and pixels. 

2.3 Iterative Endmember Selection (IES)

Success in linear spectral unmixing methods relies on the selection of endmembers 

that best represent the physical materials on the surface, and which encompass the spectral 

variability of those materials (Keshava & Mustard, 2002). The results from MESMA classification 

schemes are strongly dependent on the endmembers chosen for the classification (Dennison & 

Roberts, 2003a; Somers et al., 2011). Methods for determining MESMA endmembers both for 

use in single date classification and for differing phenologies have been analyzed and compared 

to deduce the most effective method for various situations (Dennison, Halligan, & Roberts, 2004; 

(Equation 2)

B
RMSE

B

k
i

 1

2)( 
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Dennison & Roberts, 2003a, 2003b; Roth et al., 2012; Somers et al., 2011; Somers et al., 2012). 

Iterative Endmember Selection (IES) is an automated technique developed to facilitate 

quantitatively selected, representative endmembers for image classification using two 

endmember MESMA (Roth et al., 2012; Schaaf, Dennison, Fryer, Roth, & Roberts, 2011). IES 

uses a RMSE threshold to identify the endmembers that best model the spectra in a training 

library. Accuracy is then determined using Kappa (Cohen, 1960), a discrete multivariate statistical 

technique for assessing concordance in categorical data (Congalton, 1991). IES first selects 

a single endmember with the highest initial Kappa value from a training library. The remaining 

endmembers are then added and subtracted from the initial endmember to identify the set of 

endmembers which further increases Kappa values (Roth et al., 2012). The final result from 

IES is a representative endmember library that is optimized from the training library (Schaaf et 

al., 2011). Since IES selects only those endmembers which increase Kappa within a training 

library, within-class accuracy is not optimized and endmembers for certain classes may not be 

represented in the final endmember library if the addition of that class reduces the overall Kappa 

value. Methods for forcing the selection of classes in IES exist (Roth et al., 2012), but since the 

overall goal of IES is to maximize classification accuracy with MESMA (Schaaf et al., 2011), the 

tradeoff of not representing some classes may be acceptable.



3. METHODS

3.1 Study Area

The study area encompassed the Santa Barbara, California, USA coast, the Santa Ynez 

Mountain Range, and inland areas extending across the Santa Ynez Valley to Zaca Peak in Los 

Padres National Forest (Figure 1). The study area spanned an elevation gradient from sea level 

to a peak of 1,311 m. Climate for this region is Mediterranean type with dry warm summers and 

moist cool winters. Rainfall in Santa Barbara averages 472 mm, but is strongly dependent on 

elevation, with higher rainfall in the Santa Ynez Mountains and decreased rainfall in the lee of this 

range. This topographically diverse region supports a mosaic of oak woodland, grassland, and 

shrubland consisting of evergreen chaparral (Adenostoma fasciculatum, Arctostaphylos glauca/

glandulosa, Ceonuthus spp., and Quercus berberidifolia) and coastal sage scrub (Franklin, 

Regan, & Syphard, 2014). Coastal sage scrub is characterized by significant vegetation diversity, 

dominated by drought-deciduous shrubs (Artemisia californica and Salvia spp.) mixed with 

succulent and evergreen species, and a herbaceous understory (Riordan & Rundel, 2014). 

Quercus agrifolia dominates in oak woodlands while Platanus racemosa, Umbellularia californica, 

and Salix spp. comprise the majority of riparian zones and canyon drainages. 

3.2 Image Acquisition

Imagery used for this project was a time-series of AVIRIS data consisting of five separate 

dates in 2009: 10 Mar, 30 Mar, 8 May, 17 Jun, and 26 Aug. Images were separated into separate 

flight paths of which there were three per date (Table 1). A North to South swath (Figure 1.f1) 

ranged from Zaca Peak to the coastline, an East to West swath (Figure 1.f2) covered the inland 

portion of the Santa Ynez Mountains, and a second East to West swath (Figure 1.f3) covered 

Santa Barbara and the remaining coastline (Figure 1). There were a total of fifteen images 

acquired on five dates (Table 1). Images were masked to limit analysis to overlapping spatial 

extents that had data on every date. Image data processing and initial orthorectification were 

done by the NASA Jet Propulsion Laboratory; 50 bands with poor signal-to-noise ratio and strong 

water vapor absorptions were removed and the remaining 174 bands were used in the analysis. 
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3.3 Ground Reference Data

Reference data used for this project are described by Roth et al. (2012) and were collected 

during field campaigns in 2003, 2009, and 2012. Species dominance was estimated using 

methods adapted from Meentemeyer and Moody (2000), where vegetation patches having 

75% or greater single-species composition were observed and recorded using a spotting 

scope. Orchards, irrigated grass, soil, rock, and Mediterranean annual grasses and forbs were 

digitized from 1m orthoimagery. The reference data include 299 polygons with 21 unique classes 

(Table 2). Thirteen polygons were sampled twice where flight lines overlapped for classes 

Mediterranean annual grasses and forbs (MAGF), Adenostoma fasciculatum (ADFA), Ceanothus 

spinosus (CESP), Citrus spp. (CISP), Rock (ROCK), and Persea americana (PEAM), creating a 

total of 312 reference polygons.

3.4 Spectral Library Development

Polygon data and metadata were processed in VIPER Tools 1.5 (http://www.vipertools.

org/). VIPER Tools is an IDL-based ENVI (Exelis Visual Information Solutions) extension which 

is used to create and edit spectral libraries extracted from imagery, calculate endmember 

RMSE values modeling all other spectra in a spectral library (stored as a “square array”), and 

execute MESMA classification. VIPER Tools code was run-time optimized and modified to take 

advantage of multicore processors, permitting processing of libraries with many thousands of 

spectra. A single set of georeferenced polygons was used for all images and all image dates 

(Table 2); the polygons were checked for consistency between image dates to ensure that land 

cover had not changed between dates. Spectra were extracted from each image separately using 

the reference polygons, and then combined into five single-date reference libraries. The single-

date reference libraries were individually tested for duplicate spectra caused by orthorectification 

and all duplicates were removed from each reference library. March and May images had small 

areas with corrupted spectra in the near infrared region. These spectra were also removed from 

the reference libraries for these dates. 

The single-date reference libraries were divided into five training and five validation 

libraries using a random sampling algorithm proposed by Roth et al. (2012), which extracts a 

set percentage of randomly selected spectra from each polygon for use as a training library. 

The remaining nontraining spectra comprise the validation library and are used to assess 

classification accuracy. Given different pixel sizes between image dates (Table 1), the number of 
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useable spectra was considerably different for March images. Approximately 50% of reference 

spectra were randomly selected for training libraries from the March dates (Table 3). Extraction 

percentages were then adjusted downward for the remaining dates to maintain similarly sized 

training libraries across all dates (Table 3). The single-date training libraries were combined into 

a large multitemporal training library consisting of 49,427 spectra.

3.5 Iterative Endmember Selection (IES)

For the multitemporal training library, and for each single-date training library, a square 

array was created using VIPER Tools. A square array is an analysis tool that stores the individual 

RMSE (Equation 2) values for each endmember in a library modeled against all other spectra in 

the library (Dennison & Roberts, 2003b). Endmembers with a lower RMSE in the square array 

are more similar, while endmembers with higher RMSE are more dissimilar. The square array is 

used to calculate fit metrics in IES. Endmembers which model the fewest spectra of a different 

class produce higher Kappa statistic values and tend to be selected for inclusion in an IES 

spectral library. 

Past studies (Dennison & Roberts, 2003a, 2003b; Roberts et al., 1998; Roth et al., 2012; 

Schaaf et al., 2011) have used an RMSE threshold of 0.025 to determine if an endmember 

correctly modeled other spectra in training libraries. If RMSE exceeds this threshold, the 

spectrum is labeled as unmodeled. Various RMSE thresholds were tested to determine the 

overall classification accuracy for the training libraries. At a 0.025 RMSE threshold the average 

overall classification accuracy ranged between 50 and 60%. An RMSE threshold of 0.01 

provided a higher overall accuracy of 68 to 76%, and was used for this analysis. There was a 

tradeoff in selecting a more stringent RMSE threshold: the size of the output IES endmember 

library increased as RMSE threshold was decreased, since each selected endmember modeled 

fewer spectra in the training library. The sizes of the input reference libraries and final IES 

endmember libraries are shown in Table 3. 

3.6 Multiple Endmember Spectral Mixture Analysis (MESMA)

All image swaths were classified individually with MESMA via VIPER Tools using the IES 

derived endmember libraries. MESMA classification used the single-date endmember libraries 

and the combined multitemporal endmember library applied to each image date. MESMA was 

run with fractional constraints for the minimum allowable endmember fraction (-0.05), maximum 
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allowable endmember fraction (1.05), maximum allowable shade fraction (0.80), and at two 

different RMSE constraints (0.01 and none). All constraint values except the RMSE constraint 

were based on values used in previous studies (Li et al., 2005; Roth et al., 2012; Schaaf et al., 

2011; Thorp et al., 2013). Using no RMSE constraint it is possible to measure the number of 

unclassified pixels which would otherwise be classified correctly if the RMSE constraint had been 

met.

Results of the classifications were tested using the independent validation libraries 

unique to each date. A confusion matrix, also called an error matrix, was calculated and used to 

determine user accuracy and producer’s accuracy. User accuracy shows errors of commission 

and producer’s accuracy shows errors of omission (Janssen & van der Wel, 1994). Errors of 

omission are reference pixels which should have been classified a particular class but were 

not assigned that class (Janssen & van der Wel, 1994). Errors of commission are errors where 

classified pixels are classified wrongly (Janssen & van der Wel, 1994). 

For images classified using the multitemporal endmember library, the date of the 

endmember used to model each validation pixel was examined. Correctly classified pixels, 

based on the validation data, were extracted from the dataset and plotted separately from 

misclassified pixels. In order to assess RMSE results of different endmember dates for each 

multitemporal classification, RMSE results from MESMA were linked with each endmember date 

and class. Plots were created using ggplot2, an extension in R—a statistical computing software 

environment (http://www.r-project.org/), and Microsoft Excel. Two species were singled out for 

in-depth date analysis, one tree species (Quercus douglasii; QUDO), and one shrub species 

(Adenostoma fasciculatum; ADFA). QUDO occurs in both savannah and woodland habitats, is 

drought-tolerant, and active into dry summers (Kueppers, Snyder, Sloan, Zavaleta, & Fulfrost, 

2005). ADFA creates an overlapping branching canopy growing from March to June (Minnich, 

1983). In late spring to early summer it develops white flowers, which turn brown and are retained 

through the summer. ADFA is also prone to  drying in summer and fall (Lippitt, Stow, O’Leary, & 

Franklin, 2013). QUDO should have a more stable spectral profile in summer and fall, whereas 

ADFA should have more phenological variability in reflectance. 
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Figure 1. Study region near Santa Barbara, California, USA.  Study region is outlined by a black 
rectangle. True color composites of the AVIRIS imagery collected 26 Aug 2009 are shown. Image 
swaths have been reduced to overlapping spatial extents between all dates. Individual flight paths 
common to all dates are bordered by colors showing image area and are denoted by f1, f2, and 
f3. The subregion “f1-sub”—used for visualization in subsequent figures—was taken from images 
in swath “f1.” 

0 10 205
km

f3f3

f2f2

f1f1f1-subf1-sub

1km

N

Image Date Flightline Swath Pixel Size (m) Solar Zenith (°) Solar Azimuth (°)
10 Mar 090310r07 f1 16.0 43.2 210.9
10 Mar 090310r08 f2 15.7 45.3 216.8
10 Mar 090310r09 f3 16.4 47.3 221.5
30 Mar 090330r07 f1 16.0 31.0 172.4
30 Mar 090330r09 f2 15.8 31.4 194.2
30 Mar 090330r08 f3 16.4 30.6 181.9
8 May 090508r11 f1 11.1 17.6 183.4
8 May 090508r10 f2 10.9 17.8 166.7
8 May 090508r12 f3 11.5 18.4 201.6
17 Jun 090617r07 f1 11.2 14.2 220.4
17 Jun 090617r06 f2 11.1 12.2 205.2
17 Jun 090617r08 f3 11.5 17.9 236.1
26 Aug 090826r08 f1 11.3 27.7 212.0
26 Aug 090826r09 f2 11.2 30.2 221.6
26 Aug 090826r10 f3 11.7 32.8 228.5

Table 1. Image metadata. Fifteen AVIRIS flightlines acquired in 2009 and used for the analysis. 
Swaths labeled “f1,” “f2,” and “f3” correspond to the swaths shown in Figure 1. 
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Class Abbreviation NP km2

Adenostoma fasciculatum ADFA 28 0.338
Artemisia californica-Salvia leucophylla ARCA-SALE 14 0.275
Arctostaphylos glauca/glandulosa ARGL 15 0.274
Baccharis pilularis BAPI 13 0.055
Brassica nigra BRNI 13 0.378
Ceanothus cuneatus CECU 13 0.110
Ceanothus megacarpus CEME 20 0.307
Ceanothus spinosus CESP 13 0.163
Citrus spp. CISP 15 0.110
Eriogonum fasciculatum ERFA 13 0.277
Eucalyptus spp. EUSP 15 0.270
Irrigated Grass (mixed species) IRGR 14 0.136
Mediterranean annual grasses and forbs MAGF 12 0.604
Persea americana PEAM 18 0.152
Pinus sabiniana PISA 15 0.205
Platanus racemosa PLRA 14 0.299
Quercus agrifolia QUAG 5 0.062
Quercus douglasii QUDO 17 0.313
Rock ROCK 12 0.062
Soil SOIL 11 0.128
Umbellularia californica UMCA 9 0.095
Total Polygons/Area 299 4.612

Table 2. Class names and abbreviations. Land cover/species classes, abbreviated name, number 
of polygons in each class (NP), and the total area in km2 covered by the polygons for each 
class. Numbers of pixels for each class vary by date depending on pixel size (Table 1). Thirteen 
polygons sampled twice due to overlap between f1 and f2 are not included in totals. 

Table 3. Spectra and kappa results. Image acquisition dates, the total size of the reference library, 
and the number of spectra divided between training and validation libraries. The final number of 
spectra chosen by IES for endmember libraries (IES EM) run with an RMSE threshold of 0.01, 
and the resulting Kappa values (IES Kappa) are also shown. The combined multitemporal training 
library and IES endmember library are shown in the “MT” row. 

Image Date Reference 
Spectra

Training 
Spectra

Validation 
Spectra IES EM IES Kappa

10 Mar 20,497 9,868 10,629 1,365 0.826
30 Mar 20,017 9,928 10,089 1,282 0.854
8 May 33,045 9,878 23,167 1,311 0.835
17 Jun 33,719 9,874 23,845 1,030 0.875
26 Aug 33,297 9,879 23,418 1,223 0.847
MT — 49,427 — 5,379 0.855



4. RESULTS

4.1 Iterative Endmember Selection (IES)

  IES run with a threshold of 0.01 RMSE produced endmember library sizes between 

10 and 14% of the input training library size (Table 3). IES Kappa values for each endmember 

library ranged from 0.826 to 0.875, and demonstrated that the endmembers selected by IES 

were representative of the training libraries (Table 3). Baccharis pilularis (BAPI), Pinus sabiniana 

(PISA), Quercus agnifolia (QUAG), and Eucalyptus spp. (EUSP) had the highest proportion of 

their classes’ training spectra selected for inclusion in the multitemporal endmember library. 

Artemisia californica-Salvia leucophylla (ARCA-SALE), Eriogonum fasciculatum (ERFA), and 

MAGF had the smallest proportion of their classes’ training spectra selected. The total number 

of endmembers from each date selected by IES for the multitemporal library varied between 

classes (Figure 2). MAGF and Brassica nigra (BRNI) had more endmembers selected for the 

multitemporal library from earlier in the season, and relatively few from later in the season. 

Ceanothus megacarpus (CEME) had nearly the same number of endmembers from each date. 

Platanus racemosa (PLRA) and ADFA had a higher proportion of endmembers selected from 30 

Mar, 17 Jun and 26 Aug (Figure 2).

The total number of endmembers selected by IES from the multitemporal training library 

(5,379) was less than the number of endmembers that would result from combining the single-

date endmember libraries (6,211). For most species the number of endmembers selected from 

each date in the multitemporal training library was lower than the mean number of endmembers 

selected for the single-date training libraries. MAGF, ADFA, BRNI, and PLRA had a higher 

number of endmembers selected for the multitemporal endmember library. These four classes 

had 12.0, 8.8, 4.4, and 1.8 additional endmembers, respectively, compared to the mean number 

of endmembers for each class in the single-date endmember libraries.

4.2 Multiple Endmember Spectral Mixture Analysis (MESMA)

The spatial distribution of classes between same-date classifications and multitemporal 

classifications shared similar patterns overall, but sometimes with key differences (Figure 3). 
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MAGF, BRNI, and Arctostaphylos glauca/glandulosa (ARGL) were modeled in the same regions 

between classifications, though in the multitemporal classification for 10 Mar, MAGF had an 

expanded range. For 10 Mar (Figure 3a) the multitemporal classification modeled more MAFG in 

place of BRNI. MAGF is commonly found with BRNI, but BRNI grows more slowly than MAGF. 

Thus, areas which are dominated by MAGF in early March may become dominated by BRNI later 

in the season. Ceanothus species along with ADFA, QUAG, and ARGL also covered the same 

regions between classifications, but with sometimes very different abundances. For example, 

in the 17 Jun image (Figure 3d) the same-date classification modeled very few ADFA pixels, 

while the multitemporal classification modeled noticeably more. Also, the dominant Ceanothus 

species varied between classifications, such as in 26 Aug (Figure 3e), where CESP incorrectly 

dominates in the same-date classification. In the multitemporal classification, these same areas 

are correctly mapped as CEME. 

Using a RMSE threshold of 0.01, overall accuracy for MESMA classification using the 

multitemporal endmember library was comparable to same-date endmember libraries (Table 4). 

Single-date endmember libraries were able to classify same-date images with overall accuracy 

between 67.9 and 76.4%. The multitemporal endmember library had accuracies between 66.6 

and 75.5%.  The difference in performance between same-date and multitemporal classifications 

was less than 1.3% in all cases. For two dates, 30 Mar and 26 Aug, the multitemporal 

classification outperformed the same-date endmember library by 0.05 and 0.84%, respectively. 

The percent of unclassified pixels was lowest using the multitemporal endmember library (3-4%) 

compared to same-date libraries (4-5%). 

The mismatched-date endmember libraries had poor results for MESMA classification, 

ranging from a minimum of 13.2% to a maximum of 38.9% overall accuracy (Table 4). 

Mismatched-date endmember libraries tended towards better results in classifying dates nearer 

to the season of their own date. For example, the 30 Mar endmember library was better able 

to model the 10 Mar images (38.9%) than was the 8 May library (22.3%) or the 17 Jun library 

(15.8%) (Table 4). For mismatched-date classifications with a threshold of 0.01 RMSE, 9-45% 

of validation pixels remained unclassified. For this reason an additional MESMA classification 

was tested with no RMSE threshold set; this resulted in classified images where all pixels were 

classified. No threshold was used to determine how many pixels would otherwise be classified 

correctly if unclassified pixels were not allowed; this primarily helped determine if classification 

accuracy for mismatched-date libraries was due to poorly fitting endmembers that might 
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otherwise be modeled correctly, or if the proportion of unclassified pixels accurately reflected 

poor library performance. With the RMSE threshold removed, overall classification accuracy 

increased, but generally no more than an average of 6.4% for mismatched-date classifications 

(Table 5). Some increases in same-date library classifications were also seen with a maximum 

increase of 2.8% (8 May, 69.9% to 72.7%). The multitemporal classifications also saw an 

increase of 1.9% (8 May, 68.8% to 70.8%). At margins this low the tradeoff of uncertainty 

representation (via unclassified pixels) for increased classification accuracy was not justified. The 

remaining discussion only considers the 0.01 RMSE threshold classifications.

Producer’s accuracies for all classes varied between good classification success with 

mean accuracies above 80% (ARCA-SALE, BRNI, ERFA, MAGF) and poor accuracy below 50% 

(BAPI, PISA, QUAG) (Table 6). Eight to 10 classes showed improved multitemporal producer’s 

accuracy compared to same-date classifications. CEME, Soil (SOIL), and ROCK had higher 

producer’s accuracy for all dates in the multitemporal classification. Classes which had the lowest 

producer’s accuracy compared to same-date results were Ceanothus cuneatus (CECU), BAPI, 

QUAG, and Umbellularia californica (UMCA), with mean changes in accuracy ranging between 

-4.4% and -5.2%. CECU saw accuracy improvements of up to 12.6% but also reductions as 

low as -18.3% in the multitemporal classifications. Mean user accuracy was higher for the 

multitemporal classification for 10 out of 21 classes compared to same-date classifications (Table 

7). User accuracy was also frequently higher for individual classes when the multitemporal library 

was applied on specific dates. Half of all classes had improvements in user accuracy in the 

multitemporal classification results. 

4.3 Multitemporal Mapping Analysis

When the multitemporal endmember library was applied to each image date, the 

endmembers selected to classify each pixel were dominantly from the same image date (Figure 

4). For all dates, increased use of alternative endmember dates occurred where Ceanothus 

species were classified, which tended to choose endmembers with dates surrounding the date of 

the image. MAGF and BRNI, which senesce during seasonal drought, were heavily dominated by 

same-date endmembers.  Agricultural zones tended to have more variable endmember dates.

Among correctly classified pixels, most classes used a majority of endmembers selected 

from the same date in the multitemporal library (Figure 5). Accuracy increased for some classes 

and declined for others when modeled with the multitemporal library, compared to same-date 
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classification accuracy. CEME, QUDO, and SOIL were classified by endmembers from a variety 

of dates, and also showed the most improvement in producer’s accuracy compared to same-date 

classifications. PLRA, BAPI, and EUSP showed little or no benefit from the multitemporal library, 

with most endmembers coming from the same date (Figure 5). For misclassified pixels half or 

more were typically drawn from same date endmembers, while the remaining half tended to be 

split between other endmember dates, with more misclassifications occurring for endmembers 

nearer to the date of the image (Figure 5). While it appears that misclassified pixels were more 

commonly classified by a different date endmember than correctly classified pixels, classes such 

as CEME, ADFA, and QUDO still showed overall improvement using the multitemporal library. 

The distribution of endmember dates used for classification varied between image dates, 

with 17 Jun (Figure 5) having the fewest endmembers from alternate dates. Comparatively 

few endmembers were used from alternate dates for the correctly classified pixels; of those 

endmembers selected from an alternate date, a majority tended to be from dates nearest to 

the image date. QUDO and ADFA were used as examples to determine how RMSE varied with 

the date of endmembers used for classification. Overall, QUDO selected more endmembers 

from differing dates than any other class, with more than half of the correctly classified pixels 

using alternate dates for the 17 Jun and 26 Aug classifications (Figure 5). QUDO showed 

improvements in producer’s accuracy compared to the same-date classifications for 10 Mar 

(73.0%), 8 May (77.9%), 17 Jun (82.12%), and 26 Aug (77.6%), with lower accuracy for 30 Mar 

(76.4%) (Table 6). The majority of low RMSE values (associated with good model fits) for QUDO 

occurred when using same-date endmembers (Figure 6). The remaining endmembers from 

alternate dates had higher overall RMSE values, with those nearer to the classified image date 

having lower RMSE values than those further away. ADFA, in contrast, tended towards using 

a higher proportion of same-date endmembers (Figure 7). Like QUDO, endmembers from 

the same date as the image had lower RMSE. Fewer endmembers from other dates correctly 

modeled ADFA, likely due to greater temporal variability in ADFA spectra (Figure 7). 



18

Figure 2. Endmember count by date. Number of endmembers selected for each class, by  
endmember date, in the multitemporal endmember library.
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Same-date classification Multitemporal classification
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ADFA
ARCA-SALE
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Figure 3. Classification results. Classification result of subregion f1-sub (Figure 1) for same-date 
and multitemporal classifications shown side by side. (a) 10 Mar; (b) 30 Mar; (c) 8 May; (d) 17 
Jun; (e) 26 Aug. Lines across the May and two March images are caused by corrupted near 
infrared spectra. 
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Table 4. 0.01 RMSE overall accuracy. Overall accuracy (%) for all endmember libraries “EM Date” 
(rows) used to classify image dates (columns). A RMSE threshold of 0.01 was used. The final row 
is the difference between the same-date spectral libraries and the multitemporal (MT) library.

 Image Date       

EM Date 10 Mar  30 Mar  8 May  17 Jun 26 Aug
10 Mar 67.88 34.23 19.19 13.23 17.26
30 Mar 38.87 70.49 21.05 16.00 15.29
8 May 22.31 28.63 69.88 27.63 30.13
17 Jun 15.79 16.33 24.31 76.44 30.07
26 Aug 18.64 16.02 22.27 24.37 70.82
MT 66.58  70.54  68.82  75.46  71.66
Difference -1.30  0.05  -1.06  -0.99  0.84

Table 5. No RMSE overall accuracy. Overall accuracy (%) for all endmember libraries “EM Date” 
(rows) used to classify image dates (columns). No RMSE threshold was used. The final row is the 
difference between the same-date spectral libraries and the multitemporal (MT) library.

 Image Date       

EM Date 10 Mar  30 Mar  8 May  17 Jun 26 Aug
10 Mar 70.47 38.78 26.96 21.68 24.30
30 Mar 44.13 72.85 26.91 22.82 23.51
8 May 25.78 32.26 72.66 35.71 38.53
17 Jun 19.74 20.46 31.73 78.46 42.41
26 Aug 21.86 19.84 27.67 34.47 72.97
MT 68.15  71.85  70.76  76.81  73.41
Difference -2.31  -1.00  -1.89  -1.65  0.43
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Figure 4. Date classification results. Classification result of the f1-sub (Figure 1) showing the date 
of endmembers from the multitemporal endmember library used to classify pixels in images for 
(a) 10 Mar; (b) 30 Mar; (c) 8 May; (d) 17 Jun; (e) 26 Aug. 
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Figure 5. Endmember date distribution. Plots of pixel counts for the multitemporal endmember 
library classification results. The Correctly Classified plots show the endmember date distribution 
of all correctly classified pixels for each image date (left column). The Misclassified plots show the 
endmember date distribution of incorrectly classified pixels for each image date (right column). 
Note that y-axis scale changes between rows.
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Figure 6. QUDO date and RMSE distribution. Pixel count of endmember dates used from the 
multitemporal endmember library for classifying QUDO, and the associated RMSE values from 
MESMA. This graph shows the distribution of correctly classified pixels. Note that the y-axis scale 
changes between graphs. 
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Figure 7. ADFA date and RMSE distribution. Pixel count of endmember dates used from the 
multitemporal library for ADFA and the associated RMSE values from MESMA. This graph shows 
distribution of correctly classified pixels. Note that the y-axis scale changes between graphs.
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5. DISCUSSION

Larger endmember libraries are required by a multitemporal approach (Table 3). While 

this increases the time required for MESMA to classify an image, it may be worth the increased 

processing time to increase accuracy and flexibility in applying a single set of endmembers to 

imagery from any date. More work is needed to determine how differences in image date impact 

species classification accuracy. A multitemporal endmember library approach worked well for 

images within the range of March to August, performance at higher levels of drought stress 

might be degraded. Dennison and Roberts (2003a) used endmembers selected by endmember 

average RMSE (EAR), a method for selecting endmembers based on minimum within-class 

RMSE, to classify species in AVIRIS images acquired over the Santa Barbara front range. 

They found that lower species classification accuracies occurred in water deficit images (Fall) 

compared to water surplus images (Spring). Endmember libraries created using IES for the 26 

Aug 2009 image produced high overall accuracies for both the same-date library (70.8%) and 

the multitemporal library (71.7%). Water deficit for an August image would be less extreme than 

the September images examined by Dennison and Roberts (2003a). Also, EAR only accounts for 

how well an endmember classifies its own species, and does not account for whether selected 

endmembers increase misclassification of other species. In contrast, IES maximizes Kappa 

value, so endmembers that produce increased misclassification of other species are penalized. 

IES-selected endmember libraries were apparently able to overcome increased spectral 

variability caused by some seasonal drought stress without increasing misclassification as seen 

by Dennison and Roberts (2003a). 

The multitemporal endmember library produced overall accuracies that were within 1.3% of 

the accuracies for single-date libraries. At the species level there were important differences in 

how well the multitemporal endmember library was leveraged, with some classes showing overall 

producer’s accuracy improvements (ADFA, CEME, ERFA,, MAGF, PEAM, QUDO) between 

dates, others seeing greater penalties (BAPI, CECU, CESP, CISP, PISA, QUAG, UMCA), and 

still others with mixed results (ARCA-SALE, PLRA). ROCK and SOIL classes had improved 

producer’s accuracy for all images using the multitemporal library, indicating that classes which 



29

have few spectral differences within a season benefit from an increase in reference spectra 

regardless of the season from which it was derived. Some species that demonstrate large 

changes in spectral reflectance due to phenology (e.g., MAGF and ADFA) benefited most from 

the use of a multitemporal library. 

Proportionally BAPI, PISA, and QUAG had the highest number of endmembers chosen 

for inclusion in all endmember libraries. These three classes also tended to have the lowest user 

accuracy (39.9 to 78.1%) for single-date and multitemporal classifications. ARCA-SALE, ERFA, 

and MAGF had the smallest proportion of endmembers selected from the available spectra in the 

training library. These classes also had the highest producer’s accuracies (78.4 to 96.5%) using 

the same-date and multitemporal libraries, implying that seasonal spectral separability between 

these and other classes is high. For the multitemporal library, the mean number of endmembers 

selected by IES for MAGF, ADFA, and BRNI was higher than all other classes. This may be a 

reflection of increased temporal variability in spectral response between dates. 

The dominance of endmember dates used to classify a given species gives some hint to 

the level of spectral variability within each species over a season. For ADFA, correctly classified 

pixels in the 8 May, 17 Jun, and 26 Aug images were dominated by same-date endmembers 

(Figure 7), demonstrating that ADFA was dominated by a more unique spectral signature later 

in the year, with fewer crossovers with other dates. This is supported by the mean spectra of 

ADFA endmembers from the multitemporal library, with decreasing near infrared reflectance 

and increasing shortwave infrared reflectance for later dates (Figure 8b). QUDO had more 

endmembers from different dates for 17 Jun and 26 Aug. This implies that QUDO was less 

spectrally variable than ADFA later in the season, as seen in the mean endmember spectra 

(Figure 8).

Other research has found that careful selection of spectra of the appropriate phenological 

phase is an important factor when classifying vegetation with varying spatial heterogeneity of 

phenology (Cole et al., 2014; Dong et al., 2013; Peña-Barragán et al., 2006). The proposed 

method may be useful when modeling large regions in which a phenological gradient occurs, 

such as a difference in green-up or senescence across a range of elevations. Endmembers 

appropriate for multiple phenophases could be included in the same endmember library. Using a 

multitemporal endmember library along with the associated dates of the endmembers could be 

used to identify short- and long-term variability in phenology between species over large areas. 

Since a multitemporal library’s endmembers can be referenced by date, it is possible to identify 

which endmember dates are dominant in classifying an image. Those in turn can be used to 



30

indicate the dominant seasonal signal or climatic conditions of an image or its subregions. A 

combination of hyperspectral imagery and multitemporal scenes could provide information on a 

large range of phenological variations between and within species through multiple seasons. 
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Figure 8. Mean spectra for QUDO and ADFA. Mean reflectance (by wavelength) for all multi-
temporal library endmembers in QUDO (a) and ADFA (b) classes for each endmember date. 
Spectra have been normalized by mean reflectance across all wavelengths to correct for 
differences in overall brightness between dates. 
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6. CONCLUSIONS

This paper examined the ability of a multitemporal endmember library created with IES 

and classified with MESMA two-endmember models to determine if a phenologically inclusive 

endmember library could be used in place of single-date endmember libraries. IES can greatly 

reduce and simplify an input spectral library to decrease the computational load for processing 

two-endmember MESMA classifications without the need of excessive user interaction. IES 

was able to maintain high species-level classification accuracy using a single multitemporal 

endmember library, despite the potential for spectral confusion when comparing spectra across 

multiple dates.  This method could potentially increase accuracy and flexibility when applying 

spectral libraries to images where sufficient training datasets are unavailable for single-date 

classification. The method put forth in this paper has shown that a multitemporal endmember 

library is preferable to a single-date library with a mismatched phenology. With spaceborne 

hyperspectral sensors on the horizon, repeat hyperspectral images will become more accessible 

in the future and building regional phenological spectral libraries can be more easily achieved.

 The planned NASA HyspIRI mission, which will include a hyperspectral visible-shortwave 

infrared (VSWIR) sensor, represents new access to repeat acquisition high spectral resolution 

imagery. HyspIRI presents an opportunity to incorporate phenological effects into species 

mapping that have so far been unavailable. This study illustrates how HyspIRI-like data could 

potentially improve vegetation classification methods using phenology when classifying single-

date imagery. Tracking changes in phenology has proven a useful tool for assessing climate 

change impacts in broad regions using MODIS imagery (Ivits et al., 2012; Panday & Ghimire, 

2012). Biologists and ecologists could use multidate endmember libraries to track phenological 

timing with a more species-specific focus than current methods, which tend to rely on coarse 

scale MODIS NDVI-based phenology.

Timing of phenological events may not be consistent between years, and phenology 

may become increasingly variable due to climate change (Badeck et al., 2004; Begue, Vintrou, 

Saad, & Hiernaux, 2014; Garonna et al., 2014; Girard, Beaudet, Mailly, & Messier, 2014; 

Guan, 2014; Park & Schwartz, 2014; Pilaš, Medved, Medak, & Medak, 2014; Schwartzberg 
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et al., 2014). A single-date endmember library used between years may be a poor match to 

subsequent years if climate or other factors differ between library creation and application. A 

multitemporal endmember library could be more easily applied to images year to year, as it can 

include a broader range of phenological conditions than single-date libraries. However, a multi-

temporal endmember library is much larger than a single-date library and end-users will need 

to determine if their species of focus will benefit from multitemporal datasets. Analyses of large 

scale landscapes could potentially include several phenologies between and within species. 

Phenologically inclusive endmember libraries and endmember date analysis provide a means to 

understand diverse regions and species through time. 
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