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ABSTRACT
Background. Wetlands are highly productive systems that supply a host of ecosystem
services and benefits. Nonetheless, wetlands have been drained and filled to provide
sites for building houses and roads and for establishing farmland, with an estimated
worldwide loss of 64–71% of wetland systems since 1900. In Europe, the Natura 2000
network is the cornerstone of current conservation strategies. Every six years, Member
States must report on implementation of the European Habitats Directive. The present
study aims to illustrate how Earth observation (EO) technologies can contribute to the
reporting obligations of the Habitats Directive and Natura 2000 network in relation to
wetland ecosystems.
Methods. We analysed the habitat changes that occurred in a protected wetland (in
NW Spain), 13 years after its designation as Natura 2000 site (i.e., between 2003 and
2016). For this purpose, we analysed optical multispectral bands and water-related and
vegetation indices derived from data acquired by Landsat 7 TM, ETM+ and Landsat
8 OLI sensors. To quantify the uncertainty arising from the algorithm used in the
classification procedure and its impact on the change analysis, we compared the habitat
change estimates obtained using 10 different classification algorithms and two ensemble
classification approaches (majority and weighted vote).
Results. The habitat maps derived from the ensemble approaches showed an overall
accuracy of 94% for the 2003 data (Kappa index of 0.93) and of 95% for the 2016 data
(Kappa index of 0.94). The change analysis revealed important temporal dynamics
between 2003 and 2016 for the habitat classes identified in the study area. However,
these changes depended on the classification algorithmused. The habitatmaps obtained
from the two ensemble classification approaches showed a reduction in habitat classes
dominated by salt marshes and meadows (24.6–26.5%), natural and semi-natural
grasslands (25.9–26.5%) or sand dunes (20.7–20.9%) and an increase in forest (31–
34%) and reed bed (60.7–67.2%) in the study area.
Discussion. This study illustrates how EO–based approaches might be particularly
useful to help (1) managers to reach decisions in relation to conservation, (2)
Member States to comply with the requirements of the European Habitats Directive
(92/43/EEC), and (3) the European Commission to monitor the conservation status
of the natural habitat types of community interest listed in Annex I of the Directive.

How to cite this article Regos and Domínguez (2018), The contribution of Earth observation technologies to the reporting obligations of
the Habitats Directive and Natura 2000 network in a protected wetland. PeerJ 6:e4540; DOI 10.7717/peerj.4540

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194313332?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://peerj.com
mailto:adrian.regos@usc.es
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.4540
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj.4540


Nonetheless, the uncertainty arising from the large variety of classification methods
used may prevent local managers from basing their decisions on EO data. Our
results shed light on how different classification algorithms may provide very different
quantitative estimates, especially for water-dependent habitats. Our findings confirm
the need to account for this uncertainty by applying ensemble classification approaches,
which improve the accuracy and stability of remote sensing image classification.

Subjects Conservation Biology, Natural Resource Management, Environmental Impacts, Spatial
and Geographic Information Science
Keywords Environmental monitoring, Habitat mapping, Wetland conservation, Remote sensing,
Supervised classification, Landsat satellite imagery, Water-related indices, Conservation European
directives, Ensemble classification approach, Protected areas

INTRODUCTION
Wetlands are highly productive systems that provide a host of ecosystem services and
benefits, including local climate regulation, erosion control, recreational fishing, flood
control and long-term supply of good quality ground water, storage of pollutants, rare
species habitat, and cultural heritage and educational value (De Groot et al., 2006; Horwitz
& Finlayson, 2011). Nonetheless, wetlands have been perceived as a source of vectors of
waterborne infectious diseases, and historically considered worthless and an impediment
to development. Consequently, wetlands have been drained and filled to provide sites for
building houses and roads or for establishing farmland, with an estimated worldwide loss
of 64–71% of wetland systems since 1900 (Davidson, 2014).

Protection for wetlands can come in many forms, ranging from local practices and
national legislation to international recognition through inscription on the Ramsar List
and/or the World Heritage List (Thorsell, Levy & Sigaty, 1997). In Europe, the Natura
2000 network is the cornerstone of current environmental conservation strategies. This
network includes Special Protection Areas for wild birds (SPAs), designated by theMember
States under the Birds Directive (2009/147/EC) with the aim of conserving the habitats
of particularly threatened species and migratory species. It also includes Special Areas of
Conservation (SACs), designated for other taxa and habitats under the Habitats Directive
(92/43/ EEC). Every six years, Member States must report on implementation of the
measures taken under these European Directives. This report must include information
on the conservation measures concerning the natural habitat types listed in Annex I of the
Habitats Directive (Art. 6), as well as evaluation of the impacts and surveillance (Art. 2) of
those measures in relation to their conservation status, with particular regard to priority
natural habitat types and priority species.

Earth observation (EO) technologies have made significant contributions to nature
conservation in the last few decades (Muchoney, 2008; O’Connor et al., 2015 and reference
therein). Increasingly large amounts of geospatial information are being provided
by satellite and aerial image processing and analysis—also known as remote sensing
(RS)—which has enormous potential for conservation applications (Leyequien et al.,
2007; Alcaraz-Segura et al., 2009; Petrou, Manakos & Stathaki, 2015; Skidmore et al., 2015;
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Adamo et al., 2016, among others). Access to EO data has improved greatly in recent years,
and many aerial and satellite data are now freely available (Turner et al., 2015).

Despite the above-mentioned progress, the lack of a single, unifying habitat feature as
well as the highly dynamic nature of wetlands (which may lead to highly variable spectral
signatures) and their steep environmental gradients (which often produce narrow ecotone
areas)may constrain and overwhelm the capacity of current remote sensors (Gallant, 2015).
Recent advances in computing and the development of image classification techniques
have made RS-based land-cover mapping easier, faster and more widely available for use
in both conservation and applied ecology (Khatami, Mountrakis & Stehman, 2016). Faced
with this wide range of techniques, many researchers have focused on comparing the image
classification performance of land-cover mapping or other applications (e.g., Hubert-Moy
et al., 2001;Cracknell & Reading, 2014; Regos et al., 2015). One effective solution for dealing
with the uncertainty arising from the use of a wide range of techniques is to generate a
classification ensemble by combining some individual classifiers. This is referred to as a
multiple classification system or ensemble classification approach (for a review, see Du et
al., 2012). The ensemble classification approach, recently applied by the remote sensing
community, is viewed as an effective way of improving the classification performance of
remotely sensed imagery (Briem, Benediktsson & Sveinsson, 2002; Lu &Weng, 2007).

The main goal of the present work is to illustrate how EO technologies may contribute
to the reporting obligations of the Habitats Directive and Natura 2000 network regarding
wetland ecosystems. We analysed the habitat changes that have taken place in a protected
wetland (in NW Spain), 13 years after its designation as Natura 2000 site (2003–2016). For
this purpose, we analysed optical multispectral bands and water-related and vegetation
indices derived from data captured by Landsat 7 TM, ETM+ and Landsat 8 OLI sensors.
To quantify the uncertainty arising from the algorithm used in the classification procedure
and its impact on the change analysis, we compared the habitat change estimates obtained
using 10 different classification algorithms and two ensemble classification approaches.

MATERIAL & METHODS
Study site
The study area is a coastal wetland included in the Natura 2000 network in 2003 and
designated as Special Area of Conservation (SAC) and Special Protection Area (SPA)
for wild birds. The site covers an area of 984 ha, corresponding to the boundaries of the
‘‘Dunas de Corrubedo e lagoas de Carregal e Vixán’’ Natural Park (Fig. 1). The international
importance of the wetland was recognised when it was designated a Ramsar site, in 1993.

This wetland includes one of the largest dune systems in the NW Iberian Peninsula,
with extensive stretches of sand (Ladeira, Ferreira and Vilar beaches) flanked by large
dune and coastal lagoon ecosystems (Lagunas de Carregal and Vixán), together with an
adjacent dune system, and an embryonic shifting dune (1-km long, 200–250 m wide and
12–15 m high) (Vázquez-Paz & Pérez-Alberti, 2002). The dune system, comprising a sandy
barrier, has favoured the creation of an interior sedimentary area composed of fixed dunes
(‘grey dunes’), marshes, sandy and muddy intertidal zones, as well as two coastal lagoons
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Figure 1 Location of the study area and protected-area systems. Ramsar wetland (dashed-dotted line),
Natural park and SAC (black dashed line) and SPA (filling lines).

Full-size DOI: 10.7717/peerj.4540/fig-1

with very different aquatic characteristics: (1) the Carregal lagoon covers an irregular,
delimited space between the marsh and the dune system. The area adjacent to the coastline
corresponds morphologically to an estuarine channel covered by sandy deposits where
flooding depends on the tidal cycle (Fig. 1); (2) the Vixán lagoon, located in the area
distal to the coastline, has a dense reed bed (Phragmites australis) that occupies most of
the eulittoral and supralittoral environments (Fig. 1). In the area adjacent to the coast,
the reed bed is replaced by bulrushes (Typha latipholia) and, to a lesser extent, by wet
grasslands. The drainage channel zigzags through the dune system until reaching the beach
(Ramil-Rego, 2007).

Pre-processing EO data
We used satellite remote sensing imagery to map andmonitor the habitat changes that have
taken place between 2003 and 2016. We analysed optical multispectral bands (Path/Row:
205/30) derived from four cloud-free images acquired by NASA’s Landsat missions on
20 March (Landsat 7 ETM+) and 6 October 2003 (Landsat 5 TM) and on 2 May and
23 September 2016 (Landsat 8 OLI) (detailed information available for each band is
available at: http://landsat.usgs.gov/band_designations_landsat_satellites.php). Landsat
scenes captured in spring and autumn (e.g., in May and September) were analysed to take
into account seasonal differences in vegetation phenology (e.g., common reed grass). The
images are all available free of charge from the US Geological Survey (USGS) Centre for
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Earth Resources Observation and Science (EROS) and were obtained by direct download
from the GloVis facility (http://glovis.usgs.gov).

All downloaded images were L1T (a processing level that includes a geometric correction
performed with ground control points and the use of a digital elevation model) and
projected in the UTM coordinate system (WGS 84 datum, UTM projection, Zone 29
North). Digital numbers (DNs) were converted to top-of-atmosphere radiance and
physicallymeaningful units by radiometric calibration and application of sensor- and band-
specific calibration parameters. The classification process was based on the radiometric
information obtained from reflective bands and two multispectral indices for each image:
(1) the Normalized Difference Vegetation Index (NDVI; Rouse et al., 1974) and (2) the
Normalized Difference Water Index (NDWI; Gao, 1996). This procedure enhanced the
spectral separability of vegetation associated with aquatic and halophilic environments.

Classification procedure
Supervised classification of the remotely-sensed data was carried out using the following
10 classification algorithms available in the R-based package Caret and implemented in the
RStoolbox package, version 0.1.5 (Kuhn, 2017; Leutner & Horning, 2017): amdai (Adaptive
Mixture Discriminant Analysis), avNNet (Model Averaged Neural Network), gbm
(Stochastic Gradient Boosting), knn (k-Nearest Neighbours), mda (Mixture Discriminant
Analysis), pls (Partial Least Squares), rf (Random Forest), svmPoly (Support Vector
Machines with Polynomial Kernel), svmLinear (Support Vector Machines with Linear
Kernel) and svmRadial (Support Vector Machines with Radial Basis Function Kernel). In
addition, two ensemble procedures were performed: (1) a simple voting system (‘Ens_SV’;
the so-called ‘majority voting’ and ‘select all majority’ system, sensu Bauer et al., 1999),
considering each habitat map as an equally weighted vote; and (2) a weighted voting
approach (‘Ens_WV’), using overall accuracy obtained by individual classifiers as weights
(Du et al., 2012).

Eight habitat classes, defined as areas with common ecological and biophysical
characteristics and, therefore, with a homogeneous spectral signature, were identified
in the study area. For these habitat classes, we adopted the terminology used in the Annex
I of the Habitats Directive. These eight habitat classes correspond with 23 specific habitats
listed in this Annex I in our study area (Table 1). The study area is very well described, and
the whole list of habitats is already defined in previous reports (see e.g., Ramil-Rego et al.,
2008). Training and validation areas for each habitat class were established by on-screen
digitizing in QGIS software, and consisted of a set of pixels identified over well-known
homogeneous areas in each Landsat image, thus providing a reference spectral signature
for each class. In particular, we applied a stratified random design as sampling strategy,
with a total of about 259–346 training and validation areas proportionally distributed
throughout the entire study area for each year (Table 2; Dataset S1). Specifically, for 2003
we used different Red-Green-Blue (RGB) composites from the Landsat bands and digital
orthophotos in natural colours at a scale of 1:18,000 obtained from the Plan Nacional de
Ortofotografía Aérea (PNOA) for 2004, while for 2016 we used digital orthophotos from
2014.
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Table 1 List of broad habitat classes used in the change analysis and their correspondence with the natural habitats (and codes) listed in the
Annex I of the Habitats Directive. Asterisk indicates habitats with highest priority for conservation according to the Habitats Directive.

Habitat class Natural habitats listed in the Annex I of the Habitat Directive

Sand dunes 1110 Sandbanks which are slightly covered by sea water all the time.
1140 Mud flats and sandflats not covered by sea water at low tide.
1210 Annual vegetation of drift lines.
2110 Embryonic shifting dunes.
2120 Shifting dunes along the shoreline with Ammophila arenaria (‘white dunes’).

Tidal areas 1130 Estuaries.
1150* Coastal lagoons.
1160 Large shallow inlets and bays.
1170 Reefs.

Forest –
Reedbed –
Sea dunes of Atlantic coast 2130* Fixed coastal dunes with herbaceous vegetation (‘grey dunes’)

2150* Atlantic decalcified fixed dunes (Calluno-Ulicetea).
2190 Humid dune slacks.
2230Malcolmietalia dune grasslands.
2260 Cisto-Lavenduletalia dune sclerophyllous scrubs.

Natural and semi-natural grasslands 6220* Pseudo-steppe with grasses and annuals of the Thero-Brachypodietea
6410 Molinia meadows on calcareous, peaty or clayey-silt-laden soils (Molinion caeruleae).
6420 Mediterranean tall humid grasslands of theMolinio-Holoschoenion.
6430 Hydrophilous tall herb fringe communities of plains and of the montane to alpine levels.
6510 Lowland hay meadows (Alopecurus pratensis, Sanguisorba officinalis)

Salt marshes and meadows 1310 Salicornia and other annuals colonizing mud and sand.
1330 Atlantic salt meadows (Glauco-Puccinellietalia maritimae).
1420 Mediterranean and thermo-Atlantic halophilous scrubs (Sarcocornetea fruticosi).

Burned areas –

Table 2 Total number of training and validation areas considered in the supervised classification for
each habitat class and year.

Habitat class Training Validation Training Validation

2003 2016

Sand dunes 38 30 35 29
Tidal areas 48 29 49 31
Forest 64 61 76 43
Reedbed 21 22 20 23
Sea dunes of Atlantic coast 46 29 56 29
Natural and semi-natural grasslands 31 55 44 39
Salt marshes and meadows 34 33 33 26
Burned areas 0 0 39 23
TOTAL 282 259 346 243

Validation procedure
The accuracy of habitat maps was assessed from confusionmatrices based on the number of
pixels correctly (and incorrectly) classified per class, and by comparing the results obtained
from different classification algorithms. The main quality parameters were the overall
accuracy (%), the producer’s and user’s accuracies, and the Kappa index of agreement.
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We used McNemar’s tests to evaluate statistical significance of the difference in accuracy
between each pair of algorithms. This is a non-parametric test that is based on confusion
matrices collapsed to two by two contingency tables (Foody, 2004; De Leeuw et al., 2006).
P-values from McNemar’s tests were represented with heatmaps to help visualizing
statistical significance of the difference between all possible comparisons. These p-values
were used to support the selection of algorithms for the subsequent ensemble procedures.
Thereby, classification algorithms with statistically lower accuracies were not included in
the ensemble procedures (McNemar’s tests, p< 0.05).

Data importation, pre-processing, spectral indices, image classification and graphical
display were performed using the toolset available in RStoolbox package, version 0.1.5
(Wegmann, Leutner & Dech, 2016; Leutner & Horning, 2017) (see http://rpubs.com/
ARegos/359655 for R code and formatted outputs).

Change analysis
We quantified the spatial extent (in ha) of each habitat class per year (2003 and 2016) from
each classification algorithm and ensemble approach. Boxplots were constructed using the
R package ggplot2 (Wickham, 2009). The contribution of each habitat class to the habitat
change (i.e., conversion from one habitat class to another) was showed through a transition
matrix obtained by cross-tabulation of the habitat maps derived from the two ensemble
classification approaches. Transition matrices were computed with the R package lulcc
v.1.0.2 (Moulds, 2017) (see http://rpubs.com/ARegos/359655 for R code and formatted
outputs).

RESULTS
Accuracy assessment
The habitat maps with the highest accuracy (up to 95%) in 2003 were obtained using
support vector machines and discriminant analysis, with the ‘amdai’ classifier providing
slightly better results (Fig. 2). For 2016, the highest accuracy was obtained by applying
support vector machines with linear kernel (Fig. 2). However, McNemar’s test did not
show statistical significance of the difference in accuracy between individual classification
algorithms (p > 0.05; Fig. 3), except for ‘pls’, ‘avNNet’ (p < 0.01; Fig. 3), ‘gbm and
‘svmRadial’ (p< 0.05; Fig. 3). These algorithms showed limitations for specific habitat
classes that have led to under- and overestimations of their extent (Fig. 4). For instance,
‘pls’ showed very low user’s accuracies for the thematic class ‘forest’, while ‘svmRadial’
markedly overestimated the habitat class ‘tidal area’ (see low user’s accuracy and high
producer’s accuracy values, i.e., low omission errors and high commission errors in Fig. 4).
Thereby, ‘pls’ and ‘avNNet’ for both years and ‘gbm’ and ‘svmRadial’ for year 2016 were
finally not considered during the ensemble procedures.

The habitat maps derived from the ensemble approaches (majority and weighted vote)
showed an overall accuracy of 94% for the 2003 data (Kappa index of 0.93) and of 95% for
the 2016 data (Kappa index of 0.94) (Fig. 2) with no statistical significance of the difference
between them (p> 0.05). Change analysis was therefore performed using the two ensemble
methods.
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Figure 2 Accuracy of habitat maps (overall accuracy and Kappa coefficient) per year and classification
method. amdai (Adaptive Mixture Discriminant Analysis), avNNet (Model Averaged Neural Network),
gbm (Stochastic Gradient Boosting), knn (k-Nearest Neighbours), mda (Mixture Discriminant Analysis),
pls (Partial Least Squares), rf (Random Forest), svmPoly (Support Vector Machines with Polynomial Ker-
nel), svmRadial (Support Vector Machines with Radial Basis Function Kernel), svmLinear (Support Vec-
tor Machines with Linear Kernel), simply voting (‘Ens_SV’) and weighted voting (‘Ens_WV’) ensemble
approaches. The boxplots display the median, the 50% (box) and 95% (whiskers) confidence intervals.

Full-size DOI: 10.7717/peerj.4540/fig-2

Change analysis
The change analysis revealed important temporal dynamics between 2003 and 2016 for the
habitat classes identified in the study area (Fig. 5, Table 3). However, the changes depended
on the classification algorithm used (Fig. 5). For example, values for water-dependent
habitat classes ranged from around 60 ha with most of the classification algorithms, to
almost 7 times this value with the ‘svmRadial’ classifier, clearly indicating overestimation
of this unit (Figs. 5–7). The coverage estimated for habitat class dominated by salt marshes
and meadows in 2016 ranged from values close to 52 ha with the ‘svmRadial’ classifier to
more than 260 ha with the ‘gbm’ classifier (Fig. 5).

The habitat maps obtained using the two ensemble classification approaches show a
reduction in habitat classes dominated by salt marshes andmeadows (24.6–26.5%), natural
and semi-natural grasslands (25.9–26.5%) or sand dunes (20.7–20.9%) and an increase in
forest (31–34%) and reed bed (60.7–67.2%) in the study area (Fig. 5). In particular, the
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Full-size DOI: 10.7717/peerj.4540/fig-4
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spatial extent of habitat classes characterized by salt marshes and meadows or natural and
semi-natural grasslands have largely changed in favour of those dominated by reed bed and
forest (Table 3). Burned areas were only identified in 2016, mainly affecting habitat classes
with forest, salt marshes and meadows and, to a lesser extent, natural and semi-natural
grasslands (Table 3). Areas dominated by ‘sea dunes’ remained almost unchanged (Fig. 4,
Table 3).

DISCUSSION
Our results confirm the useful role that EO technologies may have in the reporting
obligations posed on the Member States by the European Habitats Directive, as well
as in the cost-effective monitoring of natural habitats included in the Annex I. This
should provide additional support to local managers and decision-makers in relation to
the implementation of medium- and long-term conservation measures. However, the
uncertainty arising from the large variety of classification methods used may prevent local
managers from basing their decisions on EO data. Our results shed light on how different
classification algorithms may provide very different quantitative estimates, especially for
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Table 3 Transition matrices obtained from the simply voting (‘Ens_SV’) and weighed voting ensemble (‘Ens_WV’) procedures from 2003
(rows) to 2016 (columns) (expressed in hectares) for the study area.Habitat classes description can be found in Table 1.

Sand dunes Burned areas Tidal areas Forest Reedbed Sea dunes Grasslands Salt marshes

Ens_SV
Sand dunes 53.64 0 8.01 0 0 18.27 0 0
Burned areas 0 0 0 0 0 0 0 0
Tidal areas 2.97 0 50.4 0 0 0.72 0 2.07
Forest 0 9.45 0 128.7 1.08 0.9 9.81 2.97
Reedbed 0.27 0.36 0 1.62 7.2 2.52 4.05 1.62
Sea dunes 6.3 4.23 2.16 4.14 2.7 249.03 7.56 9.27
Grasslands 0 6.93 0 38.43 9.36 30.78 147.51 3.15
Salt marshes 0 8.55 1.35 27.9 8.01 5.58 6.12 98.64
Ens_WV
Sand dunes 54.54 0 7.92 0 0 18.36 0 0
Burned areas 0 0 0 0 0 0 0 0
Tidal areas 2.97 0 50.31 0 0 0.63 0 1.89
Forest 0 9.36 0 128.79 1.08 0.81 9.09 2.88
Reedbed 0.18 0.36 0 2.07 7.38 2.61 4.32 1.17
Sea dunes 6.39 4.41 1.53 3.96 3.06 248.76 6.57 7.74
Grasslands 0 6.93 0 40.5 10.71 32.31 147.69 2.7
Salt marshes 0 8.37 1.44 28.62 8.01 5.85 4.95 97.11

water-dependent habitats (Fig. 5). In this respect, our findings confirm the need to deal
with this uncertainty by using ensemble classification approaches (Figs. 5–7), to effectively
improve the accuracy and stability of remote sensing image classification (for a review, see
Du et al., 2012). Despite these advantages, detailed habitat mapping may require advanced
EO technologies (e.g., hyperspatial, hyperspectral, LiDAR) to overcome several constraints
that limit the contribution of remote sensing to the reporting obligations of Habitats
Directive, such as the spectral similarity of the land covers that belong to different habitat
types, the spectral difference of the covers that belong to the same habitat type (Delalieux
et al., 2010; Borre Vanden et al., 2011) or their highly dynamic nature (Gallant, 2015).

Our findings showed important changes in the habitat classes over the last 13 years (Fig. 5,
Table 3), with potential impacts on natural habitats included in the Habitats Directive
(Table 1). The habitat class dominated by salt marshes and meadows has decreased by as
much as 25% since designation of the site as part of the Natura 2000 network in 2003.
In particular, salt marshes and meadows habitats include Salicornia species and other
annuals colonizing mud and sand (habitat code 1310), Atlantic salt meadows (Glauco-
Puccinellietalia maritimae) (habitat code 1330) and Mediterranean and thermo-Atlantic
halophilous scrubs (Sarcocornetea fruticosi) (habitat code 1420). This habitat class has been
negatively affected by wildfires, forest expansion and, to a lesser extent, conversion of the
land to natural and semi-natural grasslands (see transitions in Table 3). These patterns
can be explained by the concomitant effects of abandonment of traditional agropastoral
practices, which may indirectly promote forest spread and expansion (Stellmes et al., 2013;
Regos et al., 2015), a high-frequency fire regime (Chas-Amil, 2007) and land-use changes
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Figure 6 Habitat maps for 2003 obtained from each classification method. amdai (Adaptive Mixture
Discriminant Analysis), avNNet (Model Averaged Neural Network), gbm (Stochastic Gradient Boosting),
knn (k-Nearest Neighbours), mda (Mixture Discriminant Analysis), pls (Partial Least Squares), rf (Ran-
dom Forest), svmPoly (Support Vector Machines with Polynomial Kernel), svmRadial (Support Vector
Machines with Radial Basis Function Kernel), svmLinear (Support Vector Machines with Linear Kernel),
simply voting (‘Ens_SV’) and weighted voting (‘Ens_WV’) ensemble approaches.

Full-size DOI: 10.7717/peerj.4540/fig-6

caused by agricultural conversion, as reported for other protected wetlands in southern
Spain (Zorrilla-Miras et al., 2014).

Natural and semi-natural grasslands have undergone the greatest decline (of up to 26%)
since designation of the site as part of the Natura 2000 network. This habitat class includes
Molinia meadows (habitat code 6410), humid grasslands of the Molinio-Holoschoenion
(habitat code 6420), hydrophilous tall herb fringe communities (habitat code 6430) and
hay meadows (Alopecurus pratensis, Sanguisorba officinalis) (habitat code 6510). Natural
and semi-natural grasslands were mainly replaced by coniferous forest and to a lesser
extent by ‘sea dune’ habitats (Table 3), also indicating afforestation as a main threat.
These grasslands were also slightly affected by wildfire in 2016. However, the loss and
degradation of these habitats was also related to the gradual expansion of invasive species
(Gonzalez-Martínez, 2014; González-Martínez, 2017). In this respect, new advances in
remote sensing technologies and the availability of new sensors with higher temporal,
spectral and spatial resolution such as Sentinel-2 from the European Space Agency (ESA)
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and low-cost unmanned aerial vehicles (UAVs, also known as drones) should contribute
greatly to monitoring of invasive species (Lehmann et al., 2017; Ng et al., 2017), and to
better delineation and mapping of the habitats under EU protection (Adam, Mutanga &
Rugege, 2010; Marcaccio, Markle & Chow-Fraser, 2015; Stratoulias et al., 2015; Gonçalves et
al., 2016).

The area covered by habitat classes dominated by sandbanks, sandflats and shifting
dunes (‘white and mobile dunes’) (see habitat codes in Table 1) decreased by more than
20% relative to the cover in 2003 (Fig. 5), in favour of vegetated dunes (‘sea dunes’)
(Table 3). Sandbanks, mud flats and sandflats are strongly affected by coastal dynamics
in the long term and by intertidal fluctuations in the short term. Such dynamics may also
have contributed to horizontal displacement of the main ‘white dune’ (66.5 m in the last
decade, see Appendix S1). Despite the losses and gains estimated for ‘sea dunes’ over the
last 13 years, this habitat class (which includes three priority habitats, see description in
Table 1) was found to be the most stable over time (Fig. 5, Table 3). This stability has also
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important conservation implications for other species listed in the European Directives.
For instance, ‘grey dune’ is the breeding habitat for the Eurasian Stone Curlew (Burhinus
oedicnemus) (Domínguez, Otero & Vidal, 2006), which is included in Annex I of the Birds
Directive, and in the Galician Catalogue of Threatened Species.

Reed bed, mainly represented by Phragmites australis, has increased greatly since
designation of the site as part of the Natura 2000 network (Fig. 5, Table 3). This increase
may have been directly favoured by protection of the site and the gradual decline in the
traditional reed management (harvesting and burning) by local communities (Valkama,
Lyytinen & Koricheva, 2008). Although Phragmites australis reed bed is not listed in the
Habitats Directive, the plant is included in several habitat types of the Annex I, such as
estuaries (habitat code 1130), coastal lagoons (habitat code 1150) and inland salt marsh
(habitat code 1340) (Romão, 1996). Moreover, changes affecting reed bed may also have
subsequent effects on other species associated with these habitats (Valkama, Lyytinen &
Koricheva, 2008), such as the Reed Bunting (Emberiza schoeniclus lusitanica) (Kvist et al.,
2011; BirdLife International, 2017a) and the Common Little Bittern (Ixobrychus minutus)
(BirdLife International, 2017b), both included in the Annex I of the Birds Directive and the
Spanish and Galician Catalogue of Threatened Species. Therefore, its management and
conservation may also have positive effects on species protected by the Birds Directive.

CONCLUSIONS
Earth observation (EO) technologies may provide cost-effective means of medium- and
long-term monitoring of wetland habitats. The proposed methodology is useful for
relatively inaccessible sites (e.g., coastal lagoons or reed beds) as it only requires ecological
rules based on expert knowledge. Habitat changes can be detected by comparing pairs
of maps, and trends can be quantified. This study therefore illustrates how EO-based
approaches might be particularly useful to help (1) managers to monitor their decisions
in relation to conservation, (2) Member States to comply with the requirements of the
European Habitats Directive (92/43/EEC), and (3) the European Commission to monitor
the conservation status of natural habitat types of community interest included in Annex I
of the Habitats Directive.
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