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10. C. A. Mücher, L. Roupioz, H. Kramer, M. M. B. Bogers, R. H. G.

Jongman, R. M. Lucas, V. Kosmidou, Z. I. Petrou, I. Manakos, E.

Padoa-Schioppa, M. Adamo, and P. Blonda., “Synergy of Airborne

LiDAR and Wordldview-2 satellite imagery for land cover and habi-

tat mapping: a BIOSOS-EODHAM case study for the Netherlands,”

International Journal of Applied Earth Observation and Geoinforma-

tion, vol. 37, pp. 48–55, May 2015.

11. M. Adamo, C. Tarantino, V. Tomaselli, V. Kosmidou, Z. I. Petrou, I.
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Abstract

Biodiversity is a principal factor for ecosystem stability and functioning,

and the need for its protection has been identified as imperative globally.

Remote sensing can contribute to timely and accurate monitoring of various

elements related to biodiversity, but knowledge gap with user communities

hinders its widespread operational use. This study advances biodiversity

monitoring through earth observation data by initially identifying, review-

ing, and proposing state-of-the-art remote sensing methods which can be

used for the extraction of a number of widely adopted indicators of global

biodiversity assessment. Then, a cost and resource effective approach is

proposed for vegetation height estimation, using satellite imagery from very

high resolution passive sensors. A number of texture features are extracted,

based on local variance, entropy, and local binary patterns, and processed

through several data processing, dimensionality reduction, and classification

techniques. The approach manages to discriminate six vegetation height

categories, useful for ecological studies, with accuracies over 90%. Thus, it

offers an effective approach for landscape analysis, and habitat and land use

monitoring, extending previous approaches as far as the range of height and

vegetation species, synergies of multi-date imagery, data processing, and

resource economy are regarded. Finally, two approaches are introduced to

advance the state of the art in habitat classification using remote sensing

data and pre-existing land cover information. The first proposes a method-

ology to express land cover information as numerical features and a super-

vised classification framework, automating the previous labour- and time-

consuming rule-based approach used as reference. The second advances the

state of the art incorporating Dempster-Shafer evidential theory and fuzzy

sets, and proves successful in handling uncertainties from missing data or

vague rules and offering wide user defined parameterization potential. Both

approaches outperform the reference study in classification accuracy, prov-

ing promising for biodiversity monitoring, ecosystem preservation, and sus-
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tainability management tasks.
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1. Introduction

1.1. Motivation

1.1.1. Biodiversity monitoring and remote sensing

Biodiversity, i.e. the variety of plant and animal life in the world or in a

particular habitat [1], is a key issue in ecosystem stability and functioning,

severely affecting human society and health [2, 3]. It is a complex notion,

difficult to measure and express in a simple manner [4,5]. Various indicators

are broadly used as means to assess status and trends of different aspects of

biodiversity, measure pressures and threats, and quantify biodiversity loss

at the level of genes, populations, species, or ecosystems [6–8]. Several sets

of such biodiversity indicators, have been proposed by different organiza-

tions, scientific groups, and policy makers worldwide to achieve monitoring

in a reliable and repeatable way [7, 9–13]. They can be measured directly

or calculated using mathematical and statistical models, and they may be

defined to have a global, regional, or local applicability. Among the most

widely adopted indicators are the ones proposed by the United Nations

(UN) Convention on Biological Diversity (CBD), aiming at monitoring the

progress towards the achievement of defined targets, at global scale [14,15].

Further efforts include the definition of more directly measured variables, to

enhance indicator extraction, such as the Essential Biodiversity Variables

(EBV), proposed by the Group on Earth Observations Biodiversity Obser-

vation Network (GEO BON) [16]. The importance of biodiversity indicators

and EBVs lies in the concise information they provide to the scientific and

policy making communities on the status and trends of a variety of biodi-

versity related characteristics, such as the extent and condition of particular

ecosystems and habitats; the abundance and distribution of selected species;

or the pressures from pollution, climate change, and unsustainable agricul-

ture and forestry. They are used as proxies to indicate the progress towards

globally or locally defined targets for biodiversity preservation, e.g. reduc-
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tion of loss of habitats and their degradation and fragmentation; restoration

of ecosystems that provide essential services for health and well-being; and

identification of invasive alien species. Thus, accurate and timely estima-

tion of indicators has a significant impact in early warning for the need of

restoration or mitigation actions to sensitive or endangered areas.

The imperative need for biodiversity protection and preservation has been

highlighted during the last years [17], with the UN declaring 2010 as the

International Year of Biodiversity and 2010–2020 as the Decade on Biodiver-

sity. Following the realization that the targets for halting biodiversity loss

by 2010 were not met [6, 18], CBD and the European Union (EU) updated

their mitigation strategies towards 2020 [19, 20]. CBD adopted the Strate-

gic Plan for Biodiversity 2011–2020 and set the so-called Aichi Biodiversity

Targets [19], as criteria of achieving the defined goals by 2020.

Although the most accurate way of measuring certain aspects of biodi-

versity, such as the distribution and population of plant and animal species,

is by in-situ campaigns, in many cases, such approaches are proven par-

ticularly cost or time demanding, and for some areas, difficult or even im-

possible [21, 22]. Remote sensing (RS) data, on the contrary, derived from

airborne or satellite sensors, have been increasingly employed in biodiversity

monitoring studies [4,23–25]. Offering the capability of constant, repetitive,

and cost-effective monitoring of large areas, RS data can provide precious

information nearly impossible to be acquired solely by field assessment [26].

Numerous studies using RS data to measure biodiversity-related properties

have been presented in the literature, covering a broad range of applications,

study areas and employed data and methods.

The majority of these studies are rarely explicitly connected to any of the

widely adopted biodiversity indicators, e.g. those proposed by CBD, that

could be extracted through them, directly or indirectly. Instead, on the one

hand, a variety of indicators have been proposed and used by individual

RS studies, resulting in numerous incompatible monitoring systems [9]. On

the other hand, despite the increasing availability of RS data, the connec-

tion between entities measured by remote sensing and indicators required

by the biodiversity, management, and policy-making communities has still

been poor [27]. Thus, identification of high performing RS approaches and

establishment of a link to a common set of indicators widely adopted by

the user community would be highly beneficial for their extraction and the
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minimization of this knowledge gap.

1.1.2. Vegetation height estimation and remote sensing

Among variables related to biodiversity monitoring, vegetation height is a

fundamental biophysical and structural parameter, useful additionally to a

number of relevant ecological and environmental studies and applications,

such as conservation planning and biomass estimation [24,28,29]. The mean

tree height of a stand has been identified as one of the most important stand

characteristics for forest planning tasks [30], with a root mean squared error

(RMSE) below 1 m being adequate for forest inventory studies in certain ar-

eas [31]. Furthermore, high-resolution maps of canopy height are important

as means to improve aboveground biomass and carbon stock estimation,

used as proxies to model future climate change, and also to measure carbon

fluxes and emission reduction in the framework of national and international

strategies [32]. In addition, vegetation height constitutes a basic element

for landscape analysis tasks and a discriminatory feature for class charac-

terization in various land cover and habitat taxonomies [33, 34]. Precise

estimation leads to correct classification of certain land cover types and

habitats based on their height range, enhancing the monitoring of their ex-

tent and condition, the detection of changes, and their conservation and

management.

Satellite and airborne sensors have been increasingly used for the esti-

mation of vegetation height during the last decades, as time-, cost-, and

labour-efficient alternatives to field measurements. Aerial and spaceborne

active sensors (i.e. sensors transmitting signals and receiving the reflected,

refracted, or scattered ones), namely lidar and Synthetic Aperture Radar

(SAR) sensors, have been proven particularly effective in retrieving vegeta-

tion structural information [35–37]. However, their cost per unit area can

be prohibitively high [38]; in addition, a number of two or more images of

the same area may be required.

Less cost and resource demanding approaches have been sought in the

use of passive satellite sensors, mainly of high spatial resolution, applying

regression analysis to model vegetation height using image spectral prop-

erties [39] or, more effectively, texture features [40, 41]. However, although

such methods achieved results indicating the potential of texture analysis
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on data from passive sensors in vegetation height estimation, certain limi-

tations can be spotted. The majority of these studies have been restricted

to trees with heights of several metres and of a specific vegetation type each

time, e.g. coniferous, or even a specific species. In addition, remote sensing

data from only one date have been employed in each study, neglecting to

evaluate the proposed method in different time of the year or study syner-

gies of data from multiple dates. Furthermore, potential improvements from

data processing techniques after the extraction of features, e.g. dimension-

ality reduction or imputation of missing values, have rarely been examined.

Such shortcomings of previous studies are attempted to be addressed by the

present work.

1.1.3. Habitat mapping and remote sensing

The term ‘habitat’ describes the place and the type of environment in which

an organism normally occurs [42]. Different definitions have been suggested,

with Bunce et al. [43] recently defining habitat as “an element of the land

surface that can be consistently defined spatially in the field in order to de-

fine the principal environments in which organisms live.” Thus, mapping of

habitats and their changes has been identified as significant stepping stone

for biodiversity and ecosystem monitoring, as well as conservation planning

and landscape sustainability management [43–45]. Highlighting the impor-

tance of habitat monitoring, halving the loss of habitats by 2020 has been

defined as one of the 20 Aichi targets for global biodiversity preservation,

whereas indicators for habitat extent, condition, and pressures have been

included in the updated biodiversity strategies of CBD and EU [19,20]. Ro-

bust estimates on habitat status and changes have been used in national

rural policy strategies [43].

The extraction of habitat maps with RS data has mainly been performed

using directly the available imagery [46–48]. However, direct mapping of

habitats has been challenging, whereas the majority of RS methods have

focused on the simpler mapping of land cover (LC) categories [23]. The

latter are defined as “the observed (bio)physical description of the earth’s

surface” [42], and therefore, are more straightforward to monitor through

RS data. Furthermore, land cover and land use (LC/LU) maps have been

extensively produced during the last years, at regional or national scales, as
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minimum approximations to the increasingly, often due to legal obligations,

required habitat maps [49].

Therefore, the extraction of habitat maps through the conversion of ex-

isting LC maps, using RS data, seems a promising alternative to direct

habitat mapping from RS imagery. However, it has still been poorly in-

vestigated and mainly restricted to theoretical analyses [50, 51]. Although

such conversion was limited by discrepancies in definitions of LC and habi-

tat classes, and requirements of richer information for the mapping of the

latter, Adamo et al. [52,53] recently presented a rule-based expert system to

delineate habitats using LC maps and Very High Resolution (VHR) satellite

data.

The method identified a number of habitat classes using a variety of RS

derived features and respective classification rules defined by expert ecolo-

gists. Although relatively high accuracies were achieved, certain shortcom-

ings of the method can be spotted. On the one hand, features were selected

empirically by the experts, whereas rules and the associated thresholds were

based on expertise and repetitive trial-and-error experimentation. Such task

involves labour and time consuming fine-tuning of threshold values through

numerous iterations, while the number of total different evaluated combi-

nations of values remains limited. On the other hand, no counteraction

is provided in case of missing information or inaccuracies caused by noisy

input data or vague expert rules. Such problems are common in remote

sensing applications, where data considered necessary may be unavailable

for certain study areas, or be afflicted by noise during different stages from

acquisition to processing, such as image registration, quantization, or to-

pographic and atmospheric correction. Approaches addressing these limita-

tions are expected to provide more robust solutions and improve the habitat

classification.

1.1.4. Objectives

Following the previous discussion, the main objectives of the thesis can be

summarized as:

• To identify and review high performing remote sensing approaches

and their connection to a common widely adopted set of biodiversity

indicators, namely the CBD indicators, supporting their extraction
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and the decrease of the knowledge gap between the remote sensing

and the ecology, conservation biology, site manager, and policy making

communities.

• To offer a cost and resource effective approach to vegetation height

estimation, by the use of single passive sensor images, and to address

shortcomings of previous methods limited to specific types of vegeta-

tion, restricted height ranges, single-date imagery, and small use of

data processing techniques.

• To implement effective and robust methodologies for the conversion of

land cover to habitat maps with the use of RS data, (i) by automat-

ing the classification process and (ii) handling uncertainties, in order

to increase the classification accuracy and the transferability of the

methods to different study areas.

1.2. Contributions

With regards to the defined objectives, the main contributions of the thesis

can be summarized as follows:

• The Aichi targets that can be monitored through RS data are recog-

nized, by identifying the CBD biodiversity indicators and EBV that

can be extracted using such data. Then, a wide number of recent

state-of-the-art remote sensing methods are identified in the litera-

ture, reviewed, and proposed to be adopted for the calculation of

CBD headline indicators and the further monitoring of the progress

towards the achievement of the Aichi Targets, at a global level. The

methods are evaluated based on their outcomes and the achieved accu-

racies, when appropriate, and the best performing ones are identified.

Capacity and limitations of the methods are discussed, and future

directions are proposed.

• A framework to estimate vegetation height through texture analysis

of very high resolution (VHR) passive sensor imagery is proposed.

An object-based approach is followed and a number of features are

suggested, based on local variance, entropy, and local binary pat-

terns. The extracted features are used to delineate a number of height
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classes representing specific habitats. A wide range of algorithms for

data processing and classification are employed and evaluated, includ-

ing handling of missing values, outlier removal, data normalization,

dimensionality reduction with data transformation and feature selec-

tion, and various supervised classifiers. Contrary to previous studies,

synergies of data from two dates are additionally tested, whereas the

classified objects are of various vegetation types and of heights ranging

from less than 5 cm to several tens of metres.

• Two approaches for LC map conversion to habitats using VHR im-

agery are proposed, to counteract limitations of the expert rule-based

classifier by Adamo et al. [52, 53]. The approaches are applied in

two areas each, to evaluate their generalization performance and their

transferability in various study sites.

a) The first one is a supervised learning approach, where extracted

feature values are used to train high performing classifiers and

automatically provide classification rules. A methodology to

express LC names/codes (string variables) as numerical values

(interval-scaled variables) is proposed, allowing land cover classes

to be fed as input to the classifier, while characterizing inter- and

intra-class variabilities. Texture features, proposed in the height

estimation framework, are also extracted and evaluated as sur-

rogates of features derived from lidar data in the habitat classi-

fication process. A number of different supervised classifiers are

employed and evaluated.

b) The second proposed approach is based on the use of evidential

reasoning, in particular the Dempster–Shafer (DS) theory [54,55],

as a means to allow handling of uncertainty and enhance infor-

mation fusion. Building on the expert rules of [52,53], a number

of fuzzification methods, to counteract noise in data or inaccurate

rule thresholds, are proposed and coupled with the DS classifier.

In addition, a framework allowing the classifier to select multiple

classes, when not enough data are available to strongly support

the selection of a single habitat class, is proposed, whereas exten-

sive evaluation of criteria for class selection and user-dependent

decision making is provided.
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1.3. Organization of the thesis

The thesis is organized as follows. The present Chapter 1 serves as intro-

duction, outlining the scope, the major objectives, and the contributions

of the presented research work. It also provides an overview of the thesis

structure.

Chapter 2 identifies the Aichi targets and the respective CBD headline

indicators and EBV that can be measured through remote sensing. For

each CBD indicator, covering a wide range of fields, RS methods that can

be used for the monitoring of a number of related properties are reviewed,

as far as the employed data, algorithms, final products, and achieved accu-

racies are regarded. Finally, advantages and limitations of RS in monitoring

different aspects of biodiversity are discussed, and future research directions

are proposed.

In Chapter 3, the proposed framework for estimation of vegetation height

is reported. Following a brief presentation of the study area and the available

data, the proposed texture features are described. The algorithms used to

process the derived texture features, including handling of missing data,

outlier removal, data normalization, and dimensionality reduction through

feature selection and data transformation, are presented, together with a

number of classifiers used for their evaluation. Particular focus is given

on feature selection methods, as means to identify best performing feature

subsets. Images from two dates, representing different vegetation status

periods, are employed and evaluated both individually and in synergy.

Chapter 4 presents the proposed approach for land cover to habitat map

conversion with supervised learning. The two study areas and the related

available data are briefly introduced. The methodology to represent the

classes of the LC map as numerical values is then described. Evaluation of

the feature sets used by Adamo et al. [52, 53], as well as of other feature

combinations, is performed for two study areas, under different supervised

classifiers. To test the generalization performance of the methodology, ad-

ditional experiments are performed training the classifiers with data from

the one study area and testing them in the other.

In Chapter 5, the proposed classification framework for LC to habitat con-

version based on the Dempster–Shafer theory and fuzzy logic is described.

A brief overview on the main notions of DS theory is initially provided, fol-
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lowed by the description of the different fuzzification methods proposed. As

in [52,53], classifiers (i) considering and (ii) neglecting the availability of li-

dar data, as sources of height information, are developed. The classification

framework is thoroughly evaluated under the use of all different fuzzifica-

tion methods, and compared with crisp classification results, i.e. with no

fuzzification, similar to [52,53]. An extensive number of parameters for the

final class selection, using flexibility to different user preferences, are tested

and their outcomes are discussed. Combination of the results from individ-

ual classifiers through the use of Dempster rule of combination [55] is also

tested. Evaluation of the approach is performed for both the area which

the expert rules were originally derived for and a second area used to test

its generalization performance and transferability to other sites. Compari-

son with the results from the supervised classification framework is finally

performed.

Chapter 6 summarizes the main outcomes of the thesis, in relation with

the defined objectives, and provides concluding remarks. In addition, poten-

tial extents of the developed methodologies and future research directions

based on the presented work are discussed.

Appendix A draws the tables with the sorting and characteristics of the

remote sensing methods discussed in Chapter 2. Appendix B presents the

available data for each study area discussed in the thesis, including satellite

imagery, land cover maps, and object height models derived from lidar data.
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2. Remote sensing for biodiversity

monitoring

2.1. Targets and indicators

CBD initially suggested a set of biodiversity indicators aiming at moni-

toring the progress of biodiversity conservation achievements by 2010, the

so-called 2010 Biodiversity Target [10]. The biodiversity indicators were de-

fined in a way to be globally applicable and organized in seven focal areas,

trying to incorporate issues ranging from conservation and sustainable use

of biodiversity, to social considerations dependent upon the maintenance of

biodiversity. Following the failure of meeting the 2010 targets [6], new indi-

cators were proposed, as well as an updated organization of the biodiversity

indicators under 12 headline indicators [15]. The headline indicators were

associated with the 20 Aichi Targets and meant to monitor the progress

towards their achievement [19]. A number of specific indicators may be

grouped under each headline indicator [15].

Upon demand by CBD, the Group on Earth Observations Biodiversity

Observation Network (GEO BON) attempted to assess the adequacy of

global observation systems for biodiversity monitoring, mainly as far as in-

formation needs are regarded, for the achievement of the Aichi targets [56].

Although numerous existing observation systems were identified, the need

for further development, expansion and financial resource flow was recog-

nized for the global completion of most targets. Acknowledging the lack [57]

and envisaging the development of a global, harmonized system to observe

biodiversity [58], a set of candidate Essential Biodiversity Variables (EBV)

were suggested [16]. The aim of EBV is to define a minimum set of essential

measurements and act as an intermediate layer between primary observa-

tions (e.g. RS data) and biodiversity indicators, facilitating the extraction

of the latter. They are organized in six main classes, the particular EBV
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being under development [16].

Remote sensing, as provenly a valuable tool in monitoring of biodiversity-

related variables, is expected to contribute immensely in monitoring the

progress of certain Aichi targets. Such monitoring will become feasible by

the extraction and update of the respective CBD biodiversity indicators,

or related EBV. Table 2.1 identifies the CBD headline indicators that can

be extracted through RS data, and based on them, identifies and presents

the Aichi targets whose progress may be monitored using remote sensing.

The respective EBV classes measurable through RS are also depicted. The

table does not depict the full network of associations and secondary inter-

relations; e.g. expansion of sustainable forestry may also be an indicator of

pollution reduction or species extinction prevention. However, the primary

associations between indications and target achievements are reported.

2.2. Remote sensing capacity for CBD indicator

extraction

A review of the most recent approaches in biodiversity monitoring and their

link to the CBD headline indicators that can be measured by space- or air-

borne sensors, as identified in Table 2.1, is provided in this section. Extend-

ing previous studies focusing on policy-makers and identifying the principal

role of RS data in CBD indicator extraction [27], the present work focuses

not only on the potential of various RS data, but also on the data processing

and mapping algorithms employed.

A variety of measures have been employed to evaluate the accuracy of the

methods, depending on the characteristics of each method and the nature

of the problem. Table 2.2 provides the definition of the accuracy evaluation

measures used in this chapter and throughout the thesis.

Although a direct comparison of methods, even among ones measuring

similar variables, is rarely possible, due to differences in numerous param-

eters, an indicative sorting of the methods is attempted for each measured

entity category. The sorting is mainly based on reported accuracies, taking

into account the number of employed classes, in classification problems. In

cases where accuracies are provided in different evaluation metrics among

the approaches of the same category, e.g. as a mixture of classification accu-
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Table 2.1.: Aichi targets that can be monitored through RS data, and the
associated CBD headline indicators and EBV classes.

Aichi targets CBD headline indicators EBV classes

(4) Sustainable production
and consumption

(4) Pressures practices1

(5) Pressures various2
Species populations

(5) Reduction of habitat loss,
fragmentation and degradation

(1) Extent3

(4) Pressures practices
(5) Pressures various

Species populations
Ecosystem function
Ecosystem structure

(6) Sustainable exploitation of
marine resources

(4) Pressures practices Species populations

(7) Sustainable management
of agriculture, aquaculture
and forestry areas

(4) Pressures practices Species populations
Ecosystem structure

(8) Pollution reduction (5) Pressures various Species populations
Community composition
Ecosystem function

(9) Invasive alien species
control

(2) Species4

(5) Pressures various
Species populations

(10) Protection of vulnerable
ecosystems

(5) Pressures various Species populations
Community composition
Ecosystem structure

(11) Conservation and
protection of important areas

(11) Protected areas5 Species populations
Ecosystem structure

(12) Preventing extinction of
threatened species

(2) Species Species populations

(14) Safeguarding ecosystems
with essential services

(6) Services6

(11) Protected areas
Species populations
Community composition
Ecosystem function
Ecosystem structure

(15) Enhancing ecosystem
resilience

(6) Services
(11) Protected areas

Species populations
Species traits
Ecosystem structure

1Trends in pressures from unsustainable agriculture, forestry, fisheries and aquaculture
2Trends in pressures from habitat conversion, pollution, invasive species, climate change,

overexploitation and underlying drivers
3Trends in extent, condition and vulnerability of ecosystems, biomes and habitats
4Trends in abundance, distribution and extinction risk of species
5Trends in coverage, condition, representativeness and effectiveness of protected areas and

other area-based approaches
6Trends in distribution, condition and sustainability of ecosystem services for equitable

human well-being
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Table 2.2.: Accuracy evaluation measures used throughout the thesis.

Metric Definition Symbols

Overall accuracy

OA ≡
NC

N

NC: number of correctly
classified samples; N : total
number of samples

Producer’s
accuracy (for
class A)

PAA ≡
NCA

NOA

NCA: Correctly classified
samples to class A; NOA:
total observed samples of
class A

Omission error
(for class A)

EOA ≡ 1− PAA

User’s accuracy
(for class A) UAA ≡

NCA

NPA

NCA: Correctly classified
samples to class A; NPA:
total samples classified to
class A

Commission error
(for class A)

ECA ≡ 1− UAA

Cohen’s kappa
coefficient κ ≡

Po − Pc

1− Pc

Po: proportion of agreement
between classified and
observed samples ≡ OA; Pc:
proportion of expected
agreement by chance, Pc =∑C

i=1(NOi/N)(NPi/N), C:
number of classes, NOi,
NPi, N defined as above

Pearson’s
correlation
coefficient

r ≡
∑N

i=1(fi − f̄)(yi − ȳ)√∑N
i=1(fi − f̄)2

√∑N
i=1(yi − ȳ)2

yi: observed values; fi:
model predicted values;
ȳ ≡

∑N
i=1 yi/N ;

f̄ ≡
∑N

i=1 fi/N ; N : number
of samples

Coefficient of
determination

R2 ≡ 1−
∑N

i=1(yi − fi)2∑N
i=1(yi − ȳ)2

yi, fi, ȳ, N defined as above

Adjusted R2

R̄2 ≡ R2 − (1−R2)
D

N −D − 1

N : number of samples; D:
number of explanatory
variables in the regression
model

Root mean square
error

RMSE =

√
1

N

∑N

i=1
(yi − fi)2

yi, fi, N defined as above

Absolute
(standard) error E =

1

N

∑N

i=1
|yi − fi|

yi, fi, N defined as above

Relative
(standard) error Er =

1

N

∑N

i=1

|yi − fi|
yi

yi, fi, N defined as above

racies, root mean square errors (RMSE), coefficient of determination (R2)

values, etc., the provided sorting is indicative, not conveying any compara-

tive information. An indisputable comparison of the methods would only be

possible if experiments were conducted under the same conditions, datasets,
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and study areas, which is highly unlikely in RS applications; however, the at-

tempted sorting may convey useful information on the efficiency of certain

sensors or algorithmic approaches and their comparative advantages over

others, and provide guidelines to research, monitoring, and policy-making

communities on future applications.

A large number of satellite and aerial sensors are employed in the studies

discussed in the next paragraphs. Table 2.3 presents a list of the sensors

and some of their properties as derived from the respective studies, including

their spatial resolution, number of bands, cost, and their acronyms as used

in the tables of the following paragraphs. Both space- and airborne sensors

are listed, ranging from passive multispectral and hyperspectral to active

SAR and lidar sensors. Due to their large number, airborne lidar sensors

and digital cameras are not included in the table. Sensors with large archive

of data distributed at no cost, are indicated as ‘free’, even though new ac-

quisitions or certain products may be commercially available. In addition,

the CBD headline indicators where these sensors are involved, based on the

discussion in the next paragraphs, are depicted. As a note, the CBD head-

line indicator on protected area monitoring (CBD 11) is under-represented

in Table 2.3, since several methods conducted in or applicable to protected

areas are discussed under other related indicators, such as ecosystem extent

(CBD 1), or species diversity (CBD 2).

Table 2.3.: Acronyms and characteristics of multispectral / hyperspectral, SAR, and (satellite)
lidar sensors used in CBD headline indicator extraction related studies.

Acronym Sensor Spatial
resolution
(m)

Bands Cost CBD

Multispectral / Hyperspectral

ADS40 airborne 0.2 4 yes (1) Extent7

AHS-160 airborne 2.4 63 yes (11) Prot.
areas

AISA airborne (AISA
Eagle)

2-2.5 272 yes (1) Extent

ALI EO-1 ALI 30 9 free (1) Extent,
(6) Services

ASTER Terra ASTER 15, 30, 90 14 free All

AVHRR TIROS-N,
NOAA-7,
NOAA-15 AVHRR

≈1100 6 free (1) Extent,
(2) Species,
(6) Services

AVIRIS airborne 3.5–4 224 yes (5) Press.
various

Continued on next page. . .
7Abbreviations of CBD headline indicators are given in Table 2.1
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Table 2.3 – continued

Acronym Sensor Spatial
resolution
(m)

Bands Cost CBD

AVNIR-2 ALOS AVNIR-2 10 4 yes (1) Extent,
(4) Press.
practices

AWIFS IRS-P6 AWIFS 56 4 yes (1) Extent

CAO-Alpha airborne 0.56–1.2 24, 72 yes (2) Species

CASI airborne 1–3 15,36, 72 yes (1) Extent,
(2) Species,
(4) Press.
practices, (11)
Prot. areas

DuncanTech airborne 0.2 3 yes (4) Press.
practices

CHRIS PROBA-1 CHRIS 17, 34 18, 62 free (1) Extent

DMC Z/I airborne 2 4 yes (4) Press.
practices

ETM+ Landsat-7 ETM+ 30 8 free All

GE-1 GeoEye-1 ≈1–2 4 yes (1) Extent

GS airborne
(Geospatial
Systems)

0.2 3 yes (4) Press.
practices

HJ HJ-1A/1B 30 4 yes (5) Press.
various

HRG SPOT-5 HRG 10, 20 4 yes (1) Extent,
(4) Press.
practices

HRVIR SPOT-4 HRVIR 10, 20 4 yes (4) Press.
practices

HYDICE airborne 1.6 210 yes (2) Species

HyMap airborne 3–5 126, 128 yes (2) Species,
(4) Press.
practices

Hyperion EO-1 Hyperion 30 220 free (1) Extent,
(2) Species,
(4) Press.
practices

IKONOS IKONOS 1, 4 4 yes (1) Extent,
(2) Species,
(4) Press.
practices

LISS-III IRS-P6 /
IRS-1C/1D
LISS-III

20–25 4 yes (1) Extent,
(4) Press.
practices, (6)
Services

LISS-II IRS-1B LISS-II 36.25 4 yes (4) Press.
practices

MERIS ENVISAT MERIS 300 15 free (6) Services

MIVIS airborne 3 102 yes (1) Extent

MODIS Terra / Aqua
MODIS

250, 500,
1000

36 free All

MP39 airborne (Leica
MP 39)

0.25 3 yes (4) Press.
practices

MSS Landsat 1–5 60–80 4–5 free (1) Extent

Continued on next page. . .
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Table 2.3 – continued

Acronym Sensor Spatial
resolution
(m)

Bands Cost CBD

OMI Aura 13000×24000 740 free (5) Press.
various

QB QuickBird 2 0.6, ≈2.4 4 yes (1) Extent,
(2) Species,
(4) Press.
practices, (6)
Services

REye RapidEye 6.5 5 yes (4) Press.
practices

ROSIS airborne 1 115 yes (1) Extent

SeaWiFS SeaStar SeaWiFS 1100, 4500,
9000

8 free (2) Species,
(6) Services

Sentinel-28 Sentinel-2 MSI 10, 20, 60 13 free (4) Press.
practices

SSat SumbandilaSat 6.25 6 yes (1) Extent

TCAMP airborne
(ThermaCAMP40)

1 1 yes (4) Press.
practices

TM Landsat-5 TM 30 7 free All

TMI TRMM/TMI 5000–72000 5 free (2) Species

TSys airborne (Toposys
GmbH)

0.4 4 yes (6) Services

VENµS8 VENµS VSSC 5.3 12 yes (4) Press.
practices

VGT SPOT–
VEGETATION

1000 4 free (2) Species

WiFS IRS-1D WiFS 180–188 2 yes (1) Extent

WV-2 WorldView-2 ≈0.5, ≈2 8 yes (1) Extent,
(2) Species

SAR

ASAR ENVISAT ASAR 30 1 (C) free (1) Extent,
(5) Press.
various, (6)
Services

BioSAR airborne 30×300 1 (80–120
MHz)

yes (4) Press.
practices

ERS ERS-1/2 AMI
(SAR)

6–30 1 (C) free (1) Extent,
(5) Press.
various

JERS-1
SAR

JERS-1 SAR 12.5–18 1 (L) free (1) Extent

PALSAR ALOS PALSAR ≈30–50 1 (L) yes (1) Extent,
(11) Prot.
areas

RSAT-1 RADARSAT-1 ≈30–50 1 (C) yes (5) Press.
various

RSAT-2 RADARSAT-2 ≈30–50 1 (C) yes (1) Extent

SIR-C Space Shuttle
SIR-C

≈30 2 (C, L) free (2) Species

TDX TanDEM-X 12 1 (X) yes (4) Press.
practices

Continued on next page. . .

8upcoming sensors, whose data have been simulated
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Table 2.3 – continued

Acronym Sensor Spatial
resolution
(m)

Bands Cost CBD

TSX TerraSAR-X 18.5–40 1 (X) yes (4) Press.
practices

Lidar

GLAS ICESat GLAS 40 times/s,
70 m
footprint,
172 m
interval

2 (532 nm,
1064 nm)

free (4) Press.
practices, (6)
Services

Although not explicitly mentioned in the following sections, a significant

degree of preparation, i.e. pre-processing, of the RS data is required before

their actual use in each study. The required pre-processing steps are highly

dependent on the type of sensor, the quality of data and conditions they

were captured, and the specific application. The main categories of pre-

processing usually include (i) geometric and (ii) radiometric correction [59].

Geometric correction is applied to reduce distortions from variations in the

altitude or velocity of the sensor platform, panoramic distortion, earth cur-

vature, atmospheric refraction, or relief displacement [60]. Most studies,

especially ones using multiple data that need to co-align, apply at least

georeferencing of image data, appropriately placing the images to a map

projection; in case a Digital Elevation Model (DEM) or appropriate Ground

Control Points (GCP) with elevation information are available, orthorecti-

fication [61] can also be performed, additionally correcting distortions due

to topographic variation. Image resampling techniques are used to per-

form geometric correction, including nearest-neighbour resampling, bilinear

interpolation, or cubic convolution [59].

Radiometric effects are caused by a variety of factors, including changes

in scene illumination, atmospheric conditions, viewing geometry, and instru-

ment response characteristics [60]. Some of these effects, e.g. from viewing

geometry, are more intense for airborne than satellite data, whereas the

opposite may happen for some others, e.g. from atmospheric conditions.

Optical data pixels are usually initially expressed as Digital Numbers (DN),

i.e. integer values with no physical meaning. In applications where data re-

lated with physical properties on the ground are required, DNs are converted

to absolute radiance values, using sensor related calibration information. In

other applications, e.g. performing spectral-based change detection, this
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conversion is not adequate and a further conversion to Top-Of-Atmosphere

or even surface reflectance values, eliminating atmospheric effects, is neces-

sary. As a note, the latter corrections are usually not necessary for SAR

data, since they are largely unaffected by the atmosphere. As an indicative

example of RS data assumptions and requirements in certain studies, the

following conditions ideally need to hold for the optical data for spectral-

based change detection [59]: (i) acquired from the same or inter-calibrated

sensors and the same time of day and look angle; (ii) acquired during the

same season, for inter-annual studies; (iii) well co-registered with accuracies

up to 0.2 of a pixel; (iv) free of cloud; (v) corrected to Top-Of-Atmosphere,

or preferably, surface reflectance; and (vi) under same surrounding condi-

tions influencing the signal, e.g. soil moisture.

2.2.1. Trends in extent, condition and vulnerability of

ecosystems, biomes and habitats

Remote sensing data have been effectively used in various mapping applica-

tions, ranging from mixed land cover (LC) [62,63] and habitat [42] tasks, to

mapping of specific target areas, e.g. forests [64] and wetlands [65], address-

ing different elements of the related CBD headline indicator. Trends may

be extracted through the use of time series of data or extracted products.

Among the cited methods, several use time series of RS data; others use

single-date imagery, although their expansion to studying trends is straight-

forward if data time series are available. Methods studying LC and habitat

mapping, of both terrestrial and aquatic biomes, provide direct information

on the extent and condition of selected areas, whereas methods studying

ecosystem degradation or deforestation, and fragmentation or connectivity

offer valuable input to ecosystem condition and, even, vulnerability assess-

ments.

Table A.1 in Appendix A lists selected state-of-the-art studies, indica-

tively sorted based on their best reported accuracies, when available. The

studies are organized under: (1) terrestrial mapping, including (1a) forests,

(1b) generic vegetation, such as grasslands, savannas, heathlands, and steppes,

and (1c) mixed LC and habitats; (2) ecosystem degradation and defor-

estation; (3) ecosystem fragmentation and connectivity; and (4) aquatic

mapping, including (4a) freshwater and (4b) marine and coastal biomes.
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For each study, the principal sensor data are listed (‘RS data’ column),

without including any ancillary data, such as GIS or thematic layers, or

elevation models. In addition, the ‘Feature extraction’ column lists the al-

gorithms used for extraction of features, such as spectral, texture, or image

segments, as well as employed variables, whereas classification and regres-

sion techniques are listed under the ‘Mapping methods’ column. The final

product of each method is also provided, together with the respective best

achieved accuracies. The methods described below can be employed to mon-

itor progress to Aichi target 5 (Table 2.1), on the reduction of habitat loss,

fragmentation and degradation.

A. Terrestrial mapping

Landsat data, including the Multispectral Scanner (MSS), Thematic Map-

per (TM), and Enhanced Thematic Mapper Plus (ETM+) sensors, have

been among the most widely used and efficient sources for numerous terres-

trial mapping applications, including habitat classification [47,66], LC map-

ping of tropical areas [67], savannas [68], grasslands [69], or forests [70, 71],

and change detection [72, 73]. Other optical data included: (i) the simi-

lar spatial resolution Advanced Spaceborne Thermal Emission and Reflec-

tion Radiometer (ASTER) [46, 74] and (ii) Linear Imaging Self Scanning

Sensor 3 (LISS-III) [46]; the higher resolution (iii) Advanced Visible and

Near Infrared Radiometer type 2 (AVNIR-2) [75] and (iv) High Resolu-

tion Geometric (HRG) instrument [46]; and the very high resolution (v)

QuickBird and (vi) WorldView-2 [52, 53] sensors, with significant contribu-

tions in habitat and LC mapping. Although of lower spatial resolution,

data time series from the Moderate Resolution Imaging Spectroradiome-

ter (MODIS) have proven successful in mapping dry savanna vegetation,

capturing phenological properties with inter-annual classification average

user’s (UA) and producer’s (PA) accuracies reaching 94.86% and 97.73%

for 12 classes, respectively [76]. Hyperspectral data features have shown

high potential in discriminating among different vegetation types [77–79].

On the other hand, besides their ability in providing vegetation structure

information, as discussed in next paragraphs, active data have been increas-

ingly used in mapping applications. Phased Array type L-band Synthetic

Aperture Radar (PALSAR) and RADARSAT-2 data have provided high
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mapping potential in LC mapping and forest characterization, used either

individually [80–82] or in synergy with optical data [75, 83]. In a study by

Vaglio Laurin et al. [75], PALSAR coupled with AVNIR-2 identified 8 LC

classes in a tropical rainforest and fragmented area with accuracy 97.5%,

outperforming PALSAR synergy with Landsat TM. In addition, Airborne

Laser Scanning (ALS), i.e. airborne lidar, data proved particularly effective

in forest delineation in upper timberline and fragmented forests in Austria,

reaching 96% detection accuracy [84].

Apart from cases where new classification and change detection schemes

were proposed [70,72], most studied approaches have employed widely used,

mainly supervised, classifiers. Support Vector Machines (SVM) have been

among the most widely used and highly performing ones. In a Natura 2000

heathland characterization study [79], SVM outperformed Random Forest

(RF) and AdaBoost tree ensemble classifiers by around 4.5% in experi-

ments involving 18 features from a hyperspectral image for 537 samples

in 10 classes. Interestingly, with the addition of more features, resulting

in three times the number of the initial ones, the performance of RF and

AdaBoost reached the one of SVM, whereas the latter remained the same;

this indicated that SVM classifier was more sensitive to the Hughes phe-

nomenon, resulting in decrease of classifier performance when the number

of features is high compared with the number of training samples [85]. In

other studies, SVM outperformed k-nearest neighbour (k-NN), binary Clas-

sification And Regression Tree (CART), and Maximum Likelihood Classifier

(MLC) [66,67]. The latter has outperformed Spectral Angle Mapper (SAM)

and Spectral Information Divergence (SID) classifiers in a study by Forzieri

et al. [77]. Artificial Neural Networks (ANN) have shown advantages over

SVM, SAM, or MLC in different studies [75,78]. It is worth noting, however,

that ANN implementation proved incapable to build a model when 165 fea-

tures were employed in [78], probably due to the very complicated network

of nodes resulting in such case; on the contrary, SVM and SAM classifiers

could handle this size of feature sets and perform the classification. The

highest performing classifiers among the ones discussed above will be used

in the classification tasks of Chapters 3 and 4.

As far as mapping elements are concerned, it seems that object based im-

age analysis (OBIA) and classification approaches have been gaining space

over pixel based approaches [86–88], especially in applications using very
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high resolution data (with spatial resolution finer than 3 m). Characteristic

examples include habitat mapping applications, e.g. [46, 52, 53]. However,

object based classification has proven more effective than pixel based also in

some cases where data with coarser resolution were used, e.g. the delineation

of forest clear cuts with Landsat data, using polygon shape parameters and

context with other classes, besides traditional spectral features [89]. In gen-

eral, multiple reasons favour the use of object based analysis over pixel-based

approaches, particularly for mapping applications. The large spectral vari-

abilities within habitats may create inaccurate classifications and salt and

pepper effects under pixel-based approaches for images of very high spatial

resolution, proving them inappropriate for habitat classification [47,90,91].

Furthermore, pixel-based approaches prohibit the extraction of spatial, con-

textual, and topological features, such as object area or adjacency to other

objects of specific class, that are valuable for certain classification tasks,

as will be evident in the next chapters of this thesis, where object based

approaches are developed.

B. Degradation / deforestation

Satellite data have been considered as the only efficient and realistic means

to monitor deforestation and forest degradation in a timely manner [92].

Data time series are necessary to detect deforestation in space and time

and assess deforestation rates. Landsat data have been the primary sources

of information in studies monitoring forest disturbance [93–100], mainly due

to the long archive, spectral and spatial resolution properties, and the free

availability of data. Tasseled Cap Transformation (TCT) indices from Land-

sat near-annual time series, evaluated under trajectory-based change detec-

tion methods, resulted in identifying forest disturbances within 22 years with

overall accuracy (OA) 95.72% [93]. The Continuous Monitoring of Forest

Disturbance Algorithm (CMFDA) has been proposed to take advantage of

the full Landsat archive of an area and provide timely forest disturbance

monitoring, by even predicting unseen Landsat pixel reflectance values [95].

Although highly accurate disturbance maps may be extracted, a period of

more than one month is required to confidently detect changes, expected to

be more in areas with low Landsat imagery coverage. Thus, future fusion

with similar sensors that have shown consistent results, e.g. HRG [101], or
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sensors with higher temporal resolution is expected to be crucial for global

near real time deforestation monitoring. Wider availability of free satel-

lite data, at least from government agencies, should be a policy makers’

priority [102].

Other employed data include the passive Advanced Very High Resolu-

tion Radiometer (AVHRR) [103], Advanced Wide Field Sensor (AWiFS),

and MODIS [104] sensors, as well as active PALSAR time series [105, 106].

The latter, providing the ability of cloud unobstructed monitoring, may

have comparative advantages in highly cloud covered area, such as tropical

rainforests.

C. Fragmentation / connectivity

Fragmentation and connectivity may constitute significant factors that af-

fect biodiversity, the former isolating living species areas, whereas the latter

allowing the invasion of alien or destructive species. Despite the common

notion, Fahrig [107] argued that fragmentation per se may have also positive

effects on biodiversity and should be clearly distinguished by habitat loss,

whereas Kindlmann and Burel [108] suggested that connectivity should be

assessed both in landscape and organism (functional) diversions, allowing

different degrees of connectivity to be defined for different species within

the same landscape.

Numerous landscape measures have been proposed to assess fragmenta-

tion or connectivity, at the patch or landscape level, whose estimation is

based on LC or habitat map monitoring, or change assessment. Among

the most widely adopted measures for fragmentation are the ones imple-

mented in the FRAGSTATS software [109], having been estimated using

Landsat [110–114], IKONOS-2, GeoEye-1 [115], QuickBird, ASTER [113],

or Wide Field Sensor (WiFS) [114] imagery. Variogram analysis has also

been employed to assess forest heterogeneity [116]. In addition, a number

of indices have been used to assess connectivity, e.g. in forested areas, in-

cluding the Integral Index of Connectivity (IIC) [112] and the Equivalent

Connected Area Index [117].

A direct comparison of the efficiency of the different measures in describ-

ing the degree of fragmentation or connectivity is not straightforward [118].

A number of criteria have been suggested by Saura and Pascual-Hortal [119],
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where the proposed Probability of Connectivity index was acknowledged as

the only satisfying all defined requirements. Plexida et al. [120] identified

Patch Density, Area-Weighted Mean Fractal Dimension Index, and Patch

Cohesion Index as the most suitable measures to describe landscape pat-

terns in different scales, whereas fragmentation indices have been evaluated

on their sensitivity to scale by Garćıa-Gigorro and Saura [114].

D. Aquatic mapping

Airborne lidar data have been extensively used in aquatic area mapping

studies, including wetland inundation below the forest canopy [121], upland

swamp boundary detection [122], and river [123] or tidal [124–126] water

mapping, based on their point cloud or full waveform properties and their

ability in extracting accurate DEMs. In addition, L-band and C-band SAR

data have been effectively used in wetland and mangrove characterization

studies [127–130].

Regarding passive sensors, Belluco et al. [131] evaluated a range of mul-

tispectral and hyperspectral sensors, namely the airborne Reflective Optics

System Imaging Spectrometer (ROSIS), Compact Airborne Spectrographic

Imager (CASI), and Multispectral Infrared and Visible Imaging Spectrom-

eter (MOVIS), and the satellite QuickBird and IKONOS-2 sensors, in salt-

marsh vegetation mapping. It was found that hyperspectral ROSIS and

CASI slightly outperformed the multispectral ones, whereas MLC consis-

tently provided superior classification accuracies to SAM and K-means clas-

sifiers. Minimum Noise Fraction (MinNF) and band averaging performed

better than Principal Component Analysis (PCA) in feature dimensional-

ity reduction. In another study, hyperspectral Hyperion data outperformed

the same or higher spatial resolution data of Advanced Land Imager (ALI),

Landsat TM, and IKONOS in seagrass habitat mapping [132]. Both studies

confirmed the advantages of dense spectral information for wetland map-

ping, with the former additionally highlighting the even greater importance

of high spatial resolution data. Thus, the existence of future high spatial

resolution hyperspectral satellite sensors, in addition to the only existing

coarser resolution Hyperion, would highly benefit timely wetland monitoring

and characterization. Airborne optical cameras have been used for upland

swamp [133] and wetland [134] mapping, coarser resolution Landsat data
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being shown insufficient if used alone, for the latter application. Super-

resolution techniques have been proposed to improve mapping tasks, such

as representation of lakes using satellite data time series, halftoning, and

morphological filtering [135], and may find future applications in relevant

applications.

2.2.2. Trends in abundance, distribution and extinction risk

of species

Abundance and distribution of species constitute a core part of biodiversity.

The respective CBD headline indicator encompasses both plant and animal

species. Table A.2 lists a number of recent studies where RS data have been

successfully employed to study species distribution and abundance, either

through direct monitoring or through proxy variables. The methods are

organized under: (1) plant species, including (1a) alien and (1b) indigenous

species; and (2) animals, including (2a) birds, (2b) fishes, (2c) mammals,

and (2d) invertebrates. The methods are connected to Aichi targets 9 and

12 (Table 2.1), on monitoring invasive and threatened species, respectively.

A. Plant species

Scale has been reported as one of the core issues in species monitoring, where

the spatial resolution of the remote sensor is crucial [136]. As rule of thumb,

it has been suggested that the optimal spatial resolution of the sensor is two

to five times smaller than the monitored object, in order to provide an ef-

fective trade-off between within-object and between-object variance [26]. In

line with this notion, some of the best performing studies in alien and in-

vasive species detection have been based in fine resolution data (pixel size

≤ 30 m), either aerial [137–142] or satellite [143–145]. Dorigo et al. [137]

extracted a bi-temporal band ratio (BTBR) and a number of Haralick tex-

ture features from bi-seasonal digital orthophotos and successfully detected

Fallopia japonica, one of the world’s worst invasive alien species, with up to

90.3% PA and 98.1% UA. Similar results were achieved neglecting the near

infrared (NIR) band one of the photos had, suggesting the applicability of

the method also in cases where only true color photos are available.

Hyperspectral data have shown increased performance in species mapping

applications during the last years [146] and have been widely employed
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[139, 141, 142, 147–153]. Thenkabail et al. [154] demonstrated the use of

hyperspectral data by simulating the bands of Hyperion with a hand-held

spectroradiometer to discriminate vegetation and agricultural crops. Use

of PCA, lambda-lambda R2 models, stepwise discriminant analysis (SDA),

and derivative greenness vegetation indices (DGVI), identified 22 optimal

bands that resulted in classification of five weed species with 97% OA.

Féret and Asner [147] evaluated the performance of a number of paramet-

ric and non-parametric classifiers, including SVM, ANN, k-NN, and Linear

(LDA), Quadratic (QDA), and Regularized Discriminant Analysis (RDA),

in tropical tree species discrimination; RDA achieved the best performance

when small training sample sets were used, whereas SVM in larger ones. In

the same study, object-based classification outperformed pixel-based, with

both providing inferior accuracies to majority-class rule classification, where

an object is classified to the class where the majority of its pixels are clas-

sified. In another study using airborne hyperspectral data, and combin-

ing them with digital photos, application of MinNF and SAM, successfully

mapped invasive Phragmites australis with 93% PA and 96% UA, whereas

linear spectral unmixing was employed to find the fractional cover of P.

australis in mixed pixels [139]. Among other sensors, ALS data have shown

high potential in discriminating wetland vegetation species [155].

B. Animal species

Whereas the monitoring of the distribution and abundance of animal species

is crucial for biodiversity assessment and species interrelations, e.g. with in-

vasive animal species [156], direct observation is rarely possible, and mainly

restricted in large mammals with the use of VHR sensors. As an exam-

ple, WorldView-2 data, and particularly a thresholding classifier using the

Coastal band (400–450 nm), detected whales with up to 84.6% PA and

76.3% UA [157]. However, the most common way to estimate distribution

of animal species, including mammals, birds, fishes, or invertebrates, has

been to model it based on proxies, such as spectral or structural properties

[158–161], habitat suitability [162–164], or detection of colonies [165,166].

Suarez-Seoane et al. [158] demonstrated the ability of AVHRR, com-

bined with topographic and GIS data, to model the occurrence of three

agricultural steppe birds in Spain, using PCA and Generalized Additive
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Models (GAM). Other studies included Landsat imagery, either individu-

ally [159, 162] or in synergy with SAR data [167], to derive forest param-

eters and relate them with species distribution. The fusion of structure

variables extracted by lidar data with spectral information appears benefi-

cial for avian species distribution assessment and has been applied in some

studies [160, 168]. Based on the notion that the 3D structure of coral reef

fish habitat intensely affects their communities, acoustic data have been

used in synergy with VHR IKONOS-2 to correlate abundance of different

species with habitat characterization and topographic features [161, 169].

Active data, i.e. ALS, have also been used for the extraction of lidar de-

rived parameters and modelling the presence of invertebrates spider [170]

and beetle [171]. Other passive data, such as MODIS [163,172], VEGETA-

TION [173], Landsat [174,175], or Tropical Rainfall Measuring Mission’s Mi-

crowave Imager (TRMM/TMI) and Sea-Viewing Wide Field-of-View Sensor

(SeaWiFS) [176], have been used in different animal abundance modelling

studies with satisfactory accuracies.

2.2.3. Trends in pressures from unsustainable agriculture,

forestry, fisheries and aquaculture

Pressures from unsustainable management in agricultural, forest, and aquatic

areas may be inferred up to a degree by remote sensing methods. Most of

the research studies have focused on forestry applications, concentrated on

biomass and forest structural parameters, supporting United Nations (UN)

Reducing Emissions from Deforestation and Forest Degradation (REDD+)

activities [177], whereas pressures from unsustainable agriculture may be

inferred mainly from changes in Land Use (LU), irrigation strategies, or

nitrogen concentration. Pressures from unsustainable fisheries and aqua-

culture have not been extensively studied through RS data per se, but can

be deduced up to a degree from monitoring fish distribution and abundance,

or pollution in aquatic areas. Table A.3 lists a number of high performing

recent methodologies that can be used to monitor agriculture and forestry

management unsustainable practices. Monitoring of Aichi targets 4, 5, 6,

and 7 (Table 2.1) can benefit from the discussed methods.
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A. Unsustainable agriculture

Studies revealing pressures from unsustainable agriculture practices have

mainly focused on effects from irrigation strategies [178–180], nitrogen treat-

ment [181–183], and crop characterization [184–186]. Structural properties

of the studied areas are less revealing than spectral properties for these

tasks, therefore passive multispectral or hyperspectral data have mainly

been used.

LISS-II data time series have been proven useful in extracting a number

of ground salinity indices [178]. Following the LU mapping of the stud-

ied area, salinity affected soils of different degree were identified as crucial

tool for irrigation management. The forthcoming superspectral VENµS and

Sentinel-2 sensors have been evaluated by Herrmann et al. [187] in estimat-

ing Leaf Area Index (LAI) of wheat and potato crops, simulated by a field

spectrometer. It was found that both sensors are promising in performing

as well as a hyperspectral sensor, whereas the calculated Red-Edge Inflec-

tion Point (REIP) index, using their four red-edge bands, was proven more

consistent than NDVI.

Multispectral data with large extent coverage and high revisit time have

been preferred in capturing crop area characteristics. Different methodolo-

gies employing Landsat TM / ETM+ and MODIS data have been evalu-

ated in cropping intensity mapping in smallholder farms, in different spatial

scales [186]. Thresholding Landsat-derived NDVI values outperformed three

MODIS based methodologies in almost all scales for both winter and sum-

mer periods, with hierarchical training method being the best among the

MODIS ones. In a recent study, Zhong et al. [184] showed that phenological

metrics extracted by TM / ETM+ time series can map corn and soybean

more accurately than spectral features in cross-year classifications, i.e. when

the training and test features correspond to different cropping years. Map-

ping of abandoned agriculture has also been proven feasible by MODIS time

series [185], demonstrating MODIS capacity for large extent monitoring.

B. Unsustainable forestry

Structure-based indicators have been suggested as core elements for plan-

ning sustainable forest management [12]. Active sensors, including mainly

lidar data, have been proven the most effective sources of forest structure
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information, [188–190]. Besides the usually employed first pulse and statis-

tical point height metrics, last pulse and individual tree-based features have

shown increased accuracy in approximating tree height, diameter at breast

height and stem volume in a boreal managed forest [189]. However, although

the omission errors in tree detection are reduced, the commission errors are

increased; therefore, a synergy of first and last pulse data is expected to com-

bine the benefits of the former in detecting non-overlapping trees and of the

latter in overlapping ones. Besides satellite lidar data [35,191], the synergy

of TanDEM-X and TerraSAR-X, as the first source of spaceborne single-

pass polarimetric SAR interferometry (PolInSAR) data, has been proven

particularly promising for future height estimation applications. Kugler et

al. [192] evaluated single polarization data with ancillary Digital Terrain

Models (DTM) and reached correlations with lidar derived height data up

to R2 = 0.98, while using solely dual polarization data resulted in R2 =

0.86. In general, as rule of thumb, 25–30 m SAR spatial resolution or 25

m lidar footprint diameter have been proposed as required to capture vege-

tation structure for biodiversity monitoring [24]. Other promising alterna-

tives to active data have included the use of multispectral or hyperspectral

data, mainly using neighbourhood statistics, spectral indices, or texture fea-

tures [40,41,193,194], the latter being more thoroughly discussed in Chapter

3.

Additional parameters assessing forest sustainability have been measured

by RS studies. Nichol and Sarker [195] recently presented a study where

texture feature ratios extracted from AVNIR-2 and HRG data, were suc-

cessfully employed in modelling biomass with multiple regression with up to

R2 = 0.939. Lidar, SAR, and even Landsat data have also been employed

in biomass estimation studies [177, 196–199]. Stem volume and basal area

have been approximated through a synergy of ALS with airborne colour

infrared (CIR) and AVNIR-2 data [200]. In another study, Ozdemir and

Karnieli [201] used WorldView-2 data and texture analysis to approximate

a number of additional parameters, including Standard Deviation of Di-

ameter at Breast Height (SDDBH), Gini Coefficient (GC), and Diameter

Differentiation Index (DDI). ETM+ data have outperformed the higher spa-

tial resolution but lower spectral information IKONOS and SPOT-4 High-

Resolution Visible and Infrared sensors (HRVIR) in LAI estimation [202],

with ALS data being reported as high performing alternatives [203]. Finally,
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managed forest disturbances, due to logging activities, have been monitored

with Landsat time series [204], whereas the use of VHR imagery in logging

trail detection has been demonstrated with RapidEye data [205].

2.2.4. Trends in pressures from habitat conversion,

pollution, invasive species, and climate change

As aforementioned, habitat mapping and conversion from one category to

another has been extensively studied and pressures can be inferred from

methods discussed in Section 2.2.1. Furthermore, numerous studies on

species invasion detection, pressures and effects have successfully employed

RS data, as mentioned in Section 2.2.2. This paragraph focuses on studies

that can be used to address the detection of pressures from climate change

and pollution. Table A.4 lists recently proposed state-of-the-art method-

ologies, mainly related to the monitoring of Aichi targets 4, 5, 8, 9, and 10

(Table 2.1).

Climate change has been recognized as severe factor affecting biodiver-

sity in different scales and can influence species phenology, physiology, or

range [206]. RS data have high capacity in monitoring species range, extent,

and distribution, as mentioned in previous sections, whereas the task of as-

sessing physiological changes, response, and adaptivity to new conditions

seems more challenging. SPOT-4 and SPOT-5 VEGETATION data time

series have been proven efficient in detecting variations in leaf phenology of a

deciduous broadleaved forest in different elevations, based on the extraction

of a five year perpendicular vegetation index (PVI) and the use of a temporal

unmixing method [207]. A number of indices from MODIS or Landsat data,

including Enhanced Vegetation Index (EVI), Normalized Difference Vegeta-

tion Index (NDVI), Excess Green Index (ExGM), and Normalized Difference

Water Index (NDWI), have been evaluated in several studies [208–210]. The

optimized soil-adjusted vegetation index (OSAVI), calculated from MODIS

data, showed higher consistency than NDVI and EVI in characterizing Gross

Primary Productivity (GPP) end in evergreen needleleaved forests, and its

broader use has been suggested [211]. In general, phenology monitoring in

deciduous broadleaved forests has been proven more feasible than in needle-

leaved forests or savannas. Correlation of RS estimates with systematic

field observations of phenology of multi-layer canopy is expected to further
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improve relevant RS derived land surface models [212].

Detection of various pollution sources has been achieved, up to one de-

gree, by RS methods. Oil spills have been one of the most widely moni-

tored sources, although there is a notion that RS data can only complement

rather than fully replace airborne observations, due to the particularities

of oil spills [213]. SAR data have been extensively used for oil spill de-

tection in oceans, because of their all weather and illumination condition

monitoring, wide coverage, and the capability in separating oil from the sur-

rounding water area, under low or moderate wind [214], where oil surface

appears significantly smoother. ENVISAT Advanced SAR (ASAR) data

have been used with an adaptive thresholding algorithm to almost perfectly

label oil spill pixels in Iberian Peninsula [215]. Other recent studies have em-

ployed C-band RADARSAT-1 [216] and European Remote Sensing Satellite

2 (ERS-2) SAR data [217], but also the use of hyperspectral Airborne Visi-

ble / Infrared Imaging Spectrometer (AVIRIS) data [218]. Besides oil spills,

studies have been conducted to detect non-point source pollution, identified

as a core arising issue in water environmental protection [219], such as to-

tal nitrogen, total phosphorous, ammonia nitrogen (NH4-N) and chemical

oxygen demand (CODcr) with multispectral HJ-1A and HJ-1B data [220].

Furthermore, ozone injury to coniferous forest [221] and urban ground-level

nitrogen dioxide (NO2) [222] have been assessed using Ozone Monitoring

Instrument (OMI) and airborne hyperspectral data, respectively.

2.2.5. Trends in distribution, condition and sustainability of

ecosystem services for equitable human well-being

Ecosystem services seem to have declined significantly during the last years

[223], and the need for monitoring and sustainable management has been

prominent. A usual categorization of ecosystem services, following the Mil-

lennium Ecosystem Assessment (MEA) classification, identifies four cate-

gories: provisioning (e.g. food, raw materials), regulating (e.g. carbon

storage), habitat (e.g. maintenance of genetic diversity), and cultural (e.g.

tourism) [224]. Provisioning and regulating services have been widely stud-

ied with RS data [225]; habitat services have been assessed mainly as far as

their presence and condition are regarded, as discussed in previous sections,

whereas cultural services are relatively more challenging to be monitored
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by RS data. Table A.5 lists a number of methods that can be used to

assess ecosystem services and address the related CBD headline indicator.

Focus is given on (i) provisioning (food, raw materials, water) and (ii) reg-

ulating (carbon storage, pest control) services. The discussed methods are

mainly relevant with the Aichi targets 14 and 15 (Table 2.1), on monitoring

ecosystem services and resilience, respectively.

A. Provisioning services

A number of studies have been presented assessing services of food, raw

material, and water provisioning, using a variety of data. Through a data

assimilation algorithm, MODIS LAI product and extracted vegetation in-

dices of NDVI and EVI were able to forecast crop yield, using only a par-

tial year of data, with relative deviations from reference data less than

3.5% [226]. Passive MODIS, AVHRR, and Medium Resolution Imaging

Spectrometer (MERIS), as well as active ASAR data have been used in fur-

ther studies to estimate wheat or maize yield with relative differences less

than 11% [227–230]. On the other hand, lidar data, either airborne [231–233]

or spaceborne [234], have been the primary sources to estimate timber vol-

ume. Jaskierniak et al. [231] proposed the use of mixture models with

distributions based on Generalized Additive Models for Location, Scale and

Shape (GAMLSS) with airborne lidar data, to capture the complexity of a

eucalyptus native forest; correlation with observed stand volume and basal

area values reached R2 = 0.88 and R2 = 0.89, respectively.

On the contrary, mainly passive sensors, have been employed to assess

water quality, clarity, and turbidity in related studies, including Landsat

[235–237], Earth Observing 1 (EO-1) ALI [238], and SeaWiFS [239]. As a

characteristic example, a 20 year archive of Landsat data has proven effective

in providing correlations with field-measured Secchi Disk Depths (SDD) up

to R2 = 0.96, to characterize water clarity in Minnesota lakes, USA [235].

B. Regulating services

Carbon storage and pest control constitute regulating services in whose es-

timation RS data can have a notable contribution. Hyperspectral AVIRIS

data have been used for the derivation of NDVI, Photochemical Reflectance

Index (PRI), and water content indices, and the extraction of carbon and
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water flux maps in a semi-arid area [240]. Regression analysis demonstrated

accuracies with adjusted R2 values up to 0.96 and 0.94 for net carbon and

water fluxes, respectively. Airborne lidar derived measures [241] and Quick-

Bird and ASTER spectral, texture, and transformation features [242] have

also been used to assess carbon stocks. As far as pest control is regarded,

several studies have been presented detecting defoliation and other effects,

which may be used as means to infer the resistance of a study area to pest

attack. Multispectral or hyperspectral data have mainly been employed to

detect affected areas. Time series of VHR multispectral or panchromatic

data have been proposed as successful tool for site managers to evaluate

pine beetle red attack over time [243]; QuickBird time series and extracted

red-to-green band ratios, lead to true positive accuracies 89–93% for three

studied years. Spectral properties of MODIS, AVIRIS, and Landsat data,

together with regression analysis, have been used to assess gypsy moth defo-

liation [244], decline in emerald ash borer-infested areas [245], and mortality

of lodgepole pine to bark beetle attack [246].

2.2.6. Trends in coverage, condition, representativeness and

effectiveness of protected areas and other area-based

approaches

The number of protected areas worldwide are estimated around 133 000, be-

ing increased by 400% since the 1970’s and covering approximately 13.9%

and 3.2% of the terrestrial and marine environment, respectively [6,23,247].

Although delineation of protected areas offers an indicator of conservation

status, these statistics per se can poorly describe the condition within the

protected areas and the effectiveness of the conservation management prac-

tices [23]. RS data can offer valuable input in monitoring of both the pro-

tected sites and their surrounding areas, since the condition, changes, and

pressures of the latter closely, or even equally, affect the former [248]. Differ-

ent parameters may well be assessed by RS methods discussed in previous

sections, e.g. LC or habitat extent, fragmentation, and degradation (Sec-

tion 2.2.1), species invasion or distribution and abundance (Section 2.2.2),

or pressures from unsustainable forestry (Section 2.2.3), with the additional

potential requirement of higher temporal coverage for timely monitoring.

Table A.6 lists a number of methods used to provide conservation assess-
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ment and management guidelines, as indicative examples on how RS meth-

ods can be employed to address needs of the related CBD headline indicator.

Methods reported in this paragraph, as well as related methods from pre-

vious ones, are linked mainly to the related Aichi targets 11, 14, and 15, as

noted in Table 2.1.

ASTER derived vegetation indices have been used in synergy with species

richness and topographic and climatic variables to characterize vegetation

structure and model the spatial variation in woody species richness in a

protected temperate forest in Chile [249]. Developed models predicted fu-

ture tree species richness, identified gaps in current conservation strategies

and suggested the creation of new protected areas. Using Multiple End-

member Spectral Mixture Analysis (MESMA) in Airborne Hyperspectral

line-Scanner radiometer (AHS-160) data, Delalieux et al. [250] delineated

three heather age classes in a Natura 2000 site with OA around 86%, as

contribution to conservation management of natural heathlands. Airborne

multispectral CASI and lidar data have been employed for mapping of pro-

tected cork oak forests and characterization of habitat condition as high,

medium, and low [251].

SAR data have also shown increased potential as tools for conservation

monitoring and planning. TerraSAR-X time series have successfully iden-

tified swath events in protected semi-natural grasslands within 11-day in-

tervals [252], whereas changes in PALSAR backscatter data have mapped

coastline retreat and health degradation in a large mangrove forest [253].

2.3. Conclusions and future considerations

The wide range of methods presented demonstrate the latest advancements

and the potential of remote sensing data in monitoring various biodiversity

related characteristics. These methods have been linked to the respective

CBD headline indicators, in an attempt to indicate methodologies that can

be adopted for the constant monitoring of the progress towards the Aichi

targets. Such linkage has rarely been attempted in the past and intends

to reduce the gap of communication and information sharing between the

remote sensing and the ecology, conservation biology, site manager, and pol-

icy making communities, which has also been identified by previous stud-

ies [23,247,254].
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Despite the wide availability of RS data, their full potential has not yet

been exploited in operational tasks [255], mainly because of the techni-

cal challenges in handling such data by non-experts. Thus, a more effec-

tive two-way communication and know-how exchange between the related

communities is required to fundamentally assist timely and large area bio-

diversity monitoring. An additional burden to wider RS data utilization

remains the cost of certain RS products, including mainly airborne or very

high resolution satellite ones. Free provision of RS data, as has been pro-

posed for certain applications [102], and more systematic use of already

free ones, e.g. Landsat, EO-1 Hyperion, and the upcoming Sentinels, is

expected to boost the use of RS data and improve early and timely moni-

toring. Finally, a lack of standardization for each indicator [27] restricts a

closer connection between user requirements and RS potential and the wide

adoption of robust methodologies for indicator extraction. The creation of

a large scale database of RS data from different bio-geographic regions and

of different spatial, spectral, and temporal characteristics would benefit the

development, evaluation, and selection of methodologies to provide accu-

rate biodiversity indicators in a consistent, harmonised, and standardized

manner.

A wide number of the discussed methods were assisted by or relied on an-

cillary in-situ information, including field measurements, elevation models,

and GIS thematic layers. In many applications, including invasion ecology,

phenology, and ecosystem services [146, 225], in-situ data are indispens-

able for modelling, calibration, training, or validation of the developed RS

approaches. Thus, lack of in-situ data of high quality, or data collected

in inconsistent manner under different sources, periods, or methods, may

severely limit the quality of RS products [4, 63]. Therefore, collection of

in-situ data needs to be harmonized at least within a specific task or study,

whereas the expansion or initialization of large scale national or interna-

tional field data collection initiatives, e.g. the Land Use/Cover Area frame

statistical Survey (LUCAS) [256], will be crucial steps for RS and in-situ

operational integration. Further integration is expected to benefit from the

creation of a large scale knowledge base of in-situ spectral observations,

that will enhance correlation with various types of RS data and modelling

applications.

Active sensor data have been increasingly contributing to vegetation struc-
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ture related applications, including quantification of tree height, stem vol-

ume, basal area, or biomass. Although lidar data have been proven ef-

fective sources for vertical forest structure characterization, certain restric-

tions limit their repeated applicability, including high costs [40], technical

challenges [23], and restricted understanding on interactions between lidar

beams and vegetation [190]. High costs are mainly related to the necessity

of airborne campaigns, under the limited availability of satellite lidar data.

Upcoming missions, such as the Ice Cloud and land Elevation Satellite II

(ICESat II) and Deformation, Ecosystem Structure and Dynamics of Ice

(DESDynI) missions [257], are expected to provide lower cost coverage with

similar performance to aerial surveys. Further training of ecologists and site

managers on the use of lidar data, and further research on beam properties

and interactions with, especially multi-layer, vegetation are expected to be

beneficial for wider applicability. On the other hand, SAR data in vegeta-

tion structure studies have been mainly restricted by temporal decorrelation

limitations, especially in high biomass forests [190]. Missions such as the

Tandem-X and TerraSAR-X platforms, in synergy forming a single-pass

polarimetric interferometer, are expected to counteract temporal decorre-

lation; in addition, new missions, such as the recently launched Sentinel-1,

are expected to provide free high resolution data for further applications.

Furthermore, high performing filtering algorithms can be used to reduce

SAR image speckle noise [258–260]. Synergies of lidar/SAR data remain a

promising field for future research [24].

Hyperspectral data have shown high potential in species discrimination

and vegetation mapping applications. The higher spectral content than mul-

tispectral or active sensors has been able to capture species heterogeneity

and be used as effective tool in plant invasion studies [146], wetland map-

ping [65], and in areas of high habitat and species diversity [23]. Spectral

mixture analysis has been widely employed to take advantage of the high

spectral information for species discrimination [139,148,250], where robust

endmember extraction and anomaly detection algorithms [261–264] can be

beneficial for further applications. A limitation for the wider use of hyper-

spectral data seems to be the restricted availability of such satellite sensors,

necessitating aerial surveys, that often result in higher spatial resolution

data. In particular, satellite data from Hyperion, although having shown

better discrimination ability than multispectral or VHR sensors [131, 132],
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have limited spatial resolution compared with aerial surveys. Finally, techni-

cal challenges faced by the large amount of data are expected to be reduced

with increasing research and further experimentation on feature selection

and dimensionality reduction algorithms.

Multispectral data hold a large potential in numerous mapping and con-

servation planning applications. Sensors such as Landsat and MODIS have

been extensively used in deforestation and vegetation phenology studies, or

other applications requiring time series analysis and a large archive. The

free availability of products and their spectral properties have been ben-

eficial for the wide use in a number of monitoring tasks. VHR sensors,

such as QuickBird and IKONOS, have been employed to surpass the spatial

resolution limitations of the former sensors, although with the expense of

more restricted spectral content. They have been particularly effective in

applications requiring detailed spatial monitoring, e.g. studies of fragmen-

tation [113, 115], whereas providing promising results in habitat mapping

and height estimation through texture analysis, as demonstrated in recent

studies [41, 52, 53] and will be shown more explicitly in the following chap-

ters. VHR sensors like WorldView-2 and the newly launched WorldView-3,

carrying more spectral information than QuickBird or IKONOS, especially

in the short-wave infrared part, appear promising in future biodiversity

monitoring studies. However, the problem of limited monitoring capacity

in cloud covered areas, such as the tropics [4], or in no illumination condi-

tions, remains for optical sensors in general, thus synergies with active data

constitute a field of continuous research.

A large spectrum of algorithms has been employed for processing and

mapping applications. Although the existence of a universally best per-

forming classifier in all mapping tasks is highly unlikely, support vector

machines and artificial neural network classifiers have been widely used

and outperformed other classifiers in comparative studies [67, 78, 79, 147].

Research on high performing generic or task oriented classifiers is an ongo-

ing process. Object based image analysis, originated by the development

of segmentation approaches [86] and including contextual information to

classification tasks, has outperformed pixel-based classifications in numer-

ous applications [147]. This approach has encouraged the use of, develop-

ment of, and current research on a number of segmentation (multi-temporal,

multi-spectral, multi-resolution) and feature generation approaches, includ-
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ing neighbourhood statistics and texture measures. The use of hyperspec-

tral data, backscatter coefficients, and large number of generated spectral or

texture features, in both pixel- or object-based approaches, has necessitated

the use of feature selection and dimensionality reduction algorithms [265].

Principal component analysis and minimum noise fraction have been among

the most widely used ones [131,194,195,221], with the selection of the most

appropriate among those and others depending on the specific application.

A large number of such high performing processing and classification algo-

rithms will be employed in the developed methodologies, discussed in more

detail, and evaluated in the next chapters of the thesis.

As has been recognised, fusion of both active and passive data sources are

promising [23], but also a great challenge for future research tasks [190,266].

Wider use of existing and upcoming remote sensing data in operational

tasks, integration with high performing algorithms, and broader dissemina-

tion of research outcomes, will enhance the robustness and extent of biodi-

versity monitoring and the assessment of the progress towards the achieve-

ment of the established preservation targets, at a global scale.
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3. Vegetation height estimation

through texture analysis

3.1. State of the art and open issues in height

estimation using remote sensing

Vegetation height is a crucial parameter in several applications related to

biodiversity monitoring, including land cover and habitat landscape analy-

sis and biomass estimation [24, 28, 33, 34]. The use of remote sensing data

in vegetation height estimation studies has increased during the last years.

As discussed in Section 2.2.3, lidar sensors have been proven the most ac-

curate remote sensing sources for retrieving vegetation structural informa-

tion [188–190], performing similarly well in both aerial and spaceborne plat-

forms [257]. Lidar data have been extensively used for height estimation

both individually [35, 37, 189, 267] and in synergy with data from other ac-

tive or passive sensors [31,268,269]; however, their cost per unit area can be

significantly high [38]. Active sensor alternatives mainly include the use of

SAR interferometry [36, 192, 270, 271] or radargrammetry [272, 273], where

a number of two or more images of the same area need to be acquired and

processed.

Less cost and resource demanding approaches have been sought in the use

of passive satellite sensors, usually applying regression analysis to model veg-

etation height based on spectral intensity or texture features. For instance,

band digital number values of Landsat ETM+ and IKONOS images were

directly related to height of Sitka spruce plantations through linear mod-

els in [38], achieving R2 values up to 0.87 and residuals within the range

±2 m, acceptable for forest management purposes. Anderson et al. [39]

used spectral indices calculated from Landsat imagery, namely Normalized

Difference Water Index (NDWI) and Optimized Soil Adjusted Vegetation

Index (OSAVI), to estimate corn and soybean height.
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Texture features, including Gray Level Co-occurrence Matrix (GLCM)

statistics (Haralick features) [274], Markov random fields [275], or wavelet

transforms [276], have been widely employed in passive remote sensing. In

vegetation height estimation in particular, simple texture features, including

the mean [277] and the standard deviation [278] of band reflectance values

within a moving 3×3 pixel window, have been employed for the approxima-

tion of the canopy height of coniferous trees. Similar features have been cal-

culated by Wolter et al. [40] from SPOT-5 (Satellite Pour l’Observation de

la Terre (French)—Satellite for Earth Observation) images to characterize

tree height in hardwood and coniferous forests; separate regression analyses

for each type provided satisfactory predictions, however no single function

was found to provide accurate results for both forest types. GLCM texture

features calculated from IKONOS-2 imagery have been related to height of

oak, beech, and spruce trees with R2 values of up to 0.76 through univariate

linear regression models [41]. Since R2 values—although providing useful

indication on the amount of data variability explained by a model—do not

provide sufficient proof of model fit, the predictor significance, residuals, and

the relative standard error of the height model were additionally examined.

The predictors were found statistically significant (p value < 0.01), whereas

the residuals followed normal distribution, thus, supporting goodness of fit;

in addition, the standard error Er was 10%, less than the 15–20% typical

forest inventory error for stand management planning purposes [279]. In

the same study [41], when reflectance data were used instead of texture,

the model accuracy was significantly lower, with R2 values between 0.3 and

0.66, demonstrating the advantage of the use of texture features over simple

reflectance data. In a different approach, an object-based height estimation

method in multiple scales was proposed by Chen et al. [280], where spectral

and texture features and shadow fraction were extracted from a QuickBird

image for each object; compared with pixel-based analysis, more accurate

estimations were achieved, in most scales.

In this chapter, an object-based approach is proposed to characterize the

height of a mixture of tree, shrub, and heath vegetation species, based on

texture analysis of very high resolution (VHR) imagery. A number of tex-

ture features are proposed, most of which new to height estimation studies.

Texture features are preferred over simple reflectance data, on the one hand,

due to their superior performance in vegetation height applications [41], and
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on the other hand, due to their ability to differentiate among spatial patterns

of objects with different vegetation structure, instead of providing averaging

reflectance values; the latter would be preferable in tasks such as estima-

tion of vegetation cover over bare ground. With the objective to provide

a valuable contribution to habitat monitoring applications, the problem is

formulated as a classification—rather than regression—task, where height

classes able to discriminate among different habitat categories with similar

spectral characteristics are adopted and directly extracted. In particular,

the recently introduced General Habitat Categories (GHC) [34] are used as

the reference habitat mapping framework based on which the studied height

classes are defined. GHC have been proposed as a practical and transmissi-

ble framework for habitat surveillance and monitoring, based on life forms.

Recording of vegetation structure is a key element in GHC methodology,

facilitating the interaction with land cover categories and enhancing habi-

tat mapping through remote sensing observations [51]. In particular, seven

height classes are defined in GHC as the main characteristic to discriminate

among different Tree and Shrub (TRS) species, namely: (i) dwarf shrubs

below 0.05 m (Dwarf chamaephytes — DCH); (ii) undershrubs 0.05–0.3 m

(Shrubby chamaephytes — SCH); (iii) low shrubs, buds between 0.3–0.6

m (Low phanerophytes — LPH); (iv) mid shrubs, buds between 0.6–2 m

(Mid phanerophytes — MPH); (v) tall shrubs, buds between 2–5 m (Tall

phanerophytes — TPH); (vi) trees between 5–40 m (Forest phanerophytes

— FPH); and (vii) trees over 40 m (Mega phanerophytes — GPH).

Whereas the majority of the previously discussed height estimation stud-

ies focused on tree species with heights of several metres, the proposed

approach is extended to a range of less than 5 cm to some tens of metres.

Furthermore, a variety of vegetation types are involved, ranging from decid-

uous and coniferous trees to shrubs and heathland. Images corresponding

to both the peak of productivity and the decline of the vegetative period

are included, for comparative study. Thorough analysis of the potential of

the proposed features for height estimation is performed through a variety

of data processing and classification techniques. Classification accuracy to

the GHC classes is evaluated both in terms of overall accuracy and kappa

coefficient. Besides the evaluation of individual features, research extends to

the assessment of feature synergies and the identification of high performing

combinations, in order to suggest specific features from both images that
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Table 3.1.: Problem statement of Chapter 3.

• Objective: Classification of landscape objects of a mixed vegetated area to
height classes related to habitats.

• Input: (i) Very high resolution multispectral satellite images from the peak
and the decline of vegetative period; (ii) land cover map of the area, to
delineate objects and mask out irrelevant parts of the area; (iii) Canopy
Height Model from lidar data used for validation.

• Methodology: (i) Extraction of texture features from the satellite images
used for classification; (ii) employment of a number of data processing and
supervised classification techniques; (iii) evaluation of individual features and
images, as well as identification of highly performing synergies.

• Output: Classification of vegetation objects to GHC classes indicating
different height categories.

• Evaluation measures: (i) Overall, Producer’s, and User’s accuracies; (ii)
kappa coefficient.

provide accurate vegetation height discrimination, with reduced processing

time and resource requirements in both feature extraction and classifica-

tion. Table 3.1 summarizes the statement of the problem being addressed,

whereas Fig. 3.1 provides a flow chart of the overall methodology described

in this chapter.

3.2. Study area and data

The study area is part of the Ederheide and Ginkelse heide, centred at

latitude 52◦01′34′′N and longitude 5◦43′03′′E. It is located in the east of the

Netherlands near the city of Ede and covers 16 km2 (Fig. 3.2). It lies within

the National Park and Natura 2000 protected site Veluwe and is included

on the heathland Ginkelse area. It is part of the largest end moraine in the

Netherlands originating from the penultimate glacial period, constituted by

sand dune areas alternated with heathlands and dry forests, and mold by a

long history of intensive land use [281]. Besides dry heathland vegetation,

the area consists mainly of grassland, herbaceous and shrub vegetation, and

forest, whereas small areas of open sand are also present.

Two WorldView-2 multispectral images of the area have been used. One

corresponds to the maximum of biomass (peak flush), captured on June 3,

2011, whereas the other to the end of the vegetative period (post flush),
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Figure 3.1.: Flow chart of the overall methodology proposed for vegetation
height estimation.

September 28, 2011. Each image has 8 spectral bands, lying in the visi-

ble and near-infrared (NIR) part of the electromagnetic spectrum, namely

Coastal (400–450 nm), Blue (450–510 nm), Green (510–580 nm), Yellow

(585–625 nm), Red (630–690 nm), Red Edge (705–745 nm), NIR1 (770–895

nm) and NIR2 (860–1040 nm), with a spatial resolution of 2 m. The avail-

able images have been acquired as georeferenced, co-registered, orthorec-

tified, and atmospherically corrected products. Both images are shown in

Fig. 3.2) and in greater scale in Appendix B (Fig. B.1 and B.2).

A land cover (LC) map of the selected area was used to delineate the ob-

jects (landscape patches) within the image and identify the vegetated areas
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(a) (b)

Figure 3.2.: The study area in the Netherlands. The WorldView-2 images
from June 2011 (top) and September 2011 (bottom) are de-
picted in true colour (Red, Green, Blue bands), overlaid by the
segment lines from the topographic land cover/use map.

of interest for this study. Data were obtained from the sixth version of the

Dutch National Land Use database (Landelijk Grondgebruiksbestand Ned-

erland – LGN6), produced by the integration of satellite images (e.g. Land-

sat) collected in 2007–2008 with Dutch topographical maps (Top10vector)

and databases of geographical data and natural areas [282]. Since the de-

lineation of objects with high spatial accuracy is a prerequisite to enable

the calculation of height information from texture analysis in the proposed

methodology, the vector based Top10vector maps were used instead of the

25 m resolution grid based LGN6 product. Besides, the LC classes defined

in Top10vector, although broader than in LGN6, where higher differentia-

tion in agricultural crops is provided, were appropriate for the scope of this

study.

A Canopy Height Model (CHM) has been employed as reference data

for the validation of the approach, derived from lidar data, as described

in [283, 284]. The original lidar data from the AHN-2 database (actual

height model of the Netherlands) used in this study were acquired in spring

2010 by Fugro Aerial Mapping BV, minimizing the effects of leaves on the

estimation of the CHM. The average number of points per square meter
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were approximately 15, whereas the absolute height accuracy for a single

point was approximately 3 cm. After processing the lidar data to extract a

height value for each point [283] and removing points with extremely high

values representing electric wires or flying birds, the lidar point clouds were

rasterized to a grid by assigning to each 1 m × 1 m grid cell (pixel) the

maximum height value of the respective (around 15) lidar points [284]. The

CHM was then rescaled to pixels of 2 m × 2 m, by averaging the four 1 m

× 1 m previous pixels included to each new one, to meet the resolution of

the satellite imagery.

The provided LCLU map of the area is used as segmentation layer that

splits the satellite images into objects. Among the LC classes of the map,

objects representing (i) tree nursery, (ii) deciduous, (iii) coniferous, and (iv)

mixed forest, and (v) heath vegetation are selected, as vegetated objects

with invariant height during the period between the lidar and WorldView-2

data acquisitions, in order to ensure evaluation consistency. The remaining

objects of non-vegetated (e.g. sand) or vegetated with variant height (e.g.

grassland, cropland) classes are masked out and excluded from the process.

All available data, i.e. the two WorldView-2 images, the CHM, and the LC

map are shown in Appendix B.

Cloud contaminated pixels in the satellite images are identified through

a simple threshold technique, similar to [285], using the coastal band. A

threshold value is defined experimentally, through visual inspection of the

cloud-contaminated June image, and pixels with reflectance values above

this threshold are identified as clouds. A similar cloud mask is not created

for the September image too, since the latter was captured in clear-sky

conditions.

3.3. Texture features

A number of texture features are calculated per selected object, for each

individual band of the satellite images. Although the panchromatic band of

VHR data is usually employed in texture analysis tasks [40, 41], such data

were not available in this study and solely the multispectral bands were

used instead.

A number of 24 texture features are calculated for each object per image

band to characterize intra-object variability and heterogeneity (Table 3.2).
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For a specific feature, a texture value is calculated for each pixel of an ob-

ject, based on the values of its surrounding pixels within a square moving

window of predefined size. The average of the calculated values of the pixels

is considered as the value of the object for the specific texture feature and

image band. The process is repeated for every selected object and all fea-

tures and bands. For the WorldView-2 images, pixels previously identified

as clouds are excluded from the analysis. For both those images, the same

pixels are masked out, although the September one has no cloud contami-

nation, in order to avoid inconsistencies in texture parameters and permit

further comparative or synergistic analysis between the images. A detailed

description of the extracted features follows.

3.3.1. Local Variance

Around each pixel of an object, a small square area is considered, defined

by the selected size of the moving window. The variance of the intensity

values of the pixels within the area, for the image band under consideration,

is calculated and assigned to the central pixel. The extracted values of

all pixels of the object are then averaged to constitute the object value.

Windows of 3×3 and 5×5 pixels have been employed for the calculation of

local variance features, to take advantage of the high image resolution, and

capture and express local variations in as much detail as possible. Under the

current image resolution, the selected windows, covering areas of 6 × 6 m2

and 10× 10 m2, appear small enough to capture variations within the same

habitat and restrict edge effects with neighbouring ones, and large enough

to avoid expressing variability within the same plant, e.g. a large tree. In

case images of higher resolution were available, e.g. airborne ones, larger

windows—in pixels—might be more preferable, keeping the physical size of

the covered areas similar—in m2; on the contrary, in case of coarser images,

even windows of the smallest size possible, are expected to provide feature

of less discriminatory power than the present ones. As a note on the feature

computational complexity, for each central pixel surrounded by a window of

n×n pixels, the only possible loop might involve the n2 operations required

to calculate the difference between each pixel and the mean pixel value

in the window. Thus, complexity of O(n2) can be considered; however,

parallel execution of the operations may reduce this upper limit, depending
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Table 3.2.: The 24 texture features calculated from each band of the satellite
images.

Feature Window (pixels) Parameters

Local Variance

LE1 3× 3

LE2 5× 5

Local Entropy

LH1 9× 9 image band scaled to [0, 255]

LH2 9× 9 window discretized in 8 values

LH3 9× 9 object discretized in 8 values

LH4 3× 3 image band scaled to [0, 255]

LH5 3× 3 window discretized in 8 values

LH6 3× 3 object discretized in 8 values

Local Entropy Ratio

LHR1 9× 9 (13× 13) include inner pixels

LHR2 9× 9 (21× 21) include inner pixels

LHR3 9× 9 (13× 13) exclude inner pixels

LHR4 9× 9 (21× 21) exclude inner pixels

Local Binary Patterns

LBP1 radius 1 rotation invariant

LBP2 radius 1 rotation variant

LBP3 radius 2 rotation invariant

LBP4 radius 2 rotation variant

Local Ternary Patterns

LTP1 radius 1 rotation invariant

LTP2 radius 1 rotation variant

LTP3 radius 2 rotation invariant

LTP4 radius 2 rotation variant

Local Binary Patterns variation

LTBP1 radius 1 rotation invariant

LTBP2 radius 1 rotation variant

LTBP3 radius 2 rotation invariant

LTBP4 radius 2 rotation variant

on computational environment and memory access.
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3.3.2. Local Entropy

Entropy, initially used in information theory as measure of randomness [286,

287], can offer an indication of variability and heterogeneity of an object.

Within a square window, local entropy is calculated as

LH(c) = −
k∑
i=1

p(i) log2

(
p(i)

)
, (3.1)

where k stands for the total number of different pixel values within the

window and p(i) indicates the frequency of appearance of value i, i.e. the

ratio of the number of pixels with value i to the total number of pixels

in the window, and assigned to the central pixel of the window, c. In a

moving window of n × n pixels, n2 pixels are serially searched to identify

the k distinct values. It is k ≤ n2, thus a maximum of n2 iterations are

required for entropy calculation based on the formula above. Therefore,

O(n2) can be considered as the complexity of the calculation of entropy for

each moving window in an object.

Pixel intensities of the images are expressed as float numbers. In such

case, insignificant value fluctuations, potentially by noise affliction, would

be considered as different values and could result in unwanted or indifferent

outcome entropy values. As a countermeasure, scaling of pixel intensity

values is applied, three alternative ways being tested: (i) The entire image

band is scaled to integer values in the range [0, 255]; (ii) the values of the

pixels of a specific object are discretized in 8 values; and (iii) the values of

the pixels within each window are discretized in 8 values. Moving windows

of 3 × 3 and 9 × 9 pixels are tested as trade-off cases, the former aiming

at capturing small spatial extent variations, whereas the latter at providing

wider variety of discrete values. Windows of this size, including 9 and 81

pixels, respectively, are expected to provide non-robust features under the

first case of image scaling to 256 values. Surprisingly, entropy calculated

with a 3 × 3 pixel moving window was proven the most effective among

features with other windows in a recent habitat classification study, using

imagery of the same resolution to the present study [53]. A possible explana-

tion is the existence of high spatial correlations within the image, especially

after the scaling to 256 values, which resulted in a histogram of very few

distinct values, e.g. two to four, within each moving window, making the
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results by the entropy feature sensible. This reported outcome triggers the

extraction of feature with parameters of case (i) in this study, for evaluation

and comparison with the theoretically more robust parameters of cases (ii)

and (iii) mentioned above.

3.3.3. Local Entropy Ratio

The ratio of the entropy values (LHR) of two concentric windows is ex-

tracted, aiming at characterizing relative variations within a small area

compared with its surrounding one. For each pixel, two concentric win-

dows are formed and local entropy value is calculated for each. For each

pixel, c, LHR is defined as the ratio of the entropy value of the smaller inner

window, LHin(c), to the entropy value of the larger outer one, LHout(c),

LHR(c) =
LHin(c)

LHout(c)
. (3.2)

Entropy values are calculated following the approach of scaling image bands

to [0, 255] integer values. Two variations of LHR calculation are tested: in

the former, the pixels of the smaller window are included in the calculations

of the entropy of the larger one surrounding it, whereas in the latter, they are

excluded to enhance the extraction of more independent values. Windows

of 9 × 9 pixels are used as the small ones, as the size favouring the largest

variability between the ones used in Section 3.3.2 for LH, whereas 13 × 13

and 21 × 21 are tested as the large windows, as indicative example sizes

to study the effects of almost doubling the area and each dimension of the

initial window, respectively.

3.3.4. Local Binary Patterns

Local Binary Patterns (LBP) [288] are calculated by comparing the inten-

sity value of a pixel with the values of its surrounding ones in a circle of

predefined radius, measured in pixels. Image bands are scaled to integer

values in the range [0, 255], prior to calculation. Starting from the pixel on

the left of the central one and moving in a circular clockwise order, each

pixel is flagged with value 1 in case its intensity value is larger than the one

of the central pixel, or 0 otherwise, and a binary number of 1 and 0 values is

formed. This number, converted to decimal, is assigned to the central pixel.
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A rotation invariant variation of the feature is also calculated, by consider-

ing every surrounding pixel in the circle as the starting point, calculating

the respective binary and, sequentially, decimal numbers, and assigning the

largest one to the central pixel. As can be noticed, 0 binary values may arise

both in homogeneous areas, with equal intensity values between the central

and the surrounding pixels, and in heterogeneous areas, in cases where the

intensity values of the surrounding pixels are smaller than the values of the

central one.

As countermeasure for this confusion, two variations of the feature are

tested, defining a range d in intensity values. In the first variation, local

ternary patterns (LTP) [289] are extracted. Surrounding pixels with values

within the range ±d compared with the central pixel are flagged with value

1, whereas pixels with values smaller than the central pixel value by more

than d are flagged with 0, otherwise with 2. Values in the ternary system

are created, i.e. with number 3 as basis, and converted to decimals. In

the second variation (LTBP), surrounding pixels with values within the ±d
range compared with the central pixel, are flagged with value 0, otherwise

with 1, no matter whether they are larger or smaller than the central value.

The introduction of range d in LTP and LTBP variations attempts to reduce

unwanted effects caused by small variations in neighbouring values due to

noise affliction, compared with LBP features. In the experiments described

below, d was conservatively defined as 0.5% of the difference between the

maximum and minimum band values, in order to interpret as noise and

handle minimum differences of 1 in the scale of [0,255]. Larger values of

d could be applied, although under a higher risk of misinterpreting actual

band value variations as noise.

As a note, homogeneous areas are expected to have smaller values than

heterogeneous ones in LBP and LTBP features, whereas they will tend to

have values between the two extremes in LTP, since more intermediate val-

ues of 1 are expected to be found in the ternary numbers in homogeneous

areas. Radii of 1 and 2 pixels away from the central pixel have been tested

for each feature, together with both the rotation variant and invariant ap-

proaches. Considering a moving window of n×n pixels (n ≡ 2r+1, where r

the defined circle radius), less than 4n pixels (the pixels of the square enclos-

ing the circle around the central pixel) are compared with the central one,

for the extraction of the binary or ternary numbers. Thus, the complexity
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of the calculation of LBP-based features can be considered O(n). Although

theoretically faster than the variance or entropy features, the practical dif-

ference in computational time is negligible, or even favourable to the latter

features, due to the very small size of moving windows/circles used.

3.4. Data processing and classification

3.4.1. Handling of indefinite values

In order to restrict the calculation of texture measures to the area of each

individual object and avoid influences and biases from neighbouring objects,

all pixels considered for the calculation of the texture features, both central

and those belonging in the defined surrounding windows, are required to

belong to the specific object under consideration. In case this requirement is

not fulfilled for a calculated feature, its value remains indefinite. This results

in objects with indefinite values in certain texture features (e.g. LHR),

whose calculation requires surrounding windows larger than the dimensions

of the object, or all texture features, when one of the dimensions of the

object is restricted to solely one or two pixels. As an initial step prior to

the classification to a height category, small objects with all their texture

values indefinite are excluded, since no information for the classification is

available.

For objects with partially missing information, where only some of their

texture values are indefinite, three distinct approaches are followed: (i)

exclusion of the features with missing data from the classification process for

all objects; (ii) exclusion of the objects with missing data; or (iii) imputation

(filling in) of the missing data with approximated values. The first approach

has the advantage of computational simplicity, but the remaining feature

set may have significantly less discriminatory power than the entire set.

The second approach, known as listwise deletion, case deletion or complete-

case analysis [290], although similarly little time and processing demanding,

it may bias or affect the representativeness of the results. The latter is

supported by the fact that the assumption that missingness is not related

to the observed and missing variables, i.e. missing-completely-at-random

(MCAR) assumption [291], is not valid for the missing data. For instance,

objects with missing values in features calculated with 9 × 9 pixel moving

79



windows (e.g. LH1), will certainly have missing values in features with

13 × 13 pixel windows (e.g. LHR1), even though their values per se are

completely independent. In addition, listwise deletion reduces the number

of finally classified objects.

Three approaches for data imputation are evaluated, namely hot deck

imputation [292], Amelia II [293], and Iterative Robust Model-based Impu-

tation (IRMI) [294]. Hot deck imputation, drawing values from an uncondi-

tional distribution, where the missing data are filled in by randomly selected

values among the observed ones, for each feature, preserves the variability

of the values, but may distort a number of measures of association among

variables, such as inter-correlations [290]. The two multiple imputation

techniques, Amelia II, based on the assumption that the values are drawn

from a multivariate normal distribution, and IRMI are employed to coun-

teract this drawback. From each technique, five complete sets, including

the values of all features from every image band, are created, averaged into

one set to be used in the classification process. Rubin [295] estimated that

the efficiency of a data set where m imputations are performed, compared

with one of infinite imputations, is (1+λ/m)−1, where λ stands for the ratio

of the number of missing values to the total number of values in the data

set. In the present study, the ratio of missing data to the complete data

is 0.0832. Therefore, five imputations have been selected as a good trade-

off between efficiency and processing time, since, according to the formula

proposed by Rubin, efficiency of around 98.32% is achieved.

3.4.2. Outlier removal

Having a complete data set, particularly after performing imputation of

indefinite values, it may be essential to introduce a check mechanism for

detection of outliers, i.e. objects which appear to be inconsistent with the

remaining objects of the site, based on their texture feature values [296].

Among the variety of proposed approaches for the detection of outliers in

different applications [297–300], an effective and conceptually simple box

plot approach [301] is tested, detecting values in a large distance from the

median value, for each texture feature; objects with such extreme values

are considered outliers and removed. In particular, the interquartile range,

DQ, is calculated, as the distance between the upper, Q3, and lower, Q1,
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quartiles, DQ = Q3−Q1, and values, v, that lie 1.5 times the interquartile

range lower or higher than the lower and higher quartile, respectively, i.e.

v < Q1 − 1.5DQ or v > Q3 + 1.5DQ, are considered outliers. Further

experiments are conducted using (i) box plot for multivariate data based on

Mahalanobis distance [302], (ii) an adjusted box plot approach considering

a measure of skewness of the distribution, termed medcouple [303,304], and

(iii) modified Z-scores [305].

3.4.3. Data normalization

Since the range of values may vary among the different texture features—

e.g. some values of LTP may be ten orders of magnitude larger than some

values of local variance—, appropriate normalization of the data may prove

effective to prevent texture features with larger values from having higher

impact than ones with smaller values during the classification process. The

linear (i) zero-mean and (ii) scaling to the range of [0, 1], and the non-linear

softmax scaling feature normalization approaches [306] are tested, applied

per feature for each image. In zero-mean normalization, the normalized

values of a feature X are calculated as

Zi =
Xi − µ
σ

, (3.3)

where µ and σ stand for the mean and standard deviation of the initial

observed values Xi of feature X, i = 1, . . . , N . Under scaling to the range

of [0, 1], feature values are calculated as

Mi =
Xi −Xmin

Xmax −Xmin
, (3.4)

where Xmin and Xmax represent the minimum and maximum values of

feature X, respectively. Softmax scaling is performed by inserting the zero-

mean normalized values Zi derived by (3.3) in a sigmoid function, the new

feature values being calculated as

Si =
1

1 + e−Zi
. (3.5)
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3.4.4. Data transformation for dimensionality reduction

Apart from using all texture features during the classification, a number

of data transformation approaches for dimensionality reduction (DR) are

tested to transform the original data and reduce the number of final features

used for each object. DR is used to remove information redundancies and

notably reduce memory requirements and processing time during the classi-

fication process, without significant loss of the original information. Several

popular data transformation approaches in remote sensing applications are

evaluated, mainly unsupervised DR methods, taking under consideration

solely the feature data space and not the involved classes, such as Princi-

pal Component Analysis (PCA) [307–309], Locality Preserving Projections

(LPP) [310], Neighborhood Preserving Embedding (NPE) [311, 312], and

Isomap (isometric feature mapping) [313]. In addition, Fisher’s Linear Dis-

criminant Analysis (LDA) [314] is tested, as supervised approach, to reduce

dimensionality based on a class separability criterion. Using label informa-

tion, LDA is expected to perform better than the unsupervised approaches.

3.4.5. Feature selection

Whereas data transformation requires the extraction of all texture features

to perform dimensionality reduction and reduce the classification complex-

ity, feature selection aims at identifying a subset of high performing features

that will reduce the processing cost of both feature extraction and classifi-

cation processes. Filter approaches are followed in this study, where feature

selection is based on an optimality criterion independent of the classifica-

tion scheme applied, rather than wrapper approaches—where the classifier

employed in the learning process is also used (wrapped) during the feature

selection—, in order to allow flexibility in the classifier selection, as well as

avoid the generally higher computational cost of wrapper approaches [315].

During the feature selection process, a number of feature subsets of the

original set are evaluated and the one that better satisfies the optimality

criterion is selected, with the aim to remove irrelevant and redundant infor-

mation. Several approaches have been proposed for both the evaluation and

search methods of the feature sets [316]. In this study, a correlation- and a

consistency-based criteria are tested for the evaluation of the subsets. The

former, Correlation-based Feature Selector (CFS) [317], favours the selec-

82



tion of feature sets with high correlation with the class (label) variable and

low inter-correlation between each pair of features. The latter assigns an

inconsistency rate to each considered feature set [318], based on the degree

objects with similar feature values belong to different classes, favouring the

most consistent sets. As far as the search method is concerned, instead of

conducting exhaustive search among the 2192 − 1 non-empty feature sets

for the June and September datasets and 2384 − 1 sets for the image syn-

ergy dataset, two heuristic approaches are tested, searching for the optimum

subset among a restricted number of evaluated ones. In particular, (i) best-

first [317,319] and (ii) fixed-width Linear Forward Selection [320] employing

Sequential Floating Forward Selection [321] search methods are applied.

3.4.6. Classification

Classification is performed on object basis. Each object, i.e. each segment

on the LC map, is characterized by a vector of texture feature values. For

each feature, the average value of the pixels belonging to the object of

interest is considered. Since the classification is based on the texture feature

values, objects which have at least one texture feature assigned to them (i.e.

not all values are indefinite) are classified to one of the seven GHC height

categories reported in Section 3.1. Supervised classification is performed,

using the texture values as the classification features, and the height classes

derived by averaging the reference CHM values of the pixels of each object

as label classes.

A number of classifiers are applied to test the discriminatory potential

of the extracted features. Classifiers based on decision trees and support

vector machines (SVM) [316], are employed due to their extensive use and

reported accuracy in various remote sensing applications [322–326]. Two

basic decision tree implementations, namely an implementation of C4.5 al-

gorithm introduced in [327], J48, and a reduced-error pruning implementa-

tion [316], REPTree, are used as individual classifiers. In addition, Random

Forests [328], Bagging [329], and AdaBoost.M1 [330] approaches are em-

ployed as ensemble tree classifiers to reduce the generalization error and

improve the classification performance of the individual ones. After exper-

imentation, 50, 100, and 20 trees were found as good trade-off numbers

between accuracy and time complexity for the Random Forest, Bagging,
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and AdaBoost.M1 ensembles, respectively. J48 and REPTree are used as

base classifiers in Bagging and AdaBoost.M1 implementations. In addition,

two classifiers based on SVM with linear kernel, with and without fitting

logistic models to the output [331,332], are also tested.

3.4.7. Result evaluation

During all experiments in this study, 10-fold cross-validation was employed

to evaluate the classification results, as one of the most widely used ap-

proaches [329,333–335], suggested over holdout, bootstrap, and cross-validation

with different numbers of folds [336]. In particular, stratified 10-fold cross-

validation was applied, as the variant of the method that provides more

consistent results over repetitive evaluations [316]. Under this approach,

the object dataset is randomly split in 10 non-overlapping parts (folds),

each fold trying to reflect the proportion of each class that the full dataset

has, i.e. containing around one tenth of the objects from each class. Then,

the classification is run ten times, each one using a different fold for testing

and the rest nine for training, i.e. every object is used for testing exactly

once. The final evaluation of the classifier is computed by averaging the per-

formances of the individual ten extracted classifiers. To ensure consistency

among results and allow comparison of methods, feature sets, and classifiers,

the same folds were created for all experiments involving the same number

of objects.

3.5. Results and Discussion

In the experiments of this study, vegetation height estimation is directly

related to habitat mapping requirements. In particular, the height classes

defined in the GHC taxonomy [34] as the main characteristic to discriminate

among different Tree and Shrub (TRS) species, are used, as presented in

Section 3.1. For each object, i.e. each segment on the LC map, the average

vegetation height is calculated, from the values of its pixels in the CHM

used as reference layer. The calculated height is mapped to the respective

height class and the latter is assigned to the object. Fig. 3.3 depicts the

average height for each object belonging to the GHC categories (Section

3.1).
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Figure 3.3.: Average height for each object of interest based on the CHM.
‘Other’ indicates objects of different classes than the GHC stud-
ied ones.

Following the extraction of features and the exclusion of objects having

all their feature values indefinite, several experiments were conducted, in-

cluding the different datasets created by the feature extraction and data

processing approaches discussed in the previous section. The initial number

of objects, excluding the ones having all their values indefinite, were 877,

including: (i) 26 DCH, (ii) 59 SCH, (iii) 10 LPH, (iv) 43 MPH, (v) 68 TPH,

and (vi) 671 FPH objects. As expected for the specific study site, no GPH

objects (with trees over 40 m) were found. In cases where either outlier re-

moval or listwise deletion was applied, the number of remaining objects was

reduced; however, an adequate number of objects from each aforementioned

height class remained in the final set.

3.5.1. Experiments with the full feature set

A. Classification accuracy

Fig. 3.4 draws the highest overall classification accuracies (OA) achieved,

from any classifier, for datasets derived by applying different combinations

of the data processing methods discussed previously. Data generated from
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(i) solely the June, (ii) solely the September, and (iii) both images were

evaluated. Overall classification accuracy represents the percentage of ob-

jects correctly classified among the total number of objects in the dataset.

Amelia II, box plot using the Mahalanobis distance and zero-mean methods

are displayed in Fig. 3.4 as indicative examples of value imputation, outlier

removal, and data normalization, respectively.

Figure 3.4.: The best classification accuracies acquired for certain data pro-
cessing methods, indicated by a number of capital letters. Feat:
exclusion of texture features having at least one indefinite value;
Obj: exclusion of objects having at least one indefinite value;
Norm: zero-mean normalization; MI: multiple imputation with
the Amelia II method; OR: outlier removal with the Maha-
lanobis distance-based box plot method.

As readily seen, the proposed texture features lead to successful discrim-

ination of the 6 vegetation height categories with accuracies starting from

around 84% and approximating 92%. The results demonstrate the ability of

the proposed texture measures applied in VHR optical imagery in acting as

surrogates of principal sources of vegetation height information, such as in-

situ or lidar data. The lowest accuracies were observed in datasets including

all 877 objects (‘Feat’, ‘Feat-Norm’, ‘MI’, and ‘MI-Norm’ datasets), whereas

the highest ones in cases where listwise deletion was applied in objects with

at least one indefinite value (‘Obj’ and ‘Obj-Norm’ datasets). Excluded ob-

jects in the latter case were ones with dimensions smaller than a 21×21 pixel

window, the largest surrounding window employed in the texture analysis
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features. This result indicates that objects of satisfactory extent favour the

extraction of more discriminatory features than small objects, making the

latter more difficult to classify.

The set of features extracted from the June image seems to offer higher

discriminatory capabilities than the one from the September image (Fig. 3.4).

Evaluating the differences between features from the June and the respec-

tive ones from the September image for the listwise deletion (‘Obj’) datasets,

through paired-sample T-tests [337], it was found that pairwise differences

were statistically significant at the 5% level for 180 out of the total 192 fea-

tures. When features from both images were used in synergy (Jun-Sep), the

classification accuracy was higher than the September image, in most cases.

However, in half the cases, it was lower than the June image, indicating

the existence of high correlations among the features, confusing or overfit-

ting the classifier and training it in too much detail that its generalization

performance was decreased.

Comparing the different data processing approaches, imputation of indef-

inite values had a small positive effect in accuracy, compared with a simple

exclusion of texture features with indefinite values. Considering that after

the exclusion of such features, the remaining data correspond to features

calculated using a 3×3 pixel surrounding window (larger windows return

indefinite values for small objects), it is inferred that significantly localized

variations of texture are proven crucial for vegetation height characteriza-

tion. This conclusion encourages the systematic use of VHR imagery to

vegetation height estimation applications. Although results from imputa-

tion using Amelia II are drawn, IRMI and hotdeck imputation approaches

were also tested, the former providing similar results, whereas the latter

slightly inferior.

Data normalization seems to provide insignificant influence in classifi-

cation performance, in general, compared with the respective approaches

where it was not used. All normalization techniques described in the previ-

ous section were tested, providing comparable classification results.

On the contrary, outlier removal methods seem to provide added value to

the classification process, improving the achieved accuracies by around 2.5%,

compared with the respective methods where outliers were not removed,

under the expense of discarding around 70 objects considered as outliers.

All outlier detection methods discussed in the previous paragraph provided
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similar results to the ones through the box plot with Mahalanobis distance

shown.

Cohen’s kappa coefficient, κ, has been extensively used in remote sensing

literature as measure of accuracy of a classifier, or more precisely, to com-

pare the achieved results with a random classification [113,205,250,338]. Al-

though originally proposed to assess the degree of actual agreement among

experts, or classifiers in a similar sense, compared with their random agree-

ment [339], it has been extended to evaluate classifiers against the ground

truth observed values, as an indication of randomness. κ is defined as

κ ≡ Po − Pc
1− Pc

, (3.6)

where Po stands for the proportion of agreement between classified and

observed objects, i.e. the overall accuracy of the classifier; Pc represents the

proportion of the expected agreement by chance, calculated as

Pc =
C∑
i=1

NOiNPi
N2

, (3.7)

where C stands for the number of different classes, NOi the total observed

objects of class i, NPi the total objects classified to class i, and N the

total number of objects. Fig. 3.5 draws κ for the classification attempts

reported in Fig. 3.4, to demonstrate the degree each classification result as-

similates a random classification. Values of 1 indicate perfect classifications,

0 values random ones, whereas negative values classifications where results

worse than random classifications are acquired. Kappa coefficient provides

an indication on whether the classifiers are biased by the significantly larger

number of FPH objects compared to the other height categories. For in-

stance, in the theoretical case all objects were classified as FPH, the overall

accuracy would range between 76.51% and 80.69% based on the number of

FPH objects over the total ones, under the different data processing ap-

proaches. However, in that case, the value of κ would be very low, equal to

0, as inferred from (3.6), highlighting the biased results. On the contrary,

the observed values of κ, ranging higher than 0.5 in general, indicate that

the majority of the class assignments, excluding correct assignments due to

chance, are correct [339]; in other words, such values indicate ‘moderate’
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(0.41 ≤ κ ≤ 0.60) or ‘substantial’ (0.61 ≤ κ ≤ 0.80) agreement between the

observed and predicted classes, according to Landis and Koch [340].

Figure 3.5.: Kappa coefficients of the data processing methods shown in Fig.
3.4.

Table 3.3 presents the confusion matrix for the best classification results

achieved with the June image dataset after listwise deletion (‘Obj’ in Fig.

3.4). AdaBoost.M1 was used with J48 as the base tree classifier. As no-

ticed, most of the GHC classes were identified with high user’s and pro-

ducer’s accuracies (i.e., low commission and omission errors, respectively).

Exceptions were the LPH class objects of limited number that remained

undetected and the low producer’s accuracy for the TPH class. The re-

sults seem to be skewed by the domination of the FPH classes, significantly

outnumbering the other classes. In fact, almost all FPH classes were clas-

sified correctly (99.04% PA), whereas bias towards this majority class was

noticed for objects of the closest in height category of TPH, resulting in

96.06% UA. It is worth noting that the number of LPH objects (7) are less

than the number of formed folds in the cross-validation process (10). This

implies that three folds have no LPH object. It is statistically preferable

to have representation of each class in every object. However, useful con-

clusions on classifier performance can still be extracted from its ability to

avoid false negatives, as in the case where a fold without LPH objects is

used as the testing fold during the iterative process of cross-validation. In

the particular example, the classifier failed to correctly identify any LPH
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object, whereas erroneously labelled as LPH two SCH objects.

Table 3.3.: Confusion matrix from classification on the full June image set
following listwise deletion, using AdaBoost.M1 with J48 as base
classifier. Rows represent the reference classes, whereas columns
the predicted ones. Producer’s (PA), user’s (UA) and overall
accuracies, as well as the kappa coefficient, are reported.

DCH SCH LPH MPH TPH FPH Sum PA(%)

DCH 7 4 11 63.64

SCH 3 34 2 1 40 85

LPH 1 4 2 7 0

MPH 1 16 1 4 22 72.73

TPH 2 5 13 20 25

FPH 1 2 1 414 418 99.04

Sum 11 43 3 23 7 431 518

UA(%) 63.64 79.09 0 69.57 71.43 96.06

Overall accuracy (%): 91.89 Kappa coefficient: 0.746

Fig. 3.6 visualizes the classification results by listwise deletion in the

study area. As noted previously, it can be seen that the objects removed

(‘Excluded’) were the ones with smaller dimensions than the minimum re-

quired for the calculation of certain texture features (e.g. LHR). Compari-

son with the object heights extracted by the CHM (Fig. 3.3), demonstrates

the high classification accuracy achieved, both in large and small area ob-

jects. As a note, cloud contaminated pixels were excluded from the classifi-

cation, and together with classes different than the studied ones, are noted

as ‘Other’ classes.

B. Classifier performance

Regarding the performance of the employed classifiers, Random Forests

(RF) outperformed, in most cases, the rest of the classifiers. Fig. 3.7 depicts

the average classification accuracies achieved by the tested classifiers, over

the different datasets drawn in Fig. 3.4, for the cases where features from the

individual images and their synergy were used. Among the decision trees,

ensemble classifiers, i.e. RF, Bagging and AdaBoost.M1, where multiple

trees are generated, provided better results than the single J48 and REP-

Tree classifiers, whereas SVM with logistic models to the output showed

90



Figure 3.6.: Height classification after listwise deletion in the full June im-
age dataset, using AdaBoost.M1 with J48 as base classifier.
‘Excluded’ indicates the removed objects by listwise deletion,
whereas ‘Other’ shows classes different than the studied ones
and cloud masked areas. The percentage of the objects classi-
fied to each class over the total number of classified objects is
shown in parenthesis.

inferior performance than the other SVM classifier. The overall high accu-

racies from all classifiers verify the effectiveness and discriminatory power

of the selected features for height estimation. In compliance with Fig. 3.4

outcomes, the June image provided, in general, higher performing datasets

than the September one, whereas their combination had similar performance

to the June image.

Although more complex and time expensive classifiers provided superior

results, simple classifiers, as the REPTree, still provided high accuracies and

may be preferred in similar applications when time and processing efficiency

is critical. In particular, the REPTree classifier, involving a fast reduced-

error pruning approach, has time complexity O(mn log n), where n stands

for the number of samples (i.e. objects in this study) and m for the number

of attributes (features) [316]. The more complicated pruning by subtree rais-

ing used in J48 increases its complexity to O(mn log n)+O
(
n(log n)2

)
[316].
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Figure 3.7.: Average classification accuracies achieved from the various clas-
sifiers, over the different datasets shown in Fig. 3.4. RT: REP-
Tree; RF: Random Forest; A-RT: AdaBoost.M1 with REPTree;
A-J48: AdaBoost.M1 with J48; B-RT: Bagging with REPTree;
B-J48: Bagging with J48; SVM-M: SVM with logistic models.

The complexity of the AdaBoost.M1 ensemble classifiers is calculated by

multiplying the complexity of the basis classifiers (J48 or REPTree) by the

number of derived trees, t. Similarly for the Bagging classifiers, although

the bootstrap aggregation performed to select the training set before the

construction of each tree slightly increases the computational time; in ad-

dition, further computation time was added by the larger number of con-

structed trees for Bagging than AdaBoost.M1, namely 100 over 20, that

resulted in around five times slower execution than AdaBoost.M1. Among

the ensemble tree methods, Random Forest was the fastest, with estimated

complexity around O(tn log n logm), since logm+1 features are considered

to split each node in this study, instead of m used in J48 and REPTree clas-

sifiers. The complexity of SVM, mainly with non linear kernels, is usually

estimated around O(n2) or O(n3), as requesting to solve a quadratic pro-

gramming (QP) optimization problem [341,342]; however, implementations

involving linear time have also been proven feasible [343]. In this study,

SVM classifiers with linear kernels and using the Sequential Minimal Op-

timization (SMO) [331] are employed, resulting in practical computational

time in these experiments between AdaBoost.M1 and Bagging. As inferred

from Fig. 3.7 and this discussion, the RF classifier shows the highest ratio

of accuracy to computational time, compared with the rest classifiers used.
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C. Data transformation

The application of dimensionality reduction through data transformation

techniques was evaluated for all datasets. It was observed that intense

compression of information can be achieved with insignificant loss, or even

increase, in performance. Fig. 3.8 presents the classification accuracies

achieved by the different methods when 5 features were hold for each method,

compared with the full feature set, for the datasets after listwise deletion

(‘Obj’). The evaluated unsupervised DR techniques (PCA, LPP, NPE,

Isomap), although optimizing different criteria, showed similar performance.

In fact, insignificant losses of accuracy of about 2-3% are observed, compared

with the results from the original datasets including all features, whereas the

number of features used in the classification was substantially reduced to 5,

from 192 (24 features from each of the 8 bands) for the single images and 384

for their synergy, i.e. by up to 98.7%. Such methods apply DR using only

the statistical properties of the feature space. Adding label information,

using a supervised DR approach, in particular LDA, higher classification

accuracies were achieved, reaching even perfect separability. Although such

results seem hardly achievable in generalized and broader datasets, since

LDA is trained to maximize class separability for the specific dataset, they

indicate the high potential discriminatory power of the calculated texture

features for all classes, under proper transformation. The results by all DR

methods indicate that the intrinsic dimensionality of the datasets is no-

tably lower than the full feature sets, thus significant improvements in the

complexity and processing time of the employed classifier can be achieved

through dimensionality reduction. The DR approaches had similar perfor-

mance compared with the respective full feature set, for all other datasets

not shown in Fig. 3.8, that involve exclusion of indefinite features, multiple

imputation, outlier removal, or data normalization.

3.5.2. Experiments with feature subsets

A number of experiments were conducted to evaluate the performance of (i)

each individual feature, (ii) the features of each individual band, and (iii)

the features from the applied feature selection methods. During the exper-

iments described here, the dataset arising from the simple listwise deletion

was selected, to study the effectiveness of the actual feature values upon

93



Figure 3.8.: The best classification accuracies achieved with different di-
mensionality reduction approaches, reducing to 5 features the
datasets after listwise deletion (‘Obj’). Methods: Full: Full
dataset; PCA: Principal Component Analysis; LPP: Locality
Preserving Projections; NPE: Neighborhood Preserving Em-
bedding; Isomap: isometric feature mapping; LDA: Linear Dis-
criminant Analysis.

their extraction, without any data processing applied. After excluding ob-

jects with indefinite feature values, 518 remained, including: (i) 11 DCH,

(ii) 40 SCH, (iii) 7 LPH, (iv) 22 MPH, (v) 20 TPH, and (vi) 418 FPH ob-

jects. RF classifier was selected for all experiments, as the one providing the

best accuracy results in the specific dataset and one of the most consistent

and best performing classifiers in all datasets (Fig. 3.7). Classification was

evaluated under 10-fold cross-validation.

A. Evaluation of individual features

Initially, classification was performed using each of the 384 calculated fea-

tures, 24 from each band of each image, individually, in order to identify

the ones with the best discriminatory power. Table 3.4 lists the features

achieving the 10 highest classification accuracies. Almost the same features

appear in the respective list with the highest kappa coefficient values, since

classification and kappa coefficient values are highly correlated, with the

latter two of Table 3.4 being replaced by the LTBP2 (κ = 0.494, OA =

82.63%) and LTBP3 (κ = 0.487, OA = 82.63%) features calculated in the

red-edge and the red band of the September image, respectively. The high-

est classification accuracy achieved using an individual feature was 84.36%,
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solely around 6% less than the one where all 384 features were employed

(Fig. 3.4). This small difference may be an indication of the high degree of

correlation among the features, but also the high discriminatory potential

of the individual features.

Table 3.4.: Individual features achieving the highest 10 classification accu-
racies, with the respective kappa coefficients, using the Random
Forest classifier.

Rank Feature Band Accuracy (%) kappa

1 LH4 NIR1 (Sep) 84.36 0.53

2 LTBP1 Red (Sep) 83.98 0.523

3 LH5 Blue (Jun) 83.98 0.513

4 LTBP2 Yellow (Sep) 83.59 0.521

5 LTP2 Yellow (Sep) 83.59 0.519

6 LH4 Yellow (Sep) 83.4 0.514

7 LH4 Red (Sep) 83.2 0.496

8 LTBP3 NIR2 (Sep) 83.01 0.501

9 LTBP4 NIR1 (Jun) 82.82 0.481

10 LH4 NIR2 (Sep) 82.82 0.478

Local entropy features and the features based on the variation of local

binary patterns seem to dominate the list. In addition, more features calcu-

lated from the September image appear in the tables than the June image,

although the June full dataset has outperformed, in general, the September

one (Fig. 3.4, 3.5, and 3.7). A potential explanation to this observation is

that, whereas individual features extracted from the September image have

more discriminatory power than the June ones, they are more correlated,

restricting the performance improvements when used in synergy.

It is noteworthy that Table 3.4 is dominated by features extracted using

small moving windows, of size 3 × 3 and 5 × 5 pixels, or radii 1 and 2, re-

spectively (Table 3.2). This result demonstrates that features that express

localized texture variations captured in a small spatial extent may provide

more discriminatory capabilities in height estimation than ones that con-

sider variations over a larger extent. This outcome further supports the

beneficial use of very high resolution imagery in such tasks, in comparison

with coarser resolution alternatives.

The observed advantage of features extracted with small moving windows,
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over features with large ones, supports the selection for per pixel calculation

of values and their averaging over each object. On the contrary, potential

calculation of a single value over each object, e.g. as in [280], would be

expected to perform closer to the calculation with large moving windows,

or poorer. As far as individual features are regarded, the proposed use of

local binary pattern based features seems encouraging for their broad use

in height estimation studies through texture analysis, together with entropy

based features calculated with 3× 3 moving window.

The lowest classification accuracy observed was restricted to 63% (LTP3

feature from the June green band), with a kappa coefficient of−0.048, imply-

ing a bias towards the more populated class of forest phanerophytes (FPH).

No clear indication on the most appropriate bands for feature extraction

may be supported from the results in Table 3.4, since diversity in employed

bands appears in the highest ranking places.

B. Evaluation of individual bands

Fig. 3.9 draws the classification accuracies achieved when all features ex-

tracted from a single band were considered, for each band. The classification

accuracies range from 84.17% to 90.35%. Following the expectations, the

results from the synergies of features involved were significantly better than

the ones from the individual features, discussed in the previous paragraph.

The bands of the September image provided measures that consistently out-

performed the ones of the June image. Combined with the observation that

when the entire set of features from all bands of the June image was em-

ployed the results surpassed the respective ones from the September image

(Fig. 3.4, 3.5 and 3.7), the existence of high correlation among the bands

of the September image may be inferred, resulting in insignificant improve-

ment of the discriminatory power for combined September bands, since they

contain similar information.

The features from the red-edge band provided the best results among

the bands of the June image, reaching accuracies of around 88%. On the

other hand, NIR2 band of the September image seems to provide the most

discriminatory features, slightly outperforming the red, yellow, red-edge,

green, and NIR1 bands. It is noteworthy that all these bands achieved

better results than the red-edge band of the June image. In addition, high
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Figure 3.9.: Classification accuracies and kappa coefficient values achieved
employing all features of a band, for each band of the June and
September image, using the Random Forest classifier. Bands:
coastal (1), blue (2), green (3), yellow (4), red (5), red-edge (6),
NIR1 (7), NIR2 (8).

performing bands, such as NIR2 for the June image or yellow, red-edge,

and NIR2 for the September one, may indicate an advantage of the use

of WorldView-2 imagery for height estimation, compared with spectrally

poorer high resolution imagery used in past studies, e.g. IKONOS [38, 41],

QuickBird [280] or Spot-5 [40]. Overall, texture analysis performed solely

in one band of a satellite image can provide results comparable to the ones

achieved by exploiting all image bands, using around 8 (one image) or 16

(two images) times less processing time and memory requirements.

C. Evaluation of selected feature sets

All possible combinations of the evaluation and search methods of Sec-

tion 3.4.5 were tested for the selection of features through filter approach,

i.e. correlation-based evaluation with best-first (RB) and Linear Forward

Selection (RL), as well as consistency-based evaluation with best-first (CB)

and Linear Forward Selection (CL). The methods were applied to three dif-

ferent datasets, including all features from the June, September, and both

images. The results are drawn in Fig. 3.10.

Four different groups of sets of selected features were used for the clas-

sification: features selected from (i) the June image (Fig. 3.10a), (ii) the

September image (Fig. 3.10b), (iii) the union of selected features in (i) and

(ii) (Fig. 3.10c) and (iv) the complete feature set of both images (Fig. 3.10d).

Besides the classification accuracy, in order to provide an indication of the
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(a) (b)

(c) (d)

Figure 3.10.: Classification accuracies achieved employing the features se-
lected through different approaches for filter feature selection
and the respective number of selected features, for the selected
features of (a) the June image, (b) the September image, (c)
the union of those two selected sets and (d) the features se-
lected from the ones of both images. The Random Forest clas-
sifier was used. Feature selection methods: correlation-based
evaluation with best-first (RB) and Linear Forward Selection
(RL), consistency-based evaluation with best-first (CB) and
Linear Forward Selection (CL).

efficiency of the feature selection approaches, as far as the expected advan-

tages in computation cost reduction are regarded, the number of selected

features is additionally depicted.

Fig. 3.10 demonstrates the overall advantageous effects from the use of a

feature selection approach. In all tested approaches, significant reduction

of the initial feature set was achieved, together with high classification ac-

curacies, ranging from over 88% to almost 92%. Combinations of features

selected by the proposed methods clearly outperformed the accuracies of

individual features (Table 3.4), and in most cases, the best performing in-

dividual bands (Fig. 3.9), using a smaller number of features. Even further,

selection of 13 out of 384 features from both images, i.e. 3.4% of the fea-

tures, under the RL method (Fig. 3.10d), outperformed the accuracy of the
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full June-September feature set (‘Obj’ in Fig. 3.4).

When the selected features from the June and September images were

used together (Fig. 3.10c), the number of features increased significantly,

for each selection approach, as the sum of the features from the two images,

without, however, proportionally increasing the achieved classification ac-

curacies, an indication of significant correlation among the selected feature

sets from the two images. Applying feature selection to the total number

of features of the June and September image (Fig. 3.10d) resulted in over-

all comparable performance to the previous case, although with the use of

significantly less features. It is noteworthy that since filter feature selection

does not intend to improve classification per se, but to reduce redundant

information, the selected features from an individual image may provide bet-

ter results than ones from both images (e.g. CL approaches in Fig. 3.10b

and 3.10d). A method that aims specifically at optimizing the classification

results, e.g. a wrapper method, may select features that further improve

the performance of the synergy of images, although being computationally

more expensive in general and tied to a specific classifier and classification

task.

The number of selected features significantly affects the complexity of

the classifier and the classification time, which may be crucial factors in

certain applications. Table 3.5 lists the approaches with the highest ratios

of accuracy to the number of features, for the cases where features from

the June, September and both images were selected. As seen, extraction

of solely 9 or 10 features may result in classification accuracies almost as

high as employing the full set of 192 or 384 features, while reducing the

processing cost in both feature extraction and classification processes.

As observed from Table 3.5, the selected features are not in general among

the top-performing individual ones, shown in Table 3.4. However, being

relatively uncorrelated, they contain supplementary information that seems

to improve the performance of the classifier and prevents its overfitting. It is

noteworthy that in the highest performing feature set shown, extracted from

the June image, features from all the proposed types are included (namely

LE, LH, LHR, LBP, LTP, and LTBP). This indicates that, despite the

low performance of some feature types when used individually, they may all

contain uncorrelated supplementary information that enhances classification

when they are used in synergy.
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Table 3.5.: Feature selection methods with the highest ratios of classifica-
tion accuracies to the number of selected features, for the cases
where features from the June, September and both images were
selected. For each method, the overall accuracy (OA) and the
selected features are shown. The Random Forest classifier was
used.

Image Method OA(%) Selected features

June RL 89

9: LHR3(1), LE1(5), LH5(6), LBP2(6),

LTP2(6), LE1(7), LTBP1(7), LTBP2(7),

LTP1(8)

Sep RL 89.96

9: LH2(1), LTP1(4), LH4(6), LH5(6),

LTP2(6), LTBP1(6), LE1(8), LTP2(8)

LTBP3(8)

June

CB 90.35

10: LH6(J1), LH4(J2), LH5(J2),

+ LTBP2(J3), LBP2(J5), LE2(J7),

Sep LBP1(S3), LH6(S5), LH1(S6), LH2(S7)

Among the approaches of Table 3.5, the CB method applied in the fea-

tures of both images provided the highest ratio of overall accuracy to number

of features. The confusion matrix of the classification is shown in Table 3.6,

the rows and columns presenting the reference and predicted classes, respec-

tively.

Table 3.6 demonstrates the results for all six GHC classes, being charac-

terized by different vegetation height. SCH (0.05–0.3 m), MPH (0.6–2 m),

and FPH (5–40 m) were the classes with the highest precision and recall

accuracies, whereas the classifier did not achieve to detect any of the LPH

objects. Although the number of FPH objects were significantly higher than

the other objects, only a small bias of the classifier towards this class is ob-

served, resulting in misclassification of some objects of the previous TPH

height class as FPH.

3.6. Conclusions

Texture features based on local variance, entropy and binary patterns, cal-

culated from very high resolution passive sensor imagery, proved partic-

ularly effective in discriminating among different vegetation height cate-

gories. Features from two vegetation productivity periods were evaluated,
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Table 3.6.: Confusion matrix from classification following the CB feature
selection method in the feature set of both images, (a) showing
all six GHC classes, and (b) merging low shrubs of 0.05–0.6 m
and tree classes. Rows represent the reference classes, whereas
columns the predicted ones. Producer’s (PA), user’s (UA) and
overall accuracies, as well as the kappa coefficient, are reported.
The Random Forest classifier was used.

DCH SCH LPH MPH TPH FPH Sum PA(%)

DCH 4 5 1 1 11 36.36

SCH 4 34 2 40 85

LPH 1 3 3 7 0

MPH 3 14 4 1 22 63.63

TPH 3 1 16 20 5

FPH 2 1 415 418 99.28

Sum 9 45 1 24 6 433 518

UA(%) 44.44 75.56 0 58.33 16.67 95.84

Overall accuracy (%): 90.35 Kappa coefficient: 0.694

both individually and in synergy. Extending the diversity and height range

of species of previous studies employing texture analysis—focusing, for in-

stance, on coniferous [40,278] and hardwood [40] forests, or oak, beech and

spruce trees [41], of several metres high—, different vegetation species were

assessed in this study, including heathland, trees and shrubs, and various

height categories, ranging from less than 5 cm to some tens of metres, sup-

porting the extensive use of the proposed features in cost-effective height

estimation applications.

Thorough evaluation of different data processing techniques to further en-

hance classification was performed: whereas data imputation and normal-

ization had little effect in feature discriminatory power, removal of outliers

and listwise deletion of objects with missing information resulted in higher

classification accuracies; the latter method indicated that objects of larger

extent, not being removed, were more likely to provide more discriminatory

features than smaller objects. High accuracies were achieved under differ-

ent classifiers, with ensemble decision tree ones and SVM outperforming the

single trees. Data transformation revealed that data compression of about

up to 98.7% may be applied to the full feature set, reducing the classifier

complexity, with an insignificant loss, or even increase, in accuracy.
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Feature subset selection through filter methods proved that time and pro-

cessing cost reduction could be extended to both classification and feature

extraction. A selected subset with a number of features less than 3% of the

features of the full set was able to provide similar classification accuracies,

whereas larger subsets could even outperform the full feature sets. Images

from both vegetative periods provided similarly discriminatory features, al-

ternating in performance within the different data processing techniques.

Among the proposed texture features, the local entropy features (LH) and

the features based on the variation of local binary patterns (LTBP) have

resulted in the highest classification accuracies, when considered individu-

ally. Both types of features were extracted with moving windows of 3 × 3

(LH4, LH5, LTBP1, LTBP2) and 5 × 5 (LTBP3, LTBP4) pixels, proven

advantageous over features calculated with larger windows (i.e. LH1–LH3

and LHR of 9× 9 pixels or larger windows); this implicitly suggests the ad-

vantages brought by the use of very high resolution images (WorldView-2)

over coarser resolution ones used in previous studies (e.g. Landsat, SPOT).

Expressing interrelations with neighbouring pixels, local entropy and bi-

nary patterns proved more effective than the simpler local variance features,

even though having similarly small windows. In addition, the modifications

proposed by LTBP features over LBP and LTP seem to be advantageous.

However, despite their differences in individual performance, the features of

all types appear to provide useful or complementary information that can

prove beneficial in similar classification tasks, as shown by the high accu-

racy achieved from the selection of features from all types, as described in

Table 3.5.

It is noteworthy that in the area studied, around 80% of the objects

belong to a single class, namely forest phanerophytes (FPH). Although

cross-validation was employed to ensure every class was present in both the

training and testing datasets, the large number of FPH objects obstructs

a reliable evaluation of the classifiers. The evaluation of the confusion ma-

trices showed that there was a bias towards the FPH class, however almost

exclusively from the immediately shorter TPH class. The calculated kappa

coefficient values showed results far from chance, indicating that this bias

was limited and the other classes were only slightly affected. A further in-

teresting dimension for future research might be the use of a binary classifier

to identify each class against all others.
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The degree that this approach can be generalized in different geographical

areas or species is still to be investigated. The study area includes a mix-

ture of vegetation types, such as dry heathland, grassland, herbaceous and

shrub vegetation, and forest, as well as a variety of plant species (e.g. Cal-

luna vulgaris, Pinus sylvestris, Fagus sylvatica, Betula pendula, to name a

few) from different height categories. Being effective in such a complex area

supports the expectation that the algorithm can be applicable in other areas,

especially of similar climatic conditions or with similar vegetation species.

Furthermore, the proposed features have been applied to a Mediterranean

coastal area with a complex of lagoons, numerous channels, marshes, and

humid grasslands, with different species, such as thermo-mediterranean and

pre-desert scrubs, in a preliminary study to evaluate their ability in dis-

criminating between LPH/MPH and TPH classes [344]. The features were

calculated from a QuickBird satellite image of 2 m spatial resolution with

four bands (namely blue, green, red, and NIR), for each band. It was found

that LPH/MPH and TPH classes had statistically significant differences to

the 5% confidence level, for most features. These preliminary results are

encouraging indications that the method can be generalized in different ge-

ographical areas and vegetation species, and discriminatory features can be

extracted by different sensors as well. Consideration of multiple areas in

future research activities could further investigate how species-dependent

the features are or how they are affected by the growing stage of a single

species.

Overall, the proposed approach does not intend to replace data sources of-

fering more dense and accurate height information, such as the lidar derived

CHM used as reference. The object based classification analysis followed

provides coarser spatial resolution and value range than lidar can offer.

Using lidar, applications requiring much more detailed information (e.g.,

surface roughness for wind erosion modelling, forest carbon stock assess-

ment) are better satisfied. However, resulting in classification accuracies

of up to over 90%, the proposed texture analysis features seem capable of

enhancing vegetation height characterization for studies like habitat moni-

toring and land use mapping. In these, or similar, cases, VHR imagery may

act as a cost-effective surrogate of more expensive and resource demanding

approaches.
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4. Habitat classification with

supervised learning

4.1. Formulation of the habitat classification

problem

Habitats and their changes constitute significant indicators for biodiversity

monitoring, ecosystem preservation, and sustainability management, thus

their mapping attracts the interest of various organizations and manage-

ment authorities worldwide [43–45]. Habitat mapping with remote sensing

data and methods is increasingly used due to their advantages in large area

coverage, time and cost efficiency [26].

Most classification approaches have used directly the RS imagery and

available ancillary information, such as cadastral and urban layers or digi-

tal elevation models [46–48,345]. However, compared with land cover map-

ping, direct connection of spectral information to habitats is more challeng-

ing, requiring field data and expert interpretation [23]. Due to the larger

availability of land cover maps and their more straightforward extraction,

habitat classification through the conversion of the former seems a promising

alternative, still mainly restricted to theoretical analyses [49–51].

Tomaselli et al. [49] compared a number of LC classification schemes and

identified the Land Cover Classification System (LCCS) [33] as the most

related one to habitats. A following study by Kosmidou et al. [51] pro-

vided a theoretical framework to map LCCS classes with General Habitat

Categories (GHC) [34], confirming the similarities of the two taxonomies

but also the fact that a conversion from one to the other is not straightfor-

ward. Several one-to-many mapping relationships were identified, together

with discrepancies in definitions, and therefore, supplementary sources of

information were deemed necessary for more accurate classification.

Based on these outcomes, Adamo et al. [52, 53] employed VHR satellite
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imagery and presented a classification approach based on rules provided by

expert ecologists. In more detail, WorldView-2 images of 2 m spatial reso-

lution and a LC map expressed in the LCCS taxonomy were employed for

two coastal Natura 2000 protected sites in Italy, namely Le Cesine and Lago

Salso. Using the objects delineated by the LCCS map, a number of spec-

tral, topological, morphological, lidar, and texture features were extracted

from the two-date images. They included spectral indices for the presence

of vegetation and water; object area and shape indices; estimated adjacency

of the object of interest to objects of certain LC or habitat classes; height

estimation features extracted from available lidar data; and local entropy

texture to substitute lidar features, when the latter were considered miss-

ing. Based on the theoretical mapping rules by Kosmidou et al. [51] and

the laborious work by expert ecologists, a large number of rules and thresh-

olds were developed to extract GHC classes from the LCCS map and the

aforementioned features in Le Cesine site. Rules for both considering lidar

features and substituting them with the texture feature were developed.

The classification system achieved overall accuracies of around 69% when

applied to Le Cesine, which it was developed for, and 66% when applied to

Lago Salso, for several GHC classes.

Although achieving relatively high accuracies for certain habitat classes,

two main limitations of the method can be identified:

(i) On the one hand, the employed features were empirically selected

by the experts, whereas the specific rules and the associated thresh-

olds were based on expertise and repetitive trial-and-error experimen-

tation. This task involves labour and time consuming fine-tuning

of threshold values through iterative experiments, while keeping the

number of total different evaluated combinations of values limited.

(ii) On the other hand, the use of crisp rules severely restricts the ro-

bustness of the approach to noise afflicted data or inaccurate rule

thresholds and its transferability to different sites, i.e. its general-

ization performance. In addition, for the latter issue, no flexibility

is provided in case required data are unavailable for certain areas, a

problem often faced in remote sensing studies.

To counteract these limitations, two habitat classification approaches are

proposed in the present and the following chapter, building on the approach
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Table 4.1.: Problem statement of Chapter 4.

• Objective: Habitat classification of landscape objects with automated and
fast training using supervised classifiers, and evaluation of method
transferability to different sites. Comparison with state-of-the-art approach
in [52,53].

• Input: (i) Very high resolution multispectral satellite images from two study
areas; (ii) land cover map of the area to delineate objects and provide LCCS
class features assisting habitat classification; (iii) Canopy Height Model from
lidar data.

• Methodology: (i) Extraction of spectral, morphological, topological, and
lidar features, for classification; (ii) extraction of a number of features
characterizing LCCS classes; (iii) classification using different feature sets
and supervised classifiers.

• Output: Classification of study areas in GHC habitat classes, (i) for each
individual area and (ii) using one area as training site and the other as
testing.

• Evaluation measures: (i) Overall, Producer’s, and User’s accuracies; (ii)
kappa coefficient.

presented by Adamo et al. [52, 53]. The goal of the classifiers is to propose

effective schemes that overcome the aforementioned limitations. They use as

input (i) a LC map expressed in the LCCS taxonomy, (ii) satellite images

of very high spatial resolution, and (iii) lidar data, when available; their

output is a map of habitat classes according to the GHC taxonomy.

In this chapter, a supervised learning framework is proposed to automat-

ically train a number of classifiers and select the classification criteria in

a labour and time efficient manner. Apart from the labelled objects used

for training, no prior information is inserted to the classifier in the form of

rules or constraints. An approach to convert the LCCS classes to interval-

scaled variables, in order to be directly usable by a supervised classifier, is

suggested. The approach is evaluated in two study sites individually. In ad-

dition, models derived from one site are tested to the other, as an indication

of the generalization performance of the approach. Table 4.1 summarizes

the statement of the problem being addressed in this chapter.

In Chapter 5, a classification framework using evidential reasoning and

fuzzy logic is proposed, to deal with uncertainties created by unavailable

information, noise afflicted data, and inaccurate rule thresholds provided by

the experts. Unlike the previous case, prior knowledge is introduced to the
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Figure 4.1.: Flow chart of the overall methodology proposed for supervised
habitat classification.

classifier in the form of preliminary rules provided by experts, as in [51–53],

and processed. The approach is evaluated in the two aforementioned study

sites: the one site is which the rule set was originally provided for by the

experts, whereas the other is used to test the generalization performance

and transferability of the approach to different areas.

Fig. 4.1 provides a flow chart of the overall methodology described in this

chapter.

4.2. Classification taxonomy definitions, study

areas, and data

4.2.1. LCCS and GHC taxonomy definitions

The LC taxonomy used as proxy for the habitat classification is the Land

Cover Classification System (LCCS), proposed by the United Nations (UN)

Food and Agriculture Organization (FAO) and the UN Environment Pro-

gramme (UNEP) [33]. The LCCS taxonomy has been proposed as a generic

framework able to describe adequately any LC class globally, whereas the

use of life form definitions makes it the closest LC taxonomy to habitats [49].
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LCCS classes are organized in eight main categories, depending on whether

the area element of interest is (i) vegetated or not, (ii) aquatic or terres-

trial, and (iii) managed or artificial or (semi-)natural (Table 4.2). Classes

are further refined with the inclusion of additional qualifiers describing var-

ious properties, such as life form (e.g. woody or herbaceous vegetation),

vegetation coverage, leaf type and phenology (e.g. broadleaved, evergreen,

deciduous), canopy height, and surface aspect (e.g. roads, railways, bare

rock) [33].

Table 4.2.: The 8 main LCCS classes.

Vegetation Surface Management

A. Vegetated

A1. Terrestrial
A11. Cultivated and managed areas

A12. (Semi-)natural vegetation

A2. Aquatic or A23. Cultivated aquatic areas

regularly flooded A24. (Semi-)natural aquatic vegetation

B. Non-vegetated

B1. Terrestrial
B15. Artificial surfaces

B16. Bare areas

B2. Aquatic or B27. Artificial water bodies, snow, and ice

regularly flooded B28. Natural water bodies, snow, and ice

In this study, as in [51–53], habitats are expressed in the recently devel-

oped General Habitat Categories (GHC) [34]. GHC taxonomy is defined

to provide a practical, transmissible and reproducible procedure for habitat

monitoring and is highly relevant to the LCCS taxonomy, since they are

both based on life forms and include similar attribute definitions. GHC

classes are organized in five main categories, namely: i) urban (URB), ii)

cultivated (CUL), iii) sparsely vegetated (SPV), iv) trees and shrubs (TRS),

and v) herbaceous vegetation (HER). Various classes belong in each cate-

gory, based on life or non-life forms present in a studied area element, leaf

properties, height of canopy, and other properties, comprising a total of

around 160 classes [346]. The classes were initially defined to link in-situ

and remote sensing observations, thus facilitating their extraction through

data derived from satellite or airborne sensors. The main categories and

the principal classes of each are reported in Table 4.3.

4.2.2. Le Cesine, Italy

The first study area where the methods of the present and the following

chapters are applied is Le Cesine site, centred at latitude 40◦21′N and lon-
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Table 4.3.: The 5 main GHC categories and the principal classes.

Main Category Classes

Urban / Constructed (URB)

Artificial (ART)

Non-vegetated (NON)

Vegetables (VEG)

Woody (TRE)

Herbaceous (GRA)

Cultivated (CUL)

Bare ground (SPA)

Herbaceous crops (CRO)

Woody crops (WOC)

Sparsely Vegetated (SPV)

Sea (SEA)

Tidal (TID)

Aquatic (AQU)

Ice / snow (ICE)

Bare rocks (ROC)

Boulders (BOU)

Stones (STO)

Gravel (GRV)

Sand (SAN)

Earth (EAR)

Herbaceous (HER)

Submerged hydrophytes (SHY)

Emergent hydrophytes (EHY)

Helophytes (HEL)

Leafy hemicryptophytes (LHE)

Caespitose hemicryptophytes (CHE)

Therophytes (THE)

Geophytes (GEO)

Cryptogams (CRY)

Herbaceous chamaephytes (HCH)

Trees and Scrubs (TRS)

Dwarf chamaephytes (DCH)

Shrubby chamaephytes (SCH)

Low phanerophytes (LPH)

Mid phanerophytes (MPH)

Tall phanerophytes (TPH)

Forest phanerophytes (FPH)

Mega phanerophytes (GPH)

gitude 18◦20′35′′E, and located in Apulia region, south eastern Italy (Fig.

4.2). It is one of the oldest protected sites in the region, belonging to

the Natura 2000 network and covering an area of approximately 3.48 km2.

It consists of a variety of habitats within agricultural, semi-natural and

natural areas, including two extended coastal lagoons, numerous channels,

marshes and humid grasslands. Helophytic, halophilous and dry thero-

phytic vegetation species alternate, creating interesting mosaics and includ-
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ing species such as Cladium mariscus, Pinus halepensis, Quercus ilex, and

Erica forskalii.

(a) (b)

(c) (d)

Figure 4.2.: Le Cesine study site, Apulia region, Italy. Worldview-2 image
from October 2010 in (a) true colour, overlaid by the segment
boundaries delineated in the LCCS map. In addition, the (b)
Blue, (c) Red, and (d) NIR-1 bands are drawn.

The principal data used in the classification process include a LCCS map

(Fig. B.7 in Appendix B), validated through field campaigns in 2008–2009,

and two multispectral optical satellite images with 2 m spatial resolution: a

QuickBird (QB) captured in June 2009 and a Worldview-2 (WV-2) in Octo-

ber 2010, both georeferenced, co-registered, orthorectified, and calibrated in

Top-of-Atmosphere (TOA) reflectance values. The QB image includes four

optical bands, namely blue (450–520 nm), green (520–600 nm), red (630–
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690 nm), and near-infrared (NIR) (760–900 nm), whereas the WV-2 image

8 bands, as detailed in Section 3.2. Fig. 4.2 draws the WV-2 image in true

colour, as well as the blue, red, and NIR-1 bands, sensitive in water and

vegetation and used in the extraction of relevant spectral indices, as shown

in Section 4.3.1. In addition, an Object Height Model (OHM), derived from

lidar data from spring 2009, is used as primary source of vegetation height

information.

4.2.3. Lago Salso, Italy

The second study area, Lago Salso, is a protected Natura 2000 site centred at

latitude 41◦33′36′′N and longitude 15◦52′20′′E, and similarly to Le Cesine,

is located in Apulia region, south eastern Italy (Fig. 4.3). It lies in the

Gargano National Park at a distance of around 300 km from Le Cesine.

A wetland occupies the main part of Lago Salso, characterized by both

brackish water and freshwater. In the northern part, the area is adjacent to

salt marshes, with shrub and halophilous annual vegetation and salty soils.

Similar data to the ones of Le Cesine are available for Lago Salso study

site. The satellite data include two WorldView-2 images from different sea-

sons, acquired in June 2010 and February 2011. As in the previous case,

both images were georeferenced, co-registered, orthorectified, and calibrated

in TOA reflectance values. Fig. 4.3 shows the WV-2 image from June 2010

in true colour, as well as the blue, red, and NIR-1 bands. A LCCS map val-

idated through field campaigns in 2011–2012 is used as basis for the habitat

classification (Fig. B.10 in Appendix B). An OHM was also available from

lidar acquisitions during spring 2009.

4.3. Feature extraction

4.3.1. Data features

An object-based approach was followed for the classification, considering as

objects the patches delineated in the LCCS maps. The rationale behind this

selection over a pixel-based approach is multiple. Pixel-based approaches

have proven inappropriate for habitat classification for images of very high

spatial resolution—as the ones in this study—because of the large spectral

variabilities within habitats which create inaccurate classifications and salt
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(a) (b)

(c) (d)

Figure 4.3.: Lago Salso study site, Apulia region, Italy. Worldview-2 image
from 2010 in true colour, overlaid by the segment boundaries
delineated in the LCCS map. In addition, the (b) Blue, (c)
Red, and (d) NIR-1 bands are drawn.

and pepper effects [47, 90, 91]. Furthermore, pixel-based approaches pro-

hibit the extraction of spatial and topological features, such as object area

or adjacency to other objects of specific class, that are valuable for certain

classification tasks, as in the present study. Finally, an object-based ap-

proach is chosen to allow direct comparison of the proposed classifiers with

the state-of-the-art habitat classifiers of interest, i.e. [52, 53]. A number

of features were extracted for each object from the available data, based

on expert knowledge, as described in [53]. The features included spectral,
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morphological, and topological characteristics. In addition, features using

the OHM extracted from the lidar data were calculated. In particular, the

extracted features included:

Spectral features:

(D1) A greenness index (GI), as index for the presence of vegetation, was

calculated in a per pixel basis and then averaged for each object as

GI =
rgreen
rred

, (4.1)

where rgreen and rred indicate the reflectances in green and red band,

respectively.

(D2) A water index (WI), as index for the presence of water, was similarly

calculated as

WI =
rblue
rNIR

, (4.2)

where rblue and rNIR indicate the reflectances in blue and NIR band,

respectively.

(D3) The percentage of vegetated pixels within an object. A vegetation

mask was extracted by thresholding GI feature (D1). Pixels with

D1>1 were considered as vegetation, whereas with D1≤1 as non-

vegetated ones.

For Le Cesine site, based on expert knowledge, the WorldView-2 October

image was used for the extraction of GI and WI. Since image from this season

was not available for Lago Salso, these features were extracted from both

June and February available images, and alternately used and evaluated.

NIR1 band reflectances were used for the extraction of WI.

Morphological features:

(D4) Object area, calculated as the number of pixels of each object.

(D5) The ratio of object perimeter to the perimeter of the smallest rectangle

enclosing the object, as a measure of how ragged an object is.
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Topological features:

(D6) Percentage of object pixels adjacent to artificial or non vegetated ur-

ban areas, i.e. LCCS class B15.

(D7) Percentage of object pixels adjacent to submerged hydrophytes (SHY).

This rule was originally defined to be executed as part of the sequen-

tial rules of the rule-based classification, considering the habitat SHY

classes already extracted. Since the present approach requires such

information a priori, the membership of each pixel to the SHY class is

initially approximated as (i) 1/n, where n is the number of all possi-

ble classes of a pixel, in case SHY is among the possible classes based

on its LCCS class and the theoretical mapping in [51], and (ii) 0, in

case SHY is not one of the possible classes. Then, the feature value is

calculated as

D7 =

∑N
i=1mSHY (i)

N
100, (4.3)

where mSHY (i) stands for the membership of pixel i in class SHY and

N for the total number of pixels (of different objects) adjacent to the

object of interest.

Lidar features:

(D8) Percentage of pixels higher than 0.6 m within an object.

(D9) Mean vegetation height, using the mask derived with feature (D1).

As surrogate features, to substitute lidar data in cases where the lat-

ter are unavailable due to cost or accessibility restrictions, texture analysis

measures, as discussed in Chapter 3, are also extracted for each object. To

have a common framework for comparison between the two study sites, only

the features from the common date of acquisition, i.e. June, are calculated.

In addition, for testing purposes, the mean band reflectance values of all

images are also extracted for each object, per image band.

4.3.2. LCCS class features

The LCCS class name and attributes of each object, derived from the LCCS

map, were originally expressed as LCCS codes [33], (i.e. character/string
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variables). In order to facilitate their use by a supervised classifier in a

straightforward manner together with the previously extracted features, an

approach to generate numerical features from the LCCS codes is proposed.

A number of 21 features are defined, presented in detail in Table 4.4, each

one representing a specific object property. In particular, one feature (fea-

ture L1) is defined to represent the main LCCS class, whereas the rest ones

to describe the attributes related to each class, such as life form, leaf phe-

nology, or canopy height (codes are defined in [33]). A numerical value is

assigned to each potential code of each feature.

Table 4.4.: Features representing the LCCS class names and attributes and the assigned numerical
values.

Class Feature Type Nominal value: property (LCCS code)

all L1 LCCS
class

1: cultiv. & managed (A11); 2: (semi-)nat. terr.
veg (A12); 3: cult. aquat. (A23); 4: (semi-)nat.
aquat. veg (A24); 5: artif. ter. (B15); 6: bare
areas (B16); 7: art. waterbodies (B27); 8: inland
waterbodies (B28)

A11 L2 life form 10: trees (A1); 20: shrubs (A2); 30: herbaceous
(A3); 31: graminoids (A4); 32: non-graminoids
(A5); 40: urban veg. (A6); 41: parks (A11); 42:
parkland (A12); 43: lawns (A13)

L3 leaf type 1: broadleaved (A7); 2: needleleaved (A8)

L4 leaf
phenology

1: evergreen (A9); 2: deciduous (A10)

L5 cultivation
type

1: plantation (W7); 2: orchard (W8)

A12 L6 life form 10: woody (A1); 11: trees (A3); 12: shrubs
(A4); 20: herbaceous (A2); 21: forbs (A5); 22:
graminoids (A6); 30: lichens/mosses (A7); 31:
lichens (A8); 32: mosses (A9)

L7 height (m) 100: >3 (B2); 110: >14 (B5); 120: 7–14 (B6);
130: 3–7 (B7); 200: 0.3–5 (B3); 210: 0.5–5
(B14); 211: 2–5 (B8); 212: 0.5–2 (B9); 220:
<0.5 (B10); 300: 0.03–3 (B4); 310: 0.3–3 (B15);
311: 0.8–3 (B11); 312: 0.3–0.8 (B12); 320:
0.03–0.3 (B13)

L8 leaf type 1: broadleaved (D1); 2: needleleaved (D2); 3:
aphyllous (D3)

L9 leaf
phenology

1: evergreen (E1); 2: deciduous (E2)

L10 plant
cycle

1: annual (E6); 2: perennial (E7)

A23 L11 life form 1: graminoids (A1); 2: non-graminoids (A2); 3:
woody (A3)

A24 L12 life form 10: woody (A1); 11: trees (A3); 12: shrubs
(A4); 20: herbaceous (A2); 21: forbs (A5); 22:
graminoids (A6); 30: lichens/mosses (A7); 31:
lichens (A10); 32: mosses (A11)

L13 mobility 1: rooted (A8); 2: free floating (A9)

Continued on next page. . .
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Table 4.4 – continued

Class Feature Type Nominal value: property (LCCS code)

L14 height (m) 100: >3 (B2); 110: >14 (B5); 120: 7–14 (B6);
130: 3–7 (B7); 200: 0.3–5 (B3); 210: 0.5–5
(B14); 211: 2–5 (B8); 212: 0.5–2 (B9); 220:
<0.5 (B10); 300: 0.03–3 (B4); 310: 0.3–3 (B15);
311: 0.8–3 (B11); 312: 0.3–0.8 (B12); 320:
0.03–0.3 (B13)

B15 L15 surface
aspect

1000: built up (A1); 1100: linear (A3); 1110:
roads (A7); 1111: paved (A8); 1112: unpaved
(A9); 1120: railways (A10); 1130: comm.
lines/pipelines (A11); 1200: non-linear (A4);
1210: industrial area (A12); 1220: urban areas
(A13); 2000: non built up (A2); 2100: waste
dump (A5); 2200: extraction sites (A6)

L16 density 1: high (A14); 2: medium (A15); 3: low (A16);
4: scattered (A17)

B16 L17 surface
aspect

100: consolidated (A1); 110: bare rock and
coarse fragments (A3); 111: bare rock (A7);
112: gravel/stones/boulders (A8); 120:
hardpans (A4); 121: ironpan/laterite (A9); 122:
petrocalcic (A10); 123: petrogypsic (A11); 200:
unconsolidated (A2)

L18 coarse
fragments

1: gravel (A14); 2: stones (A15); 3: boulders
(A16)

L19 composition 1: stony (5–40%) (A12); 2: very stony (40–80%)
(A13)

B27 L20 physical
status

10: water (A1); 11: flowing water (A4); 12:
standing water (A5); 20: snow (A2); 30: ice
(A3); 31: moving ice (A6); 32: stationary ice
(A7)

B28 L21 physical
status

10: water (A1); 11: flowing water (A4); 12:
standing water (A5); 20: snow (A2); 30: ice
(A3); 31: moving ice (A6); 32: stationary ice
(A7)

In order to express inter- and intra-class variabilities, in consistency with

the LCCS definitions [33], a hierarchical approach in value assignment is

followed. A number of digits equal to the number of hierarchical layers are

used for each feature, with the first digits representing the higher layers

and the last the lowest ones. Therefore, small distance numerical values

are assigned to codes expressing similar properties—belonging in the same

higher layers, and vice versa. As an indicative example, values ‘1111’ and

‘1112’ were selected to describe paved and unpaved roads (feature L15),

respectively, both belonging in the ‘built up’, ‘linear’, and ‘roads’ higher

hierarchical layers, whereas the very distinct values ‘1000’ and ‘2000’ are

assigned to describe the more dissimilar categories of ‘built up’ and ‘non

built’ up areas, respectively. The value ‘0’ is assigned by default to the

features non-applicable for a specific object, i.e. features characterizing

different LCCS classes to the one of the object (e.g. features L6–L21 for
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objects of class A11). Following this approach, LCCS class names and

attributes can be directly introduced in a supervised classifier as ordinary

interval-scaled features.

It can be noted that this approach could be ineffective in discriminating

among classes of different layers, yet with very proximal values, e.g. ‘1999’

and ‘2000’. However, this case is not practically possible for the particular

application, since the highest possible value of any secondary layer is ‘3’,

making it always closer to the core value of the hierarchical layer it belongs

(Table 4.4). Although not directly applicable in applications where these

conditions do not hold, the specific method was selected here due to its

simplicity and effectiveness, as shown in the next section.

4.4. Results and discussion

The efficiency of the selected features in discriminating among the potential

habitat classes was evaluated through a number of different supervised clas-

sifiers. The same classifiers used in the experiments described in Chapter

3 were employed, namely J48 and REPTree (RT) tree classifiers, random

forests (RF), bagging with J48 (B-J48) and REPTree (B-RT), AdaBoost.M1

with J48 (A-J48) and REPTree (A-RT) as basis, and two implementations

of SVM with linear kernel, with (SVM-M) and without (SVM) fitting lo-

gistic models to the output. In addition, two artificial neural network clas-

sifiers with (ANN-D) and without (ANN) decay in the learning rate were

used [316]. In all experiments, 10-fold cross validation was used to evaluate

the classification results.

4.4.1. Le Cesine

A set of 250 objects was available for the evaluation of the method for Le

Cesine, based on the validation points extracted through a field campaign

(Fig. B.7). The objects belong in 14 different GHC classes, including all

GHC main categories apart from the sparsely vegetated (SPV) one. A series

of experiments were conducted, involving a different number of features. In

particular, the first set (‘Main’) included the features D1–D7, as described

in Section 4.3.1 and used in [52]. A second set (‘Main + lidar’) involved

the inclusion of the two lidar-derived features D8 and D9, also used in
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[52]. In order to evaluate the potential of texture analysis in surrogating

lidar information, texture features were also added to the ‘Main’ set. In

particular, the best performing individual sets of the June image in Section

3.5.2, namely LH5 in the blue band and LTBP4 in the NIR band were

included separately (‘Main + LH5’ and ‘Main + LTBP4’ sets) and together

(‘Main + LH5 + LTBP4’). In addition, a set with all June QuickBird image

derived texture features was created (‘Main + QB texture’), June image

being preferred to allow compatibility with experiments on Lago Salso site

described below. For the few validation points falling outside the QuickBird

image boundaries, default texture values of 0 were assigned to the respective

objects.

Table 4.5 shows the classification accuracies achieved by applying the

selected supervised classifiers to the evaluated feature sets. Among the em-

ployed classifiers, the Bagging ensemble using J48 trees as base classifier,

showed the highest performance consistently for all sets, with other tree

classifiers, namely B-RT, A-J48, and RF, following. The feature set em-

ploying lidar information provided the highest accuracies, both in average

for all classifiers and in particular with B-J48, equal to 86%. Whereas the

‘Main’ feature set provided accuracies up to 81.2%, the inclusion of the

LH5 texture feature further increased the performance up to 81.6%. Fur-

thermore, the feature set including all texture features from the June image

provided accuracies up to 82.4%. The latter two results give an indication

of the discriminatory potential of the derived texture features, as surrogates

of lidar data. The kappa values of the reported classifications ranged from

0.544 to 0.835. Some further features have been experimentally added to

the ‘Main + lidar’ sets, including the mean reflectance at each band and

the object perimeter, causing no increase or even decreasing the classifier

performance.

The proposed approach seems to clearly outperform the results from

the crisp knowledge-based classification framework described by Adamo et

al. [52, 53], where accuracies of 69.9% are reported. The latter approach

appears to discriminate a larger number of categories by considering four

separate classes for each tree and shrub (TRS) initial class, based on four

leaf phenological categories, i.e. (i) deciduous (DEC), (ii) evergreen (EVR),

(iii) non-leafy evergreen (NLE), and (iv) coniferous evergreen (CON/EVR).

However, this further categorization is inherited by and solely attributed

118



Table 4.5.: Classification accuracies for combinations of datasets and feature
sets in Le Cesine. The total number of features of each set is
written in parentheses. The best results from each feature set
are highlighted.
Main
(28)

Main
+
lidar
(30)

Main
+
LH5
blue
(29)

Main
+
LTBP4
NIR
(29)

Main +
LH5 +
LTBP4
(30)

Main +
QB
texture
(124)

Average

J48 75.6 83.6 75.2 75.2 74.8 78.8 77.2

RT 73.2 80.0 75.2 73.2 74.4 70.4 74.4

RF 80.8 81.6 78.4 80.0 78.8 76.4 79.3

A-RT 76.8 82.8 76.0 76.8 75.6 73.2 76.9

A-J48 79.2 84.0 78.0 78.0 77.2 81.2 79.6

B-RT 80.0 84.4 79.2 78.8 78.0 80.4 80.1

B-J48 81.2 86.0 81.6 80.8 80.0 82.4 82.0

SVM 72.4 76.0 74.8 74.0 74.0 75.6 74.5

SVM-M 79.2 82.4 79.6 80.4 78.4 72.0 78.7

ANN 73.6 78.4 72.4 72.4 76.0 74.0 74.5

ANN-D 63.2 63.6 62.8 63.2 63.2 68.4 64.1

Average 75.9 80.3 75.7 75.7 75.5 75.7 76.5

to the object LCCS class name, and applied as a post-classification step.

Thus, considering merging of the phenological classes in [52, 53] would re-

sult in a similar number of final GHC classes to the ones in the present

study with no significant change in the reported accuracy of 69.9%, since

misclassifications among the different classes of TRS (as well as the rest of

the classes) are expected to remain. Therefore, comparison of the present

study with [52, 53] can be considered feasible, since similar conditions and

data are applied. The current approach seems to achieve notably higher

classification accuracies, in a more automated manner.

The computational complexity of the supervised classifiers is defined as

discussed in Section 3.5.1.B. In particular, REPTree showed the lowest com-

putational time, whereas the ANN classifiers the highest, the latter being

more sensitive to increase of the feature space size than the rest of the clas-

sifiers. In any case, the practical computational time for the training of all

supervised classifiers, ranging from seconds to a few minutes, is significantly

lower than the trial-and-error manual extraction or rules and thresholds by

experts in [52,53], requiring laborious work of several days or even months.

In Table 4.6, the confusion matrix for the best classification result, with

the ‘Main + lidar’ set, is shown. As noticed, perfect discrimination has
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been achieved for certain classes for both producer’s and user’s accuracies,

namely for cultivated herbaceous (CRO) and woody (WOC) crops, caespi-

tose hemicryptophytes (CHE), and therophytes (THE) or geophytes (GEO).

The latter classes were not possible to be discriminated and are provided as

a complex class (‘THE or GEO’) in the validated object set. Most classes

reached PA and UA values of over 75%, whereas the lowest values were

due to the misclassification of the one only urban non-vegetated (NON)

object as urban artificial (ART). In general, kappa coefficient of 0.835 was

achieved, indicating an ‘almost perfect’ classification, according to [340].

4.4.2. Lago Salso

For Lago Salso, a less numerous set of 59 objects was validated through field

campaign and used in the classification process. However, the set included

15 GHC classes from all main GHC categories. The same feature sets as

for Le Cesine site were extracted (Section 4.4.1), with the results shown

in Table 4.7. The GI (D1) and WI (D2) features were calculated from the

October image in Le Cesine, but such image was not available for Lago Salso.

Thus, both June and February images were used instead, with the feature

sets including the D1 and D2 features from the former image consistently

outperforming the ones from the latter; the former sets are shown in Table

4.7. As previously, B-J48 classifier outperformed the rest ones in most

experiments. The performance of the ANN classifier with decay in the

learning rate was notably low, indicating that the generic parameterization

used was not appropriate and a more targeted one to the specific problem

might be required.

As in Le Cesine study area, the proposed approach seems to outperform

the accuracies of 66.1% reported in [53]. It is noteworthy that the best

classification accuracy (OA 88.1%) was achieved by the feature set employ-

ing all texture features equivalent to the QuickBird image (‘Main + QB

texture’), namely from the blue, green, red, and NIR1 bands of the June

WorldView-2 image of Lago Salso, outperforming the set including the lidar

features. In fact, the latter set showed the lowest average performance of all

sets, indicating that the lidar feature values provided little discriminatory

information. Besides the texture features common to the QuickBird bands
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Table 4.6.: Confusion matrix from classification of the ‘Main + lidar’ feature set with the Bagging classifier with J48 in Le
Cesine. The rows represent the ground truth data, whereas the columns the classified objects.

ART NON CRO WOC SHY EHY HEL CHE THE
or
GEO

SCH LPH MPH TPH FPH Sum PA(%)

ART 3 3 100

NON 1 1 0

CRO 5 5 100

WOC 17 17 100

SHY 7 1 8 87.5

EHY 2 13 7 22 59.09

HEL 6 22 28 78.57

CHE 4 4 100

THE
or
GEO

40 40 100

SCH 1 2 3 33.33

LPH 3 3 6 50

MPH 65 7 72 90.28

TPH 5 26 1 32 81.25

FPH 9 9 100

Sum 4 0 5 17 9 20 29 4 40 4 5 70 33 10 250

UA(%) 75 – 100 100 77.78 65 75.86 100 100 25 60 92.86 78.79 90

Overall accuracy (%): 86 Kappa coefficient: 0.835
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of Le Cesine, the features from the rest of the WorldView-2 bands were

included, although in most cases providing inferior results. Finally, it can be

noticed that same classification accuracies are achieved for different features

with a specific classifier. This seems to be attributed, up to a degree, to the

small size of objects that restricts the training combinations, and also to the

‘dominance’ of certain features compared to others. For instance, features

L1, L2, L5, L6, L10, L12, L16, and D2 are the only ones selected by the

J48 tree classifier from all feature sets in the five first columns of Table 4.7;

choosing the same features and forming the same binary decisions for all

these sets result to the same classification accuracies.

Table 4.7.: Classification accuracies for combinations of datasets and feature
sets in Lago Salso. The total number of features of each set is
written in parentheses. The best accuracies for each feature set
are highlighted.
Main
(28)

Main
+
lidar
(30)

Main
+
LH5
blue
(29)

Main
+
LTBP4
NIR
(29)

Main +
LH5 +
LTBP4
(30)

Main +
QB
texture
(124)

Average

J48 83.1 83.1 83.1 83.1 83.1 86.4 83.6

RT 66.1 62.7 66.1 62.7 62.7 61.0 63.6

RF 81.4 78.0 78.0 76.3 81.4 71.2 77.7

A-RT 76.3 71.2 76.3 67.8 66.1 66.1 70.6

A-J48 83.1 83.1 83.1 83.1 83.1 86.4 83.6

B-RT 74.6 72.9 76.3 72.9 72.9 72.9 73.7

B-J48 86.4 86.4 86.4 86.4 86.4 88.1 86.7

SVM 67.8 62.7 62.7 69.4 66.1 76.3 67.5

SVM-M 72.9 72.9 72.9 78.0 78.0 71.2 74.3

ANN 74.6 69.5 78.0 72.9 74.6 78.0 74.6

ANN-D 17.0 17.0 17.0 17.0 17.0 37.3 20.3

Average 71.2 69.0 70.9 70.0 70.1 72.3 70.6

Table 4.8 draws the confusion matrix from the highest performing set

including the texture features from the equivalent bands to the QuickBird

image, ‘Main + QB texture’, with the B-J48 classifier. ‘LHE/CHE’ denotes

combination of leafy (LHE) and caespitose (CHE) cryptophytes in the same

object area. Apart from the undetected or misclassified urban herbaceous

(GRA), LHE/CHE, and CHE objects, most of the other classes have been

identified with perfect precision and recall accuracies, all of them being 60%

and over, reaching at the same time a high final kappa coefficient value of

0.869.
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It is notable that, although an inductive example-driven learning method

with no a priori expert knowledge is applied, most misclassifications are

between similar objects of the same GHC main category. Examples include

an urban herbaceous (GRA) object misclassified as urban woody (TRE),

and incorrect classifications among the aquatic herbaceous classes of SHY,

EHY, and HEL. However, despite the advantages of time and labour effi-

ciency achieved by the approach, a limitation compared with a deductive

learning framework may be spotted on the fact that non-realistic classifica-

tions may arise. As an instance, a herbaceous mixed leafy and caespitose

hemicryptophytes (LHE/CHE) object has been erroneously classified as tall

phanerophyte tree (TPH) of height 2–5 m (Table 4.8), although its LCCS

related features (L1, L6, L7) indicate herbaceous vegetation 0.3–0.8 m high.

Prior knowledge embedded to the classifier could be beneficial to avoid such

inconsistencies.

4.4.3. Transferability from Le Cesine to Lago Salso

In order to test the transferability of the proposed approach from one study

area to the other, as an indication of its generalization performance, classifier

models created in Le Cesine were evaluated in Lago Salso site. As noticeable

from the previous experiments, 14 GHC classes were present in Le Cesine

and 15 in Lago Salso, out of which 11 classes were present in both sites,

namely ART, NON, CRO, WOC, SHY, EHY, HEL, CHE, THE, LPH, TPH

(Table 4.3); this indicates that four classes in Lago Salso (i.e. TRE, GRA,

SAN, LHE/CHE) could not be learned by the classifier model, whereas

three classes only met in Le Cesine (i.e. SCH, MPH, FPH) could introduce

misleading bias to the model, since they were not practically useful for

the classification of the testing site. 250 and 59 objects were used from

Le Cesine and Lago Salso, respectively. Each feature set discussed in the

previous sections was used from Le Cesine to train the classifiers, whereas

the respective from Lago Salso to test them.

The results from the classification are drawn in Table 4.9. As shown,

accuracies of almost up to 73% were achieved by various feature sets. As

expected, the performance of the classifiers dropped significantly compared

with the case where they were trained using data from Lago Salso. How-
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Table 4.8.: Confusion matrix from classification of the ‘Main + QB texture’ feature set with the Bagging classifier with J48
in Lago Salso. The rows represent the ground truth data, whereas the columns the classified objects.

ART NON TRE GRA CRO WOC SAN SHY EHY HEL LHE/CHE CHE THE LPH TPH Sum PA(%)

ART 3 3 100

NON 4 4 100

TRE 3 3 100

GRA 1 1 0

CRO 7 7 100

WOC 2 2 100

SAN 2 2 100

SHY 6 1 7 85.71

EHY 1 3 1 5 60

HEL 2 2 100

LHE/CHE 1 1 0

CHE 1 1 0

THE 4 4 100

LPH 1 1 100

TPH 1 6 7 85.71

Sum 3 4 4 0 7 2 2 7 4 3 1 0 5 1 7 50

UA(%) 100 100 75 – 100 100 100 85.71 75 66.67 0 – 80 100 85.71

Overall accuracy (%): 88.14 Kappa coefficient: 0.869
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Table 4.9.: Classification accuracies (%) applying classifiers trained with
data from Le Cesine to Lago Salso, for combinations of datasets
and feature sets. The total number of features of each set is
written in parentheses. The best accuracies for each feature set
are highlighted.
Main
(28)

Main
+
lidar
(30)

Main
+
LH5
blue
(29)

Main
+
LTBP4
NIR
(29)

Main +
LH5 +
LTBP4
(30)

Main +
QB
texture
(124)

Average

J48 67.8 71.2 67.8 67.8 67.8 69.5 68.6

RT 44.1 47.5 44.1 44.1 44.1 44.1 44.6

RF 62.7 66.1 66.4 66.1 64.4 30.5 59

A-RT 69.5 72.9 72.9 72.9 72.9 69.5 71.8

A-J48 67.8 69.5 67.8 67.8 69.5 62.7 67.5

B-RT 62.7 64.4 61.0 62.7 61.0 59.3 61.9

B-J48 66.1 69.5 66.1 66.1 66.1 62.7 66.1

SVM 47.5 49.2 47.5 47.5 45.8 35.6 45.5

SVM-M 59.3 64.4 61.0 61.0 61.0 39.0 57.6

ANN 30.5 37.3 30.5 27.1 35.6 40.7 33.6

ANN-D 15.3 15.3 15.3 15.3 15.3 13.6 15.0

Average 53.9 57.0 54.4 54.4 54.9 47.9 53.7

ever, the results were still superior than the 66.1% accuracy achieved by the

respective rule-based classifier in [53], encouraging the applicability of the

approach to different sites.

The AdaBoost.M1 classifier using REPTree as basis consistently outper-

formed the other classifiers in all feature sets. The inherent ability of boost-

ing to improve weak classifiers was evidenced in this case, with AdaBoost.M1

with REPTree outperforming its counterpart with J48, whereas J48 showed

significantly higher performance than REPTree as individual classifier. In

fact, it is noteworthy that the simple J48 tree classifier was the second high-

est performing among the selected ones, outperforming more complicated

classifiers. Up to a certain degree, that may be due to the scarse testing set,

with only three of the classified classes having more than five objects, and

the inconsistencies in classes present between the two sites, that limited the

performance of ensemble and other complicated classifiers. As a note, fea-

ture sets using the GI (D1) and WI (D2) features extracted from the June

image of Lago Salso are shown in Table 4.9, since they lead to significantly

higher performance than the respective features from the February image.

Among the different feature sets, the ones with lidar information (‘Main

+ lidar’) and the ones with one or two added texture features (‘Main +

125



LH5 blue’, ‘Main + LTBP4 NIR’, ‘Main + LH5 + LTBP4’) resulted in the

highest classification accuracies, under the AdaBoost.M1. Table 4.10 draws

the confusion matrix resulting by the use of the main feature set with the

addition of the local binary pattern based feature (‘Main + LTBP4 NIR’

dataset) with AdaBoost.M1 using REPTree, as the best performing set with

the minimum number of features—same with the ‘Main + LH5 blue set’).

In this case, the addition of a single feature from texture analysis resulted

in equal performance with the addition of two lidar-derived features. Ta-

ble 4.10 shows that the most populated classes, i.e. CRO, SHY, and LPH,

with seven, seven, and ten objects, respectively, were perfectly identified

(100% PA). This encourages the use of the classifier in case of a more popu-

lated testing site with multiple objects in each class. It is also encouraging

that no object was erroneously classified to any of the classes present only

at the training site (SCH, MPH, FPH). On the contrary, as expected, none

of the objects belonging to a class that was not included to the training set

(TRE, GRA, SAN, LHE/CHE) was correctly classified. However, it can be

noticed that if the seven objects from these four classes are excluded from

the classification, the resulting overall accuracy raises up to 82.7%, further

supporting the promising nature of the developed classification framework.

4.5. Conclusions

A supervised learning scheme has been proposed in this chapter to convert

land cover to habitat classes. A number of features proposed by expert

ecologists in previous studies [52, 53] have been calculated from the avail-

able satellite imagery, lidar data, and object morphology. Furthermore, an

approach to represent LCCS classes and attributes as numerical interval-

scaled variables has been proposed, to allow their direct use as input in su-

pervised classifiers. This representation proved capable in describing inter-

and intra-class variabilities by providing features highly selected in the bi-

nary decisions of the tree classifiers. A number of supervised classifiers have

been evaluated, including decision tree-based ones, support vector machines,

and artificial neural networks; an implementation of Bagging trees with J48

as base classifier provided the best overall accuracies, with single J48 being

proven a good trade-off between complexity and accuracy. Texture features
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Table 4.10.: Confusion matrix from classification of the ‘Main + LTBP4 NIR’ feature set with the AdaBoost.M1 classifier
with REPTree in Lago Salso, using the respective feature set from Le Cesine for training. The rows represent
the ground truth data, whereas the columns the classified objects.

ART NON TRE GRA CRO WOC SAN SHY EHY HEL LHE/CHE CHE THE
or
GEO

SCH LPH MPH TPH FPH Sum PA(%)

ART 3 3 100

NON 3 1 4 25

TRE 3 3 0

GRA 1 1 0

CRO 7 7 100

WOC 2 2 100

SAN 2 2 0

SHY 7 7 100

EHY 1 4 5 80

HEL 2 2 100

LHE/CHE 1 1 0

CHE 1 1 100

THE or
GEO

4 4 100

SCH 0 –

LPH 10 10 100

MPH 0 –

TPH 4 1 2 7 28.6

FPH 0 –

Sum 8 1 0 0 11 6 0 8 4 2 0 1 6 0 10 0 2 0 59

UA(%) 37.5 100 – – 63.6 33.3 – 87.5 100 100 – 100 66.7 – 100 – 100 –

Overall accuracy (%): 72.88 Kappa coefficient: 0.7
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selected based on the outcomes of Chapter 3 have also been evaluated as sur-

rogates of lidar features, and offered useful class discriminatory information

in certain cases.

The proposed approach was tested in two individual sites with 10-fold

cross-validation, and reached higher accuracies than the rule-based classifi-

cation schemes in [52, 53]. Furthermore, the generalization performance of

the approach was evaluated, using the extracted features from one study site

to train the classifiers and testing the resulting model with the features from

the other one. Accuracies outperforming the one from the baseline state-

of-the-art classifier [53], despite inconsistencies in GHC classes between the

training and testing sites, indicate the effectiveness of the approach as accu-

rate alternative of labour and time demanding expert rule-based approaches.
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5. Habitat classification with

evidential reasoning and fuzzy

logic

5.1. Dempster–Shafer theory for uncertainty

handling

Whereas the previous chapter focused on developing a less labour and time

consuming alternative to the GHC expert rule-based classification method-

ology discussed in [52, 53], the present chapter proposes an approach to

handle uncertainty caused by missing or noise afflicted data, or vague clas-

sification rules provided by the experts. Uncertainty is an unavoidable factor

in real world studies [347], including remote sensing applications [348,349].

Various crisp rule-based habitat classification schemes proposed in the lit-

erature [46–48, 345], including the ones of particular interest in this study

[52, 53], do not explicitly account for uncertainty; thus, they may prove in-

adequate in handling commonly met problems in remote sensing, such as

data noise affliction from different stages of acquisition and pre-processing,

unavailable data sources, or vague information. A classification framework

based on evidential reasoning, in particular on Dempster–Shafer (DS) the-

ory [54, 55], and fuzzy logic is proposed in this chapter to tackle such limi-

tations.

DS theory, a mathematical theory of evidence, is broadly used for in-

formation fusion, and handling of uncertainty and missing data [350, 351].

It has been used in various fields as a means to combine results gener-

ated from multiple classifiers, even producing different classes, or data from

multiple sources, and has been usually combined with fuzzy sets [352–355].

In remote sensing, DS theory has been successfully employed in a number

of applications, including multiple image segmentation [356], road extrac-
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tion [357], sea breeze front detection [358], building detection [359–361], and

automatic target recognition [362].

In landscape monitoring, DS theory, mostly with fuzzy sets, has been

used to combine sensor data or contextual information to improve mapping

of LC classes, habitats, or plant functional types [363–367]. DS theory has

been found to allow larger flexibility in the formulation of informative classes

[368] than other schemes, whereas classifiers employing it have outperformed

commonly used maximum likelihood [369], ISODATA [370], and k-nearest

neighbour [338] classifiers in various applications and landscapes. In one of

the few studies applying DS theory in habitat mapping, Franklin et al. [366]

demonstrated the higher ability of the theory to incorporate multiple sources

of information, compared with a conventional maximum likelihood classifier,

resulting in significantly higher accuracy in discriminating habitat classes.

The use of DS theory in conversion of LC maps to habitats with remote

sensing data has not yet been evaluated.

The contribution of this chapter lies in the proposal of a robust method-

ology based on DS theory and incorporating fuzzy logic for habitat classifi-

cation. The methodology builds on pre-existing LC maps, presented in the

previous chapter, and converts them to GHC maps, incorporating domain

expert rules. Different fuzzification methods are proposed and introduced

to the DS theory framework to deal with inaccurate rules provided by ex-

perts or noise afflicted data. The flexibility of the framework in handling

composite classes when adequate information for the discrimination of sin-

gle classes is missing is studied. Thorough experimentation on final class

selection is conducted and decision making trade-offs are discussed. Finally,

the rule set designed for one site is applied to the other in order to test the

transferability of the approach. Comparisons with the respective crisp clas-

sification implementations are made to evaluate the potential advantages of

the proposed approach. Table 5.1 summarizes the statement of the problem

being addressed in this chapter.

130



Table 5.1.: Problem statement of Chapter 5.

• Objective: Habitat classification of landscape objects through rule-based
classifiers based on Dempster–Shafer theory and fuzzy sets, to handle
uncertainty from missing information, inaccurate rules, and noise.
Evaluation of method transferability to different sites. Comparison with
state-of-the-art approach in [52,53].

• Input: (i) Very high resolution multispectral satellite images from two study
areas; (ii) land cover map of the area to delineate objects and provide LCCS
class features assisting habitat classification; (iii) Canopy Height Model from
lidar data.

• Methodology: (i) Extraction of spectral, morphological, topological, and
lidar features, for classification; (ii) use of theoretical [51] and
fine-tuned [52,53] expert rules for classification, and adaptation to express
uncertainty in their outcome; (iii) design of rule-based classifiers
incorporating Dempster–Shafer theory principles and fuzzy sets; (iv)
adaptation to return multiple classes in case little support in single ones is
provided; (v) evaluation of different class selection criteria; (vi) fusion of
classifiers.

• Output: Classification of study areas in GHC habitat classes, (i) for the
area which the rules are developed for, (ii) for a second area to test the
method transferability.

• Evaluation measures: Use of different interpretations of classification
accuracy, as far as multiple classes are concerned; (i) interpretation tolerant
to multiple classes; (ii) interpretation favouring single classes; (iii) averaging
interpretation; (iv) interpretation of normalized difference.

5.2. Methods

5.2.1. Dempster–Shafer theory principles

A. Basic concepts

DS theory, introduced by Dempster [54] and Shafer [55], is a mathematical

theory of evidence, considered as a generalised form of the Bayesian theory

of subjective probability. It is popular in rule-based expert systems, mainly

because of its ability to handle uncertainty, lack of information and vague

rules leading to composite events [355].

To each individual event, or set of events, belief and plausibility values

are assigned, defining a belief interval. Belief on an event expresses the de-

gree of confidence that the event holds, based on supporting evidence. Its

plausibility value reflects the highest confidence on an event if all missing

information were to support its validity. The difference between the plau-
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sibility and belief of a single or composite event expresses its uncertainty.

When no uncertainty exists, plausibility and belief values coincide.

One of the principal concepts in DS theory is the basic probability assign-

ment function, or mass function, m, describing the degree an event, A, from

the set of all possible events, or frame of discernment Θ, is supported with

evidence. A can be a single event or a set of two or more single events; m

values assigned to the latter indicate lack of adequate evidence to discrim-

inate the single events of the multiple event. Θ is defined as a finite and

non-empty set that contains all possible values a certain variable (e.g. GHC

class) can take, Θ = {θ1, . . . , θn}, where n is the total number of possible

values of the variable. The set is collectively exhaustive and all its proposi-

tions are mutually exclusive, i.e. there is no more and no less than one true

value at a time. Considering the power set 2Θ, a set of all possible subsets

of Θ, the basic probability assignment function is defined as m : 2Θ → [0, 1],

where the following conditions hold:

1. m(∅) = 0

2.
∑
A⊆Θ

m(A) = 1, for all A ⊆ Θ.

m(A) describes the degree the set A is supported with evidence. According

to the terminology, the mass function assigned to the frame of discernment,

m(Θ), represents the amount of belief not assigned to any other subset of Θ,

i.e. the lack of information on specific propositions or sets of propositions

of Θ. m(∅) = 0 is a condition that arises naturally from the fact that

there is always one proposition true. It is worth noticing that the mass

function is defined on the power set 2Θ. This allows mass function values to

be assigned in sets of two or more propositions, when there is not enough

information to distinguish among them, thus allowing multiple options in

case of inadequate evidence.

The belief function, bel : 2Θ → [0, 1], of a set A ⊆ Θ, is defined as the

summation of the m values of all subsets of A, i.e.

bel(A) =
∑
X⊆A

m(X), for all A ⊆ Θ. (5.1)

bel(A) is the total belief on set A and all its subsets X. The support on each

subset of A is included in the belief value of A. Therefore, bel(A) expresses
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the confidence that at least one of the subsets of A is true.

Plausibility of event A is defined as

pls(A) ≡ 1− bel(A), (5.2)

where A stands for the complement set of A with regards to Θ. pls(A)

expresses how much the confidence that A is true would be if all missing

evidence were in favour of A. In other words, plausibility expresses the max-

imum support that can potentially be assigned to the set A. Having in mind

that bel(A) expresses the belief in A based on the existing evidence, it can

be inferred that the true probability of A lies in the interval [bel(A), pls(A)],

i.e. the belief interval. In the ideal case of no lack of information, i.e. no

uncertainty, it is bel(A) = pls(A).

Whereas in the Bayesian theory belief in one set A implies disbelief in

its complement A, thus no uncertainty is considered, in DS theory no such

conjecture is necessarily true. Additionally, the DS approach provides the

flexibility of assigning m values to composite events, in case not enough in-

formation is available for the discrimination of the constituting single events,

and naturally update them, in case new information arises that supports sin-

gle events. m values assigned to sets from different frames of discernment,

e.g. values concerning different variables in a rule-based classifier, can be

multiplied to assess the support in the combined event that all individual

sets hold simultaneously.

B. Combination of evidence

One of the core elements of the DS evidential process is the combination

of evidence, where information from different sources, e.g. data, expert

opinions, or results from different classifiers, need to be fused. All evidence

is expressed through the respective mass functions, which are appropriately

combined. The events of these mass functions may refer to either the same

or different frames of discernment, with different process being followed in

each case.

Results from various classifiers deriving classes from a particular set, e.g.

GHC classes in the case of the present study, is an example of events—i.e.

the classes—belonging to the same frame of discernment—i.e. the GHC

habitat set. When the evidence belongs to the same frame of discernment,

133



Θ, the Dempster rule of combination is applied to combine the mass func-

tions of interest and lead to a new mass function whose events belong, as

expected, to the same frame of discernment, Θ. If mi, i = 1, . . . , n are the n

mass functions combined, the mass function value m of the event of interest

A after the combination of evidence will be calculated as [55]

m(A) =

∑
A1∩A2∩···∩An=A

n∏
i=1

mi(Ai)

1−K
, (5.3)

where A1 ∩ A2 ∩ · · · ∩ An = A represent all sets of events whose junction

is the set A. 1 − K is a normalization factor used to reassure that the

condition
∑

A⊆Θm(A) = 1, for all A ⊆ Θ, holds and no mass function value

is assigned to the empty set. K is equal to

K =
∑

A1∩A2∩···∩An=∅

n∏
i=1

mi(Ai), (5.4)

with A1∩A2∩· · ·∩An = ∅ standing for the sets whose junction is the empty

set.

Values of various features, e.g. LCCS classes, greenness index, or object

area in this study (Section 4.3), used as combined conditions of classifica-

tion rules, are examples of evidence from different frames of discernment.

In such cases, the resulting frame of discernment of the combination of evi-

dence is the direct product of the initial frames of discernment. The mass

function of the combination is the product of the combined mass functions.

In case n mass functions, m1, . . . ,mn, express the support in the events

A1, . . . , An belonging in the frames of discernment Θ1, . . . ,Θn, respectively,

then the mass function m, expressing the support in the junction of these

propositions, is calculated as

m(A1 ∩A2 ∩ · · · ∩An) =

n∏
i=1

mi(Ai), (5.5)

whereas the new frame of discernment is Θ = Θ1 ×Θ2 × · · · ×Θn.
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C. Class selection

Concerning the final class selection, whereas in the Bayesian probability

framework decisions are made according to the highest probability rule, in

Dempster–Shafer theory decision making is customizable and not straight-

forward. At the end of the process, each potential single or composite event

is accompanied with a belief and a plausibility value. The final classification

decision may be made based on maximum belief, plausibility, or combina-

tion of the two. An additional consideration is related with the acceptable

complexity of the selected event, i.e. whether a composite event with high

belief consisting of a large number of non-distinguishable single classes is

more preferable than a single class event with lower belief, and to what

degree. The Dempster–Shafer theory permits flexibility in the final deci-

sion criteria after the extraction of belief intervals for all potential single

or composite events, which is highly dependent on user preferences and the

specific application.

5.2.2. Fuzzification methods

DS theory provides large flexibility in incorporating fuzzy logic in the clas-

sification process. Fuzzy sets have been extensively used to moderate the

drawbacks of crisp classification approaches and counteract for inaccuracies

in the process, caused mainly by noise afflicted data [371]. The rule-based

classification task described in this study can be sensitive to inaccurate rules

provided by the domain experts or noise introduced during data acquisition

and processing. Furthermore, slight changes in rule thresholds, e.g. when

applying the method in similar sites located in different areas, can, similarly,

significantly decrease the accuracy achieved by a crisp classifier.

A number of linear fuzzification methods, some similar to ones used in

previous studies [372, 373], are proposed and evaluated, applied to the nu-

merical features used for the classification. The numerical features for each

object are the ones defined in Section 4.3.1, namely (i) greenness and (ii)

water index; (iii) percentage of vegetated pixels in an object; (iv) object area

and (v) ratio of object perimeter to the perimeter of the smallest rectangle

enclosing the object; (vi) percentage of object pixels adjacent to artificial

or non-vegetated urban areas and (vii) percentage of pixels adjacent to sub-

merged hydrophytes (SHY); (viii) percentage of pixels higher than 0.6 m
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within an object and (ix) mean vegetation height in an object. Within

each fuzzification method, appropriate membership functions are defined to

provide a confidence degree that a numerical feature value lies within the re-

gion set by the expert rule under consideration. Membership functions for a

particular numerical feature are either defined by considering all thresholds

included in the expert rules regarding the specific numerical feature and re-

main constant throughout the classification process, or defined individually

for each rule checked.

For a specific numerical feature, the first proposed method, takes into

consideration all n thresholds, ti, i = 1, . . . , n, given by the experts in the

rules involving the particular feature and splits the field of values of the

feature in a respective number of regions. For instance, for mean height,

the following thresholds are employed in the classification rules: t1 = 0.05,

t2 = 0.3, t3 = 0.6, t4 = 0.8, t5 = 2, t6 = 3, t7 = 5, and t8 = 40 m. Thus, the

following regions are formed for mean height feature: (−∞, 0.05), [0.05, 0.3),

[0.3, 0.6), [0.6, 0.8), [0.8, 2), [2, 3), [3, 5), [5, 40), and [40,+∞).

Then, membership functions are defined to represent the probability of

a feature value to belong in the respective region. Membership functions

µi(t), µi(t), and µi,j(t) are defined to describe the membership of a value t to

the regions (−∞, ti], [ti,+∞), and [ti, tj ], ti < tj . For instance, for the case

of mean height feature, µ1(t), µ1(t), and µ1,3(t) represent the membership

of a value t to regions (−∞, 0.05], [0.05,+∞), and [0.05, 0.6], respectively.

In general, µi(t) is defined as

µi(t) =


1 if t ∈ (−∞, ti − s)

− 1
2s(t− ti) + 1

2 if t ∈ [ti − s, ti + s)

0 if t ∈ [ti + s,+∞),

(5.6)

where s ∈ R represents a predefined value related to the slope of the mem-

bership functions. µi(t) represents the membership to the complement

region of µi(t), therefore is defined as µi(t) = 1 − µi(t). The member-

ship to a closed region between two thresholds, ti and tj—not necessarily
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consecutive—, is defined as

µi,j(t) =



0 if t ∈ (−∞, ti − s)
1
2s(t− ti) + 1

2 if t ∈ [ti − s, ti + s)

1 if t ∈ [ti + s, tj − s)

− 1
2s(t− tj) + 1

2 if t ∈ [tj − s, tj + s)

0 if t ∈ [tj + s,+∞).

(5.7)

The method is schematically depicted in Fig. 5.1a, where, functions (1),

(2), (3), (4), and (5) represent the membership functions µ1, µ1,2, µ2,3, µ3,4,

µ4, respectively. The functions are defined to satisfy two conditions:

1. A feature value t equal to a threshold value ti has equal membership

values to both regions (−∞, ti] and [ti,+∞), i.e. it is µi(ti) = µi(ti) =

0.5; for instance, the membership values of an object with measured

height value t = 0.6 m to regions (−∞, 0.6] and [0.6,+∞) are equal

to 0.5, i.e. µ3(0.6) = µ3(0.6) = 0.5.

2. A feature value t equal to the mean of two threshold values ti and tj

has a membership value in the region [ti, tj ], ti < tj , equal to 1, i.e.

µi,j
(
(ti+tj)/2

)
= 1. Following the previous example, the membership

of an object with measured height value t = 0.7 m to the regions

[0.6, 0.8) is equal to 1, i.e. µ3,4(0.7) = 1.

Three versions of this method are considered: (i) The parameter s, defin-

ing the slope of the linear functions, is equal to half of the minimum dis-

tance between two consecutive thresholds, dmin
(
dmin = min(ti+1 − ti), i =

1, . . . , n− 1
)
, for a specific feature, in order to avoid overlaps of the defined

membership functions (F1); as an example, for the mean height feature, it is

dmin = t4− t3 = 0.2, thus, s = 0.1. (ii) s is set equal to half of the standard

deviation, std, of the observed values of the specific feature considering all

area elements, to link the membership functions with statistical characteris-

tics of the feature (F2); for the mean height feature, the standard deviation

of the measured values is std = 2.2, thus, s = 1.1, resulting in member-

ship functions with less steep slope for this particular case. (iii) s equals

the minimum value of the previous approaches, i.e. s = min(dmin, std)/2

(F3); thus s = 0.1 for the height feature example. F1 and F3 methods are
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defined to avoid overlapping memberships functions, in case where for two

consecutive thresholds ti and tj it is ti + s > tj − s (see (5.7)). In such

cases, the parameter s in F2 method is decreased to s = (tj − ti)/2, for the

specific membership function µi,j , in order to continue satisfy conditions (1)

and (2) (Fig. 5.1b, red line). As an example, for the region between the

height thresholds t3 = 0.6 and t4 = 0.8, s reduces to s = 0.1, whereas for

the region between t7 = 5 and t8 = 40, it remains as s = std/2 = 1.1.

(a)

(b)

(c)

Figure 5.1.: The proposed fuzzification methods: (a) Membership functions
with constant slopes (methods F1–F5); (b) F2 (red), F4 (green),
and F5 (blue) methods in case of small distance thresholds; and
(c) membership functions with variable slopes (method F6).

Two variations of the F2 method are also implemented. The first (F4)

keeps the original s parameter constant, even in case where overlapping re-

gions are caused and condition (2) is not satisfied (Fig. 5.1b, green line).

The second (F5) keeps the s parameter steady as well, satisfying only con-

dition (1) instead (Fig. 5.1b, blue line). Following some algebra, the mem-

bership function in the F4 method for the particular region [ti, tj ] is defined
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as

µi,j(t) =



0 if t ∈ (−∞, ti − s)
1
2s(t− ti) + 1

2 if t ∈ [ti − s, ti+tj2 )

− 1
2s(t− tj) + 1

2 if t ∈ [
ti+tj

2 , tj + s)

0 if t ∈ [tj + s,+∞),

(5.8)

whereas in the F5 method as

µi,j(t) =



0 if t ∈ (−∞, ti+tj2 − 2s)

1
2s t+ 1− ti+tj

4s if t ∈ [
ti+tj

2 − 2s,
ti+tj

2 )

− 1
2s t+ 1 +

ti+tj
4s if t ∈ [

ti+tj
2 ,

ti+tj
2 + 2s)

0 if t ∈ [
ti+tj

2 + 2s,+∞).

(5.9)

Additionally, another linear method (F6) is proposed, similar to the previ-

ous ones, with the difference that the slopes of the curves of the membership

functions are not the same for all membership functions of a specific fea-

ture, but depend on the distance between two consecutive thresholds, as

schematically represented in Fig. 5.1c. It is defined in such a way that the

membership of a value t in a region between two consecutive thresholds ti

and ti+1 (i) equals 1 only if the feature value is equal to the mean of the

two thresholds, t = (ti + ti+1)/2, and it is smaller than 1 elsewhere; and

(ii) equals 0 beyond the middle of the distance to the previous and the next

thresholds, i.e. µi,i+1(t) = 0, for t ≤ (ti−1 + ti)/2 and t ≥ (ti+1 + ti+2)/2.

After some algebra, the membership function of a value t in a region [ti, ti+1]

is calculated as

µi,i+1(t) =



0 if t ∈ (−∞, ti−1+ti
2 )

2
ti+1−ti−1

t− ti+ti−1

ti+1−ti−1
if t ∈ [ ti−1+ti

2 , ti+ti+1

2 )

− 2
ti+2−ti t+ ti+2+ti+1

ti+2+ti
if t ∈ [ ti+ti+1

2 , ti+1+ti+2

2 )

0 if t ∈ [ ti+1+ti+2

2 ,+∞).

(5.10)
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In a similar way as previously, µi(t) is calculated as

µi(t) =


0 if t ∈ (−∞, ti−1+ti

2 )

2
ti+1−ti−1

t− ti+ti−1

ti+1−ti−1
if t ∈ [ ti−1+ti

2 , ti+ti+1

2 )

0 if t ∈ [ ti+ti+1

2 ,+∞),

(5.11)

whereas for the complement function it is still µi(t) = 1 − µi(t). In the

regions of the marginal thresholds, for both µi,i+1(t) and µi(t) calculations,

a virtual threshold in equal distance to the closest threshold on the other di-

rection is considered to calculate the function slope, e.g. a virtual threshold

t0 before the first threshold t1 as t0 = t1−(t2−t1) to allow the calculation of

µ1(t) or µ1,2(t). For the mean height feature example, the virtual thresholds

are calculated as t0 = 0.05− (0.3− 0.05) = −2 and t9 = 40 + (40− 5) = 75.

This fuzzification method tends to discourage large membership function

value changes when small feature value changes occur, due to the smaller

slopes in membership functions compared with the previous F1–F3 meth-

ods.

As an example demonstrating the differences among the fuzzification mea-

sures, the membership of an object with measured height value t = 2.1 to the

region between t5 = 2 and t6 = 3, µ5,6(2.1), is considered. As shown above,

the slope parameter is s = 0.1 for fuzzification measure F1, thus, from (5.7)

it is µ5,6(2.1) = 1. For F2, it is s = 1.1; however, since t6 − t5 < 1.1 the pa-

rameter reduces to s = (3−2)/2 = 0.5. From (5.7) it is µ5,6(2.1) = 0.6. For

F3, the slope parameter is the same as in the F1 method, thus, µ5,6(2.1) = 1.

For F4 and F5 methods, it is s = std/2 = 1.1. Thus, from (5.8) and (5.9),

the membership values for the F4 and F5 methods are µ5,6(2.1) = 0.5455

and µ5,6(2.1) = 0.5795, respectively. For F6 method, following (5.10), it is

µ5,6(2.1) = 0.6364. It is shown with a practical example that the different

fuzzification methods can return a variety of membership values for a single

feature, which, combined with the values for other features, may provide

significantly different classification results.
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5.3. Experimental setup

5.3.1. Classification process

The proposed methodology is applied on the two sites presented in the

previous chapter. In particular, Le Cesine site is primarily tested, since the

employed rule set by the expert ecologists was defined for this specific site.

Lago Salso is used to test the transferability of the approach to a different

site than the one the rule set has been defined.

As in Chapter 4, an object-oriented approach is followed during the pro-

cess. A two-stage approach is followed for the habitat classification. During

the first step, solely the LCCS classes are used to extract all potential GHC

classes for each object, based on expert knowledge [51]. In general, more

than one GHC classes correspond to each specific LCCS class, therefore,

this process results in composite GHC classes. As an example, an object

characterized by trees in semi-natural terrestrial vegetated area in LCCS,

may correspond to either tall (TPH), forest (FPH), mega (GPH) phanero-

phytes, or urban woody vegetation (TRE) in GHC taxonomy. In such case,

additional information of vegetation height and the degree of the object ad-

jacency to urban areas is needed to dissolve the composite GHC class (‘TPH

or FPH or GPH or TRE’) into its constituting single classes (‘TPH’, ‘FPH’,

‘GPH’, ‘TRE’). Numerous rules were formed by expert knowledge to map

LCCS classes, with different layers of attached attributes, to GHC classes.

Overall, more than 140 different LCCS classes have been considered, from

the most generic ones containing information only on the main LCCS class

(e.g. A11: cultivated or managed terrestrial vegetation), to more detailed

classes with several attributes (e.g. A11.A1-W8.A8.A9: needleleaved ever-

green orchard or other type of plantation). The main classes can correspond

to up to 18 possible GHC classes (e.g. A12: natural of semi-natural terres-

trial vegetation), whereas LCCS classes including more attributes can be

mapped to significantly less GHC classes, even only one. A detailed, almost

complete, record of these rules is given in [51]. After the first-stage classifi-

cation, the numerical features discussed in Section 4.3.1 are calculated, for

each object, to be used in the main classification process.

The second stage of the classification is performed embedding in the

framework knowledge provided by domain experts in the form of if-then

rules [52, 53]. For each LCCS class present, domain experts provide the
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conditions through which the composite GHC class of each object, acquired

in the previous stage, can be refined in a single class or a composite one

with less candidate single classes. The rules take into account the LCCS

class of each object and a number of values of its aforementioned extracted

numerical features.

The rules are examined sequentially for all objects. All features described

in Section 4.3.1 are calculated for each object at the beginning of the process;

the only exception is the adjacency degree to SHY objects (feature D7),

which is updated before the execution of each rule involving it, since it is

the only one related to GHC characteristics. The classification process is

conducted both using the fuzzy methods discussed in Section 5.2.2 and crisp

classification employing no fuzzy logic, as detailed in [52,53]. In the former

case, a degree of support is assigned to each rule, based on the confidence

in each individual condition, derived through the fuzzification methods and

propagated using the DS principles. In the latter case of crisp classification,

a binary selection is done on the validity of each examined rule, which may

either hold or not. Following these approaches, multiple single or composite

GHC classes may result for each object, after the consideration of all rules,

with a belief interval assigned to each one of them. As a note, composite

classes may result following the crisp classification too, when non-adequate

information exists to discriminate among certain GHC classes, a typical

example being herbaceous therophytes (THE) and geophytes (GEO).

5.3.2. Classifier implementations

Two further considerations in order to enhance the classifier flexibility and

applicability in various landscapes are made, resulting in different classifi-

cation implementations. In the original rule set, the rules provided by the

experts are characterized by certainty on the final outcome in case the de-

scribed conditions hold, e.g. valid rules may be in the form “If condition

1 and condition 2 hold, then the object is classified as class A”, where

A may refer to either a single or composite class. However, uncertainty

that may exist in the rules provided by the experts is not considered. As

a countermeasure, rules of definite outcome are converted to rules leading

in uncertain, soft, outcomes, providing higher support to the most possible

classes, but still supporting to a smaller degree the less possible ones. For
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instance, rules of the form “If condition 1 and condition 2 hold, then the

object is classified as class(es) A with confidence x%, or class(es) B with

(100− x)%”, arise and are evaluated.

A second consideration is related with the restricted availability or ac-

quisition difficulty of lidar data for various sites and landscapes. Aiming at

developing a robust method with extensive applicability, such conditions of

lack of information need to be taken into account. Therefore, implementa-

tion of rules without considering the lidar data, used for the disambiguation

of several classes based on their canopy height, is also developed, to test the

approach applicability in similar conditions. Thus, rules employing lidar

data to discriminate among certain classes, e.g. of tree and shrub GHC

classes, are replaced by rules resulting in more composite classes or entirely

removed.

As a result of the aforementioned considerations, four different implemen-

tations are developed testing all four combinations of rules with definite or

uncertain outcome, and availability or lack of lidar information. In partic-

ular, the main implementations are characterized by (A) absence of lidar

data and rules expressing certainty (A1) or uncertainty in the outcome (A2);

or (B) presence of lidar data and definite (B1) or uncertain (B2) outcome

rules.

For each implementation, all fuzzification methods of Section 5.2.2 are

tested, in addition to crisp classification (F0). F0 with implementations

using definite rule outcomes (A1 and B1) assimilate the processes followed

in [52,53], and are used as reference. In total, 28 different classifier versions

(Fig. 5.2) are tested for habitat mapping, based on the principles of DS

theory, from the combination of the four implementations (A1, A2, B1, B2)

and the F0–F6 fuzzification methods.

5.3.3. Final class selection

Each classification process may result in one or multiple single or composite

classes for an object, each class being associated with a belief interval. Com-

posite classes tend to have larger belief values than the single classes they

include, since, based on (5.1), the belief in a composite event is calculated

by aggregating the support to each of its subsets. Different selection criteria

can be used for the assignment of the final class of each object, based on
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Figure 5.2.: The 28 classifier versions, resulting from the combination of the
four implementations and the F0–F6 fuzzification methods.

the belief, plausibility, or a combination of the two values that the possible

events have. In the present study, five selection criteria are evaluated: se-

lection based on maximum (i) belief (bel), (ii) plausibility (pls), (iii) sum of

belief and plausibility (bel + pls), and two weighted sums favouring larger

(iv) belief (2bel + pls), or (v) plausibility (bel + 2pls) values. In addition,

since events of multiple classes tend to have larger values of the different

criteria than events with single classes, a further parameter is proposed to

evaluate trade-offs between favouring single class events and events with

high support in the selected criterion. Thus, a threshold, t, is applied as

the minimum value in the selected criterion a single class event needs to

have to be selected. The single class event with the largest value on the

selected criterion is chosen if this value is larger than the threshold; other-

wise, the event with the smallest number of classes with criterion value over

1.25 times the applied threshold t is chosen, to compensate the lack of single

class events with high support. The 1.25 factor was selected after experi-

mentation; in case of t > 0.8 and no single class event above this threshold

exists, the simplest multiple class with criterion value equal to 1 is selected.

It is worth noting that there will always be at least one event with criterion

value equal to 1, since from the definition of the belief function in (5.1), the

belief on the frame of discernment, i.e. a multiple event with all classes,

is 1, bel(Θ) = 1; and since pls(A) ≥ bel(A), for every event A, there will
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always be an event with selection criterion equal to 1, either if the crite-

rion is defined as belief, plausibility, or a linear combination of them. The

process is summarized in Algorithm 1. All threshold values in the range

[0.1, 0.9], with step 0.1, are evaluated in the experiments for all selection

criteria. These parameters demonstrate the flexibility of the algorithm in

being adjusted to user defined criteria and selecting the most meaningful

and informative final classes for each specific application and purpose.

Algorithm 1 Final class selection

Input: Define the class selection criterion, c; define the selection threshold,
t, for events with single classes

1: Calculate the value, v, for criterion c of each event
2: Find the single class event with the highest v
3: if v ≥ t then
4: Select this event and terminate the algorithm
5: else
6: for n = 2 to N , where n the number of classes and N the maximum

number of classes of any event do
7: Find the event with the highest v
8: if t ≤ 0.8 then
9: Set T = 1.25t

10: else
11: Set T = 1
12: end if
13: if v ≥ T then
14: Select this event and terminate the algorithm
15: end if
16: end for
17: end if

5.3.4. Fusion of classifiers

Besides the evaluation of the single classifiers with the different implemen-

tations and parameters discussed previously, combination of classification

results is additionally performed and evaluated. Combination is applied

based on the Dempster rule of combination, as described in (5.3), since the

results belong to the same frame of discernment, i.e. in the GHC class

taxonomy. Several combinations are evaluated, including: (i) for each im-

plementation and fuzzification method, combination of the classifiers of all

the class selection criteria and thresholds, i.e. 28 combinations of 45 clas-
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sifiers (5 selection criteria × 9 threshold values); and (ii) for each selection

criterion, threshold value, and main implementation (A1, A2, B1, B2 in

Fig. 5.2), combination of all fuzzification methods F0–F6 (including the

crisp classification), i.e. 180 combinations (5 selection criteria × 9 thresh-

old values × 4 implementations) of 7 classifiers (F0–F6 methods). For the

latter combination, the same experiments were implemented excluding fea-

tures F0, in order to evaluate the fusion of the fuzzy methods alone as well.

5.3.5. Transferability evaluation

The developed classifier for Le Cesine site is applied also to Lago Salso study

area, in order to test its transferability to different areas, as an indication

of its generalization performance. No separate rule set has been provided

by the expert ecologists for Lago Salso site, thus the one implemented for

Le Cesine is tested.

5.3.6. Classification accuracy evaluation

The overall classification accuracy of each classifier represents the percent-

age of correctly classified objects over the total number of objects, based

on the available ground truth. In case single class events are selected, an

object is considered as correctly classified if the selected class matches the

validated one. In case of multiple class events, classification can considered

correct if the validated class is within the classes of the composite event.

The aforementioned accuracy interpretation seems useful in case where am-

biguity in classes is more preferable than omission of the correct class, for

each object.

A second interpretation is also applied, that ‘penalizes’ commission errors

in multiple classes. According to this interpretation, a single class event is

considered correct as in the previous case. A composite event, though, is

considered correct only by the ratio of the correct class(es) to the total

number of classes in the event. For instance, if a selected event consists

of four potential classes, among which one coincides with the ground truth

class, it is considered 25% correct. The latter interpretation discourages the

selection of events with multiple classes, with optimal classifiers minimizing

the commission errors, although with the expense of increasing the omission

errors, as shown below.
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5.4. Results and discussion

5.4.1. Le Cesine study area

A total of 583 objects were formed in Le Cesine study site and each one was

classified in a GHC single or composite class with all different classifiers.

As in Chapter 4, 250 points were used for validation, from separate objects,

identifying 14 different GHC classes, including 13 single and one composite

class (‘THE or GEO’).

A. Accuracy interpretations

Fig. 5.3 draws an overview of the classification accuracies achieved by the

different developed fuzzy Dempster–Shafer classifiers. Fig. 5.3a depicts the

accuracies according to the consideration of multiple classes containing the

correct single one as correct classifications. Fig. 5.3b shows the results from

the second interpretation, where incorrect single classes within multiple class

events are considered as commission errors and penalized. The columns of

the figures represent the four main implementations (A1, A2, B1, B2), each

including the crisp (F0) and the fuzzy methods (F1–F6), as described in

Fig. 5.2. The rows represent the class selection parameters, organized in

the five main approaches on the principal criterion (belief, plausibility, or

combination), each including the nine different minimum criterion threshold

values for a single class. Each pixel corresponds to a specific classifier, with

its accuracy being represented by the pixel intensity; the grey-scale colours

were stretched to the range between the minimum and maximum accuracy

values, for each figure.

As noticed from Fig. 5.3a and 5.3b, the different interpretations of clas-

sification accuracy lead to different ranges of values. As expected, higher

accuracies are observed in the cases where returned multiple classes are con-

sidered as correct when one of the single classes coincides with the ground

truth class. In fact, accuracies over 70% are achieved—minimum accuracy

71.2%—, reaching even perfect classifications of 100%. The higher accu-

racies, however, often tend to refer to classifications with multiple classes,

in general, returned instead of single ones. Thus, the commission errors in

such cases are higher, as shown from the corresponding accuracies based on

the second interpretation, where the resulting accuracies are notably lower.
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(a) (b)

Figure 5.3.: Classification accuracies (%) for all DS fuzzy classifiers for Le
Cesine study area, based on (a) tolerance to the existence of the
correct class in the returned event, or (b) penalizing incorrect
classes on a multiple class event. Columns represent the fuzzi-
fication measures (F0–F6) for each implementation (A1, A2,
B1, B2) of the classifier (Figure 5.2), whereas rows the different
minimum threshold values for single classes (0.1–0.9) for each
selection criterion (bel, pls, or combination).

For instance, classifications of around 100% in Fig. 5.3a for the F1 and

F6 fuzzification methods in implementation A2 and belief value as selection

criterion with thresholds 0.8 or 0.9 (rows 8 and 9, columns 9 and 14), are

among the lowest ones in Fig. 5.3b, due to the fact that definite decisions

on single classes were not possible and many multiple classes were returned.

Each interpretation has its own advantages and limitations, and the de-

cision on the optimal classifier depends on the specific application and user

preferences. This flexibility is one of the main benefits of the proposed DS

framework. More specifically, the interpretation favouring multiple classes

is more appropriate for applications where low omission error is required.

As an example, multiple classes like ‘TPH or FPH or TRE’ for a habitat

classified as ‘FPH’ (forest phanerophytes, trees between 5–40 m) in a pre-

vious assessment, can be precious for forest management, since they might

indicate change in structure and biomass, potentially by illegal logging, in

case the actual class is ‘TPH’ (tall phanerophytes, between 2–5 m), or in-
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dicate urban expansion, even illegal construction, in case the actual class is

‘TRE’ (urban woody vegetation). A second example includes the appear-

ance among the possible multiple classes of one that did not exist in previous

classification that may indicate the existence of invasive species, e.g. the

invasive silver wattle (Acacia dealbata) woody plant (TPH) over Portuguese

laurel (Prunus lusitanica) formations (FPH) in certain sites. These cases

can alert managing authorities of the area to inspect the specific habitat

with a field visit. On the other hand, the interpretation penalising mul-

tiple classes and selecting the single one with maximum support, can be

useful to identify abrupt changes that need to be taken into account. For

instance, classification of a habitat with the same multiple potential classes

in two time instances, e.g. ‘TPH or FPH’, as ‘TPH’ the first time and ‘FPH’

the second, may indicate either an actual class transition, or reveal intense

spectral or structural changes resulting by pressures in the habitat or the

appearance of understorey vegetation. In addition, the simplified classes

resulting by the second interpretation favour the direct comparison of the

classifier with other usually employed classifiers (resulting in a single class

per habitat) and the use of the outcomes in comprehensive dissemination

reports and maps.

A combination of the two interpretations is straightforward, as a trade-

off between low omission (former interpretation) and low commission (latter

interpretation) errors. Fig. 5.4 draws the average of the classification ac-

curacies achieved by the two previous interpretations, identifying the clas-

sifiers performing overall well under both cases. As expected, the value

boundaries of the previous interpretations are suppressed, resulting in accu-

racies between over 60% and slightly exceeding 80%. Besides other potential

applications, this averaging approach seems suitable to the habitat classi-

fication problem of the present study, where site management and habitat

monitoring are tolerant up to a degree to composite classes comprising of

similar constituting ones—requiring same management practices or indicat-

ing same ecosystem services or trends—, being in parallel small enough to

exclude irrelevant classes.

Various interpretations may be used to select the most appropriate classi-

fier given the particular characteristics of each specific application. In case

classifiers that perform similarly well under both interpretations of Fig. 5.3

are preferred, a selection process as depicted in Fig. 5.5 can be followed.
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Figure 5.4.: Average accuracies (%) of the two classification interpretations
of Fig. 5.3 for Le Cesine study area. Columns represent the
fuzzification measures (F0–F6) for each implementation (A1,
A2, B1, B2) of the classifier (Figure 5.2), whereas rows the
different minimum threshold values for single classes (0.1–0.9)
for each selection criterion (bel, pls, or combination).

First, the classifiers belonging to the upper quartile (i.e. the highest 25%)

under both interpretations of Fig. 5.3 are selected, with the rest being

masked out. Masking of classifiers is performed for each implementation

using (B) or neglecting (A) lidar data separately, to provide guidelines for

each individual case. The masked out classifiers are drawn in white colour.

Then, the normalized difference of the accuracy under the interpretation

tolerant to multiple classes, AT , of Fig. 5.3a to the accuracy under the

interpretation penalizing them, AP , of Fig. 5.3b is calculated, for each of

the remaining high performing classifiers, as

NDA =
AT −AP
AT +AP

. (5.12)

The lowest NDA values represent highest similarity between the two in-

terpretations, indicating high classification consistency. In addition, the

normalization factor in the denominator of (5.12) allows the identification

of the overall highest performing classifiers among ones with the same ab-

solute difference. As a note, use of absolute difference is not necessary in

the numerator of (5.12), since it is always AT ≥ AP . The returned NDA
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values lie within the range [0, 0.258].

Figure 5.5.: Normalized difference of the two main classification interpreta-
tions for Le Cesine study area. Only the upper quartile clas-
sifiers under both interpretations, for each A and B implemen-
tations, are selected. Columns represent the fuzzification mea-
sures (F0–F6) for each implementation (A1, A2, B1, B2) of
the classifier (Figure 5.2), whereas rows the different minimum
threshold values for single classes (0.1–0.9) for each selection
criterion (bel, pls, or combination).

As readily noticed from Fig. 5.5, the crisp classifiers representing the

rule-based methodology in [52, 53] are not among the top 25% performing

ones under both interpretations simultaneously. This is revealed by the

white pixels in the first columns under the A1 and B1 implementations. In

fact, the only crisp classifiers included in the top performing list are ones

using rules adjusted to incorporate uncertainty in the outcome (row 19, first

column under A2 and B2 implementations). On the contrary, DS classifiers

with different fuzzy methods are among the selected ones, especially in the

implementations where lidar information is not used. However, the ones

using lidar data appear more consistent between the two interpretations of

Fig. 5.3, with the lowest NDA values. This was expected due to the further

discrimination of single classes that tends to reduce the accuracies under

the interpretation tolerant to multiple classes (Fig. 5.3a) and increase the

opposite ones, thus reducing their difference and the NDA value. As a final

note, the number of common classifiers in the upper quartiles between the
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main interpretations of Fig. 5.3 is larger for classifiers of implementations A

than for implementations B where lidar data are used and further refinement

of multiple classes occurs.

B. Performance of the fuzzy methods

The first column of A1 and B1 groups in Fig. 5.3a, 5.3b, and 5.4 represent

the crisp classifiers, assimilating the results by Adamo et al. [52, 53]. In

fact, accuracies of 68% and 75% are shown in Fig. 5.4 for the cases where

lidar information is considered absent and available, respectively. These

accuracies are close to the ones reported in [52, 53]. As noticed from the

figures, the crisp classification results are outperformed by several classifiers

with fuzzification methods, according to all interpretations, as revealed by

the brighter colour pixels. Whereas in implementations A1 and B1 lim-

ited number of fuzzy classifiers outperform the respective crisp classification

ones, significantly larger number exists when combined with the flexibility

the framework offers for less strict outcome rules (implementations A2 and

B2). Overall, there are also fuzzy classifiers that perform lower than the

crisp ones; however, the existence of a significant number of fuzzy classifiers

outperforming the crisp classifications shows the potential improvement the

DS approach can bring along. It also indicates that the rule fine tuning by

the experts is not optimal and better results are possible.

More specifically, a number of fuzzy classifiers perform better than the

crisp ones under the interpretation favouring multiple classes (Fig. 5.3a),

although often with the expense of higher commission errors and more vague

classes. This is expected for soft classification, where membership values are

shared to the possible single classes, none of them sometimes reaching the

threshold to be selected individually; thus, multiple classes are returned.

However, a significant number of fuzzy classifiers outperforming the crisp

ones are found also under the interpretation penalizing multiple classes (Fig.

5.3b), as well as the averaging one (Fig. 5.4). More specifically, Table 5.2

reports the highest achieved accuracies by the fuzzy classifiers in comparison

with the respective crisp ones; implementations considering lidar features

either missing (A) or available (B) are shown, under the interpretations

tolerant to (Fig. 5.3a) and penalizing (Fig. 5.3b) incorrect classes within

multiple ones, as well as the averaging interpretation (Fig. 5.4). The crisp
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classification assimilates the results from the state-of-the-art methodology

described in [52, 53]. As seen, for every implementation and under any in-

terpretation of accuracy, there were DS fuzzy classifiers, among the total

implemented ones, that outperformed the reference crisp classifiers. This is

further supported by the absence of these crisp classifiers from the selected

highly consistent well performing ones, under the normalized difference in-

terpretation (Fig. 5.5).

Table 5.2.: Maximum classification accuracies (%) achieved by the crisp and
the fuzzy classifiers for implementations without and with lidar
data for Le Cesine, under interpretations tolerant to and penal-
izing incorrect classes in multiple ones, as well as the averaging
interpretation of the two.

Crisp Fuzzy

Multiple class Without lidar (A) 83.2 100

tolerant interpr. With lidar (B) 78.4 99.6

Multiple class Without lidar (A) 52.3 56.6

penalizing interpr. With lidar (B) 71.9 81.2

Averaging Without lidar (A) 67.8 72.5

interpr. With lidar (B) 75.1 81.2

As far as individual classifiers are regarded, the best performing one un-

der the interpretations penalizing incorrect single classes in multiple ones

(Fig. 5.3b) and the averaging interpretation (Fig. 5.4) is the one using

the F5 fuzzification method under consideration of lidar data and less strict

outcome rules, using belief value and threshold 0.1 as selection parameters

(first row, second to last column in Fig. 5.3b and 5.4). Under both in-

terpretations, the achieved accuracy is 81.2%, outperforming the respective

crisp classification, in the former interpretation by around 10% (Table 5.2).

Achieving the same accuracy under the interpretation tolerant to multiple

classes (Fig. 5.3a), its normalized difference value, NDA, is 0 according to

(5.12), making it the highest performing classifier under the interpretation

of Fig. 5.5 as well. The resulting GHC map, shown in Fig. 5.6a), demon-

strates the wide selection of single classes over multiple ones. The map

with the reference segments, based on the validated points, is provided in

Fig. 5.6b. As a note, since 250 validation points were provided, each char-

acterizing one segment, a number of segments is not validated and labelled

as such in the map.
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(a)

(b)

Figure 5.6.: GHC map resulting from the best performing fuzzy DS classifier
under penalizing multiple class and averaging interpretations
(a) and GHC validated classes (b) for Le Cesine.

Table 5.3 reports the correct classifications achieved by the crisp classifi-

cation as provided by the experts [51–53] and the DS classifier with fuzzy

F5 method and less definite rule outcomes. In both cases lidar data are

used. The number of objects of each class is given. Then, the correct

classifications under the interpretation of penalizing commission errors in

multiple classes are provided for the crisp and the fuzzy classification. In
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the final columns, the accuracy percent of each method is given, for each

GHC class. As shown, the fuzzy method is able to identify with significantly

higher accuracy the cultivated woody crops (WOC), herbaceous caespitose

hemicryptophytes (CHE), and mid phanerophyte shrubs (MPH), whereas

being outperformed only for the tall phanerophyte (TPH) objects. For the

rest of the classes, both approaches perform similarly well.

Table 5.3.: Comparison of results applying crisp classification and fuzzy
classification with less strict rule outcomes under the availabil-
ity of lidar data, for each class. The number of ground truth
samples, together with the absolute correct classifications of the
two methods under penalizing commission errors are given, for
each GHC class. The percentage of correct classifications is also
shown in the last columns.

GHC Ground
truth no.

Correct
Crisp

Correct
Fuzzy

Acc.
Crisp (%)

Acc.
Fuzzy
(%)

ART 3 3 3 100 100

NON 1 1 1 100 100

CRO 5 5 5 100 100

WOC 17 8 17 47.1 100

SHY 8 7 7 87.5 87.5

EHY 22 12 12 54.5 54.5

HEL 28 9 9 32.1 32.1

CHE 4 3 4 75 100

THE or GEO 40 40 40 100 100

SCH 3 2 2 66.7 66.7

LPH 6 3.25 4 54.2 66.7

MPH 72 48.5 66 67.4 91.7

TPH 32 29 24 90.6 75

FPH 9 9 9 100 100

Total 250 179.75 203 71.9 81.2

Among the fuzzification methods per se, high similarity in the results

achieved by the F2, F4, and F5 methods can be observed. This is justified

by the fact that the same slopes in the membership functions are used in

all three methods, based on the standard deviation of the observed fuzzified

features, as discussed in Section 5.2.2, being differentiated in case of rule

thresholds in very close distance. Among these three methods, F2 seems to

marginally outperform the other two in some cases, as in some classifiers of

B2 implementations (Fig. 5.4, columns 3, 5, and 6 under B2 representing

F2, F4, and F5 methods, respectively). Based on the results, fuzzification

method F1 seems to be more related with the F6 one (as seen, for instance,
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in Fig. 5.4 in columns 2 and 7 under each implementation), both deriving

the membership function slopes from the threshold distances. On the other

hand, F3 method is the closest one to the crisp classification; this can be

justified by the selection of the minimum parameter s among the previous

methods, resulting in the steepest slopes of the respective membership func-

tions, thus closely related to the crisp classification—which can be thought

of as using membership functions with perfectly vertical slopes. Each fuzzi-

fication method may under certain classifier parameters perform better than

the others; however, as a general observation, method F2 seems to provide

the best overall results, particularly combined with the use of lidar data and

incorporation of uncertainty in rule outcomes (implementation B2). This

is further supported by F2 classifiers being the most numerous among the

selected ones under the normalized difference interpretation in Fig. 5.5 in

B2 implementations, and among the most numerous in implementations A1

and A2.

C. Availability of lidar data

In implementations where lidar data are considered available (B1 and B2),

different rules are provided by the experts, compared with the implemen-

tations without lidar (A1 and A2). In the former, features D8 and D9, as

described in Section 4.3.1, are used to discriminate a number of classes that

without the presence of height information remain ambiguous, e.g. trees

and shrubs whose main discrimination criterion is vegetation height, as dis-

cussed in Chapter 3. Thus, as expected, implementations including lidar

data tend to outperform, in general, their counterparts where such data are

not used, as clearly depicted in Fig. 5.3b where single classes are favoured,

and less intensely under the averaging interpretation of Fig. 5.4. On the

contrary, A1 and A2 implementations seem to slightly outperform the ones

using lidar data under accuracy interpretation of Fig. 5.3a. This is justified

by the tendency to select multiple classes instead of single ones, when there

is no or little support in further discrimination.

Table 5.4 shows the classes returned by the classifications using the F1

method with the sum of belief and plausibility and threshold 0.9 as class

selection parameters, for the cases where lidar are considered missing (A1)

or available (B1), for the validated objects, as an indicative example from
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a high performing classifier in both cases. As shown, the former classifier

identifies 10 single classes and five multiple ones. On the contrary, using the

lidar derived features, the latter classifier manages to distinguish 16 single

classes, reducing in parallel the number of multiple ones to three. Thus,

lidar information is able to refine certain multiple classes and discriminate

among their constituting single ones. However, this further class separa-

tion entails the risk of misclassifications, as seen from the comparison of

the accuracies of the two classifiers based on the interpretation more tol-

erant to multiple classes (Fig. 5.3a). Therein, the classifier ignoring lidar

data achieves an accuracy of 84.4%, in comparison with 78.4% of the second

classifier. Their difference indicates the incorrect multiple class separations

by the lidar data. However, according to the interpretation penalizing in-

correct classes within multiple ones (Fig 5.3b), the advantage by the use of

lidar in class separability is more obvious, significantly outperforming the

A1 classifier by 70.9% over 52.97%, discriminating single classes that were

not distinguishable previously. As a note, despite its decrement in accuracy,

the A1 classifier outperformed its crisp classification counterpart under both

interpretations described in Fig. 5.3a and 5.3b.

D. Uncertainty in rule outcome

As far as the type of outcome rules are regarded, it is observed from Fig.

5.3 and 5.4 that the use of membership rules, expressing uncertainty in the

outcome (implementations A2 and B2) seems to provide higher classifica-

tion accuracies than the classifiers using rules with strictly defined outcomes

(implementations A1 and B1, respectively). This flexibility in incorporating

uncertainty in expert rules demonstrated in this study, is another advantage

of the DS theory over crisp rule-based classifications. A2 and B2 outper-

formed the respective A1 and B1 implementations in most cases, under all

interpretations in Fig. 5.3a, 5.3b, and 5.4.

E. Class selection criteria

The choice of the class selection criterion can influence the classification

results, and thus, the performance of the classifier. Table 5.5 reports the

average classification accuracies under the averaging interpretation (Fig.

5.4) for the two implementations using (B) or not (A) lidar data, for the
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Table 5.4.: Classes returned by DS fuzzy F1 classifiers with the sum of belief
and plausibility and 0.9 threshold value as selection parameters,
in case lidar are considered either missing (A1) or available (B1).

Classes without lidar (A1) Classes using lidar (B1)

ART ART

NON NON

GRA GRA

TRE TRE

CRO CRO

WOC WOC

CHE CHE

SHY SHY

EHY EHY

HEL HEL

THE or GEO THE or GEO

DCH or LPH or SCH DCH

DCH or LPH or SCH or VEG DCH or LPH or SCH or VEG

MPH or TPH or TRE MPH or TRE

FPH or TPH FPH

LPH

MPH

SCH

TPH

cases where the selection is based on: (i) the maximum event belief (‘bel’),

(ii) the maximum plausibility (‘pls’), (iii) the maximum sum of the two

(‘bel + pls’), and combinations where (iv) belief or (v) plausibility counts

twice as much as the other (‘2bel + pls’ and ‘bel + 2pls’, respectively).

Interestingly, the criterion on maximum belief leads to best classification

results in A implementations, whereas the plausibility criterion provides

the highest performance in B implementations.

Table 5.5.: Average classification accuracies (%) following different selection
criteria, for implementations ignoring (A) or using (B) lidar data.

Criterion Without lidar (A) With lidar (B)

bel 68.4 74.0

pls 64.8 75.1

bel + pls 66.3 74.5

2bel + pls 67.1 74.3

bel + 2pls 65.7 74.7

This may be attributed to the existence of more multiple classes in A
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implementations, due to the lack of sufficient data for discrimination. In

such a case, different multiple class events may be characterized by the same

plausibility values, when little information in excluding some single classes

is provided, thus making plausibility a non-informative selection criterion.

At the same time, the minimum support on some classes, expressed by the

belief value, can be more discriminatory. On the other hand, in B implemen-

tations, as data are provided in the classifier, multiple classes are decreased

by the elimination of improbable single ones and plausibility values appear

more important for selection. This is supported by the observation that

significantly higher results are achieved using the maximum plausibility cri-

terion over the belief one, under the interpretation penalizing commission

errors (Fig. 5.3b, B implementations). On the contrary, maximum belief

classifiers seem to clearly outperform the plausibility ones in implemen-

tations A under the interpretation favouring multiple classes (Fig. 5.3a,

A implementations). Thus, maximum belief criterion seems more suitable

in cases where incomplete data hinder the discrimination of single classes

and highest priority in including the correct class in the returned multiple

one is given; on the contrary, the maximum plausibility criterion appears

preferable in cases where the available data favour class separability and

commission errors in multiple events are considered. Finally, as noted from

Table 5.5, the linear combinations of the two previous criteria perform be-

tween the two extremes, in analogy with the contribution of each belief or

plausibility value.

As far as the selected threshold value for the minimum support of the

chosen criterion to a single class is concerned, variations in performance oc-

cur, as seen in Fig. 5.3 and 5.4. As a general rule, lowest values favour the

selection of single classes, since less minimum support is required for the se-

lection of the best one. This leads to classifications with less multiple classes

and, in many cases, in highest accuracies under the interpretation penalizing

commission errors in multiple classes (Fig. 5.3b). On the contrary, highest

values hinder the separability of multiple classes in single ones when high

support is not provided, and thus perform higher under the interpretation

more tolerant to multiple classes (Fig. 5.3a).

Table 5.6 gives an indicative example of the simpler classes returned by

classifiers with lower threshold values compared with the higher threshold

ones for the validated objects; the best performing classifier under inter-
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pretations in Fig. 5.3b and 5.4, from implementation B2 and maximum

belief as selection criterion using threshold value 0.1 (row 1, second to last

column), is compared with the respective classifier using threshold 0.9 (row

9, second to last column). The former classifier returns 14 single classes

and the double class of the undistinguishable, based on the data, ‘THE or

GEO’ classes (OA 81.2%). On the contrary, the latter classifier separates

only nine single classes, while returning eight multiple ones, among which

one with seven single classes (OA 47.18%). However, it performs better

than the former one under interpretation of Fig. 5.3a (OA 93.6%), keeping

within its multiple classes correct ones which are erroneously excluded by

the former classifier (OA 81.2%).

Table 5.6.: Classes returned by DS fuzzy F5 classifier with implementation
B2 and belief as selection criterion, for threshold values 0.1 and
0.9.

Threshold 0.1 Threshold 0.9

ART ART

NON NON

TRE TRE or WOC

CRO CRO

WOC WOC

SHY SHY

HEL EHY or HEL or SHY or GRA

EHY EHY

THE or GEO THE or GEO or GRA

CHE CHE

SCH CHE or GRA

MPH CRO or GEO or HCH or LHE or THE or GRA or VEG

LPH DCH or LPH or SCH or VEG

TPH MPH or TPH or TRE

FPH TPH

TPH or FPH

FPH

Close look on Fig. 5.3a and 5.3b reveals that higher threshold values lead

to better classifications under the approach considering multiple classes con-

taining the correct single one as correct, and vice versa. Thus, the selection

of the appropriate threshold value depends on the interpretation of the ac-

curacy followed by each specific application. In studies where a combination

of the two extreme interpretations seems applicable, as this study, Fig. 5.4

or 5.5 can be used as a guide to indicate the most suitable threshold values.
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Besides some high performing methods with extreme threshold values, as

the one in Table 5.6, classifiers with average values of around 0.5 seem to

provide a safe option.

F. Fusion of classifiers

As discussed in Section 5.3.4, fusion of the individual classifiers was also

attempted, applying the Dempster rule of combination to different groups

of classifiers. Fusion was performed following (5.3), where mi represents the

basic probability assignment function value by the i-th classifier fused. In

the first fusion attempt, all classifiers of each specific implementation and

fuzzification method were combined, resulting in 28 new classifiers, each

being the combination of 45 individual classifiers (5 selection criteria × 9

threshold values). The achieved accuracies were between the minimum and

maximum accuracies from the individual classifiers, under both interpre-

tations shown in Fig 5.3. Table 5.7 reports the classification accuracies

together with the ones achieved by the best individual classifiers, for each

implementation and fuzzification method (including the crisp classification),

under the most conservative interpretation penalizing multiple classes in-

cluding inaccurate single ones besides the validated class (Fig. 5.3b). As

observed from the table, the fused classifiers do not outperform the best

individual ones in any case; in fact, in all cases, the achieved accuracies are

inferior than the individual ones. The only exception are the crisp classi-

fications (F0) of implementations A1 and B1, where results are the same,

since all individual classifiers provide the exact same classification outcome.

The second fusion attempt combined classifiers of each particular selec-

tion criterion and respective threshold for each implementation; thus, 180

classifiers were created (5 selection criteria × 9 threshold values × 4 imple-

mentations), each being the result of the individual classifiers with differ-

ent fuzzification methods (F0–F6). As previously, classification accuracies

achieved were between the minimum and maximum accuracies of the indi-

vidual classifiers involved in each combination. The same experiments were

performed excluding the crisp classification method (F0) for each combina-

tion. Increase in accuracy by around 0.4% was observed; however, the values

were still inferior to the best performing individuals. Interestingly, accuracy

increase was observed also for combinations in which the excluded individ-
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Table 5.7.: Classification accuracies (%) achieved by the fusion of classi-
fiers for each implementation (A1, A2, B1, B2) and fuzzification
method (F0–F6), under the interpretation penalizing multiple
classes. In parenthesis, the accuracy of the maximum individual
classifier of each case is reported.

A1 A2 B1 B2

F0 52.3 (52.3) 52.3 (54.1) 71.9 (71.9) 71.9 (74.4)

F1 50.3 (53.0) 50.0 (52.6) 72.7 (73.1) 72.1 (72.9)

F2 50.8 (53.0) 54.4 (56.6) 73.8 (76.0) 76.7 (79.6)

F3 51.0 (52.6) 51.0 (56.6) 72.7 (72.9) 72.5 (73.5)

F4 50.8 (53.0) 54.4 (56.6) 64.2 (72.4) 66.3 (75.4)

F5 50.8 (53.0) 54.4 (56.6) 57.7 (76.8) 59.0 (81.2)

F6 50.3 (53.0) 50.0 (52.6) 71.7 (72.1) 71.3 (71.7)

ual crisp classifier had performed better than both combinations alone, i.e.

exclusion of a strong classifier from the first combination lead to a bet-

ter performing final combination. This may be attributed to limitations

of the Dempster rule of combination when highly conflicting evidence is

provided [351, 374]. This practically means that the presence of a single

classifier assigning no support in the correct class will assign m value equal

to 0 to this class in the final classifier as well, as may be deduced from

(5.3). Thus, the existence of a single very weak classifier in certain classes

may deteriorate the performance of the combined one. This explains the

decrease in performance when including the crisp classifiers, which assign

only binary support values to selected classes (i.e. 1 for full support, 0

for no support) and thus transfer their erroneously excluded classes to the

combined classifiers.

5.4.2. Transferability to Lago Salso study area

To evaluate the applicability of the proposed approach to different sites,

the developed classifiers were directly applied to Lago Salso study areas. A

total number of 259 objects were classified, out of which 59 were available

as validation points, belonging in 15 GHC classes.

A. Accuracy interpretations

The achieved accuracies, according to the two different interpretations dis-

cussed in the previous section, are given in Fig. 5.7. In particular, Fig. 5.7a
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draws the accuracies when incorrect single classes among the correct one

in multiple class events are not penalized, whereas Fig. 5.7b the respective

accuracies when the opposite happens. The average accuracies of the two

extreme cases are drawn in Fig. 5.8.

(a) (b)

Figure 5.7.: Classification accuracies (%) for all DS fuzzy classifiers for Lago
Salso study area, based on (a) tolerance to the existence of the
correct class in the returned event, or (b) penalizing incorrect
classes on a multiple class event. Columns represent the fuzzi-
fication measures (F0–F6) for each implementation (A1, A2,
B1, B2) of the classifier (Figure 5.2), whereas rows the different
minimum threshold values for single classes (0.1–0.9) for each
selection criterion (bel, pls, or combination).

Accuracies ranging from 54.2% to 100% were achieved according to the

first interpretation (Fig. 5.7a), whereas they were restricted to the range

between 42.8% and 56.8% for the second one (Fig. 5.7b). In the averag-

ing interpretation, 50.7% and 75.2% were the lowest and highest accuracy

values, respectively. In general, the achieved accuracies were significantly

lower than the ones achieved by the same classifiers applied in Le Cesine

site, which was expected, up to a degree, since the rule set was not fine

tuned for Lago Salso but for Le Cesine.

Similarly to Le Cesine, as an additional interpretation and classifier selec-

tion process, the classifiers simultaneously belonging to the upper quartiles

under both interpretations of Fig. 5.7 are identified. For those classifiers,
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Figure 5.8.: Average accuracies (%) of the two classification interpretations
of Fig. 5.7 for Lago Salso study area. Columns represent the
fuzzification measures (F0–F6) for each implementation (A1,
A2, B1, B2) of the classifier (Figure 5.2), whereas rows the
different minimum threshold values for single classes (0.1–0.9)
for each selection criterion (bel, pls, or combination).

the normalized difference in accuracy, NDA, is calculated from the accura-

cies under the two interpretations. The resulting NDA values of the selected

classifiers are shown in Fig. 5.9. No classifiers achieved the exact same per-

formance under both interpretations, thus NDA values larger than 0 are

returned, in particular NDA ∈ [0.156, 0.216]. Furthermore, as in Le Cesine,

it is noticed that a higher number of classifiers are selected for implemen-

tations A were lidar data were ignored than for implementations B where

lidar data were used, i.e. more classifiers were common in the upper quar-

tile under both interpretations for the former case. Among the selected

classifiers, there are some common ones with the classifiers selected for Le

Cesine (Fig. 5.5), for both implementations of using or neglecting lidar in-

formation, further supporting the direct transferability of the approach to

different sites. They include the classifier with F5 method, ‘bel + 2pls’ as

selection criterion with threshold 0.5, under B2 implementation (row 41,

column 6 under B2 in Fig. 5.5 and 5.9), as well as classifiers with methods

F2, F4, and F5, ‘bel’ as selection criterion with threshold 0.2, under A2

implementation (row 2, columns 3, 5, and 6 under A2 in Fig. 5.5 and 5.9).

Fig. 5.10 depicts the correlation between the classification results in Le
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Figure 5.9.: Normalized difference of the two main classification interpreta-
tions for Lago Salso study area. Only the upper quartile clas-
sifiers under both interpretations are selected. Columns repre-
sent the fuzzification measures (F0–F6) for each implementation
(A1, A2, B1, B2) of the classifier (Figure 5.2), whereas rows the
different minimum threshold values for single classes (0.1–0.9)
for each selection criterion (bel, pls, or combination).

Cesine and Lago Salso, drawing the accuracies of all classifiers under the

interpretations tolerant to (Fig. 5.3a and 5.7a) and penalizing (Fig. 5.3b

and 5.7b) multiple classes. Fig. 5.10a draws the classifier results scanning

Fig. 5.3 and 5.7 column per column, i.e. drawing all selection criteria and

thresholds, for each fuzzification method. The first 630 classifiers represent

implementations A1 and A2 (without lidar) from the interpretation toler-

ant to multiple classes, the next 630 implementations B1 and B2 from the

same interpretation, whereas the next 1260 the respective classifiers from

the interpretation penalizing multiple classes. As seen, the classification

results for the two sites follow, in general, similar patterns for the first in-

terpretation, where implementations A2 and B2, with uncertainty in the

rule outcome, outperform the respective crisp outcome ones for both sites.

Under the penalizing interpretation (classifiers 1261–2520), higher classifica-

tion accuracies are achieved in Le Cesine for implementations using the lidar

data than Lago Salso, as previously; however, this pattern is reversed for

implementations ignoring the lidar data, where the classification accuracies

achieved for Lago Salso are higher than for Le Cesine site.
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(a)

(b)

(c)

Figure 5.10.: Correlation between the classifier results for Le Cesine and
Lago Salso, based on results shown in Fig. 5.3 and 5.7.
Fig. 5.3a and 5.7a are crossed (a) column per column or (b)
row per row; the same is repeated for Fig. 5.3b and 5.7b. (c)
The accuracies of the classifiers applied in the two sites are
also provided in a scatter diagram.

Fig. 5.10b presents the same data, drawing the classifier accuracies row

per row, for the interpretations tolerant to (classifiers 1–1260) and penaliz-
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ing (classifiers 1261–2520) multiple classes. It is clear that the results for

the two sites follow similar patterns as far as the threshold selection criteria

are regarded. As an example, classifiers 1–252, adopting maximum belief

as the selection criterion, show trends of increasing value as the selection

threshold increases from 0.1 to 0.9, for the different fuzzification methods

and implementations. The opposite trend is followed under the interpre-

tation penalizing multiple classes; however, the pattern is still similar for

the two sites. Fig. 5.10c draws a scatter diagram of the classifier accuracies

for the two sites. The Pearson product-moment correlation coefficient [375]

has been calculated as a means to quantify the degree of correlation of the

results between the two sites, as

ρ(X,Y ) =
cov(X,Y )

σ(X)σ(Y )
=

∑N
i=1(xi − µx)(yi − µy)√∑N

i=1(xi − µx)2

√∑N
i=1(yi − µy)2

, (5.13)

where N stands for the total number of classifiers (N = 2520); xi, yi for the

classifier accuracies for Le Cesine and Lago Salso sites, respectively, i, . . . , N ;

cov(X,Y ) for the covariance of the classifiers of the two sites; σ(X) and σ(Y )

for the standard deviations of the classifier accuracy values for Le Cesine

and Lago Salso, respectively, whereas µx and µy for their respective average

values. It was found that ρ(X,Y ) = 0.6791, demonstrating a moderate to

good correlation between the classification accuracies of the two sites. In

fact, good accordance of Le Cesine accuracies to Lago Salso is observed in

Fig. 5.10c for classifiers with performance lower than 55% or higher than

75%, whereas Lago Salso accuracies are inferior to Le Cesine for the rest of

the value range, between 55% and 75%.

B. Performance of the fuzzy methods

Many fuzzy classifiers have outperformed the respective crisp ones under

all interpretations and implementations, as shown in Fig. 5.7, 5.8, and 5.9.

More specifically, most classifiers with F2, F4, and F5 methods seem to

outperform the crisp classifiers (F0) for implementations with lidar data

(B1 and B2) under all interpretations, especially for high selection criterion

threshold values, as shown from their brighter colours in Fig. 5.7 and 5.8

than the crisp classifiers. In particular, for the B1 and B2 implementations,

fuzzy F2, F4, and F5 classifiers with threshold values > 0.5 perform bet-
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ter than the respective crisp ones by around 20% under interpretations of

Fig. 5.7a and 5.8, and around 10% in Fig. 5.7b; in addition, they achieve a

low normalized difference value of around 0.16, in comparison with the re-

spective crisp classifiers that are not even included in the upper performance

quartile (Fig. 5.9). Specifically under the normalized difference interpreta-

tion (Fig. 5.9), F5 seems to outperform the other methods in B1 and B2

implementations, with a higher number of classifiers and lower NDA val-

ues. On the other hand, classifiers with F1 and F6 methods perform better

than the respective crisp classifiers in A1 and A2 implementations, whereas

classifiers with all fuzzification methods outperform the crisp classifiers in

implementations A1 and A2, for low selection criterion threshold values. In

particular, for both A and B implementations, under the normalized dif-

ference interpretation of Fig. 5.9, no crisp classifier has even been selected

among the ones in the upper quartiles under the two main interpretations

of Fig. 5.7.

Table 5.8 reports the highest achieved accuracies by the fuzzy classifiers

in comparison with the respective crisp ones, for implementations without

(A) and with lidar (B), under the interpretations tolerant to and penalizing

incorrect classes within multiple ones, as well as the averaging interpreta-

tion. The crisp classification assimilates the results from the state-of-the-art

methodology described in [52, 53]. As seen, for every implementation and

under any interpretation of accuracy, DS fuzzy classifiers were implemented

that outperform the reference crisp ones.

Table 5.8.: Maximum classification accuracies (%) achieved by the crisp and
the fuzzy classifiers for implementations without and with lidar
data, under interpretations tolerant to and penalizing incorrect
classes in multiple ones, as well as the averaging interpretation
of the two.

Crisp Fuzzy

Multiple class Without lidar (A) 74.6 100

tolerant interpr. With lidar (B) 55.9 100

Multiple class Without lidar (A) 53.5 56.8

penalizing interpr. With lidar (B) 49.9 53.2

Averaging Without lidar (A) 64.0 75.2

interpr. With lidar (B) 52.4 72.8

The highest performance under the interpretation tolerant to multiple
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classes (Fig. 5.7a) and the averaging one (Fig. 5.8) was achieved by clas-

sifiers using F1 and F6 methods in implementations A2, equal to 100%

and 75.2%, respectively. The same classifiers are identified as the high-

est performing under the normalized difference interpretation as well, with

NDA = 0.157. Under the interpretation penalizing commission errors in

multiple classes (Fig. 5.7b), the maximum accuracies were found in imple-

mentations A1 and A2, including all fuzzification methods. The outcomes

support the advantages that the DS fuzzification scheme has over a crisp

rule-based classification. This notion is further substantiated by the parallel

higher performance of the implementations with rules with soft outcomes

(A2 and B2), over the ones with definite outcomes, that demonstrates suc-

cessful uncertainty handling.

The GHC map extracted by the best performing classifier under the av-

eraging interpretation (Fig. 5.8) is shown in Fig. 5.11a, together with the

validated map used as reference (Fig. 5.11b). The classifier followed A2

implementation with F1 fuzzification method and selection of maximum

belief as criterion and 0.7 as threshold. The classifier was among the high-

est performing ones under the interpretations tolerant to multiple classes

(OA 98.3%) and penalizing them (OA 52.2%). Eight single classes were

identified, together with 13 multiple ones. However, the maximum class

discrimination level was achieved, since the same number of single classes

were returned by the best classifier under the interpretation penalizing com-

mission errors in multiple classes. Their difference was the larger number

of multiple classes in the former classifier, resulting in its lower OA under

the penalizing interpretation.

C. Availability of lidar data

A notable difference with the results in Le Cesine site was the fact that

implementations not involving lidar information (A1 and A2) outperformed

consistently the respective implementations using lidar (B1 and B2). This

contradicts the expectation that additional information leads to further dis-

crimination and higher accuracies under the interpretation penalizing com-

mission errors in multiple classes (Fig. 5.7b). The use of lidar information

deteriorated the performance of the classifiers. In particular, lidar provided

lower object heights than the actual ones; characteristic implication of that
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(a)

(b)

Figure 5.11.: GHC map resulting from the best performing fuzzy DS classi-
fier under the averaging interpretation (a) and GHC validated
classes (b) for Lago Salso.

was the erroneous classification of several LPH (0.3–0.6 m) objects as SCH

(0.05–0.3 m) or DCH (<0.05 m) and of TPH (2–5 m) objects as MPH (0.6–2

m). This is an indication that the object height models derived by the lidar

data do not coincide well with information on the ground. This might be

due to technical and noise issues during the extraction of the models, or due

to lidar data being captured in different dates to the validation ones (2009
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and 2011–2012, respectively, Section 4.2.3). Lower height values derived by

lidar compared with the field data may indicate changes in vegetated struc-

ture, in particular vegetation growing, during the two-year period from the

capturing of lidar information to the validation field campaigns in Lago

Salso (in Le Cesine lidar and validation data were from the same year, as

discussed in Section 4.2.2), creating the aforementioned misclassifications.

Therefore, an up-to-date lidar data set or a more focused rule fine tuning

for Lago Salso area seems to be required to improve the performance of

implementations B1 and B2. These ideas are further supported by the fact

that lidar features did not improve, but even decreased, the performance of

the supervised classifiers of the previous chapter trained and tested in Lago

Salso, compared with the feature sets where lidar data were not included

(Section 4.4.2).

D. Uncertainty in rule outcome

In a similar manner to Le Cesine site, implementations using rules express-

ing uncertainty in the outcome (A2 and B2 implementations) outperformed

in most cases the ones using definite rules (A1 and B1, respectively), under

the interpretations tolerant to multiple classes (Fig. 5.7a) and the averaging

one (Fig. 5.8). However, contrary to Le Cesine, A1 and B1 implementations

provided, in general, higher accuracies under the interpretation penalizing

multiple classes including incorrect single ones (Fig. 5.7b), than the respec-

tive A2 and B2 ones. In addition, B2 implementation provided a smaller

number of classifiers after the masking under the normalized difference in-

terpretation of Fig. 5.9 than B1, indicating lower consistency in the former

case. Thus, membership rules more adjusted to Lago Salso particular char-

acteristics were probably needed to lead to higher accuracies of A2 and B2

implementations than A1 and B1 under all three interpretations.

E. Class selection criteria

In this study area, little differences in accuracy were observed as far as the

class selection criterion was concerned, with all criteria resulting in clas-

sifiers with similar performances. However, differentiations were observed

among the selected minimum threshold values, in a similar manner to the

case of Le Cesine site. In particular, the highest accuracies were achieved
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by classifiers with lower values under the interpretation penalizing com-

mission errors in multiple classes (Fig. 5.7b), and higher threshold values

under the alternative interpretation (Fig. 5.7a). Average threshold values

seem to be preferable in applications where an intermediate interpretation

is followed, as seen from the brighter pixels in Fig. 5.8. Lower threshold

values seem preferable for A1 and A2 implementations according to the nor-

malized difference interpretation (Fig. 5.9), whereas the opposite holds for

implementations B1 and B2.

F. Fusion of classifiers

Fusion of classifiers was also performed for Lago Salso, in the same manner

as for Le Cesine in the previous section. Similar to Le Cesine, no increase in

accuracy over the maximum values from individual classifiers was achieved

from different combinations. In fact, accuracy values between the minimum

and maximum accuracies of the involved single classifiers were reached, both

by fusing over the different fuzzification methods or the different class se-

lection criteria and thresholds, as described in Section 5.3.4.

5.4.3. Comparison with the supervised learning approach

Overall, two different approaches have been proposed in Chapters 4 and

5 to improve the results and efficiency of the rule-based habitat classifier

described in [52, 53]. The supervised learning approach presented in the

previous chapter was found effective in providing a more automatic and less

labour and time consuming process, where the rules are extracted from the

data without requiring user input. The Dempster–Shafer approach was pro-

posed to counteract missing information, noise afflicted data, and vague or

inaccurate rules by the experts, thus handle uncertainty caused by different

real-life factors. Both approaches proved successful in providing compar-

ative advantages in those aspects over the state-of-the-art land cover to

habitat classification method by Adamo et al. [52, 53].

As far as the achieved accuracies are regarded, both approaches provided

classifiers outperforming the crisp rule-based classifier of reference. Accu-

racies up to 82.4% and 86% were provided for Le Cesine site by supervised

classifiers, without or with the use of lidar data, respectively. The respective

accuracies with the model derived in Le Cesine and applied in Lago Salso
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reached 72.9% for both with and without the use of lidar. An additional re-

sult was derived by training the classifiers with Lago Salso data and testing

them at the same site, with accuracies of up to 88.1% without and 86.4%

with the use of lidar data. All these accuracies were higher than the ones

reported in [52,53].

On the other hand, the accuracies from the DS fuzzy classifiers varied

significantly according to the classification interpretation, arising from the

provided flexibility to extract multiple classes in case not sufficient support

to their separation into single ones existed. When multiple classes including

the correct single one were considered as correct, higher classification accu-

racies than the supervised classifiers, reaching even perfect classifications,

were achieved, both from Le Cesine site and the application of the rule set in

Lago Salso. Although several multiple classes appeared, especially in perfect

classification cases, this does not mean that all possible classes were con-

sidered. In fact, the outcomes were refined compared with the theoretical

mapping performed in the first stage of the classification, where all possible

classes were included (Section 5.3.1). As an example, the classifier of im-

plementation A2 and fuzzification measure F1 with belief as the selection

criterion and 0.9 as threshold achieved perfect accuracy of 100% according

to the interpretation favouring multiple classes (Fig. 5.3a); whereas after the

first stage of the classification, there was only one single class among the

classified objects, after the second stage there were four single ones, result-

ing from the refinement of multiple classes. Under a different interpretation,

when the single classes within multiple ones not matching the correct single

one were considered as commission errors and penalized, lower accuracies

than the supervised classifiers were reached. The two interpretations pro-

vide the higher and lower boundaries of accuracy estimation and may be

chosen alternately depending on the application. Furthermore, in certain

applications, a rational choice may lie on the average of these two extremes

or a normalized difference. In the averaging case, the achieved accuracies

for Le Cesine reached 72.5% and 81.2% when lidar data were considered

missing and available, respectively. For Lago Salso, the respective accura-

cies were 75.2% and 72.8%. In the latter cases, the DS classifiers performed

similarly or higher than the supervised learning ones (Section 4.4.3). Under

all interpretations, DS classifiers outperforming the respective rule-based

crisp ones were derived.
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A notable difference between the rule-based (deductive learning) and the

supervised classifiers (inductive learning) lies in the way the potential classes

are taught to the system, the former being provided a priori theoretical

knowledge, while the latter being taught solely from the available data.

This may influence the classification results and severely affect the classi-

fier performance. In this particular study, the rule-based classifier had the

advantage of incorporating a large number of rules leading to GHC classes

beyond the ones found in Le Cesine validation set. An example may be

seen in Table 5.4, where the GRA, TRE, and DCH classes, not included in

the validation set, were returned by the DS classifier. This fact gave the

classifier the flexibility to identify classes in Lago Salso that had not been

met among Le Cesine validation points. This may be seen in Table 5.9,

where the classification results are shown for one of the best performing

classifiers under the interpretation penalizing multiple classes. TRE, GRA,

SAN, and LHE/CHE classes were able to be identified in Lago Salso up to

a degree (perfectly for TRE and GRA), although not included in Le Cesine

objects used to train the rule-based system. On the contrary, testing of the

supervised learning model extracted for Le Cesine in Lago Salso resulted in

wrong class assignments to all objects of Lago Salso of classes not present

in Le Cesine.

From a different perspective of the previous notion, a supervised classifier

may return a class that belongs in the training set but may be physically

irrelevant to the correct one, as shown in Section 4.4.2. This is attributed to

the fact that features in the supervised classifiers are handled as numerical

variables with no physical meaning, thus classification occurs based on their

observed value similarities. On the contrary, the DS fuzzy approach relies on

the expert knowledge provided, and if consistent, no physically irrelevant

classes to the validated ones are possible to occur. It is noteworthy to

mention, though, that the vast majority of the incorrect classes returned by

the best performing supervised classifiers in Chapter 4 were highly relevant

to the respective validation classes.

A further difference of the approaches lies on the classification model

inspection. Whereas in the DS fuzzy rule-based approach, a conceptual

understanding of the process is straightforward, the derived models from

supervised classifiers are often difficult to interpret. This is a further reason

for the choice of decision tree classifiers selected among the supervised ones,
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Table 5.9.: Results of one of the best performing classifier under the in-
terpretation penalizing commission errors, for each class. The
classifier applies fuzzification method F1 with less strict rule out-
comes ignoring lidar data, maximum belief as selection criterion
and threshold value 0.1. The number of ground truth samples,
together with the absolute correct classifications of the method
under this interpretation are given, for each GHC class. The per-
centage of correct classifications is also shown in the last column.

GHC Ground
truth no.

Correct
Fuzzy

Acc. Fuzzy
(%)

ART 3 3 100

NON 4 4 100

TRE 3 3 100

GRA 1 1 100

CRO 7 6 85.71

WOC 2 2 100

SAN 2 0.67 33.33

SHY 7 1 14.29

EHY 5 5 100

HEL 2 0 0

LHE/CHE 1 0.2 20

CHE 1 1 100

THE 4 2 50

LPH 10 3.33 33.33

TPH 7 1.33 19.05

Total 59 33.53 56.84

since their produced model can be visually inspected in a more straightfor-

ward manner than the one from SVM or ANN classifiers. The flexibility of

changing a parameter in the model is also higher in the rule-based approach,

including the rules themselves and also the classification parameters, such

as the selection class criterion and the respective minimum threshold values.

However, this is also related to higher labour and time consuming effort in

comparison with the more automated supervised learning.

Overall, both classification approaches performed significantly better than

the state-of-the-art crisp rule-based classifier used as reference [52,53]. They

have particular advantages and limitations compared to each other, both

in the extracted classification results and their characteristics. Both ap-

proaches provide an enhanced solution for habitat classification using re-

mote sensing data and land cover reference maps that seems to be useful for

wide use and application in different study areas. The choice of the most

suitable approach depends on the requirements and expectations dictated
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by the specific application under study. These include the interpretation of

accurate classification and class preferences, limitations in time and labour

resources, and/or the desirable degree of possible parameterization.

5.5. Conclusions

In this chapter, a rule-based classification methodology, built on DS theory

principles and employing fuzzy sets, has been proposed for habitat map-

ping, using remote sensing data. A pre-existing LC map was considered

and its conversion into a habitat map was attempted, incorporating domain

expert rules. No previous attempt has been made so far to involve eviden-

tial reasoning in a LC to habitat classification task, providing an efficient

framework for handling uncertainty and missing information.

Comparison with the reference state-of-the-art methodology by Adamo

et al. [52, 53] proved the advantageous characteristics of the introduction

of DS theory and fuzzy logic in a crisp rule-based classification framework.

Linear fuzzification methods embodied in the framework notably improved

the results of crisp classification. The DS framework allowed the expression

of rules with soft outcomes and efficiently handled the uncertainty from

such rules, outperforming the respective classifiers using rules with crisp

outcomes. In addition, the use of multiple classes, when sufficient support

for single class discrimination was not provided, increased the efficiency of

the approach and demonstrated its ability in handling missing information.

The use of multiple classes initiated the consideration of different interpre-

tations of classification accuracy, addressing the particular preferences and

requirements of different application areas of the approach. Under all inter-

pretations, appropriate DS fuzzy classifiers were developed outperforming

the respective crisp ones. Class selection criteria based on maximum be-

lief, plausibility, or combinations of the two were proposed, together with a

variety of criterion threshold values. Large threshold values proved more ef-

fective under the interpretation considering as correct multiple classes that

contained incorrect single ones together with the correct one, whereas small

values more suitable under interpretations penalizing such multiple classes.

Fusion of classifiers was performed in different ways, without though demon-

strating better accuracies than the top performing individual ones. Finally,

the approach was tested to a second site, without further fine tuning, demon-
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strating its advantages over the respective crisp classification.

Potential future research directions may involve the development and eval-

uation of non-linear fuzzification methods besides the linear ones. A second

focus point might include design and development of alternative approaches

for classifier fusion, in an effort to counteract the limitations found in Demp-

ster rule of combination [351,374].

Overall, the proposed approach seems to provide an efficient framework

for the conversion of land cover into habitat classes using remote sensing

data and prior knowledge, largely beneficial for sustainability management,

conservation planning, and biodiversity monitoring. It is able to success-

fully handle uncertainty and missing information, and flexible to be pa-

rameterized and adapted to user preferences and application requirements.

The permission of multiple classes in the classification results, when enough

confidence on their refinement into single ones does not exist, may offer the

potential to field ecologists and site managers to identify landscape objects

that require further investigation and focus.
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6. Thesis summary, conclusions,

and future research

6.1. Summary

Biodiversity constitutes a crucial factor in ecosystem stability and human

well-being. The thesis demonstrated the potential of remote sensing data,

derived mainly from satellite sensors, in monitoring different aspects of bio-

diversity. Emphasis was given on estimation of vegetation height and clas-

sification of habitat categories, as core elements linked to biodiversity, using

very high resolution (VHR) multispectral data. In particular, the following

main issues have been studied:

• A wide number of recent state-of-the-art remote sensing methods re-

lated to biodiversity monitoring were identified in the literature, re-

viewed, and linked (i) to a number of headline indicators proposed

by the United Nations Convention on Biological Diversity (CBD),

to describe biodiversity status and trends, and consequently, (ii) to

the Aichi targets defined by CBD for global biodiversity preservation

(Chapter 2). Such link has rarely been explicitly attempted before.

The methods were sorted based on their accuracy, when feasible, and

connected to all six CBD headline indicators identified as able to be

calculated through remote sensing. Capacity and limitations of the

methods were discussed, and future directions were proposed, to de-

crease the knowledge gap between the remote sensing and the ecology,

conservation biology, site manager, and policy making communities.

• A cost and resource effective approach for vegetation height estimation

was proposed, based on texture analysis of satellite VHR multispec-

tral imagery (Chapter 3). The method extended the study limits of

previous approaches by evaluating synergies of data from two dates,
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besides single-date images, objects of various vegetation types, and

height categories ranging from less than 5 cm to several tens of me-

tres. A number of texture features were proposed, based on local

variance, entropy, and local binary patterns. A wide range of process-

ing algorithms, including handling of missing values, outlier removal,

data normalization, and dimensionality reduction with data transfor-

mation and feature selection, and several supervised classifiers were

employed and evaluated.

• A supervised learning approach for the conversion of land cover to

habitat classes using remote sensing data was proposed (Chapter 4),

to provide a labour and time effective alternative to previous reference

rule-based classification studies [52,53]. A number of features describ-

ing spectral, morphological, topological, and structural properties of

the objects were extracted. In addition, a methodology to convert

land cover classes from characters (string variables) to interval-scaled

numerical values, in order to be directly fed as input to the supervised

classifiers, expressing inter- and intra-class variabilities, was proposed.

Various classifiers were employed, ranging from decision tree single

and ensemble ones to support vector machines and artificial neural

networks. The approach was evaluated at two study areas individu-

ally, whereas, in addition, the transferability of the model extracted

in one area was tested in the other.

• A rule-based approach for the conversion of land cover to habitat

classes was additionally proposed, where evidential reasoning and fuzzy

logic were employed to handle uncertainty from missing information,

vague expert rules, and data noise affliction, and enhance informa-

tion fusion (Chapter 5). Classifiers built around the principles of

Dempster–Shafer theory were introduced, and a number of linear

fuzzification methods were proposed and evaluated, in comparison

with the respective crisp classifier. The approach allowed the extrac-

tion of multiple classes, in case strong support for the discrimination

of constituent single ones was not provided, and offered the flexibility

of the classifier adaptation and parameterization to the particular user

preferences and application requirements, as far as the class selection

criteria were regarded. The approach was evaluated at two study ar-

179



eas, the former being the one where the rule set was defined and the

latter used to test its transferability to different areas.

6.2. Conclusions

The most important conclusions extracted by the outcomes of this research

can be summarized as follows:

• Remote sensing data offer wide potential in monitoring several char-

acteristics related to biodiversity, including habitat extent, species

distribution, and ecosystem services. Numerous effective methods

have been presented. The operational use of remote sensing data,

though, remains restricted and wide knowledge gap exists between

remote sensing and user community.

• No single sensor data and processing methods have been proven uni-

versally high performing. Each application requires careful selection of

both data (e.g. lidar favour 3D structure studies, whereas hyperspec-

tral species discrimination) and methods (e.g. object-based methods

for habitat characterization over pixel-based ones), or effective syner-

gies.

• Texture features based on local variance, entropy, and local binary

patterns, derived from passive sensor satellite imagery, can be used as

effective surrogates of active sensor (e.g. lidar) information in vegeta-

tion height estimation studies. Coupled with dimensionality reduction

through either feature selection or transformation, a small feature set

can be formed providing significant accuracies in height discrimination

among diverse types of vegetation at different seasons.

• Decision tree ensemble classifiers, in particular bagging trees, have

been consistently among the top performing supervised classifiers in

both vegetation height estimation and habitat classification applica-

tions.

• The proposed methodology for land cover class name conversion to

interval-scaled variables was able to successfully express inter- and
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intra-class variabilities under the supervised learning habitat classifi-

cation approach. As a result, besides the high achieved accuracies, the

majority of misclassifications mostly occurred among highly relevant

classes.

• The proposed supervised learning approach was able to provide a more

accurate and automated, and less time and labour demanding classi-

fication approach, compared with the rule-based classifier by Adamo

et al. [52, 53] used as reference. Classification accuracies were higher

in both evaluated study areas than the reference study. This included

the application of the model extracted in one area to the other, sup-

porting the potential for wider applicability of the approach.

• The rule-based classification approach based on Dempster–Shafer the-

ory and linear fuzzification methods provided higher accuracies than

the respective crisp classifier, using the same rule set. The proposed

framework was flexible in providing multiple classes when enough sup-

port for the discrimination of single ones was not available, offering

the possibility of different accuracy interpretations depending on user

and application particular requirements. Thorough experimentation

on class selection criteria indicated the most appropriate selection cri-

teria for each interpretation. It also allowed the expression of un-

certainty and degree of confidence in rule outcomes defined by the

experts.

• Both the proposed Dempster–Shafer fuzzy and the supervised learning

approaches outperformed the reference rule-based classifiers in [52,53].

Between the two, the DS fuzzy approach offered higher parameteriza-

tion ability to user defined criteria than the supervised learning one,

e.g. by offering high performing classifiers for various levels of desir-

able class separability into single classes, allowing the formation of

accurate classifications for different applications. In addition, the DS

fuzzy approach allowed the extraction of classes outside the validation

data set, whereas the supervised approach was restricted to the ones

used for training. On the contrary, the supervised approach offered a

more automated process, requiring no a priori expert knowledge and

trial-and-error fine tuning used in rule-based classifiers, thus resulting
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in a faster implementation.

• Trained to Le Cesine and applied to Lago Salso site, the two ap-

proaches brought similar results for certain classes. For instance, as

can be seen from Tables 4.10 and 5.9, both the supervised classifier

and the rule-based one under the interpretation penalizing multiple

classes had perfect user’s accuracies (no commission error) for classes

NON, EHY, and CHE. For most of the other classes, the former clas-

sifier outperformed the latter one, both not using lidar data. The

rule-based classifier, though, was able to perfectly (TRE, GRA) or

partially (SAN, LHE/CHE) identify classes completely missed by the

supervised classifier, since not included in the training set of the latter.

• Overall, it has been shown that remote sensing data offer wide po-

tential in biodiversity monitoring studies, with very high resolution

optical imagery, in particular, proving effective in vegetation height

estimation and habitat classification. However, these passive sensor

data have limitations in characterizing the vertical structure with a

high level of accuracy required for some applications, such as forest

carbon stock assessment, and cannot fully replace active sensor data,

such as lidar. In addition, spectral features from VHR imagery alone

may prove inadequate for applications such as habitat classification

and need to be coupled with morphological, topological, or structural

features. In most tasks, precise pre-processing is necessary to mini-

mize geometric and radiometric distortions of the remote sensing data

and allow the synergistic use of multiple images. Cloud free conditions

are a further requirement for the use of optical data.

6.3. Future research

Although satisfactory results have been achieved by the methodologies pro-

posed in this thesis, interesting future research directions and opportunities

can be identified to further investigate and expand its outcomes. Some

future work suggestions include the following:

• In a generic sense, new research opportunities and higher capacity for

biodiversity monitoring are constantly created from upcoming satel-

lite missions, providing enhanced combinations of spatial resolution,
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spectral properties, and revisit time. Studies on new passive and ac-

tive sensor data fusion and processing methodologies are expected to

exploit such unprecedented potential for operational monitoring on a

wide scale.

• Data with different spatial resolutions and angles of sun during image

capturing can be employed to study the effects of scale and differ-

ent illumination conditions on the accuracy of the height estimation

approach of Chapter 3.

• Further improvement to the supervised learning approach might be

brought through the introduction of constraints on the possible out-

come based on the land cover features, to eliminate irrelevant habitat

classes, e.g. by incorporating post-classification processes.

• Development and incorporation of non-linear fuzzification methods in

addition to the linear ones proposed in Section 5.2.2, may further

improve the performance of the Dempster–Shafer fuzzy approach.

• Development of new classifier fusion techniques, as alternatives to the

Dempster rule of combination described in Section 5.2.1, might lead

to classifiers with higher performance than the best individual ones.
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[194] J. C. White, C. Gómez, M. A. Wulder, and N. C. Coops,

“Characterizing temperate forest structural and spectral diversity

with Hyperion EO-1 data,” Remote Sens. Environ., vol. 114, no. 7,

pp. 1576–1589, Jul 2010.

[195] J. E. Nichol and M. L. R. Sarker, “Improved biomass estimation

using the texture parameters of two high-resolution optical sensors,”

IEEE T. Geosci. Remote, vol. 49, no. 3, pp. 930–948, Mar. 2011.

[196] K. Kronseder, U. Ballhorn, V. Böhm, and F. Siegert, “Above ground

biomass estimation across forest types at different degradation levels

in Central Kalimantan using LiDAR data,” Int. J. Appl. Earth Obs.,

vol. 18, pp. 37–48, Aug 2012.

[197] A. Banskota, R. H. Wynne, P. Johnson, and B. Emessiene,

“Synergistic use of very high-frequency radar and discrete-return

lidar for estimating biomass in temperate hardwood and mixed

forests,” Ann. For. Sci., vol. 68, no. 2, pp. 347–356, Mar. 2011.

[198] M. Vastaranta, M. Holopainen et al., “TerraSAR-X stereo

radargrammetry and airborne scanning LiDAR height metrics in

imputation of forest aboveground biomass and stem volume,” IEEE

T. Geosci. Remote, vol. 52, no. 2, pp. 1197–1204, Feb. 2014.

[199] G. Sandberg, L. Ulander, J. Fransson, J. Holmgren, and T. Le Toan,

“L- and P-band backscatter intensity for biomass retrieval in

hemiboreal forest,” Remote Sens. Environ., vol. 115, no. 11, pp.

2874–2886, Nov. 2011.

[200] Z. Hou, Q. Xu, and T. Tokola, “Use of ALS, Airborne CIR and

ALOS AVNIR-2 data for estimating tropical forest attributes in Lao

PDR,” ISPRS J. Photogramm., vol. 66, no. 6, pp. 776–786, Nov.

2011.

206



[201] I. Ozdemir and A. Karnieli, “Predicting forest structural parameters

using the image texture derived from WorldView-2 multispectral

imagery in a dryland forest, Israel,” Int. J. Appl. Earth Obs., vol. 13,

no. 5, pp. 701–710, Oct 2011.

[202] K. Soudani, C. François, G. le Maire, V. Le Dantec, and E. Dufrêne,
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[221] S. C. Kefauver, J. Peñuelas, and S. Ustin, “Using topographic and

remotely sensed variables to assess ozone injury to conifers in the

Sierra Nevada (USA) and Catalonia (Spain),” Remote Sens.

Environ., vol. 139, pp. 138–148, Dec. 2013.

[222] M. J. Bechle, D. B. Millet, and J. D. Marshall, “Remote sensing of

exposure to NO2: Satellite versus ground-based measurement in a

large urban area,” Atmos. Environ., vol. 69, no. 2, pp. 345–353, Apr.

2013.

[223] R. Costanza, R. de Groot et al., “Changes in the global value of

ecosystem services,” Global Environ. Change, vol. 26, pp. 152–158,

May 2014.

[224] J. Maes, M. L. Paracchini, and G. Zulian, “A European assessment

of the provision of ecosystem services: Towards an atlas of ecosystem

services,” European Commission Joint Research Centre,

Luxembourg, Tech. Rep., 2011.

[225] Y. Z. Ayanu, C. Conrad, T. Nauss, M. Wegmann, and T. Koellner,

“Quantifying and mapping ecosystem services supplies and demands:

209



a review of remote sensing applications.” Environ. Sci. Technol.,

vol. 46, no. 16, pp. 8529–8541, Aug. 2012.

[226] H. Fang, S. Liang, and G. Hoogenboom, “Integration of MODIS LAI

and vegetation index products with the CSM-CERES-Maize model

for corn yield estimation,” Int. J. Remote Sens., vol. 32, no. 4, pp.

1039–1065, Feb. 2011.

[227] M. Moriondo, F. Maselli, and M. Bindi, “A simple model of regional

wheat yield based on NDVI data,” Eur. J. Agron., vol. 26, no. 3, pp.

266–274, Apr. 2007.

[228] J. Ren, Z. Chen, Q. Zhou, and H. Tang, “Regional yield estimation

for winter wheat with MODIS-NDVI data in Shandong, China,” Int.

J. Appl. Earth Obs., vol. 10, no. 4, pp. 403–413, Dec. 2008.

[229] H. Yan, Y. Fu et al., “Modeling gross primary productivity for

winter wheatmaize double cropping system using MODIS time series

and CO2 eddy flux tower data,” Agr. Ecosyst. Environ., vol. 129,

no. 4, pp. 391–400, Feb. 2009.

[230] L. Dente, G. Satalino, F. Mattia, and M. Rinaldi, “Assimilation of

leaf area index derived from ASAR and MERIS data into

CERES-Wheat model to map wheat yield,” Remote Sens. Environ.,

vol. 112, no. 4, pp. 1395–1407, Apr. 2008.

[231] D. Jaskierniak, P. N. Lane, A. Robinson, and A. Lucieer,

“Extracting LiDAR indices to characterise multilayered forest

structure using mixture distribution functions,” Remote Sens.

Environ., vol. 115, no. 2, pp. 573–585, Feb. 2011.

[232] S. Tonolli, M. Dalponte et al., “Fusion of airborne LiDAR and

satellite multispectral data for the estimation of timber volume in

the Southern Alps,” Remote Sens. Environ., vol. 115, no. 10, pp.

2486–2498, Oct. 2011.

[233] H. Latifi, A. Nothdurft, and B. Koch, “Non-parametric prediction

and mapping of standing timber volume and biomass in a temperate

forest: application of multiple optical/LiDAR-derived predictors,”

Forestry, vol. 83, no. 4, pp. 395–407, Jul. 2010.

210



[234] R. Nelson, K. Ranson et al., “Estimating Siberian timber volume

using MODIS and ICESat/GLAS,” Remote Sens. Environ., vol. 113,

no. 3, pp. 691–701, Mar. 2009.

[235] L. G. Olmanson, M. E. Bauer, and P. L. Brezonik, “A 20-year

Landsat water clarity census of Minnesota’s 10,000 lakes,” Remote

Sens. Environ., vol. 112, no. 11, pp. 4086–4097, Nov. 2008.

[236] D. Zhao, Y. Cai et al., “Estimation of water clarity in Taihu Lake

and surrounding rivers using Landsat imagery,” Adv. Water Resour.,

vol. 34, no. 2, pp. 165–173, Feb. 2011.

[237] N. Kabbara, J. Benkhelil, M. Awad, and V. Barale, “Monitoring

water quality in the coastal area of Tripoli (Lebanon) using

high-resolution satellite data,” ISPRS J. Photogramm., vol. 63,

no. 5, pp. 488–495, Sep. 2008.

[238] S. Chen, L. Fang, L. Zhang, and W. Huang, “Remote sensing of

turbidity in seawater intrusion reaches of Pearl River Estuary A

case study in Modaomen water way, China,” Estuar. Coast. Shelf S.,

vol. 82, no. 1, pp. 119–127, Mar. 2009.

[239] Z. Chen, F. E. Muller-Karger, and C. Hu, “Remote sensing of water

clarity in Tampa Bay,” Remote Sens. Environ., vol. 109, no. 2, pp.

249–259, Jul. 2007.

[240] D. Fuentes, J. Gamon et al., “Mapping carbon and water vapor

fluxes in a chaparral ecosystem using vegetation indices derived from

AVIRIS,” Remote Sens. Environ., vol. 103, no. 3, pp. 312–323, Aug.

2006.
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A. Methods for CBD indicator

extraction

A.1. Abbreviations in Tables A.1–A.6

A

AGB: Above Ground Biomass; AgI: Aggregation Index; ALS: Airborne

Laser Scanning (LiDAR); ANN: Artificial Neural Networks; APAR:

Absorbed Photosynthetically Active Radiation (APAR); ARI:

Anthocyanin Reflectance Index; AWMPFD: Area-Weighted Mean Patch

Fractal Dimension

B

BA: basal area; BRDF: Bidirectional Reflectance Distribution Function

C

CAI: Cellulose Absorption Index; CAMx: Comprehensive Air-Quality

Model with extensions; CART: Classification And Regression Tree; CCA:

Canonical Correlation Analysis; CCCI: Canopy Chlorophyll Content

Index; CCFS: Crown Cover and Forest Status index; CD-AL:

change-detection-based Active Learning; CDIA: tree canopy diameter;

ChD: Change Detection; chl-a: chlorophyll-a; CHM: Canopy Height

Model; CI: Clumpiness Index; cl.: classes; class.: classification; CMFDA:

Continuous Monitoring of Forest Disturbance Algorithm; CODcr: chemical

oxygen demand; CPL: Core area Percentage of Landscape; CRA:

Constrained Redundancy Analysis; CRI: Carotenoid Reflectance Index;

CVA: Change Vector Analysis; CWSI: Crop Water Stress Index; DA: Data

Assimilation
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D

DBH: density at breast height; DCNI: Double-peak Canopy Nitrogen

Index; DEM: Digital Elevation Model; DGVI: Derivative Greenness

Vegetation Indices; DIM: Digital Intensity Models; DSM: Digital Surface

Model; DTM: Digital Terrain Model

E

ECAI: Equivalent Connected Area Index; ED: Euclidean Distance; EL:

Edge length; EMMM: Expectation Maximization Mixture Models; EVI:

Enhanced Vegetation Index; ExGM: Excess Green Index

F

fAPAR: fraction of Absorbed Photosynthetically Active Radiation; FBD:

Fine-Beam Dual; feat. sel.: feature selection; FVC: Fractional Vegetation

Cover

G

GA: Genetic Algorithm; GAM: Generalized Additive Models; GAMLSS:

Generalized Additive Models for Location, Scale and Shape; GARP:

Genetic Algorithm for Rule-Set Production; GC: Gini Coefficient; GCV:

Generalized Cross Validation; GLM: Generalized Linear Models; GMM:

Gaussian Mixture Model; GPP: Gross Primary Productivity

H

h-h SR-meter: hand-held spectroradiometer

I

IDWI: Inverse Distance Weighted Interpolation; inv. alg: inversion

algorithms; I-T: Information-Theoretic approach

J

JCV: Jack-Knife Cross Validation

L

LAI: Leaf Area Index; LC: Land Cover; LDA: Linear Discriminant

Analysis; LDiv: Landscape division; LL R2M: lambda-lambda R2 models;
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LLSR: Linear Least Square Regression; LogR: Logistic Regression; LPI:

Largest Patch Index; LR: Linear Regression; LRA: Linear Regression

Analysis; LRM: Linear Regression Models; LSMM: Linear Spectral

Mixture Models; LSU: Linear Spectral Unmixing; LSWI: Land Surface

Water Index; LU: Land Use

M

m.s.l.: mean sea level; m/date: multi-date; m/res.: multiresolution;

m/spectr.: multispectral; m/temp.: multitemporal; MAE: Mean Absolute

Error; MANOVA: Multiple Analysis Of Variance; M-C: Monte-Carlo;

MCC: Multiscale Curvature Classification; MD: Mahalanobis Distance;

MDM: minimum-distance-to-means; MDS: Multidimensional Scaling;

MESMA: Multiple Endmember Spectral Mixture Analysis; MFIN: Mean

Forest Intensity Normalization; MICA: Material Identification and

Characterization Algorithm; MinNF: Minimum Noise Fraction; MLC:

Maximum Likelihood Classification; MLLSR: Multivariate Linear Least

Square Regression; MLR: Multiple Linear Regression; MLRM: Multiple

Linear Regression Models; MLSR: Multiple Least-Square Regression;

MMHC: MiraMon’s software hybrid classifier; MNF: Maximum Noise

Fraction; MPS: Mean Patch Size; MRA: Multiple Regression Analyses;

MSN: Most Similar Neighbour; MTMF: Mixture Tuned Matched Filtering

Spectral Mixture Analysis

N

NBGLM: Negative Binomial General Linear Models; NBRI: Normalized

Burn Ratio Index; NDLI: Normalized Difference Lignin Index; NDLVI:

Normalized Difference LiDAR Vegetation Index; NDNI: Normalized

Difference Nitrogen Index; NDRE: Normalized Difference Red Edge;

nDSM: normalised Digital Surface Model; NDSVI: Normalized Differential

Senescent Vegetation Index; NDTI: Normalized Difference Tillage Index;

NDVI: Normalized Difference Vegetation Index; NDWI: Normalized

Difference Water Index; NH4-N: ammonia Nitrogen; NIRI: Normalized

Infrared Index; nLSU: non-Linear Spectral Unmixing; NN: Nearest

Neighbour; NND: Mean nearest neighbour distance; NNI: Nearest

Neighbor Imputation; NP: number of patches; NSI: Nitrogen Stress Index;

NSM: Normalized Surface Model
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O

OA: overall accuracy; OBIA: Object-Based Image Analysis; obj/rule

class.: object-oriented rule-based classification; OII: Ozone Injury Index;

OIUC: Optimal Iterative Unsupervised Classification; OSAVI: Optimized

Soil-Adjusted Vegetation Index

P

PA: producer’s accuracy; PAR: Photosynthetically Active Radiation; PC:

Patch Cohesion; PCA: Principal Component Analysis; PD: Patch Density;

PLSR: Partial Least Square Regression; polarim.: polarimetric; PPI: Pixel

Purity Index; PRA: Partial Redundancy Analysis; PRI: Photochemical

Reflectance Index; PSCV: patch size coefficient of variance; PVI:

Perpendicular Vegetation Index

Q

QDA: Quadratic Discriminant Analysis; QRM: quadratic regression

models

R

RDA: Regularized Discriminant Analysis; REIP: Red-Edge Inflection

Point; rel.diff.: relative difference; REPI: Red Edge Position Index; RF:

Random Forest; RFE: Recursive Feature Elimination; RG: Mean radius of

gyration; RGMAP: Refined Gamma Maximum-A-Posteriori (filtering);

RGRI: Red Green Ratio Index; RMSE: Root Mean Square Error; RSDP:

Relative Spectral Discriminatory Probability; RVoG: random volume over

ground

S

s/res.: super-resolution; SAM: Spectral Angle Mapper; SAVI:

Soil-Adjusted Vegetation Index; SCM: Spectral Correlation Mapper; sd:

standard deviation; SDA: Stepwise Discriminant Analysis; SDD: Secchi

Disk Depth; SDDBH: Standard Deviation of Diameters at Breast Heights;

SDI: Shannon Diversity Index; segm.: segmentation; SEI:

Shannon-Evenness Index; sER: slope adaptive Echo Ratio; SFFS:

Sequential Forward Floating Selection; SFLR: Stepwise Forward Logistic
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Regression; SFS: Sequential Forward Selection; SG: Savitzky-Golay

(filter); SI: Separability Index; SID: Spectral Information Divergence;

SLMM: Spectral Linear Mixing Model; SMA: Spectral Mixture Analysis;

SMLR: Stepwise Multiple Linear Regression; SMR: Stepwise Multiple

Regression; SNA: Spatial Neighborhood Analysis; spat.: spatial (features);

spectr.: spectral (features); SRI: Simple Ratio Index; SST: sea-surface

temperature; SV: stem volume; SVM: Support Vector Machines; SWI:

Shannon-Weaver diversity index

T

TCAI: Tasseled Cap Angle Index; TCT: Tasseled Cap Transformation;

text.: texture (features); TMA: Temporal Mixture Analysis; tN: total

Nitrogen; tP: total Phosphorous; ts: time series

U

UA: user’s accuracy

V

VGPM: Vertically Generalized Production Model; VIF: Variance Inflation

Factor; VIP: Variable Importance in Projection; VIT: Vegetation Index

Temperature; VTRER: Varying-Time Random Effects Regression

W

WBI: Water Band Index; WCI: Wetland Condition Index; WDRVI: Wide

Dynamic Range Vegetation Index
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A.2. Tables with methods for CBD headline indicator extraction

A.2.1. Trends in extent, condition and vulnerability of ecosystems, biomes and habitats

Table A.1.: Methods studying different parameters related to the CBD headline indicator measuring trends in extent, condition and vulnerability of ecosystems,
biomes and habitats.

RS data Feature extraction Mapping Final product Best accuracy Ref.

Forest extent

ALS nDSM, sER map min. height, crown
coverage, min. area, min.
width

temper. forest detection 96% (2 cl.) [84]

PALSAR, TM spectr., text., spat., topogr.
features; TCT

RF trop. forest class. 90% (6 cl.) PALSAR; ≈+3%
TM

[80]

PALSAR, TM polarim., interfer., text.
features

SVM tropical forest class. 85.5% PALSAR + TM (7 cl.) [83]

ETM+ GIS to define ecoregions;
spectr. reflectance

OIUC temper. late seral forests
class.

90.72% (3 cl.) [70]

TM / ETM+ ts spectr. reflectance; post-class.
map compositing

MLC (pre), max. label
(post)

trop. peat swamp forest 86% (4 cl.) [71]

Hyperion spectr. reflectance; feat. sel.
SDA

ANN, SVM, SAM trop. forest class. 81% (8 cl.) [78]

dual-date RSAT-2 polarim. features; SFFS ensemble SVM boreal forest class. 69.14% (9 cl.) [81]

PALSAR text. features; feat. sel. SVM
RFE

SVM trop. forest class. 69.9% (6 cl.) [82]

Grassland, savanna, peatland, heathland

MODIS ts, ETM+ m/res. segm.; EVI, spectr.
reflectance, phenol. features;
SG filter

RF dry savanna mapping 94.86% UA, 97.73% PA (12 cl.) [76]

ASTER SAVI MLC, majority 3× 3
filter

steppe LU mapping 79% (8 cl.) [74]

ETM+ growing region segm.; spectr.
reflectance

visual interpretation savanna mapping 71% (6 cl.) [68]

Continued on next page. . .
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Table A.1 – continued

RS data Feature extraction Mapping Final product Accuracy Ref.

m/temp. TM spectr. reflectance, TCT,
PCA, veg. indices

MANOVA, SDA, JCV temper. grassland
mapping

70.4% (6 cl.) [69]

CHRIS spectr. reflectance RF, AdaBoost, SVM Natura 2000 heathland
class.

61.8% SVM (10 cl.) [79]

LC / habitat mapping

TM, AVNIR-2,
PALSAR

text. features MLC, ANN trop. rainforest mapping 97.5% AVNIR-2 + PALSAR (8
cl.)

[75]

TM / ETM+ text. features MLC, k-NN, 4 SVM,
MMHC

tropical LC map up to 96.13% (8 cl.) [67]

ADS40, MIVIS,
ALS

text. features, hillshade
modeling, nDSM, SFS feat.
reduction

MLC, SAM, SID,
post-class. majority filter

LC mapping of
heterogeneous landscape

92.57% (17 cl.) [77]

TM ts spectr. reflectance; CVA;
CD-AL;

SVM LC update ≈92% (7 cl.) [72]

ETM+ spectr. reflectance CART, SVM, MLC target habitat mapping 88.4% (8 cl.) [66]

TM / ETM+ ts,
ALS, ASTER

segm.; DSM; NDVI; spectr.,
text. measures

obj/rule class. EUNIS habitat class. 86.19% (10 cl.) [47]

m/temp. HRG,
ASTER, IRS
LISS-III, aerial
photos (0.4 m)

spectr. features, multi-level
segm.

obj/rule class. habitat map of Wales 80.7% (19 cl.) [46]

m/temp. QB,
WV-2, LiDAR

spat., topol., temp.,
geometric, context., spectr.
features

obj/rule class. Mediterranean habitat
map

78.4% (21 cl.) [53]

TM NDVI image differencing, image
ratioing, image
regression & CVA

LC/LU ChD 75.5% correct ChD (12 cl.) [73]

Degradation and deforestation

TM / ETM+ ts TCT; temp. segm. and
fitting; TCAI

SVM forest disturbance
mapping

95.72% (24 cl.) [93]

TM / ETM+ ts TCT Wetness, forestness
index, NDVI, NBRI, TCAI

m/temp. RGB color
comp. anal.; MDM

wildfire and clearcut
harvest disturb. mapping

93% (32 cl.) [94]

Continued on next page. . .

233



Table A.1 – continued

RS data Feature extraction Mapping Final product Accuracy Ref.

TM / ETM+ ts CMFDA; NDVI; TCT threshold-based forest
mapping

forest disturbance
monitoring

96.7% PA, 95.83% UA; 94%
temp. acc.

[95]

PALSAR ts slope-corrected gamma
nought

threshold-based class. deforestation mapping 87% (5 cl.) [105]

TM / ETM+ ts NDVI, NIRI RF deforestation estimation 83.3% (6 cl.) [96]

TM / ETM+ ts veg. change tracker, NDVI,
integrated forest z-score,
NBRI

rule-based class. forest disturbance around 80% (13 cl.) [97]

TM / ETM+ ts,
MODIS, aerial
photos

TCT; Disturbance Index ChD ISODATA forest gain and loss
mapping

81.67% (3 cl.) [98]

MSS / TM ts SLMM; m/date segm. fuzzy NN; object-level
Boolean ChD

deforestation mapping 75% (4 cl.) [99]

AVHRR ts reflect. values, NDVI bagging decision trees burned area detection 68% PA, 56% UA [103]

TM / ETM+ ts spectr., therm., temp.,
context. features, watershed
area, multi-date ChD, region
growing, morphological
dilation

obj.-based class. tree burned area mapping 85% PA, 71% UA [100]

HRG, ETM+ converted brightness, NIR sd
and compactness layers

object-based mapping ecosystem degradation
(intactness index)

76.7% Landsat (3 cl.) [101]

PALSAR ts MFIN; intensity-based ChD
measures; ScanSAR and FBD
measure combination

threshold-based class. tropical deforestation
detection

72% detection w. 20% false
alarm rate

[106]

MSS / TM /
ETM+ ts; ALS

TCT, TimeSync temp. segm.,
LandTrendr, Landsat
disturbance metrics

LRA forest disturbance history 0.66–0.85 R2 for structure
attributes

[376]

AWIFS, MODIS spectr. reflectances bagging ANN and Class.
tree; region growing

burnt scar mapping 0.72–0.79 k (2 cl.) [104]

Fragmentation

Continued on next page. . .
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Table A.1 – continued

RS data Feature extraction Mapping Final product Accuracy Ref.

MSS / TM AWMPFD & CPL indices visual interpretation;
post-class.
cross-tabulation change
analysis

forest fragm. analysis 92.9% LCLU map (7 cl.);
different trends in AWMPFD
and CPL, whereas other indices
remain similar

[110]

TM indices: NP, PD, LPI, MPS,
PSCV, AWMPFD

visual interpretation marsh fragm. assessment 90% LC map (8 cl.); similar
trends to index changes,
different scales

[111]

TM FRAGSTATS indices supervised class. Forest fragm. &
connectivity change
monitoring

83% LC (7 cl.); 93.8% change
in connectivity, 0.67–72.8% for
fragm. indices

[112]

IKONOS, GE-1,
b/w aerial photos

21 FRAGSTATS indices GLM; object-based class. trop. forest fragm.
assessment

94.8% LC (2 cl.); 18 adjusted
pseudo-R2 distance to roads
with Shape index

[115]

QB, ASTER, TM m/level segm.; spectr.
reflectances; FRAGSTATS
indices

obj/rule class. (QB);
pixel-based MLC
(ASTER, TM)

tundra mapping and
fragm.

80.6% QB (9 cl.); fragm. more
obvious in QB class.

[113]

SSat; HRG (both
simulated by
AISA)

NDVI; variogram analysis;
red edge shift

semi-variogram sill and
range

fragm. SSat offers more information
for vegetation stress detection

[116]

TM, WiFS 10 FRAGSTATS indices MLC cross-scale evaluation of
indices

367–6110.5 mean sensitivity to
scale for NP, MPS, EL, RG,
and NND; 7.3–109.6 for LPI,
CI, PC, LDiv, and AgI (more
robust to spatial resolution)

[114]

Aerial photos ECAI photo interpretation forest connectivity 2.4% rate of increase in forest
connectivity

[117]

Freshwater

ALS, visible photo LiDAR Lee filtering, DEM,
wetness index

threshold-based class. temper. wetland
inundation

96.3% LiDAR (3 cl.) [121]

ALS, QB DEM, CHM, spectr. indices MLC temper. upland swamp
mapping

98% (boundaries), 70–78% (3
cl.)

[122]

ALS point cloud parameters &
segm., dropout modelling

rule-based class. river water detection 97% [123]

Continued on next page. . .
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Table A.1 – continued

RS data Feature extraction Mapping Final product Accuracy Ref.

airborne optical
camera (4 cm)

DEM by 3D point cloud OBIA rule-based class. upland swamp mapping 95% (swamp vs eucalypt) [133]

ETM+, aerial
photos

spectr. reflectance ISODATA, MDM highland & savannah
wetlands class.

up to 83% (9 cl.) [134]

TM / ETM+,
JERS-1

spectr., radar, topogr.
features

Bagging class. trees) wetland mapping 88.6% (2 cl.) [127]

PALSAR ts,
RSAT-2

m/res. segm.; backscatter
values

OBIA rule-based class. trop. wetland class. 81% (5 cl.) [128]

m/temp. ERS-2,
ASAR, ETM+

PCA LRA forested wetland
hydroperiod mapping

R2 0.9 soil moisture, 0.88
percent area inundated

[129]

ETM+, MODIS ts bilinear & bicubic
interpolation, s/res. by phase
corr. im. registr., halftoning,
notch & morphol. filtering

k- & fuzzy c-means Lake detection &
characterization

Errors: 0.15 km2 (area), 1.234
km (perimeter), 0.322 km
(length), 0.169 (compactness)
MODIS

[135]

Marine and coastal

ROSIS, CASI,
MIVIS, IKONOS,
QB

spectr. reflectance; MNF,
PCA, band averaging

k-means, MLC, SAM saltmarsh mapping 97.8% ROSIS (5 cl.) [131]

ALS DSM, DEM, NSM, DIM;
NDLVI

MLC saltmarsh mapping 91.89% (17 cl.) [377]

TM, ALI,
Hyperion,
IKONOS

depth-invariant band
extraction

MLC seagrass mapping 95.9% / 78.94% HYP (3 / 5 cl.) [132]

ALS membership of water,
intensity and 2D point density

supervised fuzzy
classification

water detection 94.5% and 99.1% for two areas [124]

ALS bank line extraction DTM differencing;
gradient change

morphological ChD tidal channel position changes
of 55 m identified

[126]

ALS geometric features, bank line
extraction

DTM differencing; ChD
of bank lines

morphological ChD tidal channel position changes
identified

[125]

236



A.2.2. Trends in abundance, distribution and extinction risk of species

Table A.2.: Methods studying different parameters related to the CBD headline indicator measuring trends in abundance, distribution, and extinction risk of
species.

RS data Feature extraction Mapping Final product Accuracy Ref.

Alien species

aerial orthophotos
(0.5–1 m)

bi-temporal band ratio,
NDVI, text. features

RF Fallopia japonica (FP)
mapping

95.4% OA (9 cl.); 90.3% PA,
98.1% UA for FP

[137]

aerial photo (0.3
m); TM

NDVI; obj. features (color,
texture, shape)

pixel-, obj.-based MLC;
LRM, QRM

Understory bush
honeysuckle mapping

94.9% OA (2 cl.); 91.3% PA,
95.5% UA

[138]

AISA, balloon
visible (0.12 m)

MinNF SAM; LSU saltmarsh phragmites
mapping

90% OA (6 cl.); 93% PA, 96%
UA

[139]

m/spectr. aerial
photos (25 cm);
ALS

segm., NDVI MLC, obj.-based class. Invasive woody species
mapping

73% PA, 99% UA for Pinus
nigra

[140]

HyMap MinNF; NDVI, NDWI, CAI LogR; SAM; binary tree;
SMA

invasive weed species
mapping

63% PA, 75.8% UA for
perennial pepperweed;
51.4–69.1% PA, 61.9–89.8% UA
for water hyacinth

[148]

QB spectr. reflectance MLC invasive wetland plant
mapping

100% PA, 76% UA for
Phragmites australis

[143]

ASTER terrain position cl.; spectr.
signatures

ANN, SVM w. Bayesian
GIS

invasive shrub Lantana
camara mapping

82.9% (4 L. camara cover cl.) [378]

Hyperion MinNF SCM Phragmites australis
mapping

68.8% PA, 61.1% UA [151]

ETM+; 1.2 m
above-ground
photos

spectr. reflectance; light
intensity, canopy density

MLC; ANN; SMR Understory Chromolaena
odorata properties

R2 0.86–0.92 for number of
flowering stem, flowering
branch, etc.

[379]

CASI PCA; four LSMM MLC Yellow starthistle
abundance

R2 0.88 for starthistle cover [152]

QB; Hyperion m/res. segm.; landscape
pattern metrics; NDVI; TCT;
MinNF; PPI

ISODATA; OBIA; LSU,
nLSU; ANN

guava abundance mapping mean root error of 0.00076 [144]

Continued on next page. . .
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Table A.2 – continued

RS data Feature extraction Mapping Final product Accuracy Ref.

Hyperion ts spectr. reflectances SI threshold native & invasive species
separability

SI > 0.7 (SI < 0.7) for
invasive-native in the summer
(winter)

[153]

Indigenous species

Simulated
Hyperion by h-h
SR-meter

PCA, LL R2M, SDA, DGVI discriminant model savanna mapping 97% (5 cl.) [154]

HYDICE spectr. indices; derivative- &
absorption- based techniques;
SMA

RF trop. rainforest tree
species

around 87.4% (7 species) [141]

ALS surface reflectance; Dropout
point count

rule-based tree class. wetland species mapping 82.71% (9 cl.) [155]

WV-2 manual crown delineation;
spectr. reflectance

RF, LDA temper. forest species
discrimination

82.4% (10 cl.) [145]

CAO-Alpha segm., spectr. separability
measures

LDA, RDA, SVM, ANN,
k-NN, QDA

tree species discrimination 73.2% (17 cl.) [147]

ALS, CASI DEM, crown segm., BRDF
correction; spectr. reflectance;
3D point cloud

stacked SVM savanna mapping 76.5% (15 species) [142]

ALS, CAO-Alpha NDVI; non-metric MDS;
topographic variables

stacked SVM;
hierarchical clustering;
redundancy analysis

savanna plant community
composition

76% (15 species) [149]

HyMap reflect. & derivative data;
Jeffreys-Matusita & ED;
SAM; SID; RSDP

single- &
multiple-endmember
class.

tree species discrimination 71.5% (6 cl.) [150]

Birds

AVHRR ts NDVI; PCA GAM distr. modelling of gr.
bustard (GB), l. bustard
(LB), c. lark (CL)

89.2% for GB; 82% for LB;
81.6% for CL

[158]

SIR-C; TM inv. alg. for biomass
estimation; veg. cover; SNA

GARP presence modelling for p.
warbler (W), c. sparrow
(S), red-eyed vireo (V)

84% for W; 85% for S; 75% for
V

[167]

Continued on next page. . .
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Table A.2 – continued

RS data Feature extraction Mapping Final product Accuracy Ref.

ETM+ NDVI; greenness LDA; LR; GLM r. grouse (G) & g. plover
(P) abundance

r 0.73 for G; 0.55 for P [159]

ALS; TM forest structure variables,
topogr. characteristics,
vegetation greenness; SDI

MCC; GLM species richness R2 0.318 bird richness [160]

ALS; IKONOS veg. structure indices LR Dark-eyed Junco and W.
Vireo density and
occurrence

R2 0.4 [168]

TM landscape metrics; crop
productivity measures; NDVI

SVM; I-T; LR bird, butterfly, plant
diversity

R2 0.18 a−, 0.28 b−, 0.3
γ−diversity for birds

[162]

Fishes

RoxAnn acoustic
data; IKONOS

spectr. reflectance; acoustic
roughness; in-situ rugosity

unsupervised class.; LR;
LogR; NBGLM

reef fish abundance R2 0.6– >0.9 [161]

TMI; SeaWiFS; SST; chl-a; PAR; m.s.l.
anomaly

VGPM; piecewise LR detection of albacore
ocean hot spots

R2 0.79 [176]

ETM+ spectr. reflectance, habitat
properties

habitat supervised class.;
GAM

SWI model r 0.87 [174]

MODIS sea properties GLM habitat suitability (HIS)
for y. tuna

71.9% of fish catch where
HIS>0.5

[163]

IKONOS; acoustic
depth sounder

seabed parameters; rugosity
index; M-C simulation; SEI

LR reef fish richness richness related to evenness for
kernels 40-80 m and to rugosity
for kernels ≤20 m (p<0.01)

[169]

Mammals

WV2 spectr. reflectance MLC; ISODATA;
k-means; thresholding

whale detection 84.6% detection, 23.7% false
positives

[157]

ALS surface scanner echoes LogR habitat suitability
mapping for moose

71% (moose/no-moose) [164]

aerial survey ts;
VGT

morphol., topol., spectr.
features

SFLR presence of elephant 74% variance explained [173]

QB, WV-2,
IKONOS

pansharpening; spectr.
reflectance

multivariate superv.
class.; robust LR

emp. penguin population
estimate

4 new breeding colonies &
238,000 breeding pairs found

[166]

TM; QB spectr. reflectance rule-based class. breeding distribution of
emp. penguins

10 new breeding sites located; [165]

Continued on next page. . .
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RS data Feature extraction Mapping Final product Accuracy Ref.

ETM+ spectr. reflectance; NDVI regression tree analysis Myanmar’s Eld’s deer
habitat

abundance & % canopy
correlation r = 0.636

[175]

Invertebrates

MODIS variables: NDVI,
FRAGSTATS & topogr.
measures, species richness

MRA butterfly species richness 62% variation explained [172]

ALS LiDAR variables CRA Spider distribution
properties

R̄2 0.15–0.57 for 6 properties [170]

ALS LiDAR variables CCA; MLRM forest beetle richness and
diversity

26.4% of variance, 23.8% of
diversity explained

[171]
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A.2.3. Trends in pressures from unsustainable agriculture, forestry, fisheries and aquaculture

Table A.3.: Methods studying different parameters related to the CBD headline indicator measuring trends in pressures from unsustainable agriculture, forestry,
fisheries and aquaculture.

RS data Feature extraction Mapping Final product Accuracy Ref.

Unsustainable agriculture

LISS-II ts spectr. features MLC salinity affected soil
mapping

90% LU map (8 cl.) [178]

TM / ETM+ ts image segm.; EVI, NDSVI,
NDTI, phenol. features

RF corn and soybean
multi-year mapping

90.1% w. spectr., 88.3% w.
phenol. same-year (3 cl.);
75.5% w. spectr., 82.3% w.
phenol. cross-year (3 cl.)

[184]

DMC Z/I wetland rel. percentage index;
indicator value analysis;
non-metric MDS; NDVI

RF WCI 71% (5 cl.); R2 0.48 for WCI [179]

MODIS ts NDVI, spectr. reflectance,
phenol. metrics

SVM abandoned agriculture
mapping

OA 66.9% (4 cl.), UA 56.7%,
PA 40.9%

[185]

MODIS ts NDVI, Time Integrated NDVI decision tree irrigated area mapping R2 0.91 w. TM map as
reference

[180]

TM / ETM+,
MODIS

NDVI, EVI, PVI; PCA RF; thresholding
(TM/ETM+); peak
method, TMA; hierarch.
training (MODIS)

cropping intensity of
smallholder farms

R2 0.71–0.97 TM/ETM+,
0.30–0.97 MODIS

[186]

VENµS (VS),
Sentinel-2 (S-2)
(both simulated by
field spectrometer)

spectr. features, NDVI, REIP PLSR; VIP LAI of wheat and potato
crops

r 0.93 w. VS, 0.92 w. S-2; r
0.91 w. REIP, 0.86 w. NDVI

[187]

DuncanTech;
TCAMP

spectr. features; VIT LR NSI, CWSI R2 0.37–0.41 for NSI [181]

CASI spectr. indices;
PROSPECT-SAILH model

regression analysis DCNI R2 0.72 for corn N
concentration

[182]

REye; GS NDVI, NDRE, CCCI regression analysis Canopy nitrogen
percentage of crops

R2 0.14–0.46 w. GS [183]

Continued on next page. . .
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RS data Feature extraction Mapping Final product Accuracy Ref.

Unsustainable forestry

ALS ALS last pulse; tree-based
features; point height metrics

RF boreal managed forest
attributes

R: 0.98 height, 0.89 DBH, 0.96
SV

[189]

TDX, TSX
Pol-InSAR

copolarized dual-pol (D-P),
single-pol (S-P) data

data inversion, RVoG
model

forest height R2 0.86 w. D-P, 0.98 w. S-P +
DTM, compared with LiDAR
reference

[192]

AVNIR-2, HRG spectr., text. features; PCA simple LR, SMLR forest biomass estimation R2 0.939 [195]

ALS; Airborne
CIR (0.25 m);
AVNIR-2

ALS height percentiles; CIR
and AVNIR-2 spectr. & text.
features

plot-level MLLSR trop. forest structure R2: 0.918 SV; 0.774 BA [200]

HRG neighbourhood statistics PLSR hardwood & conif. forest
structure

R2 0.93 CDIA, DBH, 0.92
height

[40]

IKONOS, ETM+,
HRVIR

spectr. features non-linear regression LAI in temp. conif. &
decid. forest

R 0.82–0.88 ETM+ [202]

ALS laser penetration, height
metrics

logarithmic regression;
univar. & multiple
regression

LAI in pine forest R2 0.84 [203]

ALS Ordinary Kriging, IDWI for
DTM & DSM; LiDAR
features

MLRM forest above ground
biomass

R2 0.83 [196]

Simulated GLAS
by ALS

Gaussian decomposition SMLR forest parameters R2 0.76 relief; 0.81 canopy
height

[191]

GLAS SG filter; Sigbeg
determination

regression analysis ragged forest height R2 0.73–0.78 [35]

IKONOS text. features LR spruce forest structure:
age (A), top height (H),
circumference (C), stand
density (D), basal area
(BA)

R2 0.82 density, 0.82
circumference, 0.81 age

[41]

BioSAR; Profiling
& Scanning ALS

norm. radar cross-section;
multiple returns;

Best subsets linear
regression

forest biomass R2: 0.8 BioSAR + PALS [197]

HyMap veg. indices PLSR beech forest structure R2: 0.62 DBH, 0.36 height, 0.5
density

[193]

Continued on next page. . .
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RS data Feature extraction Mapping Final product Accuracy Ref.

WV-2 text. features SMLR dryland plantation forest
structure

best R2: 0.67 SDDBH, 0.54
BA, 0.5 GC

[201]

BioSAR backscatter values linear regression forest biomass R̄2 0.77–0.79 [199]

Hyperion forward MinNF; spectr.
reflectance

obj.-based class.; CCA temper. forest structure 0.973 age, 0.979 height
canonical loadings

[194]

TSX Stereo
Radargrammetry;
ALS

ALS metrics; TSX 3-D coords NNI; RF boreal forest structure RMSE 24.7–31.8% SV,
23.4–29.8% AGB

[198]

TM / ETM+ CCFS; haze correction ISODATA; 2nd order
polyn. regression

AGB in sustain. &
unsustain. logging area

98.7% (5 cl.); R2 0.66 [177]

TM / ETM+ ts spectr. reflectance SVM disturbances in managed
forest

94.68–99.4% (2 cl.), 87%
detection

[204]

REye ts MTMF obj/rule class. logging trail detection 91.5% (3 cl.) [205]
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A.2.4. Trends in pressures from habitat conversion, pollution, invasive species, climate change,
overexploitation and underlying drivers

Table A.4.: Methods studying different parameters related to the CBD headline indicator measuring trends in pressures from habitat conversion, pollution,
invasive species, climate change, overexploitation and underlying drivers.

RS data Feature extraction Mapping Final product Accuracy Ref.

Climate change

VGT ts PVI; earliness index VTRER leaf unfolding in dec.
broadleaf forest

R2 0.957–0.975; RMSE ≈2 days [207]

MODIS ts GMM; mean filtering; NDVI regression analysis terrestrial biome
phenological metrics

R2 0.42–0.97 (5 metrics),
RMSE of onset ≤ 1 week for
deciduous

[208]

MODIS NDVI, LSWI, EVI, WDRVI,
OSAVI.

double logistic function,
LLSR

dec. broadleaf & evergreen
needleleaf forest phenology

R2 0.87 OSAVI (GPP onset),
0.91 WDRVI (GPP offset)

[211]

MODIS EVI, NDVI, ExGM logistic model dec. forest phenological
metrics

MAE 3–14 for NDVI [209]

TM / ETM+ EVI, NDVI, NDWI, Red-MIR
ratio, Thermal-Red-MIR ratio

common sigmoidal
models

mixed hardwood forest
phenology

Error 11.2 days for full leaf out
with EVI

[210]

Pollution

ASAR low wind filtering;
semi-superv. segm.

regression analysis,
adaptive thresholding

oil spill detection 99.93% on subset, 91.7% on
rest

[215]

RSAT-1 backscatter; text. features;
convolution of texton filters

feed-forward ANN oil slick delineation 98.22% (2 cl.); 97.74% (3 cl.:
oil, clean sea, low wind)

[216]

AVIRIS MICA threshold-based mapping oil marsh mapping 93.4% (2 cl.) [218]

ERS geometr., phys., text. features decision tree forest oil spill detection 77.4–85% (2 cl.) [217]

HJ FVC; scaled NDVI; Dualistic
Structure model

linear regression non-point source pollution R2 0.75 TN/TP/NH4-N, 0.23
CODcr

[220]

AVIRIS, CASI NDVI, SRI, RGRI, PRI,
REPI, CRI, ARI, WBI,
NDWI, NDNI, NDLI; MinNF

MLC; MLR, stepwise
regressions

conif. forest OII 82% (8 cl.); R2: 0.59 [221]

OMI surface-to-column scaling,
GEOS-Chem model, CAMx

correlation analysis urban surface NO2

concentrations
R temporal 0.4–0.8; spatial 0.93 [222]
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A.2.5. Trends in distribution, condition and sustainability of ecosystem services for equitable
human well-being

Table A.5.: Methods studying different parameters related to the CBD headline indicator measuring trends in distribution, condition and sustainability of
ecosystem services for equitable human well-being.

RS data Processing Mapping Final product Accuracy Ref.

Food provision

MODIS LAI, EVI,
& NDVI

DA; crop growth & canopy
reflectance models; GA; SG
filter

radiative transfer model;
piecewise logistic
function

corn yield estimation rel.diff. corn yield 3.5% LAI +
EVI, -0.2% LAI + NDVI

[226]

AVHRR NDVI fAPAR; AGB; harvest index CROPSYST model wheat yield rel.diff. 3.15% [227]

MODIS NDVI ts SG filter stepwise LR winter wheat yield rel.diff. –4.62% [228]

MODIS ts NDVI, EVI, LSWI veg. photosynthesis
model; LR

winter wheat-maize GPP diff. 5.7% wheat, –11% maize;
R2 0.798

[229]

ASAR, MERIS LAI; variational DA CERES-Wheat model wheat yield rel.diff. 11% [230]

Provision of raw materials

ALS GAMLSS; EMMM; plot-level
indices

ridge regression; GCV eucalyptus forest BA &
stand volume (StV)

R2 0.66–0.89 BA; 0.67–0.85
StV

[231]

GLAS, MODIS spectr. features; LiDAR
waveform variables

MLC, ANN boreal forest timber
volume

93.1% LC (11 cl.); R2 0.78 [234]

ALS, LISS-III LiDAR features; spectr.
features

stepwise regression forest stem volume R̄2 0.72 ALS + LISS-III [232]

airborne CIR,
ALS, TM

LiDAR 1st & last pulse; CIR
variance, TM spectr., PCA,
TCT; GA; stepwise selection

RF; ED; MD; MSN managed mixed forest
timber volume (V) &
biomass (B)

RMSE 23.27% V, 23.52% B [233]

Water provision

TM / ETM+ ts reflectance values ISODATA; MLSR SDD in lakes R2 0.71–0.96 [235]

ALI reflectance values LR river estuary water
turbidity

R2 0.9085 [238]

ETM+ reflectance values; panchr.
brightness

ISODATA; MLSR lake & river SDD R2 0.77 [236]

Continued on next page. . .
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Table A.5 – continued

RS data Processing Mapping Final product Accuracy Ref.

ETM+ reflectance values; text.
features

regression analysis chl-a, SDD & turbidity (T) R2 0.723 chl-a, 0.54 SDD, 0.57
T

[237]

SeaWiFS reflectance values; spectr.
indices

absorption &
backscattering coefficient

open-water estuary SDD R2 0.67 [239]

Carbon storage

AVIRIS veg. indices; APAR; fAPAR LRA carbon (C) & water vapor
(WV) fluxes

r –0.986 C, 0.981 WV [240]

ALS morphol. filtering; intensity &
height metrics

stepwise regression; VIF AGB, branches (BB) &
foliage biomass (FB)

R2: 0.7 AGB, 0.67 BB, 0.58 FB [241]

QB, ASTER spectr., text. features; TCT k-NN; SMLR tundra forest aboveground
carbon

r 0.44–0.69 with QB [242]

Pest control

QB ts RGRI; m/spectr. segm. local maxima filter;
threshold-based class.

mountain pine beetle red
attack

89–93% true positive [243]

MODIS NDVI, EVI, NDWI, NDII;
defoliation index

LR gypsy moth defoliation R2 0.769 biomass lost [244]

AVIRIS spectr. features mixed-stepwise LR emerald ash borer-infested
lake region

R2 0.71 decline [245]

TM / ETM+,
aerial surveys

TCT; LAI, pine stand vigor
TCT

regression model mountain pine
beetle-induced mortality

R2 0.43 [246]
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A.2.6. Trends in coverage, condition, representativeness and effectiveness of protected areas and
other area-based approaches

Table A.6.: Methods studying different parameters related to the CBD headline indicator measuring trends in coverage, condition, representativeness and
effectiveness of protected areas and other area-based approaches.

RS data Feature extraction Mapping Final product Accuracy Ref.

Habitat conservation

ASTER NDVI, NDII; climatic &
topogr. variables; PRA

MLC; MRA woody, shrub & tree
species richness in
temperate forest

92% (4 cl.); R2 up to 0.5 [249]

AHS-160 spectr. reflectance LDA w. SFFS; MESMA,
class. trees

Calluna age mapping for
heathland conservation

86±4.2% (3 cl.) [250]

ALS, CASI LiDAR-derived height; text.
features; inter-band
correlation analysis; PCA;
FRAGSTATS metrics

MLC forest condition mapping 81% (5 cl.) [251]

TSX ts backscatter features rule-based class. swath events in Natura
2000 semi-natural
grassland

3 out of 3 detection within
11-day period

[252]

PALSAR RGMAP filtering ChD in HV backscatter mangrove forest habitat
degradation

detect pixel with at least 10%
change in backscatter

[253]
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B. Available data for the study

areas

B.1. Ederheide and Ginkelse heide, The

Netherlands

Figure B.1.: The WorldView-2 image for the Dutch study area from June

2011, in true colour.
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Figure B.2.: The WorldView-2 image for the Dutch study area from Septem-

ber 2011, in true colour.

Figure B.3.: The Canopy Height Model for the Dutch study area.
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Figure B.4.: The Land Cover map for the Dutch study area.
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B.2. Le Cesine, Italy

Figure B.5.: The QuickBird image for Le Cesine study area from June 2009,

in true colour.

Figure B.6.: The WorldView-2 image for Le Cesine study area from October

2010, in true colour.
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Figure B.7.: LCCS map of Le Cesine site and validation points.
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B.3. Lago Salso, Italy

Figure B.8.: The WorldView-2 image for Lago Salso study area from June

2010, in true colour.

Figure B.9.: The WorldView-2 image for Lago Salso study area from Febru-

ary 2011, in true colour.

253



Figure B.10.: LCCS map of Lago Salso site and validation points.
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