75 research outputs found

    Towards a Formalism-Based Toolkit for Automotive Applications

    Full text link
    The success of a number of projects has been shown to be significantly improved by the use of a formalism. However, there remains an open issue: to what extent can a development process based on a singular formal notation and method succeed. The majority of approaches demonstrate a low level of flexibility by attempting to use a single notation to express all of the different aspects encountered in software development. Often, these approaches leave a number of scalability issues open. We prefer a more eclectic approach. In our experience, the use of a formalism-based toolkit with adequate notations for each development phase is a viable solution. Following this principle, any specific notation is used only where and when it is really suitable and not necessarily over the entire software lifecycle. The approach explored in this article is perhaps slowly emerging in practice - we hope to accelerate its adoption. However, the major challenge is still finding the best way to instantiate it for each specific application scenario. In this work, we describe a development process and method for automotive applications which consists of five phases. The process recognizes the need for having adequate (and tailored) notations (Problem Frames, Requirements State Machine Language, and Event-B) for each development phase as well as direct traceability between the documents produced during each phase. This allows for a stepwise verification/validation of the system under development. The ideas for the formal development method have evolved over two significant case studies carried out in the DEPLOY project

    Développement sans rupture de systèmes complexes : une approche basée multi-exigences

    Get PDF
    Prouver qu'un système satisfait à ses exigences est un défi important de l'ingénierie des exigences. D'une part, les approches formelles fournissent un moyen d'exprimer les exigences mathématiquement et de prouver qu'un système satisfait ses exigences. Cependant, si la formalisation offre des possibilités supplémentaires telles que la vérification, voire la validation, elle s'avère souvent trop difficile à utiliser en pratique par les acteurs impliqués dans le développement des systèmes. D'autre part, dans la plupart des cas, les exigences sont écrites et parfois tracées en langage naturel à des fins de communication et de compréhension mutuelle. De plus, cela reste le cas tout au long du processus de développement. Ainsi, il est nécessaire de considérer le besoin de s'adresser à toutes ces parties prenantes pendant le processus de développement. L'objectif principal de cette thèse est de fournir une méthodologie sans rupture qui permet de bénéficier de la formalisation des exigences tout en étant compréhensible par toutes les parties prenantes. Nous proposons une approche qui considère les exigences comme des parties du code du système, ce qui, en tant que tel, contribue à améliorer l'évaluation de la qualité. De plus, l'intégration des exigences dans le code garantit un développement sans rupture. Ces contributions visent trois avantages principaux. Premièrement, il n'est pas nécessaire de passer d'un outil ou d'un environnement à un autre : un cadre unique prend en charge le développement de l'analyse à la mise en œuvre. Deuxièmement, les changements et la réversibilité deviennent un phénomène régulier, directement pris en charge par la méthode, le langage et les outils, ce qui facilite les allers-retours. Enfin, les différents niveaux d'abstraction restent dans le cadre du paradigme orienté objet. Nous appliquons cette vision au processus de développement lui-même avec les mêmes avantages attendus. Le cycle de vie du développement peut alors bénéficier de cette forte intégration des exigences dans le code. Ces artefacts aident au développement du logiciel en fournissant un support et des lignes directrices pour l'analyse ou l'aide à la décision et en renforçant la qualité du logiciel. En outre, la réutilisabilité, l'évolutivité et la maintenabilité sont améliorées. La traçabilité entre les exigences et le code permet une analyse d'impact facile lorsque l'un de ces artefacts évolue. Cependant, si ce paradigme est familier aux développeurs et même si nous faisons un effort d'expressivité, il ne s'adresse pas aux autres parties prenantes qui ont l'habitude de travailler avec d'autres outils. Puisque nous souhaitons également que des non-experts utilisent notre approche pour valider des systèmes dans la première phase de leur développement, nous proposons un langage spécifique au domaine : (i) proche du langage naturel et (ii) basé sur une sémantique formelle. En utilisant les techniques de l'ingénierie dirigée par les modèles, ce langage permet de combler le fossé entre les différents acteurs impliqués dans un projet (compte tenu de leurs différentes expériences) et entre les exigences et le code. Nous avons enfin consacré un effort de recherche à la définition des relations entre les exigences. Nous fournissons leurs définitions formelles et leurs propriétés sur la propagation de l'état de satisfaction. Ces définitions peuvent aider les ingénieurs à vérifier les exigences (en vérifiant la validité de la sémantique des relations entre deux exigences) et à vérifier la conformité du système (grâce à la propagation de la satisfaction). Ce travail est une étape vers l'introduction de la sémantique formelle dans la traçabilité, permettant d'analyser automatiquement les exigences et d'utiliser leurs relations pour vérifier l'implémentation correspondante du système.Proving that a system satisfies its requirements is an important challenge of Requirements Engineering. On the one hand, formal approaches provide a way to express requirements mathematically and prove that a system satisfies its requirements. However, if formalization offers additional possibilities such as verification, or even validation, it often proves to be too difficult to use in practice by the stakeholders involved in the development of systems. On the other hand, in most cases, requirements are written and sometimes traced in Natural Language for communication and mutual understanding purposes. Moreover, this remains during the whole development process. Thus, it is necessary to consider the need to address all these stakeholders during the development process. The main objective of this thesis is to provide a seamless methodology that allows benefiting from the formalization of requirements while being understandable by all stakeholders. We propose an approach that considers requirements as parts of the system's code, which, as such, contributes to improving quality assessment. In addition, integrating the requirements into the code guarantees a seamless development. The contributions target three main benefits. First, there is no need to switch from one tool or environment to another: a single framework supports the development from analysis to implementation. Second, changes and reversibility become a regular occurrence, directly supported by the method, language, and tools, facilitating round-trips. Third, the different levels of abstraction remain inside the object-oriented paradigm. We apply this vision to the development process itself with the same expected advantages. The development life-cycle can then benefit from this strong integration of requirements into the code. These artifacts help in software development by providing support and guidelines for analysis or decision support and reinforcing the software quality. Besides, reusability, evolutivity, and maintainability are enhanced. Traceability between requirements and code allows an easy impact analysis when any of these artifacts evolve. However, if this paradigm is familiar to developers and even if we put an effort in providing expressivity, they are not addressed to other stakeholders that used to work with several tools. Since we also want non-experts to use our approach to validate systems in the early stage of their development, we propose a Domain-Specific Language: (i) close to natural language and (ii) based on formal semantics. Using Model-Driven Engineering techniques, this language bridges the gap between the several stakeholders involved in a project (considering their different backgrounds) and between the requirements and the code. We finally put a research effort into defining relationships between requirements. We provide their formal definitions and properties on the propagation of the satisfaction state. These definitions can help engineers verify requirements (by checking the validity of the semantics of the relationships between two requirements) and verify the system compliance (thanks to satisfaction propagation). This work is a step towards introducing formal semantics into traceability, making it possible to automatically analyze requirements and use their relationships to verify the corresponding implementation of the system

    Control dependence for extended finite state machines

    Get PDF
    Though there has been nearly three decades of work on program slicing, there has been comparatively little work on slicing for state machines. One of the primary challenges that currently presents a barrier to wider application of state machine slicing is the problem of determining control dependence. We survey existing related definitions, introducing a new definition that subsumes one and extends another. We illustrate that by using this new definition our slices respect Weiser slicing’s termination behaviour. We prove results that clarify the relationships between our definition and older ones, following this up with examples to motivate the need for these differences

    TSML: A XML-based Format for Exchange of Training Samples for Pattern Recognition in Remote Sensing Images

    Get PDF
    The availability of large and complex data sets has shifted the focus of pattern recognition towards developing techniques that can efficiently handle these types of data sets. For example, Multiple Classifier Systems claim their ability in reducing the error and complexity of classification by partitioning the data space and combining classifiers predictions. However, it is not an easy task to generate several partitions and moreover to use them in an efficient manner. Another difficult aspect is related to the exchange of training data in different formats among systems to combine classifiers of different and heterogeneous systems. This paper presents a model and structure of training samples based on XML (eXtensible Markup Language) to facilitate the partitioning and exchange among different image classification system. The main contribution is to apply the flexibility of XML that addresses interoperability and communication among heterogeneous systems in partitioning data sets as well as to facilitate interchange of such sets among image processing and pattern recognition systems

    Big-Step Semantics

    Get PDF
    With the popularity of model-driven methodologies, and the abundance of modelling languages, a major question for a requirements engineer is: which language is suitable for modelling a system under study? We address this question from a semantic point-of-view for big-step modelling languages (BSMLs). BSMLs are a popular class of behavioural modelling languages in which a model can respond to an environmental input by executing multiple, possibly concurrent, transitions. We deconstruct the semantics of a large class of BSMLs into high-level, orthogonal semantic aspects and discuss the relative advantages and disadvantages of the semantic options for each of these aspects to allow a requirements engineer to compare and choose the right BSML. We accompany our presentation with many modelling examples that illustrate the differences between a set of relevant semantic options.

    Statechart Slicing

    Get PDF
    The paper discusses how to reduce a statechart model by slicing. We start with the discussion of control dependencies and data dependencies in statecharts. The and-or dependence graph is introduced to represent control and data dependencies for statecharts. We show how to slice statecharts by using this dependence graph. Our slicing approach helps systems analysts and system designers in understanding system specifications, maintaining software systems, and reusing parts of systems models

    IMPLEMENTASI FIREFLY ALGORITHM PADA PENJADWALAN PASIEN OPERASI

    Get PDF
    Kedua jenis ilmu kesehatan dan ilmu lainnya dalam bidang yang berbeda, saling berinteraksi. Teknologi dan ilmu kedokteran berkembang sangat pesat dalam konteks pelayanan kesehatan yang memiliki standar minimal. Sistem penjadwalan pasien operasi di rumah sakit merupakan salah satu pelayanan kesehatan yang memiliki permasalahan yang kompleks. Efisiensi dalam penjadwalan pasien operasi diperlukan untuk mencegah keterlambatan atau pembatalan operasi. Tujuan dari penelitian ini adalah untuk memecahkan masalah penjadwalan pasien operasi pada suatu periode perencanaan dengan pendekatan metode Firefly Algorithm (FA). FA dapat mendukung proses penjadwalan dalam komputasi secara efisien sesuai dengan hasil solusi sebagai kandidat penjadwalan. FA dapat menetapkan pekerjaan yang diterima ke sumber daya yang ada seperti dokter, perawat, ruang operasi, maupun peralatan yang digunakan selama tindakan operasi berlangsung, sehingga pekerjaan dapat diselesaikan dengan waktu makespan yang minimum. Hasil dari implementasi algoritma yang diusulkan dapat menyelesaikan masalah penjadwalan pasien operasi di rumah sakit. Implementasi tersebut menghasilkan jadwal pasien yang memiliki waktu makespan minimal dalam berbagai kondisi serta dapat meningkatkan utilitas ruang operasi di rumah sakit sebesar 50,6%

    Seamless Integration of Multirequirements in Complex Systems

    Get PDF
    Requirements are the keystone of complex systems development. In order to reduce inconsistencies, requirements analysis is an important issue of systems engineering. In this context, there is a need for conciliating views of several stakeholders from different domains and for tracing these requirements from specification to realization. The computerization of analysis, with the help of a clearly defined semantics linked to a non-specialist readable language, should lead to overcome this major issue. Several works already go into this direction. The most popular ones are dealing with natural language, easily understandable but with few semantics. Other approaches propose more formal notations, with stronger semantics but then being less affordable by stakeholders. In this paper, we propose a preliminary work that should drive us to define a language dedicated to requirements which combine the best of both worlds in order to ease requirements analysis throughout the system lifecycle

    Modelling Timed Reactive Systems from Natural-Language Requirements

    Get PDF
    • …
    corecore