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Abstract—The paper discusses how to reduce statecharts
model by slicing. We start with the discussion of control
dependencies and data dependencies in statecharts. The and-
or statechart dependence graph is introduced to represent
control and data dependecies for statecharts. We show how to
slice statecharts by using this dependence graph. Our slicing
approach helps systems analysts and systems designers in
understanding systems specification, maintaining software
systems, and reusing parts of systems models.

Index Terms—Statecharts Slicing, Control Dependencies,
Data Dependencies, And-Or Dependence Graph, Backward
Slicing, Forward Slicing, Specification-based Slicing, Model-
based Slicing.

I. INTRODUCTION

The purpose of slicing statecharts is to reduce state-
charts so that systems analysts and systems designers
can focus on relevant parts of statecharts. Slicing state-
charts helps in software maintenance [1], static analysis
[2], and model checking [3].

There has been a significant amount of research in
the area of program slicing and code-based slicing, as
we can see from program-slicing survey literature [4]-
[6]. In contrast, there is relatively little research on
specification slicing and model-based slicing. Chang and
Richardson [7] presented static and dynamic slicing of
Z specification language. Heimdahl et. al. [8] described
slicing of Requirements State Machine Language (RSML)
to aid specification comprehension. Wang and Qi [3]
presented an algorithm for slicing extended hierarchical
automata for model checking UML statecharts. Korel et.
al. [1] presented an approach to slice extended finite state
models (EFSM). Our work is unique in providing the
details of computing backward and forward slices using
the and-or statechart dependence graph.

The and-or dependence graph represents control de-
pendency and data dependency for statecharts. The
slicing algorithm can implement either backward slicing
or forward slicing by traversing the and-or dependence
graph. The result of backward slicing of statecharts
shows the reduced parts of statecharts that is relevant
to the slicing criteria. The result of forward slicing of
statecharts shows the reduced parts of statecharts that
are dependent upon a given slicing criteria.

Section [l gives a brief description of statecharts. Sec-
tion [l and Section [V] discuss control and data depen-

dencies in statecharts respectively. Section [V illustrates
how to slice statecharts using the and-or dependence
graph. Section VI discusses our software for slicing
statecharts and its evaluations. Conclusions and future
work are discussed towards the end of the paper.

II. STATECHARTS

Statecharts were originally conceived by Harel [9]. He
extended state transition diagram with the notions of
hierarchy, concurrency and communication. The main
purpose of using statecharts is to specify behaviour
of complex reactive systems. Reactive systems, unlike
transformational systems, have to react to external and
internal stimuli. Examples of reactive systems include
telephones, automobiles, communication networks, op-
erating systems, missile and avionic systems [9].

Typically, a state is represented by a rectangle and a
transition between states is shown by an labelled arc, as
shown in Figure [l The label specifies optionally one or
more of a trigger event, a guard condition and an action.
We can organise states into a composite state. Only one
of the states in the composite state is active. Statecharts
support concurrency.

The features of statecharts discussed in the present
include transitions, triggers, guards (with expressions
involving variables), actions (including assignments) and
embedded states. We assume the semantics of statecharts
as originally described in [10]-[12].

III. ConTROL DEPENDENCIES IN STATECHARTS

In this section we explain how we can model con-
trol dependencies in statecharts in terms of graph de-
pendencies. Control dependence is usually defined for
program statements by using a program dependence
graph (PDG). Control dependence captures the notion
that a node in the PDG may affect the execution of
another node [13]. For example, the statements in the
branches of an if statement are control dependent on
the control predicate of an if statement. We extend the
control dependence concept to statecharts.

For example, consider statecharts in Figure [ to
change from state x to state y, statecharts must be in
state x, and event t must be triggered, and condition g
must be true. That means state x, event {, and condition
g control whether we take the transition in question
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and enter state y. We therefore could say that state y
is control dependent on state x, event t and condition
g. Similarly, before entering state y, action a must be
activated. This implies that the occurrence of action a
is control dependent on state x, event t and condition g.

A vertex in a dependence graph represents any object
that can be depended upon, or which can depend upon
other objects. Arcs between vertices indicate a potential
dependence, the item represented by the source vertex
depending upon that represented by the target vertex.
Every item in the statechart which can depend upon
another, or which can be depended upon itself, is added
as a vertex to the dependence graph. This includes states,
events, conditions, and actions.

For every transition of the form given in the statechart
in Figure [} then the dependence arcs in Figure [ are
added to the dependence graph. If any of the event,
condition or action are missing, then the relevant arc
or node in the dependence graph of Figure @ is simply
omitted.
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Fig. 2. Dependence graph for the statechart in Figure [l

Note that the dependencies that arise in an individual
transition are conjoined; the dependencies are all or
nothing. However, the dependencies for distinct transi-
tions are to be considered as disjoined. This is why we
call this dependency graph an and-or dependence graphll
Unlike program dependence graph (PDG) where control
dependence is represented with dotted edge, here we
use normal solid edge to represent control dependence
in and-or dependence graphs. We can share common
structures in the graph — provided they occur within the
same concurrent context — giving the reduced version
of Figure

Figure @l shows an example of branching and merging
of transitions in statecharts. Figure @ also shows the stop

IThe distinction between and and or nodes potentially allows for
smaller slicers for a form of analysis that is not the subject of the
present paper.

ofo

Fig. 3. Reduced dependence graph for the statechart in Figure[ll

circle after state s6 to represent the stop or exit point
for statecharts. However, we will omit the stop circle in
later example figures of statecharts in the paper. Figure B
shows the corresponding dependence graph for Figure @l
We add the Enter and Exit box in the graph to show that
state s1 depends on Enter box and Exit box depends on
state s6. However, later on in the paper, we will omit the
Enter and Exit box in dependence graphs.
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Fig. 4. Statecharts with branching and merging of transitions

Fig. 5. Dependence graph for the statechart in Figure €



IV. DaTta DEPENDENCIES IN STATECHARTS

In slicing programs, in addition to control dependence,
we also have to consider data dependence [4]. Data de-
pendence and control dependence both are represented
in PDGs [13]. Assume we have node i and node j in a
PDG, and there is an edge from node i to node j. The
sets DEF(i) is the set of variables defined at node i, and
the sets REF(j) is the set of variables referenced at node
j- Node j is data dependent on node i if there exists a
variable x such that: (1) x € DEF(i), (2) x € REF(j), and (3)
there exists a path from i to j on which x is not modified.
This definition of data dependence for programs can be
adapted to capture data dependence for statecharts.

Data dependencies may occur among variables in
conditions and in actions of statecharts. These condi-
tions and actions must exist along the same path in
statecharts. For example, Figure shows conditions
and actions which are statement expressiond]. The and-
or dependence graph can be extended to include data
dependencies in a natural way. Figure [4 shows control
dependencies in solid edge and data dependencies in
dotted edge. Unlike program dependence graph (PDG)
where data dependence is represented with normal solid
edge, here we use normal dotted edge to represent data
dependence in and-or dependence graph.

As we see from the figures, action ¥y = x + 5 uses
variable x which is defined in action x = 0. Therefore,
there is data dependence edge point to node x = 0 from
node y = x + 5. For this case, the data dependence of
a node with action y = x + 5 is the data dependence of
y which is the left hand side of assignment statement.
Also, note that node y = x + 5 has control dependent
edge point to and node as well (as we can see from
Figure [J). Both data and control dependent edge from
node y = x + 5 are treated as being conjoined together.

Condition [x > y] uses variable x and y. Therefore,
there are data dependence edges pointing from this node
tonode x = y+5 and to node y = x+5, but not to node x =
0 because x has been modifed at node x = y+5. We may
say that data dependencies of a node with a condition
are the dependencies that govern its evaluation. Also,
note that node [x > y] has two data dependent edges
point to node x = y+5 and to node y = x + 5. These two
data dependent edges from node [x > y] are treated as
being conjoined together.

Figure [ shows an example of branching and merging
of transitions in statecharts. Figure Bl shows its corre-
sponding dependence graph. Notice here that action
y = x after state s4 depends on action x = 5 after state s1,
not action x = 0 because action x = 0 is in the different
transition path from action y = x.

2Here we use syntax of C programming language for assignment
and boolean statements
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Fig. 7. Dependence graph for the statechart given in Figure

V. SL1cING STATECHARTS USING THE AND-OR DEPENDENCE
GRAPH

A. A Slice of Statecharts

A program slice [14] is a reduced part of program
statements in which a programmer may have some inter-
est when debugging or maintaining programs. To get the
relevant part of programs, programmers must specify
some criteria which can be used to identify some rela-
tionships or dependencies among these relevant parts
of programs. These criteria are called slicing criteria. For
statecharts, a slice of a statechart is a reduced part of stat-
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Fig. 8. Statecharts with branching and merging of transitions



Fig. 9. Dependence graph for the statechart in Figure

echart in which systems analysts or systems designers
may have some interest when designing or maintaining
software systems. Similarily, to obtain the relevant parts
of a statechart, analysts or designers must define some
criteria to be used to isolate relevant relationships and
dependencies between relevant parts of statecharts.

B. Slicing Criteria

The slicing criteria for program slicing is usually a
collection of pairs of program variables and program
points [14]. In case of slicing statecharts, slicing criteria
can be a state, an event, a condition, or an action.
However while states are unique, an event (condition or
action) may be duplicated and appear in more than one
place. Therefore, we use a state as a specified location
to uniquely identify which event (condition or action)
we want to be the slicing criteria. For example, if we
are interested in which parts of the statecharts affect
state s3 in Figure Bl we must specify <state s3> as the
slicing criteria. If we are interested in which parts of
the statecharts affect event e45, we specify <state s4 and
event e45> as the slicing criteria.

C. Backward Slicing of Statecharts

After we represent statecharts in the form of the and-or
dependence graph, and decide on an appropriate state-
charts’ slicing criteria, we can apply a slicing algorithm
using graph-reachability from the point of interest in
the dependence graph. Ottenstein and Ottenstein [15]
proposed a slicing algorithm by define slicing as a graph
reachability problem over the dependence graph. Our
approach is similar.
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Fig. 10. Sliced dependence graph for the statechart in Figure Bl with
backward slicing criteria <state s3>
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Fig. 11. Sliced statecharts with backward slicing criteria <state s3>

For example, consider statecharts in Figure B and its
dependence graph in Figure B if we backward slice this
statecharts with respect to slicing criteria <state s3>, we
start from node s3 and follow edges in the same direction
of arrowheads. We would get the graph as shown in
Figure [} where the solid nodes are the sliced nodes and
the dotted nodes are irrelevant nodes. We can see nodes
that relevant are node s3, s2, €23, s1 and ¢e12. The sliced
statecharts is shown in Figure [[1l This result means that
components of statecharts which affect state s3 are state
s1, event €12, action al2, state s2 and event e23.

D. Forward Slicing of Statecharts

In program slicing, we can slice backwards or for-
wards [5]. A backward slice includes program statements
which can have effects on the slicing criterion. A forward
slice includes program statements which are affected by
the slicing criterion. Similarily, a backward slice of a
statechart contains the reduced parts of the statechart
that have affected the slicing criterion. A forward slice of



a statechart contains the reduced parts of the statechart
that are dependent upon the slicing criterion.

With backward slicing, we traverse the and-or state-
chart dependence graph by locating the slicing criterion
node and then follow the arrowhead of the edges from
the criterion node. However, with forward slicing, after
locating the slicing criterion node we follow the arrow-
head of the edges backwardly from the slicing criterion
node. Additionally, when we follow backwardly and
found the and node we must include nodes which
are attached to this and node in a slice as well. This is to
ensure that the final statechart is well formed.
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Fig. 12. Sliced dependence graph for the statechart in Figure Bl with
forward slicing criteria <state s1, event e14>
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Fig. 13. Sliced statecharts with forward slicing criteria <state s1, event
el4>

To illustrate forward slicing of statecharts, we look
again at Figure Bl which shows the example of branching
and merging of statecharts, and its and-or dependence
graph in Figure B If we forward slice this statecharts
with respect to slicing criteria <state s1, event e14>, we
start from node e14 and follow edges backward in the
opposition direction of arrowheads. We reach the and

node after node e14 so we must include node s1 which
is attached to this and node in our slice too.

We would obtain the graph as shown in Figure
where the solid nodes are the sliced nodes and the dotted
nodes are deleted nodes. We can see the relevant nodes
are node el4, sl, al4, s4, e45, s5, a45, e56 and s6. The
forward sliced statechart is shown in Figure This
result means that components of statecharts which are
affected by event e14 are state s1, action al4, state s4,
event e45, action a45, state s5, event ¢56 and state s6.

VI. STATECHARTS SLICING SOFTWARE AND EVALUATIONS
A. Statecharts Slicing Software

Implementation of software for statecharts [9] is a
complex process. Statechart slicing software has to sup-
port diagram drawings and assume a particular seman-
tics of statecharts. For our our implementation of soft-
ware tools for statecharts, we apply State Chart eXtensi-
ble Markup Language (SCXML) to represent statechartsfl

The input of the system is SCXML and the output
of the system will be sliced SCXML, together with
Graphviz's dotll representation of the sliced statecharts.
Dot files can be converted into conventional visual rep-
resentations of sliced statecharts in the form of Postscript
or PDF output.

Figure [[4 displays the overview of the system. The
system gets the input file which is the XML file rep-
resenting the statecharts. The system then parses this
file and creates the dependence graph representing the
control dependence and data dependence relationship
among states, trigger events, guards, and actions. The
user can choose to perform either backward slicing or
forward slicing by giving a slicing criteria to the system.
The system will display output of the sliced SCXML tags,
and then produce a dot output file. Users can produce
the graphic file format postscript or jpeg file from this
dot file.

B. Evaluations

Traditionally, evaluation of program slicing uses com-
paring of number of statements in the slice to number
of statements in the original program. The survey from
Binkley and Harman [16] showed the empirical results
on program slicing. The results mostly computed slice
sizes in terms of line of code (LOC) and calculated av-
erage slice sizes and percentage of reduction. However,
for statecharts or hierarchical state machines, there are
no standard metrics to evaluate or measure the size
and complexity of a state machine [8]. We have chosen

33CXML (http://www.w3.org/TR/scxml/) was originally an XML for-
mat targeted at specifying voice browser related behaviour, but in-
cludes a complete statechart modelling language that is closely related
to Harel and UML statecharts. We assume the semantics of SCXML
statecharts as described in the draft of 24th January, 2006, which is
essentially a version of the semantics for STATEMATE [10].
4http://www.graphviz.org
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Fig. 14. The System Overview

to measure the number of units such as number of
states, number of events, number of guard conditions
and number of trigger actions.

We evaluate our software by slicing some statecharts
case studies, and compute the percentage of reduction
of number of states, events, guards, and actions. The
case studies cover a representative range of statechart
constructions. The results are given in Table [I

[ Reduction Percentage Results Across Cases |

[ Cases | Backward Slice | Forward Slice |
Case 1 81.25% 62.68%
Case 2 59.14% 50.78%
Case 3 64.13% 36.38%
Case 4 56.09% 63.15%

[ Average | 65.15% | 53.25% |

TABLE I

RepuctioN PERCENTAGE REsuLts Across CASES

The result shows that for our case studes, the average
percentage of reduction is 65.15% for backward slicing.
The average percentage for forward slicing is 53.25%.
The results suggest that on average statechart slicing
does help to eliminate parts of the statechart that are
not relevant to the slicing criteria.

VII. ConcLusioNs AND FuTurRe WORK

This paper sketches the construction of and-or depen-
dence graphs for statecharts, and their use in creat-
ing slices of statecharts. We introduce control and data
dependencies for statecharts, and illustrate how to do
backward and forward slice from these dependencies.

We present results that show slicing reduces the size
of a statechart. We hypothesise that this should assist
those who need to interpret statecharts.

In future work we will describe how our analysis
can be extended to concurrent statecharts. This can be
achieved by using a hierarchical name-space convention.

Other slicing techniques such as dynamic slicing [17],
conditioned slicing [18], [19], and techniques that more
fully exploit the and-or dependencies will also be inves-
tigated. This will include a notion of slicing in which the
criteria indicates what should be removed, rather than
what should be retained.
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