

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in: https://oatao.univ-toulouse.fr/22253

To cite this version:

Galinier, Florian and Bruel, Jean-Michel and Ebersold, Sophie and
Meyer, Bertrand Seamless Integration of Multirequirements in
Complex Systems. (2017) In: 25th International Requirements
Engineering Conference Workshops (REW 2017), 4 September
2017 - 8 September 2017 (Lisbon, Portugal).

Open Archive Toulouse Archive Ouverte

Official URL
https://doi.org/10.1109/REW.2017.38

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/323178709?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:tech-oatao@listes-diff.inp-toulouse.fr
https://oatao.univ-toulouse.fr/22253
https://doi.org/10.1109/REW.2017.38

Seamless Integration of Multirequirements in
Complex Systems

Florian Galinier, Jean-Michel Bruel, Sophie Ebersold, Bertrand Meyer†
IRIT, University of Toulouse

Toulouse, France

{Firstname.Lastname}@irit.fr
†Also Software Engineering Lab, Innopolis University, Russia and Politecnico di Milano, Italy

Bertrand.Meyer@inf.ethz.ch

Abstract—Requirements are the keystone of complex systems
development. In order to reduce inconsistencies, requirements
analysis is an important issue of systems engineering. In this con-
text, there is a need for conciliating views of several stakeholders
from different domains and for tracing these requirements from
specification to realization. The computerization of analysis, with
the help of a clearly defined semantics linked to a non-specialist
readable language, should lead to overcome this major issue.
Several works already go into this direction. The most popular
ones are dealing with natural language, easily understandable
but with few semantics. Other approaches propose more formal
notations, with stronger semantics but then being less affordable
by stakeholders. In this paper, we propose a preliminary work
that should drive us to define a language dedicated to require-
ments which combine the best of both worlds in order to ease
requirements analysis throughout the system lifecycle.

I. INTRODUCTION

The design of complex systems implies several stakeholders

from different domains. Due to this heterogeneity of skills the

description of these systems is done with different artifacts

(e.g., text documents, requirements databases, models, etc.).

One of the main challenge of Systems Engineering (SE) is

to be able to define and maintain relationships between these

different artifacts.

Indeed, it still exists a lack of coherence between the several

views – the different artifacts used to specify the system. Using

these unrelated views makes inconsistencies detection harder,

such as conflicting requirements. A multiviews approach, with

a dedicated unique language or with a common abstraction of

specifications’ artifacts, would allow to detect inconsistencies

upstream.

A traceability problem between design and system realiza-

tion also exists. The lack of clear correlation between system

implementation and requirements does not help handling con-

sequences of requirements modifications. Multirequirements

[1] aims to interweave specifications and development in

order to reduce the gap between requirements and system

implementation in a seamless purpose. The introduction of the

concept of multirequirements allows to make the link between

several levels of abstraction in order to compute the impact of

changes.

Moreover, using a common language for specification and

design would help us to easily add new requirements (induced

from the system decomposition for example) in the set of

existing ones.

Model-Based Systems Engineering (MBSE), which is in-

creasingly used in SE, uses models as central development

artifacts. Modeling provides a possible way to define a com-

mon interface between different views and abstractions. The

main goal of this work is to define methods and tools in

order to allow a seamless integration of requirements in these

two dimensions. One of the expected contributions is the use

of MBSE to express requirements that would be used as a

common interface between artifacts.

This paper is organized as follow: section II exposes the

major issues of requirements in SE. Section III explores differ-

ent approaches that aim to interweave artifacts from different

formalisms. Section IV introduces requirements formalization

and approaches that aim to link systems’ specifications with

their requirements. In section V, we expose a preliminary

approach to combine these two viewpoints in a single one

and our planned contributions. Finally, we summarize our

viewpoint in section VI.

II. MAJOR ISSUES OF REQUIREMENTS IN SE

The requirements’ analysis primary goal is to ensure the

quality of future system. By tracing requirements and system,

engineers can check that the system does the right thing

(implements the expected behavior), which is referred to as

validation; and does it right, which is referred to as verifi-
cation. Requirements analysis is part of the Verification and

Validation (V&V) process as defined by the IEEE standard

1012-2012 [2]. In order to validate the system’s compliance to

the stakeholders’ requirements at each step, these requirements

should be refined in a technical specification of the system.

Due to space limitation, the differences between requirements

and specification are not developed here, but let us remind that

they both describe the “what” a system should do, rather than

the “how” it should do it.

Natural Language (NL) is the most common and easy way

to express requirements. Its main quality is its universality. It

is the common language of all stakeholders and such require-

ments are human-readable. Nevertheless, some technical parts

of the system need to be described with more specific notations

– electrical engineers for example should prefer mathematical

 DOI 10.1109/REW.2017.38

notation and formulas. The major issue of NL is its ambiguity.

This makes the analysis more difficult and has led to famous

failures [3], [4].

The ISO/IEC/IEEE 29148:2011 standard [5] defines a num-

ber of necessary qualities for requirements expression (require-

ments should be traceable, verifiable, consistent, unambiguous,

etc.) to ease the analysis of requirements. The objective of

applying these qualities to requirements is to provide an easier

set of requirements to analyze. In the following section, we

describe several works that target these objectives.

III. REQUIREMENTS EXPRESSION IN SEVERAL VIEWS

The International Council on Systems Engineering (IN-

COSE) highlights the need to conciliate several stakeholders’

viewpoints [6]. Our approach is in line with their recommen-

dations. On one hand, using a unique language to express

requirements from all the heterogeneous domains is unrealistic

by force of habits and the number of different domains and

stakeholders involved in nowadays systems. On the other hand,

to address the needs for software quality it is sound to target

one unique underlying semantics for artifacts manipulation

(see Fig. 1). Before exploring our approach in section V, let

us explore some existing languages for requirements represen-

tation.

Common
language

Doc m nts
(IEEE 830 1993, ISO 9001:2015, etc.)

 2 3

KAOS x qu e n e u
p e n n n n u
n u e

x R q e en x u
p e n n n u
gu e

x R qu e n e u
p e n n n u
n u e

e v q
« e R q

e v
« e eR q

SysML
DSL

Figure 1. Using a common language between several domains languages

A. Natural language tools

Nowadays, there are numerous industrial solutions [7].

Among the most popular, IBM Rational DOORS1 or Dassault
Systems’ Reqtify2 provide tools to manage requirements in

complex systems. These solutions allows users to make rela-

tions between requirements (both functional or not) expressed

in several ways to introduce traceability into the systems. For

example, in Reqtify, you can import requirements expressed

in a Microsoft Word document and link them to some C

code that implements these specifications. These tools provide

a way to define relationships between requirements as well

as relationships between requirements and other artifacts, but

does not provide a strong semantic for these links.

The Goal-Oriented Requirements Engineering (GORE)

KAOS approach [8] also provides a way to express require-

ments in natural language and relationship between them, but

with a stronger semantics on those relationships. It provides

a modeling approach to describe dependencies between re-

quirements. Some tools like Objectiver3 allow to express user

1http://www-03.ibm.com/software/products/en/ratidoor
2http://www.3ds.com/products-services/catia/products/reqtify/
3http://www.objectiver.com/

requirements and to refine them using the KAOS approach.

It also allows to link requirements artifacts with user require-

ments specification documents.

Systems Modeling Language (SysML) [9] provides a di-

agram type to express requirements – requirements diagram

– that leads to the incorporation of the specification into the

modeling process. While the standard use case diagrams can

lead users to express functional requirements, this new type

of diagram permits users to express both functional and non-

functional requirements (as an element with text) and to define

relationships between requirements or between requirements

and other diagrams’ elements (like blocks, uses cases, etc.).

SysML does not offer the possibility to link requirements

expressed with other languages unlike the previously presented

tools, but the PolarSys4 development tool for complex systems

provides a plugin, named ReqCycle5, which can reference

other specification documents.

Tools introduced in this section support the notion of trace-

ability between requirements. Nevertheless, they mostly work

only with textual-only requirements. In the most advanced of

them, it is possible to link artifacts with concrete documents

(e.g., ReqCycle). The relationships’ inference is made harder

by the use of natural language and still requires human

expertise to translate links expressed in NL and then to analyze

the requirements – e.g., to detect inconsistencies.

B. Model-driven approaches

To overcome this issue, the use of a common interface be-

tween several views is needed to provide a way to link different

artifacts. The Model Driven Engineering (MDE) proposes to

use models as a central artifact that can act like an interface.

For example, the Generic Model of Computation (GEMOC)

initiative [10] aims to provide a common interface for different

Domain Specific Languages (DSL) used to express the specific

needs to different stakeholders. They propose to use models

as base artifacts to bridge the gap between DSLs in the same

way that MDE uses models as a central artifact between

specification and implementation. Moreover, the acceptance

of this approach can be eased by the growth of interest of

MBSE in system engineering industry.

A MBSE approach would be to express requirements as

modeling elements as precisely as other modeling artifacts.

This approach can lead us to create links between requirements

and other modeling artifacts from several stakeholders. Thus,

elements from several domains can be combined in a holis-

tic view, taking into account links between domain specific

artifacts and also between these artifacts and requirements.

This is the approach proposed by [11]. Indeed, contrary

to more traditional MDE approaches, they propose to use

virtual models. Stakeholders’ models can be seen as technical

spaces used to express specific needs of a domain. There are

federated in a common space which is used to make links

between interfaces of different domains. Thus, they mapped

4https://www.polarsys.org/
5https://www.polarsys.org/projects/polarsys.reqcycle

concepts expressed with several paradigms (EMF, XML, Word

documents, etc.) in a common interface. For example, this

should allow to link requirements expressed in NL in a

Word document to requirements expressed with the KAOS

methodology or even with more formal methodologies.

IV. REQUIREMENTS FORMALIZATION

Traceability between specification and requirements is an

important issue of requirements analysis. Indeed, the ability to

link parts of the system with requirements helps to determine

if they comply with its requirements and if it is a necessary

part. This traceability can be eased by using a dedicated

requirements language. Indeed, this kind of language, which

is more formal than NL, is a possible way to ensure necessary

qualities for requirements expression.

A. Requirements expression
The use of requirements dedicated languages has been

studied several times. However, in the approaches presented

so far, the NL is still used to express requirements that are

consequently ambiguous. Some works try to overcome this

issue by proposing a constrained form of NL.
In [12], the authors propose a grammar for an English

subset. This constrained language can lead to the avoidance

of inherent problems of NL. Indeed, its syntax leads the re-

quirements expression during the elicitation phase and allows

to capture component elements from the requirements.
In a similar way, Hähnle et al. [13] propose an interface be-

tween another English subset and Object Constraint Language

(OCL). OCL is a formal language used to express constraints

in Unified Modeling Language (UML) diagrams. This work

can be seen as a way to formalize requirements from NL to a

language with a stronger semantic. This should let non-experts

to express requirements in an understandable way, whereas the

OCL representation should allow them to analyze the system.

An example for a Queue class is given in Fig. 2; preconditions

and postconditions of Queue::getFirst() operation can

be expressed both in English or OCL, and are automatically

translated in the other language.

Operation getFirst
OCL: context Queue::getFirst() : Integer

pre: self.size() > 0
post: result = self.asSequence()

->first
English: for the operation getFirst() : Integer of the class Queue,

the following precondition should hold:
the size of the queue is greater than zero

and the following postcondition should hold:
the result is equal to the first element of the queue.

Figure 2. Example from [13] of a matching between English and OCL

While these approaches should permit to bridge the gap

between a language that can be used by non-specialist and

a more formal representation of requirements, a major issue

appears. Indeed, there is a need for maintaining coherence

between these two representations. The change should be

propagated on both formalisms, and is not as immediate than

with a unique language.

B. Requirements specific languages

To overcome this issue, some works highlight languages

dedicated to requirements expression based on a formal se-

mantic.

In [14], the authors propose a language to express re-

quirements in a Complex Adaptive System (CAS) context.

For this Witthle et al. present a structured natural language,

named RELAX, that allows to specify requirements with some

of them that can be relaxed in order to keep safe priority

requirements of the CAS. This language is close to NL but

it is based on formal methods. It is semantically defined with

fuzzy branching temporal logic [15]. These semantics can be

used as a validation basis through the benefit of validation

tools. Recently, [16] proposed an extension for the Modelica

[17] modeling language, named FORM-L, to allow formal

modeling of requirements.

These languages are designed to be addressed to stakehold-

ers.

However, these approaches are not, according to us, simple

enough to be widely used (compared for example to agile user

stories [18], more non-specialist readable but not formal). Fur-

thermore, these works were developed for dedicated domains

and thus are very specific DSLs.

C. Formal expression of requirements

Formal methods are widely used to express specifications

and systems in order to prove their correctness. By nature,

they are not addressed to non-specialist stakeholders. Though

some works try to link these methods with some less formal

representations of requirements.

In [19], the authors propose a translation method from

NL requirements to a formal representation. They propose a

dedicated intermediate language which can be formalized in

OWL [20]. Nevertheless, the authors themselves admit that

their language is addressed to requirements engineers. Non-

specialist stakeholders, without any domain-knowledge, are

not able to understand this formalism.

The authors of [21] proposed to translate requirements

expressed in KAOS to the Event-B formal method. For this,

they used KAOS relationships (refinement, composition, . . .)

to infer semantic links between formal representations of

requirements. For example, a requirement composed of other

requirements will be translated as an AND association of

component requirements.

In [22], the authors are focusing on the system itself.

They aim to link requirements and specification in a unique

formalism. This leads to the reduction of issues due to the gap

between requirements and specification. The use of a formal

syntax can lead users to prove the correctness of the system

and, moreover, to validate it – you can prove that the system

respects the requirements.

This last approach aims to link requirements and specifica-

tions in a unique language. The use of a unique paradigm has

been proposed by Paige and Ostroff in [23]. This idea of a

single model aims to express requirements, specifications and

the implementation in order to avoid the natural gap existing

between several formalisms.

This is the approach proposed in [1]. In this paper, the idea

is to use the expressiveness of the Eiffel language [24] to

express different views of a system. Indeed, the objective of

design by contracts [25] is to introduce within the software’s

code the notion of preconditions (requirements of a routine),

postconditions (properties ensured after a routine execution)

and invariants (logical expressions always true) in an object-

oriented context. Expressing requirements inside contracts

allows to directly check the validity of the system and detect a

lack of consistency, with the help of tools such as AutoProof

[26] – a verifier for Eiffel. Moreover, the author proposes to

directly link requirements expressed in different formalisms

(natural language, diagram) inside the programming code. This

approach should help users to find informations about the

source of a piece of the program and to help traceability from

specification to realization.

V. EXPECTED CONTRIBUTIONS

To allow the introduction of seamlessness in complex sys-

tems development, a number of avenues for research must be

explored. Indeed, in order to produce a methodology and tools

that can be used in a real industrial context, our contribution

should be easy to handle and as close as possible to languages

and tools used by engineers.

Nevertheless, the use of NL as a way to express require-

ments leads us to ask several questions:

• How can requirements be expressed in a non-specialist

readable way, while still being computerizable?

• How to make links between requirements expressed by

several stakeholders?

• What is the semantic of requirements relationships? Of

relationships between requirements and the system?

• How to use a requirements formalization to prove their

properties (soundness, completeness, etc.)?

Works previously mentioned introduced some avenues of

research. However none of them gives answers to all these

questions. One of our main objective will be to propose

a unique paradigm that can conciliate these two visions –

multiviews and multirequirements. We also aim to provide

tools to assist requirements engineers in quality control and the

system validation with help from techniques such as: traces,

requirement coverage (in the same sense modern tools can

provide test coverage), formalization, etc.

Another important goal is to provide tools usable in a natural

way or at least a way close to industrial practices. Indeed,

requirements concern both technical team and non-specialist

stakeholders from several domains. The proposed approach

and tools should help them to conciliate their viewpoints.

Firstly, a requirements language will be proposed. It will

be close to NL, allowing to extract requirements concepts

into a requirements model. These requirements artifacts will

be formalized into the Eiffel language in order to interweave

requirements, specification and implementation. This language

allows us to conciliate the power of proof – with a verifier –

with an executive language that can be used for simulation

for example. Moreover, the Eiffel language interweave in a

single paradigm both the programming language and mod-

eling language. It also supports a mechanism named Eiffel

Information System (EIS) which allows to add links to other

paradigms such as Word documents. This can be used to enact

the process from requirements to implementation in a seamless

manner.

In order to experiment this approach, a landing gear use

case is currently explored. Proposed in [27], it provides a

realistic system and its requirements. This example was treated

by several formalization works that could be used to compare
our approach in ABZ2014 conference [28].

r21
-- When the command line is working (normal mode), if
-- the landing gear command handle remains in the DOWN
-- position, then retraction sequence is not observed.
note
EIS: "name=URD", "protocol=URI",
"src=/path/to/URD.pdf", "nameddest=R21"

require
handle_status = is_handle_down

do
main

ensure
gear_status /= is_gear_retracting

end

Listing 1. Eiffel representation of R21 requirements

An extract of the Eiffel representation of requirement R21
from this use case is given List. 1. This requirement is

linked to its NL form – given in the comment – through

the EIS. EIS provides a way to link the Eiffel representation

of requirements to the user requirements document directly

inside EiffelStudio – the Eiffel main Integrated Development

Environment (IDE). Requirements are expressed with Eiffel

contracts. Preconditions (require part of the code) can be

used to express the state that the system should reach to

check the requirement (the landing gear command is in DOWN
position), while postconditions (ensure part of code) can be

used to ensure that the requirement is respected (the gear is

not retracting). The routine body (the do part of code) should

provide the implementation of the requirement.

One objective will be to extract a basic specification

and requirements expressed in (as close as possible to)

NL and to transform them into an Eiffel representation.

handle_status, main and gear_status features in

List. 1 are part of specification model – not represented here

–, while the contracts are used to express the requirement

itself. In an incremental way, the obtained model could be

enriched. These early models can then be used for a simulation

purpose or for a software implementation. Moreover, the

Eiffel formal representation of requirements should lead us

to analyze requirements – with the help of Autoproof and

techniques such as proof by contradictions.

In a second time, we will introduce translation schemes

from several viewpoints to our abstraction of requirements. We

aim to provide an interface between a formal representation of

requirements (in Eiffel) and NL – the Requirements-Specific

Modeling Language (RSML) in Fig. 3. The expressiveness of

Requirements
Speci c Modeling

Language

Docum nts
(IEEE 830 1993, ISO 9001:2 15, etc.)

Ei el

 3

KAOS x R q e en x u
p e n n n u
gu e

e
e en n n u

g ge

e u
p en n n u
gu e

e v q
« e e

e 2
« e e eq

SysML
DSL

Figure 3. Multiviews dimension: create translation links between common
tools and an interface (the RSML) with more formal language (Eiffel).

Eiffel could lead us to provide an embedded DSL. However,

we would also like to propose a more abstract DSL – an

external DSL –, more affordable to non-software engineers.
This approach could allow to conciliate several viewpoints

and formalisms. Indeed, the more technical parts of the system

could be expressed with specific tools addressed to specialists,

while requirements will be addressed through a common

language. The objective is to ease the communication between

specialists of different domains.
Thereafter, the approach will be validated through a real

industrial case.

VI. CONCLUSION

In the world of complex systems, taking multirequirements

into account is critical. It is important to propose usable tools,

therefore user-centric, that support requirements engineering

as a whole. We intend to introduce an approach allowing

a seamless integration of multirequirements. We believe that

the Eiffel language and the associated formal verifiers and

tools should allow, first to express requirements in a non-

specialist readable way, then to prove requirements properties,

and finally to facilitate automation of requirements. We first

checked our proposal on a current case study and we got

interesting results.

REFERENCES

[1] B. Meyer. Multirequirements. Modelling and Quality in Requirements
Engineering (Martin Glinz Festscrhift), 2013.

[2] IEEE Standard for System and Software Verification and Validation.
IEEE Std 1012-2012 (Revision of IEEE Std 1012-2004), pages 1–223,
May 2012.

[3] P. G. Neumann. Computer-related risks. Addison-Wesley Professional,
1994.

[4] F. Modugno, N. G. Leveson, J. D. Reese, K. Partridge, and S. D. Sandys.
Integrated safety analysis of requirements specifications. In Proceedings
of the Third IEEE International Symposium on Requirements Engineer-
ing, pages 148–159. IEEE, 1997.

[5] ISO/IEC/IEEE International Standard - Systems and software engineer-
ing – Life cycle processes –Requirements engineering. ISO/IEC/IEEE
29148:2011(E), pages 1–94, December 2011.

[6] INCOSE. SE Vision 2025. 2014. http://www.incose.org/docs/default-
source/aboutse/se-vision-2025.pdf.

[7] J. M. Carrillo de Gea, J. Nicolás, J. L. F. Alemán, A. Toval, C. Ebert,
and A. Vizcaı́no. Requirements Engineering Tools. IEEE Software,
28(4):86–91, July 2011.

[8] A. van Lamsweerde. Goal-oriented requirements engineering: a guided
tour. In Proceedings Fifth IEEE International Symposium on Require-
ments Engineering, pages 249–262, 2001.

[9] Object Management Group (OMG). OMG Systems Modeling
Language (OMG SysMLTM), V1.0, 2007. OMG Document
Number: formal/2007-09-01 Standard document URL:
http://www.omg.org/spec/SysML/1.0/PDF.

[10] B. Combemale, J. Deantoni, B. Baudry, R. B. France, J.-M. Jézéquel,
and J. Gray. Globalizing Modeling Languages. Computer, pages 10–13,
June 2014.

[11] F. R. Golra, A. Beugnard, F. Dagnat, S. Guerin, and C. Guychard. Con-
tinuous Requirements Engineering using Model Federation. RE:Next!
Track at 24th IEEE International Requirements Engineering Conference
2016, 2016.

[12] W. Scott and S. C. Cook. A Context-free Requirements Grammar to
Facilitate Automatic Assessment. PhD thesis, UniSA, 2004.

[13] R. Hähnle, K. Johannisson, and A. Ranta. An Authoring Tool for In-
formal and Formal Requirements Specifications. In Ralf-Detlef Kutsche
and Herbert Weber, editors, Fundamental Approaches to Software En-
gineering, number 2306 in Lecture Notes in Computer Science, pages
233–248. Springer Berlin Heidelberg, April 2002.

[14] J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng, and J. M.
Bruel. RELAX: Incorporating Uncertainty into the Specification of
Self-Adaptive Systems. In 2009 17th IEEE International Requirements
Engineering Conference, pages 79–88, August 2009.

[15] S. Moon, K. H. Lee, and D. Lee. Fuzzy branching temporal logic. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
34(2):1045–1055, April 2004.

[16] T. Nguyen. Verification of Behavioural Requirements for Complex
Systems with FORM-L, a MODELICA Extension. In 26th ICSSEA,
EDF R&D, 6 quai Watier, 78110 Chatou, FRANCE, 2015.

[17] S. E. Mattsson, H. Elmqvist, and M. Otter. Physical system modeling
with Modelica. Control Engineering Practice, 6(4):501–510, April 1998.

[18] I. Inayat, S. S. Salim, S. Marczak, M. Daneva, and S. Shamshirband. A
systematic literature review on agile requirements engineering practices
and challenges. Computers in Human Behavior, 51, Part B:915–929,
October 2015.

[19] F.-L. Li, J. Horkoff, A. Borgida, G. Guizzardi, L. Liu, and J. My-
lopoulos. From Stakeholder Requirements to Formal Specifications
Through Refinement. In Samuel A. Fricker and Kurt Schneider, editors,
Requirements Engineering: Foundation for Software Quality, Lecture
Notes in Computer Science, pages 164–180. Springer International
Publishing, March 2015.

[20] S. Bechhofer. OWL: Web Ontology Language. In LING LIU and
M. TAMER OZSU, editors, Encyclopedia of Database Systems, pages
2008–2009. Springer US, 2009.

[21] A. Matoussi, F. Gervais, and R. Laleau. An Event-B formalization of
KAOS goal refinement patterns. Technical Report Tech. Rep. TRLACL-
2010-1, LACL, University of Paris-Est, 2010.

[22] A. Mammar and R. Laleau. On the Use of Domain and System
Knowledge Modeling in Goal-Based Event-B Specifications. In Tiziana
Margaria and Bernhard Steffen, editors, Leveraging Applications of
Formal Methods, Verification and Validation: Foundational Techniques,
number 9952 in Lecture Notes in Computer Science, pages 325–339.
Springer International Publishing, October 2016.

[23] R. Paige and J. Ostroff. The Single Model Principle. In Proceedings of
the Fifth IEEE International Symposium on Requirements Engineering,
RE ’01, pages 292–, Washington, DC, USA, 2001. IEEE Computer
Society.

[24] B. Meyer. Eiffel: The Language. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1992.

[25] B. Meyer. Applying ’design by contract’. Computer, 25(10):40–51,
October 1992.

[26] J. Tschannen, C. A. Furia, M. Nordio, and N. Polikarpova. AutoProof:
Auto-Active Functional Verification of Object-Oriented Programs. In
Christel Baier and Cesare Tinelli, editors, Tools and Algorithms for the
Construction and Analysis of Systems, number 9035 in Lecture Notes
in Computer Science, pages 566–580. Springer Berlin Heidelberg, April
2015.

[27] F. Boniol and V. Wiels. The Landing Gear System Case Study. In
F. Boniol, V. Wiels, Y. Ait-Ameur, and K.-D. Schewe, editors, ABZ
2014: The Landing Gear Case Study, number 433 in Communications in
Computer and Information Science, pages 1–18. Springer International
Publishing, June 2014.

[28] F. Boniol, V. Wiels, Y. Ait-Ameur, K.-D. Schewe, S. D. Junqueira Bar-
bosa, P. Chen, A. Cuzzocrea, X. Du, J. Filipe, O. Kara, I. Kotenko,
K. M. Sivalingam, D. Slezak, T. Washio, and X. Yang, editors. ABZ
2014: The Landing Gear Case Study, volume 433 of Communications
in Computer and Information Science. Springer International Publishing,
Cham, 2014.

