
This is a repository copy of Modelling Timed Reactive Systems from Natural-Language
Requirements.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/103139/

Version: Accepted Version

Article:

Carvalho, G., Cavalcanti, A. L. C. orcid.org/0000-0002-0831-1976 and Sampaio, A. C. A.
(2016) Modelling Timed Reactive Systems from Natural-Language Requirements. Formal
Aspects of Computing. pp. 725-765. ISSN 0934-5043

https://doi.org/10.1007/s00165-016-0387-x

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Under consideration for publication in Formal Aspects of Computing

Modelling Timed Reactive Systems

from Natural-Language Requirements
Gustavo Carvalho1, Ana Cavalcanti2 and Augusto Sampaio1

1Universidade Federal de Pernambuco - Centro de Informática, 50740-560, Brazil
2University of York - Department of Computer Science, YO10 5GH, UK

Abstract. At the very beginning of system development, typically only natural-language requirements
are documented. As an informal source of information, however, natural-language specifications may be
ambiguous and incomplete; this can be hard to detect by means of manual inspection. In this work, we
present a formal model, named Data-Flow Reactive System (DFRS), which can be automatically obtained
from natural-language requirements that describe functional, reactive and temporal properties. A DFRS can
also be used to assess whether the requirements are consistent and complete. We define two variations of
DFRS: a symbolic and an expanded version. A symbolic DFRS (s-DFRS) is a concise representation that
inherently avoids an explicit representation of (possibly infinite) sets of states and, thus, the state space-
explosion problem. We use s-DFRS as part of a technique for test-case generation from natural-language
requirements. In our approach, an expanded DFRS (e-DFRS) is built dynamically from a symbolic one,
possibly limited to some bound; in this way, bounded analysis (e.g., reachability, determinism, completeness)
can be performed. We adopt the s-DFRS as an intermediary representation from which models, for instance,
SCR and CSP, are obtained for the purpose of test generation. An e-DFRS can also be viewed as the semantics
of the s-DFRS from which it is generated. In order to connect such a semantic representation to established
ones in the literature, we show that an e-DFRS can be encoded as a TIOTS: an alternative timed model
based on the widely used IOLTS and ioco. To validate our overall approach, we consider two toy examples
and two examples from the aerospace and automotive industry. Test cases are independently created and
we verify that they are all compatible with the corresponding e-DFRS models generated from symbolic
ones. This verification is performed mechanically with the aid of the NAT2TEST tool, which supports the
manipulation of such models.

Keywords: natural-language; formal model; model mapping; TIOTS

1. Introduction

According to the Federal Aviation Administration (FAA), which published a report [FAA09] that discusses
current practices concerning requirements engineering management, “... the overwhelming majority of the

Correspondence and offprint requests to: Gustavo Carvalho, Universidade Federal de Pernambuco - Centro de Informática,
50740-560, Brazil, e-mail: ghpc@cin.ufpe.br

2 G. Carvalho, A. Cavalcanti and A. Sampaio

survey respondents indicated that requirements are being captured as English text...”. This supports the
thesis that, at the very beginning of system development, typically only natural-language requirements are
documented. As an informal source of information, natural-language specifications may be ambiguous and
incomplete; this problem can be difficult to identify by means of manual inspection.

If formal models are derived from the requirements, it is possible to reason about the specification and its
implementation formally. For instance, animation of these models might be a useful tool for validating the
system requirements. Moreover, given a formal definition of ambiguity and incompleteness, a formal model
can be used to check consistency and completeness of the specification to prove something that can be hard to
achieve by means of manual inspection. Generation of test cases is also made possible by the availability of a
formal model via Model-Based Testing (MBT) techniques. To achieve practical impact, however, automation
is essential, since requiring knowledge of formal modelling by practitioners is often not feasible.

The research problem addressed here is the automatic generation of timed state-rich formal models
from natural-language specifications to support test generation using a variety of techniques and tools,
besides analysis of the specification. Formal modelling of requirements described using natural languages
is not a new research topic. However, previous results do not cover time and state-richness simultaneously
[ADS14, BCMW15, BGMC04, NSM14, ES07, SHG10] or rely on user intervention [AG06, Ili07, LHHR94,
MTWH06, Sch09, SJV12], in which case it is necessary to identify and classify entities.

We define here a timed and state-rich automata-based notation for representation of natural-language
requirements: Data-Flow Reactive System (DFRS). Besides writing the system requirements according to
the grammar of a controlled natural language (CNL), and defining a dictionary, there is no need of user
involvement to generate the proposed models. They are derived automatically from the requirements.

Moreover, we provide a technique to check properties of the formal models, including whether the natural-
language requirements are consistent and complete. Opposed to other works, we consider here definitions of
consistency and completeness tailored to our domain (reactive embedded systems). Requirements are said to
be inconsistent if, in the natural language description, there are two or more requirements describing different
system reactions for the same condition. In addition, we consider a specification to be complete if it describes
how the system should react (which outputs are produced) for every possible situation (any given inputs).
For instance, our interpretation of consistency contrasts to the one adopted in [BGFT10, FLGS14], where
the focus is detecting the use of ambiguous terms and sentences that might lead to different interpretations,
or different interpretations arising from the background knowledge of the reader, respectively.

The proposed model is part of a broader strategy, NAT2TEST (see Fig. 1), which generates test cases
fully automatically from natural-language requirements based on different internal and hidden formalisms.
The first phase of NAT2TEST is a syntactic analysis to determine whether the requirements are written in
accordance with the CNL we proposed (SysReq-CNL). For each syntactically correct requirement, we obtain
the corresponding syntax tree.

Although the adoption of this CNL by practitioners is an interesting and still open question, we already
have indication that the NAT2TEST strategy is of practical relevance. We have designed and tested the
SysReq-CNL considering industrial examples (provided by Embraer1). We have later also considered different
examples provided by different companies. These include an example provided by Mercedes, discussed in this
paper, as well as others not discussed here: a consolidation function, also in the aerospace domain, and the
Ford car-alarm system reported in [ABJ+15]. In none of these case studies, there has been a need to adapt
the CNL to cope with the new examples. So, we have some evidence that, although the CNL has a controlled
structure, it is not limited to particular examples; rather, it seems flexible enough to express requirements of
reactive systems more generally. Another aspect that also contributes to the general application of our CNL
is the associated dictionary. While the CNL defines a writing structure, it does not restrict the vocabulary
being used. The dictionary is defined by the user and it is domain specific.

The second phase of the NAT2TEST strategy is a semantic analysis, which maps the syntax trees into an
informal semantic representation based on the Case Grammar theory [Fil68]. We have previously generated
formal representations of the system requirements directly from this informal semantic representation. We
have been able to construct models using CSP# [SLDP09] (the CSP [Ros10] dialect processed by the Pro-
cess Analysis Toolkit – PAT2), the Intermediate Model Representation (IMR [PVLZ11] – NAT2TESTIMR

[CBL+14]) of the RT-Tester tool3, and the Software Cost Reduction (SCR [BBF97] – NAT2TESTSCR

1 www.embraer.com.br
2 http://pat.comp.nus.edu.sg/
3 https://www.verified.de/products/rt-tester/

Modelling Timed Reactive Systems from Natural-Language Requirements 3

Fig. 1. The NAT2TEST strategy

[CFB+14]) version accepted by the T-VEC tool4. This has allowed us to take advantage of a variety of
testing tools and techniques.

With those results, we have realised that, in spite of the particularities of each notation (e.g., IMR/RT-
Tester has native support for dealing with time, whereas in T-VEC we need to manually encode the time
evolving), we have used different notations to represent a common abstract behaviour. Based on this obser-
vation and on the experience of generating test cases using different formal representations, and with the
perspective of instantiating our approach to several other target notations, we have proposed the DFRS
model from which the more concrete notations can be generated. Translating the natural-language require-
ments to an intermediate formal notation is a promising alternative. This makes it easier to generate models
in several target notations, since the direct translation from natural-language is a more elaborate task. A
new architecture for our strategy that incorporates this new approach is presented in Fig. 1. Now, the third
phase of the NAT2TEST strategy concerns the generation of DFRS models. Afterwards, this model is used
to generate more concrete notations. Our account and implementation of NAT2TEST with CSP [CSM13]
already takes advantage of DFRS representations.

Our focus in this paper is exactly the third step of NAT2TEST (DFRS Generation) and the DFRS model
that it generates. A DFRS allows exploring the original requirements from different perspectives, besides
being independent of a specific tool. In [CSM13], where we present a CSP timed input-output conformance
relation, we discuss our preliminary ideas for the DFRS model. In [CCR+14], we formalise the model using
Z [ISO02], besides describing how to use it to represent reactive systems. We also prove that a DFRS can be
characterised as a Timed Input-Output Transition System (TIOTS)—a labelled transition system extended
with time, which is widely used to characterise conformance relations for timed reactive systems. Being more
abstract than a TIOTS, a DFRS comprises a more concise representation of timed requirements.

The present paper is an extension of [CCR+14]. Here, we propose a symbolic representation of DFRSs
(s-DFRSs), define algorithms for incrementally generating s-DFRSs from natural-language requirements, and
revise and extend the expanded DFRS (e-DFRS) discussed in [CCR+14]. An s-DFRS inherently avoids an
explicit representation of possibly infinite sets of states and, thus, the state space explosion problem. An
e-DFRS is built dynamically from its symbolic counterpart, possibly limited to some bound, and then used
in bounded analyses such as requirements consistency, completeness, and reachability. To avoid confusion,
we consider that, hereafter, s-DFRS and e-DFRS refer to symbolic and expanded DFRSs, respectively, while
DFRS refers to both of them. In summary, this work enhances our previous efforts by:

• Proposing a symbolic representation of DFRSs (s-DFRSs);

4 https://www.t-vec.com/solutions/tvec.php

4 G. Carvalho, A. Cavalcanti and A. Sampaio

• Defining six algorithms for incrementally generating s-DFRSs from natural-language requirements;

• Revising and extending the expanded DFRS (e-DFRS) definition;

• Defining a translation function from s-DFRSs to e-DFRSs;

• Showing how to check via e-DFRS whether the requirements are consistent, complete and reachable;

• Presenting our tool support for manipulating DFRS models (s-DFRSs and e-DFRSs).

Regarding related work, the formal model proposed here (DFRS) stands out for its richness and for the pos-
sibility of fully automatic generation of models from natural-language requirements. A DFRS can represent
input-output variables, besides discrete and continuous time information.

To evaluate the expressiveness of DFRSs, we consider examples from four domains: a vending machine
(VM a- toy example); a control system for safety injection in a nuclear power plant (NPP — toy example);
a priority command (PC) control provided by Embraer; and the turn indicator system (TIS) of Mercedes
vehicles. Test cases are independently generated for each example, and we assess whether they are compatible
with the corresponding DFRS models.

Section 2 provides the formal definition of an s-DFRS. Section 3 describes how an s-DFRS can be
automatically obtained from natural-language requirements; this strategy is implemented by the NAT2TEST
tool. Section 4 first revisits the definition of an e-DFRS, then explains how it can be obtained from its symbolic
counterpart. Finally, it shows how an e-DFRS model can be used to check whether its corresponding natural-
language requirements are consistent and complete. Section 5 presents a theoretical and a practical validation
of DFRS models. Finally, Sections 6 and 7 address related work and present our conclusions.

2. Definition and properties of an s-DFRS

In this section, first, we give an informal overview of the definition of DFRSs, and then we provide a formal
definition for its symbolic representation. It is important to say that all definitions in Z presented here are
syntactically correct and typed checked with the CZT plug-in for Eclipse5.

2.1. Overview of DFRSs

A DFRS models an embedded system whose inputs and outputs are always available, as signals. The input
signals can be seen as data provided by sensors, whereas the outputs as data provided to actuators. Each
signal carries a binary value that represents boolean and numerical values. Hereafter, we directly refer to
boolean (true and false, represented as 1 and 0, respectively) and numerical values, instead of their binary
representation.

It is assumed that a DFRS can also have internal timers, which might be used to trigger timed-based
behaviour. An e-DFRS represents a timed system with continuous or discrete behaviour modelled as a state-
based machine. Each state comprises a valuation for each element of the system: its inputs, outputs, and
timers, as well as its global clock.

The states of an e-DFRS are connected by delay and function transitions. A delay transition represents
the observation of the input signals’ values after a given delay, whereas the function transition represents
how the system reacts to the input signals: the observed values of the output signals. The transitions are
encoded as assignments to input and output variables as well as timers.

As a running example, we consider a Vending Machine (VM), which is an adaptation of the coffee machine
presented in [LMN04]. Despite being a toy example, the vending machine comprises many different operating
situations, which are described by five natural-language requirements.

Initially, the VM is in an idle state. When it receives a coin, it goes to the choice state. After inserting a
coin, when the coffee option is selected, the system goes to the weak or strong coffee state. If coffee is selected
within 30 seconds after inserting the coin, the system goes to the weak coffee state. Otherwise, it goes to the
strong coffee state. The time required to produce a weak coffee is also different from that of a strong coffee:
the former is produced within 10 to 30 seconds, whereas the latter within 30 to 50 seconds. Three seconds

5 http://czt.sourceforge.net/eclipse/

Modelling Timed Reactive Systems from Natural-Language Requirements 5

Vending Machine

request timer

sensor

request

mode

output

Fig. 2. The vending machine specification – abstract representation

0

1

2 5 40
time(s)se

n
so
r

0

1

12 16 40
time(s)re

qu
es
t

0

1

2

3

4

2 12 32 35 40
time(s)

m
od
e

0

1

2

32 35 40
time(s)

o
u
tp
u
t

Fig. 3. Example of signals for the vending machine

after having produced weak or strong coffee, the system goes to the reset state, where it resets the type of
the produced coffee to undefined, and then returns to the idle state.

As shown in Fig. 2, in this example we have two input signals related to the coin sensor (sensor) and the
coffee request button (request). A true value means that a coin was inserted and the coffee request button
was pressed. There are two output signals related to the system mode (mode) and the vending machine
output (output). The values communicated by these signals reflect the system possible states (idle, choice,
weak, strong, and reset) and the possible outputs (undefined, weak, and strong).

The VM has just one timer: the request timer, which is used to register the moments when a coin is
inserted, when the coffee request button is pressed, and when the coffee is produced. Fig. 3 illustrates a
scenario where there is continuous observation of the input and output signals. If we had chosen to observe
the system discretely, we would have a similar scenario, but with a discrete number of samples over time.

In Fig. 3, a coin is inserted 2 seconds after starting the vending machine (the signal sensor changes to 1
– true). Immediately, the system state changes from idle to choice. Here, the system states are encoded as
follows: idle 7→ 1, choice 7→ 0, weak 7→ 3, strong 7→ 2, and reset 7→ 4. Therefore, this change is represented
by changing the value of the signal mode from 1 to 0. In this example, the signal sensor remains true for 3
seconds.

When 10 seconds have elapsed since the coin was inserted, which happens 2 seconds after starting the
vending machine, the user requests a coffee (the signal request becomes true when the system global clock is
equal to 12). At this moment, the system state changes to weak coffee (the signal mode becomes 3). In this
example, the signal request remains true for 4 seconds.

As the coffee request occurs within 30 seconds of the coin being inserted, the system produces a weak
coffee, which is represented as the value 2 of the signal output, 20 seconds after receiving the coffee request.
We recall that a weak coffee is produced within 10 and 30 seconds after the coffee request. Then, as stated
by the system description, the system goes to the reset state (the value of signal mode becomes 4), and
3 seconds later it goes back to the idle state, besides resetting the output to undefined (the signal output
becomes 1).

As a state-based notation, the example illustrated in Fig. 3 is represented in an e-DFRS as a set of
states and transitions (see Fig. 4). The states are related by delay (D) and function (F) transitions. The
former represents time elapsing along with input stimuli, whereas the latter describes an instant reaction of

6 G. Carvalho, A. Cavalcanti and A. Sampaio

the system. It is important to emphasize that the diagram presented in Fig. 4 is just an illustration of an
e-DFRS based on the particular scenario depicted in Fig. 3.

The first state is the top and left-most one: s, r, m, o, t and gc represent the current value of the coin
sensor, the coffee request button, the system mode, the system output, the request timer and the system
global clock, respectively. The delay transition emanating from this state denotes that after 2 seconds a coin
is inserted and, thus, the value of s changes to 1.

Afterwards, the system reaction is illustrated by a function transition that changes the system mode to
choice (0), besides resetting the request timer. This reset operation is performed to register the moment
when the coin is inserted, as this information is required when deciding if the system should produce a weak
or a strong coffee.

The reset of a timer is represented by assigning 0 to it, but it is encoded as assigning the current value
of the system global clock to the corresponding timer. This is possible as we have a single and global clock
source (the system global clock). Otherwise, we would need to update the value of all timers every time
a delay transition is performed. We provide more details about this design decision when formalising the
e-DFRS elements.

We note that the changes produced by the transitions are highlighted in bold in Fig. 4. Moreover, each
delay transition comprises the values of all input signals, whereas each function transition considers a subset
of the output signals, besides the internal request timer, when appropriate.

When the user requests a coffee (third delay transition), as it is requested 10 seconds after inserting the
coin (gc − t = 12− 2 = 10), the system goes to the weak (3) state, and resets again the request timer. Later
(20s), it changes the system output to 2 to denote the production of weak coffee. Finally, 3 seconds later it
returns to the idle (1) state.

The main difference between an s-DFRS and its expanded version, characterised as just explained and
illustrated in Fig. 4, is that the characterisation of an s-DFRS defines the initial state and means of calculating
the next states via a set of functions. Differently, an e-DFRS comprises the set of all states and how they
are related by delay and function transitions. Now, after presenting an informal discussion of DFRS models,
we define the s-DFRS precisely.

2.2. Formal model of an s-DFRS

Formally, an s-DFRS is a 6-tuple: (I, O, T, gcvar, s0, F). Inputs (I) and outputs (O) are system variables,
whereas timers (T) are a distinct kind of variable, which can be used to model temporal behaviour. The
global clock is gcvar, a variable whose values are non-negative numbers representing a discrete or a dense
(continuous) time. The initial state is s0, and F is a set of functions. In what follows, we describe in Z the
constituent components of an s-DFRS.

2.2.1. Inputs, Outpus and Timers

We use a given set NAME to represent the set of all valid variable names, and define gc to be the name of
the system global clock; as specified in the sequel, the component gcvar is a pair that maps gc to its type.
Also VNAME is the set of all system variables except for the global clock.

[NAME]

gc : NAME

VNAME == NAME \ {gc}

Based on these definitions, we define SVARS and STIMERS to represent inputs and outputs as different
mappings of the same type, and timers, respectively, as finite partial functions from VNAME to TYPE. We
assume that the system has a finite number of inputs, outputs and timers; timers only hold non-negative
values (nat or ufloat).

SVARS == {f : VNAME 7 7→ TYPE | f 6= ∅ ∧ ran f ⊆ {bool , int ,float}}
STIMERS == {f : VNAME 7 7→ TYPE | ran f = {nat} ∨ ran f = {ufloat}}

Modelling Timed Reactive Systems from Natural-Language Requirements 7

s = 0
r = 0
m = 1
o = 1
t = 0
gc = 0

s = 1
r = 0
m = 1
o = 1
t = 0

gc = 2

s = 1
r = 0
m = 0
o = 1
t = 2
gc = 2

s = 0
r = 0
m = 0
o = 1
t = 2

gc = 5

s = 0
r = 1
m = 0
o = 1
t = 2

gc = 12

s = 0
r = 1
m = 3
o = 1
t = 12
gc = 12

s = 0
r = 0
m = 3
o = 1
t = 12

gc = 16

s = 0
r = 0
m = 3
o = 1
t = 12

gc = 32

s = 0
r = 0
m = 4
o = 2
t = 32
gc = 32

s = 0
r = 0
m = 4
o = 2
t = 32

gc = 35

s = 0
r = 0
m = 1
o = 1
t = 32
gc = 35

s = 0
r = 0
m = 1
o = 1
t = 32

gc = 40

(D) – 2s

s := 1
r := 0

(F)

m := 0
t := 0

(D) – 3s s := 0
r := 0

(D) – 7s

s := 0
r := 1

(F)

m := 3
t := 0

(D) – 4s s := 0
r := 0

(D) – 16s

s := 0
r := 0

(F)

m := 4
o := 2
t := 0

(D) – 3s s := 0
r := 0

(F)

m := 1
o := 1

(D) – 5s

s := 0
r := 0

Fig. 4. The vending machine specification – e-DFRS representation

We consider as valid types boolean, integer and float types (bool, int, nat, float, ufloat). The type ufloat
stands for unsigned float numbers.

TYPE ::= bool | int | nat | float | ufloat

More complex types are not needed since we are dealing with systems whose inputs and outputs are signals.
As float numbers are not part of Standard Z, we provide an axiomatisation that fulfils our needs. For a more
comprehensive axiomatisation, we refer, for instance, to ProofPower-Z6.

The schema DFRS VARIABLES defines the variables of a DFRS as a set of inputs (I), outputs (O),
timers (T) and a global clock (gcvar). In Z, a schema is a named element used to structure and encapsulate
definitions for reuse. As I and O are distinct and non-empty sets, we have that a DFRS has at least one
input and one output variable. Differently, one can have a system with no timers: a DFRS whose behaviour
is not dependent on time elapsing. These three sets (I , O and T) are disjoint.

6 http://www.lemma-one.com/ProofPower/index/index.html

8 G. Carvalho, A. Cavalcanti and A. Sampaio

DFRS VARIABLES
I ,O : SVARS
T : STIMERS
gcvar : NAME × TYPE

gcvar = (gc,nat) ∨ gcvar = (gc, ufloat)
disjoint 〈dom I , domO , domT 〉
ranT ⊆ {gcvar .2}

We note that our model can represent discrete, gcvar = (gc,nat), or continuous time, gcvar = (gc, ufloat),
systems. Besides that, the type of all timers must be the same (ranT ⊆ {gcvar .2}): one can analyse the
behaviour of the system discretely or continuously, but not in both ways simultaneously.

Example 1 Besides the system global clock, five variables are identified in the VM example (see Fig. 4): two
system inputs (the coin sensor—s, the coffee request button—r), two system outputs (the system mode—
m, the coffee machine output—o), and one timer (the request timer—t). The sensor and the button are
modelled by booleans that indicate whether a coin has been inserted or the button has been pressed. The
system mode and the output of the VM are non-negative numbers. The request timer is modelled as a
non-negative natural number since the temporal properties of the VM are defined in terms of discrete values
(e.g., “... 30 seconds ...” instead of “... 30.0 seconds ...”). �

2.2.2. Initial state

A state is a relation between names and values, which include boolean and numerical values. The letter R
refers to R, and R+ to the positive elements of R.

BOOL VALUES ::= TRUE | FALSE

VALUE ::= b〈〈BOOL VALUES 〉〉 | i〈〈Z〉〉 | n〈〈N〉〉 | f 〈〈R〉〉 | uf 〈〈R+〉〉

Each name within a state is mapped to two values: the first one represents the previous value, and the second
one the current value. Therefore, Fig. 4 shows a simplified and not the actual representation of states. For
instance, in the first state, s = 0 should be s 7→ (b(false), b(false)), and, in the second state, s = 1 should
be s 7→ (b(false), b(true)). Note that in Fig. 4 we use numbers to represent boolean values.

STATE == NAME 7→ (VALUE × VALUE)

Keeping the previous value of variables allows us to trigger system reactions to more complex behaviour.
For example, the system goes to the choice state at the exact moment when the coin sensor changes from
false to true; in other words, when the previous value of s is 0 and the current one is 1.

To simplify the access to current and previous values of a state, we consider two projection functions that
yield the set of previous and current values of a given state: previousValues and currentValues, respectively.
Their definition is not provided here as they are straightforward. Here, we concentrate on the most important
definitions, but all omitted ones can be found in [CCS15]7.

The initial state of an s-DFRS is then defined as one possible state.

DFRS INITIAL STATE == [s0 : STATE]

A variable n, whose type is t , is well typed in a state s if, and only if, n belongs to the domain of s, and the
previous and current values associated with n in s belong to the set of possible values of t . This property
of well typedness for variables in the context of a state is captured by the following predicate. Here, we use
sets to denote predicates. The underlying idea is that well typed var is a set composed by all well typed
variables. Therefore, we represent the fact of being well typed as belonging to well typed var .

well typed var : P(STATE × NAME × TYPE)

∀ s : STATE ; n : NAME ; t : TYPE ; v1, v2 : VALUE | n ∈ dom s ∧ (s(n)).1 = v1 ∧ (s(n)).2 = v2 •
(s,n, t) ∈ well typed var ⇔ v1 ∈ values(t) ∧ v2 ∈ values(t)

7 Available for download in http://www.cin.ufpe.br/~ghpc/TR_DFRS.pdf

Modelling Timed Reactive Systems from Natural-Language Requirements 9

The function values yields all possible values of a specific type t . Although we could directly access the range
of a type, we use this auxiliary function to avoid legibility issues on bigger predicates.

Now, we lift the definition of well typedness for a state. Considering a set f of variables (names related
to types), a state s is well typed if, and only if, it provides a value for each variable (that is, its domain is
that of the function f) and those variables are well typed in s.

well typed state : P(STATE × (NAME 7→ TYPE))

∀ s : STATE ; f : NAME 7→ TYPE • (s, f) ∈ well typed state ⇔
dom s = dom f ∧ (∀n : dom f ; t : TYPE | f (n) = t • (s,n, t) ∈ well typed var)

Example 2 Considering the example shown in Fig. 4, its initial state is:

{(s 7→ (b(false), b(false)), r 7→ (b(false), b(false)),
(m 7→ (n(1),n(1)), o 7→ (n(1),n(1)),
(t 7→ (n(0),n(0)), gc 7→ (n(0),n(0))}

Regarding the variables m (the system mode) and o (the coffee machine output), as previously said, the
natural numbers represent elements of an enumeration of possible values: {0 7→choice, 1 7→idle, 2 7→preparing
strong coffee, 3 7→preparing weak coffee, 4 7→reset}, and {0 7→strong coffee, 1 7→undefined output, 2 7→weak
coffee}, respectively. �

2.2.3. Functions

The system behaviour is defined as a non-empty finite set of functions (see schema DFRS FUNCTIONS)
that describe how the system reacts in a given context. There is one function per system component; if the
system comprises parallel components, we are going to have one function describing the behaviour of each
component.

DFRS FUNCTIONS == [F == F1 FUNCTION]

A function is a set of tuples. Each one models how the system reacts in a given context, which is characterised
by a pair of static (sGuard) and timed (tGuard) guards, each one being a set (conjunction) of boolean
expressions. The system reaction is denoted as a set of assignments (asgmts). Note that one of the guards
can be empty, but not both. As formalised later, the static guards range over input and output variables,
whereas timed guards are restricted to timers.

FUNCTION == {sGuard , tGuard : EXP ; asgmts : ASGMTS | sGuard ∪ tGuard 6= ∅}

When both guards evaluate to true in a given state, the system reacts instantly performing the corresponding
assignments. These reactions are the function transition (F) shown in Fig. 4. An s-DFRS does not capture
this dynamic behaviour (occurrence of reactions explicitly), but only includes the definition of the function
that symbolically characterises the reactions.

The guards are expressions (EXP) whose structure adheres to a Conjunctive Normal Form (CNF): a
finite set of conjunctions (CONJ) of disjunctions (DISJ), where each disjunction has at least one binary
expression (BEXP).

EXP == CONJ
CONJ == FDISJ
DISJ == F1 BEXP

A binary expression relates a variable (VAR) with a literal (VALUE) by means of an operator (OP), which
can be less than or equal to (le), less than (lt), equal to (eq), greater than (gt), and greater than or equal to
(ge).

BEXP == {v : VAR; op : OP ; literal : VALUE}
OP ::= le | lt | eq | ne | gt | ge

The element VAR refers to the current or previous value of the corresponding variable. By previous value we
mean the last value received as input, if it refers to an input variable, or the last value produced as output,
otherwise.

VAR ::= current〈〈VNAME 〉〉 | previous〈〈VNAME 〉〉

10 G. Carvalho, A. Cavalcanti and A. Sampaio

Timers are variables continuously evolving in a discrete or dense fashion, depending on their type and, thus,
the notion of previous value does not necessarily apply. For instance, what would be the previous value of
a timer whose current value is 3.52 seconds? So, although the model syntactically permits retrieving the
previous values of timers, we prohibit this usage (see the following definition of var consistent be).

A binary expression is said to be consistent with respect to a set of variables (f) and a set of timers
(T) if, and only if, v (the first element of a binary expression) refers to a variable name (n) within f , and
the third element (literal) is consistent with the type of the corresponding variable (it is one of the possible
values of this variable). Moreover, if one of the operators le, lt , gt or ge is used, literal must not be a boolean
value. Finally, as explained in the last paragraph, if n is the name of a timer, then the binary expression
must consider the current value of this variable. This consistency property is formalised by the following
predicate.

var consistent be : P(BEXP × (VNAME 7→ TYPE)× (VNAME 7→ TYPE))

∀ be : BEXP ; f ,T : VNAME 7→ TYPE ; n : VNAME | varName(be) = n •
(be, f ,T) ∈ var consistent be ⇔
(n ∈ dom f) ∧ be.3 ∈ values(f (n)) ∧
(be.2 = le ∨ be.2 = lt ∨ be.2 = gt ∨ be.2 = ge ⇒ be.3 /∈ values(bool)) ∧
(n ∈ domT ⇒ be.1 ∈ ran current)

To get the name referenced by a binary expression, we rely on the auxiliary function varName, which projects
the VNAME within the constructors current or previous. This concept of consistency is lifted to guards,
which are said to be consistent if, and only if, all of its binary expressions are consistent. The last component
of a function entry is a finite and non-empty set of assignments (ASGMTS). The right-hand side of an
assignment (ASGMT) is a value (VALUE), and the left-hand side is the name of a variable (VNAME).

ASGMT == VNAME × VALUE
ASGMTS ==

{asgmts : F1 ASGMT | (∀ asgmt1, asgmt2 : asgmts | asgmt1.1 = asgmt2.1 • asgmt1 = asgmt2)}

Note that it is not possible to define a set of assignments that considers different values to the same variable
(e.g., {(x ,n(0)), (x ,n(1))}). If such a scenario were allowed, it would not be clear what would be the value
of x after the assignments.

This restriction does not prevent us from dealing with non-deterministic requirements. For example, it
is possible to say that the system can non-deterministically assign 0 or 1 to x in a certain situation. In this
case, we would have two entries within the function, and the set of assignments of one would be {(x ,n(0))},
whereas {(x ,n(1))} would be the assignment of the other one. Note that the property defined here with
respect to assignments can be statically verified, whereas the verification of non-deterministic requirements
demands a dynamic analysis.

As defined for expressions, the names mentioned by assignments should refer to one of the system vari-
ables, and the assigned value should be consistent with the type of this variable. The following predicate
(well typed asgmts) formalises these assumptions.

well typed asgmts : P(ASGMTS × (NAME 7→ TYPE))

∀ asgmts : ASGMTS ; f : NAME 7→ TYPE • (asgmts, f) ∈ well typed asgmts ⇔
∀ asgmt : asgmts • asgmt .1 ∈ dom f ∧ asgmt .2 ∈ values(f (asgmt .1))

Example 3 Considering the VM, the requirement that states that the system goes to the choice mode, and
resets the request timer, when a coin is inserted while in the state idle, is formalised as follows:

{ ({ {(current(m), eq ,n(1))}, {(current(s), eq , b(true))}, {(previous(s), eq , b(false))} }, ∅,
{(m,n(0), (r ,n(0))}) }

The static condition is a conjunction of three binary expressions. The first denotes that the system mode is
1 (idle), the second that the current value of s is true, and the third that the previous value of s was false (a
coin was inserted). The time guard is empty, and when the static guard evaluates to true, the system shall
assign 0 to m (go to the choice state), and assign 0 to r (reset the request timer). �

Modelling Timed Reactive Systems from Natural-Language Requirements 11

2.2.4. Complete definition of an s-DFRS

Considering the schemas DFRS VARIABLES , DFRS INITIAL STATE , and DFRS FUNCTIONS , pre-
viously defined, an s-DFRS is defined as follows.

s DFRS
DFRS VARIABLES
DFRS INITIAL STATE
DFRS FUNCTIONS

(s0, I ∪O ∪ T ∪ {gcvar}) ∈ well typed state
∀ f : F • ∀ entry : f •

(entry .1, I ∪O ,T) ∈ var consistent exp ∧
(entry .2,T ,T) ∈ var consistent exp ∧
(entry .3,O ∪ T) ∈ well typed asgmts

The schema s DFRS defines a type that comprises the set of all valid s-DFRSs. Two invariants hold for all
valid elements of this type. An invariant is a constraint that must always be satisfied. First, the initial state
is well typed with respect to all system variables. Second, for all entries of all functions defined, the static
guard is defined only in terms of input and output variables, the timed guard only considers timers, and the
assignments can only modify the value of outputs and timers.

3. Formalising natural-language requirements

Before explaining how an s-DFRS can be generated from natural-language requirements, we present infor-
mation about the first two phases of the NAT2TEST strategy (see Fig. 1) that is essential for understanding
the generation of s-DFRSs.

3.1. Syntactic and semantic analyses

The syntactic analysis checks whether the system requirements are correct with respect to the SysReq-CNL
grammar, yielding the corresponding syntax trees if they are. Briefly, this Controlled Natural Language
(CNL) allows writing requirements that have the form of action statements guarded by conditions. For
example, consider the REQ001 requirement for the VM, which is correct according to the SysReq-CNL
grammar.

• When the system mode is idle, and the coin sensor changes to true, the coffee machine system shall: reset
the request timer, assign choice to the system mode.

The semantic analysis phase receives as input the generated syntax trees, and delivers a requirement semantic
representation. In this work, we adopt the Case Grammar theory [Fil68] to represent meaning. In this theory,
a sentence is analysed in terms of the semantic (Thematic) Roles (TR) played by each word, or group of
words in the sentence. The verb is the main element of the sentence, and it determines the possible semantic
relations with other words in the sentences, that is, the role that each word plays with respect to the action
or state described by the verb.

The verb’s associated TRs are aggregated into a structure named as Case Frame (CF). Each verb in a
requirement specification gives rise to a different CF. All derived CFs are joined afterwards to compose what
we call a Requirement Frame (RF). In other words, a requirement frame is a structure to encode data such
as the one presented in Table 1: a collection of case frames for conditions and action statements.

In this work, we consider four TRs (the adopted nomenclature is inspired by [All95]) for the verbs used
in action statements: action (ACT) – the action performed if the requirement conditions are satisfied; agent
(AGT) – entity who performs the action; patient (PAT) – entity who is affected by the action; TOV – the
patient value after action completion. Similarly, other five roles are defined for the verbs used in conditions:
condition action (CAC), condition patient (CPT), condition from value (CFV), condition to value (CTV),
and condition modifier (CMD).

12 G. Carvalho, A. Cavalcanti and A. Sampaio

Table 1. Example of requirement frame for REQ001

Condition #1 - Main Verb (CAC): is

CPT: the system mode CFV: -

CMD: - CTV: idle

Condition #2 - Main Verb (CAC): changes

CPT: the coin sensor CFV: -

CMD: - CTV: true

Action #1 - Main Verb (ACT): reset

AGT: the coffee machine system TOV: -

PAT: the request timer

Action #2 - Main Verb (ACT): assign

AGT: the coffee machine system TOV: choice

PAT: the system mode

Based on the inference rules defined in [CFB+14], each word, or group of words, identified in the syntax
tree is associated to the corresponding TR. For instance, Table 1 shows the requirement frame corresponding
to REQ001. The requirement frames obtained from the system requirements are the input for the generation
of s-DFRSs.

An s-DFRS is derived from requirement frames according to three consecutive steps. First, the system
variables are identified. Then, the functions that describe the system behaviour are defined. Finally, an
s-DFRS is created from these two pieces of information. The following sections detail each step.

3.2. Identifying variables

We consider inputs as variables provided to the system by the environment; their values cannot be modified
by the system. Thus, a variable is classified as an input if, and only if, it appears only in conditions. Otherwise,
if it also appears in action statements, it is classified as an output. To distinguish between timers and other
variables, we require the former to have the word “timer” as a suffix. Timers can appear both in conditions
and in statements.

Our algorithm for identifying variables (Algorithm 1) receives as input a list of requirement frames and
yields a list of variables.

After initializing the output (Line 1), the algorithm iterates over the list of requirement frames (Line 2)
analysing each condition (Lines 3–4), which comprises a conjunction of disjunctions, and each action (Line
15). When analysing conditions, we extract variables from the Condition Patient (CPT) role.

For example, Table 1 shows that “the system mode” is the CPT of the first condition. Thus, if the
corresponding variable has not yet been identified (Lines 6–7), we create a new variable considering the CPT
content, replacing white spaces by an underscore (Lines 8–9), which is done by the “toString” function (Line
5). So, in this case, we create the variable the system mode. Then, we verify whether the variable has the
word “timer” as a suffix; if so, it is classified as a timer, otherwise it is an input (Lines 10–11). Then we add
the created variable to the list of identified variables (Line 12).

To infer the type of the variable we analyse the value associated with it in the case frame, which is the
content of the CTV role. For instance, the variable the system mode is associated with the value “idle” in
the first condition of Table 1. Thus, the algorithm extracts the CTV content (Line 13), and uses it to infer
the variable type, which is done by the inferType function (Line 14) that is later explained (see Algorithm 2).

Lines 15–27 are analogous to those previously explained. The differences are as follows:

• The variables are identified from the Patient (PAT) role;

• If a variable that is initially identified as an input appears in action statements, it is reclassified as an
output (Lines 24–25);

Modelling Timed Reactive Systems from Natural-Language Requirements 13

Algorithm 1: Identify Variables
input : reqCFList
output : varList

1 varList = new List();
2 for reqCF ∈ reqCFList do
3 for andCond ∈ reqCF do
4 for orCond ∈ andCond do
5 varName = toString(orCond .CPT);
6 var = varList .find(varName);
7 if var == null then
8 var = new Var(varName);
9 var .type = undefined ;

10 if varName.endsWith(“timer”) then var .kind = timer ;
11 else var .kind = input ;
12 varList .add(var);

13 value = toString(orCond .CTV);
14 inferType(var , value, varList);

15 for action ∈ reqCF do
16 varName = toString(action.PAT);
17 var = varList .find(varName);
18 if var == null then
19 var = newVar(varName);
20 var .type = undefined ;
21 if varName.endsWith(“timer”) then var .kind = timer ;
22 else var .kind = output ;
23 varList .add(var);

24 else if var .kind = input then
25 var .kind = output ;

26 value = toString(action.TOV);
27 if value 6= null then inferType(var , value, varList);

28 for var ∈ varList do
29 if var .type = enum then
30 if var .possibleValuesList .size() = 1 then var .type = boolean;
31 else var .type = integer ;

32 else if var .kind = timer ∧ var .type = undefined then
33 var .type = float

34 gcVar = newVar(gc);
35 allDiscrete = true;
36 allContinuous = true;
37 for var ∈ varList do
38 if var .kind = timer ∧ var .type = integer then allContinuous = false;
39 if var .kind = timer ∧ var .type = float then allDiscrete = false;

40 if allDiscrete then gcVar .type = integer ;
41 else if allContinuous then gcVar .type = float ;
42 else throw Exception(“timers: incompatible types”);
43 varList .add(gcVar);

• The variable value is the content of the TOV role, excluding the case (Line 27) when the “reset” verb is
used (see the first action of Table 1). In this case, the TOV is empty and what is assigned to the timer is
the system global clock, which is an integer or a float. In such a situation, we do not try to infer the type
of the timer. If this timer is also mentioned in a condition, its type is determined by the value associated
with it in this condition. If this timer is never mentioned within a condition, its type is left undefined
(Lines 32–33), and then we assume that its type will be float, representing continuous time.

Lines 34–43 create the system global clock (gc), besides inferring its type. If all timers are discrete (integer)
or continuous (float), the type of gc is integer or float, respectively. If there are mixed types, an exception is
thrown (Line 42). Finally, Lines 29–31 are related to the type inference outcome, which is explained in what
follows.

14 G. Carvalho, A. Cavalcanti and A. Sampaio

Algorithm 2 infers the variable type. First, this function verifies whether the value received as argument
is already listed as a possible value of the corresponding variable (Line 1). If not, this value is added to the
list of possible values of the respective variable (Line 2), and this value is used to infer the variable type.

Algorithm 2: Infer Type
input : var , value, varList
output : −

1 if value /∈ var .possibleValuesList then
2 outVar .possibleValuesList .add(value);
3 newType = undefined ;
4 var = varList .find(varName);
5 if var .kind = timer then
6 if isFloat(value) then newType = float ;
7 else if isInteger(value) then newType = integer ;
8 else throw Exception(“incompatible type for a timer”);

9 else
10 if isBoolean(value) then newType = boolean;
11 else if isFloat(value) then newType = float ;
12 else if isInteger(value) then newType = integer ;
13 else newType = enum;

14 if var .type 6= undefined ∧ var .type 6= newType then throw Exception(“type change is not allowed”);
15 else var .type = newType;

If the variable is a timer, the associated values need to be numbers (float or integer), otherwise an
exception is raised (Lines 5–8). If the variable is an input or an output, its type might be boolean (if the
value is the boolean constants “true” or “false” – Line 10), a float or an integer (Lines 11-12), or an enum
(e.g., if the value is a string such as “idle” – see Table 1). It is worth mentioning that the enum type is not
expected within DFRS models. Therefore, later it is mapped to an integer.

If the type of the variable is undefined, the function assigns the inferred type to the corresponding variable
(Line 15). However, if the variable already has a type, it is verified whether the inferred type from the current
value is the same. If not, an exception is raised, since we expect type coherence between the values used
with respect to the same variable (Line 14). In other words, for instance, a variable cannot be treated as a
boolean and as an integer simultaneously.

Finally, Lines 29–31 of Algorithm 1 map an enum type to a boolean or an integer. It is mapped to
a boolean when the enumeration has only one possible value (Line 30). For instance, for the variable
the coffee request button, whose possible value is “pressed”, we assume that “pressed” denotes true, whereas
“not pressed” means false. However, if the number of possible values is greater than 1, the variable is clas-
sified as an integer (Line 31). This is the case of the variable the system mode, whose possible values are
“choice”, “idle”, “preparing strong coffee”, “preparing weak coffee”, “reset”. The type of this variable is
integer considering the following mapping: {0 7→choice, 1 7→idle, 2 7→preparing strong coffee, 3 7→preparring
weak coffee, 4 7→reset}.

3.3. Identifying functions

Algorithm 3 identifies functions that describe the system behaviour. We identify one function for each
different Agent (AGT). We consider an agent as a system component, since this thematic role denotes the
entity that performs an action. This algorithm yields a list of functions indexed by the corresponding agents.
As previously formalised, each function is a list of action statements mapped to the respective static and
timed guards.

The algorithm iterates over the list of requirement frames (Line 2) to identify the guards (Lines 3–24)
and the corresponding actions (Lines 25–28). The variables staticGuard and timedGuard are declared to
store the static and timed guards that are extracted from the conditions (conjunctions of disjunctions) of
each requirement (Lines 3–7). Then, for each disjunction, we obtain the corresponding boolean expression
by means of the function generateConditionExpression (Line 8). Then, Lines 9–16 find out the type (static
or timed) of the expression. If the expression concerns a timer variable, it represents a timed guard (Line
12), otherwise it is a static one (Line 15).

Modelling Timed Reactive Systems from Natural-Language Requirements 15

Algorithm 3: Identify Functions
input : reqCFList , varList
output : functionMap

1 functionMap = new Map();
2 for reqCF ∈ reqCFList do
3 staticGuard , timedGuard = null ;
4 for andCond ∈ reqCF do
5 guardType = undefined ;
6 newTerm = null ;
7 for orCond ∈ andCond do
8 exp = generateConditionExpression(orCond , varList);
9 varName = toString(orCond .PAT);

10 var = varList .find(varName);
11 if var .kind = timer then
12 if guardType = undefined then guardType = timed ;
13 else if guardType = static then throw Exception(“format error”);

14 else
15 if guardType = undefined then guardType = static;
16 else if guardType = timed then throw Exception(“format error”);

17 if newTerm = null then newTerm = exp;
18 else newTerm = newTerm + “∨” + exp;

19 if guardType = static then
20 if staticGuard = null then staticGuard = (newTerm);
21 else staticGuard = staticGuard + “∧” + (newTerm);

22 else
23 if timedGuard = null then timedGuard = (newTerm);
24 else timedGuard = timedGuard + “∧” + (newTerm);

25 actionList = new List();
26 for action ∈ reqCF do
27 actionStatement = generateStatement(action, varList);
28 actionList .add(actionStatement);

29 componentName = toString(reqCF .actions.get(0).AGT);
30 function = functionMap.find(componentName);
31 if foundFunction = null then
32 function = new Function();
33 functionMap.add(componentName, function);

34 previousActionList = function.find(staticGuard , timedGuard);
35 if previousActionList 6= null then
36 previousActionList .add(actionList)

37 else
38 function.add(staticGuard , timedGuard , actionList)

With this information, we check whether each conjunction concerns the same type of guards (static
or timed). If it is not the case, an exception is raised (Lines 13, 16). This is necessary, since we want to
divide the conditions into two disjoint categories (static and timed) without performing boolean algebra
manipulation. As examples, we consider the following abstract cases: c1 : T ∧ (c2 : T ∨ c3 : S) ∧ c4 : S and
c1 : T ∧(c2 : S ∨c3 : S)∧c4 : S , where ci denotes the i-th condition, and “:S” and “:T” indicates whether the
condition concerns a static or a timed guard, respectively. The first expression does not comprise two disjoint
sets of static and timed guards, whereas the second one does (timed: c1; static: (c2 ∨ c3) ∧ c4). Lines 17–18
group each disjunction in newTerm, and Lines 19–24 group the disjunctions in staticGuard or timedGuard
depending on the type of the disjunctions.

After identifying the static and timed guards, the algorithm iterates over the list of actions of the re-
quirement frame and creates a list of action statements using the function generateStatement (Lines 25–28).
Then, the algorithm checks whether a function is already created for the current agent. If not, it cre-
ates a new function and maps it to the current agent (Lines 29–33). Finally, the element staticGuard ×
timedGuard × actionList is added to the corresponding function (Lines 37–38). If an entry for the pair

16 G. Carvalho, A. Cavalcanti and A. Sampaio

staticGuard × timedGuard already exists, the list of actions is added to this entry (Lines 35–36). In what
follows, we explain the auxiliary functions: generateConditionExpression and generateStatement.

3.3.1. Generating condition expressions

Algorithm 4 yields a boolean expression from a single case frame, which comprises the condition thematic
roles. The variable name is obtained from the CPT role (Line 1). Initially (Lines 2–7), the algorithm verifies
whether the verb being used, which is obtained from the CAC role, denotes the previous value of a variable.
This is the case when the verbs “was” and “were” are used. In this situation, the boolean expression concerns
not the current value of a variable, but its previous one. As explained in Section 2.2.3, we use the predicate
previous(v) to denote the previous value of v , and current(v), to denote its current value.

For instance, the fragment “v was 2” means the condition where the previous value of v is x , previous(v) =
2. As we do not allow the use of the predicate previous(v) when v is a timer, the algorithm raises an exception
if it happens (Line 5).

The next step is to obtain the value, which is compared to the variable. First, the value is obtained from
the CTV role (Line 8). If the value is a string, we consider as value the index of this string within the list
of possible values of the corresponding variable (Line 9). For a concrete example, see the one shown in the
end of Section 2.2.2.

Afterwards, the algorithm inspects the content of the CMD role to find out which operator is used in the
expression (Line 10). Lines 11–16 check the content of the CMD role, and set boolean flags accordingly. If
“lesser than” or “greater than” is used with a non-boolean variable, an exception is raised (Line 16). Based
on the boolean flags, Lines 17–25 assign to operator the operator symbol used in the expression.

After that, it creates the expression assembling these three elements: variable, operator, and value (Line
26). Line 27 negates the expression if the negation flag is true: when “not” is used as a modifier.

Finally, Lines 28–45 deal with a special case that occurs when the verbs “change” or “become” are used.
When “change” is used, as explained in depth in [CFB+14], we expect one of the two following structures:
“v changes from x to y” or “v changes to y”, whose meaning is previous(v) = x ∧ current(v) = y and
previous(v) 6= y ∧ current(v) = y , respectively. In the first case, the CFV is not null, whereas in the second
case it is null. It is important to note that the expression current(v) = y is already built by the algorithm
(denoted as exp). Therefore, we just need to create a second condition expression related to the previous
value of v . Lines 30–44 create a temporary and auxiliary case frame with the verb “was”, which enforces the
use of previous(v), and then we recursively call the function generateConditionExpression. If CFV is not null
(Lines 30–35), e.g., “changes from x to y”, the CTV in the auxiliary case frame comprises the current CFV
(x), otherwise (e.g., “changes to y”) it is the negation of the current CTV (y). After that, we compose the
yielded expression (previousExp) with the expression previously identified by the algorithm (exp) (Line 45).
When the verb “become” is used (e.g., “becomes y”), the algorithm behaves similarly to the case “changes
to y”.

This algorithm is tightly dependent on the verbs used. However, the verbs currently supported by our
approach are sufficient to express requirements from different examples and domains. If more verbs are used,
one just needs to extend this function, informing how to form an expression from its thematic roles. No extra
change is needed.

3.3.2. Generating action statements

Algorithm 5 generates an action statement from a case frame that depicts an action. First, Lines 1–3 retrieve
the verb from the ACT role, as well as the name of the variable involved in the action from the PAT role. If
the variable is a timer and the verb is not reset, an exception is raised, since timers can only be reset (Line
4).

The next step concerns the identification of the value being assigned to the involved variable (Lines 5–9).
If the verb is “reset”, the value that is assigned to the timer is 0 or 0.0, depending on its type (integer or
float). As already mentioned, and detailed when describing how an s-DFRS is used to produce an expanded
one in Section 4.2, this assignment actually means assigning to the timer the system global clock. If the
variable is not a timer, the value is the content of the TOV role (Line 8). If the content of TOV is not an
integer, a float or a boolean, it is a string. Therefore, we consider as value the index of this string within
the list of possible values of the corresponding variable (Line 9). Finally, the action statement is created
assembling the variable and the assigned value (Lines 10–11).

Modelling Timed Reactive Systems from Natural-Language Requirements 17

Algorithm 4: Generate Condition Expression
input : cond , varList
output : exp

1 varName = toString(cond .CPT);
2 var = varList .find(varName);
3 verb = cond .CAC ;
4 if verb.equals(“was”) ∨ verb.equals(“were”) then
5 if var .kind = timer then throw Exception(“previous cannot be used with timers”);
6 else varName =“previous(” + varName + “)”;

7 else varName =“current(” + varName + “)” ;
8 value = toString(cond .CTV);
9 if ¬ isInteger(value) ∧ ¬ isFloat(value) ∧ ¬ isBoolean(value) then value = var .possibleValuesList .getIndex(value) ;

10 modifier = cond .CMD ;
11 negation, lesserThan, greaterThan, equalTo = false;
12 if modifier .contains(“not”) then negation = true;
13 if modifier .contains(“lesser than”) then lesserThan = true;
14 if modifier .contains(“greater than”) then greaterThan = true;
15 if modifier .contains(“equal to”) then equalTo = true;
16 if (lowerThan ∨ greaterThan)∧ var .type = boolean then throw Exception(“lt/le/gt/ge cannot be used with booleans”) ;
17 operator = new String();
18 if lesserThan then
19 if equalTo then operator =“le”;
20 else operator =“lt”;

21 else if greaterThan then
22 if equalTo then operator =“ge”;
23 else operator =“gt”;

24 else
25 operator =“eq”;

26 exp = varName + operator + value;
27 if negation then exp =“¬ (” + exp + “)” ;
28 if verb.contains(“change”) ∨ verb.contains(“become”) then
29 prevExp = null ;
30 if cond .CFV 6= null then
31 auxiliaryCond = new OrCond();
32 auxiliaryCond .CPT = cond .CPT ;
33 auxiliaryCond .CAC =“was”;
34 auxiliaryCond .CTV = cond .CFV ;
35 previousExp = generateConditionExpression(auxiliaryCond);

36 else
37 auxiliaryCond = new OrCond();
38 auxiliaryCond .CPT = cond .CPT ;
39 auxiliaryCond .CAC =“was”;
40 auxiliaryCond .CTV = cond .CTV ;
41 auxiliaryCond .CMD = cond .CMD ;
42 previousExp = generateConditionExpression(auxiliaryCond);
43 previousExp = ¬ previousExp;
44 previousExp =“¬ (” + previousExp + “)”;

45 exp = prevExp + “∧” + exp;

3.4. Creating an s-DFRS

Based on the algorithms previous described, we create an s-DFRS from a list of requirement frames. This is
done by Algorithm 6. First, the algorithm calls identifyVariables to identify the system variables (Line 1).
Then, it divides this list into inputs, outputs, timers, and the global clock (Lines 2–9).

This algorithm also creates an initial binding considering 0 as the initial default value for integers, 0.0
for floats, and false for booleans (Lines 10–12). Afterwards, the algorithm calls identifyFunctions to identify
the functions that describe the system behaviour (Line 13). In the end (Lines 14–20), the algorithm creates
an s-DFRS considering the list of inputs, outputs and timers, as well as the initial binding and the functions
identified.

18 G. Carvalho, A. Cavalcanti and A. Sampaio

Algorithm 5: Generate Statement
input : action, varList
output : actionStatement

1 verb = action.ACT ;
2 varName = toString(action.PAT);
3 var = varList .find(varName);
4 if var .kind = timer ∧ ¬ verb.equals(“reset”) then throw Exception(“timers can only be reset”) ;
5 value = null ;
6 if verb.equals(“reset”) ∧ var .type = integer then value =“0”;
7 else if verb.equals(“reset”) ∧ var .type = float then value =“0.0”;
8 else value = toString(action.TOV);
9 if ¬ isInteger(value) ∧ ¬ isFloat(value) ∧ ¬ isBoolean(value) then value = var .possibleValuesList .getIndex(value) ;

10 actionStatement = new Statement();
11 actionStatement = varName + “:=” + value;

Algorithm 6: Derive s-DFRS
input : reqCFList
output : dfrs

1 varList = identifyVariables(reqCFList);
2 inputList , outputList , timerList = new List();
3 gc = null ;
4 initialBinding = new Map();
5 for var ∈ varList do
6 if var .kind = input then inputList .add(var);
7 else if var .kind = output then outputList .add(var);
8 else if var .kind = timer then timerList .add(var);
9 else gc = var ;

10 if var .type = integer then initialBinding.add(var .name, 0);
11 else if var .type = float then initialBinding.add(var .name, 0.0);
12 else initialBinding.add(var .name, false);

13 functionMap = identifyFunctions(reqCFList , varList);
14 dfrs = new s DFRS();
15 dfrs.I = inputList ;
16 dfrs.O = outputList ;
17 dfrs.T = timerList ;
18 dfrs.s0 = initialBinding;
19 dfrs.gcvar = gc;
20 dfrs.F = functionMap;

3.5. Tool support

The algorithms presented here are implemented in the NAT2TEST tool. It is written in Java (it is multi-
platform), and its Graphical User Interface (GUI) is built using the Eclipse RCP8 framework, which provides
means to create client-side applications quickly using a collection of plug-ins.

Each phase of the NAT2TEST strategy (see Fig. 1), is realised by a different component. The DFRS-
Generator component is the one that implements the above algorithms. Fig. 5 shows the inferred variables,
along with their types for our vending machine. The tool also allows the user to edit the initial values and,
thus, the initial state.

In Fig. 6 one can see part of the function obtained from the VM requirements. It is important to note
that the tool keeps traceability information between the requirements and the function entries. We also note
that there are some syntactic sugars to prevent a verbose representation. For instance, previous is reduced
to prev, and current is simply hidden. Moreover, the format of the timed guard, as well as the assignment of
timers, show explicitly how timers are dealt with by our strategy: the reset of a timer is encoded as assigning
the value of gc to the timer, and comparisons concerning the timer mean comparing the difference between
the current value of gc and the timer. More details are provided in Section 4.2, where we explain how to
obtain an e-DFRS from a symbolic one.

8 http://wiki.eclipse.org/index.php/Rich_Client_Platform

Modelling Timed Reactive Systems from Natural-Language Requirements 19

Fig. 5. NAT2TEST tool – editing initial value of DFRS variables

Fig. 6. NAT2TEST tool – viewing DFRS’ functions and traceability information

The tool also supports validation of the requirements by animating the s-DFRS; in other words, by
manually exploring the state space of the corresponding e-DFRS. In Section 4.5 we detail this feature.
In [CBC+15] we provide a comprehensive explanation of other aspects of the NAT2TEST tool. Particularly,
we emphasise that, for all examples considered, the s-DFRS models are generated from the corresponding
natural-language requirements within 1 second. The NAT2TEST tool, as well as the examples that are
public, can be downloaded in http://www.cin.ufpe.br/~ghpc/.

4. Definition and properties of an e-DFRS

Here, we formalise e-DFRSs (Section 4.1), and show how they can be obtained from their symbolic coun-
terpart (Section 4.2) via a sound process (Section 4.3). Moreover, we describe how an e-DFRS can be used
to verify properties of the system requirements, such as consistency, completeness and reachability (Sec-
tion 4.4). We also describe here the support provided by the NAT2TEST tool with respect to e-DFRS
models (Section 4.5).

4.1. Formal model of an e-DFRS

An e-DFRS differs from the symbolic one as it encodes the system behaviour as a state-based machine,
whereas an s-DFRS does that symbolically via definitions of functions. As we detail later, states are obtained
from an s-DFRS by applying its functions to states where the corresponding guards evaluate to true, but
also letting the time evolve.

4.1.1. Transition relation

An e-DFRS has a set of states, which is named S by the schema DFRS STATES below. Besides that, it
also has an initial state (s0), which is an element of S . We note that, by definition, S has at least one state
(the initial state), since it is an element of STATES , which represents the non-empty power set of STATE .

STATES == P1 STATE
DFRS STATES == [S : STATES ; s0 : STATE | s0 ∈ S]

A transition relation (an element of TRANSREL defined below) comprises a set of transitions (TRANS). A
transition relates two states by a label (TRANS LABEL). As shown in Fig. 4, this label can be of a delay

20 G. Carvalho, A. Cavalcanti and A. Sampaio

(del) or a function (fun) transition.

TRANS LABEL ::= fun〈〈ASGMTS 〉〉 | del〈〈DELAY × ASGMTS 〉〉
TRANS == (STATE × TRANS LABEL× STATE)
TRANSREL == PTRANS

A function transition represents the system instantaneous reaction as a set of assignments (ASGMTS), which
are performed atomically. It is worth noting that, although the function transition describes an instantaneous
reaction, it is possible to model system reactions that occur after some time elapsing. We just need to consider
a timer, which is reset when the event of interest happens, and then use it later to check the elapsed time
and to decide on what event to engage next. For instance, this approach is used in the VM example (see
Fig. 4). When the coffee request button is pressed, the request timer is reset (see the first state on the second
row). Afterwards, when a specific time has elapsed, the system reacts producing coffee (see the last state on
the third row).

A delay transition represents model stimuli from the environment (input signals values) that happen
immediately after a delay (DELAY). We note that environment stimuli are modelled as a set of assignments
(ASGMTS). A delay can represent a discrete or dense (continuous) time elapsing. The former delay is
characterised by a positive natural number (N1), whereas the latter by a positive float number (R+

1).

DELAY ::= discrete〈〈N1〉〉 | dense〈〈R
+
1 〉〉

The reason for not allowing delays equal to 0 is that the delay transition represents interaction with the
environment and, thus, it is not reasonable to assume that the environment can interact with the system,
providing it with new stimuli, without time elapsing.

Aiming at legibility, we define two auxiliary functions (functionTransition and delayTransition), which
project the elements of a transition. The definition of delayTransition is shown below. It is a partial function,
since it can only be applied to delay transitions; its domain is equal to the set of valid delay transitions
(dom delayTransitions = ran del). To obtain the delay and assignments embedded in a delay transition
(denoted by label below), we use the inverse definition of the constructor del (del ∼), which yields a pair of
delay and assignments (DELAY ×ASGMTS) from a given delay transition (label below). The inverse of del
is well defined, since, by definition in Z, all constructors are defined as injections. Therefore, del ∼ exists,
since the inverse of an injection is also a function. The function functionTransition is defined similarly.

delayTransition : TRANS LABEL 7→ DELAY × ASGMTS

dom delayTransition = ran del
∀ label : TRANS LABEL | label ∈ ran del • delayTransition(label) = (del ∼)(label)

All transitions of an e-DFRS are required to be well typed: a function transition must belong to the set of
well typed function transitions (well typed function transition), while a delay transition must belong to the
analogous set (well typed delay transition), besides being compatible with the type of the system global
clock (clock compatible transition).

To be well typed, a function transition must modify only values of outputs and timers. In other words,
the system does not interfere with the environment stimuli, which are modelled by input variables. This
property is formalised by well typed function transition when stating that the domain of functionTransition
is a subset of or equal to the union of the domains of O and T . The outputs and timers that are not changed
by the transition retain the same value.

well typed function transition : P(TRANS LABEL×
(VNAME 7→ TYPE)× (VNAME 7→ TYPE))

∀ label : TRANS LABEL; O ,T : VNAME 7→ TYPE |
label ∈ ran fun • (label ,O ,T) ∈ well typed function transition ⇔
(dom(functionTransition(label)) ⊆ (domO ∪ domT))

Similarly, a delay transition is well typed if, and only if, its statements modify only values of inputs. Fur-
thermore, there must be one statement concerning each input; on the occurrence of each delay transition,
the system receives the current value of all its inputs. The predicate well typed delay transition formalises
these two requirements when stating that the domain of delayTransition is equal to the domain of I .

Modelling Timed Reactive Systems from Natural-Language Requirements 21

well typed delay transition : P(TRANS LABEL× (VNAME 7→ TYPE))

∀ label : TRANS LABEL; I : VNAME 7→ TYPE | label ∈ ran del •
(label , I) ∈ well typed delay transition ⇔
dom(delayTransition(label)).2 = dom I

One might find strange that here we expect the assignments to range over all inputs, whereas the function
transition can cover only a subset of its outputs. We could have also assumed here that the inputs that are
not mentioned by the assignments retain the same value. However, this modelling decision would make the
translation from s-DFRSs to e-DFRSs more complicated. We return to this topic later, when explaining how
e-DFRSs are obtained from symbolic ones.

The delay transitions also need to be compatible with the system global clock in the sense that if the
delay is discrete (an element of ran discrete), the type of the system global time must be nat , whereas if the
delay is dense (an element of ran dense), the type of the clock must be ufloat . As a consequence, all delay
transitions share the same type of delay, meaning that they are all discrete or dense. This is captured by the
clock compatible transition property.

clock compatible transition : P(TRANS LABEL× (NAME × TYPE))

∀ label : TRANS LABEL; gcvar : NAME × TYPE •
(label , gcvar) ∈ clock compatible transition ⇔
label ∈ ran del ∧
((delayTransition(label)).1 ∈ ran discrete ⇒ gcvar .2 = nat) ∧
((delayTransition(label)).1 ∈ ran dense ⇒ gcvar .2 = ufloat)

Now, we define in the schema DFRS TRANSITION RELATION the transition relation (TR) of an e-DFRS
as an element of TRANSREL. As previously said, we assume that when the system is ready to react it does
so instantaneously. Therefore, it would not make sense to have both delay and function transitions from the
same state, since the system always reacts (performing the function transition), instead of letting the time
evolve (performing the delay transition). This invariant is formalised in what follows by the first predicate:
for every two transitions (trans1 and trans2) emanating from the same state (trans1.1 = trans2.1), they are
either function (they belong to ran fun) or delay transitions (they belong to ran del).

DFRS TRANSITION RELATION
TR : TRANSREL

∀ trans1, trans2 : TR | trans1.1 = trans2.1 •
{trans1.2, trans2.2} ⊆ ran fun ∨ {trans1.2, trans2.2} ⊆ ran del

∀ trans : TR • ¬ (trans.1 = trans.3)

Another invariant associated with TR is the absence of self-transitions: for all transitions, ¬ (trans.1 =
trans.3) holds. In the case of delay transitions, self-transitions do not make sense as every delay transition
advances the time by some amount greater than 0 and, thus, the global clock of the next state is different
from the previous one. Concerning function transitions, self-transitions are superfluous, since the absence of
function transitions already indicates that the system state has not changed.

For a concrete example, we refer to the second delay transition presented in Fig. 4: after the delay of 3s,
there is no reaction by the system (there is no function transition), and the system state remains the same
until the following delay transition. Moreover, we note that the possibility of adding a function transition to
this state (the last state on the second row) would violate the invariant that requires that only function or
delay transitions fire from the same state.

4.1.2. Complete definition of an e-DFRS

An e-DFRS is an element of the type defined by the following schema: e DFRS . Hereafter, for simplicity,
we only consider discrete delays, since dense delays are analogously defined. For all valid e-DFRSs, three
invariants hold. First, all states are well typed (they range over the same set of variables defined as the
system inputs, outputs, timers and global clock, besides mapping values consistent with the corresponding
variable types). Second, all transitions are well typed. Third, the state reached by any transition is defined
by the previous state updated by the assignments performed by the transition.

22 G. Carvalho, A. Cavalcanti and A. Sampaio

To formalise this last property, we rely on the auxiliary function nextState. Given a source state and a set
of assignments, the function nextState yields a new state updating all system variables, but the global clock,
according to these assignments. When dealing with delay transitions, besides considering the output of the
function nextState, we also update the global clock adding to its value in the source state the delay performed.
This last case is formalised by the last invariant (trans.2 ∈ ran del ⇒ trans.3 = ...). After extracting the
value embedded in the delay transition via the inverse definition of discrete (discrete ∼), and similarly the
current value of the system global clock (value mapped to gc) in the source state ((n ∼) ((trans.1(gc)).2)),
we add these two values and the result is defined as the current value of the system global clock in the target
state. The constructor n indicates that this result is a natural number. We note that the current value of
the system global clock in the source state ((trans.1(gc)).2) becomes the previous value of gc in the target
state.

e DFRS
DFRS VARIABLES
DFRS STATES
DFRS TRANSITION RELATION

∀ s : S • (s, I ∪O ∪ T ∪ {gcvar}) ∈ well typed state
∀ trans : TR • {trans.1, trans.3} ⊆ S ∧

(trans.2, I ,O ,T , gcvar) ∈ well typed transition ∧
(trans.2 ∈ ran fun ⇒ trans.3 = nextState(trans.1,T , functionTransition(trans.2))) ∧
(trans.2 ∈ ran del ⇒ trans.3 =

nextState(trans.1,T , (delayTransition(trans.2)).2)⊕ {(gc, ((trans.1(gc)).2,
n((n ∼) ((trans.1(gc)).2) + (discrete ∼) ((delayTransition(trans.2)).1))))})

The state yielded by the function nextState is obtained by overriding the values of the previous state by the
assignments of a given transition (s ⊕ ...). Moreover, it updates accordingly the previous and current values
of the variables: when a variable has its value updated, the current value of the previous state ((n, (v1, v2)))
becomes the previous value of the next state, (n, (v2, asgmts(n))).

nextState : (STATE × (NAME 7→ TYPE)× ASGMTS) → STATE

∀ s : STATE ; T : (NAME 7→ TYPE); asgmts : ASGMTS • nextState(s,T , asgmts) = s⊕
({n : NAME ; v1, v2 : VALUE | (n, (v1, v2)) ∈ s ∧ n ∈ dom asgmts ∧

n /∈ dom T • (n, (v2, asgmts(n)))}∪
{n : NAME ; v1, v2 : VALUE | (n, (v1, v2)) ∈ s ∧ n ∈ dom asgmts ∧

n ∈ dom T • (n, (v1, (s(gc)).2))})

We note that there is a different definition when dealing with timers (n ∈ domT). In this case, the reset
of a timer, which is represented by assigning 0, is encoded as an assignment of the current value of the
global clock, (s(gc)).2. As the system has a single clock, it is easier to encode time reset by assigning the
current value of the global clock, instead of assigning 0 and updating its value every time a delay transition
is performed. Therefore, when evaluating timed guards such as t < v , where t is a timer and v a value, we
actually evaluate the result of (gc− t) < v , where gc is the current value of the system global clock. Despite
this representation, the previous value of the timer remains unchanged.

4.2. From s-DFRSs to e-DFRSs

The function expandedDFRS defines how an e-DFRS can be obtained from a symbolic one. The inputs
(I), outputs (O), timers (T), the global clock (gcvar), and the initial state (s0) are the same within both
representations (dfrs.I = symDFRS .I ∧ dfrs.O = symDFRS .O ∧ dfrs.T = symDFRS .T ∧ dfrs.gcvar =
symDFRS .gcvar ∧ dfrs.s0 = symDFRS .s0). The transition relation (TR) is obtained via the auxiliary
function buildTR (dfrs.TR = buildTR({dfrs.s0}, ∅, dfrs.I , dfrs.O , dfrs.T , symDFRS .F)). The states of an
e-DFRS (S) are defined as the states related by this transition relation (trans.1 and trans.3), besides the
initial state.

Modelling Timed Reactive Systems from Natural-Language Requirements 23

expandedDFRS : s DFRS → e DFRS

∀ symDFRS : s DFRS ; dfrs : e DFRS • expandedDFRS (symDFRS) = dfrs ⇔
dfrs.I = symDFRS .I ∧ dfrs.O = symDFRS .O ∧ dfrs.T = symDFRS .T ∧
dfrs.gcvar = symDFRS .gcvar ∧ dfrs.s0 = symDFRS .s0 ∧
dfrs.TR = buildTR({dfrs.s0}, ∅, dfrs.I , dfrs.O , dfrs.T , symDFRS .F) ∧
dfrs.S =

⋃
{trans : dfrs.TR • {trans.1, trans.3}} ∪ {dfrs.s0}

The function buildTR has six parameters: a set of states to visit (toVisit), a set of visited states (visited),
the inputs (I), the outputs (O), the timers (T), and the functions of an s-DFRS (F). We note that in
expandedDFRS , with respect to the function buildTR, toVisit has a single state to visit ({dfrs.s0}), and
visited is an empty set. Recursively, the function buildTR identifies new states to visit by the application of
function and delay transitions that can emanate from the already visited states.

buildTR : ((PSTATE)× (PSTATE)× (NAME 7→ TYPE)×
(NAME 7→ TYPE)× (NAME 7→ TYPE)× (F1 F1 FUNCTION)) → TRANSREL

∀ toVisit , visited : PSTATE ; I ,O ,T : NAME 7→ TYPE ; F : F1 F1 FUNCTION •
(toVisit = ∅ ⇒ buildTR(toVisit , visited , I ,O ,T ,F) = ∅) ∧
(toVisit 6= ∅ ⇒ ∃ s : toVisit ; tr1 : TRANSREL •

genTransitions(s, I ,O ,T ,F) = tr1 ∧
buildTR(toVisit , visited , I ,O ,T ,F) = tr1∪

buildTR((toVisit ∪ {trans : tr1 • trans.3}) \ (visited ∪ {s}), visited ∪ {s}, I ,O ,T ,F))

As an inductive function, the base case for builtTR happens when toVisit is empty. For this value of toVisit ,
we have that buildTR(toVisit , visited , I ,O ,T ,F) is an empty transition relation. In the inductive case,
toVisit is not empty and, thus, there is at least one state s in the states to visit (s : toVisit). The result
of buildTR is then defined as the union of the relation transition (tr1) obtained via genTransitions, which
considers the emanating transitions from s, with the result of the recursive application of buildTR. This
recursive application considers the not yet visited states, and also the new states reached by tr1 (toVisit ∪
{trans : tr1 • trans.3}) \ (visited ∪ {s}). We note that we also need to add s to the set of visited states
(visisted ∪ {s}).

The function genTransitions identifies either function or delay transitions from a given state s. Delay
transitions are performed from stable states, whereas function transitions occur in non-stable states. A state
s is stable, (s, ...) ∈ is stable, when it does not represent a situation that triggers a system reaction: for all
entries of the functions (entry ∈ f) of an s-DFRS (f ∈ F), their static (entry .1) and timed guards (entry .2)
evaluate to false. The predicates static guards true and timed guards true, which are not presented here,
are defined as the set of all static and timed guards that evaluate to true in a given state.

is stable : P(STATE × (NAME 7→ TYPE)× (NAME 7→ TYPE)× (F1 F1 FUNCTION))

∀ s : STATE ; IO : (NAME 7→ TYPE); T : (NAME 7→ TYPE); F : F1 F1 FUNCTION •
(s, IO ,T ,F) ∈ is stable ⇔
∀ f : F • ∀ entry : f • (s, entry .1, IO ,T) /∈ static guards true ∨

(s, entry .2,T) /∈ timed guards true ∨ s = nextState(s,T , entry .3)

A state is also considered to be stable if the reaction denoted by the assignments associated with these
guards lead to a target state that is equal to the current one (s = nextState(s,T , entry .3)). In other words,
the assignments do not have any effect. If there is no effect, this state is considered stable, since we do not
have self transitions.

If a state s is stable, there are delay transitions emanating from s for all possible delays, delay ∈
possibleDelays(...), which is formalised later, and all possible valid assignments, those whose values are
consistent with the variable types (asgmts.2 ∈ values(I (asgmts.1))). These assignments also need to range
over the complete set of inputs (dom asgmts = dom I). The reached state is defined by the function nextState,
but also updating the system global clock based on the performed delay (nextState(...) ⊕ {(gc, ... + ...)}).
These three information (the given state – s; the delay transition considering a delay value and assignments
– del((delay , assigmts)); and the reached state – nextState(...) ⊕ {(gc, ...)}) are used to define the delay
transition part of the result of genTransitions.

24 G. Carvalho, A. Cavalcanti and A. Sampaio

s = 0
r = 0
m = 1
o = 1
t = 0
gc = 0

s = 0
r = 0
m = 1
o = 1
t = 0

gc = 1

s = 1
r = 0
m = 1
o = 1
t = 0

gc = 1

s = 0
r = 1
m = 1
o = 1
t = 0

gc = 1

s = 1
r = 1
m = 1
o = 1
t = 0

gc = 1

(D) – 1s

s := 0
r := 0

(D) – 1s

s := 1
r := 0

(D) – 1s s := 0
r := 1 (D) – 1s s := 1

r := 1

Fig. 7. The vending machine specification – example of delay transitions

genTransitions : (STATE × (NAME 7→ TYPE)× (NAME 7→ TYPE)×
(NAME 7→ TYPE)× (F1 F1 FUNCTION)) → TRANSREL

∀ s : STATE ; I ,O ,T : (NAME 7→ TYPE); F : F1 F1 FUNCTION •
((s, I ∪O ,T ,F) ∈ is stable ⇒ genTransitions(s, I ,O ,T ,F) =

{delay : DELAY ; asgmts : ASGMTS | delay ∈ genPossibleDelays(s, I ∪O ,T ,F) ∧
dom asgmts = dom I ∧ (∀ asgmt : asgmts • asgmt .2 ∈ values(I (asgmt .1))) •

(s, del((delay , asgmts)),nextState(s,T , asgmts)⊕
{(gc, ((s(gc)).2,n((n ∼) ((s(gc)).2) + (discrete ∼) (delay))))})}) ∧

((s, I ∪O ,T ,F) /∈ is stable ⇒ genTransitions(s, I ,O ,T ,F) =
{entry : FUNCTION | (∃ f : F • entry ∈ f) ∧
(s, entry .1, I ∪O ,T) ∈ static guards true ∧ (s, entry .2,T) ∈ timed guards true •

(s, fun(entry .3),nextState(s,T , entry .3))})

Fig. 7 shows a concrete example of delay transitions emanating from the initial state of the VM. We note
that we have a transition for each valid combination of input values: the coin sensor and the request button
remain false (first state on first row), only the coin sensor becomes true (third state on first row), only the
request button becomes true (first state on second row), and both signals become true (second state on
second row). Although only the transitions with delay equal to 1 second are shown, there are transitions
with greater delays (2s, 3s, ...) emanating from the initial state. In this case, all delays are possible and, thus,
there is no upper bound. This leads to an infinite number of delay transitions emanating from the initial
state.

To understand how we define the maximum valid delay, we first need to explain the concept of enabling
delays, which is captured by the following partial function enablingDelays. The domain of this function is
the set of states that are stable, (s, ...) ∈ is stable. Given a stable state s and a single entry (entry) of a
function of an s-DFRS, the function enablingDelays yields a set of delays such that, after advancing the
time by this delay ((gc, ... + ...)), without changing any input value, the reached state (next) is not stable,
(next , ...) /∈ is stable. In other words, if we just let the time evolve by some amount, we are going to see
some reaction of the system.

enablingDelays : (STATE × (NAME 7→ TYPE)× (NAME 7→ TYPE)× FUNCTION) 7→ PDELAY

dom enablingDelays = {s : STATE ; IO : (NAME 7→ TYPE); T : (NAME 7→ TYPE);
entry : FUNCTION | (s, IO ,T , {{entry}}) ∈ is stable • (s, IO ,T , entry)}

∀ s : STATE ; IO : (NAME 7→ TYPE); T : (NAME 7→ TYPE); entry : FUNCTION •
enablingDelays(s, IO ,T , entry) = {delay : DELAY ; next : STATE | next = s⊕

{(gc, ((s(gc)).2,n((n ∼) ((s(gc)).2) + (discrete ∼) (delay))))} ∧
(next , IO ,T , {{entry}}) /∈ is stable • delay}

Modelling Timed Reactive Systems from Natural-Language Requirements 25

The situation described in the end of the last paragraph (reaching a non-stable state by just letting the time
advance) happens in the VM when the system is producing coffee. After pressing the coffee request button, if
a weak coffee is going to be produced, we observe this system reaction within 10 to 30 seconds. Therefore, if
we are in the first state on the third row (Fig. 4), for delays greater than or equal to 10 and lower than or equal
to 30, we observe a system reaction leading the system to the reset state, besides changing accordingly the
system output. In such a state, for instance, it would not make sense to have a delay transition, whose delay
is 31, since we would be modelling an input received after elapsing 31 seconds, but before this input being
received we should have observed a system reaction. This captures the principle of delayable transitions: the
time might advance an arbitrary amount as long as it does not disable an enabled transition.

Considering the situation explained in the last paragraph for the VM example, the function enablingDelays
yields the set 10..30. It is worth noting that the result of enablingDelays can be an infinite set, for example,
if a weak coffee should be produced at least 10 seconds after its request. In such a case, as we do not have
an upper bound, the result of enablingDelays is 10..∞.

Now, given a stable state s, and considering all functions of an s-DFRS (F), the functionmaxDelays yields
the upper bound (upperBound) of the set enabling delays (delays = enablingDelays(...)) with respect to each
entry (entry ∈ f) of the s-DFRS functions (f : F). If delays is not empty, discrete(upperBound) ∈ delays,
and there is an upper bound, ∀n : delays • (discrete ∼)(n) ≤ upperBound , delays is not infinite; this upper
bound is considered in the return of maxDelays. In other words, its result considers the maximum delay
allowed, based on the delayable principle, for each entry of the functions of an s-DFRS.

maxDelays : (STATE × (NAME 7→ TYPE)× (NAME 7→ TYPE)× (F1 F1 FUNCTION)) 7→ FN1

dommaxDelays = {s : STATE ; IO : (NAME 7→ TYPE); T : (NAME 7→ TYPE);
F : (F1 F1 FUNCTION) | (s, IO ,T ,F) ∈ is stable • (s, IO ,T ,F)}

∀ s : STATE ; IO : (NAME 7→ TYPE); T : (NAME 7→ TYPE); F : F1 F1 FUNCTION •
maxDelays(s, IO ,T ,F) = {f : F ; entry : FUNCTION ; delays : PDELAY ; upperBound : N1 |

entry ∈ f ∧ delays = enablingDelays(s, IO ,T , entry) ∧ discrete(upperBound) ∈ delays ∧
(∀n : delays • (discrete ∼) (n) ≤ upperBound) • upperBound}

To define the set of possible delays that we need to consider when generating delay transitions, we rely
on the auxiliary function genPossibleDelays. Basically, for a given state s, if the result of the application
of maxDelays is empty (maxDelays(...) = ∅), it means that there is no upper bound we need to consider
and, thus, all delays are possible, genPossibleDelays(...) = {delay : DELAY }. Otherwise, we can perform all
delays that are lower than or equal to the lowest upper bound defined by maxDelays, (discrete ∼)(delay) ≤
miniumDelay(...). The function mininumDelay yields this lowest upper bound, whose definition is not shown
here as it is straightforward.

genPossibleDelays : (STATE × (NAME 7→ TYPE)× (NAME 7→ TYPE)× (F1 F1 FUNCTION))
7→ PDELAY

dom genPossibleDelays = {s : STATE ; IO : (NAME 7→ TYPE); T : (NAME 7→ TYPE);
F : (F1 F1 FUNCTION) | (s, IO ,T ,F) ∈ is stable • (s, IO ,T ,F)}

∀ s : STATE ; IO : (NAME 7→ TYPE); T : (NAME 7→ TYPE); F : F1 F1 FUNCTION •
(maxDelays(s, IO ,T ,F) = ∅ ⇒ genPossibleDelays(s, IO ,T ,F) = {delay : DELAY }) ∧
(maxDelays(s, IO ,T ,F) 6= ∅ ⇒ genPossibleDelays(s, IO ,T ,F) = {delay : DELAY |

(discrete ∼) (delay) ≤ minimumDelay(maxDelays(s, IO ,T ,F))})

To finish our explanation of how to obtain an e-DFRS from a symbolic one, we need to detail how function
transitions are created. If we refer to the definition of genTransitions , presented at the beginning of this
section and partially reproduced below, we can see that function transitions, (s, fun(...), ...), emanate from
states that are not stable. (s, ...) /∈ is stable.

26 G. Carvalho, A. Cavalcanti and A. Sampaio

genTransitions : (STATE × (NAME 7→ TYPE)× (NAME 7→ TYPE)×
(NAME 7→ TYPE)× (F1 F1 FUNCTION)) → TRANSREL

∀ s : STATE ; I ,O ,T : (NAME 7→ TYPE); F : F1 F1 FUNCTION •
... ∧
((s, I ∪O ,T ,F) /∈ is stable ⇒ genTransitions(s, I ,O ,T ,F) =

{entry : FUNCTION | (∃ f : F • entry ∈ f) ∧
(s, entry .1, I ∪O ,T) ∈ static guards true ∧ (s, entry .2,T) ∈ timed guards true •

(s, fun(entry .3),nextState(s,T , entry .3))})

For every entry (entry ∈ f) of the functions of an s-DFRS (f : F), whose static (entry .1) and timed guards
(entry .2) evaluate to true, we add a function transition with the corresponding assignments, fun(entry .3),
leading to a target state that is the previous one modified by these assignments (nextState(...)). In the VM
example, we have a deterministic system. However, for non-deterministic systems, we would have more than
one function transition emanating from the same source state.

In summary, from the initial state of an s-DFRS, we recursively identify which states are reached by
function and delay transitions. The set of all reachable states, which is defined as the states of an e-DFRS,
besides their transitions, is considered the transition relation of an e-DFRS. The other elements of an e-DFRS
are directly obtained from the corresponding symbolic ones.

4.3. Soundness of generation of an e-DFRS

Besides presenting a function that yields an e-DFRS from a symbolic one, it is important to show that this
function is sound: for all s-DFRSs, all invariants of e DFRS hold in the obtained e-DFRS (Theorem 4.1).

Theorem 4.1. Soundness of expandedDFRS

∀ symDFRS : s DFRS • expandedDFRS (symDFRS) ∈ e DFRS

The complete proof of Theorem 4.1 is available in [CCS15]. Here, we present a proof sketch. The three
invariants of DFRS VARIABLES (reproduced below) trivially hold as the elements I , O , T , and gcvar are
the same of the corresponding s-DFRS, and these properties are also invariants of valid s-DFRSs.

gcvar = (gc,nat) ∨ gcvar = (gc, ufloat)
disjoint 〈dom I , domO , domT 〉
ranT ⊆ {gcvar .2}

The invariant of DFRS STATE (s0 ∈ S) also holds, since expandedDFRS defines S as the union of the states
of TR with s0. The invariants of DFRS TRANSITION RELATION (reproduced below) are also preserved
by the function expandedDFRS .

∀ trans1, trans2 : TR | trans1.1 = trans2.1 •
{trans1.2, trans2.2} ⊆ ran fun ∨ {trans1.2, trans2.2} ⊆ ran del

∀ trans : TR • ¬ (trans.1 = trans.3)

The first one holds because function transitions are only created from non-stable states, whereas delay
transitions are created from stable states. As one state cannot be non-stable and stable simultaneously, all
transitions emanating from a state are function or delay ones. We also do not have self transitions as the
delay transitions advance the time by a value greater than 0 and, thus, it leads to a different state (a different
value for global clock). The function transition is only performed if it has a collateral effect (changes the
value of at least one variable) and, thus, it also leads to a different state. Therefore, the second invariant of
DFRS TRANSITION RELATION also holds.

The function expandedDFRS also preserves the invariants of e DFRS . Concerning the first one (repro-
duced below), a state is said to be well typed if, and only if, it ranges over the complete set of system
variables, and the values assigned to them are consistent with the variable types.

∀ s : S • (s, I ∪O ∪ T ∪ {gcvar}) ∈ well typed state

Considering the definition of buildTR, the states of an e-DFRS are reachable from its initial state, which is
well typed based on the definition of s-DFRSs, performing delay and function transitions. Each transition

Modelling Timed Reactive Systems from Natural-Language Requirements 27

only changes the values mapped to the variables, but not the set of variables. Therefore, all states consider the
same set of variables, which are all system variables. Concerning the consistency of values, the assignments
performed by the transitions also need to be consistent with the variable types and, thus, this consistency is
respected in all states.

Now, we explain why the invariants related to the transition relation (reproduced below) also hold.

∀ trans : TR • {trans.1, trans.3} ⊆ S ∧
(trans.2, I ,O ,T , gcvar) ∈ well typed transition ∧
(trans.2 ∈ ran fun ⇒ trans.3 = nextState(trans.1,T , functionTransition(trans.2))) ∧
(trans.2 ∈ ran del ⇒ trans.3 =

nextState(trans.1,T , (delayTransition(trans.2)).2)⊕ {(gc, ((trans.1(gc)).2,
n((n ∼) ((trans.1(gc)).2) + (discrete ∼) ((delayTransition(trans.2)).1))))})

The first invariant is clearly preserved, since expandedDFRS defines S as all states related by TR, besides
its initial state. Regarding the second invariant of e DFRS , which states that all transitions are well typed,
it is a consequence of how delay and function transitions are defined by the function genTransitions. As one
can notice from the definition of this function, the delay transition considers all input variables, and the
delay value is consistent with the system global clock. Therefore, the delay transitions are well typed and
clock compatible. The function transitions are defined considering the assignments mapped to static and
timed guards of the functions of an s-DFRS. Considering the definition of s-DFRSs, these assignments are
well typed and, thus, consider a subset of the system outputs and timers. Therefore, the function transitions
of an e-DFRS are also well typed.

Finally, the last invariants of e DFRS say that the target state of a delay and a function transition
is defined by the source state updated with the corresponding assignments, besides advancing the system
global clock by the delay value in delay transitions. This is exactly how the next (target) states are defined
by the auxiliary function genTransitions and, thus, this last invariant holds too.

4.4. Verifying properties of requirements via e-DFRSs

By exploring the state space of an e-DFRS, we can verify interesting properties of the system requirements.
Besides checking whether the requirements are ambiguous (hereafter, called inconsistent) or incomplete, we
can also verify the presence of unreachable requirements and time lock.

4.4.1. Consistent requirements

The system requirements are said to be consistent if, and only if, they do not describe different system
reactions for the same context (state). Definition 4.1 formalises this concept.

Definition 4.1. Consistent requirements: let reqs be an arbitrary set of requirements, and symDFRS the
corresponding s-DFRS obtained via Algorithm 6; the following predicate defines when these requirements
are said to be consistent:

consistent(reqs) ⇔ ∃ dfrs : e DFRS | dfrs = expandedDFRS (symDFRS) •
∀ s : dfrs.S • (s, dfrs.I ∪ dfrs.O , dfrs.T , symDFRS .functions) /∈ is stable ⇒

∀ f 1, f 2 : symDFRS .F • ∀ e1 : f 1; e2 : f 2 •
{(s, e1.1, dfrs.I ∪ dfrs.O , dfrs.T), (s, e2.1, dfrs.I ∪ dfrs.O , dfrs.T)} ⊆ static guards true
∧ {(s, e1.2, dfrs.T), (s, e2.2, dfrs.T)} ⊆ timed guards true ⇒ e1 = e2

According to the algorithms presented in Section 3, each requirement is mapped to an entry of a func-
tion. Therefore, if the requirements are consistent, for all states (s) of the e-DFRS (dfrs), if the guards
(.1, .2) of two entries (e1, e2) of two arbitrary functions (f 1, f 2) evaluate to true (... ⊆ static guards true
and ... ⊆ timed guards true) in the same non-stable state, (s, ...) /∈ is stable, these entries are the same
(e1 = e2). In such a case, we say that the requirements are consistent. Otherwise, we would have two differ-
ent system reactions for the same state. �

To give a concrete example of inconsistent requirements, we consider the following ones:

• When input1 is true, the system shall assign 1 to output1.

28 G. Carvalho, A. Cavalcanti and A. Sampaio

• When input1 is true, the system shall assign 2 to output1.

These two requirements are not consistent, since they describe different system reactions (assigning 1 or
assigning 2, respectively) for the same context (when input1 is true).

4.4.2. Complete requirements

The requirements are said to be complete if for every possible system input (after each delay transition), there
is some system reaction (a function transition). This notion of completeness is formalised by Definition 4.2

Definition 4.2. Complete requirements: let reqs be an arbitrary set of requirements, and symDFRS the
corresponding s-DFRS obtained via Algorithm 6; the following predicate defines when these requirements
are said to be complete:

complete(reqs) ⇔ ∃ dfrs : e DFRS | dfrs = expandedDFRS (symDFRS) •
∀ s1, s2 : dfrs.S | (∃ trans : dfrs.TR | trans.1 = s1 ∧ trans.3 = s2 ∧ trans.2 ∈ ran del) •

∃ s3 : dfrs.S ; trans2 : dfrs.TR • trans2.1 = s2 ∧ trans2.3 = s3 ∧ trans.2 ∈ ran fun

�

To exemplify complete requirements, we consider a simple system that has a single input (input1) and a
single output (output1). The following requirements are said to be complete:

• When input1 is true, the system shall assign 1 to output1.

• When input1 is false, the system shall assign 2 to output1.

We note that for every possible value of input1 (true or false), the requirements define the expected system
reaction (assigning 1 or assigning 2, respectively). Therefore, after every delay transition, there is a function
transition.

4.4.3. Reachable requirements

A requirement is reachable if there is a state of the e-DFRS where the guards of the function entry obtained
from this requirement evaluate to true. If there is no such a state, we say that this requirement is not
reachable, since it describes a system reaction that will never occur. Definition 4.3 defines formally the
notion of reachable requirements.

Definition 4.3. Reachable requirements: let reqs be an arbitrary set of requirements, and symDFRS the
corresponding s-DFRS obtained via Algorithm 6; the following predicate defines when these requirements
are said to be reachable:

reachable(reqs) ⇔ ∃ dfrs : e DFRS | dfrs = expandedDFRS (symDFRS) •
∀ f : symDFRS .F • ∀ entry : f • ∃ s : dfrs •

(s, dfrs.I ∪ dfrs.O , dfrs.T , symDFRS .functions) /∈ is stable ∧
(s, entry .1, dfrs.I ∪ dfrs.O , dfrs.T) ∈ static guards true ∧
(s, entry .2, dfrs.T) ∈ timed guards true

�

To give a concrete example of an unreachable requirement, we consider the following one:

• When input1 is true, and input1 is false, the system shall assign 1 to output1.

This requirement is not reachable (its reaction is never observed), since its condition does not evaluate to
true in any possible state due to the fact that the same boolean variable (input1) cannot be true and false
simultaneously.

4.4.4. Absence of time lock

Finally, the last property concerns the absence of time lock (see Definition 4.4). A time lock is characterised
by a state from which it is not possible to perform delay transitions, immediately and not even from states
reachable by this state. If such a state exists, we have a time lock, since delay transitions cannot occur and,

Modelling Timed Reactive Systems from Natural-Language Requirements 29

input1 = 0
out1 = 0
gc = 0

input1 = 1
out1 = 0
gc = 1

input1 = 1
out1 = 1
gc = 1

input1 = 1
out1 = 2
gc = 1

(D) – 1s

input := 1

(F) out1 := 1 (F)
out1 := 2

(F)

out1 := 2

(F)

out1 := 1

Fig. 8. Example of time lock

thus, time cannot elapse. Another way of expressing this property is to say that time lock happens if there
is a state from which it is not possible to reach stable states (states that have delay transitions).

Definition 4.4. Absence of time lock: let reqs be an arbitrary set of requirements, and symDFRS the
corresponding s-DFRS obtained via Algorithm 6; the following predicate defines when these requirements
describe a system without time lock:

noTimeLock(reqs) ⇔ ∃ dfrs : e DFRS | dfrs = expandedDFRS (symDFRS) •
∀ trans : dfrs.TR | trans.2 ∈ ran fun • ∃ trans2 : dfrs.TR •| trans2.2 ∈ ran del •

(trans.3, trans.1, dfrs.TR) ∈ is reachable

�

To give a concrete example of time lock, we consider the sample example that was given to illustrate
Definition 4.1. Fig. 8 shows part of the e-DFRS obtained from these two requirements. We note that when
input1 becomes true (equal to 0), the system reaches a state from which is not possible to reach a stable
state, since it can perform indefinitely function transitions. In such a situation, we say that there is a time
lock. In this example, the requirements are also inconsistent, since we can perform more than one function
transition from the second state on the first row.

The properties defined in this section can be verified by exploring the e-DFRS state space. However, as
an e-DFRS possibly comprises an infinite set of states, it is necessary to specify a bound for this check. Then,
one can dynamically create an e-DFRS until this bound is reached, and, while it is created, check whether
the desired properties are met (bounded model checking). Eligible criteria for this bound are the number of
delay (function) transitions performed, and an upper bound for the system global clock, among others. If the
specification is inconsistent or there is an unreachable requirement, we can easily identify the requirements
involved as we keep traceability between the s-DFRS functions and the requirements (see Section 3.5).

4.5. Tool support

The NAT2TEST tool implements the function genTransitions , allowing us to create and explore the states
of an e-DFRS dynamically (see Fig. 9). When the animator screen is opened, it automatically creates the
e-DFRS initial state (state 0): the initial state of the corresponding s-DFRS, which is obtained from the
system requirements.

On the top right, the tool shows the possible delay or function transitions that can be performed from
the selected state. A double-click on a transition creates an edge to the target state to represent it. If the
transition is a delay one, a pop-up opens, and the user can inform the amount of (discrete or continuous)
time that advances with the delay transition, and new values for the input signals. On the right, the tool

30 G. Carvalho, A. Cavalcanti and A. Sampaio

Fig. 9. The NAT2TEST tool – dynamic creation of e-DFRSs

shows the history of performed transitions. On the bottom, the tool shows the value of the system variables
considering the selected state.

Fig. 9 illustrates part of the e-DFRS for the example shown in Fig. 4, but it also describes the transition
that leads to the production of strong coffee. We note that from the state 3, if the coffee request button
is pressed 12 seconds after inserting the coin, the system goes to the weak mode (the system mode := 3),
which is represented by the state 5. Differently, if the request is made 32 seconds after inserting the coin,
the system goes to the strong mode (the system mode := 2), which is represented by the state 7.

With the aid of this tool support, as explained in Section 5.2, we assess whether test cases, either
independently written by domain specialists from industry or generated by a commercial tool from the
same set of requirements, are compatible with the corresponding DFRS models. We detail this analysis in
Section 5.2.

5. Theoretical and practical validations

After presenting the DFRS models (s-DFRS and e-DFRS), we now discuss a theoretical (Section 5.1) and a
practical validation (Section 5.2).

5.1. Theoretical validation: mapping e-DFRSs to TIOTSs

While an e-DFRS can be viewed as a semantics for the s-DFRS, from which it is obtained, in order to
connect such a semantic representation to established ones in the literature, we show that an e-DFRS can
be encoded as a Timed Input-Output Transition System (TIOTS). This is an alternative timed model based
on the widely used IOLTS and ioco [Tre99]. First, we define TIOTSs in Z (Section 5.1.1), and then we show
how it can be obtained from e-DFRSs (Section 5.1.2) via a sound process (Section 5.1.3).

Modelling Timed Reactive Systems from Natural-Language Requirements 31

5.1.1. Formal model of TIOTS

A TIOTS is a 6-tuple (Q, q0, I, O, D, T), where Q is a (possibly infinite) set of states, q0 is the initial
state, I represents input and O output actions, D is a set of delays, and T is a (possibly infinite) transition
relation on states.

In a TIOTS, the states are related by labelled transitions. A label can be an input or an output
action, a delay, or an internal action. The given set TIOTS ACTION represents all valid actions, and
TIOTS ACTIONS a set of actions. A TIOTS delay (an element of TIOTS DELAY) represents a dis-
crete or a dense time elapsing, but differently from an e-DFRS delay, a delay in a TIOTS can also be 0.
TIOTS DELAYS is a set of delays.

[TIOTS ACTION]
TIOTS ACTIONS == PTIOTS ACTION
TIOTS DELAY ::= tiots discrete〈〈N〉〉 | tiots dense〈〈R+〉〉
TIOTS DELAYS == PTIOTS DELAY

The schema TIOTS LABELS formalises the concept of TIOTS labels.

TIOTS LABELS
I ,O : TIOTS ACTIONS
D : TIOTS DELAYS

disjoint 〈I ,O〉
D ∈ tiots time compatible

The sets of input and output actions are disjoint, and the delays need to be time compatible, which means
that all delays are of the same type (discrete or dense). The time compatible delays are characterised by the
elements of a set tiots time compatible, whose simple definition is omitted here.

A state of a TIOTS is an element of the given set TIOTS STATE , and TIOTS STATES SET is a
non-empty set of states. The initial state of a TIOTS (q0) is necessarily an element of the set of states of a
TIOTS (Q). The schema TIOTS STATES formalises this invariant.

[TIOTS STATE]
TIOTS STATES SET == P1 TIOTS STATE
TIOTS STATES == [Q : TIOTS STATES SET ; q0 : TIOTS STATE | q0 ∈ Q]

The transition relation (T), which is an element of the set of all possible TIOTS transition relations
(TIOTS TRANSREL), relates two states by means of a label, an element of TIOTS TRANS LABEL.
A TIOTS has four types of transitions: input, output, delay and internal transitions, which are labelled
with input actions, output actions, delay events, and internal actions, represented by the invisible event τ ,
respectively.

TIOTS TRANS LABEL ::= in〈〈TIOTS ACTION 〉〉 | out〈〈TIOTS ACTION 〉〉 |
tiots del〈〈TIOTS DELAY 〉〉 | tau

TIOTS TRANS == (TIOTS STATE × TIOTS TRANS LABEL× TIOTS STATE)
TIOTS TRANSREL == PTIOTS TRANS

The schema TIOTS TRANSITION RELATION defines the component T .

TIOTS TRANSITION RELATION
T : TIOTS TRANSREL

Finally, a TIOTS is defined by the schema TIOTS , which requires that each transition relates states of Q
and is well-typed.

TIOTS
TIOTS LABELS
TIOTS STATES
TIOTS TRANSITION RELATION

∀ entry : T • {entry .1, entry .3} ⊆ Q ∧ (entry .2, I ,O ,D) ∈ well typed tiots transition

32 G. Carvalho, A. Cavalcanti and A. Sampaio

2s ?s.1.r.0 !m.0.o.1 3s

?s.0.r.0

!m.0.o.17s?s.0.r.1!m.3.o.1

Fig. 10. The vending machine specification – TIOTS representation

A transition is said to be well typed (as characterised by the elements of well typed tiots transition) if, and
only if, its label is equal to τ , in, out , or del (label = tau, label ∈ ran in, label ∈ ran out , label ∈ ran tiots del ,
respectively).

well typed tiots transition : P(TIOTS TRANS LABEL×
TIOTS ACTIONS × TIOTS ACTIONS × TIOTS DELAYS)

∀ label : TIOTS TRANS LABEL; I ,O : TIOTS ACTIONS ; D : TIOTS DELAYS •
(label , I ,O ,D) ∈ well typed tiots transition ⇔
(label = tau) ∨ (label ∈ ran in ∧ (in ∼) label ∈ I) ∨
(label ∈ ran out ∧ (out ∼) label ∈ O) ∨ (label ∈ ran tiots del ∧ (tiots del ∼) label ∈ D)

If the label represents an input action (label ∈ ran in), it comprises elements of I , (in ∼) label ∈ I . Similarly,
the same idea applies to output actions and delays, where O and D are considered, respectively.

5.1.2. From e-DFRSs to TIOTSs

Before formalising the generation of a TIOTS from an e-DFRS, we explain the intuition behind the generation
process. While a function transition is mapped to an output action, a delay transition is mapped to a delay
followed by an input action. When a function transition leads to a non-stable event, this transition is
mapped to an internal hidden event, since only stable communication of outputs can be observed. If a delay
transition leads to a state from which there are other delay transitions (after the first delay no system
reaction is observed), we also consider an output action between these two transitions to show explicitly that
the system outputs have not changed.

Fig. 10 shows the TIOTS obtained from the first five transitions presented in Fig. 4. To differentiate
input from output actions, we add “?” as a prefix to the former, and “!” to the latter. We note that the
actions performed are strings that represent the value received for all system inputs or generated for all
system outputs, even if the function transition does not range necessarily over the complete set of system
outputs. We note that an output action is performed between the delay transitions, whose delays are 3s and
7s, to show that the system outputs remain unchanged. In this short example, we do not have τ events, as
all states reached by function transitions are stable. However, considering the example shown in Fig. 8, the
corresponding TIOTS does not have any output action after the delay transition, but a loop of τ events due
to the time lock.

The function fromDFRStoTIOTS defines how a TIOTS is obtained from an e-DFRS. The main step
is how to obtain the TIOTS transition relation (tiots.T), which is defined by mapTransitionRelation. The
TIOTS inputs (tiots.I), outputs (tiots.O) and delays (tiots.D) are defined as the result of auxiliary projection
functions (getInputActions, getOutputActions, and getDelays, respectively). Basically, these functions yield
the labels of TIOTS transitions.

Modelling Timed Reactive Systems from Natural-Language Requirements 33

fromDFRStoTIOTS : e DFRS → TIOTS

∀ dfrs : e DFRS ; tiots : TIOTS •
fromDFRStoTIOTS (dfrs) = tiots ⇔
tiots.Q = getStates(tiots.T) ∪ {tiots.q0} ∧ tiots.q0 = mapState(dfrs.s0) ∧
tiots.I = getInputActions(tiots.T) ∧ tiots.O = getOutputActions(tiots.T) ∧
tiots.D = getDelays(tiots.T) ∧ tiots.T = mapTransitionRelation(dfrs.TR, dfrs.I , dfrs.O)

The function mapState is a total injection from DFRS states to TIOTS ones. It is used to define the initial
state (tiots.q0) of the TIOTS; it is the result of this function when applied to the initial state of the e-
DFRS. The states (tiots.Q) of a TIOTS are the ones related by its transition relation (tiots.T), which are
characterised by getStates , besides its initial state.

To obtain the TIOTS transition relation, the function mapTransitionRelation considers two partitions
of e-DFRS transitions: the first one comprises only function transitions, getTransitions(tr , ran fun), whereas
the second one comprises delay transitions, getTransitions(tr , ran del). The function getTransitions filters
function or delay transitions from a given transition relation (tr). The functions mapFunTransitions and
mapDelTransitions consider these partitions and yield transition relations (tr1, and tr2), whose union is
defined as the result of mapTransitionRelations (mapTransitionRelation = tr1 ∪ tr2).

mapTransitionRelation : TRANSREL× (NAME 7→ TYPE)× (NAME 7→ TYPE) →
TIOTS TRANSREL

∀ tr : TRANSREL; I ,O : (NAME 7→ TYPE) • ∃ tr1, tr2 : TIOTS TRANSREL •
tr1 = mapFunTransitions(getTransitions(tr , ran fun), tr ,O) ∧
tr2 = mapDelTransitions(getTransitions(tr , ran del), tr , ranmapState, I ,O) ∧
mapTransitionRelation(tr , I ,O) = tr1 ∪ tr2

One important concern is related to the fresh states that are needed during this process. Therefore, we note
that the third argument of mapDelTransitions is ranmapState (all TIOTS states that can be obtained from
DFRS states), which is later used to identify fresh ones. For instance, one can see in Fig. 10 that the first
and third states are obtained from the first and second states in Fig. 4, whereas the second state does not
have any correspondence with a DFRS state.

The recursive function mapFunTransitions applies mapFunTransition for each function transition that
leads to a stable state. The latter function yields an output action, out(...), relating the TIOTS states
obtained from the source, mapState(s1) and target, mapState(s2), states of the e-DFRS function transition.

mapFunTransition : (TRANS × (NAME 7→ TYPE)) 7→ TIOTS TRANSREL

dom(mapFunTransition) = (STATE × ran fun × STATE)× (NAME 7→ TYPE)
∀ s1, s2 : STATE ; label : TRANS LABEL; O : (NAME 7→ TYPE) | label ∈ ran fun •

mapFunTransition((s1, label , s2),O) = {(mapState(s1),
out(genAction(currentValues(domO ⊳ s2))),mapState(s2))}

The output action, out(...), is defined in terms of the current values of the output variables in the target
state (currentValues(domO⊳s2)). An example of output action is !m.0.o.1 (see Fig. 10). When the function
transition leads to a non-stable state, the application mapFunTransitions yields a transition relation, whose
single element relates the source, mapState(trans.1), and target, mapState(trans.3), states with a τ event,
{(mapState(trans.1), tau,mapState(trans.3))}.

The process of mapping delay transitions is more complicated due to three main reasons. First, as previ-
ously explained, we need to identify fresh states (that do not have correspondence to DFRS states); second,
as also commented before, we need to define an output action between consecutive delay transitions; finally,
the delay transitions that have the same amount of time elapsing are grouped into non-time deterministic
partitions, since they have a particular treatment. To exemplify this last situation, we consider the states
presented in Fig. 7. The TIOTS transition relation obtained from this example is shown in Fig. 11. One can
see that first we have a delay of 1s leading to a state from which there are multiple possible input actions.

5.1.3. Soundness of mapping to TIOTS

Similarly to Theorem 4.1, the function fromDFRStoTIOTS is also proven to be sound: for all e-DFRSs, all
invariants of TIOTS hold in the obtained TIOTS (Theorem 5.1).

34 G. Carvalho, A. Cavalcanti and A. Sampaio

1s

?s.0.r.0 ?s.1.r.0

?s.0.r.1 ?s.1.r.1

Fig. 11. The vending machine specification – TIOTS representation of delay transitions

Theorem 5.1. Soundness of fromDFRStoTIOTS

∀ expDFRS : e DFRS • fromDFRStoTIOTS (expDFRS) ∈ TIOTS

The detailed proof is available in [CCS15]; here we present a proof sketch. Concerning the invariants of
TIOTS LABELS (reproduced below), the sets I and O are disjoint because they are defined by the auxiliary
function genAction, which is an injection, applied to different elements: the value of DFRS input and output
variables, respectively.

disjoint 〈I ,O〉
D ∈ tiots time compatible

The TIOTS delays are compatible (all of them are discrete or dense) because the e-DFRS delays are time
compatible, and the TIOTS delays preserve the delay type (discrete and dense delays in an e-DFRS are
translated to discrete and dense delays in a TIOTS, respectively).

The invariant of TIOTS STATES (q0 ∈ Q) also holds, since the states of a TIOTS (Q) are defined by
fromDFRStoTIOTS as the union of the application of getStates with its initial state (q0). Therefore, it is
valid that q0 is an element of Q .

Concerning the invariants of TIOTS (reproduced below), as Q is obtained from all states mentioned by
T , it is trivial that all states related by T belong to Q .

∀ entry : T • {entry .1, entry .3} ⊆ Q ∧ (entry .2, I ,O ,D) ∈ well typed tiots transition

To be well typed, an input transition must be labelled with an element of I , and an output transition with
an element of O . Similarly, a delay transition must be labelled with an element of D . As the sets I , O , and
D are defined in terms of the labels used on the TIOTS transitions, this invariant also holds. Therefore, we
conclude that the function fromDFRStoTIOTS is also sound.

5.2. Practical validation: compatibility between test cases and DFRSs

Here, we provide an empirical argument as to whether the DFRS models are expressive enough to repre-
sent the behaviour of a timed reactive system as defined using natural language. We assess whether test
cases, either independently written by domain specialists from industry or generated by a commercial tool
(RT-Tester9) from the same set of requirements, are compatible with the corresponding DFRS models.
Compatibility requires that there is a sequence of delay and function transitions of the e-DFRS, which is
obtained from the s-DFRS generated from the natural-language requirements, that illustrates the delays,
the system inputs and the expected outputs described in the test case. In other words, in our evaluation,
we generate test cases from a set of requirements, without the aid of DFRS models. Later, we use the same

9 www.verified.de/products/rt-tester/

Modelling Timed Reactive Systems from Natural-Language Requirements 35

Table 2. Performance metrics

VM NPP PC TIS

Time to process the requirements: 0.11s 0.07s 0.14s 0.35s

Time to identify the requirement frames: 0.10s 0.14s 0.10s 0.20s

Time to generate the s-DFRSs: 0.02s 0.01s 0.01s 0.01s

Total time: 0.23s 0.22s 0.25s 0.56s

requirements to derive s-DFRS models. Finally, we check whether the tests can be obtained from simulation
of the corresponding e-DFRS models. This analysis considers examples from four different domains.

• Vending machine (toy example): this vending machine (VM) is an adaptation of the coffee machine
presented in [LMN04]. As explained in Section 2, this machine dispenses weak and strong coffee depending
on the amount of time elapsed between inserting a coin and requesting the coffee. The system has two
input signals (the coin sensor, and the coffee request button) and two output signals (the system mode,
and the coffee machine output).

• Nuclear power plant (toy example): we consider a simplified version of a control system for safety injection
in a nuclear power plant (NPP) as described in [LH03]. This is a system that controls the injection of
coolant in the reactor. If the water pressure is too low (less than 900 units), the system injects coolant
into the reactor, otherwise there is no need to inject coolant. This system has three input signals: the
actual water pressure, a switch to block the injection of coolant, and a switch that reset the system after
blockage. There are three output signals: the safety injection mode, the current blockage mode, and the
pressure mode.

• Priority command (provided by Embraer): the priority command function (PC) decides whether the pilot
or copilot will have priority in controlling the airplane side sticks. The system monitors whether the pilot
and copilot side sticks are in the neutral position, and whether the side stick priority button has been
pressed. Taking into account this information, a control logic is applied to decide who has priority. This
system has four input signals (the stick position and the status of the priority button for both the pilot
and the co-pilot) and one output signal (a priority command).

• Turn indicator system (from Mercedes): we have also considered a simplification of the turn indicator
system (TIS) specification that is currently used by Daimler for automatically deriving test cases, concrete
test data and test procedures. In 2011 Daimler allowed the publication of this specification to serve as
a “real-world” benchmark supporting research on MBT techniques. Our simplification results in a size
reduction of the original model presented in [Pel11], but serves well as a proof of concept, because it still
is a safety-critical system component with real-time and concurrent aspects. The system has three inputs:
(1) the turn indicator lever, which may be in the idle, left or right position; (2) the emergency flashing
button; and (3) the battery voltage. The system outputs are the car flashing lights. The simplified TIS
comprises two parallel components: the flashing mode component, which is responsible for controlling
the system flashing state (only left or right lights flashing, left and right lights flashing, left or right tip
flashing, and no lights flashing), and the lights controller component, which is responsible for turning on
and off the flashing lights respecting the flashing periods: 320 milliseconds on and 240 milliseconds off.

Using the mechanisation of our strategy presented in Sections 3.5 and 4.5, we have derived DFRS models
from the natural-language requirements of the aforementioned four examples. Table 2 presents the metrics
related to our performance analysis. All time measurements are for experiments using an i3 CPU with
2.27GHz equipped with 4 GB of RAM memory running the Ubuntu 14.04 LTS operating system. As can
be seen in Table 2, the time required to process the system requirements and to deliver the corresponding
s-DFRSs models is low (less than 1s). Furthermore, it is worth noting that the total time required increases
linearly according to the size of the specification. Therefore, we can expect that the proposed approach might
scale for larger examples.

Afterwards, we have assessed whether test cases, either independently written or generated from the same
set of requirements, are compatible with the corresponding DFRS models. To analyse whether the test cases
are compatible with the corresponding DFRS models, we have developed a depth-first search algorithm that
explores the state space of an e-DFRS guided by a test case. We provide to the model the inputs described

36 G. Carvalho, A. Cavalcanti and A. Sampaio

Table 3. Example of test case

TIME (ms) Volt. Emerg. Button Turn Indic. L. Lights R. Lights

0 80 off right off off

7918 81 off left on off

8258 81 off left off off

8478 81 off left on off

Table 4. Metrics concerning compatibility analysis

VM NPP PC TIS

of requirements: 6 11 8 21

of words: 228 268 294 942

of test vectors: 5 16 401 83

of compatible test vectors: 5 (100%) 16 (100%) 401 (100%) 83 (100%)

Time for analysis: 9ms 52ms 184ms 192ms

by each test vector, and check whether the outputs provided by the system are equal to those in the vector.
This comparison is straightforward (that is, the test oracle is trivial) since we are dealing with primitive
types.

Table 3 shows a test case comprising four test vectors (one in each line), for the turn indicator system. The
first line tests that no lights are turned on, even if, for instance, the turn indicator is on the right position,
when the car voltage is too low (below 81 volts). However, when the voltage is greater than 80 (Line 2),
the lights are turned on based on the turn indicator position (in this case, left), and the light remains on
for 340ms, and off for 220ms, periodically. In Table 3, Volt., Emerg. Button, Turn Indic., L. Lights, and R.
Lights refer to Voltage, Emergency Button, Turn Indicator, Left Lights, and Right Lights, respectively. The
first line of the test is derived from the initial state of the obtained s-DFRS. The next three lines are derived
from six alternating delay and function transitions.

1. Delay transition: after 7918ms, the voltage becomes 81, and the turn indicator changes to the left position;

2. Function transition: the system reacts turning on the left lights;

3. Delay transition: the input signals remain the same for 340ms;

4. Function transition: the system reacts turning off the left lights;

5. Delay transition: the input signals remain the same for 220ms;

6. Function transition: the system reacts turning on the left lights.

The selected set of test cases is relevant as discussed in details in [CBL+14]. They are able to detect a
significant number of errors introduced by mutation testing (for instance, roughly 98% of the mutants
generated for the TIS example). Table 4 presents some metrics concerning our compatibility analysis. The
verdict of our testing experiments have been successful, since all selected test cases are compatible with the
corresponding DFRS models, which gives evidence that these models for the four examples indeed capture
the underlying semantics of the natural-language requirements as suggested in this paper.

6. Related work

A classical notation for modelling timed reactive systems is timed automata. DFRS, however, is specifically
designed to facilitate automatic generation of formal models from natural-language requirements. In par-
ticular, DFRS is tailored for embedded systems whose inputs and outputs are always available, as signals.
The advantage of a DFRS model is the fact that, as opposed to classical timed reactive systems notations
such as timed automata, it is a state-rich notation that embeds and enforces a number of properties of the
models that are required of reactive embedded systems. For example, DFRS models enforce the principle of

Modelling Timed Reactive Systems from Natural-Language Requirements 37

Table 5. Analysis of related work

Domain Input Model Data Time Requirement analyses

[LCK98] General Use cases CMPN No No Consistency
Completeness

[LSL+14] General Use cases Activity diagram No No Consistency
Integrity

[Sch02] General NL requirements FOL No No Not reported

[ADS14] General NL requirements CCM Yes No Off-nominal

[BCMW15] Embedded systems NL requirements AADL Yes No Realisability

[BGMC04] General NL requirements FMONA Yes No Consistency

[NSM14] Mobile app. Use cases CSP Yes No Not reported

[ES07] General NL requirements FRL No Yes Not reported

[SHG10] General NL requirements TUM No Yes Consistency
Completeness

[AG06] General NL requirements CNM Yes Yes Consistency
Completeness
Ambiguity

[Ili07] General NL requirements B method Yes Yes Consistency

[LHHR94] Embedded systems NL requirements RSML Yes Yes Consistency
Completeness

[MTWH06] Embedded systems NL requirements RSML−e Yes Yes Consistency
Completeness
Reachability

[Sch09] Automotive systems NL requirements TQE Yes Yes Reachability

[SJV12] General NL requirements Statecharts Yes Yes Not reported

NAT2TEST Embedded systems NL requirements DFRS Yes Yes Consistency
Completeness
Reachability
Time lock

delayable transitions; use delay transitions to represent environment sitimuli and, thus, they cannot range
over the output signals and timers of the system; include no self-transitions; ensure that there are no delay
and function transitions emanating from any state. If we were to use general purpose notations such as
timed automata to capture the natural-language requirements, the translation would be more complicated
and costly.

Previous works have already investigated and proposed formal models for describing natural-language
requirements. Here, we analyse such works from six distinct perspectives: (1) domain: whether the modelling
approach is tailored for a specific domain; (2) input: how the system requirements are documented; (3) model:
the underlying formal notation used to represent the system behaviour; (4) data: whether this notation can
explicitly deal with variables; (5) time: whether this notation can explicitly deal with temporal behaviour;
and (6) requirement analyses: which properties of the requirements can be analysed via this notation. Table 5
summarises our analyses of related work considering these six perspectives.

Some notations only consider the occurrence of events (e.g., the button has been pressed, the voltage is
higher than 10), as opposed to others that have an explicit model of variables and values. The fundamental
difference between these two approaches is that the second one is easier to connect with generation of
automated test cases, since data (variables and values) are embedded in the model. However, as a drawback,
if one considers a large amount of variables and possible values, the number of possibilities can be a problem
to deal with, when symbolic techniques are not used. As the ultimate goal of our work is the generation of

38 G. Carvalho, A. Cavalcanti and A. Sampaio

test cases, we consider as more appropriate for our purposes the second approach, when variables and values
are part of the model.

Similarly, as we want to model and test temporal aspects of systems, which can be discrete or continuous,
we also want to incorporate time as an element of the model. Some approaches consider limited temporal
analysis, for instance, when representing and verifying Linear Temporal Logic (LTL) properties. Here, we do
not consider these works as allowing time modelling, since only the sequencing of events is considered.

Considering these remarks, we group similar works into three distinct categories (see Table 5). While the
first group comprises techniques that do not support data and time information on requirements, the second
one supports at least one of these two concepts. The last group, to which our approach belongs, supports
both of them. In what follows, we summarise the previous studies, while comparing them with our own work.

While some approaches are tailored for use cases described in natural-language [LCK98, LSL+14, NSM14],
processing natural-language requirements is more common. In [LCK98], a variant of Petri Nets (Constraints-
based Modular Petri Nets – CMPNs) is proposed for modelling use cases. To generate the corresponding
CMPN model, one needs to fill an action-condition table manually, besides clarifying event names, which
represent the actions described in the use cases. There is no support for data and time. On the other hand,
using the CMPN model, it is possible to perform consistency and completeness analyses automatically.

In [LSL+14] and [NSM14], use cases are used as source for the generation of formal models: the former uses
a restricted and formal version of activity diagrams, and the latter CSP. The CNL considered by [NSM14] is
tailored for mobile applications, whereas the strategy of [LSL+14] is for general purpose. Data is considered
in [NSM14] via annotations in the use cases. Only events are considered by [LSL+14], where it is also shown
how the derived activity diagrams can be used to verify the consistency and integrity of requirements.

[Sch02] proposes a computer-processable CNL for writing unambiguous and precise requirements: PENG.
The specification written in PENG can be deterministically translated into first-order predicate logic (FOL).
Data and time aspects are not considered, nor is the analysis of properties of the requirements.

In [ADS14], a Casual Component Model (CCM) is used to model the behaviour described by natural-
language requirements. This formal model needs to be manually created from the specification. In CCM,
the states can be used to model valuations of a variable (e.g., s1 – switch(off), s2 – switch(on)), from
which a NuSMV specification [CCGR99] is automatically derived. Then, temporal logic can be used to seek
off-nominal (undesired) behaviour.

The approach of [BCMW15] also considers variables, and it is tailored for embedded systems. It uses as
internal notation AADL (Architecture Analysis and Design Language), where assume-guarantee contracts
are manually created. In this work, it is possible to assess whether these contracts and the corresponding
requirements are realisable. Differently from other approaches, the authors show how to perform this analysis
in a compositional way.

The work reported in [BGMC04] presents a requirements analysis tool called RETNA. This tool accepts
natural-language requirements and, with user interaction, it translates the requirements into a logical nota-
tion: FMONA, which is a high-level language for describing weak monadic second-order logic. This model
can then be used to analyse whether the natural-language requirements are consistent.

In [ES07] requirements are written in a limited standardized format. The requirements need to be written
according to a strict if-then sentence template, which, however, can be used to represent time properties.
Despite describing how to translate these templates to the Formal Requirement Language (FRL), the work
does not elaborate on how this model could be used to check properties of the requirements. In [SHG10] it
is also possible to represent timed-behaviour using Timed Usage Models (TUM), which are Markov Chain
Usage Models (MCUM) with time information. This model is manually created from the system requirements.
Consistency and completeness properties can be verified automatically. Differently from other approaches,
this model can also take into account probabilistic properties.

The works analysed so far do not take into account both data and time aspects and, thus, differ from
our approach: the DFRS models consider both of them. The approaches proposed in [AG06, Ili07, LHHR94,
MTWH06, Sch09, SJV12] are closer related to our work, since they share the fact that data and time are
both supported.

The CIRCE environment, which enables analysis of natural-language requirements, is presented in [AG06].
In this environment, requirements are interpreted according to the CIRCE Native Meta-Model (CNM).
Besides analysing properties of requirements, this environment allows the generation of UML models and
code from the CNM notation. Differently from our strategy, it requires manual effort when modelling the
system requirements. Here, one needs to create by hand designations and definitions. The former establishes
equivalences between different terms that refer to the same entity, and the latter establishes notations for

Modelling Timed Reactive Systems from Natural-Language Requirements 39

expressing requirements in a succinct way. While these two elements have a well-defined and formal structure,
the requirements description statements are expected to be free-form text.

In [Ili07], the B method [Abr96] is used to construct formal models for system requirements. In this
work, the requirements need to be translated to predefined templates for describing events, data and time,
from which B specifications are systematically translated. Each template defines the information that is
mandatory. Comparing to our approach, the thematic roles are the counterpart of these templates. As
just said, in [Ili07], one needs to classify manually the requirements according to these templates, besides
filling them. Differently, thematic roles are automatically inferred from the requirements in the NAT2TEST
strategy.

In [LHHR94, MTWH06], the Requirements State Machine Language (RSML) is used as formal model for
natural-language requirements. A restricted version of this notation (RSML−e) is adopted by [MTWH06],
where events are not allowed. This notation, which is argued to be tailored for embedded systems, is used to
document the system requirement. In [LHHR94], this internal model is analysed by proposed algorithms to
check whether the requirements are consistent and complete. In [MTWH06], these analyses are automated
with the aid of NuSMV and PVS [ORS92]. These two studies require user intervention to classify and edit
requirements. This is not a necessity within the NAT2TEST strategy.

In [Sch09], assuming that the system specification is manually represented conforming to a set of tem-
plates, developed for automotive systems, a Temporal Qualified Expression (TQE) is derived. It is also
necessary to identify manually signal names along with its possible values. Differently, in our approach, the
signal names, their types, and possible values are automatically inferred.

In [SJV12], the SOLIMVA methodology is presented. The methodology has tool support to translate
automatically natural-language requirements into statechart models. Another tool (GTSC) is used to gen-
erate test cases. In this work, besides writing the requirements, one needs to identify and partition inputs
and outputs. This is not required in our approach. Moreover, this work does not explain how the statechart
models can be used to analyse requirements, but considers this as a possible line for future work.

In summary, the NAT2TEST strategy formally describes system requirements using DFRS models, which
are explained in details here. Similarly to other approaches previously identified, the formal model used to
represent the system behaviour considers both data and time information. It can also be used to check system
properties such as consistency, completeness, reachability, and absence of time lock. Our work stands out from
the similar approaches reported here by the richness of the model generated solely from natural-language
requirements without user intervention.

The absence of user intervention in our strategy is a consequence of the compromise reached by the defined
controlled natural language. As we focus on a specific domain of embedded systems, whose behaviour can be
described as actions guarded by conditions, we can impose some restrictions, while allowing the requirements
to be expressed as a textual specification, and automatically obtain a formal model from these requirements.
However, these restrictions make our approach not suitable for writing requirements that do not adhere to
this format of actions and guards.

7. Conclusions

We have presented a symbolic formalism (s-DFRS) for modelling timed-systems, which is suitable to describe
formal models that can be automatically obtained from natural-language requirements. We have also shown
that an expanded version of a symbolic DFRS model can be dynamically generated and used for checking
properties such as consistency, completeness and reachability of requirements, as well as the absence of time
lock. To connect the proposed models to established ones in the literature, we have also presented how
e-DFRSs, the notation used to describe the expanded models is called e-DFRS, can be encoded as Timed
Input-Output Transition System (TIOTS): an alternative timed model based on the widely used IOLTS and
ioco. All definitions have been formally described in Z, and checked with the aid of the CZT plug-in for
Eclipse.

We have also considered examples from four different domains, and showed that the derived DFRS models
are expressive enough to represent a set of independently written and generated test cases. To support this
analysis, we have developed a tool NAT2TEST that automatically generates s-DFRS models from natural-
language requirements, besides other features such as dynamic exploration of the e-DFRS state space.

DFRS models are suitable for modelling embedded systems whose inputs and outputs are always available,

40 G. Carvalho, A. Cavalcanti and A. Sampaio

as signals. Moreover, the system reactions are described as assignments guarded by static and timed guards.
Further empirical analysis is a topic for future work.

We also envisage the following tasks as future work.

• Integrate this work with our previous work described in [CFaB+13, CBL+14] to take advantage of the
generality of DFRSs as indicated in Figure 1;

• Enhance the DFRS models to deal with more complex structures. For instance, currently, only literals
are allowed in assignments;

• Evolve the DFRS models to deal with new classes of timed-systems, namely, hybrid systems. To achieve
such a goal, we plan to incorporate into our models differential equations to describe the continuous
evolution of variables.

Despite the potential for improvement, we believe that the results obtained give some evidence that DFRSs
are a promising modelling notation for describing the behaviour ot timed-systems, in particular, when this
behaviour is defined using natural-language requirements of the form of actions guarded by conditions. A
detailed account of our models, notations, tools, and examples are found in [Car16].

Acknowledgments

This work was carried out with the support of the CNPq (Brazil), INES10, and the grants: FACEPE
573964/2008-4, APQ-1037-1.03/08, CNPq 573964/2008-4 and 476821/2011-8. The research reported in this
paper was also partially funded by the UK EPSRC.

References

[ABJ+15] Bernhard K. Aichernig, Harald Brandl, Elisabeth Jöbstl, Willibald Krenn, Rupert Schlick, and Stefan Tiran. Killing
strategies for model-based mutation testing. Software Testing, Verification and Reliability, 25(8):716–748, 2015.

[Abr96] J.-R. Abrial. The B-book: Assigning Programs to Meanings. Cambridge University Press, New York, NY, USA,
1996.

[ADS14] Daniel Aceituna, Hyunsook Do, and Sudarshan Srinivasan. A Systematic Approach to Transforming System
Requirements into Model Checking Specifications. In Companion Proceedings of the 36th International Conference
on Software Engineering, ICSE Companion 2014, pages 165–174, New York, NY, USA, 2014. ACM.

[AG06] Vincenzo Ambriola and Vincenzo Gervasi. On the Systematic Analysis of Natural Language Requirements with
CIRCE. Automated Software Engineering, 13(1):107–167, 2006.

[All95] James Allen. Natural Language Understanding. Benjamin/Cummings, 1995.
[BBF97] M Blackburn, R Busser, and J Fontaine. Automatic Generation of Test Vectors for SCR-style Specifications. In

Annual Conference on Computer Assurance, 1997.
[BCMW15] John Backes, Darren Cofer, Steven Miller, and MichaelW. Whalen. Requirements Analysis of a Quad-Redundant

Flight Control System. In Klaus Havelund, Gerard Holzmann, and Rajeev Joshi, editors, NASA Formal Methods,
volume 9058 of Lecture Notes in Computer Science, pages 82–96. Springer International Publishing, 2015.

[BGFT10] Antonio Bucchiarone, Stefania Gnesi, Alessandro Fantechi, and Gianluca Trentanni. An experience in using a
tool for evaluating a large set of natural language requirements. In Proceedings of the 2010 ACM Symposium on
Applied Computing, SAC ’10, pages 281–286, New York, NY, USA, 2010. ACM.

[BGMC04] R. Boddu, L. Guo, S. Mukhopadhyay, and Bojan Cukic. RETNA: from Requirements to Testing in a Natural Way.
In IEEE International Requirements Engineering Conference, pages 262–271, 2004.

[Car16] Gustavo Carvalho. NAT2TEST: Generating Test Cases from Natural Language Requirements based on CSP. PhD
thesis, Centro de Informática, Universidade Federal de Pernambuco (UFPE), Brazil, 2016.

[CBC+15] Gustavo Carvalho, Flávia Barros, Ana Carvalho, Ana Cavalcanti, Alexandre Mota, and Augusto Sampaio.
NAT2TEST Tool: from Natural Language Requirements to Test Cases based on CSP. In International Conference
on Software Engineering and Formal Methods. Springer International Publishing, 2015.

[CBL+14] Gustavo Carvalho, Flávia Barros, Florian Lapschies, Uwe Schulze, and Jan Peleska. Model-Based Testing from
Controlled Natural Language Requirements. In Cyrille Artho and Peter Csaba lveczky, editors, Formal Techniques
for Safety-Critical Systems, volume 419 of Communications in Computer and Information Science, pages 19–35.
Springer International Publishing, 2014.

[CCGR99] Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco Roveri. NuSMV: A New Symbolic Model
Verifier. In Proceedings of the 11th International Conference on Computer Aided Verification, CAV ’99, pages
495–499, London, UK, UK, 1999. Springer-Verlag.

10 www.ines.org.br

Modelling Timed Reactive Systems from Natural-Language Requirements 41

[CCR+14] Gustavo Carvalho, Ana Carvalho, Eduardo Rocha, Ana Cavalcanti, and Augusto Sampaio. A Formal Model for
Natural-Language Timed Requirements of Reactive Systems. In Stephan Merz and Jun Pang, editors, Formal
Methods and Software Engineering, International Conference on Formal Engineering Methods ICFEM, volume
8829 of Lecture Notes in Computer Science, pages 43–58. Springer International Publishing, 2014.

[CCS15] Gustavo Carvalho, Ana Cavalcanti, and Augusto Sampaio. DFRS: Definition and Proofs. Technical report, Uni-
versidade Federal de Pernambuco, 2015.

[CFaB+13] Gustavo Carvalho, Diogo Falcão, Flávia Barros, Augusto Sampaio, Alexandre Mota, Leonardo Motta, and Mark
Blackburn. Test Case Generation from Natural Language Requirements based on SCR Specifications. In Symposium
on Applied Computing, volume 2, pages 1217–1222, 2013.

[CFB+14] Gustavo Carvalho, Diogo Falcão, Flávia Barros, Augusto Sampaio, Alexandre Mota, Leonardo Motta, and Mark
Blackburn. NAT2TESTSCR: Test case generation from natural language requirements based on SCR specifications.
Science of Computer Programming, 95, Part 3(0):275 – 297, 2014.

[CSM13] Gustavo Carvalho, Augusto Sampaio, and Alexandre Mota. A CSP Timed Input-Output Relation and a Strategy
for Mechanised Conformance Verification. In Formal Methods and Software Engineering, volume 8144 of LNCS,
pages 148–164. Springer Berlin Heidelberg, 2013.

[ES07] M. Esser and P. Struss. Obtaining Models for Test Generation from Natural-Language like Functional Specifica-
tions. In International Workshop on Principles of Diagnosis, pages 75–82, 2007.

[FAA09] FAA. Requirements Engineering Management Findings Report. Technical report, U.S. Department of Transporta-
tion - Federal Aviation Administration, 2009.

[Fil68] Charles J. Fillmore. The Case for Case. In Bach and Harms, editors, Universals in Linguistic Theory, pages 1–88.
New York: Holt, Rinehart, and Winston, 1968.

[FLGS14] A. Ferrari, G. Lipari, S. Gnesi, and G. O. Spagnolo. Pragmatic ambiguity detection in natural language require-
ments. In Artificial Intelligence for Requirements Engineering (AIRE), 2014 IEEE 1st International Workshop
on, pages 1–8, Aug 2014.

[Ili07] D. Ilic. Deriving Formal Specifications from Informal Requirements. In Computer Software and Applications
Conference, 2007. COMPSAC 2007. 31st Annual International, volume 1, pages 145–152, July 2007.

[ISO02] ISO. Z formal specification notation (ISO/IEC 13568). Technical report, International Organization for Standard-
ization, 2002.

[LCK98] Woo Jin Lee, Sung Deok Cha, and Yong Rae Kwon. Integration and analysis of use cases using modular Petri nets
in requirements engineering. Software Engineering, IEEE Transactions on, 24(12):1115–1130, Dec 1998.

[LH03] Elizabeth Leonard and Constance Heitmeyer. Program Synthesis from Formal Requirements Specifications Using
APTS. Higher Order Symbol. Comput., 16:63–92, 2003.

[LHHR94] Nancy G. Leveson, Mats Per Erik Heimdahl, Holly Hildreth, and Jon D. Reese. Requirements Specification for
Process-Control Systems. IEEE Trans. Softw. Eng., 20(9):684–707, Sep 1994.

[LMN04] Kim Larsen, Marius Mikucionis, and Brian Nielsen. Online Testing of Real-time Systems using Uppaal: Status and
Future Work. In Perspectives of Model-Based Testing - Dagstuhl Seminar, volume 04371, 2004.

[LSL+14] Shuang Liu, Jun Sun, Yang Liu, Yue Zhang, Bimlesh Wadhwa, Jin Song Dong, and Xinyu Wang. Automatic Early
Defects Detection in Use Case Documents. In Proceedings of the 29th ACM/IEEE International Conference on
Automated Software Engineering, ASE ’14, pages 785–790, New York, NY, USA, 2014. ACM.

[MTWH06] Steven P. Miller, Alan C. Tribble, Michael W. Whalen, and Mats P.E. Heimdahl. Proving the shalls. International
Journal on Software Tools for Technology Transfer, 8(4-5):303–319, 2006.

[NSM14] Sidney Nogueira, Augusto Sampaio, and Alexandre Mota. Test generation from state based use case models.
Formal Aspects of Computing, 26(3):441–490, 2014.

[ORS92] S. Owre, J. M. Rushby, , and N. Shankar. PVS: A prototype verification system. In Deepak Kapur, editor, 11th
International Conference on Automated Deduction (CADE), volume 607 of Lecture Notes in Artificial Intelligence,
pages 748–752, Saratoga, NY, jun 1992. Springer-Verlag.

[Pel11] Peleska, J. et al. A Real-World Benchmark Model for Testing Concurrent Real-Time Systems in the Automotive
Domain. In Proceedings of the ICTSS, ICTSS’11, pages 146–161, Berlin, Heidelberg, 2011. Springer-Verlag.

[PVLZ11] Jan Peleska, Elena Vorobev, Florian Lapschies, and Cornelia Zahlten. Automated Model-Based Testing with
RT-Tester. Technical report, Universität Bremen, 2011.

[Ros10] A. W. Roscoe. Understanding Concurrent Systems. Springer, 2010.
[Sch02] R. Schwitter. English as a Formal Specification Language. In Proceedings of the 13th International Workshop on

Database and Expert Systems Applications, 2002.
[Sch09] Matthias Schnelte. Generating Test Cases for Timed Systems from Controlled Natural Language Specifications.

In International Conference on System Integration and Reliability Improvements, pages 348–353, 2009.
[SHG10] S. Siegl, K.-S. Hielscher, and R. German. Model Based Requirements Analysis and Testing of Automotive Systems

with Timed Usage Models. In Requirements Engineering Conference (RE), 2010 18th IEEE International, pages
345–350, Sept 2010.

[SJV12] Valdivino Santiago Junior and Nandamudi Lankalapalli Vijaykumar. Generating Model-based Test Cases from
Natural Language Requirements for Space Application Software. Software Quality Journal, 20:77–143, 2012.

[SLDP09] Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. Pat: Towards flexible verification under fairness. volume 5643
of Lecture Notes in Computer Science, pages 709–714. Springer, 2009.

[Tre99] Jan Tretmans. Testing Concurrent Systems: A Formal Approach. In Proceedings of CONCUR, pages 46–65,
London, UK, UK, 1999. Springer-Verlag.

	Introduction
	Definition and properties of an s-DFRS
	Overview of DFRSs
	Formal model of an s-DFRS
	Inputs, Outpus and Timers
	Initial state
	Functions
	Complete definition of an s-DFRS

	Formalising natural-language requirements
	Syntactic and semantic analyses
	Identifying variables
	Identifying functions
	Generating condition expressions
	Generating action statements

	Creating an s-DFRS
	Tool support

	Definition and properties of an e-DFRS
	Formal model of an e-DFRS
	Transition relation
	Complete definition of an e-DFRS

	From s-DFRSs to e-DFRSs
	Soundness of generation of an e-DFRS
	Verifying properties of requirements via e-DFRSs
	Consistent requirements
	Complete requirements
	Reachable requirements
	Absence of time lock

	Tool support

	Theoretical and practical validations
	Theoretical validation: mapping e-DFRSs to TIOTSs
	Formal model of TIOTS
	From e-DFRSs to TIOTSs
	Soundness of mapping to TIOTS

	Practical validation: compatibility between test cases and DFRSs

	Related work
	Conclusions
	References

