19 research outputs found

    Optimal Adaptation Principles In Neural Systems

    Get PDF
    Animal brains are remarkably efficient in handling complex computational tasks, which are intractable even for state-of-the-art computers. For instance, our ability to detect visual objects in the presence of substantial variability and clutter sur- passes any algorithm. This ability seems even more surprising given the noisiness and biophysical constraints of neural circuits. This thesis focuses on understanding the theoretical principles governing how neural systems, at various scales, are adapted to the structure of their environment in order to interact with it and perform informa- tion processing tasks efficiently. Here, we study this question in three very different and challenging scenarios: i) how a sensory neural circuit the olfactory pathway is organised to efficiently process odour stimuli in a very high-dimensional space with complex structure; ii) how individual neurons in the sensory periphery exploit the structure in a fast-changing environment to utilise their dynamic range efficiently; iii) how the auditory system of whole organisms is able to efficiently exploit temporal structure in a noisy, fast-changing environment to optimise perception of ambiguous sounds. We also study the theoretical issues in developing principled measures of model complexity and extending classical complexity notions to explicitly account for the scale/resolution at which we observe a system

    27th Annual Computational Neuroscience Meeting (CNS*2018): Part One

    Get PDF

    29th Annual Computational Neuroscience Meeting: CNS*2020

    Get PDF
    Meeting abstracts This publication was funded by OCNS. The Supplement Editors declare that they have no competing interests. Virtual | 18-22 July 202

    25th Annual Computational Neuroscience Meeting: CNS-2016

    Get PDF
    Abstracts of the 25th Annual Computational Neuroscience Meeting: CNS-2016 Seogwipo City, Jeju-do, South Korea. 2–7 July 201

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)

    Shape Representation in Primate Visual Area 4 and Inferotemporal Cortex

    Get PDF
    The representation of contour shape is an essential component of object recognition, but the cortical mechanisms underlying it are incompletely understood, leaving it a fundamental open question in neuroscience. Such an understanding would be useful theoretically as well as in developing computer vision and Brain-Computer Interface applications. We ask two fundamental questions: “How is contour shape represented in cortex and how can neural models and computer vision algorithms more closely approximate this?” We begin by analyzing the statistics of contour curvature variation and develop a measure of salience based upon the arc length over which it remains within a constrained range. We create a population of V4-like cells – responsive to a particular local contour conformation located at a specific position on an object’s boundary – and demonstrate high recognition accuracies classifying handwritten digits in the MNIST database and objects in the MPEG-7 Shape Silhouette database. We compare the performance of the cells to the “shape-context” representation (Belongie et al., 2002) and achieve roughly comparable recognition accuracies using a small test set. We analyze the relative contributions of various feature sensitivities to recognition accuracy and robustness to noise. Local curvature appears to be the most informative for shape recognition. We create a population of IT-like cells, which integrate specific information about the 2-D boundary shapes of multiple contour fragments, and evaluate its performance on a set of real images as a function of the V4 cell inputs. We determine the sub-population of cells that are most effective at identifying a particular category. We classify based upon cell population response and obtain very good results. We use the Morris-Lecar neuronal model to more realistically illustrate the previously explored shape representation pathway in V4 – IT. We demonstrate recognition using spatiotemporal patterns within a winnerless competition network with FitzHugh-Nagumo model neurons. Finally, we use the Izhikevich neuronal model to produce an enhanced response in IT, correlated with recognition, via gamma synchronization in V4. Our results support the hypothesis that the response properties of V4 and IT cells, as well as our computer models of them, function as robust shape descriptors in the object recognition process

    Honeybee visual cognition: a miniature brain’s simple solutions to complex problems

    Get PDF
    PhDIn recent decades we have seen a string of remarkable discoveries detailing the impressive cognitive abilities of bees (social learning, concept learning and even counting). But should these discoveries be regarded as spectacular because bees manage to achieve human-like computations of visual image analysis and reasoning? Here I offer a radically different explanation. Using theoretical bee brain models and detailed flight analysis of bees undergoing behavioural experiments I counter the widespread view that complex visual recognition and classification requires animals to not only store representations of images, but also perform advanced computations on them. Using a bottom-up approach I created theoretical models inspired by the known anatomical structures and neuronal responses within the bee brain and assessed how much neural complexity is required to accomplish behaviourally relevant tasks. Model simulations of just eight large-field orientation-sensitive neurons from the optic ganglia and a single layer of simple neuronal connectivity within the mushroom bodies (learning centres) generated performances remarkably similar to the empirical result of real bees during both discrimination and generalisation orientation pattern experiments. My models also hypothesised that complex ‘above and below’ conceptual learning, often used to exemplify how ‘clever’ bees are, could instead be accomplished by very simple inspection of the target patterns. Analysis of the bees’ flight paths during training on this task found bees utilised an even simpler mechanism than anticipated, demonstrating how the insects use unique and elegant solutions to deal with complex visual challenges. The true impact of my research is therefore not merely showing a model that can solve a particular set of generalisation experiments, but in providing a fundamental shift in how we should perceive visual recognition problems. Across animals, equally simple neuronal architectures may well underlie the cognitive affordances that we currently assume to be required for more complex conceptual and discrimination tasks
    corecore