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K1 
Deep reinforcement learning and its neuroscientific implications
Matthew Botvinick
Google DeepMind, Neuroscience Research, London, United Kingdom
Correspondence: Matthew Botvinick (botvinick@google.com) 
BMC Neuroscience 2020, 21(Suppl 1):K1

The last few years have seen some dramatic developments in artificial 
intelligence research. What implications might these have for neuro-
science? Investigations of this question have, to date, focused largely 
on deep neural networks trained using supervised learning, in tasks 
such as image classification. However, there is another area of recent 
AI work which has so far received less attention from neuroscientists, 
but which may have more profound neuroscientific implications: deep 
reinforcement learning. Deep RL offers a rich framework for studying 
the interplay among learning, representation and decision-making, 
offering to the brain sciences a new set of research tools and a wide 
range of novel hypotheses. I’ll provide a high-level introduction to 
deep RL, discuss some recent neuroscience-oriented investigations 
from my group at DeepMind, and survey some wider implications for 
research on brain and behavior.

K2 
A new computational framework for understanding vision in our 
brain
Zhaoping Li
Max Planck Institute for Biological Cybernetics, Tübingen, Germany
Correspondence: Zhaoping Li (li.zhaoping@tuebingen.mpg.de) 
BMC Neuroscience 2020, 21(Suppl 1):K2

Visual attention selects only a tiny fraction of visual input information 
for further processing. Selection starts in the primary visual cortex 
(V1), which creates a bottom-up saliency map to guide the fovea to 
selected visual locations via gaze shifts. This motivates a new frame-
work that views vision as consisting of encoding, selection, and decod-
ing stages, placing selection on center stage. It suggests a massive loss 
of non-selected information from V1 downstream along the visual 
pathway. Hence, feedback from downstream visual cortical areas to 
V1 for better decoding (recognition), through analysis-by-synthesis, 
should query for additional information and be mainly directed at the 

foveal region. Accordingly, non-foveal vision is not only poorer in spa-
tial resolution, but also more susceptible to many illusions.

K3 
Information and decision‑making
Daniel Polani
University of Hertfordshire, School of Computer Science, Hatfield, United 
Kingdom
Correspondence: Daniel Polani (d.polani@herts.ac.uk) 
BMC Neuroscience 2020, 21(Suppl 1):K3

In recent years it has become increasingly clear that (Shannon) infor-
mation is a central resource for organisms, akin in importance to 
energy. Any decision that an organism or a subsystem of an organism 
takes involves the acquisition, selection, and processing of informa-
tion and ultimately its concentration and enaction. It is the conse-
quences of this balance that will occupy us in this talk.
This perception-action loop picture of an agent’s life cycle is well 
established and expounded especially in the context of Fuster’s sen-
sorimotor hierarchies. Nevertheless, the information-theoretic per-
spective drastically expands the potential and predictive power of the 
perception-action loop perspective.
On the one hand information can be treated - to a significant extent 
- as a resource that is being sought and utilized by an organism. On 
the other hand, unlike energy, information is not additive. The intrin-
sic structure and dynamics of information can be exceedingly complex 
and subtle; in the last two decades one has discovered that Shan-
non information possesses a rich and nontrivial intrinsic structure 
that must be taken into account when informational contributions, 
information flow or causal interactions of processes are investigated, 
whether in the brain or in other complex processes.
In addition, strong parallels between information and control theory 
have emerged. This parallelism between the theories allows one to 
obtain unexpected insights into the nature and properties of the 
perception-action loop. Through the lens of information theory, one 
can not only come up with novel hypotheses about necessary condi-
tions for the organization of information processing in a brain, but 
also with constructive conjectures and predictions about what behav-
iours, brain structure and dynamics and even evolutionary pressures 
one can expect to operate on biological organisms, induced purely by 
informational considerations.
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K4 
Computational models of neural development
Geoffrey J. Goodhill
University of Queensland, Queensland Brain Institute; School 
of Mathematics and Physics, St Lucia, Australia
Correspondence: Geoffrey J Goodhill (g.goodhill@uq.edu.au) 
BMC Neuroscience 2020, 21(Suppl 1):K4

Unlike even the most sophisticated current forms of artificial intelli-
gence, developing biological organisms must build their neural hard-
ware from scratch. Furthermore they must start to evade predators 
and find food before this construction process is complete. I will dis-
cuss an interdisciplinary program of mathematical and experimental 
work which addresses some of the computational principles underly-
ing neural development. This includes (i) how growing axons navigate 
to their targets by detecting and responding to molecular cues in 
their environment, (ii) the formation of maps in the visual cortex and 
how these are influenced by visual experience, and (iii) how patterns 
of neural activity in the zebrafish brain develop to facilitate precisely 
targeted hunting behaviour. Together this work contributes to our 
understanding of both normal neural development and the etiology 
of neurodevelopmental disorders.

F1 
Delineating reward/avoidance decision process 
in the impulsive‑compulsive spectrum disorders 
through a probabilistic reversal learning task
Xiaoliu  Zhang1, Chao  Suo2, Amir  Dezfouli3, Ben J  Harrison4, Leah 
 Braganza2, Ben  Fulcher2, Lenardo  Fontenelle2, Carsten  Murawski5, Murat 
 Yucel2
1Monash University, Monash Biomedical Imaging, Melbourne, Australia; 
2Monash University, BrainPark, Turner Institute for Brian and Mental 
Health, School of Psychological Science, Melbourne, Australia; 3Machine 
Learning Research Group, Data61, CSIRO, Sydney, Australia; 4University 
of Melbourne and Melbourne Health, Melbourne Neuropsychiatry Centre, 
Department of Psychiatry, Melbourne, Australia; 5University of Melbourne, 
Department of Finance, Melbourne, Australia
Correspondence: Xiaoliu Zhang (smile.in.sjtu@gmail.com) 
BMC Neuroscience 2020, 21(Suppl 1):F1

Impulsivity and compulsivity are behavioural traits that underlie many 
aspects of decision-making and form the characteristic symptoms of 
Obsessive Compulsive Disorder (OCD) and Gambling Disorder (GD). 
The neural underpinnings of aspects of reward and avoidance learn-
ing under the expression of these traits and symptoms are only par-
tially understood.
The present study combined behavioural modelling and neuroimag-
ing technique to examine brain activity associated with critical phases 
of reward and loss processing in OCD and GD.
Forty-two healthy controls (HC), forty OCD and twenty-three GD par-
ticipants were recruited in our study to complete a two-session rein-
forcement learning (RL) task featuring a “probability switch (PS)” with 
imaging scanning. Finally, 39 HC (20F/19M, 34 yrs±9.47), 28 OCD 
(14F/14M, 32.11 yrs±9.53) and 16 GD (4F/12M, 35.53yrs±12.20) were 
included with both behavioural and imaging data available. The func-
tional imaging wasconducted by using 3.0-T SIEMENS MAGNETOM 
Skyra syngo MR D13C at Monash Biomedical Imaging. Each volume 
compromised 34 coronal slices of 3 mm thickness with 2000ms TR and 
30ms TE. A total of 479 volumes were acquired for each participant in 
each session in an interleaved-ascending manner.
The standard Q-learning model was fitted to the observed behavioural 
data and the Bayesian model was used for the parameter estimation. 
Imaging analysis was conducted using SPM12 (Welcome Department 
of Imaging Neuroscience, London, United Kingdom) in the Matlab 
(R2015b) environment. The pre-processing commenced with the 
slice timing, realignment, normalization to MNI space according to 
T1-weighted image and smoothing with a 8 mm Gaussian kernel.

The frontostriatal brain circuit including the putamen and medial 
orbitofrontal (mOFC) were significantly more active in response to 
receiving reward and avoiding punishment compared to receiving an 
aversive outcome and missing reward at p < 0.001 with FEW correc-
tion at cluster level; While the right insula showed greater activation in 
response to missing rewards and receiving punishment. Compared to 
healthy participants, GD patients showed significantly lower activation 
in the left superior frontal and posterior cingulum at p < 0.001 for the 
gain omission.
The reward prediction error (PE) signal was found positively corre-
lated with the activation at several clusters expanding across corti-
cal and subcortical region including the striatum, cingulate, bilateral 
insula, thalamus and superior frontal at p < 0.001 with FWE correction 
at cluster level. The GD patients showed a trend of decreased reward 
PE response in the right precentral extending to left posterior cingulate 
compared to controls at p < 0.05 with FWE correction. The aversive PE 
signal was negatively correlated with brain activity in regions includ-
ing bilateral thalamus, hippocampus, insula and striatum at p < 0.001 
with FWE correction. Compared with the control group, GD group 
showed an increased aversive PE activation in the cluster encompass-
ing right thalamus and right hippocampus, and also the right middle 
frontal extending to the right anterior cingulum at p < 0.005 with FWE 
correction.
Through the reversal learning task, the study provided further sup-
port of the dissociable brain circuits for distinct phases of reward and 
avoidance learning. Also, the OCD and GD are characterised by aber-
rant patterns of reward and avoidance processing.

F2 
Using evolutionary algorithms to explore single‑cell heterogeneity 
and microcircuit operation in the hippocampus
Andrea Navas‑Olive, Liset M de la Prida
Cajal Institute, Madrid, Spain
Correspondence: Andrea Navas‑Olive (acnavasolive@gmail.com) 
BMC Neuroscience 2020, 21(Suppl 1):F2

The hippocampus-entorhinal system is critical for learning and mem-
ory. Recent cutting-edge single-cell technologies from RNAseq to 
electrophysiology are disclosing a so far unrecognized heterogeneity 
within the major cell types [1]. Surprisingly, massive high-throughput 
recordings of these very same cells identify low dimensional microcir-
cuit dynamics [2,3]. Reconciling both views is critical to understand 
how the brain operates.
The CA1 region is considered high in the hierarchy of the entorhinal-
hippocampal system. Traditionally viewed as a single layered struc-
ture, recent evidence has disclosed an exquisite laminar organization 
across deep and superficial pyramidal sublayers at the transcriptional, 
morphological and functional levels [1,4,5]. Such a low-dimensional 
segregation may be driven by a combination of intrinsic, biophysical 
and microcircuit factors but mechanisms are unknown.
Here, we exploit evolutionary algorithms to address the effect of 
single-cell heterogeneity on CA1 pyramidal cell activity [6]. First, 
we developed a biophysically realistic model of CA1 pyramidal cells 
using the Hodgkin-Huxley multi-compartment formalism in the 
Neuron+Python platform and the morphological database Neuro-
morpho.org. We adopted genetic algorithms (GA) to identify passive, 
active and synaptic conductances resulting in realistic electrophysi-
ological behavior. We then used the generated models to explore the 
functional effect of intrinsic, synaptic and morphological heterogene-
ity during oscillatory activities. By combining results from all simula-
tions in a logistic regression model we evaluated the effect of up/
down-regulation of different factors. We found that multidimensional 
excitatory and inhibitory inputs interact with morphological and 
intrinsic factors to determine a low dimensional subset of output fea-
tures (e.g. phase-locking preference) that matches non-fitted experi-
mental data (Fig. 1).
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Fig. 1 Conceptualization of mechanisms operating over intrinsic and 
synaptic factors to restrict neuronal firing of CA1 pyramidal cells dur‑
ing theta oscillations. Non‑linear dendritic integration of multidimen‑
sional excitatory and inhibitory inputs results in segregated firing

Acknowledgments: Andrea Navas-Olive is supported by PhD Fellow-
ship FPU17/03268.
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F3 
Neuronal morphology imposes a tradeoff between stability, 
accuracy and efficiency of synaptic scaling
Adriano Bellotti, Saeed Aljaberi, Fulvio Forni, Timothy O’Leary
University of Cambridge, Department of Engineering, Cambridge, United 
Kingdom
Correspondence: Adriano Bellotti (adriano.bellotti@gmail.com) 
BMC Neuroscience 2020, 21(Suppl 1):F3

Synaptic scaling is a homeostatic normalization mechanism that pre-
serves relative synaptic strengths by adjusting them with a common 
factor. This multiplicative change is believed to be critical, since synap-
tic strengths are involved in learning and memory retention. Further, 
this homeostatic process is thought to be crucial for neuronal stabil-
ity, playing a stabilizing role in otherwise runaway Hebbian plasticity 
[1-3]. Synaptic scaling requires a mechanism to sense total neuron 
activity and globally adjust synapses to achieve some activity set-point 
[4]. This process is relatively slow, which places limits on its ability to 
stabilize network activity [5]. Here we show that this slow response is 
inevitable in realistic neuronal morphologies. Furthermore, we reveal 
that global scaling can in fact be a source of instability unless respon-
siveness or scaling accuracy are sacrificed.

A neuron with tens of thousands of synapses must regulate its own 
excitability to compensate for changes in input. The time require-
ment for global feedback can introduce critical phase lags in a neu-
ron’s response to perturbation. The severity of phase lag increases 
with neuron size. Further, a more expansive morphology worsens 
cell responsiveness and scaling accuracy, especially in distal regions 
of the neuron. Local pools of reserve receptors improve efficiency, 
potentiation, and scaling, but this comes at a cost. Trafficking large 
quantities of receptors requires time, exacerbating the phase lag and 
instability. Local homeostatic feedback mitigates instability, but this 
too comes at the cost of reducing scaling accuracy.
Realization of the phase lag instability requires a unified model of syn-
aptic scaling, regulation, and transport. We present such a model with 
global and local feedback in realistic neuron morphologies (Fig. 1). 
This combined model shows that neurons face a tradeoff between sta-
bility, accuracy, and efficiency. Global feedback is required for synaptic 
scaling but favors either system stability or efficiency. Large receptor 
pools improve scaling accuracy in large morphologies but worsen 
both stability and efficiency. Local feedback improves the stability-effi-
ciency tradeoff at the cost of scaling accuracy. This project introduces 
unexplored constraints on neuron size, morphology, and synaptic 
scaling that are weakened by an interplay between global and local 
feedback.

Fig. 1 Schematic representation of unified model of AMPA receptor 
transport, potentiation, and scaling with global and local feedback

Acknowledgements: The authors are supported by European 
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F4 
Who can turn faster? Comparison of the head direction circuit 
of two species
Ioannis  Pisokas1, Stanley  Heinze2, Barbara  Webb1

1University of Edinburgh, School of Informatics, Edinburgh, United 
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BMC Neuroscience 2020, 21(Suppl 1):F4

Ants, bees and other insects have the ability to return to their nest or hive 
using a navigation strategy known as path integration. Similarly, fruit flies 
employ path integration to return to a previously visited food source. An 
important component of path integration is the ability of the insect to 
keep track of its heading relative to salient visual cues. A highly conserved 
brain region known as the central complex has been identified as being of 
key importance for the computations required for an insect to keep track 
of its heading [1,2]. However, the similarities or differences of the under-
lying heading tracking circuit between species are not well understood. 
We sought to address this shortcoming by using reverse engineering 
techniques to derive the effective underlying neuronal circuits of two evo-
lutionary distant species, the fruit fly and the locust. Our analysis revealed 
that regardless of the anatomical differences between the two species the 
essential circuit structure has not changed. Both effective neuronal circuits 
have the structural topology of a ring attractor with an eight-fold radial 
structure (Fig. 1). However, despite the strong similarities between the two 
ring attractors, there remain differences. Using computational modelling 
we found that two apparently small anatomical differences have signifi-
cant functional effect on the ability of the two circuits to track fast rota-
tional movements and to maintain a stable heading signal [6]. In particular, 
the fruit fly circuit responds faster to abrupt heading changes of the animal 
while the locust circuit maintains a heading signal that is more robust to 
inhomogeneities in cell membrane properties and synaptic weights. We 
suggest that the effects of these differences are consistent with the behav-
ioural ecology of the two species. On the one hand, the faster response of 
the ring attractor circuit in the fruit fly accommodates the fast body sac-
cades that fruit flies are known to perform. On the other hand, the locust 
is a migratory species, so its behaviour demands maintenance of a defined 
heading for a long period of time. Our results highlight that even seem-
ingly small differences in the distribution of dendritic fibres can have a 
significant effect on the dynamics of the effective ring attractor circuit with 
consequences for the behavioural capabilities of each species. These dif-
ferences, emerging from morphologically distinct single neurons highlight 
the importance of a comparative approach to neuroscience.

Fig. 1 A‑F Schematics and example neuron anatomy of the fruit fly 
and the desert locust (Reproduced with permission from [3,4,5]). G, H 
Effective circuit in the fruit fly and the locust, respectively. I Maximum 
rate of heading change sustained by each model for different magni‑
tudes of heading change. J Ring attractor stability as function of noise 
in the cell membrane parameters
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Much evidence suggests that some dopaminergic neurons respond to 
unexpected rewards, and computational models have suggested that 
these neurons encode reward prediction error, which drives learn-
ing about rewards. However, these models do not explain recently 
observed diversity of dopaminergic responses, and dopamine func-
tion in action planning, evident from movement difficulties in Parkin-
son’s disease. The presented work aims at extending existing models 
to account for these data. It proposes that a more complete descrip-
tion of dopaminergic activity can be achieved by combining reinforce-
ment learning with elements of other recently proposed theories 
including active inference.
The presented model describes how the basal ganglia network infers 
actions required to obtained reward using Bayesian inference. The 
model assumes that a likelihood of reward given action in encoded 
by the goal-directed system, while the prior probability of making a 
particular action in a given context is provided by the habit system. 
It is shown how the inference of the optimal action can be achieved 
through minimization of free-energy, and how this inference can 
be implemented in a network with an architecture bearing a strik-
ing resemblance to the known anatomy of the striato-dopaminergic 
circuit. In particular, this network includes nodes encoding predic-
tion errors, which are connected with other nodes in the network in 
a way resembling the “ascending spiral” structure of dopaminergic 
connections.
In the proposed model, dopaminergic neurons projecting to different 
parts of the striatum encode errors in predictions made by the corre-
sponding systems within the basal ganglia. These prediction errors are 
equal to differences between rewards and expectations in the goal-
directed system, and to differences between the chosen and habitual 
actions in the habit system. The prediction errors enable learning 
about rewards resulting from actions and habit formation. During 
action planning, the expectation of reward in the goal-directed system 
arises from formulating a plan to obtain that reward. Thus dopamin-
ergic neurons in this system provide feedback on whether the current 
motor plan is sufficient to obtain the available reward, and they facili-
tate action planning until a suitable plan is found. Presented models 
account for dopaminergic responses during movements, effects of 
dopamine depletion on behaviour, and make several experimental 
predictions.
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Neural manifold models for characterising brain circuit dynamics 
in neurodegenerative disease
Seigfred  Prado1, Simon R.  Schultz2, Mary A.  Go1

1Imperial College London, Department of Bioengineering, London, United 
Kingdom; 2Imperial College London, London, United Kingdom
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Although much is known about neural circuits and molecular path-
ways required for normal hippocampal functions, the processes by 
which neurodegenerative diseases, such as Alzheimer’s Disease (AD), 
disable the functioning of the hippocampus and connected structures 
remain to be determined. In order to make substantial advances in the 
treatment of such diseases, we must improve our understanding of 
how neural circuits process information and how they are disrupted 
during the progression of these diseases. Recent advances in optical 
imaging technologies that allow simultaneous recording of large pop-
ulations of neurons in deeper structures [1] have shown great prom-
ise for revealing circuit dynamics during memory tasks [2]. However, 
to date, no study has revealed how large numbers of neurons in hip-
pocampal-cortical circuits act together to encode, store and retrieve 
memories in animal models of AD. In this work, we explored the use 
of neural manifold analysis techniques to characterising brain circuit 
dynamics in neurodegenerative disease. To understand more precisely 
the basis of memory and cognitive impairments in AD, we extracted 
the underlying neural manifolds in large-scale neural responses of 
hippocampal circuits involved in spatial cognition of behaving mice. 
For validation, we simulated a model that generates a set of data that 
mimics the neural activity of hippocampal cells of mouse models run-
ning on a linear circular track, while taking into account the effects of 
amyloid-beta plaques on circuit dynamics [3]. We compare our model 
with real data obtained by multiphoton imaging of hippocampal CA1 
cells in mice engaged in a spatial memory task. We used recurrence 
analysis to show how neural manifolds evolve over time during mem-
ory encoding, storage and recall processes in a repetitive memory 
task. This work will help with understanding how amyloid-beta pro-
teins affect the neural manifolds for spatial memory, which is particu-
larly disturbed during AD.

Fig. 1 Analyses for a mouse during a 4‑minute recording session. 
a Cell activity and mouse position along the linear circular track. b 
Place map showing neuronal tuning curves. c Cumulative fraction of 
variance explained by manifolds of increasing dimensionality. d‑f The 
distribution of data points in the reduced dimensional space using 
MDS, PCA and LEM, respectively. g‑i Recurrence plots of d‑f
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Epileptic seizures and interictal discharges (IIDs) are determined by 
neuronal interactions and ionic dynamics and thus help to reveal 
valuable knowledge about the mechanisms of brain functioning in 
not only pathological but also normal state. As synchronized patho-
logical discharges are much simpler to study than normal functioning, 
we were able to accomplish their description with a set of electro-
physiological evidences constrained by a biophysical mathematical 
model. In the combined hippocampal-entorhynal cortex slices of rat 
in high potassium, low magnesium and 4-AP containing solution we 
evaluated separate AMPA, NMDA and GABA-A conductances for dif-
ferent types of IIDs, using an original experimental technique [1]. The 
conductances have shown that the first type of the discharges (IID1) 
is determined by activity of only GABA-A channels due to their patho-
logically depolarized reversal potential. The second type (IID2) is deter-
mined by an early GABA-A followed by AMPA and NMDA components. 
The third type is pure glutamatergic discharges observed in case of 
disinhibition. Our mathematical model of interacting neuronal popu-
lations reproduces the recorded synaptic currents and conductances 
for IIDs of the three types [2,3], confirming the major role of interneu-
ron synchronization for IID1 and IID2, and revealing that the duration 
of IIDs is determined mainly by synaptic depression. IIDs occur spon-
taneously and propagate as waves with a speed of about a few tens of 
mm/s [4]. IDs are clusters of IID-like discharges and are determined by 
the ionic dynamics [5]. To reveal only major processes, main ions and 
variables, we have formulated a reduced mathematical model “Epilep-
tor-2”, which is a minimal model that reproduces both IDs and IIDs [6] 
(Fig. 1). It shows that IIDs are spontaneous bursts that are governed 
by the membrane depolarization and synaptic resource, whereas IDs 
represent bursts of bursts. Important is the role of the Na/K-ATPhase. 
Potassium accumulation governs the onset of each ID. The sodium 
accumulates during the ID and activates the sodium-potassium pump, 
which terminates the ID by restoring the potassium gradient and thus 
repolarizing the neurons. A spatially-distributed version of the Epilep-
tor-2 model reveals that it is not extracellular potassium diffusion but 
synaptic connectivity determines the speed of the ictal wavefront [7], 
which is consistent with our optogenetic experiments. The revealed 
factors are to be potential targets for antiepileptic medical treatment.
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Fig. 1 Minimal model Epileptor‑2 reproduces ictal events observed 
in slices. Intracellular sodium and extracellular potassium concentra‑
tions and membrane potential of a representative neuron are shown

Acknowledgments: This work was supported by the Russian Science 
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One of the central questions in neuroscience is how structure of brain 
circuits determines their activity and function. To explore such struc-
ture-function relations systematically, we integrate information from 
large-scale experimental surveys into data-driven, bio-realistic models 
of brain circuits, with the current focus on the mouse cortex.
Our 230,000-neuron models of the mouse cortical area V1 [1] were con-
structed at two levels of granularity—using either biophysically-detailed 
or point-neurons. These models systematically integrated a broad 
array of experimental data [1-3]: the information about distribution and 

morpho-electric properties of different neuron types in V1; connection 
probabilities, synaptic weights, axonal delays, and dendritic targeting rules 
inferred from a thorough survey of the literature; and a sophisticated rep-
resentation of visual inputs into V1 from the Lateral Geniculate Nucleus, 
fit to in vivo recordings. The model activity has been tested against large-
scale in vivo recordings of neural activity [4]. We found a good agreement 
between these experimental data and the V1 models for a variety of met-
rics, such as direction selectivity, as well as less good agreement for other 
metrics, suggesting avenues for future improvements. In the process of 
building and testing models, we also made predictions about the logic of 
recurrent connectivity with respect to functional properties of the neurons, 
some of which have been verified experimentally [1].
In this presentation, we will focus on the model’s successes in quanti-
tative matching of multiple experimental measures, as well as failures 
in matching other metrics. Both successes and failures shed light on 
the potential structure-function relations in cortical circuits, leading 
to experimentally testable hypotheses. Our models are shared freely 
with the community: https://portal.brain-map.org/explore/models/
mv1-all-layers. We also freely share our software tools – the Brain Mod-
eling ToolKit (BMTK; alleninstitute.github.io/bmtk/), which is a soft-
ware suite for model building/simulation [5], and the SONATA [6] file 
format (github.com/allenInstitute/sonata).
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Our understanding of sensory coding in the visual system is largely 
derived from parametrizing neuronal responses to basic stimuli. 
Recently, mathematical tools have developed that allow estimating 
the parameters of a receptive field (RF) model, which are typically a 
cascade of linear filters on the stimulus, followed by static nonlineari-
ties that map the output of the filters to the neuronal spike rates. How-
ever, how much do these characterizations depend on the choice of 
the stimulus type?
We studied the changes that neuronal RF models undergo due to the 
change in the statistics of the visual stimulus. We applied the nonlin-
ear input model (NIM) [1] to the recordings of single units in cat pri-
mary visual cortex (V1) in response to white Gaussian noise (WGN) 
and natural scenes (NS). These two stimulus types were matched in 
their global RMS contrast; however, they are fundamentally differ-
ent in terms of second- and higher-order statistics, which are abun-
dant in natural scenes but do not exist in white noise. We estimated 
for each cell the spatial filters constituting the neuronal RF and their 
corresponding nonlinear pooling mechanism, while making minimal 
assumptions about the underlying neuronal processing.
We found that cells respond differently to these two stimulus types, with 
mostly higher spike rates and shorter response latencies to NS than to 
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WGN. The most striking finding was that NS stimuli resulted in around 
twice as many uncovered RF filters compared to using WGN stimuli. Via 
careful analysis of the data, we discovered that this difference between 
the number of identified RF filters is not related to the higher spike rates 
of cells to NS stimuli. Instead, we found it to be attributed to the dif-
ference in the contrast levels of specific features that exhibit different 
prevalence in NS versus WGN. These features correspond to the V1 RF 
filters recovered in the model. This specific feature-contrast attains much 
higher values in NS compared to WGN stimuli. When the feature-contrast 
is controlled for, it explains the differences in the number of RF filters 
obtained. Our findings imply that a greater extent of nonlinear process-
ing in V1 neurons can be uncovered using natural scene stimulation.
We also compared the identified RF filters under the two stimulation 
regimes in terms of their spatial characteristics. Population analysis 
of the RF filters revealed a statistically significant bias towards higher 
spatial frequency filters with narrower spatial frequency bandwidth 
under the NS stimulation regime (p-value < 0.0025).
Acknowledgements: The authors acknowledge the support the Aus-
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The broad goal of this work is to understand how consistency on a 
macroscopic scale can be achieved despite random connectivity at the 
level of individual neurons.
A central aspect of any sensory system is the manner by which fea-
tures of the external world are represented by neurons at various pro-
cessing stages. Yet, it is not always clear what these features are, how 
they are represented, and how they emerge mechanistically. Here, we 
investigate this issue in the context of the vomeronasal system (VNS), 
a vertebrate chemosensory system specialized for processing of cues 
from other organisms. We focus on the accessory olfactory bulb AOB, 
which receives all vomeronasal sensory neuron inputs. Unlike the 
main olfactory system, where MTCs sample information from a single 
receptor type, AOB MTCs sample information from a variable number 
of glomeruli, in a manner that seems largely random. This apparently 
random connectivity is puzzling given the presumed role of this sys-
tem in processing cues with innately relevant significance.
We use multisite extracellular recordings to measure the responses of 
mouse AOB MTCs to controlled presentation of natural urine stimuli 
from male and female mice from various strains, including from wild 
mice. Crucially, we also measured the levels of both volatile and pep-
tide chemical components in the very same stimulus samples that 
were presented to the mice. As subjects, we used two genetically dis-
tinct mouse strains, allowing us to test if macroscopic similarity can 
emerge despite variability at the level of receptor expression.
First, we then explored neuronal receptive fields, and found that neu-
rons selective for specific strains (regardless of sex), or a specific sex 
(regardless of strain), are less common than expected by chance. This 
is consistent with our previous findings indicating that high level 
stimulus features are represented in a distributed manner in the AOB. 
We then compared various aspects of neuronal responses across the 
two strains, and found a high degree of correlation among them, sug-
gesting that despite apparent randomness and strain specific genetic 
aspects, consistent features emerge at the level of the AOB.

Next, we set out to model the responses of AOB neurons. Briefly, 
AOB responses to a given stimulus are modelled as dot products of 
random tuning profiles to specific chemicals and the actual level of 
those chemicals in the stimulus. In this manner we derive a popula-
tion of AOB responses, which we can then compare to the measured 
responses. Our analysis thus far reveals several important insights. 
First, neuronal response properties are best accounted for by sam-
pling of protein/peptide components, but not by volatile urinary 
components. This is consistent with the known physiology of the VNS. 
Second, several response features (population level neuronal dis-
tances, sparseness, distribution of receptive field types) are best repro-
duced in the model with random sampling of multiple, rather than 
single molecules per neuron. This suggests that the sampling mode of 
AOB neurons may mitigate some of the consequences of random sam-
pling. Finally, we note that random sampling of molecules provides a 
reasonable fit for some, but not all metrics of the observed responses. 
Our ongoing work aims to identify which changes must be made to 
our initial simplistic model in order to account for these features.
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Delta-frequency activity in the local field potential (LFP) is widely 
believed to correspond to so-called ‘cortical silence’ during phases of 
non-REM sleep, but delta in awake behaving animals is not well under-
stood and is rarely studied in detail. By integrating novel analyses of 
the hippocampal (HC) LFP with simultaneous behavioral tracking, we 
show for the first time that HC synchronization in the delta frequency 
band (1-4 Hz) is related to animals’ locomotor behaviors during free 
exploration and foraging in an open field environment. In contrast to 
well-established relationships between animals’ running speeds and 
the theta rhythm (6-10 Hz), we found that delta was most prominent 
when animals were stationary or moving slowly (i.e. when theta and 
fast gamma (65-120 Hz) were weak). Furthermore, delta synchroniza-
tion often developed rapidly when animals paused briefly between 
intermittent running bouts.
Next, we developed an innovative strategy for identifying putative 
modes of network function based on the spectral content of the LFP. 
By applying hierarchical clustering algorithms to time-windowed 
power spectra throughout behavioral sessions (i.e. the spectrogram), 
we categorized moment-by-moment estimations of the power 
spectral density (PSD) into spectral modes of HC activity. That is, we 
operationalized putative functional modes of network computation as 
spectral modes of LFP activity. Delta and theta power were strikingly 
orthogonal across the resultant spectral modes, suggesting the pos-
sibility that delta- and theta-dominated hippocampal activity patterns 
represent distinct modes of HC function during navigation. Delta and 
theta were also remarkably orthogonal across precisely-defined bouts 
of running and stationary behavior, indicating that the stops-and-
starts that compose rats’ locomotor trajectories are accompanied by 
alternating delta- and theta-dominated HC states.
We then asked whether the incidence of delta and theta modes was 
related to the coherence between recording sites in hippocampus 
or between hippocampus and medial prefrontal cortex (mPFC). We 
found that intrahippocampal coherences in both the delta-band 
and the theta-band were monotonically related to theta-delta ratios 
across modes. Furthermore, in two rats implanted with dual-site 
recording arrays, we found that theta coherence between HC and 
mPFC increased during running, and delta-band coherence between 
mPFC and HC increased during stationary bouts. Taken together, 
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our findings suggest that delta-dominated network modes (and cor-
responding mPFC-HC couplings) represent functionally-distinct 
circuit dynamics that are temporally and behaviorally interspersed 
among theta-dominated modes during spatial navigation. As such, 
delta modes could play a fundamental role in coordinating mne-
monic functions including encoding and retrieval mechanisms, or 
decision-making processes incorporating prospective or retrospec-
tive representations of experience, at a timescale that segments event 
sequences within behavioral episodes.
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Electrical conduction in brain tissue is commonly modeled using clas-
sical bidomain models. These models fundamentally assume that the 
discrete nature of brain tissue can be represented by homogenized 
equations where the extracellular space, the cell membrane, and 
the intracellular spare are continuous and exist everywhere. Con-
sequently, they do not allow simulations highlighting the effect of a 
nonuniform distribution of ion channels along the cell membrane or 
the complex morphology of the cells. In this talk, we present a more 
accurate framework for cerebral electrodiffusion with an explicit rep-
resentation of the geometry of the cell, the cell membrane and the 
extracellular space. To take full advantage of this framework, a numeri-
cal solution scheme capable of efficiently handling three-dimensional, 
complicated geometries is required. We propose a novel numerical 
solution scheme using a mortar finite element method, allowing for 
the coupling of variational problems posed over the non-overlapping 
intra and extracellular domains by weakly enforcing interface condi-
tions on the cell membrane. This solution algorithm flexibly allows for 
arbitrary geometries and efficient solution of the separate subprob-
lems. Finally, we study ephaptic coupling induced in an unmyelinated 
axon bundle and demonstrate how the presented framework can give 
new insights in this setting. Simulations of 9 idealized, tightly packed 
axons show that inducing action potentials in one or more axons 
yields ephaptic currents that have a pronounced excitatory effect on 
neighboring axons, but fail to induce action potentials there [1].
Acknowledgements: This project has received funding from the 
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Spontaneous, synchronized activity is a well-established feature of 
cortical networks in vitro and in vivo. The landmark of this activity is the 
repetitive emergence of bursts propagating across networks as spa-
tio-temporal patterns. Cortical bursts are governed by excitatory and 
inhibitory synapses via AMPA, NMDA and  GABAA receptors. Although 

spontaneous activity is a well-known phenomenon in developing net-
works, its specific underlying mechanisms in health and disease are 
not fully understood. In order to study the synaptic mechanisms regu-
lating the propagation of cortical activity it is important to combine 
the experimental wet-lab studies with in silico modeling and build 
detailed, realistic, computational models of cortical network activ-
ity. Moreover, experimental studies and analysis of microelectrode 
array (MEA) data are not typically designed to support computational 
modeling. We show here how the synaptic AMPA, NMDA and  GABAA 
receptors shape the initiation, propagation and termination of the cor-
tical burst activity in rodent networks in vitro and in silico and develop 
model-driven data analysis workflow to support the development of 
spiking and biophysical network models in silico [1].
We created a model-driven data analysis workflow with multiple steps 
to examine the contributions of synaptic receptors to burst dynamics 
both in vitro and in silico neuronal networks (Fig. 1). First, the corti-
cal networks were prepared from the forebrains of the postnatal rats 
and maintained on MEA plates. Second, network-wide activity was 
recorded by MEA technique under several pharmacological conditions 
of receptor antagonists. Third, multivariate data analysis was con-
ducted in a way that supports both neurobiological questions as well 
as the fitting and validation of computational models to quantitatively 
produce the experimental results. Fourth, the computational models 
were simulated with different parameters to test putative mechanisms 
responsible for network activity.

Fig. 1 Model‑driven data analysis workflow for discovering synaptic 
mechanisms underlying the propagation of cortical activity in vitro 
and in silico

The experimental results obtained in this study show that AMPA 
receptors initiate bursts by rapidly recruiting cells whereas NMDA 
receptors maintain them.  GABAA receptors inhibit the spiking fre-
quency of AMPA receptor-mediated spikes at the onset of bursts 
and attenuate the NMDA receptor-mediated late phase. These find-
ings highlight the importance of both excitatory and inhibitory syn-
apses in activity propagation and demonstrate a specific interaction 
between AMPA and  GABAA receptors for fast excitation and inhibition. 
In the presence of this interaction, the spatio-temporal propagation 
patterns of activity are richer and more diverse than in its absence. 
Moreover, we emphasize the systematic data analysis approach with 
model-driven workflow throughout the study for comparison of 
results obtained from multiple in vitro networks and for validation of 
data-driven model development in silico. A well-defined workflow can 
reduce the amount of biological experiments, promote more reliable 
and efficient use of the MEA technique, and improve the reproducibil-
ity of research. It helps reveal in detail how excitatory and inhibitory 
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synapses shape cortical activity propagation and dynamics in rodent 
networks in vitro and in silico.
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Background: Neural activity organizes in constantly evolving spati-
otemporal patterns of activity, also known as brain waves [1]. Indeed, 
wave-like patterns have been observed across multiple neuroimaging 
modalities and across multiple spatiotemporal scales [2-4]. However, 
due to experimental constraints most attention has thus far been 
given to localised wave dynamics in the range of micrometers to a 
few centimeters, rather than at the global or large-scale that would 
encompass the whole brain. Existing toolboxes [2,4] are geared par-
ticularly for 2D spatial domains (e.g., LFPs or VSDs on structured rec-
tangular grids). No tool exists to study spatiotemporal waves naturally 
unfolding in 3D+t as recorded with different non-invasive neuroim-
aging techniques (e.g, EEG, MEG, and fMRI). In this work, we present 
results of using our toolbox neural flows (Fig. 1).

Fig. 1 The toolbox has five main capabilities. In the core module: 
interpolation; 1 estimation of flows; 2 detection of singularities; and, 
in the analysis module: 3 classification, 4 quantification and tracking 
of singularities; and, 5 classification of large‑scale patterns with modal 
decomposition

Methods and Results: Our toolbox handles irregularly sampled data 
such as those produced via brain network modelling [5,6] or source-
reconstructed M/EEG, and regularly sampled data such as voxel-based 
fMRI. The toolbox performs the following steps: 1) Estimation of neu-
ral flows [5,7]. 2) Detection of 3D singularities (i.e., points of vanishing 
flow). 3) Classification of 3D singularities. In that regard, the key flow 
singularities detected so far had been sources and sinks (from where 
activity emerges and vanishes, respectively), but no methods or tools 
existed to detect 3D saddles (around which activity is redirected to 
other parts of the brain). 4) Quantification of singularity statistics. 5) 
Finally, modal decomposition of neural flow dynamics. This decom-
position allows for the detection and prediction of the most common 
spatiotemporal patterns of activity found in empirical data.

Conclusions: Representation of neural activity based on singulari-
ties (commonly known as critical points) is essentially a dimensionality 
reduction framework to understand large-scale brain dynamics. The dis-
tribution of singularities in physical space allows us to simplify the com-
plex structure of flows into areas with similar dynamical behavior (e.g., 
fast versus slow, stagnant, laminar, or rotating). For modelling work, this 
compact representation allows for an intuitive and systematic under-
standing of the effects of various parameters in brain network dynam-
ics such as spatial heterogeneity, lesions and noise. For experimental 
work, neural flows enable a rational understanding of large-scale brain 
dynamics directly in anatomical space which facilitates the interpre-
tation and comparison of results across multiple modalities. Toolbox 
capabilities are presented in the accompanying figure. Watch this space 
for the open-source code: https://github.com/brain-modelling-group.
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Central Pattern Generators (CPG) generate and coordinate motor 
movements by producing rhythms composed of patterned sequences 
of activations in their constituent neurons. These robust rhythms are 
yet flexible and the time intervals that build the neural sequences 
can adapt as a function of the behavioral context. We have recently 
revealed the presence of robust dynamical invariants in the form of 
cycle-by-cycle linear relationships between two specific intervals of 
the crustacean pyloric CPG sequence and the period [1]. Following 
the same strategy, the present work characterizes the intervals that 
build the rhythm and the associated sequence of the feeding CPG 
of the mollusk Lymnaea Stagnalis. The study entails both the activ-
ity obtained in electrophysiological recordings of living neurons and 
the rhythm produced by a realistic conductance-based model. The 
analysis reported here first assesses the quantification of the variabil-
ity of the intervals and the characterization of relationships between 
the intervals that build the sequence and the period, which allows 
the identification of dynamical invariants. To induce variability in the 
CPG model, we use current injection ramps in individual CPG neurons 
following the stimulation used in experimental recordings in [2]. Our 
work extends previous analyses characterizing the Lymnaea feeding 
CPG rhythm from experimental recordings and from modeling studies 
by considering all intervals that build the sequence [3]. We report the 
presence of distinct variability in the sequence time intervals and the 
existence of dynamical invariants, which depend on the neuron being 
stimulated. The presence of dynamical invariants in CPG sequences, 
not only in the model but also in two animal species, points out the 
universality of this phenomena.
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The human connectome has a complex topology that is thought to ena-
ble adaptive function and behaviour. Yet the mechanisms leading to the 
emergence of this topology are unknown. Generative models can shed 
light on this question, by growing networks in silico according to specific 
wiring rules and comparing properties of model-generated networks 
to those observed in empirical data [1]. Models involving trade-offs 
between the metabolic cost and functional value of a connection can 
reproduce topological features of human brain networks at a statistical 
level, but are less successful in replicating how certain properties, most 
notably hubs, are spatially embedded [2,3]. A potential reason for this 
limited predictive ability is that current models assume a fixed geometry 
based on the adult brain, ignoring the major changes in shape and size 
that occur early in development, when connections form.
To address this limitation, we developed a generative model that 
accounts for developmental changes in brain geometry, informed 
by structural MRIs obtained from a public database of foetal scans 
acquired from 21–38 weeks gestational age [4]. We manually seg-
mented the cortical surface of each brain and registered each surface 
to an adult template surface using Multimodal Surface Matching [5,6]. 
This procedure allowed us to map nodes to consistent spatial loca-
tions through development and measure how distances between 
nodes (a proxy for connectome wiring cost) change through devel-
opment. We evaluated the performance of classic trade-off models 
[2] that either assume a fixed, adult brain geometry (static), or those 
where cost-value trade-offs dynamically change in accordance with 
developmental variations in brain shape and size (growth). We used 
connectomes generated from 100 healthy adults with diffusion MRI to 
benchmark model performance. Model fit was calculated by compar-
ing model and empirical distributions of topological properties. An 
optimisation procedure was used to find the optimal parameters and 
best-fitting models for each individual adult brain network [2]. For fair 
comparison of model fit across models of varying parametric complex-
ity, we used a leave-one out cross-validation procedure.
Spatial models (sptl; which include only distance information) produced 
poorer fits than those involving distance–topology trade-offs. Homo-
phily models (matching, neighbours; where connections form between 
nodes with common neighbours) were among the best fitting. Growth 
models produced slightly better fits than static models overall. These 
results still generally held when the cross-validation procedure was 
employed (Fig. 1a). Neither growth nor static models reproduced the 
spatial topography of network hubs, but growth models are associated 
with a less centralized anatomical distribution of hubs across the brain, 
which is more consistent with the empirical data (Fig. 1b).

Fig. 1 a Cross‑validation results for static and growth models. Differ‑
ent models are shown on the x‑axis and the shading of the boxplot 
indicates the model type: static models are darker while growth 
models are lighter. b Hub distribution under different models. The 
size and colour show the degree of each node (blue/small indicates a 
low degree node, red/large indicates a high degree node)

In summary, we introduce a new framework for examining how devel-
opmental changes in brain geometry influence brain connectivity. Our 
results suggest that while such changes influence network topology, 
they are insufficient to explain how complex connectivity patterns 
emerge in brain networks.

References
1. Betzel RF, Bassett DS. Generative models for network neuroscience: pros‑

pects and promise. Journal of The Royal Society Interface. 2017; 14(136): 
20170623.

2. Betzel RF, et al. Generative models of the human connectome. Neuroimage. 
2016; 124: 1054‑64.

3. Zhang X, et al. Generative network models identify biological mechanisms of 
altered structural brain connectivity in schizophrenia. bioRxiv. 2019; 604322.

4. Gholipour A, et al. A normative spatiotemporal MRI atlas of the fetal brain 
for automatic segmentation and analysis of early brain growth. Scientific 
Reports. 2017; 7: 476.

5. Robinson EC, et al. MSM: a new flexible framework for multimodal surface 
matching. Neuroimage. 2014; 100: 414‑426.

6. Robinson EC, et al. Multimodal surface matching with higher‑order smooth‑
ness constraints. Neuroimage. 2018; 167: 453‑465.

O13 
Cortical integration and segregation explained by harmonic modes 
of functional connectivity
Katharina  Glomb1, Gustavo  Deco2, Morten L  Kringelbach3, Patric 
 Hagmann4, Joel  Pearson5, Selen  Atasoy3

1Centre Hospitalier Universitaire Vaudois, Department of Radiology, 
Lausanne, Switzerland; 2Universitat Pompeu Fabra, Barcelona, Spain; 
3University of Oxford, Department of Psychiatry, Oxford, United Kingdom; 
4University Hospital of Lausanne and University of Lausanne, Department 
of Radiology, Lausanne, Switzerland; 5University of New South Wales, 
School of Psychology, Sydney, Australia
Correspondence: Katharina Glomb (katharina.glomb@upf.edu) 
BMC Neuroscience 2020, 21(Suppl 1):O13

The idea that harmonic modes - basis functions of the Laplace operator 
- are meaningful building blocks of brain function are gaining attention 
[1–3]. We extracted harmonic modes from the Human Connectome Pro-
ject’s (HCP) dense functional connectivity (dFC), an average over 812 par-
ticipants’ resting state fMRI dFC matrices. In this case, harmonic modes 
give rise to functional harmonics. Each functional harmonic is a connec-
tivity gradient [4] that is associated with a different spatial frequency, and 
thus, functional harmonics provide a frequency-ordered, multi-scale, 
multi-dimensional description of cortical functional organization.
We propose functional harmonics as an underlying principle of inte-
gration and segregation. Figure 1a shows 2 functional harmonics on 
the cortical surface. In harmonic 11 (ψ11), the two functional regions 
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that correspond to the two hands are on opposite ends of the gradi-
ent (different colors on the surface) and are thus functionally segre-
gated. In contrast, in harmonic 7 (ψ7), the two areas are on the same 
end of the gradient, and are thus integrated. This way, functional har-
monics explain how two brain regions can be both functionally inte-
grated and segregated, depending on the context.

Fig. 1 a Specialized brain regions emerge from continuous gradients 
in multiple dimensions. In this example, somatotopic areas arise 
from functional harmonics 3 and 11. b Certain functional harmonics 
(here, functional harmonic 8) capture retinotopy. Vertices in V1‑V4 are 
plotted in retinotopic space [6] in the same colors as on the flattened 
surface of the early visual cortex

Figure 1a illustrates how specialized areas emerge from the smooth 
gradients of functional harmonics: the two hand areas occupy well-
separated regions of the space spanned by ψ7 and ψ11. Thus, func-
tional harmonics unify two perspectives, a view where the brain is 
organized in discrete modules, and one in which function varies grad-
ually [4].
The borders drawn on the cortex correspond to functional areas in the 
HCP’s multimodal parcellation [5]. In this example, the isolines of the 
gradients of the functional harmonics follow the borders. We quanti-
fied how well, in general, the first 11 functional harmonics follow the 
borders of cortical areas by comparing the variability of the functional 
harmonics within and between the areas given by the HCP parcella-
tion; i.e. we computed the silhouette value (SH), averaged over all 360 
cortical areas. The SH lies between 0 and 1, where 1 means perfect 
correspondence between isolines and parcels. We found average SHs 
between 0.65 (ψ10) and 0.85 (ψ1), indicating a very good correspond-
ence. Thus, functional harmonics capture the “modular perspective” of 
brain function.
On the other hand, several functional harmonics are found to cap-
ture topographic maps and thus, gradually varying function. One 
important example is retinotopic organization of the visual cortex. 
Figure 1b shows functional harmonic 8 (ψ8) as an example in which 
both angular and eccentricity gradients are present [6]. Topographic 
organization is also found in the somatosensory/motor cortex, known 
as somatotopy. This is shown in Figure 1a, where several somatotopic 
body areas are reproduced.
Taken together, our results show that functional specialization, 
topographic maps, and the multi-scale, multi-dimensional nature of 
functional networks are captured by functional harmonics, thereby 
connecting these empirical observations to the general mathematical 
framework of harmonic eigenmodes.
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The broad concept of emergence is instrumental in various key open 
scientific questions – yet, few quantitative theories of what constitutes 
emergent phenomena have been proposed. We introduce a formal 
theory of causal emergence in multivariate systems, which studies 
the relationship between the dynamics of parts of a system and mac-
roscopic features of interest. Our theory provides a quantitative 
definition of downward causation, and introduces a complementary 
modality of emergent behaviour, which we refer to as causal decou-
pling. Moreover, we provide criteria that can be efficiently calculated 
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in large systems, making the theory applicable in a range of practical 
scenarios. We illustrate our framework in a number of case studies, 
including Conway’s Game of Life and ECoG data from macaques dur-
ing a reaching task, which suggest that the neural representation of 
motor behaviour may be causally decoupled from cortical activity.
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Understanding the circuits of recognition is essential to build a deeper 
understanding of virtually all of the brains behaviors and circuits.
The goal of this work is to capture simultaneous findings on both the 
neural and behavioral levels, namely Network Wide Bursting (NWB) 
dynamics with surprise (unexpected inputs), using a hypothesized rec-
ognition circuit based on the idea of homeostasis flow.
If real neural brains at a resting state are presented with an unex-
pected or new stimulus, the brain network shows a fast network-wide 
increase in activation (NWB of many neurons) followed by a slower 
inhibition, until the network settles again to a resting state. Bursting 
phenomena during recognition is found ubiquitously in virtually every 
type of organism, within isolated brain dissections and even neural 
tissue grown in a dish (Fig. 1). Its source and function remain poorly 
understood. Behavioral manifestation of surprise can be observed if 
the input is much unexpected and may involve multiple brain regions.

Fig. 1 Network‑Wide Bursting. Left: A 26 node Homeostatic network 
trained on MNIST digit recognition data & its response to a numeral 
digit 1 presented at time 0. The nodes for all digits 0‑9 briefly burst 
but then settle down, leaving only node 1 active. Right: example neu‑
ron recordings from audio cortex & surrounding regions in response 
to sound stimuli (modified from Lakatos et al. 2005)

The homeostatic flow model posits that activation from inputs is bal-
anced with top down pre-synaptic regulatory feedback from output 
neurons. Information is projected from inputs to outputs with for-
ward connections then back to inputs with backwards homeostatic 
connections which inhibits the inputs. This effectively acts to balance 
the inputs & outputs (homeostasis) and generates an internal error-
dependent input. This homeostatic input is then projected again to 
outputs and back again until output values relate recognition. This 
occurs during recognition and no weights are learned.
When a surprise or unexpected input stimulus is presented, NWB 
occurs because the homeostatic balance is disturbed with the new 
stimulus. The system subsequently calms down as it settles back to a 
new homeostasis.

In comparing to existing models, this circuit is different from Adap-
tive Resonance Theory because: 1) no lateral connections are required 
(inhibitory or otherwise) 2) all neurons feed backwards pre-synapti-
cally at the same time 3) there is no vigilance parameter. It is different 
from Hopfield networks because instead of top-down feedback being 
positive, it is negative (inhibitory & homeostatic). This changes the 
functions and dynamics of the model making it stable: its dynamics 
eventually converge to steady state as long as inputs do not change.
The homeostatic feedback should not be confused with error of learn-
ing algorithms since: 1) it is implemented during recognition 2) does 
not adjust any weights at any time 3) not generated using training 
data. It is different from generative and predictive coding models 
because 1) it is primarily used during recognition not learning 2) the 
generative and recognition components are inseparable and con-
tained within a single integrated homeostatic circuit.
The network is connectionist but approximates a Bayesian network 
by: 1) homeostatic weights are roughly equivalent to Bayesian likeli-
hood values 2) output values can behave as Bayesian priors if they are 
maintained externally or if inputs suddenly change. Maintaining priors 
changes circuit recognition and dynamics without changing weights.
Learning can be achieved with simple Hebbian learning, obtaining 
weights that are similar to Bayesian likelihood. Both directions of the 
homeostatic process learn the same weights. Single layer learning is 
demonstrated with standard MNIST digits while capturing the neural 
findings of NWB.
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Given the ability to record spike trains from populations of neurons, a 
natural aim in neuroscience is to infer properties of synapses, includ-
ing connectivity maps, from such recordings. These inferences can 
derive from observations of strong millisecond-timescale correlations 
among spike train pairs, as typically reflected by a sharp, short-latency 
peak in the causal direction of cross-correlograms (CCG) between 
the reference and target neurons. However, such sharp peaks may 
also occur when two disconnected neurons systematically fire close 
together in time in the absence of a direct monosynaptic connection. 
A further confound is that a monosynapse likely influences the post-
synaptic cell on broader timescales as well. These observations moti-
vate a systematic analysis of how a monosynapse exerts influence on 
the intrinsic dynamics of its postsynaptic target and how this affects 
the properties of the CCG and the ability to infer the monosynaptic 
properties. In previous work [1], we adapted a statistical framework 
for monosynaptic inference based on a (statistical) separation-of-time-
scale principle, in which monosynaptic interactions are systematically 
assumed to drive spike-spike correlations at finer timescales than non-
monosynaptic interactions. We examined this principle in a simplified 
ground truth neuron model with minimal intrinsic dynamics, such as 
the leaky integrate-and-fire (LIF) model with an adaptive threshold. In 
this work, we extend these ideas to more realistic models and multi-
ple time scales. We use a generalized LIF model with two-dimensional 
subthreshold dynamics and multiple (dynamic) time scales. The model 
describes the nonlinear dynamics of the voltage and a slower adapta-
tion gating variable. These subthreshold dynamics also describe the 
onset of spikes, but not the spiking dynamics. Spikes are added manu-
ally. Our previous work exploited our ability to study counterfactual 
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causal inferences in simulations. For example, in simulations with two 
neurons and comodulated noise, how much would the peak of the 
CCG change if the monosynapse were deleted? Here we extend this 
approach to the more complex models where the properties of the 
CCG are affected by the model nonlinearities and time scales. In this 
scenario, the model’s slow time scale (captured by the adaptation time 
constant) affects the CCG time scales (an emergent property of the 
monosynaptic interaction). Finally, we assess how bias induced by the 
separation-of-timescale principle (in the statistical sense) depends on 
the intrinsic dynamics of postsynaptic cells, in particular on the separa-
tion of time scales in the dynamic modeling sense.
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In linear dynamical systems, one has an elegant way to analyze the 
system’s dynamics using a network representation of the state tran-
sition matrix, obtained from a state space formulation of the system 
of ODEs. However, in non-linear systems, there is no state space for-
mulation to begin with. In recent work, we have established a corre-
spondence between non-linear dynamical systems and higher-order 
networks [1] (see also [2]). The latter refer to graphs that include links 
between nodes and edges, as well as links between two edges. It turns 
out that such networks have a rich structure capable of representing 
non-linearities in the vector field of dynamical systems. To do this, one 
has to first dimensionally unfold a system of non-linear ODEs such that 
non-linear terms in the vector field can be re-expressed using auxiliary 
dynamical variables. This results in an unfolded dynamical system with 
only polynomial non-linearities. This operation works for a large class 
of non-linear systems. It turns out that once we have a polynomial vec-
tor field, the system can then be expressed in generalized state space 
form. This is what ultimately admits a graphical representation of the 
system. However, the resulting graph consists of higher-order edges. 
This generalizes the more common usage of networks with dyadic 
edges to networks with compounded edges. Here, we show an appli-
cation of these graphs to analyze neural networks built from sigmoidal 
rate models as well as mean-field models. Higher-order graphs enable 
one to systematically decompose contributions of various non-linear 
terms to the dynamics as well as analyze stability and control of the 
system using network properties.
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Atypical neural activity and structural network changes have been 
detected in the brains of autism spectrum disorder (ASD) [1]. It has 
been hypothesized that an imbalance in the activity of excitatory and 
inhibitory neurons causes the pathological changes in autistic brains, 
denoted by the E/I balance hypothesis [2]. In this study, we investigate 

the effect of E/I balance on the self-organization of network connec-
tivity and neural activity using a model approach. Our model follows 
the Izhikevich spiking neuron model [3], and consists of three neuron 
groups, each composed of 800 excitatory neurons and NI inhibitory 
neurons (Fig. 1A). Each excitatory neuron had 100 intraconnections 
with randomly selected neurons in the same neuron group, and 42 
inter-connections with randomly selected neurons in its neighboring 
neuron group. These synaptic weights were modified using the Spike-
timing-dependent plasticity rule [3]. Each inhibitory neuron had 100 
intraconnections with randomly selected excitatory neurons in the 
same neuron group, but they did not have any interconnections nor 
plasticity. We simulated the model with different and inhibitory syn-
aptic weights (WI) in one neuron group (neuron group 1 in Fig. 1A) to 
change the degree of inhibition in the neuron group. NI and WI in the 
other groups (2 and 3 in Fig. 1A) were set to 200 and -5, respectively. 
The simulation results show greater intraconnections in all neuron 
groups when NI and WI were lower values, i.e., the E/I ratio increased 
compared to those in the typical E/I ratio (Fig. 1B). Moreover, asym-
metric interconnections between neuron groups emerged where 
the synaptic weights from neuron groups 2 to 1 were higher than 
when the connectivity was in the opposite direction (Fig. 1C), where 
the E/I ratio was found to increase. Furthermore, the phase coher-
ence between the average potentials of neuron groups was found 
to be weak with an increased E/I ratio (Fig. 1D). These results indicate 
that the disruption of the E/I balance, especially the weak inhibitory, 
induces excessive local connections and asymmetric intergroup con-
nections. Therefore, the synchronization between neuron groups 
decreases, i.e., there is a weak long-range functional connectivity. 
These results suggest that the E/I imbalance might cause strong local 
anatomical connectivity and weak long-range functional connectivity 
in the brains of ASD [1].

Fig. 1 Model overview and results. A A model consisting of neuron 
groups. Neuron group 1 has controlled inhibitory neurons and does 
not directly connect with neuron group 3. B Average weights of intra‑
connections in each neuron group after self‑organization. C Average 
weights of interconnections among neuron groups after self‑organi‑
zation. D Phase coherence between neuron groups 1 and 3
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The circadian clock in organisms produces oscillations in neural and 
physiological functions with an intrinsic period on the order of the 
24-hour circadian day. The circadian clock, controlled by the suprachi-
asmatic nucleus (SCN) in the brain, is entrained by light-dark cycles, so 
that organisms synchronize these essential oscillations with external 
conditions. The clock has been studied extensively in flies and yeast, 
among other species, with intrinsic periods ranging from 22-26 hours 
[1], and a fairly limited range of entrainment to external light-dark 
cycles. Interestingly, our previous work has shown that spiders have a 
significantly wider range of intrinsic periods, from 19-30 hours, and an 
ability to entrain to a much wider range of applied external light-dark 
cycles. To identify a potential mechanism for the unusual circadian 
clock in spiders, we have developed a mathematical model for the 
spider circadian clock which incorporates negative feedback. We have 
used the model to investigate two possible mechanisms for the wide 
range of entrainment in spiders. First, light could be a ‘strong stimulus’ 
which acts powerfully on a circadian clock of typical strength. Second, 
the circadian clock in spiders could be ‘weak’, i.e., not as robust to per-
turbations, relative to that of other species. To distinguish between 
these two mechanisms, a bifurcation analysis of the model has been 
performed, as shown in the figure (Fig. 1). Our model makes several 
testable predictions. In the ‘strong stimulus’ scenario, we predict a 
faster onset of locomotor activity for spiders with shorter intrinsic cir-
cadian periods with a change in the applied light cycle, and a slower 
onset of locomotor activity for spiders with longer intrinsic periods. 
In addition, the ‘strong stimulus’ scenario could often lead to a lack of 
locomotor activity in constant light. In contrast, the ‘weak clock’ sce-
nario predicts a strong dependence of entrainment on the light inten-
sity, and that, once achieved, entrainment would lead to an increase in 
the amplitude of model oscillations. The balance of our computational 
modeling and experimental results currently favors the weak clock 
scenario.

Fig. 1 Bifurcation diagram of circadian clock model identifying weak, 
medium, and strong regimes
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In experiments with stimuli, we often wish to assess changes in con-
nectivity between neurons as the experiment progresses. There are a 
number of methods for assessing connectivity with a variety of draw-
backs, but it is not clear that these methods are connected to one 
another. Furthermore, it is not clear that these functional connectivi-
ties are connected to real synaptic connectivities. We present some 
evidence that functional connectivities from two disparate methods 
(Conditional Firing Probability analysis and Maximum Entropy analy-
sis) and synaptic connectivities in one dynamical model (that of leaky 
integrate-and-fire neurons) are all related. 

Fig. 1 The predicted Ji,j + Jj,I is compared to the true Ji,j + Jj,I for 
a recording of spontaneous activity from a neuronal culture. Only 
excitatory connections are included. The analytic expression requires 
that Δt be sufficiently small, and here Δt is 3 ms—not small enough. 
Even so, we see a strong relationship between predictions and meas‑
urements with R = 0.5
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The prefrontal cortex (PFC) plays an important role in executive func-
tions that guide reward-seeking, goal-directed and memory-guided 
behaviours. However, the contribution of specific cell types to the 
activity of broader cortical circuits remains largely unknown. This is 
important to inform accurate computational models of prefrontal 
cortex function. Here, we used high-density multielectrode arrays 
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containing 4,096 closely spaced electrodes to monitor the spiking 
activity of PFC neurons in acute slice preparations. We developed 
spike sorting techniques that combined spline interpolation and 
principal component analysis to distinguish regular-spiking excita-
tory neurons from fast-spiking inhibitory interneurons. Our sorting 
algorithm was validated using a targeted combination of viral and 
optogenetic strategies. By cell-type-specific optogenetic stimulation, 
we described how parvalbumin interneurons regulate the interplay 
between excitation and inhibition. Specifically, we characterized the 
influence of parvalbumin interneurons on network-wide firing rates 
and distance-dependent pairwise correlations within the PFC. These 
results form a key target for computational models that aim to capture 
the interactions between excitation and inhibition in cortical areas.
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Parkinson’s disease motor symptoms are associated with an increase 
in subthalamic nucleus beta band oscillatory power. However, these 
oscillations are phasic, and a growing body of evidence suggests that 
beta burst duration may be of critical importance to motor symptoms, 
making insights into the dynamics of beta bursting generation valu-
able. In this study, we ask the question “Can average burst duration 
reveal how dynamics change between the ON and OFF medication 
states?”. Our analysis of local field potentials from the subthalamic 
nucleus demonstrates using linear surrogates that the system gener-
ating beta oscillations acts in a more non-linear regime OFF medica-
tions and that the change in the degree of non-linearity is correlated 
with motor impairment. We further narrow-down dynamical changes 
responsible for changes in temporal patterning of beta oscillations 
between medication states by fitting to data biologically inspired 
models, and simpler models of the beta envelope (Fig 1). Finally, we 
show that the non-linearity can be directly extracted from average 
burst duration profiles under the assumption of constant noise in 
envelope models, revealing that average burst duration profiles pro-
vide a window into burst dynamics, which may underlie the success 
of burst duration as a biomarker. In summary, we have demonstrated 
a relationship between average burst duration profiles, dynamics of 
the system generating beta oscillations, and motor impairment, which 
puts us in a better position to understand the pathology and improve 
therapies.

Fig. 1 A, B Average burst duration profiles are obtained by comput‑
ing beta envelope average burst duration for a range of thresholds. 
Considering envelope models of the form dXt=‑ µ(Xt)dt + ζdWt, 
where µ is the drift function, W a Wiener process, and ζ a constant 
noise parameter, we illustrate with two examples the link between 
envelope dynamics (C1, C2) and average burst duration profiles (E1, 
E2)
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The Human Brain Project (HBP), the ICT-based Flagship project of 
the EU, is developing EBRAINS - a research infrastructure providing 
tools and services which can be used to address challenges in brain 
research and brain-inspired technology development. EBRAINS will 
allow the creation of the necessary synergy between different national 
efforts to address one of the most challenging targets of research. This 
presentation will illustrate the services of the EBRAINS infrastructure 
with three use cases spanning the immensely diverse neuroscience 
field.
The first case is about Viktoria, a researcher who received a grant to 
investigate the distribution of interneuron types in the cortex and 
their activity under specific conditions. She needs a place to store, 
publish and share the data collected to add to the body of knowledge 
on the human brain. She contacts the HBP service desk and her case is 
forwarded to the data curation team, a part of the EBRAINS High Level 
Support Team. The data curators provide data management support 
and help make her data FAIR by registering it in the Knowledge Graph 
[1] and the Brain Atlas [2]. Her data is stored for 10 years, given a DOI 
to allow citations, and can be used by tools integrated in EBRAINS.
The second case is about Johanna, who has developed a software 
package for the analysis of iEEG data and now wants this tool to be 
used by as many researchers as possible. She contacts the HBP service 
desk and is put in contact with the EBRAINS technical coordination 
team. A co-design process is started together with the co-simulation 
framework developers, and her software is integrated into the simu-
lation and analysis framework. After integration, Johanna’s tool can 
now be used with experimental data as well as to simulated iEEG data. 
Her tool is integrated into the operations framework of EBRAINS and is 
easily deployed on the HPC resources available through EBRAINS.
The third use case is about Jim, a neuroscience professor with a strong 
focus on teaching. After learning about the HBP he explores the 
EBRAINS website and discovers the wide range of educational tools 
available. NEST Desktop (https://github.com/babsey/nest-desktop), 
for instance, is a web accessible interface for spiking neuron net-
works. It allows the creation of a complete simulation with less than 
10 mouse clicks, without the need to install any software. The output 
of the simulation can be then ported to Jupyter notebooks hosted on 
the EBRAINS’ systems to perform additional analysis. The functional-
ity is accompanied with online MOOCs and detailed documenta-
tion to provide him with enough material to fill multiple courses on 
neuroscience.
With the EBRAINS infrastructure the HBP is delivering a set of tools and 
services in support of all aspects of neuroscience research. Get more 
information at: www.ebrains.eu or email the service desk at: support@
ebrains.eu
Acknowledgments: This research has received funding from the 
European Union’s Horizon 2020 Framework Programme for Research 
and Innovation under the Specific Grant Agreement No. 785907 
(Human Brain Project SGA2).

References
1. Amunts K, et al. The Human Brain Project—Synergy between neuroscience, 

computing, informatics, and brain‑inspired technologies. PLoS biology. 
2019; 17(7): e3000344.

2. Bjerke IE, et al. Data integration through brain atlasing: Human Brain Project 
tools and strategies. European Psychiatry. 2018; 50: 70–76.

P10 
Using adaptive exponential integrate‑and‑fire neurons to study 
general principles of patho‑topology of cerebellar networks
Maurizio De  Pitta1, Jose A O  Rodrigues2, Juan  Sustacha3, Giulio  Bonifazi1, 
Alicia Nieto‑Reyes2, Sivan  Kanner4, Miri  Goldin3, Ari  Barzilai5, Paolo 
 Bonifazi3
1Basque Center for Applied Mathematics, Bilbao, Spain; 2University 
of Cantabria, Department of Mathematics, Statistics and Computer 
Science, Santander, Spain; 3BioCruces Health Research Institute, Barakaldo, 
Spain; 4Friedrich Miescher Institute for Biomedical Research, Basel, 
Switzerland; 5Tel Aviv University, Department of Life Sciences, Ramat Aviv, 
Israel
Correspondence: Maurizio De Pitta (maurizio.depitta@gmail.com) 
BMC Neuroscience 2020, 21(Suppl 1):P10

(A-T) is an example of a systemic genetic disease impacting the cer-
ebellar circuit’s structure and function. Kanner et al. [1] have shown 
how the A-T phenotype in mice correlates with severe glial atrophy 
and increased synaptic markers, resulting in altered cerebellar net-
works’ dynamics. In particular, experiments in cerebellar cultures 
showed a disruption of networks’ synchronizations, which were recov-
ered by replacements of A-T glial cells with healthy ones. Notably, the 
only presence of healthy astrocyte was sufficient to restore the physi-
ological synaptic puncta level between mutated neurons. In the intact 
cerebellar circuits, glial morphological alterations and an increase in 
inhibitory synaptic connectivity markers were first reported and cor-
related (preliminary unpublished results) with an increase in the com-
plex spiking of the Purkinje cells (PCs). In order to understand and 
model these structural-functional circuits’ alterations, we developed 
a simplified model of the cerebellar circuit. To this aim, we adopt the 
adaptive Exponential Integrate-and-Fire (aEIF) neuron model in differ-
ent parameter configurations, to capture essential functional features 
of four different cell types: granule cells and excitatory neurons of the 
inferior olive (IONs); Purkinje cells and inhibitory neurons of the Deep 
Cerebellar Nuclei (DPNNs). Next, we explore different degrees of con-
nectivity and synaptic weights, the dynamics of the simplified cerebel-
lar circuitry. Our simulations suggest that the concomitant increased 
number of inhibitory connections from PC to DPNNs, and from DPNNs 
to IONs, ultimately results in a disinhibited IONs dynamics. As a conse-
quence, IONs provide a higher rate of excitation to PCs within the cer-
ebellar loop, which finally leads to higher complex spiking frequency 
in PCs. These results provide new insights into the dysfunctional A-T 
cerebellar dynamics and open a new perspective for targeted pharma-
cological treatments.
Acknowledgements: We thank the ‘Junior Leader’ Fellowship Pro-
gram by ‘la Caixa’ Banking Foundation (Grant LCF/BQ/LI18/11630006).
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Lateral inhibition is a fundamental feature of circuits that process sen-
sory information. In the mouse olfactory system, inhibitory interneu-
rons called short axon cells initially mediate lateral inhibition between 
glomeruli, the functional units of early olfactory coding and process-
ing. However, their interglomerular connectivity and its impact on 
odor representations is not well understood. To explore this question, 
we constructed a computational model of the interglomerular inhibi-
tory network using detailed characterizations of short axon cell mor-
phologies and simplified intraglomerular circuitry. We then examined 
how this network transformed glomerular patterns of odorant-evoked 
sensory input (taken from previously-published datasets) at different 
values of interglomerular inhibition selectivity. We examined three 
connectivity schemes: selective (each glomerulusconnects to few oth-
ers with heterogeneous strength), nonselective (glomeruli connect to 
most others with heterogeneous strength) and or global (glomeruli 
connect to all others with equal strength). We found that both selec-
tive and nonselective interglomerular networks could mediate het-
erogeneous patterns of inhibition across glomeruli when driven by 
realistic sensory input patterns, but that global inhibitory networks 
were unable to produce input-output transformations that matched 
experimental data.
We further studied networks whose interglomerular connectivity was 
tuned by sensory input profile. We found that this network construc-
tion improved contrast enhancement as measured by decorrelation of 
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odor representations. These results suggest that, despite their multi-
glomerular innervation patterns, short axon cells are capable of medi-
ating odorant-specific patterns of inhibition between glomeruli that 
could, theoretically, be tuned by experience or evolution to optimize 
discrimination of particular odorants.
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The presence of neural oscillations is thought to be a hallmark of two 
of the most common movement disorders, Parkinson’s disease (PD) 
and Essential tremor (ET). The symptoms of PD are tremor, slowness 
of movement and stiffness and is caused by the loss of dopaminergic 
neurons in the substantia nigra. Although the pathological changes 
in the basal ganglia network are not yet fully understood, it is widely 
accepted that beta-band (15-30 Hz) oscillations play a role. Essential 
tremor (ET) affects up to one percent of adults over 40 years of age 
and is characterized by an uncontrollable shaking of the affected body 
part [1-3]. The neurophysiological basis of ET remains unknown, but 
pathological neural oscillations in the thalamocortical-cerebellar net-
work are also implicated in generating symptoms.
In our previous network study of PD, we studied how a multi-channel 
model of Wilson-Cowan oscillators representing the STn-GPe behaved 
in healthy and Parkinsonian conditions. We found that oscillations 
exist for a much wider range of parameters in the Parkinsonian case 
and demonstrated how an input representing DBS caused the oscilla-
tions to become chaotic and flattened the power spectrum. Looking at 
ET, we again used a mean-field approach combined with intraopera-
tive local field potential recordings from the Vim via DBS electrodes, 
and simultaneous electromyographic activity from the contralateral 
affected limb(s). We used the Wilson-Cowan approach to model the 
thalamocortical-cerebellar network implicated in ET. We found that 
the network exhibited oscillatory behaviour within the tremor fre-
quency range of 4-5 Hz, as did our electrophysiological data. Applying 
a DBS-like input to the modelled network had the effect of suppress-
ing these oscillations. Our two previous studies therefore show that 
the dynamics of the cerebellar-basal ganglia thalamocortical network 
support oscillations at frequency ranges relevant to movement disor-
ders. The application of a DBS-like input into the modelled networks 
disrupts such pathological activity. We believe that this is an impor-
tant way to study the impact of DBS on the human brain and should 
be used in conjunction with experimental recordings of neural activity 
as well as with single neuron biophysical modelling work.
In this work we present new results from a combined model which 
exhibits Parkinsonian oscillations in the beta band, oscillations in the 
tremor frequency range, as well as oscillations in the gamma band 
which we term healthy [4,5]. We find critical boundaries in the parame-
ter space of the model separating regions with different dynamics. We 
go on to examine the transition from one oscillatory regime to another 
behavior and the impact of DBS on these two types of pathological 
activity. This approach will not only allow us to better understand the 
mechanisms of DBS, but allow us to optimize the lengthy and difficult 
clinical process of parameter setting via trial and error, upon which 
the cited improvement in symptoms is reliant [6,7]. Furthermore, with 
the advent of electrodes with more contacts this process is becoming 
increasingly difficult. Hence, the need for a theoretical understanding 
of DBS is particularly important at present.
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Anatomical projections between cortical areas are known to condition 
the set of observable functional activity in a neural network. The large-
scale cortical monkey frontoparietal network (FPN) has been shown 
to support complex cognitive functions. However, the organization 
of anatomical connectivity between areas in the FPN supporting such 
behavior is unknown. To identify the connections in this network, over 
40 tract-tracing studies were collated according to the Petrides & Pan-
dya [1] parcellation scheme, which provides a higher resolution map 
for the areas making up the FPN than other schemes. To understand 
how this structural profile can give rise to cognitive functions, a graph 
theoretic investigation was conducted in which the FPN’s degree dis-
tribution, structural motifs and small-worldness were analyzed. We 
present a new connectivity matrix detailing the anatomical connec-
tions between all frontal and parietal areas of the parcellation scheme. 
First, this matrix was found to have in and out-degree distributions 
that did not follow a power-law. Instead they were each best approxi-
mated by a Gaussian distribution, signifying that the connectivity of 
each area in the FPN is relatively similar and that it does not rely on 
hubs. Second, the dynamical relay motif, M9, was found to be over-
represented in the FPN. This 3-node motif is the optimal arrangement 
for near-zero and non-zero phase synchrony to propagate through 
the network. Finally, the FPN was found to utilize a small-world archi-
tecture. This allows for simultaneous integration and specialization of 
function. Important aspects of cognition such as attention and work-
ing memory have been shown to require both integration and spe-
cialization in order to function properly using near-zero and non-zero 
phase synchrony. Further, they benefit from the reliability afforded 
by the FPN’s homogenous connectivity profile which acts as a sub-
strate resilient to targeted structural insult but vulnerable to a random 
attack. This suggests the diseases that impair cognitive function sup-
ported by the FPN may owe their effectiveness to a random attack 
strategy. These findings provide a candidate topological mechanism 
for the synchrony observed during complex cognitive functions in the 
M9 dynamical relay motif. The results also serve as a benchmark to be 
used in the network-level treatment of neurological disorders such as 
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Alzheimer’s or Parkinson’s disease where the types of cognition the 
FPN supports are impaired. Finally, they can inform future neuromor-
phic circuit designs which aim to perform certain aspects of cognition.
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Neuronal avalanches are one of the key characteristic features of sig-
nal propagation in the brain [1]. These avalanches originate from the 
complexity of the network of neurons and synapses, which are widely 
believed to form a self-organised critical system. Criticality is hypoth-
esised to be intimately linked to the brain’s computational power [2,3] 
but efforts to achieve neuromorphic computation have so far focused 
on highly organised architectures, such as integrated circuits [4] and 
regular arrays of memristors [5]. To date, little attention has been 
given to developing complex network architectures that exhibit criti-
cality and thereby maximise [6] computational performance. We show 
here, using methods developed by the neuroscience community [7], 
that electrical signals from self-organised percolating networks of 
nanoparticles [8] exhibit brain-like correlations and criticality [9]. Spe-
cifically, the sizes and durations of avalanches of switching events are 
power-law distributed, and the power-law exponents satisfy rigorous 
criteria for criticality. Additionally we show that both the networks and 
their dynamics are scale-free. These networks provide a low-cost plat-
form for computational approaches that rely on spatiotemporal corre-
lations, such as reservoir computing, and are a significant step towards 
creating neuromorphic device architectures.
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What determines the format of memory representations in cortical net‑
works is a subject of active research. During memory tasks, the retrieval 
of stored memories is characterized either by the persistent elevation in 
the firing rate of a set of neurons (‘persistent activity’) [1] or by ordered 
transient activation of different sets of neurons (‘sequential activity’) [2]. 
Multiple theoretical studies have shown that temporally symmetric Heb‑
bian learning rules give rise to fixed point attractor representation of 
memory (e.g., [3] and references therein), while temporally asymmetric 
learning rules lead to a dynamic sequential representation of memories 
(e.g., [4] and references therein). These studies assume that inputs to the 
network during learning have no temporal correlations.
The sensory information received by brain networks is likely to be tem-
porally correlated. We study temporally asymmetric Hebbian learning 
rules in a recurrent network of rate-based neurons in the presence of 
temporal correlations in the inputs and characterize how the inputs 
shape the network dynamics and memory representation using both 
numerical simulations and mean-field analysis. We show that the 
network dynamics depend on the temporal correlations in the input 
stream the network receives. For inputs with short correlation time-
scale, the network exhibits sequential activity (Fig. 1 A left), while for 
longer correlations within the stream of input, the network settles 
into a fixed point attractor during retrieval (Fig. 1A right). At interme-
diate value of correlations, the network partially traverses the input 
sequence before settling into an attractor state (Fig. 1 A middle). We 
find that correlations increase the sequential memory capacity of the 
network. Non-linear learning rules increase the range of timescale of 
correlation for which the networks represent the memories as sequen-
tial activity in the network (Fig. 1 B). We also show that the network 
maintains a sequential representation, both in the case of sequences 
of discrete patterns and in the continuum limit (Fig. 1 C). Our work 
thus suggests that the correlation time scales of inputs at the time of 
learning have a strong influence on the nature of network dynamics 
during retrieval.

Fig. 1 A The activity of neurons (top) and overlaps with stored pat‑
terns from the simulations and mean‑field theory (bottom), for short, 
intermediate, and long correlation timescale (L to R). Probability of 
sequence retrieval with a linear learning and non‑linear learning rule 
as a function of correlation B and as a function of tau_OU, for differ‑
ent discretizations of a continuous OU process C 
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Lesion and pharmacological studies found that interval timing is the 
emergent property of an extensive neural network that includes the 
prefrontal cortex (PFC), the basal ganglia (BG), and the hippocampus 
(HIP). We used our Striatal Beat Frequency (SBF) model with a large 
number of PFC oscillators to produce beats from the coincidence 
detection performed by BG [1,2]. The response of the PFC-BG neural 
network provides an output that (1) accurately identifies the criterion 
time, i.e., the time at which the reinforcement was presented during 
reinforced trails, and (2) is scalar, i.e., the prediction error is propor-
tional to the criterion time. We found that, although the PFC-BG can 
create beats, the accuracy of the timing depends on the number of 
PRC oscillators and the frequency range they cover [3,4].
The ability to discriminate between multiple durations requires a 
metric space in which durations can be compared. We hypothesized 
that time cells, which were recently discovered in the hippocampus 
and ramp-up their firing when the subject is at a specific temporal 
marker in a behavioral test, can offer a time base for interval timing. 
We expanded the SBF model by incorporating the HIP time cells that 
(1) provide a natural time base, and (2) could be the cellular root of 
the scalar property of interval timing observed in all behavioral experi-
ments (see [5]). Our model of interval timing learning assumes that 
there are two stages of this process. First, during the reinforced trials, 
the subject learns the boundaries of the temporal duration. This pro-
cess is similar to the HIP space cell activity that first forms an accurate 
spatial map of the edges of the environment. Subsequently, the time 
cells are recruited to cover the entire to-be-timed duration uniformly. 
Without any learning rule, i.e., without any feedback from the PFC-BG 
network, the population of time cells simply produces a uniform aver-
age time field. In our computational model, the learning rule requires 
the HIP time cell to adjust their activity to mirror the output of the 
PFC-BG network. A plausible mechanism for the modulation of HIP 
time cell activity could involve dopamine released during the rein-
forced trials. We tested numerically different learning rules and found 
that one of the most efficient in terms of the number of trails required 
until convergence is the diffusion-like, or nearest-neighbor, algorithm.
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We study large networks of Wilson-Cowan neural field systems with 
homeostatic plasticity. These networks have been known to display 
rich dynamical states such consisting of a single recurrently coupled, 
or two cross-coupled nodes [1]. These dynamics include chaos, mixed 
mode oscillations and chaos, and synchronized chaos, even under 
these simple connectivity profiles in small networks. Here, we consider 
these networks with connectomes that display so-called L1 normali-
zation but are otherwise arbitrary under large network limits. We find 
that for the majority of classical connectomes considered (Random, 
Small World), the network displays a large-scale chaotic synchroniza-
tion to the attractor states and bifurcation sequence of a single recur-
rently coupled node as in [1]. However, connectomes that display 
sufficiently large pairs of eigenvalues can trigger multiple Hopf bifur-
cations which can potentially collide in Torus bifurcations that can 
destabilize the synchronized, single node attractor solutions. Our anal-
ysis demonstrates that for Wilson-Cowan systems with homeostatic 
plasticity, the dominant determinant of network activity is not the 
connectome directly, but rather the connectome’s ability to generate 
large eigenvalues that can induce multiple nearby Hopf bifurcations. If 
the connectome cannot generate these large pairs of eigenvalues, the 
dynamics of the network considered become limited to the dynamics 
of a single recurrently coupled node.

Reference
1. Nicola W, Hellyer PJ, Campbell SA, Clopath C. Chaos in homeostatically 

regulated neural systems. Chaos: An Interdisciplinary Journal of Nonlinear 
Science. 2018; 28(8): 083104.

P18 
Inhibitory gating in the dentate gyrus
Claudio  Mirasso1, Cristian  Estarellas1, Santiago  Canals2

1Universitat de les Illes Balears, Instituto de Física Interdisciplinar y Sistemas 
Complejos, Palma de Mallorca, Spain; 2Instituto de Neurociencias, San Juan 
de Alicante, Spain
Correspondence: Claudio Mirasso (claudio@ifisc.uib‑csic.es) 
BMC Neuroscience 2020, 21(Suppl 1):P18

Electrophysiological recordings have demonstrated a tight inhibi-
tory control of hilar interneurons over Dentate Gyrus granule cells 
(DGgc) [1,2]. This excitation/inhibition balance is crucial for informa-
tion transmission [3] and likely relies on inhibitory synaptic plasticity 
[4]. Our experiments show that LTP induction in the Perforant Pathway 
(PP) not only potentiates glutamatergic synapses, but unexpectedly 
decreases feed-forward inhibition in the DG, facilitating activity propa-
gation in the circuit and modifying the long-range connectivity in the 
brain. To investigate this phenomenon, we propose to study a circuit 
of populations of point neurons described by the Izhikevich model. 
The model contains entorhinal cortex (EC) neurons, DGgc, mossy 
cells, basket cells and hilar interneurons. The proportion of neurons 
per population and the connectivity of the neural network is based 
on anatomical published data and is fitted to achieve experimental 
electrophysiological in vivo recordings [2]. The study of the effect of 
LTP in the local circuit of the DG is performed in the model adapting 
synaptic weights in the EC projections. The results obtained from the 
model, before and after LTP induction, support the counterintuitive 
experimental observation of synaptic depression in the feed-forward 
inhibitory connection induced by LTP. We show that LTP increases 
the efficiency of the glutamatergic input to recruit the inhibitory 
network, resulting in a reciprocal cancellation of the basket cell pop-
ulation activity. We validate the result of the model by electrophysi-
ological experiments inducing LTP in the PP of anaesthetized mice 
in vivo and recording excitatory and inhibitory currents in vitro in the 
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same animals. Overall, our findings suggest that LTP of the EC input 
increases the excitation/inhibition balance, and facilitates activity 
propagation to the next station in the circuit by recruiting an interneu-
ron-interneuron network that inhibits the tight control of basket cells 
over DGgc firing.
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The Neuroscience Gateway (NSG) has been serving the computa-
tional neuroscience community since early 2013. Its initial goal was to 
reduce technical and administrative barriers that neuroscientists face 
in accessing and using high performance computing (HPC) resources 
needed for large scale neuronal modeling projects. For this purpose, 
NSG provided tools and software that require and run efficiently on 
HPC resources available as a part of the US XSEDE (Extreme Science 
and Engineering Discovery Environment) program that coordinates 
usage of academic supercomputers. Since around 2017 experimental-
ists such as cognitive neuroscientists, psychologists and biomedical 
researchers started to use NSG for their neuroscience data process-
ing, analysis and machine learning work. Data processing workloads 
are more suitable on high throughput computing (HTC) resources that 
are suitable for single core jobs typically run to process individual data 
sets of subjects. Machine learning (ML) workloads require use of GPUs 
for well-known ML frameworks such as TensorFlow. NSG is adapting 
to respond to the needs of experimental neuroscientists by provid-
ing HTC resources, in addition to already enabling successfully the 
computational neuroscience community for many years by providing 
HPC resources. Data processing focused work of experimentalists also 
require NSG to add various data functionalities, such as ability to trans-
fer/store large data to/on NSG, validate the data, process same data by 
multiple users, publish final data products, visualize the data, search 
the data etc. These features are being add to NSG currently. Separately 
there is a demand from the neuroscience community to make NSG an 
environment where neuroscience tool developers can test, bench-
mark, and scale their newly developed tools and eventually dissemi-
nate their tools via the NSG for neuroscience users.
The poster will describe NSG from its beginning and how it is evolv-
ing for the future needs of the neuroscience community such as: 
(i) NSG has been successfully serving primarily the computational 
neuroscience community, as well as some data processing focused 
neuroscience researchers, until now; (ii) new features are added to 
make it a suitable and efficient dissemination environment for lab-
developed neuroscience tools. These will allow tool developers to 
disseminate their lab-developed tools on NSG taking advantage of 
the current functionalities that are being well served on NSG for the 
last seven years such as a growing user base, an easy user interface, 

an open environment, the ability to access and run jobs on powerful 
compute resources, availability of free supercomputer time, a well-
established training and outreach program, and a functioning user 
support system. All of these well-functioning features of NSG will 
make it an ideal environment for dissemination and use of lab-devel-
oped computational and data processing neuroscience tools; (iii) NSG 
is being enhanced such that it can have more seamless access to HTC 
resources provided by the Open Science Grid (OSG) and commercial 
cloud. This will allow data processing and machine learning oriented 
workloads to be able to take advantage of HTC and cloud resources 
including GPUs; (iv) New data management features are being added 
to NSG and these include the ability to transfer/upload large data, vali-
date uploaded data, share and publish data etc.
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The responses of excitatory pyramidal cells and inhibitory interneu-
rons in cortical networks are shaped by each neuron’s place in the 
network (connectivity of the network) and its biophysical properties 
(ion channel expression [1]), which are modulated by top-down neu-
romodulatory input, including dopamine. Using a recently developed 
ex vivo method [2], we showed that the activation of the D1 receptor 
(D1R) increases the information transfer of fast spiking, but not regular 
spiking, cells, by decreasing their threshold [3]. Moreover, we showed 
that these differences in neural responses are accompanied by faster 
decision-making on a behavioural level. However, how the single-cell 
changes in spike responses result in these behavioural changes is still 
unclear. Here, we aim to bridge the gap between behavioural and sin-
gle cell effects by considering the effects of D1R activation on a net-
work level.
We took a 3-step approach and simulated the effects of dopamine by 
lowering the thresholds of inhibitory but not excitatory neurons:
1) Network construction. We created a balanced network of L2/3 and 

L4 of the barrel cortex, consisting of locally connected integrate-
and-fire neurons. We reconstructed the somatosensory cortex in 
soma resolution ([4], Fig. 1A), and adapted the number and ratio 
of excitatory and inhibitory neurons and the number of thalamic 
inputs accordingly.

2) Activity of the balanced state. The adaptations in the neural popula-
tions and connectivity resulted in a heterogeneous asynchronous 
regime [5] in L2/3, with highly variable single-neuron firing rates 
and suggesting a functional role of stimulus separation, and a ‘clas-
sical’ asynchronous regime in L 4, with more constant firing rates 
and suggestive of an information transmission role (Fig. 1B).

3) Functional effects. We used a spike-based FORCE learning [6,7] 
application, trained on either a gap-crossing task (data from [8]) or 
on a pole detection task (publicly available data from [9], Fig. 1C). 
We compared the results against a benchmark test consisting of a 
3-layer deep neural net with a recurrent layer.
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Fig. 1 A Density of identified cellular populations across the six 
cortical layers. B Effects of the relative number of inhibitory neurons 
on the asynchronous state. Yellow indicates classical asynchronous 
(CA) dynamics, purple indicates a heterogeneous asynchronous (HA) 
regime, white indicates no asynchronous irregular state. C Spiking 
FORCE learning during a pole localization task
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To produce timely responses, animals must conquer delays from 
visual processing pathway by predicting motion. Previous stud-
ies [1] revealed that predictive information of motion is encoded in 
spiking activities of retinal ganglion cells (RGCs) early in the visual 
path. In order to study the predictive properties of a retina in a more 

systematic manner, stimuli in the form of a stochastic moving bar are 
used in experiments with retinas from bull frogs in a multi-electrode 
system. Trajectories of the bar are produced by Ornstein-Uhlenbeck 
(OU) processes with different time correlations (memories) induced by 
a butter-worth low-pass filter with various cut-off frequencies.
We then investigated the predictive properties of single RGC by calcu-
lating the time shifted mutual information (MI(x,r;δt)) between spiking 
output from RGCs and the bar trajectories. Intuitively, the peak posi-
tion of MI(δt) is typically negative when considering the processing 
delay of the retina. Our measured peak positions of MI(δt) for some 
RGCs were characterized by both positive and negative peak position 
under low-pass OU (LPOU) stimulus. This finding indicates that some 
RGCs (P-RGCs) are predictive while the others are non-predictive (NP-
RGCs). For LPOU with various correlation times, the MI peaks from the 
P-RGCs are positively correlated with the correlation times of the stim-
uli while those from the NP-RGCs are always around a fixed negative 
number (-50ms).

Furthermore, we apply principle component analysis [2] on the wave-
forms of stimuli preceding each of the neuron’s spike (spike triggered 
stimuli) to separate spikes into two clusters according to whether 
their projections to principle component are negative or positive. We 
find that predictive information can be extracted from the apparent 
non-predictive NP-RGCs when MI(δt) is obtained with spikes from 
each cluster. This last finding suggests that spikes from a single RGC 
might have different origins. Since the responses (r) from RGCs can 
carry information for both position (x) and velocity (v) of the moving 
bar, we have also performed partial information decomposition [3] for 
the mutual information between r and the combined state {x,v} which 
can be written as I[(x,v):r] = S + Ur + Ux + R where Ur and Ux are the 
unique contribution from x and v respectively while similarly R and 
S are the redundant and synergy contribution. We find that synergy 
from x and v is needed to produce anticipation. A simple spikes gen-
eration model with synergy from x and v is constructed to understand 
our experimental data.

Fig. 1 Two kinds of responses under low‑passed‑OU stimulation 
with different correlation time: Predicting cells (P, solid line) and Non‑
predicting cells (N, dot line)
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Anticipation is important for living organisms to survive. The antici-
pative dynamics is found in retina [1], which can compensate for the 
delay of visual signals during transmission and processing. Responses 
of retinas (r(t)) from bull frogs have been investigated for anticipa-
tive properties in a multi-electrode array system by using whole field 
stochastic stimulations (S(t)) generated by an Ornstein–Uhlenbeck 
(OU) process. Time correlated S(t) can be then created by passing the 
OU signal through a low pass filter with various cutoff frequencies. 
Anticipative properties of the elicited spikes from the retinas are then 
characterized by the method of time lag mutual information (TLMI) 
between r(t) and S(t) [1]. We find that only stimulations with long 
enough correlations can elicit anticipative responses from the retinas; 
similar to the finding of [1] in which information in the stimulation was 
time coded. However, information is being rate coded in the present 
experiment. Recently, Voss [2] proposed that a negative group delay 
filter can produce anticipative response to low-pass filtered random 
signals. To test this idea, it is shown that an NGD filter with appropri-
ate parameters can indeed be used to produce TLMI from S(t) similar 
to those observed in experiments. Furthermore, experiments with 
dark and bright Gaussian light pulses further confirmed that retina 
can be considered as an NGD filter; but only for the dark pulses. This 
last finding and the NGD capability of the retina suggest that there is 
a delayed negative feedback in the off-pathway of the retina. In fact, 
a two neuron-model with delayed negative feedback can be shown 
to produce properties of an NGD filter. Presumably, such mechanism 
might also exist in a retina.
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Calcium ion (Ca2+) elevations produced in the vicinity of single open 
Ca2+ channels are termed Ca2+ nanodomains, and play an important 
role in triggering secretory vesicle exocytosis, myocyte contraction, 
and other fundamental physiological processes. Ca2+ nanodomains 
are shaped by the interplay between Ca2+ influx, Ca2+ diffusion and 
its binding to Ca2+ buffers, which absorb most of the Ca2+ enter-
ing the cell during a depolarization event. In qualitative studies of 
local Ca2+ signaling, the dependence of Ca2+ concentration on the 
distance from the Ca2+ channel source can be approximated with a 
reasonable accuracy by analytic approximations of quasi-stationary 
solutions of the corresponding reaction-diffusion equations. Such 
closed-form approximations help to reveal the qualitative depend-
ence of nanodomain characteristics on Ca2+ buffering and diffusion 
parameters, without resorting to computationally expensive numeri-
cal simulations. Although a range of nanodomain approximations 
had been developed for the case of Ca2+ buffers with a single Ca2+ 
binding site, for example the Rapid Buffer Approximation, the Excess 
Buffer Approximation, and the Linear approximation [1,2], most bio-
logical buffers have more complex Ca2+-binding stoichiometry. 

Further, several important Ca2+ buffers and sensors such as calretinin 
and calmodulin consist of distinct EF-hand domains, each possess-
ing two Ca2+ binding sites exhibiting significant cooperativity in 
binding, whereby the affinity of the second Ca2+ binding reaction 
is much higher compared to the first binding reaction. To date, only 
the Rapid Buffer Approximation (RBA) has been generalized to Ca2+ 
buffers with two binding sties [3]. However, the performance of RBA 
in the presence of cooperative Ca2+ buffers is limited by the com-
plex interplay between the condition of slow diffusion implied by the 
RBA, and the slow rate of the first Ca2+ binding reaction character-
izing cooperative Ca2+ binding. To resolve this problem, we present 
modified versions of several Ansatze recently introduced for the case 
of simple buffers [4], extending them to the case of Ca2+ buffers with 
2-to-1 stoichiometry. These new approximants interpolate between 
the short-range and long-range distance-dependence of Ca2+ nano-
domain concentration using a combination of rational and exponen-
tial functions. We examine in detail the parameter-dependence of the 
approximation accuracy, and show that this method is superior to RBA 
for a wide ranges of buffering parameter values. In particular, the new 
approximants accurately estimate the distance-dependence of Ca2+ 
concentration in the case of calretinin or calmodulin.
Acknowledgements: Supported in part by NSF DMS-1517085 (V.M).
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In order to examine the formation of predictive motor memories, 
typical behavioural motor learning experiments perturb participants 
reaching movements using an external force field, to which they rap-
idly adapt, and exhibit after effects when the force field is removed. 
During the force field adaptation trials (Fig. 1), subjects move their 
hand from the start position (red circle) to the target position (black 
x) while a force field perturbs the movement (strength and direction 
indicated by yellow arrows) causing the hand to move to the final 
position (green circle). After the force field is removed, a washout 
effect is observed. While previous computational models can recreate 
the behavioral results, they do not account for the neural mechanisms 
involved. A computational model including a synaptic mechanism 
can help to explain the processes involved in motor learning. For 
this reason, we developed a bump-attractor, spiking neuron model 
of primary motor cortex (M1) proposing a synaptic mechanism using 
reward-based neurotransmitter release to explain motor adaptation 
and washout.
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Fig. 1 a Schematics of behavioural experiment. b Single trial simula‑
tion: Bump of neuronal activity in the first perturbed trial. c Adapta‑
tion results: Results of the simulations (blue) of error development 
over consecutive trials during adaptation and washout in comparison 
to behavioural data (green) from [1]

The developed model consists of directionally-tuned neurons, shown 
to exist in M1 in biology, that encode the hand position through aver-
age neural firing. The force field is modeled through a simulated, exter-
nal current perturbing the neural activity in the direction of the force 
field. In biology, Norepinephrine is released from locus coreuleus to 
M1 when errors are detected in the visual pathway. Norepinephrine 
affects M1 in a goal-directed manner, increasing the excitatory synaptic 
responses in the so-called hotspot, which is determined by arousal. For 
the model to remain close to biology, adaptation is modeled through an 
error-dependent increase in excitatory to excitatory conductance in the 
target position within the M1 model, leading to a decrease of the per-
turbation on the stable bump of neural activity across trials. Washout is 
implemented through a shift of the hotspot and the accumulated Nor-
epinephrine through a motor-coordinate system shift during force field 
removal. After the initial washout trial, the wrongful coordinate system 
shift is detected and Norepinephrine in the shifted hotspot decays.
The simulations from the proposed computational model qualitatively 
account for both: adaptation and washout as seen in comparison to 
the behavioural data from [1] (Fig. 1). Thus, the model suggests for the 
first time a biologically plausible synaptic mechanism in M1 that can 
explain the main features of motor learning of external dynamics.

Reference
1. Nozaki D, Kurtzer I, Scott S. Limited transfer of learning between unimanual 

and bimanual skills within the same limb. Nature Neuroscience. 2006; 9: 
1364–1366.

P25 
Increased glutamate metabolism in ACC after brief mindfulness 
training: a pilot MR spectroscopy study
Yiyuan  Tang1, Pegah  Askari2, Changho  Choi2
1Texas Tech University, Lubbock, Texas, United States of America; 
2University of Texas Southwestern Medical Center, Advanced Imaging 
Research Center, Dallas, United States of America
Correspondence: Yiyuan Tang (yiyuan.tang@ttu.edu) 
BMC Neuroscience 2020, 21(Suppl 1):P25

Mindfulness training (MT) involves paying attention to the present and 
increasing awareness of one’s thoughts and emotions without judg-
ment and has become a promising intervention for promoting health 
and well-being. Neuroimaging studies have shown its beneficial effects 

on brain functional activity, connectivity, and structures [1-3]. A series 
of RCTs indicated that one form of MT, integrative body-mind train-
ing (IBMT) induces brain functional and structural changes in region 
related to self-control networks such as the anterior cingulate cortex 
(ACC) after 2-10 h of practice [1-3]. However, whether MT could change 
brain metabolism in the ACC remains unexplored. Utilizing a non-inva-
sive proton magnetic resonance spectroscopy (MRS), we conducted 
the first pilot study investigating whether brief IBMT could change the 
excitatory and inhibitory responses of neurotransmitters within the 
ACC [1-3]. Nine healthy college students completed ten 1-hour IBMT 
sessions within 2-week and brain metabolism were assessed before 
and after using a 3T Siemens Prisma scanner. Following survey imaging 
and T1-weighted structural imaging, single-voxel point-resolved spec-
troscopy (PRESS) was conducted for estimating the metabolite concen-
trations in 2 regions - rostral and dorsal ACC based on prior literature 
[1-4]. PRESS scan parameters included TR 2s, TE 90 ms, sweep width 2.5 
kHz, 1024 sampling points, and 256 signal averages. Water suppres-
sion and B0 shimming up to second order were performed with the 
vendor-supplied tools. Reference water signal was acquired for eddy 
current compensation, multi-channel combination, and metabolite 
quantification. Spectral fitting was performed with LCModel software 
[5], using in-house basis spectra of metabolites which were calculated 
incorporating the PRESS slice selective RF and gradient pulses. The 
spectral fitting was performed between 0.5-4.0 ppm. After correct-
ing the LCModel estimates of metabolite signals for the T2 relaxation 
effects using published T2 values [6], the millimolar concentrations of 
metabolites were calculated with reference to water at 42 M. Paired 
t-tests were performed to examine changes. Results indicated a signifi-
cant increase in glutamate metabolism (t = 3.24, p = 0.012), as well as 
Glx (glutamate + glutamine) (t = 2.44, p = 0.041) in the rostral ACC. 
Results indicate that MT may not only increase ACC activity, but also 
may induce neurochemical changes in regions of self-control networks, 
suggesting a potential mechanism of MT’s effects on disorders such as 
addiction and schizophrenia, which often involve the dysfunction of 
glutamatergic system (i.e. lower glutamate metabolism).
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Understanding the recurrent dynamics of cortical circuits engaged in 
complex tasks is one of the central questions in computational neu-
roscience. Most of recent studies train the output of recurrent models 
to per- form cognitive or motor tasks and investigate if the recurrent 
dynamics emerging from task-driven learning can explain neuronal 
data. However, the possible range of recurrent dynamics that can be 
realized within a recurrent model after learning, particularly in a spik-
ing neural network, is not well understood. In this study, we focus on 
investigating spiking network’s capability to learn recurrent dynam-
ics and characterize the learning capacity in terms of network size, 
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intrinsic synaptic decay time and target decay time. We find that, by 
modifying recurrent synaptic weights, spiking networks can generate 
arbitrarily complex recurrent patterns if 1) the target patterns can be 
produced self-consistently, 2) the synaptic dynamics are fast enough 
to track the targets, and 3) the number of neurons in the network is 
large enough for noisy postsynaptic currents to approximate the tar-
gets. We examine spiking network’s learning capacity analytically 
and corroborate the predictions by training spiking networks to learn 
arbitrary patterns and in-vivo cortical activity. Furthermore, we show 
that a trained network can operate in balanced state if the total excita-
tory and inhibitory synaptic weights to each neuron are constrained 
to preserve the balanced network structure. Under such synaptic con-
straints, the trained network generates spikes at the desired rate with 
large trial-to-trial variability and exhibits paradoxical features of inhibi-
tion-stabilized network.
These results show that spiking neural networks with fast synapses 
and a large number of neurons can generate arbitrarily complex 
dynamics. When learning is not optimal, our findings can suggest 
potential sources of learning errors. Moreover, networks can be 
trained in dynamic regime relevant to cortical circuits.
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An individual neuron or neuronal population is conventionally said to 
be “selective” to a feature of stimulus if they differentially respond to 
the feature. Also, they are considered to encode certain information if 
decoding algorithms successfully predict a given stimulus or behavior 
from the neuronal activity. However, an erroneous assumption about 
the feature space could mislead the researcher about a neural coding 
principle. In this study, by simulating several likely scenarios through 
artificial neural networks (ANNs) and showing corresponding cases 
of biological neural networks (BNNs), we point out potential biases 
evoked by unrecognized features i.e., confounding variable.
We modeled an ANN classifier with the open-source neural network 
library Keras, running Tensorflow as backend. The model is composed 
of five hidden layers, dense connections and rectified linear activation. 
We added a dropout layer and l2-regularizer on each layer to apply 
penalties on layer activity during optimization. The model was trained 
with CIFAR-10 dataset and showed a saturated test set accuracy at 
about 53% (the chance level accuracy = 10%). For a stochastic sam-
pling of individual neuron’s activity from each deterministic unit, we 
generated the Gaussian distribution through modeling within-popula-
tion variability according to each assumption.
Using this model, we showed 4 possible misinterpretation cases 
induced by a missing feature. (1) The researcher can choose the sec-
ond-best feature which has similarity to ground truth feature. (2) An 
irrelative feature which correlated with ground truth feature can be 
chosen. (3) Evaluating decoder in incomplete feature space could 
result in the overestimation of the performance of the decoder. (4) 
Misconception about the receptive field of the unit could make a sig-
nal to be incorporated in noise.
In conclusion, we suggest that the comparative study of ANN and BNN 
from the perspective of machine learning can be a great strategy for 
deciphering the neural coding principle.
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In the brain, at the macroscale level, two organizational principles par-
ticipate in the processing of information: segregation and integration. 
While segregation allows the processing of information in specific 
brain regions, integration coordinates the activity of these regions to 
generate a behavioral response [1]. Recent studies suggest that the 
cholinergic system promotes segregated states and the noradrenergic 
system promotes integrated states, both measured using graph the-
oretical tools over the functional connectivity (FC) matrices [2,3]. We 
extended this neuromodulatory framework by including the noradr-
energic system (filter gain), and the effect of the cholinergic system 
in the excitatory and inhibitory circuits separately (excitatory and 
inhibitory gain). The neuromodulatory framework was tested using 
the Jansen Rit neural mass model [4], built from real human structural 
connectivity matrices and heterogeneous transmission delays for 
long-range connections (Fig. 1). The fMRI-BOLD signals were simu-
lated using a generalized hemodynamic function model, and features 
such as the global phase synchronization, oscillatory frequency and 
SNR were measured. On the other hand, FC matrices were built using 
pairwise Pearson’s correlation from the simulated BOLD signals. Thres-
holded FC matrices were analyzed with graph theoretical tools for 
computing segregation and integration. Our results suggest that func-
tional integration is possible only with the suppression of the feedback 
excitation, mediated by the inhibitory gain, and follows a sigmoid or 
inverted U-shaped function, depending of the noise intensity levels. 
Also, the integration is accompanied by an increase in signal to noise 
ratio and regularity of EEG signals. The results suggest a mechanistic 
interpretation. We propose that the cholinergic system neuromodula-
tion on the excitatory connections increases SNR locally, and the effect 
of that system on the inhibitory interneurons suppresses the local 
cortico-cortical transmission, increasing the responsivity of pyramidal 
neurons to stimulus from distant regions. Finally, the noradrenergic 
system coordinates long-range neural activity promoting integration. 
This framework constitutes a new set of tools and ideas to test how 
neural gain mechanisms mediate the balance between integration 
and segregation in the brain.

Fig. 1 Whole‑brain neural mass model. A The model consists in a 
population of pyramidal neurons, and two populations of excita‑
tory and inhibitory interneurons. B The N = 90 cortical columns 
are connected by real human structural connectivity matrices, with 
heterogeneous time‑delays. C The cholinergic system operates with 
the parameters α and β, and the noradrenergic system with the 
parameter r0
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The interdependencies in the brain can be studied either from a struc-
tural/anatomical perspective (“structural connectivity”, SC) or by con-
sidering statistical interdependencies (“functional connectivity”, FC). 
While the SC is essentially pairwise (white-matter fibers start in a cer-
tain region and arrive at another), the FC is not, i.e., there is no reason 
to consider statistical interdependencies pairwise. A promising tool to 
study high-order interdependencies is the recently proposed O-Infor-
mation [1]. This quantity captures the balance between redundancies 
and synergies in arbitrary sets of variables, thus extending the prop-
erties of the interaction information of three variables to larger sets. 
Redundancy is here understood as an extension of the conventional 
notion of correlation to more than two variables In contrast, synergy 
corresponds to an emergent statistical relationships that control the 
whole but not the parts.

In this study, we follow the seminal ideas introduced by Tononi, 
Sporns, and Edelman [2], which state that high brain functions might 
depend on the co-existence of integration and segregation. While 
the latter enables brain areas to perform specialized tasks indepen-
dently of each other, the former serves to bind together brain areas 
towards an integrated whole for the purpose of goal-directed task 
performance. A key insight put forward in [2] is that segregation and 
integration can coexist and that this coexistence is measurable by 
assessing the high-order interactions of neural elements. We used the 
O-Information to investigate how high-order statistical interdepend-
encies are affected by aging. For this, we analyzed fMRI data at rest 
from 164 healthy participants, ranging from 10 to 80 years old. Our 
results show an important increase in redundant interdependencies 
in the older population (age ranging from 60 to 80 years). Moreover, 
this effect seems to be pervasive, taking place at all interaction orders, 
suggesting a change in the balance of differentiation and integration 
towards more synchronized arrangements. Additionally, a redundant 
core of brain modules was observed, which decreased in size with 
age. The framework presented here and in detail in [3], provide novel 
insights into the aging brain revealing the role of redundancy in pre-
frontal and motor cortices in older participants, thus affecting basic 
functions such as working memory, executive and motor functions. 

This methodology may help to provide a better understanding of 
some brain disorders from an informational perspective, providing 
“info-markers”, that may lead to fundamental insights into the human 
brain in health and disease. The code to compute the metrics is avail-
able at [4].

Fig. 1 Method overview and main result. A 164 subjects, 2514 fMRI 
signals parcellated into 20 regions. B For each subject and interaction 
order we computed for each n‑plet their O‑Information. C Average 
over all 20 modules of redundancy and synergy for each of the age 
groups I1 (younger), I2, I3, I4 (oldest). The right panel shows that 
group differences in redundancy (represented by diamonds) using 
FDR
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The mammalian olfactory bulb is an intensively investigated sys-
tem that is important in understanding neurodegenerative diseases. 
Insights gained from understanding the system also have important 
agricultural and national security applications. In this work, we devel-
oped a large-scale, biophysically, and geometrically realistic model of 
the mouse olfactory bulb and the gamma frequency oscillations [1] it 
exhibits. Model code, documentation, and tutorials are available atol-
factorybulb.org.
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The model consists of realistic mitral, tufted (excitatory), and granule 
(inhibitory) cell models whose electrophysiology and reconstructed 
morphology have been validated against experimental data using 
a suite of NeuronUnit [2] validation tests. The cell models were real-
istically placed, oriented, and confined within anatomically correct 
mouse olfactory bulb layers obtained from the Allen Brain Atlas [3] 
using features of BlenderNEURON software [4]. Dendritic proximity 
was used to form chemical and electrical synapses between principal 
and inhibitory cell dendrites. Glomeruli were stimulated using simu-
lated odors obtained from optical imaging experiments. The local field 
potentials generated by the network were monitored and processed 
using wavelet analysis to replicate a gamma frequency pattern (finger-
print) consisting of an early-high, and later-low frequency temporal 
components. Simulations were performed using parallel-NEURON [5].
The network was subjected to computational manipulations, which 
revealed the critical importance of gap junctions, granule cell inhibi-
tion, and input strength differences between mitral and tufted cells 
in generating the gamma fingerprint. Specifically, at glomerular level, 
gap junctions synchronize the firing of mitral cell and tufted cell popu-
lations. Synchronized tufted cells activate granule cells, which inhibit 
mitral cells. Meanwhile, reduced afferent excitatory input results in 
mitral cell activation delay, which is amplified by tufted cell activated 
granule cell inhibition. The interaction between these three mecha-
nisms results two clusters of activity seen in the gamma fingerprint 
(Fig. 1).

Fig. 1 The network model consists of biophysically realistic mitral, 
tufted, and granule cell models, which are positioned within recon‑
structed mouse olfactory bulb layers. The network is activated by 
simulated glomerular inputs. Local field potentials generated by the 
network are measured using an extracellular electrode. The network 
produces a two‑cluster gamma fingerprint (lower right)

The results of the computational experiments support mechanistic 
hypotheses proposed in earlier experimental work and provide novel 
insights into the mechanisms responsible for olfactory bulb gamma 
fingerprint generation, which can be directly tested using common 
experimental preparations.
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Perceptual bistability is a phenomenon in which an observer is capa-
ble of perceiving identical stimuli with two or more interpretations. 
The auditory streaming task has been shown to produce spontane-
ous switching between two perceptual states [1]. In this task a lis-
tener is presented a stream of tones, called triplets, with the pattern 
ABA– where A and B are tones with different frequencies and ‘–’ is a 
brief period of silence. The listener can alternate between two per-
ceptual states: 1-stream in which the stimulus is integrated into a 
single stream, and 2-stream in which the stimulus is perceived as two 
segregated streams. In order to study the localization and dynamic 
properties of neural correlates of auditory streaming we collected 
electrocorticography (ECoG) data from neurosurgical patients while 
they listened to sequences of repeated triplets and self-reported 
switching between the two perceptual states.
It is necessary to find meaningful ways to analyze ECoG recordings, 
which are noisy and inherently high dimensional. Diffusion Maps is a 
non-linear dimensionality reduction technique which embeds high 
dimensional data into low dimensional Euclidean space [2]. The Dif-
fusion Map method leverages the creation of a Markov matrix from 
a similarity measure on the original data. Under reasonable assump-
tions, the eigenvalues of the Markov matrix are positive and bounded 
above by 1. The largest eigenvalues along with their respective 
eigenvectors provide coordinates for an embedding of the data into 
d-dimensional Euclidean space. In [3] Diffusion Maps were used for a 
group level analysis of neural signatures during auditory streaming 
based on subject reported perception. We extend this approach by 
taking into account the time ordered property of the ECoG signals. For 
data that has a natural time ordering, it is beneficial to structure the 
data to emphasize its temporal dynamics; in [4] the authors develop 
the Diffusion- Mapped Delayed Coordinates (DMDC) algorithm. In this 
algorithm, time-delayed data is first created from general time series 
data; this initial step projects the data onto its most stable sub-system. 
The stable sub-system may remain in a high dimensional space, so 
they next apply Diffusion Maps to the time-delayed data which pro-
jects the (potentially high dimensional) stable sub-system onto a low 
dimensional representation adapted to the dynamics of the system.
We apply the DMDC algorithm to ECoG recordings from Heschl’s 
Gyrus in order to explore and reconstruct the underlying dynamics 
present during the auditory steaming task. We find that the eigenval-
ues obtained through the DMDC algorithm provide a way to uncover 
multiple time scales present in the underlying system. The corre-
sponding eigenvectors form a Fourier-like basis that is adapted both 
to the fast properties of ECoG signal encoding the physical properties 
of the stimulus as well as a slow mechanism that corresponds to per-
ceptual switching reported by subjects.
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The Na/K pump, often thought of as a background function in neu-
ronal activity, contributes an outward current (IPump) that responds 
to the internal concentration of Na+([Na+]i). In bursting neurons, 
such as those found in central pattern generators (CPGs) that produce 
rhythmic movements, one can expect the [Na+]i and thus IPump 
to vary throughout the burst cycle [1-3]. This variation with electri-
cal activity and the independence from membrane potential endow 
IPump with dynamical properties not available in channel-based cur-
rents (e.g. voltage- or transmitter- gated, or leak channels). Moreo-
ver, in many neurons the pump’s activity is modulated by a variety of 
modulators further expanding the potential role of IPump in rhythmic 
bursting activity [4]. Using a combination of experiment, modeling, 
and hybrid systems analyses, we have sought to determine how 
IPump and its modulation influence rhythmic activity in a CPG.
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Sensation of noxious cold stimuli plays an essential role in the survival 
of organisms. Adequate perception of certain characteristics of cold 
stimuli is necessary for appropriate behavioral responses for body pro-
tection. There exist primary cold-sensing neurons that encode distinct 
information about the cold thermal stimulus: the rate of temperature 
decrease and absolute temperature coding. Here, we focus on the 
roles of different ion channels in the cold temperature coding of the 
Drosophila larva. We investigate dynamics of the Class III (CIII) soma-
tosensory neurons. They trigger a stereotypic cold-evoked behavior, a 
full-body contraction (CT). We combined computational neuroscience, 
genetic, and electrophysiological methods to develop a biophysical 
model of CIII neurons. Our computational model includes ionic cur-
rents implicated by transcriptomic data of ion channels expression in 
CIII neurons. We implement these currents using the gating character-
istics of Drosophila Na+ and K+ channels obtained from the experi-
mental literature using patch-clamp data [1,2]. We consider three 
subsystems (1) fast spike-generating subsystem, (2) moderately slow 

pattern-generating subsystem, and (3) slow thermotransduction sub-
system. We investigated the role of these subsystems in temperature 
coding. Using the slow-fast decomposition approach, we isolated the 
fast spike-generating subsystem (a CIII reduced model). We systemati-
cally varied two parameters, the temperature (T) and Gleak, classified 
observed regimes of activity and mapped them on the plane (T,Gleak). 
The model exhibits a wide spectrum of regimes: spiking, bursting, and 
silenced. Analysis of a model including a moderately slow pattern-
generating subsystem unveiled a slow bursting activity pattern of the 
CIII model. This regime requires the participation of Ca2+-activated 
K+ currents at noxious cold temperatures and an increased level of 
intracellular Ca2+. Similar burst and pause activity pattern were impli-
cated in encoding noxious heat stimuli by the heat-sensitive Dros-
ophila CIV neurons. We investigated a full model including the TRP 
channels representing the slow thermotransduction subsystem. We 
show that they play the key roles in coding of noxious cold tempera-
ture and encoding rate of temperature decrease. Our model quali-
tatively reproduces the temporal properties of the recordings from 
Trpm, Pkd2, and TRPA1 knock-down animals. In agreement with these 
experimental results, the corresponding models of TRP mutant CIII 
neurons [1] show decreased averaged cold-evoked firing rate and [2] 
diminished peak of firing rate in response to fast temperature change 
relative to controls. Studying the role of ion channels subsystems 
helped us classify possible regimes of activity and transitions between 
them, understand the complex dynamics of the cold-sensing neuron 
and putative mechanisms of encoding sensory information.
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Large-scale neuronal networks are a powerful tool to investigate brain 
area functionality, embedding realistic temporal dynamics of neurons, 
synapses and microcircuits. However, spatial features differentiating 
regions within the same brain area are crucial for proper functioning 
of interconnected networks. In case of cerebellum, input signals are 
mapped and integrated in different regions with specific structural 
properties and local network dynamics [1].
Here we describe the reconstruction of the mouse Lingula (region of 
cerebellar Vermis) mapped on data from the Allen Brain Atlas as in 
[2], including neuron densities and orientation vectors in cubic voxels 
(25um side).
Network reconstruction was based on strategies of the cerebellar scaf-
fold [3], with new features for folded volumes. The main cerebellar 
neurons were placed in the 3 layers of the cerebellar cortex, i.e. Gran-
ule and Golgi cells (GrC and GoC) in the Granular layer, Purkinje cells 
(PC) in the Purkinje layer, and Basket and Stellate cells in the Molecular 
layer. A particle placement strategy was used for Granular and Molecu-
lar neurons, in subvolumes made up of 50 voxels each. The algorithm 
included: placing the total number of neurons expected in each sub-
volume at random positions as repellent particles; iteratively re-posi-
tioning detected colliding particles within the subvolume; pruning 
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particles placed outside. An adhoc algorithm was developed for PCs: 
in each parasagittal section, they were placed in parallel arrays at a 
minimum distance of 130um to avoid dendritic tree overlap, using A* 
search algorithm to find adjacent PC.
Orientation data were used for connectivity: each cell morphology 
was rotated based on orientation of the voxel containing the soma; 
connections were identified through an efficient algorithm searching 
for intersections of discretized rotated morphologies volumes. For 
connections from GrCs, parallel fibers were also bended to follow the 
orientation field. The resulting network included about 105 neurons 
and 107 connections (Fig. 1).

Fig. 1 Mapped reconstruction of the Lingula with the main cerebel‑
lar neurons. Rotated morphologies are reported for some PCs. The 
inset panel shows more in detail the parallel arrays of PCs with 
rotated sample morphologies

This proposed pipeline will be generalized to other cerebellar regions 
up to reconstruction of a full mouse cerebellum. The network, filled 
with point or detailed neuron/synapse models, will be used to inves-
tigate spatial features of signal propagation in the cerebellum, and 
the specialization and integration of sensory signals across different 
regions [4]. This will allow reproducing spatially-mapped experimen-
tal data, e.g. Local Field Potentials, and embedding the cerebellum in 
whole-brain frameworks built on atlases, in which multiple intercon-
nected brain areas can be simulated even using different descriptions 
for each region (e.g. hybrid models with spiking circuits and mean-
field components).
The workflow, here developed for the cerebellum, could be comple-
mentary to other algorithms, and applied to other brain areas.
Acknowledgements: This work has received funding from European 
Union’s Horizon 2020 Framework Programme for Research and Inno-
vation under Grant Agreement N. 785907 (Human Brain Project SGA2) 
and SGA3.
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Learning and memory are fundamentally collective phenomena, 
brought into existence by highly organized spiking activity of large 
ensembles of cells. Yet, linking the characteristics of the individual 
neurons and synapses to the properties of large-scale cognitive rep-
resentations remains a challenge: we lack conceptual approaches 
for connecting the neuronal inputs and outputs to the integrated 
results at the ensemble level. For example, numerous experiments 
point out that weakening of the synapses correlates with weakening 
of memory and learning abilities—but how exactly does it happen? If, 
for example, the synaptic strengths decrease on average by 5%, then 
will the time required to learn a particular navigation task increase 
by 1%, by 5% or by 50%? How would the changes in learning capac-
ity depend on the original cognitive state? Can an increase in learning 
time, caused by a synaptic depletion, be compensated by increasing 
the population of active neurons or by elevating their spiking rates? 
Answering these questions requires a theoretical framework that con-
nects the individual cell outputs and the large-scale cognitive phe-
nomena that emerge at the ensemble level.
We propose a modeling approach that allows bridging the “seman-
tic gap” between electrophysiological parameters of neuronal activ-
ity and the characteristics of spatial learning, using techniques from 
algebraic topology. Specifically, we study influence of synaptic trans-
mission probability and the effects of synaptic plasticity on the hip-
pocampal network’s ability to produce a topological cognitive map 
of the ambient space. We simulate deterioration of spatial learn-
ing capacity as a function of synaptic depletion in the hippocampal 
network to get a better insight into the spatial learning deficits (as 
observed, e.g., in Alzheimer’s disease) and understanding why devel-
opment of these deficits may correlate with changes in the number 
of spiking neurons and/or of their firing rates, variations in the “brain 
wave” frequency spectra, etc. The results shed light on the principles 
of spatial learning in plastic networks and may help our understand-
ing of neurodegenerative conditions.
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The principal cells in mammalian hippocampus encode an internal-
ized representation of the environment - the hippocampal cognitive 
map, that underlies spatial memory and spatial awareness. However, 
the synaptic architecture of the hippocampal network is dynamic: it 
contains a transient population of “cell assemblies”- functional units 
of the hippocampal computations - that emerge among the groups 
of coactive neurons and may disband due to reduction or cessation of 
spiking activity, then reappear, then disband again, etc. Electrophysio-
logical studies in rats and mice suggest that the characteristic lifetimes 
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of typical hippocampal cell assemblies range between minutes to 
tens of milliseconds. In contrast, cognitive representations sustained 
by the hippocampal network can last in rodents for months, which 
raises a principal question: how can a stable large-scale representa-
tion of space emerge from a rapidly rewiring neuronal stratum? We 
propose a computational approach to answering this question based 
on Algebraic Topology techniques and ideas. By simulating the place 
cell spiking activity during the rat’s exploratory movements through 
different environments and testing the stability of the resulting large-
scale neuronal maps, we find that the networks with “flickering” archi-
tectures can reliably capture the topology of the ambient spaces. 
Moreover, the model suggests that the information is processed at 
three principal timescales, which roughly correspond to the short 
term, intermediate term and the long-term memories. The rapid rewir-
ing of the local network connections occurs at the fastest timescale. 
The timescale at which the large-scale structures defining the shape 
of the cognitive map may fluctuate is by about an order of magnitude 
slower than the timescale of the information processing at the synap-
tic level. Lastly, an emerging stable topological base provides lasting, 
qualitative information about the environment, which remains robust 
despite the ongoing transience of the local connections.
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The release of neurotransmitters from synaptic vesicles is the funda-
mental mechanism of information transmission between neurons in 
the brain. The entire synaptic vesicle cycle involves a highly complex 
interplay of proteins that direct vesicle docking at the active zone, the 
detection of intracellular calcium levels, fusion with the presynaptic 
membrane, and the subsequent retrieval of the vesicle protein mate-
rial for recycling [1]. Despite its central importance in many aspects of 
neuronal function, and even though computational models of sub-
cellular neuronal processes are becoming increasingly important in 
neuroscience research, realistic models of the synaptic vesicular cycle 
are almost non-existent. This is largely because the modeling tools for 
detailed spatial modeling of vesicles are not available.
Extending the STEPS simulator [2], we have pioneered spherical ‘vesi-
cle’ objects that occupy a unique excluded volume and sweep a path 
through the tetrahedral mesh as they diffuse through the cytosol. 
Our vesicles incorporate endo- and exocytosis, fusion with and bud-
ding from intracellular membranes, neurotransmitter packing, as well 
as interactions between vesicular proteins and cytosolic and plasma 
membrane proteins. This allows us to model all key aspects of the 
synaptic vesicle cycle, including docking, priming, calcium detection 
and vesicle fusion, as well as dynamin-mediated vesicle retrieval and 
recycling.
Using quantitative measurements of protein copy numbers [3], mem-
brane and cytosolic diffusion rates, protein-protein interactions, and 
an EM-derived spatial model of a hippocampal pyramidal neuron, we 
used this technology to construct the complete synaptic vesicle cycle 
at the Schaffer Collateral–CA1 synapse at an unprecedented level of 
spatially-realistic and biochemical detail (Fig. 1). We envisage that this 
new modeling technology will open up pioneering research into all 
aspects of neural function in which synaptic transmission plays a role.

Fig. 1 Model of a CA3‑CA1 synaptic bouton with docked vesicles 
(blue), free vesicles (red), clustered vesicles (orange), and readily‑
retrievable pool (green)
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Sensory pathways efficiently transmit information by adapting the 
neural responses to the local statistics of the sensory input. The pre-
dictive coding framework suggests that sensory neurons constantly 
match the incoming stimuli against an internal prediction derived 
from a generative model of the sensory input. Although predictive 
coding is generally accepted to underlay cortical sensory process-
ing, the role of predictability in subcortical sensory coding is still 
unclear. Several studies have shown that single neurons and neuronal 
ensembles of the subcortical sensory pathway nuclei exhibit stimulus 
specific adaptation (SSA), a phenomenon where neurons adapt to 
frequently occurring stimuli (standards) yet show restored responses 
to a stimulus with deviating characteristics from the standard (devi-
ant). Although neurons showing SSA are often interpreted as encod-
ing prediction error, computational models to date have successfully 
explained SSA in terms of local network effects based on synaptic 
fatigue.
Here, we first introduce a novel experimental paradigm where abstract 
rules are used to manipulate predictability. 19 human participants lis-
tened to sequences of pure tones consisting on seven standards and 
one deviant while we recorded mesoscopic responses in auditory 
thalamus and auditory midbrain using 7-Tesla functional MRI. In each 
sequence, the deviant was constrained to occur once and only once, 
and always in locations 4, 5 or 6. Although the three locations were 
equiprobable at the beginning of the trial, the conditional probability 
of hearing a deviant in location n after hearing n-1 standards is 1/3, 
1/2, and 1, for deviant locations 4, 5, and 6, respectively.
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This paradigm yields different outcomes for habituation and pre-
dictive coding: if adaptation is driven by local habituation only, the 
three deviants should elicit similar neuronal responses; however, if it 
is predictive coding that entails adaptation, the neuronal responses 
to each deviant should depend on their abstract predictability. Our 
data showed that the responses to the deviants were strongly driven 
by abstract expectations, indicating that predictive coding is the main 
mechanism underlying mesoscopic SSA in the subcortical pathway. 
These results are robust even at the single-subject level.
Next, we developed a new model of pitch encoding for pure tones fol-
lowing the main directives of predictive coding. The model comprises 
two layers whose dynamics reflect two different levels of abstraction. 
The lower layer receives its inputs from the auditory nerve and makes 
use of the finite bandwidth of the peripheral filters to decode pitch 
fast and robustly. The second layer holds a sparse representation that 
integrates the activity in the first layer only once the pitch decision 
has been made. Top-down afferents from the upper layer reinforce 
the pitch decision and accept the inclusion of priors that facilitate the 
decoding of predictable tones.

Without the inclusion of priors, the model explains the key elements 
of SSA in animal recordings at the single-neuron level, as well as the 
main phenomenology of its mesoscopic representation. The inclu-
sion of priors reflecting the abstract rules described in our paradigm 
facilitates the decoding of tones according to their predictability, 
effectively modulating the responses at the mesoscopic level. This 
modulation affects the mesoscopic fields generated during pitch 
encoding, fully explaining our experimental data.

Fig. 1 Top: z‑scores of the BOLD responses to standards and deviants 
in the left auditory thalamus. Similar responses were recorded in the 
right auditory thalamus and bilateral auditory midbrain. Bottom: aver‑
age model predictions under the habituation only (without informed 
priors) and predictive coding (with informed priors) scenarios
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The cerebellum is involved in both motor and non-motor functions in 
the brain. Any deficit during its development has been suggested to 
trigger ataxia as well as various psychiatric disorders.
During the development of both human and mouse cerebella, precur-
sors of one of the main excitatory neurons, granule cells, first accu-
mulate in the external granule layer on the surface and subsequently 
migrate down to the bottom of cerebellar cortex. In addition to the 
massive soma migration, these granule cell precursors also descend 
their axons through the migratory paths which further branch into 
parallel fibers, making the environment even more crowded. Although 
palisade-like Bergmann glia physically guide granule cells during the 
migration, mechanisms about how these two cell types interact to 
manage the migration through such a shambolic environment are still 
unclear.
Rodent cerebella have been widely used as subjects in experimental 
studies, and have provided great pictures of granule cells and Berg-
mann glia. However, technical limitations still hinder the observation 
of cerebellar development both as populations and in a continuous 
manner. Building a computational model by a reverse-engineering 
process which integrates available biological observations will be 
essential to point out differences in the developmental dynamics 
between normal and abnormal cerebellum.
Most computational models for simulating neuronal development 
have focused on intracellular factors of single cell types. Although 
models simulating limited environmental factors exist, models for cell-
cell interactions during neuronal development are rare. Alternatively, 
we used new computational framework, NeuroDevSim, to simulate 
populations of granule cells and Bergmann glia during cerebellar 
development.
NeuroDevSim evolved from NeuroMaC [1] and so far is the only active 
software that can simultaneously simulate developmental dynamics 
of different types of neurons at population-scale.
The goal structure of simulation with NeuroDevSim comprises 3,000 
granule cells and 200 Bergmann glia in a 1x106µm3 regular cube, cal-
culated by assuming a cube of mice cerebellar cortex. 26 Purkinje cell 
somas are also introduced as interfering spherical objects. Their den-
dritic development will be included in the future. At current stage of 
the simulation, reduced systems are used, aiming to direct the traffic 
of granule cell somas and to navigate their axonal growth.
The resulted model will enable visualization of massive migration 
dynamics of cerebellar granule cells with growing parallel fibers and of 
their phenomenological interactions with Bergmann glia. This model 
will provide new insight to understand developmental dynamics of 
cerebellar cortex.

Reference
1. Torben‑Nielsen B, De Schutter E. Context‑aware modeling of neuronal 

morphologies. Frontiers in Neuroanatomy. 2014; 8: 92.

P40 
Modeling multi‑state molecules with a pythonic STEPS interface
Jules Lallouette, Erik De Schutter
Okinawa Institute of Science and Technology, Computational 
Neuroscience Unit, Onna‑son, Japan
Correspondence: Jules Lallouette (jules.lallouette@oist.jp) 
BMC Neuroscience 2020, 21(Suppl 1):P40

Molecules involved in biological signaling pathways can, in some 
cases, exist in a very high number of different functional states. Well-
studied examples include the Ca2+/calmodulin dependent protein 
kinase II (CaMKII), or receptors from the ErbB family. Through a com-
bination of binding sites, phosphorylation sites, and polymerization, 
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these molecules can form complexes that reach exponentially increas-
ing numbers of distinct states. This phenomenon of combinatorial 
explosion is a common obstacle when trying to establish detailed 
models of signaling pathways.
Classical approaches to the stochastic simulation of chemical reac-
tions require the explicit characterization of all reacting species and all 
associated reactions. This approach is well suited to population based 
methods in which there are a relatively low number of different mole-
cules that can be present at relatively high concentrations. Since each 
state of multi-state complexes would however have to be modeled as 
a distinct specie, the combinatorial explosion that we mentioned ear-
lier makes these approaches inapplicable.
Two separate problems need to be tackled: the “specification prob-
lem” which requires a higher level of abstraction in the definition 
of complexes and reactions; and the “computation problem” that 
requires efficient methods to simulate the time evolution of reactions 
involving multi-state complexes. Rule based modeling (RBM) [1] tack-
les the former problem by allowing modelers to write “template” reac-
tions that only contain the parts of the complexes actually involved 
in the reaction. Network-free methods together with particle-based 
methods [2] usually tackle the latter problem by only considering 
the states and reactions that are accessible from the current complex 
states and thus avoiding the computation of the full reaction network.
STEPS is a spatial stochastic reaction-diffusion simulation software 
that implements population based methods to simulate reaction-
diffusion processes on realistic tetrahedral meshes [3]. In an effort to 
tackle the “specification problem” in STEPS, we present in this poster a 
novel, more pythonic, interface to STEPS that allows intuitive declara-
tion of both classical and multi-state complexes reactions. Significant 
emphasis was put on simplifying model declaration, data access, and 
data saving during simulations.
To specifically tackle the “computation problem” in STEPS, we pre-
sent a hybrid population/particle based method to simulate reactions 
involving multi-state complexes. By preventing the formation of arbi-
trarily structured macromolecules, we lower the computational cost of 
the pattern matching step necessary to identify potential reactants [4]. 
This diminished computational cost allows us to simulate larger spatial 
systems. We discuss these performance improvements and present 
examples of stochastic spatial simulations involving 12 subunits Cam-
KII complexes which would have previously been intractable in STEPS.
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Astrocytes, glial cells of the central nervous system, display a strik-
ing diversity of Ca2+ signals in response to neuronal activity. 80% of 
those signals take place in cellular ramifications that are too fine to 
be resolved by conventional light microscopy [1], often in apposition 
to synapses (perisynaptic astrocytic processes, PAPs). Understand-
ing Ca2+ signaling in PAPs, where astrocytes potentially regulate 

neuronal information processing [2], is crucial. At this spatial scale, 
Ca2+ signals are not distributed uniformly, being preferentially 
located in so-called Ca2+ hotspots [3], suggesting the existence of 
subcellular spatial domains. However, because of the spatial scale at 
stake, little is currently known about the mechanisms that regulate 
Ca2+ signaling in fine processes. Here, we investigate the geometry 
of the endosplamic reticulum (ER), the predominant astrocytic Ca2+ 
store, using electron microscopy. Contrary to previous reports [4], 
we detect ER in PAPs, which can be as close as ~60nm to the closest 
postsynaptic density. We use computational modeling to investi-
gate the impact of the observed cellular and ER geometries on Ca2+ 
signaling. Simulations using the stochastic voxel-based model from 
Denizot et al [5], both in simplified and in realistic 3D geometries, 
reproduce spontaneous astrocytic microdomain Ca2+ transients 
measured experimentally. In our simulations, the effect of the cluster-
ing of IP3R channels observed in 2 spatial dimensions [5] is still valid 
in a simple cylinder geometry but no longer holds in complex realistic 
geometries. We propose that those discrepancies might result from 
the geometry of the ER and that, in 3 spatial dimensions, the effects 
of molecular distributions (such as IP3R clustering) are particularly 
enhanced at ER-plasma membrane contact sites. Our results suggest 
that the predictions from simulations in 1D, 2D or simplified 3D geom-
etries should be cautiously interpreted. Overall, this work provides a 
better understanding of IP3R-dependent Ca2+ signals in fine astro-
cytic processes and more generally in subcellular compartments, a 
prerequisite for understanding the dynamics of Ca2+ hotspots, which 
are deemed essential for local intercellular communication.
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Purkinje neurons are used extensively in computational neuroscience 
[1]. However, despite extended knowledge about Purkinje cell mor-
phology and ultrastructure, the complete dendritic tree of Purkinje 
cell as well as the complete dendritic tree of other types of neurons 
was never reconstructed at nanometer range resolution due to the 
cells size and complexity. At the same time, the use of real Purkinje 
cell dendritic tree morphology may be very important for computa-
tional models. Considering the development of new instruments and 
imaging techniques that nowadays allow reconstruction of large vol-
umes of the neuronal tissue, the main goal of our project is to recon-
struct a dendritic tree of a Purkinje cell with all its dendritic spines and 
synapses.
Serial Block Face Microscope (SBF) is widely used to examine large 
volume of neuronal tissue with nanometer range resolution [2]. To 
obtain volume data, perfused mouse brains were processed for SBF 
imaging using OTO staining techniques and the best quality cerebel-
lum slice was imaged on FEI Teneo VS Electron Microscope with pixel 
resolution 8x8x60 nm. An imaged volume of approximately 2.2 Tera-
pixel was processed and aligned with Image J and Adobe Photoshop. 
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To reconstruct the Purkinje cell dendritic tree the imaged volume was 
first analyzed to locate the most appropriate full cell inside the imaged 
volume. Second, the volume containing the cell was segmented with 
Ilastik [https://www.ilastik.org] and Tensor Flow deep learning net-
work [https://github.com/tensorflow]. The super-pixels were fused 
with custom made software to generate a dendritic tree represented 
by 3d voxels. Next, a 3d surface mesh was generated based on 3d 
voxels array using the marching cubes algorithm [https://github.com/
ilastik/marching_cubes] and the resulting mesh was processed with 
MeshLab to generate a final surface mesh. Finally, a tetrahedral vol-
ume mesh was generated with the TetWild software [https://github.
com/Yixin-Hu/TetWild]. The resulting tetrahedral mesh of Purkinje cell 
full dendritic tree including cell body and initial axonal segment will 
be used to run large scale stochastic models using the parallel STo-
chastic Engine for Pathway Simulation [3] (STEPS) [http://steps.source-
forge.net].
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Although the effects of inhibition on Purkinje cells have first been 
observed over five decades ago and have since then been intensively 
studied, the manner in which the cerebellar output is regulated by 
both inhibitory and excitatory cells has yet to be fully understood. 
Purkinje cells represent the sole output of the cerebellar cortex and 
are known to fire simple spikes as a result of the integrated excita-
tory and inhibitory synaptic input originating from parallel fibers and 
the interneurons in the molecular layer. When studied in vivo, both 
Purkinje cells and interneurons exhibit a highly irregular pattern in 
the firing of action potentials. The mechanisms underlying the com-
plex interaction between the intrinsic properties of the membrane 
and the pattern of synaptic inputs that generate the cerebellar out-
put have not yet been completely understood. Recent literature has 
underlined the importance of the inhibitory interneurons (stellate and 
basket cells) in shaping the simple spikes of Purkinje cells. Moreover, 
when inhibitory interneurons are eliminated and only asynchronous 
excitation is taken into account, numerous computational [1] and 
experimental work have reported unrealistic behavior such as very 
little variability between the spiking intervals, as well as very small 
minimum firing frequencies. The modeling approach we propose here 
focuses on analyzing the effects that combined inhibition and excita-
tion have on the shape of action potential, on the firing frequency and 
on the time intervals in between the simple spikes. The starting point 
of our work was a very detailed Purkinje cell model proposed by Zang 
et al in [2]. Instead of varying somatic holding currents as in previous 
work, in here, the dendritic voltage states are determined by the bal-
ance between the frequency of inhibitory cells and the frequency of 
parallel fibers. Our preliminary results indicate that inhibition presents 
both subtractive and divisive behavior, depending on stellate cells fre-
quency. We discuss in detail the different shapes of firing we obtained. 
In particular, our results capture not only simple spikes but also a tri-
modal firing pattern, previously observed experimentally in [3]. This 
trimodal firing pattern is a characteristic of mature Purkinje cells and 
is given by a mixture of three different phases: tonic firing, bursting 
and silent mode. We mapped the regions in which simple spiking 
occur and the regions in which simple spikes appear and we further 

investigate the role of the SK2 channels in eliminating or prolonging 
the trimodal pattern.
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The NEURON software remains the main neural physiology modeling 
tool for scientists. Its computational methods benefit from determinis-
tic approximations of the cable equation solutions and 1-dimensional 
radial calcium diffusion in cylindrical neuron morphologies [1]. How-
ever, in real neurons ions diffuse in 3-dimensional volumes [2] and 
membrane channels get activated in a stochastic manner. Further-
more, NEURON does not suit to model nano-sized spine morphology. 
In contrast, the Stochastic Engine for Pathway Simulation (STEPS) uses 
fully stochastic 3-dimensional methods in tetrahedral morphologies 
that can provide realistic modeling of neurons at the nanoscale [3, 4].
In this work, we compare the modeling results between those two 
environments for the Purkinje cell model developed by Zang et al. [5]. 
This model considers a variety of calcium, potassium and sodium 
channels, and the resulting calcium concentrations affecting the 
membrane potential of a Purkinje cell. The results demonstrate that: (i) 
the used cylinder light microscopy morphology can not be identically 
transformed into a 3D mesh; (ii) the effect of stochastic channel acti-
vation determines the timing of membrane potential spikes; (iii) the 
kinetics of calcium activated potassium channels strongly depends on 
the specified sub-membrane volumes in both environments.
A further step in developing the model will be integration of a digi-
tal microscopy reconstruction of spines to the existing 3D tetrahedral 
mesh.
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Introduction: The brain switches between cognitive states at a high 
speed by rearranging interactions between distant brain regions. 
Using analyses of brain dynamics neuroimaging researchers were able 
to further describe this dynamical brain-behavior relationship. How-
ever, the diversity of methodological choices for the brain dynamics 
analyses impedes comparisons between studies of brain dynamics, 
reducing their reproducibility and generalizability. A key choice con-
stitutes deciding on the spatiotemporal scale of the analysis, which 
includes both the number of regions (spatial scale) as well as the sam-
pling rate (temporal scale). Choosing a suboptimal scale might either 
lead to loss of information or inefficient analyses with increase of 
noise. Therefore, the aim of this study was to assess the effect of differ-
ent spatiotemporal scales on analyses of brain dynamics and to deter-
mine which spatiotemporal scale would retrieve the most relevant 
information on dynamic spatiotemporal patterns of brain regions.
Methods: We compared the effect of different spatiotemporal scales 
on the information content of the evolution of spatiotemporal pat-
terns using empirical as well as simulated timeseries. Empirical time-
series were extracted from the Human Connectome Project [1]. We 
then created a whole-brain mean-field model of neural activity [2] 
resembling the key properties of the empirical data by fitting the 
global synchronization level and measures of dynamical functional 
connectivity. This resulted in different spatiotemporal with spatial 
scales from 100 to 900 regions and varying temporal scales from mil-
liseconds to seconds. With a variation of an eigenvalue analysis [3], we 
estimated the number of spatiotemporal patterns over time and then 
extracted these patterns with an independent component analysis. 
The evolution of these patterns was then compared between scales in 
regard to the richness of switching activity (corrected for the number 
of patterns in total) using the measure of entropy. Given the probabil-
ity of the occurrence of a pattern over time, we defined the entropy as 
a function of the probability of patterns.
Results: Using the entropy measure, we were able to specify both 
optimal and temporal scales for the evolution of spatiotemporal pat-
terns. The entropy followed an inverted U-shaped function with the 
highest value at an intermediate parcellation of n = 300. The entropy 
was highest at a temporal scale of around 200ms.
Conclusions and discussion: We have investigated which spati-
otemporal scale contained the highest information content for brain 
dynamics analyses. By combining whole-brain computational model-
ling with an estimation of the number of resulting patterns, we were 
able to analyze whole-brain dynamics in different spatial and tempo-
ral scales. From a probabilistic perspective, we explored the entropy 
of the probability of resulting brain patterns, which was highest at a 
parcellation of n = 300. Our results indicate that although more spa-
tiotemporal patterns with increased heterogeneity are found with 
higher parcellations, the most relevant information on brain dynam-
ics is captured when using a spatial scale of n = 200 and a temporal 
scale of 200ms. Our results therefore provide guidance for research-
ers on choosing the optimal spatiotemporal scale in studies of brain 
dynamics.
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Back-propagation is a popular machine learning algorithm that uses 
gradient descent in training neural networks for supervised learn-
ing. In stochastic gradient descent a cost function C is minimized by 
adjusting the weights wij as Δwij= -η(∂C/∂wij) at every training sam-
ple. However, learning with back-propagation can be very slow. A 
number of algorithms have been developed to speed up convergence 
and improve robustness of the learning. One way is to start with a 
high learning rate and anneal it to lower values at the end of learn-
ing. Other approaches combine past updates with the current weight 
update, such as momentum [1] and Adam [2]. These algorithms are 
now standard in most machine learning studies, but are complicated 
to implement biologically.
Inspired by synaptic competition in biology, we have come up with 
a simple and local gradient descent optimization algorithm that can 
reduce training time, with no demand on past information. Our algo-
rithm works similarly to the traditional gradient descent used in back-
propagation, except that instead of having a uniform learning rate 
across all synapses, the learning rate depends on the current connec-
tion weights of individual synapses and the L2norm of the weights of 
each neuron.
Our algorithm encourages neurons to form strong connections 
to a handful of neurons of their neighbouring layers by assigning 
higher learning rateηijto synapses with bigger weights wij: Δwij= 
-η0(|wij|+α)/(||wj||+α)(∂C/∂wij), where i represents the indices of the 
post-synaptic neurons and j represents the indices of the pre-synaptic 
neurons. The parameter α is set at the range of values such that at the 
beginning of training α > ||wj|| ≫ wij so that all synapses have learn-
ing rate close to η0. As learning progresses, the learning rate of large 
synapses stays close to η0, while the learning rate of small synapses 
decreases. Here, ||wj|| is summing over all the post-synaptic weights 
of a pre-synaptic neuron, leading to each pre-synaptic neuron having 
strong connections to a limited amount of post-synaptic neurons only. 
However, our algorithm also works by replacing this term with ||wi||, 
which promotes every post-synaptic neuron to form strong connec-
tions to small number of pre-synaptic neurons instead. We note that 
the proposed modulation of learning can easily be imagined to occur 
in biology, as it only requires post-synaptic factors and requires no 
memory.
We have tested our algorithm with back-propagation networks with 
one hidden layer consisting of 100 units to classify the MNIST hand-
written digit dataset with 96% accuracy. Compared to networks 
equipped with the best constant learning rate, networks train 24% 
faster with our algorithm. The improvement is even greater with 
smaller networks: with 50 units in the hidden layer, our algorithm 
shortens the training time by 40% with respect to the best constant 
learning rate. Preliminary results also show that our algorithm is com-
parable to Adam for the small networks that we have tested. Thus, our 
algorithm has shown the possibility of a local and biological gradient 
descent optimization algorithm that only requires online information.
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The relationships between brain activity and structure are of central 
importance to understanding how the brain carries out its functions 
and to interrelating and predicting different kinds of experimental 
measurements. The aim of this work is to first describe the transfer 
function and its relationships to many existing forms of brain analysis, 
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and then to describe methods for obtaining the transfer function, with 
emphasis on spectral factorization using the Wilson algorithm [1,2] 
applied to correlations of time series measurements.
The transfer function of a system contains complete information 
about its linear properties, responses, and dynamics. This includes 
relationships to impulse responses, spectra, and correlations. In the 
case of brain dynamics, it has been shown that the transfer function 
is closely related to brain connectivity, including time delays, and we 
note that linear coupling is widely used to model the spatial interac-
tions of locally nonlinear dynamics.
It is shown how the brain’s linear transfer function provides a means 
of systematically analyzing brain connectivity and dynamics, provid-
ing a robust way of inferring connectivity, and activity measures such 
as spectra, evoked responses, coherence and causality, all of which are 
widely used in brain monitoring. Additionally, the eigenfunctions of 
the transfer function are natural modes of the system dynamics and 
thus underlie spatial patterns of excitation in the cortex. Thus, the 
transfer function is a suitable object for describing and analyzing the 
structure-function relationship in brains.
The Wilson spectral factorization algorithm is outlined and used to 
efficiently obtain linear transfer functions from experimental two-
point correlation functions. Criteria for time series measurements 
are described for the algorithm to accurately reconstruct the transfer 
function, including comparing the algorithm’s theoretical computa-
tional complexity with empirical runtimes for systems of similar size to 
current experiments. The algorithm is applied to a series of examples 
of increasing complexity and similarity to real brain structure in order 
to test and verify that it is free of numerical errors and instabilities (and 
modifying the method where required to ensure this). The results of 
applying the algorithm to a 1D test case with asymmetry and time 
delays is shown in (Fig. 1). The method is tested on increasingly realis-
tic structures using neural field theory, introducing time delays, asym-
metry, dimensionality, and complex network connectivity to verify the 
algorithm’s suitability for use on experimental data.

Fig. 1 Reconstruction of the transfer function and propagator using 
the Wilson algorithm from a correlation matrix for a 1D test case with 
asymmetry and time delays. a The original (black lines) and recon‑
structed (colored lines) transfer functions as a function of space, for 
four time delays. b As for a, but for the system propagator. c The real 
part of the original (black line) and re constructed (red line) transfer 
function as a function of frequency. d As for c, but for the system 
propagator. e The imaginary part of the original (black line) and 
reconstructed (red line) transfer function as a function of frequency. f 
As for (e), but for the system propagator
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Despite the wide variety of available models of the cerebral cortex, a 
unified understanding of cortical structure, dynamics, and function at 
different scales is still missing. Key to progress in this endeavor will be 
to bring together the different accounts into unified models. We aim 
to provide a stepping stone in this direction by developing large-scale 
spiking neuronal network models of primate cortex that reproduce 
a combination of microscopic and macroscopic findings on cortical 
structure and dynamics. A first model describes resting-state activity in 
all vision-related areas in one hemisphere of macaque cortex [1,2], rep-
resenting each of the 32 areas with a 1  mm2 microcircuit [3] with the 
full density of neurons and synapses. Comprising about 4 million leaky 
integrate-and-fire neurons and 24 billion synapses, it is simulated on 
the Jülich supercomputers. The model has recently been ported to 
NEST 3, greatly reducing the construction time. The inter-area con-
nectivity is based on axonal tracing [4] and predictive connectomics 
[5]. Findings reproduced include the spectrum and rate distribution 
of V1 spiking activity [6], feedback propagation of activity across the 
visual hierarchy [7], and a pattern of functional connectivity between 
areas as measured with fMRI [8]. The model is available open-source 
[https://inm-6.github.io/multi-area-model/] and uses the tool Snake-
make [9] for formalizing the workflow from the experimental data to 
simulation, analysis, and visualization. It serves as a platform for fur-
ther developments, including an extension with motor areas [10] for 
studying visuo-motor interactions, incorporating function using a 
learning-to-learn framework [11], and creating an analogous model of 
human cortex [12]. It is our hope that this work will contribute to an 
increasingly unified understanding of cortical structure, dynamics, and 
function.
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Electrical dynamics of cellular membranes is central to our under-
standing of information processing in neurons. Until recently, the 
physics of ionic dynamics was largely ignored [1, 2]. Indeed, ionic 
concentrations are usually not significantly altered by the membrane 
conductance. However, their effects may be sizeable when the intra-
cellular volume is relatively small [3, 4]. More importantly, a sudden 
change in concentration at one location may lead to gradients of ionic 
concentrations within a neural process. In our work, we demonstrate 
some realistic neural processes in which this effect is significant. The 
Nernst-Planck equation of electro-diffusion was applied to a dendrite, 
and voltage-gated potassium and sodium channels are added into 
the system. The difference of dynamics of ions and membrane volt-
age between the condition with electro-diffusion and without electro-
diffusion were collected and compared. We found the voltage is the 
main driving force for the membranous ion fluxes, and the feed back 
loop from ion concentrations to the membrane voltage may dramati-
cally change the dynamics of the membrane voltage. When voltage-
gated calcium influx and electro-diffusion was added into the system, 
the dynamics of potassium becomes dramatically different from the 
case without electro-diffusion. We conclude that the electro-diffusion 
of ions in a small volume may significantly change neural information 
processing in a non-linear effect.
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Topographic maps are a pervasive structural feature of the mamma-
lian brain, present throughout the cortical hierarchy and particularly 
prevalent in the early sensory systems. These ordered projections 
arrange and preserve the relative organization of cells between dis-
tinct populations and have been the object of many empirical studies. 
From providing a structural scaffold for spatial information segrega-
tion to the organization of spatiotemporal feature maps, these ubiq-
uitous anatomical features are known to have significant, albeit not 
entirely understood, functional consequences.
In this work, we systematically investigate the functional and dynami-
cal impact of the characteristics of modular propagation pathways 
in large networks of spiking neurons. Specifically, we manipulate 
key structural parameters such as modularity, map size and degree 
of overlap, and evaluate their impact on the network dynamics and 
computational performance during a continuous signal reconstruc-
tion task from noisy inputs. We show that transmission accuracy 
increases as topographic projections become more structured, with 
even moderate degrees of modularity improving overall discrimina-
tion capability.
Moreover, we identify a condition where the global population statis-
tics converges towards a stable asynchronous irregular regime, allow-
ing for a linear firing rate propagation along the topographic maps. 
In such conditions, the networks exhibit spatial denoising properties 
and the task performance improves vastly with hierarchical depth. 
Importantly, the relative performance gain throughout the hierarchy 
increases with the amount of noise in the input. This suggests that 
topographic modularity is not only essential for accurate neural com-
munication, but it can also provide the structural underpinnings to 
handle noisy and corrupt information streams.
Using field-theoretic approximations, we demonstrate that this phe-
nomenon can be attributed to a disruption in the E-I balance through-
out the network. By changing the effective connectivity within the 
system, strongly modular projections facilitate the emergence of inhi-
bition-dominated regimes where population responses along active 
maps are amplified, whereas others are weakened or silenced.
In addition, we analytically derive constraints on the possible extent 
of such maps, given that in cortical networks topographic specificity 
is assumed to decrease with hierarchical depth. Our findings suggest 
that, while task performance is relatively robust to variation in the 
map sizes, there is a fine balance between the spatial extent of the 
topographic projections and their modularity. Maps may not become 
arbitrarily small and must compensate for the size through denser 
topographic connections, whereas this can actually have a detrimen-
tal effect in the case of larger maps if they overlap.
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Taken together, these results highlight the functional benefits of struc-
tured connectivity in hierarchical neural networks, and shed light on 
a potential new role for modular topographic maps as a denoising 
mechanism.
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Neuroscience experiments generate vast amounts of data that span 
multiple scales: from interactions between individual molecules, 
to behavior of cells, to circuit activity, to waves of activity across the 
brain. Biophysically-realistic computational modeling provides a 
tool to integrate and organize experimental data at multiple scales. 
NEURON is a leading simulator for detailed neurons and neuronal 
networks. However, building and simulating networks in NEURON is 
technically challenging, requiring users to implement custom code 
for many tasks. Also, lack of format standardization makes it difficult to 
understand, reproduce, and reuse many existing models.
NetPyNE is a Python interface to NEURON which addresses these 
issues. It features a user-friendly, high-level declarative programming 
language. At the network level for example, NetPyNE automatically 
generates connectivity using a concise set of user-defined specifica-
tions rather than forcing the user to explicitly define millions of cell-to-
cell connections. NetPyNE enables users to generate NEURON models, 
run them efficiently in automatically parallelized simulations, optimize 
and explore network parameters through automated batch runs, and 
use built-in functions for a wide variety of visualizations and analyses. 
NetPyNE facilitates sharing by exporting and importing standardized 
formats (NeuroML and SONATA), and is being widely used to investi-
gate different brain phenomena. It is also being used to teach basic 
neurobiology and neural modeling. NetPyNE has recently added sup-
port for CoreNEURON, the compute engine of NEURON optimized for 
the latest supercomputer hardware architectures.
In order to make NetPyNE accessible to a wider range of researchers 
and students, including those with limited programming experience, 
and to encourage further collaboration between experimentalists and 
modelers, all its functionality is accessible via a state-of-the-art graphi-
cal user interface (GUI). From a browser window, users can intuitively 
define their network models, visualize and manipulate their cells and 
networks in 3D, run simulations, and visualize data and analyses. The 
GUI includes an interactive Python console which synchronizes with 
the underlying Python-based model.
The NetPyNE GUI is currently being improved in several ways. Flex 
Layout is being introduced to ensure a responsive, customizable GUI 
layout regardless of screen size or orientation. Redux is being added to 
the stack to ensure the complete state of the app is known at all times, 
minimizing bugs and improving performance. Bokeh is being used 
to create interactive plots. Furthermore, by integrating NetPyNE with 
Open Source Brain, users will be able to create online accounts to man-
age different workspaces and models (create, save, share, etc.). This 
will allow interaction with online repositories to pull data and models 

into NetPyNE projects, from resources such as ModelDB, NeuroMorpho, 
GitHub, etc.
In this poster, we present the latest improvements in NetPyNE and 
discuss recent data-driven multiscale models utilizing NetPyNE for 
different brain regions, including: primary motor cortex, primary audi-
tory cortex, and a canonical neocortex model underlying the Human 
Neocortical Neurosolver, a software tool for interpreting the origin of 
MEG/EEG data.
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Transcranial alternating current stimulation (tACS) noninvasively 
applies electric fields to the brain with the aim of entraining neural 
activity. As recordings of extracellular potentials are highly affected 
by the stimulation artifact, M/EEG recordings before and after tACS 
have become the standard to investigate neurophysiological effects of 
tACS in humans. In particular, we recently showed that dual-site tACS 
can modulate functional connectivity between the targeted regions 
outlasting the stimulation period, with in-phase stimulation (phase 
lag zero) increasing connectivity compared to anti-phase stimulation 
(phase lag π) [1]. Although the mechanism for such after-effects is not 
known, spike-timing dependent plasticity (STDP) has been proposed 
as a candidate [2,3]. We aim (1) to find a possible mechanism for our 
experimentally observed connectivity changes, and (2) to estimate if 
our dual-site tACS setting can successfully be extended to any stimula-
tion frequency and target area.
We simulated two populations of each 1000 regularly spiking Izhik-
evich neurons [4] with realistic firing rate distributions. Excitatory 
connections from each neuron to 100 random neurons of the other 
population with synaptic delay were subject to an experimentally 
observed STDP rule [5]. tACS was applied as sinusoidal input cur-
rents to both populations with varying phase lags. To validate our 
model, we correlated experimentally found connectivity changes [1] 
between targeted sub-regions with the fiber length connecting those 
sub-regions.
Synaptic weight changes depended on tACS frequency, phase lag, 
and synaptic delay. For 10 Hz tACS, synaptic weight changes between 
in- and anti-phase tACS monotonically decreased within the range of 
physiological cortico-cortical conduction delays. Confirming this find-
ing, our experimental data showed a negative correlation between 
functional connectivity modulation (in-phase vs anti-phase tACS) and 
fiber length. Extending the simulations to other tACS frequencies, we 
find that the expected direction of connectivity modulation can only 
be expected for low tACS frequencies and small delays or delays that 
are near multiples of the tACS cycle length.
In conclusion, our experimental findings [1] are in accordance with 
STDP of synapses between the stimulated regions. Nevertheless, the 
approach cannot be generalized to all tACS frequencies and delays. 
Most robust effects are expected for low tACS frequencies and small 
delays.
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Successful visually-guided behavior in natural environments critically 
depends on rapid detection of changes in visual input. A wildcat chas-
ing a gazelle needs to quickly adapt its motions to sudden direction 
changes of the prey, and a human driving a fast car on a highway 
must instantaneously react to the onset of the red brake light of the 
car in front. Visually responsive neurons represent such rapid feature 
changes in comparably rapid, transient changes of their firing rate. In 
the motion domain, for example, neurons in monkey area MT were 
shown to represent the sign and magnitude of a rapid speed change 
in the sign and amplitude of the evoked firing rate modulation fol-
lowing that change [1]. For positive speed changes, it was also shown 
that the transient’s latency closely correlates with reaction time, and is 
modulated by both spatial and non-spatial visual attention [2,3].
We here introduce a computational model based on a simple, canoni-
cal circuit in a cortical hypercolumn. We use the model to investigate 
the computational mechanisms underlying transient neuronal firing 
rate changes and their modulation by attention under a wide range 
of stimulus conditions. It is built of an excitatory and an inhibitory unit, 
both of which are in response to an external input I(t). The excitatory 
unit receives additional divisive input from the inhibitory unit. The 
model’s dynamics is described by two differential equations quan-
tifying how mean activity Ae of the excitatory unit and divisive input 
current change with time t. By fitting the model parameters to experi-
mental data, we show that it is capable to reproduce the time courses 
of transient responses under passive viewing conditions. Mathematical 
analysis of the circuit explains hallmark effects of transient activations 
and identifies the relevant parameters determining response latency, 
peak response, and sustained activation. Visual attention is imple-
mented by a simple multiplicative gain to the input of both units.
A key result of the analysis of the model’s dynamics is that steeper rise 
or decay times of the transient provide a consistent mechanisms of 
attentional modulation, independent of both the overall activation of 
the neuron prior to the speed change, and the sign of the change. This 
prediction is tested by new experiments requiring attention to both 
positive and negative speed changes. The results of the experiment 
are in full accordance with the prediction of the model, providing evi-
dence that even decreases in firing rate in response to the reduction 
of the speed of an attended stimulus occur with shorter latency. Thus, 
the model provides a unique framework for a mechanistic under-
standing of MT response dynamics under very different sensory and 
behavioral conditions.
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There is a striking correlation between overt oculomotor behavior and 
neurophysiological processing in critical oculomotor substrates like 
the superior colliculus (SC). During oculomotor target selection, unre-
solved activation [1] or suppression [2] at a competing distractor locus 
in the epoch ~30 ms prior to saccade initiation elicits saccades curved 
towards or away from the distractor (respectively). We therefore devel-
oped a non-invasive technique to measure the time course of excita-
tory and inhibitory activity encoding a distractor in which human 
saccade curvature is modeled as a function of saccade-distractor onset 
asynchrony (SDOA): the time between the transient onset of a task 
irrelevant distractor and the initiation of a saccade to a target [3]. The 
distractor processing time course observed using this technique was 
closely aligned to the time course of visuomotor neural activity in SC 
during target selection [4] and we observed time course differences 
between luminance- and color-modulated distractors that were also 
in alignment with SC visuomotor cell activity [5].
We expanded the SDOA technique to examine oculomotor processing 
of complex objects during a perceptual discrimination saccade-task 
with varied visual similarity between distractors and targets. We saw 
that the latency of the initial excitatory response was ~60 ms longer 
for these complicated, task-relevant objects than for the task irrele-
vant distractors with simple visual features [3]. We also saw differences 
in the excitatory processing time course for the complex objects, 
which has critical implications for theories of oculomotor target selec-
tion processing. We developed additional analytic techniques that 
estimate the latency of excitatory processing independent of saccade 
curvature modeling, which provided consistent temporal estimates. 
The first analysis examined target selection accuracy as a function of 
distractor processing time and showed that prior to the estimated 
time of distractor information being projected into the oculomotor 
substrates, target selection was guided exclusively by the target rep-
resentation. The second analysis examined the frequency of saccades 
as a function of SDOA and demonstrated that immediately after the 
estimated time of excitatory activity encoding the distractor, there is 
a transient drop in the likelihood of making a saccade, mirroring the 
effects of flash suppression. This work confirms the validity of our non-
invasive chronometric technique and our original interpretation of it, 
while also illustrating that SDOA saccade curvature modeling is appli-
cable to more complicated oculomotor target selection contexts.

References
1. McPeek RM, Han JH, Keller EL. Competition between saccade goals in the 

superior colliculus produces saccade curvature. Journal of Neurophysiology. 
2003; 89: 2577–2590.

2. White BJ, Theeuwes J, Munoz DP. Interaction between visual‑ and goal‑
related neuronal signals on the trajectories of saccadic eye movements. 
Journal of Cognitive Neuroscience. 2012; 24: 707–717.

3. Kehoe DH, Fallah M. Rapid accumulation of inhibition accounts for sac‑
cades curved away from distractors. Journal of Neurophysiology. 2017; 118: 
832–844.

4. McPeek RM, Keller EL. Saccade target selection in the superior colliculus 
during visual search task. Journal of Neurophysiology. 2002; 88: 2019–2034.

5. White BJ, Boehnke SE, Marino RA, Itti L, Munoz DP. Color‑related signals 
in the primate superior colliculus. Journal of Neuroscience. 2009; 29: 
12159–12166.



Page 38 of 123 BMC Neurosci 2020, 21(Suppl 1):54

P55 
Identifying changes in whole‑brain functional connectivity 
in complex longitudinal clinical trials
Sidhant  Chopra1, Kristina  Sabaroedin2, Shona  Francey3, Brian 
O’Donoghue3, Vanessa  Cropley4, Barnaby  Nelson3, Jessica  Graham3, Lara 
 Baldwin3, Steven  Tahtalian4, Hok Pan  Yuen3, Kelly  Allott3, Mario  Alvarez3, 
Susy  Harrigan3, Christos  Pantelis4, Stephen  Wood3, Patrick  McGorry3, Alex 
 Fornito5

1Monash University, Turner Institute for Brain and Mental Health, 
Melbourne, Australia; 2Monash University, Melbourne, Australia; 3Orygen 
Youth Health, Melbourne, Australia; 4Melbourne Neuropsychiatry Centre, 
Melbourne, Australia; 5Monash University, The Turner Institute for Brain 
and Mental Health, School of Psychological Sciences and Monash Biomed, 
Melbourne, Australia
Correspondence: Sidhant Chopra (sid.chopra@monash.edu) 
BMC Neuroscience 2020, 21(Suppl 1):P55

Resting-state Functional Magnetic Resonance Imaging (rs-fMRI) is 
increasingly being used as a secondary measure in complex clinical 
trials [1]. The inclusion of rs-fMRI allows researchers to investigate the 
impact interventions, such as medication, can have on regional and 
network-level brain hemodynamics. Such trials are expensive, difficult 
to conduct, often have small samples in rare clinical populations and 
high attrition rates. Standard neuroimaging analysis software are not 
usually suited to these sub-optimal design parameters. Accessible sta-
tistical tools that are robust to these conditions are much needed.
We propose an analysis workflow, which combines 1) ordinary least 
squares marginal model with a robust covariance estimator to account 
for within-subject correlation, 2) nonparametric p-value inference 
using a novel bootstrapping method [2] and, 3) edge- and compo-
nent-level family-wise error (FWE) control using the Network Based 
Statistic [3]. This workflow has several advantages, including being 
robust to unbalanced longitudinal samples, small-sample correction 
using heteroskedasticity-consistent standard errors and simplified 
nonparametric inference. Additionally, this method is computation-
ally less demanding than traditional mixed-linear models and does not 
bias the analysis by pre-selecting regions of interest.
We apply this novel workflow to a world-first triple-blind longitudinal 
placebo-controlled trial where 62 antipsychotic-naïve people aged 
between 15 to 24 with first-episode psychosis received either an atypi-
cal antipsychotic or a placebo pill over a treatment period of 6 months. 
Both patient groups received intensive psychosocial therapy. A third 
healthy control group with no psychiatric diagnosis (n=27) was also 
recruited. rs-fMRI scans were acquired at baseline, 3-months and 
12-months. We show that our analysis method is sufficiently sensitive 
to detect FWE-corrected significant components in this complex three 
groups [healthy control, placebo, medication] by three time points 
[baseline, 12-weeks, 52-weeks] design.
Here, we introduce an analysis workflow which is capable of detecting 
changes in resting-state functional networks in complex clinical trials 
with multiple timepoints and unbalanced groups. This analysis work-
flow is freely available as an R function::netSandwich.
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Spontaneous neuronal activity as observed using electroencepha-
logram is characterized by a non-stationary 1/f power spectrum 
interspersed with periods of rhythmic activity [1]. Underlying corti-
cal neuronal activity is, by contrast, hypothesized to be sparse and 
arrhythmic [2]. Properties of cortical neuronal connectivity such as 
sparsity, small world organization, and conduction delays have all 
been proposed to play a critical role in the generation of spontane-
ous brain activity. However, the relationship between the structure 
reflected in measures of global brain activity, the underlying neuronal 
activity, and neuronal connectivity is, at present, poorly characterized. 
In order to explore the role of cortical connectivity in the generation of 
spontaneous brain activity, we present a simulation of cerebral cortex 
based on the Traub model [3] implemented in the GENESIS neuronal 
simulation environment.
We made extensive changes to the original Traub model in order to 
more faithfully reproduce the spontaneous cortical activity described 
here. We re-tuned the original Traub parameters to eliminate both 
intrinsic neuronal activity and removed the gap junctions. Tuning 
out intrinsic neuronal activity in the model allowed changes to the 
underlying connectivity to be the central factor in modifying overall 
model activity. The model we present consists of 16 simulated cor-
tical regions each containing 976 neurons (15,616 neurons total). 
Previously we connected simulated regions in a nearest neighbor 
fashion via short range association fibers. These association fibers 
originated from pyramidal cells in cortical layer 2/3 (P23s). We found 
that the introduction of symmetric bidirectional inter-regional con-
nectivity was sufficient to induce both a 1/f power spectrum as well 
as oscillatory behavior in the local field potential of the underlying 
cortical regions in the 2 to 40 Hz range. However we also found that 
sub-region activity was fairly uniform, even if these sub-region oscilla-
tions were not strongly correlated with one another. We hypothesize 
that introducing asymmetric inter-regional connectivity in this model 
may produce underlying simulated neuronal activity that is more vari-
able in its output and more similar to the output observed in the bio-
logical system..
Connectivity between cortical regions in the biological brain are often 
asymmetric with outputs of layer 2/3 pyramidal cells terminating in 
different layers and in different proportions on receiving regions of 
cortex [4].
Here we explore how these asymmetrical connectivity schema alter 
microscopic (spikes) and macroscopic (local field potential) features 
of our cortical simulations. We re-organized our 16 simulated corti-
cal regions in a hierarchical fashion using feedforward and feedback 
connectivity patterns observed between regions of the visual system 
[4]. We then compare the behavior of this network to our previous 
simulations using nearest neighbor and small world like inter-regional 
connectivity. We hypothesize that networks with asymmetric connec-
tivity between regions will give richer and more heterogenous model 
outputs.
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Reinforcement learning (RL) theory provides a simple model that can 
help explain many animal behaviors. RL models have been very suc-
cessful in describing the neural activity in multiple brain regions and 
at several spatiotemporal scales ranging from single units up to hemo-
dynamics during the learning process in animals including humans. 
A key component of RL is the value function, which captures the 
expected, temporally discounted reward, from a given state. A reward 
prediction error occurs when there is a discrepancy between the value 
function and actual reward, and this error is used to drive learning. The 
value function can also be modified by the animal’s knowledge and 
certainty of its environment. Here we show that the bilateral primary 
motor cortical (M1) neural activity in non-human primates (Rhesus 
and Bonnet macaques either sex) encodes a value function in line 
with temporal difference RL. M1 responds to the delivery of unpredict-
able reward (unconditional stimulus (US)), and shifts its value related 
response earlier in a trial, becoming predictive of expected reward, 
when reward is predictable due to the presence of an explicit cue 
(conditional stimulus (CS)). This is observed in tasks performed manu-
ally or observed passively and in tasks without an explicit CS, but with 
a predictable temporal reward environment. M1 also encodes the 
expected reward value in a multiple reward level CS-US task. Here 
we extend the Microstimulus temporal difference RL model (MSTD), 
reported to accurately capture RL related dopaminergic activity, to 
account for both phasic and tonic M1 reward-related neural activity in 
a multitude of tasks, during manual trials, as well as observational tri-
als. This information has implications towards autonomously updating 
brain-machine interfaces.
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Anatomically and biophysically detailed neuronal models, that are built 
in a data-driven manner, are useful tools in understanding and predict-
ing the behavior and function of the different cell types of the brain. 
Due to the growing number of computational and software tools and 
the increasing body of experimental data from electrophysiological 
measurements, that enable more accurate neuronal modeling, there is 
a constantly increasing number of different models of many cell types 
available in the literature. These are usually developed using differ-
ent methods and for different purposes, most often to reproduce the 
results of a few selected experiments, and it is often unknown how 
they would behave in other situation or whether they are able to gen-
eralize outside their original scope. This might be the reason why it is 
uncommon in the modelling community to re-use and further develop 
already existing models, which prevents the construction of consensus 
“community models” that could capture an increasing proportion of 

the electrophysiological properties of the given cell type. In addition, 
even when models are re-used they may lose their ability to capture 
their originally adjusted behavior while their parameters are retuned to 
make them fit another subset of experimental data.
The collaborative approach of model development requires extensive 
validation test suites which enables modelers to evaluate their models 
against experimental observations according to standardized criteria 
and to explore the changes in model behavior at the different stages 
of its development. Applying automated tests also facilitates optimal 
model re-use and co-operative model development by making it pos-
sible to learn more about models published by other groups (beyond 
the results included in the papers) with relatively little effort.
Initially we addressed this issue by developing an open-source Python 
test suite, called HippoUnit (https://github.com/KaliLab/hippounit) for 
the automated and systematic validation and quantitative compari-
son of the behavior of models of the hippocampal CA1 pyramidal cells 
(which is one of the most studied cell type) against electrophysiologi-
cal data. We applied HippoUnit to test and compare the behavior of 
several different hippocampal CA1 pyramidal cell models available on 
ModelDB (results are available at: https://github.com/KaliLab/HippoU-
nit_demo). We also employed the test suite to aid the development of 
models within the Human Brain Project (HBP) and integrated the tests 
into the validation framework developed in the HBP.
Currently we are extending this test suite by adding new tests for the 
validation of other important hippocampal cell types. New validation 
tests cover somatic behavior and signal propagation in dendrites of 
basket cells and CA3 pyramidal cells, and the propagation of action 
potential in the axon of basket cells.
By presenting these results we hope to encourage the modeling com-
munity to use more systematic testing during model development, 
in order to create neural models that generalize better, and make the 
process of model building more reproducible and transparent.
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It is widely recognised that maximising a variational bound on model 
evidence – or equivalently, minimising variational free energy – pro-
vides a unified, normative formulation of inference and learning [1]. 
According to the complete class theorem [2], any dynamics that mini-
mises a cost function can be viewed as performing Bayesian inference; 
implying that any neural network whose activity and plasticity follow 
the same cost function is implicitly performing Bayesian inference. 
However, the implicit Bayesian model that corresponds to any given 
cost function is a more delicate problem. Here, we identify a class of bio-
logically plausible cost functions for canonical neural networks of rate 
coding neurons, where the same cost function is minimised by both 
neural activity and plasticity [3]. We then demonstrate that such cost 
functions can be cast as variational free energy under an implicit gen-
erative model in the well-known form of partially observed Markov deci-
sion processes. This equivalence means that the activity and plasticity in 
a canonical neural network can be understood as approximate Bayes-
ian inference and learning, respectively. Mathematical analysis shows 
that the firing thresholds – that characterise the neural network cost 
function – correspond to prior beliefs about hidden states in the gen-
erative model. This means that the Bayes optimal encoding of hidden 
states is attained when the network’s implicit priors match the process 
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generating its sensory inputs. The theoretical formulation was validated 
using in vitro neural networks comprising rat cortical cells cultured on 
a microelectrode array dish [4,5]. We observed that in vitro neural net-
works – that receive input stimuli generated from hidden sources – per-
form causal inference or source separation through activity-dependent 
plasticity. The learning process was consistent with Bayesian belief 
updating and the minimisation of variational free energy. Furthermore, 
constraints that characterise the firing thresholds were estimated from 
the empirical data to quantify the in vitro network’s prior beliefs about 
hidden states. These results highlight the potential utility of reverse 
engineering generative models to characterise the neuronal mecha-
nisms underlying Bayesian inference and learning.
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Neurons in the primary auditory cortex (A1) display rapid task-related 
plasticity, which is believed to enhance the ability to selectively attend 
to one stream of sound in complex acoustic scenes. Previous studies 
have suggested that cholinergic projections from Nucleus Basalis to 
A1 modulate auditory cortical responses and may be a key component 
of rapid task related plasticity. However, the underlying molecular, cel-
lular and network mechanisms of cholinergic modulation of cortical 
processing remain unclear.
A previously published model of A1 receptive fields [1] that can reproduce 
task-related plasticity was used to investigate mechanisms of cholinergic 
modulation in A1. The previous model comprised a cochlea model and 
integrate-and-fire model neurons to represent networks in A1. Action 
potentials from individual model neurons were used to calculate the recep-
tive field using reverse correlation, which allowed direct comparison to 
experimental data. To allow an investigation into different mechanisms 
of cholinergic modulation at A1, this previous model was extended by: (1) 
adding integrate-and-fire neurons to represent neurons projecting from 
Nucleus Basalis to A1; (2) adding inhibitory interneurons in A1; (3) including 
internal calcium dynamics in the integrate-and-fire models; and (4) includ-
ing calcium-dependent potassium conductance in the integrate-and-fire 
models. Since cholinergic modulation has several potential sites of action in 
A1, the current model was used to investigate acetylcholine acting through 
both muscarinic and nicotinic acetylcholine receptors (mAChR and nAChR, 
respectively) located presynaptically or postsynaptically.
Four possible mechanisms of cholinergic modulation on A1 receptive 
fields were investigated. Previous research indicates cholinergic modula-
tion should be able to suppress an inhibitory region and enhance an excit-
atory region in the receptive fields [2]. Our model indicates it is unlikely 
that any one of these four mechanisms could produce these opposite 
changes to both excitatory and inhibitory regions. However, multiple 
mechanisms occurring simultaneously could produce the expected 
changes to the receptive fields in this model. We demonstrate that 

combining either presynaptic nAChR with presynaptic mAChR or presyn-
aptic nAChR with postsynaptic nAChR is capable of producing changes to 
A1 receptive fields observed during rapid task-related plasticity.
This model tested four mechanisms by which cholinergic modulation 
may induce rapid task-related plasticity in A1. Cholinergic modulation 
could reproduce experimentally observed changes to A1 receptive fields 
when it was implemented using a combination of mechanisms. Two dif-
ferent combinations of cholinergic modulation were found to produce 
the expected changes in A1 receptive fields. Since the model predicts that 
these two different combinations of cholinergic modulation would have 
differential effects on the rate of neuronal firing, it will be possible to run 
experimental tests to distinguish between the two theoretic possibilities.
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In recent years, there has been a surge of interest in how dendrites and 
their complex geometry allow for integration of spatiotemporal patterns 
of input and transformation into neuronal response [1,2]. Although size-
able amounts of synaptic input arrive at distinct branches, the dendritic 
tree must convert this composite signal into meaningful information, 
which will be then transferred to the soma and potentially evoke spik-
ing activity [3]. While there has been considerable development in den-
dritic integration modeling in the last two decades, single-compartment 
neurons are still a hallmark of computational neuroscience and machine 
learning [2]; this level of abstraction, however, ignores components of 
dendritic integration that may be essential to properly represent neuronal 
dynamics, hence limiting the performance of the studied systems.
Some of these shortcomings were recently overcome by a two-compart-
ment model that introduced a self-supervision rule within a single neu-
ron to minimize information loss between dendritic synaptic input and 
somatic output spiking activity [4]. Networks composed of this neuron 
model could perform a variety of unsupervised temporal feature learn-
ing tasks such as chunking and blind source separation, usually per-
formed by specialized networks with different learning rules. We wish to 
generalize this learning principle and develop a new framework in which 
dendritic trees have two or more compartments with hierarchical, linear-
nonlinear integrations [3]. Here we investigate how can self-supervision 
be defined in this system and examine its accuracy when presented to 
the previously introduced temporal feature learning tasks. We expect 
that, by distributing the synaptic input into different compartments of 
the same neuron, our model can use delayed integration to differentiate 
similar temporal patterns that were previously indistinguishable.
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Scientific insight is well-served by the discovery and optimization of 
abstract models that can reproduce experimental findings. NeuroML 
(NeuroML.org), a model description language for neuroscience, facili-
tates reproducibility and exchange of such models by providing an 
implementation-agnostic model description in a modular format. 
NeuronUnit (neuronunit.scidash.org) evaluates model accuracy by 
subjecting models to experimental data-driven validation tests, a for-
malization of the scientific method.
A neuron model that perfectly imitated real neuronal electrical 
behavior in response to any stimulus would not be distinguishable 
from experiments by any conventional physiological measurement. 
In order to assess whether existing neuron models approached this 
standard, we took 972 existing neuron models from NeuroML-DB.org 
and subjected them to a standard series of electrophysiological stimuli 
(somatic current injection waveforms). We then extracted analogous 
448 stimulus-evoked recordings of real cortical neurons from the Allen 
Cell Types database. We applied multiple feature extraction algo-
rithms on the physiological responses of both model simulations and 
experimental recordings in order to characterize physiological behav-
ior with a very high degree of detail spanning hundreds of features.
After applying dimensionality reduction to this very high dimensional 
feature space, we show that the real (biological neurons) and simulated 
(model neurons) recordings are easily and fully discriminated by eye or 
any reasonable classifier. Consequently, not a single model neuron pro-
duced physiological responses that could be confused with a biologi-
cal neuron. Was this a defect of the model design (e.g. key mechanisms 
unaccounted for) or of model parameterization? We found that if we 
introduced models that were revised via optimization the revised mod-
els overlapped with the distribution of biological neurons, and were 
mostly classified as such. The remaining post-optimization disagree-
ment between models and biological neurons may reflect limitations of 
model design and can be investigated by probing the key features used 
by classifiers to distinguish these two populations.
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Neurons use their complex dendritic tree to integrate complex spatio-
temporal patterns of incoming signals. The nonlinear interactions of 
spikes along the bifurcating branches allows the neuron to perform 
dendritic computations [1]. While models often aim to realistically 
simulate the complicated chemical properties of these signals, they 
often do this at the cost of simplifying the spatial structure to one 
(e.g., Hodgkin Huxley, integrate-and-fire) [2] or few compartments [3]. 
These simplified structures do not accurately represent the morphol-
ogy, and thus it is not possible to infer how the dendritic structure can 
shape a neuron’s output.
Here, we used detailed neuron reconstructions from the online data-
base NeuroMorpho.Org [4]. Each neuron is made up of one somatic 
compartment and up to 10,000 dendritic compartments. By treating 

these compartments as an excitable network [5, 6], we could apply a 
simple discrete model of dendritic spike propagation to investigate 
how the morphology affects the firing behavior of a neuron.
Our approach allows for a detailed analysis of the neuron’s dendritic activ-
ity pattern. For example, we can generate spatial heatmaps of firing rate, 
revealing a significant spatial dependence of dynamics. By comparing the 
compartmental activity for different strengths of external stimulus, we 
can investigate the dynamic range – over what range of input strength a 
compartment’s firing rate is varied the most. We find that dendritic bifur-
cations boost the local dynamic range. Thus, a soma located in densely 
bifurcated regions tends to have large dynamic ranges.
Identifying how effectively a neuron utilizes its dendritic tree to 
amplify stimuli can be achieved by comparing the average dendritic 
compartment activity against how often the soma fires. Since it takes 
energy to control the ion channels responsible for dendritic spikes, 
we call this ratio the relative energy consumption of the neuron. If it is 
<1, the neuron is energy efficient. Conversely, if it is >1, the neuron is 
inefficient. We identified two morphological features – the number of 
somatic branches, and the centrality of the soma – that can be used to 
categorize the energy behavior of neurons (Fig. 1).

Fig. 1 Neurons can be classified into functional groups based on 
two morphological features; the number of branches connected to 
the soma, and its centrality. Type 1 corresponds to energy efficient 
behaviour (energy < 1) across the parameter space of h and P. Type 2 
exhibits mixed behaviour. Type 3 neurons are inefficient (energy > 1). 
Type T represents a transitional category with mixed behaviour
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The classification scheme we have proposed provides an important 
testable basis in explaining structural differences across neurons. For 
example, depending on the required computational function, certain 
features of the dendritic tree would be more favorable. Our model can 
be applied to any of the 100,000+ reconstructions available at Neuro-
Morpho.Org, and can be extended to investigate the effect of changes 
in dendritic structure.
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Gamma oscillations (30-80 Hz) occur in transient bursts with varying 
frequencies and durations. These non-stationary gamma bursts have 
been widely observed in many brain areas but have rarely been quanti-
tatively characterized, and the mechanisms that produce them are not 
understood. In this study we investigate the spatiotemporal properties 
of gamma bursts through combined empirical and modeling inves-
tigation. Our array recordings of local field potentials in visual cortical 
area MT of the marmoset monkey reveal that gamma bursts form local-
ized patterns with complex propagation dynamics. We also show that 
the propagations of these patterns are characterized by anomalous 
dynamics that are fundamentally different from regular or Brownian 
motions conventionally assumed. We show that all aspects of these 
anomalous dynamics can be quantitatively captured by a spatially 
extended, biophysically realistic circuit model. Circuit dissection of the 
model shows further that the anomalous dynamics rely on the intrinsic 
meta-stability near the critical transition between different circuit states 
(i.e. between synchronous and the regular propagating wave states). 
Our results thus reveal novel spatiotemporal organization properties of 
gamma bursts, and explain them in terms of underlying circuit mecha-
nisms, providing new computational functions for gamma oscillations.
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Selective attention can sift out particular objects or features from 
the plethora of stimuli. Such preferential processing of attention is 
often compared to a spotlight pausing to illuminate relevant targets 
in visual fields in a stimulus-driven way (bottom-up attention) and/or 
task-driven way (top-down attention). Recent studies have revealed 
that bottom-up distributed attention involving multiple objects is 
not a sustained spotlight, but samples the visual environment in a 
fundamentally dynamical manner with theta-rhythmic cycles, with 
each sampling cycle being implemented through gamma oscillations. 

However, the fundamental questions regarding the dynamical nature 
and the circuit mechanism underlying such dynamical attentional 
sampling remain largely unknown. To address these questions, in this 
study we investigate a biophysically plausible cortical circuit model 
of spiking neurons and find that in the working regime of the model 
(i.e. the regime near the critical transition between the asynchronous 
and propagating wave states), the localized activity pattern emerging 
from the circuit exhibits rich spatiotemporal dynamics. We illustrate 
that the nonequilibrium nature of the localized pattern enables the 
circuit to dynamically shift to different salient external inputs, with-
out introducing additional neural mechanisms such as inhibition of 
return as in the conventional winner-take-all models of attention. We 
elucidate that the dynamical shifting process of the activity pattern 
provides a mechanistic account of key neurophysiological and behav-
ioral findings on attention, including theta oscillations, theta-gamma 
phase-amplitude coupling, and vigorous-faint spiking fluctuations. 
Furthermore, by using the saliency maps of natural stimuli, we dem-
onstrate that the nonequilibrium activity pattern dynamics can better 
explain the psychophysical findings regarding attention maps and 
attention sampling paths than the conventional models, providing a 
profound computational advantage for efficiently sampling external 
environments. Our work thus establishes a novel circuit mechanism by 
which non-equilibrium, fluctuating pattern dynamics near the critical 
transition of circuit states can be exploited for implementing efficient 
attentional sampling.
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As part of the monitoring of medication-resistant epilepsy before resec-
tive surgeries, patients are implanted with electrocorticography (ECoG) 
electrode arrays placed on the surface of the cortex or stereotactic elec-
troencephalography (SEEG) depth electrodes penetrating the cortex. 
Both recording modalities measure local field potentials (LFPs) from their 
respective target locations. The patients are occasionally recruited to vol-
untarily participate in brain-computer interface (BCI) research. In recent 
years, ECoG-based BCIs have demonstrated long-term reliable decoding 
of various cortical processes involved in mental imagery tasks. Despite 
similarities in terms of clinical application and decoding strategies, SEEG-
based BCIs have been the focus of only a limited number of studies. 
While the sparsity of their cortical coverage represents a disadvantage, 
SEEG depth electrodes have the potential to target bilateral combina-
tions of deeper brain structures that are inaccessible with ECoG [1].
Here, we propose a framework for SEEG-based BCIs to identify discrimi-
native recording sites for decoding imagined speech. Four patients 
with epilepsy were implanted with 7 to 11 SEEG depth electrodes, each 
consisting of 8 to 15 recording sites. Electrode placement and duration 
of monitoring were solely based on the requirements of clinical evalu-
ation. Signals were amplified and recorded at a sampling rate of 5 kHz. 
The task consisted of listening to utterances and producing overt and 
covert (imagined) utterances of a selection of 20 monosyllabic English 
words made up of all combinations of five consonant patterns (/b_t/, 
/m_n/, /r_d/, /s_t/, /t_n/) and four vowels (/æ/, /ε/, /i:/, /u:/).
We determined the relative importance of recording sites based on 
classification accuracies obtained from features extracted at the cor-
responding electrode locations. Each trial was associated with a label 
(consonant pattern or vowel) and a set of features consisting of nor-
malized log-transformed power spectral densities at different time 
points and selected frequency bands: delta (1-4 Hz), theta (4-8 Hz), 
alpha (8-12 Hz), beta (12-30 Hz), gamma 1 (30-45 Hz), gamma 2 (55-
95 Hz), gamma 3 (105-145 Hz), and gamma 4 (155-195 Hz). A pair-wise 
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classification model using logistic regression was used to predict the 
labels. Parameters were trained for different combinations of record-
ing sites, as well as each condition (listening, overt, covert), patient, 
and pair of labels separately. The mean classification rate across all 
pairs of labels was calculated to quantify the discriminative power of 
individual and combined recording sites.
Our results consistently show across all patients that relevant depth 
electrodes for decoding imagined speech are found in both left and 
right superior temporal gyri. Anatomical analyses of these electrode 
locations revealed that recording sites in the grey matter were the 
most discriminative. This is in line with previous studies of speech 
BCIs [2]. In addition to providing a better understanding of the neural 
processes underlying imagined speech, our practical framework may 
be applied to reduce feature dimensionality and computational cost 
while improving accuracy in real-time SEEG-based BCI applications.
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Epilepsy affects an estimated fifty million people worldwide. Approxi-
mately one third do not respond to anti-epileptic medication and are 
therefore potential candidates for alternative treatments such as epi-
lepsy surgery. Surgery aims to remove the epileptogenic zone (EZ), 
the brain area responsible for the generation of seizures. Epilepsy 
surgery is thus preceded by an evaluation to determine the location 
of the EZ. A number of brain imaging modalities may be used in this 
evaluation, namely scalp electroencephalography (EEG) and magnetic 
resonance imaging (MRI), possibly followed by invasive intracranial 
EEG. The effectiveness of intracranial EEG to inform epilepsy surgery 
depends on where electrodes are implanted. This decision is informed 
by noninvasive recording modalities such as scalp EEG. The decision 
is frequently not trivial because scalp EEG may provide inconclusive 
or even contradictory predictions of the EZ location. A poor hypoth-
esis based on noninvasive data may lead to an incorrect placement of 
intracranial electrodes, which in turn may make surgery ill-advised and 
potentially unsuccessful if performed [1].
Here we propose a framework to interrogate scalp EEG and determine 
epilepsy lateralization to aid in electrode implantation [2]. We used 
eLORETA to map source activities from seizure epochs recorded from 
scalp EEG and obtained functional networks using the phase-locking 
value (PLV). The networks were then studied using a mathematical 
model of epilepsy (a modified theta model to represent a network of 
interacting neural masses [2,3]). By removing different regions of inter-
est from the network and simulating their impact on the network’s 
ability to generate seizures in silico, the framework provides predic-
tions of epilepsy lateralization. We considered 15 individuals from the 
EPILEPSIAE database and studied a total of 62 seizures. Results were 
assessed by taking into account actual intracranial implantations and 
postsurgical outcome. The framework proved useful in assessing 
epilepsy lateralization in 12 out of 15 individuals considered. These 
results show promise for the use of this framework to better interro-
gate scalp EEG and aid clinicians in presurgical assessment of people 
with epilepsy.
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Neural networks in the brain may self-organise such that they oper-
ate near criticality, that is, poised on the boundary between phases 
of order and disorder [1]. Models of neural networks tuned close to 
criticality are optimal in terms of dynamic range, information trans-
mission, information storage and computational adaptability [2]. Most 
experimental evidence for criticality in the brain has come from studies 
of high resolution neural spiking data recorded from tissue cultures or 
anaesthetised animals using microelectrode arrays, or from studies of 
mesoscopic-scale neural activity using magnetic resonance imaging or 
electroencephalograms. These approaches are inherently limited either 
by under-sampling of the neural population or by coarse spatial resolu-
tion. This can be problematic for empirical studies of criticality because 
the characteristic dynamics of interest are theoretically scale-free.
Recently, Ponce-Alvarez et al. [3] investigated the larval zebrafish as a 
new model for neural criticality by utilising the unique properties of 
the organism that enable whole-brain imaging of neural activity in vivo 
and without anaesthetic. They identified hallmarks of neural criticality 
in larval zebrafish using 1-photon calcium imaging and voxel-based 
analysis of neuronal avalanches. Here we addressed two key limitations 
of their study by instead using 2-photon calcium imaging to observe 
truly spontaneous activity, and by extracting neural activity time series 
at single-cell resolution via state-of-the-art image segmentation [4]. 
Our data comprise fluorescence time series for large populations of 
neurons from 3-dimensional volumetric recordings of spontaneous 
activity in the optic tectum and cerebellum of larval zebrafish with pan-
neuronal expression of GCaMP6s (n=5; approx. 10000 neurons per fish) 
(Fig. 1A). Neuronal avalanche statistics revealed power-law relation-
ships and scale-invariant avalanche shape collapse which are consist-
ent with crackling noise dynamics from a 3-dimensional random field 
Ising model [5] (Fig. 1B-C). Observed power laws were validated using 
shuffled surrogate data and log-likelihood ratio tests. This result pro-
vides the first evidence of criticality in the brain from large-scale in vivo 
neural activity at single cell resolution. Our findings demonstrate the 
potential of larval zebrafish as a model for the investigation of critical 
phenomena in the context of neurodevelopmental disorders that may 
perturb the brain away from criticality.
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Fig. 1 A z‑projection of 2‑photon data from a larval zebrafish. B 
The spatio‑temporal profile of a neuronal avalanche (clusters of 
neural activations that propagate through the brain, as shown by 
shaded regions). C Avalanche statistics reveal characteristic power 
law relationships including the distribution of avalanche size (shown) 
consistent with a random field Ising model (dashed line)
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Theta oscillations may act as carrier waves for synchronizing activi-
ties across neuronal regions. Several gamma cycles, each containing 
a specific pattern of activity correlated with an event e.g. animal loca-
tion forming place fields, are encompassed in a single theta cycle. We 
have extended the septo-hippocampal population firing rate model 
proposed by Denham and Borisyuk [1] to study the influence of inhibi-
tory interneurons, specifically PV-containing basket cells (BCs) and 
bistratified cells (BSCs) on theta and theta-coupled gamma oscillations 
in both CA1 and CA3 hippocampal networks. Our CA1 microcircuit 
model is a combination of that of Denham and Borisyuk and Cutsuridis 
et. al [2]. The CA3 model is adapted from the CA1 model on the basis 
of CA3-specific experimental data.
The theta-phase relationships of the neurons in these models are 
largely determined by the afferent and efferent connections of BCs 
in both CA1 and CA3. In CA1, BCs and BSCs are active on opposite 
phases of theta in a pure-theta tuning (no gamma), as per data from 

Klausberger et. al [3,4] due to extra external drive to basket cells from 
CA3, enabling them to be active on the opposite cycle to CA1 pyrami-
dal cells (PCs). As excitatory drive to BCs from PCs is increased there is 
a bifurcation in which BC activity switches to being in-phase with PCs, 
and BSC activity remains in-phase with PCs. A further increase in drive 
to BCs from PCs leads to gamma oscillations in both PC and BC activ-
ity, and forces BSC activity to shift to the opposite theta phase due to 
strong inhibition from BCs.
Varying strengths of external inputs also affects the strength of oscil-
lations and phase relationships. Both in CA1 and CA3, PCs, BCs and 
BSCs reach steady state activity for very low or very high external 
inputs. BCs in CA1 rely on CA3 and EC input for their activity in theta-
only tuning, so their activity reduces if these inputs are reduced. BSCs 
activity in CA1 actually reduces for increased CA3 and EC input, due to 
increased inhibition from BCs. In CA3, recurrent connections between 
PCs are far more likely (and hence stronger on a population scale) than 
in CA1. BSCs in CA3 are driven only by CA3 PCs and have no external 
sources of excitation. BCs in CA3 get dentate gyrus input in addition 
to PC input. Other interneurons (modeled as a single population) get 
excitation from CA1 and CA3 PCs, plus EC. In CA1, only CA3 and EC are 
external sources of input, apart from septum. The resultant main dif-
ference in activity in CA3, compared with CA1, is that BSCs are always 
in sync with BCs and PCs during theta. A minimum strength of sep-
tum input is required to generate theta, then increasing septum input 
raises the frequency of theta oscillations. Whereas, increasing the 
value of dentate gyrus input transforms the oscillatory activity into 
stable, non-oscillatory activity, and also decreases the septum activity. 
Strong EC and CA1 input to CA3 may silence CA3 PCs, BCs and BSCs 
through exciting other inhibitory interneurons.
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Perturbation via electromagnetic stimulation is a powerful way of 
probing neural systems to better understand their functional organi-
zation. One of the most widely used neurostimulation techniques in 
human neuroscience is transcranial magnetic stimulation (TMS) with 
concurrently recorded electroencephalography (EEG). The immediate 
EEG responses to single-pulse TMS stimulation, termed TMS-evoked 
potentials (TEPs), are spatiotemporal waveforms in EEG sensor- or 
source-space [1]. TEPs display several characteristic features, includ-
ing i) rapid wave-like propagation away from the primary stimulation 
site, and ii) multiple volleys of recurrent activity, that continue for sev-
eral hundred milliseconds following the stimulation pulse. These TEP 
patterns reflect reverberant activity in large-scale cortico-cortical and 
cortico-subcortical brain networks, and have been used to study neu-
ral excitability in a wide variety of research contexts, including sleep, 
anaesthesia, and coma [2]. There has been relatively little work done, 
however, on computational modelling of TEP waveform morpholo-
gies, and how these spatiotemporal patterns emerge from a com-
bination of global brain network structure and local physiological 
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characteristics. Here we present a novel connectome-based neural 
mass model of TEPs that accurately reproduces recordings across mul-
tiple subjects and stimulation sites. We employ a biophysical electric 
field model (using the simnibs [3] library) to identify the electrical field 
(‘E-field’) distribution over the cortical surface resulting from stimu-
lation at a given TMS coil location and orientation, that is based on 
T1-weighted MRI-derived cortical geometry, and personalized to indi-
vidual subjects. These TMS-induced E-field maps are then summed to 
yield a current injection pattern over regions in a canonical freesurfer-
based brain parcellation. Whole-brain neural activity is modelled with 
a network of oscillatory (Fitzhugh-Nagumo) units [4,5], coupled by 
anatomical connectivity weights derived from diffusion-weighted MRI 
tractography [6], and perturbed by a brief square-wave current injec-
tion weighted regionally by the cortical E-field map magnitudes. Using 
this model we are able to accurately reproduce the typical radially 
propagating TEP patterns under a wide range of parameter values. For 
the later (150ms+) TEP components however, we find that it is nec-
essary to modify the weight of cortico-thalamic and thalamo-cortical 
projections in the tractography-defined anatomical connectivity (see 
also [7]), which has the effect of promoting recurrent activity patterns. 
These results contribute important insights to our long-term objective 
of developing an accurate model of TEPs that can be used to guide 
the design and administration of TMS-EEG for excitability mapping in 
clinical contexts.
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Recurrent cortical network dynamics plays a crucial role for sequential 
information processing in the brain. While the theoretical framework 
of reservoir computing provides a conceptual basis for the under-
standing of recurrent neural computation, it often requires manual 
adjustments of global network parameters, in particular of the spectral 
radius of the recurrent synaptic weight matrix. Being a mathemati-
cal and relatively complex quantity, the spectral radius is not read-
ily accessible to biological neural networks, which are based on the 
principle that information about the network state should either be 
encoded in local intrinsic dynamical quantities (e.g. membrane poten-
tials), or transmitted via synaptic connectivity. We present an intrin-
sic adaptation rule, termed flow control, for echo state networks that 
solely relies on locally accessible variables, while still being capable of 
tuning a global quantity, the spectral radius of the network, towards a 

desired value. The adaptation rule works online, in the presence of a 
continuous stream of input signals. It is based on a local comparison 
between the mean squared recurrent membrane potential and the 
mean squared activity of the neuron itself. It is derived from a global 
scaling condition on the dynamic flow of neural activities, and requires 
the separability between external and recurrent input currents. The 
effectiveness of the presented mechanism is tested numerically using 
different external input protocols. Furthermore, the network perfor-
mance after applying the adaptation is evaluated by training the net-
work to perform a time delayed XOR operation on binary sequences.
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To identify active cell assemblies we developed a method to detect 
significant spatio-temporal spike patterns (STPs). The method, called 
SPADE [1-3], identifies repeating ms-precise spike patterns across neu-
rons. SPADE first discretizes the spike trains in exclusive bins (defining 
the pattern precision, e.g. 5ms) and clips the bin content to 1 if more 
than 1 spike is therein. Second, STPs are mined by Frequent Itemset 
Mining [4], and their counts are evaluated for significance through 
comparison to surrogate data. The distribution of the pattern counts 
in the surrogate data provides p-values for determining the signifi-
cance of grouped patterns. The surrogate data implement the null-
hypothesis of independence, and a classical choice is to apply uniform 
dithering (UD) [5], i.e. independent, uniformly distributed displace-
ment of each spike (e.g. in a range of +/- 5 times the bin width [1]). 
This approach does not maintain the absolute refractory period and 
a potentially existing ISI regularity. The binarization leads in the surro-
gates to a higher probability of more than 1 spike per bin, and thus by 
the consecutive clipping to a reduction of the spike count (up to 12%, 
in particular for high firing rates) as compared to the original data.
This may cause false positives (cmp. [6]). Therefore, we explored fur-
ther methods for surrogate generation. To not have different spike 
counts in the original and the surrogate data, bin-shuffling shuffles 
the bins after binning the original data. To keep the refractory period 
(RP) uniform dithering with refractory period (UD-RP) does not allow 
dithered spikes within a short time interval after each spike. Dithering 
according to the ISI distribution (ISI-D) [e.g. 5] or the Joint-ISI distribu-
tion (J-ISI-D) [7] conserves the ISI and ISI/J-ISI distributions, respec-
tively. Spike-train shifting (ST-Shift) [8,5] moves the whole spike train, 
trial by trial, by a random amount, thereby only affecting the relation 
of spike trains to each other. Thus all of these implement different 
null-hypotheses, as summarized in the table below. It shows the non-/
preservation (no/yes) of features in the various surrogates compared 
to the original data.
We applied all surrogate methods (within SPADE) and compared their 
results using artificial, and experimental spike data simultaneously 
recorded in pre-/motor cortex of a macaque monkey performing a 
reach-to-grasp task [9]. We find that all methods besides UD lead to 
very similar results in terms of number of patterns and their composi-
tion. UD results in a much larger number of patterns, in particular if 
neurons have very high firing rates and exhibit regular spike trains. We 
conclude that the reduction in the spike count using UD increases the 
false positive rate for spike trains with CV<1 and/or high firing rates, 
the other methods are much less affected, the least spike train shifting.
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Table summarizing statistical properties of the spike trains being 
non-/preserved (no/yes) by  the  various surrogate techniques 
taken into consideration

Method/Fea‑
ture

UD ISI‑D J‑ISI‑D UD‑RP Bin‑Shuff ST‑shift

Spike count no yes approx. approx. yes yes

ISI no approx. approx. no no yes

J‑ISI no no approx. no no yes
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Alzheimer’s disease (AD) is a neuro-degenerative disease which causes 
severe loss of cognitive functions and deteriorates the quality of 
daily life of elders. One hypothesis of AD development and progres-
sion is deposition of amyloid-beta protein which is known to cause 
neuronal cell death in the gray matter and to degrade the cognitive 
function of the affected regions. Recently, it is reported that the toxic 
protein can move through connectivity between neurons, which is 
called transneuronal projection, besides the local diffusion through 
the non-neuronal tissues. In this study, we investigated the effects 
of the transneuronal projection on the amyloid deposition pattern 
over the brain through simulation of a mathematical model based 
on the actual neuroimage data. The model consists of two compo-
nents: transneuronal spreading, and local spreading. The transneu-
ronal spreading captures propagation of the toxic protein in the 
white matter while the local spreading captures its local diffusion 
through the gray matter. Each component has its own parameter to 
balance between components. We estimated all parameters in the 
model through the Bayesian inference method that best describe 

the longitudinal data from Alzheimer’s disease neuroimaging ini-
tiative (ADNI) dataset, by comparing the results of simulation data 
with the actual dataset. We modelled our brain as a high-resolution 
graph whose nodes are a small volume of the cerebral cortices, and 
whose edges are the structure of adjacency between them, delineat-
ing spreading pathways. We transformed the cerebral cortices into a 
triangular lattice of prism-like volumes from structural magnetic reso-
nance (MR) images. From the topology of the lattice we extracted local 
adjacency between the nodes. On the contrary, for the long-range 
connection through the neuronal fibers, we obtained the connectiv-
ity between the nodes from the diffusion-weighted MR imaging (DWI). 
Each node has the level of the amyloid deposition, obtained through 
the18F-Florbetapir positron emission tomography (PET) images with 
partial volume effect correction. This high-resolution graph model can 
enable to simulate more granularly and accurately. To investigate the 
effect of transneuronal spreading, we compared results of two condi-
tions: simulation 1) with only the local spreading, and 2) with both the 
local and transneuronal spreading. Both models showed the spread 
of the amyloid from the regions where the initial protein accumula-
tion is high, also known as epicenters. The result of the former condi-
tion may explain gradual spread from the epicenters to their nearby 
regions while it could not explain remote spread from the epicenters 
to their distant regions. On the other hand, the latter results illustrated 
not only local spread, but also remote spread. Thus, the model with 
both local and transneuronal spreading components is more feasible 
to explain the deposition of amyloid-beta in AD. The purpose of this 
study is to investigate the effect of transneuronal spread of the amy-
loid beta over AD’s progression using the actual neuroimage data. 
Our results support the previous research of transmission of amyloid 
through the neuronal pathways.
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There is increasing evidence of reduced cortical inhibition in a variety 
of psychiatric disorders such as major depressive disorder (MDD) and 
schizophrenia. Cortical inhibition is mediated by GABAergic interneu-
rons and plays a key role in modulating information processing in 
cortical pyramidal neurons. In particular, interneurons expressing 
somatostatin (SST) inhibit the distal dendrites of pyramidal neurons 
and mediate lateral inhibition. Recent postmortem studies showed 
reduced SST expression in these interneurons in MDD patients, 
suggesting weaker levels of inhibition. The reduced inhibition is 
thought to result in a lower signal-to-noise ratio of cortical microcir-
cuit activity, due to abnormally increased intrinsic activity compared 
to stimulus-evoked activity. We test this hypothesis and characterize 
the implications of reduced SST inhibition in depression using novel 
computational models of human cortical microcircuits. We gener-
ated detailed models of the major neuronal types in human cortical 
layer 2/3, by integrating unique human electrophysiology data and 
applying machine-learning optimization algorithms. We connected 
the model neurons in a microcircuit according to connectivity sta-
tistics and synaptic parameters derived from the literature. We show 
that intrinsic activity significantly increases in models of MDD micro-
circuits, in which SST interneuron inhibition was reduced, compared 
to healthy microcircuits. We then then compared the signal-to-noise 
ratio of intrinsic and evoked activity in healthy and MDD microcircuits. 
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Our results thus elucidate the role that inhibition plays in normal and 
pathological information processing by human cortical microcircuits.
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Introduction: Many efforts in the study of the brain have focused on 
representations of stimuli by neurons and learning thereof. Our work 
[1] demonstrates the potential of a novel learning paradigm for neu-
ronal activity with high variability, where distributed information is 
embedded in the correlation patterns.
Learning theory: We derive a learning rule to train a network to per-
form an arbitrary operation on spatio-temporal covariances for time 
series. To illustrate our scheme, we use the example of classification 
where the network is trained to perform an input-output mapping 
from given sets of input patterns to representative output patterns, 
one output per input group. This setup is the same as learning activ-
ity patterns for the classical perceptron [2], a central concept that has 
brought many fruitful theories in the fields of neural coding and learn-
ing in networks. For that reason, we refer to our classifier as “covari-
ance perceptron”. Compared to the classical perceptron, a conceptual 
difference is that we base information on the the co-fluctuations of 
the input time series that result in second-order statistics. In this way, 
robust information can be conveyed despite a high apparent vari-
ability in the activity. This approach is a radical change of perspective 
compared to classical approaches that typically transform time series 
into a succession of static patterns where fluctuations are noise. On 
the technical ground, our theory relies on the multivariate autoregres-
sive (MAR) dynamics, for which we derive the weight update (a gradi-
ent descent) such that input covariance patterns are mapped to given 
objective output covariance patterns.
Application to MNIST database: To further explore its robustness, 
we apply the covariance perceptron to the recognition of objects that 
move in the visual field by a network of sensory (input) and down-
stream (output) neurons. We use the MNIST database of handwritten 
digits 0 to 4. As illustrated in Figure 1, the traces “viewed” by an input 
neuron exhibit large variability across presentations. Because we want 
to identify both the digit identity and its moving direction, covariances 
of the input time series are necessary. We show that the proposed 
learning rule can successfully train the network to perform the classifi-
cation task and robustly generalize to unseen data. In our work [1], we 
also show that the covariance perceptron favorably compares to the 
classical nonlinear perceptron in extracting second-order statistics.

Fig. 1 A Moving digit in the visual field with two columns of 9 input 
neurons each feeding 10 output neurons (one per category, the larg‑
est output variance indicates the predicted category). B Responses of 
the input to the digit 0 in panel A moving to the right. C Mean activ‑
ity traces for an input neuron for digits 0 and 2, moving left or right as 
indicated above. The colored areas correspond to the standard devia‑
tion of the time‑varying activity over all patterns. D The information 
relative to both digit and motion is reflected in the input covariances. 
E Confusion matrices of the covariance perceptron for the train and 
test sets for digits 0 to 4 moving left and right

Towards distributed spike-based information processing: We 
envisage future steps that transpose this work to information con-
veyed by high-orders in the spike trains, to obtain the supervised 
equivalent of spike-timing-dependent plasticity (STDP).
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Alpha blocking, a phenomenon where the alpha rhythm is reduced 
by attention to a visual, auditory, tactile or cognitive stimulus, is one 
of the most prominent features of human electroencephalography 
(EEG) signals. Here we identify a simple physiological mechanism by 
which opening of the eyes causes attenuation of the alpha rhythm. We 
fit a neural population model to EEG spectra from 82 subjects, each 
showing different degrees of alpha blocking upon opening of their 
eyes. Although it is notoriously difficult to estimate parameters from 
fitting such models, we show that, by regularizing the differences in 
parameter estimates between eyes-closed and eyes-open states, we 
can reduce the uncertainties in these differences without significantly 
compromising fit quality. From this emerges a parsimonious expla-
nation for the spectral changes between states: just a single param-
eter, pei, corresponding to the strength of a tonic, excitatory input 
to the inhibitory population, is sufficient to explain the reduction in 
alpha rhythm upon opening of the eyes. When comparing param-
eter estimates across different subjects we find that the inferred dif-
ferential change in pei for each subject increases monotonically with 
the degree of alpha blocking observed. In contrast, other parameters 
show weak or negligible differential changes that do not scale with 
the degree of alpha attenuation in each subject. Thus, most of the 
variation in alpha blocking across subjects can be attributed to the 
strength of a tonic afferent signal to the inhibitory cortical population.
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Brain activity is highly regulated by GABAergic activity, which acts via 
GABA type A receptors (GABAARs) to suppress somatic spike genera-
tion as well as dendritic synaptic integration and calcium signaling. 
Tonic GABAergic conductances mediated by distinct receptor sub-
types can also inhibit neuronal excitability and spike output, though 
the consequences for dendritic calcium signaling are unclear. Here, we 
use 2-photon calcium imaging in cortical pyramidal neurons and com-
putational modeling to show that low affinity GABAARs containing 
an alpha5 subunit mediate a tonic hyperpolarization of the dendritic 
membrane potential, resulting in deinactivation of voltage-gated cal-
cium channels and a paradoxical boosting of action potential-evoked 
calcium influx. We also find that GABAergic enhancement of calcium 
signaling modulates short-term synaptic plasticity, augmenting 
depolarization-induced suppression of inhibition. These results dem-
onstrate a novel role for GABA in the control of dendritic activity and 
suggest a mechanism for differential modulation of electrical and bio-
chemical signaling.
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Although epilepsy is the most chronic neurological disorder, the 
mechanisms underlying the initiation of epileptic seizure remain 
unknown. Epileptic seizures are generated by intense activity emerg-
ing from a highly synchronized neuronal population. These phenom-
ena are usually preceded and followed by intervals of reduced activity, 
known as interictal periods. Importantly, the transient neuronal activ-
ity during these interictal periods -known as interictal epileptiform 
discharges (IEDs) - is considered a key mechanism governing the tran-
sition to seizure. However, whether IEDs prevent or facilitate that tran-
sition is still a matter of debate.
In this work, based on previous findings in [1], we show how these 
dual effects for IEDs can be interpreted in terms of the phasic response 
of a slow-fast system. Indeed, since the phase response of a given sys-
tem follows from its isochrons distribution, we perform a theoretical 
and computational study of the isochrons and phase response curves 
of different planar slow-fast epileptic models. Our results unfold the 
strong influence of the slow vector field in the phasic response of the 
system to IEDs and suggest theoretical strategies whose effects range 
from the short delay to the full suppression of seizures.
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Postganglionic neurons in the thoracic sympathetic chain represent 
the final common output of the sympathetic nervous system. These 
neurons receive synaptic inputs exclusively from preganglionic neu-
rons located in the spinal cord. Synaptic inputs come in two varieties: 
primary inputs, which are invariably suprathreshold, and secondary 
inputs, which exhibit a range of typically subthreshold amplitudes. 
Postganglionic neurons typically receive a single primary input and a 
variable number of secondary inputs in what has been described as an 
“n+1” connectivity pattern. Secondary inputs have often been viewed 
as inconsequential to cell recruitment due to the short duration of 
measured synaptic inputs and the relatively low tonic firing rate of 
preganglionic neurons in vivo. However, recent whole-cell patch 
clamp recordings reveal that thoracic postganglionic neurons have a 
greater capacity for synaptic integration than previous microelectrode 
recordings would suggest. This supports a greater role for secondary 
synapses in cell recruitment.
We previously created a conductance-based computational model of 
mouse thoracic postganglionic neurons. In the present study, we have 
expanded the single-cell model into a network model with synaptic 
inputs based on whole-cell recordings. We systematically varied the 
average firing rate of a network of stochastically firing preganglionic 
neurons and measured the resultant firing rate in simulated postgan-
glionic neurons. Synaptic gain was defined as the ratio of postgangli-
onic to preganglionic firing rate.
We found that for a network configuration that mimics the typical 
arrangement in mouse, low presynaptic firing rates (<0.1Hz) resulted 
a synaptic gain close to 1, while firing rates closer to 1Hz resulted in 
a synaptic gain of 2.5.Synaptic gain diminished for firing rates higher 
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than ~3Hz (Fig. 1). We also determined that synaptic gain linearly 
increases with the number of secondary synaptic inputs (n) within the 
range of physiologically realistic presynaptic firing rate. Amplitude 
of secondary inputs also determines frequency-dependent synaptic 
gain, with a bifurcation where secondary synaptic amplitude equals 
recruitment threshold. We further demonstrate that the synaptic gain 
phenomenon depends on the preservation of passive membrane 
properties as determined by whole-cell recordings.

Fig. 1 Effect of secondary inputs on synaptic gain. A Firing rate of 
postganglionic neurons as a function of presynaptic firing rate. Each 
simulation includes a single primary input, and n secondary synaptic 
inputs. Dashed line is the line of unity. B Synaptic gain as a function 
of presynaptic firing rate for postganglionic neurons with different 
numbers of secondary inputs

One major biological role of the sympathetic nervous system is the 
regulation of vascular tone in both skeletal muscle and cutaneous 
structures. The firing rate of muscle vasoconstrictor preganglionic 
neurons is modulated by the cardiac cycle, while cutaneous vasocon-
strictor neurons fire independently of the cardiac cycle. We modulated 
preganglionic firing rate according to the typical mouse heart rate 
to determine if cardiac rhythmicity changes the overall firing rate of 
postganglionic neurons. Cardiac rhythmicity does not appear to have 
a significant impact on synaptic gain within the physiological range of 
preganglionic input.
Under normal physiological conditions, the unity gain of sympa-
thetic neurons would lead to faithful transmission of central signals 
to peripheral targets. However, during episodes of high sympathetic 
activation, the postganglionic network can amplify central signals in 
a frequency-dependent manner. These results suggest that postgan-
glionic neurons play a more active role in shaping sympathetic activity 
than previously thought.
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The promotion and establishment of Open Neuroscience [1] is heav-
ily dependent on the availability of Free/Open Source Software (FOSS) 
tools that support the modern scientific process. While more and more 
tools are now being developed using FOSS driven methods to ensure 
free (as in freedom, and thus also free of cost) access to all, the com-
plexity of these domain specific tools tends to hamper their uptake 
by the target audience – scientists hailing from multiple, sometimes 
non-computing, disciplines. The NeuroFedora initiative aims to shrink 
the chasm between the development of neuroscience tools and their 
usage [2].

Using the resources of the FOSS Fedora community [3] to implement 
current best practices in software development, NeuroFedora volun-
teers identify, package, test, document, and disseminate neuroscience 
software for easy usage on the general purpose Fedora Linux Operat-
ing System (OS). The result is the reduction of the installation/deploy-
ment process for this software to a simple two-step process: install any 
flavour of the Fedora OS; install the required tools using the in-built 
package manager.
To make common computational neuroscience tools even more 
accessible, NeuroFedora now provides an OS image that is ready to 
download and use. In addition to a plethora of computational neu-
roscience software -Auryn [4], NEST [5], Brian [6], NEURON [7], GEN-
ESIS [8], Moose [9], Neurord [10], and others - the image also includes 
various utilities that are commonly used along with modelling tools, 
such as the complete Python science stack. Further, since this image is 
derived from the popular Fedora Workstation OS, it includes the mod-
ern GNOME integrated application suite and retains access to thou-
sands of scientific, development, utility, and other daily use tools from 
the Fedora repositories.
A complete list of available software can be found at the NeuroFedora 
documentation at neuro.fedoraproject.org. We invite students, train-
ees, teachers, researchers, and hobbyists to use Comp-NeuroFedora in 
their work and provide feedback. As a purely volunteer driven initia-
tive, in the spirit of the Open Science and FOSS, we welcome everyone 
to participate, engage, learn, and contribute in whatever capacity they 
wish.
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The middle temporal area (MT) within the extrastriate primate visual 
cortex contains a high proportion of direction-selective neurons. 
When the visual system is stimulated with plaid patterns, a range of 
cell-specific MT responses are observed. MT neurons that are selective 
to the direction of the pattern motion are called “pattern cells”, while 
those that respond optimally to the motion of the individual compo-
nent gratings of the plaid pattern are called “component cells”. The 
current theory on the generation of pattern selectivity of MT neurons 
is based on a hierarchical relationship between component and pat-
tern MT neurons, where the responses of pattern MT neurons result 
from the summation of the responses of component MT neurons [1]. 
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Where the gratings cross in plaids, the crossing junctions of the grat-
ings move in the pattern direction. However, revealing the ends of 
the moving gratings (terminators) in human perceptual experiments 
breaks the illusion of the direction of pattern motion: the true direc-
tions of motion of the gratings are perceived.
Here, we propose a biologically plausible model of MT neurons that 
uses as inputs the known properties of three types of cells in the pri-
mary visual cortex (V1): complex V1 neurons, end-stopped V1 neurons 
(which only respond to the end-points of the stimulus), and V1 neu-
rons with suppressive extra-classical receptive fields. The receptive 
fields of the neurons are modelled as spatiotemporal filters. There are 
two types of MT neurons: integration MT neurons with facilitatory sur-
rounds and segmentation MT neurons with antagonistic surrounds 
[2]. A neuron’s pattern or component selectivity is controlled by the 
relative proportions of the inputs from the three types of V1 neurons. 
The model provides a simple mechanism by which component and 
pattern selective cells can be described; the model does not require 
a hierarchical relationship between component and pattern MT cells.

The results show that the responses of the model MT neurons are highly 
dependent on two parameters: the excitatory input that the model neu‑
rons receive from the complex V1 neurons with extra‑classical RFs and 
the inhibitory effect of the end‑stopped neurons. The results also show 
experimentally observed contrast dependency of the pattern motion 
preference of MT neurons: the level of the pattern selectivity of MT neu‑
rons drops significantly when the contrast of the bars is reduced.
The presented model solves several problems associated with MT 
motion detection, such as overcoming the aperture problem and 
extracting the correct motion directions from crossing bars. Apart 
from the mechanism of the computation of the pattern motion by MT 
neurons, the model inherently explains several important properties 
of pattern MT neurons, including their temporal dynamics, the con-
trast dependency of pattern selectivity, and the spatial and temporal 
limits of pattern motion detection.
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Previous studies show that neurons in primary visual cortex (V1) exhibit 
contrast invariant tuning to the orientation of spatial grating stimuli [1]. 
Mathematically this is equivalent to saying that their response is a mul-
tiplicatively separable function of contrast and orientation.
Here we investigated the contrast dependence of V1 tuning to visual 
features in a more general framework. We used a data-driven model-
ling approach [2] to identify the spectrum of spatial features to which 
individual V1 neurons were sensitive, from our recordings of single 
unit responses in V1 to white (Gaussian) noise and natural scenes. For 
each cell we identified between 1 and 5 spatial feature dimensions to 
which the cell was sensitive (e.g. Fig. 1A, with 2 feature dimensions; fea-
ture 1 & 2 as labelled, with red showing bright and blue showing dark 
regions of the feature). The response of a neuron to its set of features 
was estimated from the data as the spike rate equal to a function of the 
individual feature-contrasts: r = F(c1,…,cK) (Eq. 1) where c1,…,cK are the 
contrast levels of a cell’s spatial features, 1,..K, embedded in any stimu-
lus (e.g. Fig. 1B).These features spanned a subspace, giving a spectrum 
of interpolated features to which the cell was sensitive (Fig.1A, exam-
ples labelled). The identity of these features varied along the angular 
polar coordinate in this subspace, which we term the feature-phase,φ 
(Fig. 1A, labelled). In this angular dimension, characteristics of the 

features, such as their spatial phase, orientation or spatial frequency, 
were found to vary continuously. In the radial coordinate, the contrast 
of these features varied, c = (c1,…,cK) (Fig. 1A, labelled).
We found that the neural response above the spontaneous rate, r0, 
was well approximated by a multiplicatively separable function of the 
feature-contrast and feature-phase (Fig. 1C): r = fc(c)  fφ(φ) +  r0 (Eq.2).
To quantify the accuracy of this approximation, we calculated a rela-
tive error between the original and separable forms of the feature-
contrast response function (i.e. Eq. (1) & (2)). This relative error varied 
between 2% and 18% across the cell population, with a mean of 6%. 
This indicates that for most cells, the separable form of the feature-
contrast response function was a good approximation.
This result may be interpreted as demonstrating a form of contrast 
invariant tuning to feature-phase in V1. This tuning to feature-phase 
is given by the function fφ(φ) (Fig. 1E), and the contrast response func-
tion is given by fc(c) (Fig. 1D). As several feature characteristics such 
as spatial phase, orientation or spatial frequency covary with feature-
phase, this also leads to contrast invariant tuning under covariation in 
these characteristics as feature-phase varies.
Acknowledgements: The authors acknowledge the support the Aus-
tralian Research Council Centre of Excellence for Integrative Brain 
function (CE140100007), the National Health and Medical Research 
Council (GNT1106390), and Lions Club of Victoria.

Fig. 1 A Feature subspace of a cell. B Original feature‑contrast 
response function. C Separable approximation of the feature‑contrast 
response function. D Separable contrast response function. E Separa‑
ble feature‑phase tuning function
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Synaptic transmission is the hallmark behind informative and adaptive 
cognitive processes. Neurons store and enable retrieval of informa-
tion by connecting via synapses. They can modulate the signal either 
to maintain stability or decrease or increase their strength. To improve 
quantification of synaptic dynamics with focus on computational effi-
ciency and number of parameters, a fast variant of the binomial model 
is applied to estimate θ={N,p,q,σ,τd,τf,τdes}.
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There is up to date no efficient method to simultaneously quantify 
many synaptic parameters from physiological recordings. Genera-
tive models have heavy computational loads as they depend on the 
number of release sites N [1], and need to compute multiple itera-
tions. Empirical methods usually require specific conditions, such as 
changing the release probability p or requiring regular inter spike 
intervals, which makes them unsuitable for fitting physiological data. 
The fast algorithm proposed here is based on non-linear least squares 
to retrieve quantal parameters. We apply this model to spontaneous 
excitatory postsynaptic potentials (EPPs) patch-clamped at an in vitro 
mouse neuromuscular junction (NMJ) taken in [2] (Fig. 1A). Results in 
control are relatively in line with estimations found in vivo [3] (Fig. 1C). 
Estimated quantal parameters at control are subsequently compared 
with data undergoing curare poison (Fig. 1B). The addition of curare 
shows a drop in quantal size q as expected. Other parameters remain 
stable suggesting no homeostatic compensatory mechanisms in this 
case. The model is validated on synthetic data and compared with an 
iterative expectation-maximization technique. The supremacy of this 
one-shot method allows to retrieve many parameters without multi-
ple batches. In contrast to [1], its temporal complexity is independent 
of the number of release sites. This method is adaptable to general 
synaptic recording, which makes it less constrained. It is also the first 
phenomenological model that incorporates desensitization τdes. The 
framework gives insights on synaptic weights and their long-short 
dynamics. It permits to correlate between subjective and objective 
variabilities in healthy and pathological cases to molecular functions.

Fig. 1 In vitro mouse NMJ EPPs with model reconstruction (blue). A 
Control: number of release sites N=100, release probability p=0.4, quan‑
tal size q=0.13mV, background noise σ=0.2mV, depression time con‑
stant τd=95ms, refilling time constant τf=50ms, desensitization τdes= 
30ms. B Curare administration: N=100, p=0.5, q=0.05mV, σ=0.1mV, 
τd=45ms, τf=50ms, τdes=30ms. C Cartoon of a synaptic junction. Com‑
parison of estimation of parameters with rat NMJ can be found in [3]
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The central nervous system consumes approximately 20W of meta-
bolic power in humans [1]. This is used for neural communication, and 
also for neural plasticity and the formation of new memories. Persis-
tent forms of plasticity in particular consume so much energy that 
under sudden food scarcity, associative learning significantly reduces 
lifespan of fruit flies [2].
It is reasonable therefore that neural plasticity has evolved to learn at 
minimal power. However, how this changes plasticity and learning is 
not known. While previous work has considered an energy constraint 
[3], a power constraint might be more biological as, unlike many other 
tissues, the brain cannot store energy. A power constraint might be 
able to explain why plasticity induction requires a refractory time 
before it can be induced again [4], as well as spatial competition in 
plasticity between synapses and neurons [5,6].
Here, we developed a computational model of plasticity to examine 
the effect of a power constraint on plasticity dynamics. We first use a 
standard perceptron augmented with two types of synaptic weights: 
an inexpensive transient, decaying component and a costly long-
term component, formed by the simultaneous consolidation of all 
the transient weights. We further assume that the brain attempts to 
consolidate new memories as soon as it is able to. Hence, the interval 
between consolidation events is limited and synaptic consolidation 
events occur at a fixed frequency, representing the refractory period 
caused by a dearth of energy. Higher consolidation frequencies cor-
respond to more available power, and vice-versa. The perceptron is 
trained on a random-generated set of binary patterns until it correctly 
learns the output value for each pattern.
Results show that the power in the system has a significant impact on 
the training time. Unexpectedly, increasing the period between con-
solidations - thus reducing power - can reduce the required number of 
epochs by as much as 30%, depending on the strength of the weight 
decay, the number of patterns P in the training set, and the number 
of synapses N. Further increasing the period between consolidations 
increases the training time. This increase occurs not gradually, but in a 
staircase pattern, peaking whenever the period is 0 modulo P (Fig. 1).
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Fig. 1 A perceptron with 500 synapses trained on 800 patterns. In 
blue, number of epochs necessary for the perceptron to learn the 
entire training set, as a function of the interval between consolida‑
tion events. In red, the number of epochs needed by a standard 
perceptron

The consequences of a power constraint are further explored in a 
multi-layer neural network and extended to a probabilistic model 
where the probability of consolidation increases proportional to the 
time since the previous consolidation event.
In summary, our results show that incorporation of a metabolic power 
constraint in synaptic plasticity can lead to important changes in the 
learning dynamics.

References
1. Attwell D, Laughlin SB. An energy budget for signaling in the grey matter 

of the brain. Journal of Cerebral Blood Flow & Metabolism. 2001; 21(10): 
1133‑45.

2. Mery F, Kawecki TJ. A cost of long‑term memory in Drosophila. Science. 
2005; 308(5725): 1148‑.

3. Li HL, Van Rossum MC. Energy efficient synaptic plasticity. Elife. 2020; 
e50804.

4. Kramár EA, et al. Synaptic evidence for the efficacy of spaced learning. 
Proceedings of the National Academy of Sciences. 2012; 109(13): 5121‑6.

5. Sajikumar S, Morris RG, Korte M. Competition between recently potentiated 
synaptic inputs reveals a winner‑take‑all phase of synaptic tagging and 
capture. PNAS 2014; 111: 12217.

6. Josselyn SA, Tonegawa S. Memory engrams: Recalling the past and imagin‑
ing the future. Science. 2020; 367: 6473.

P85 
The Neuron growth and death model and simulator
Yuko Ishiwaka, Tomohiro Yoshida, Tadateru Itoh
SoftBank Corp., Technology Unit, Hakodate, Japan
Correspondence: Yuko Ishiwaka (yuko.ishiwaka@g.softbank.co.jp) 
BMC Neuroscience 2020, 21(Suppl 1):P85

Some kinds of characteristics of neurons depend on morphology. 
There are many neuron types in a brain and the functions of each cell 
type are varied. For example, auditory cells that receive sound stimu-
lus from the external world and pyramidal cells that relate to think-
ing and memory have different functions. A bushy cell which is one 
of the sensory neurons of auditory treats tempo of sounds, therefore 
the immediate responses are required for producing action potential 
and short time refractory period. On the other hand, pyramidal cells 
that mainly exist in the hippocampus and amygdala treat memory and 
emotion, therefore the producing action potential is slower than sen-
sor neurons and the refractory period is longer. Hodgkin and Huxley 

(H-H) equations can calculate action potentials based on ion channels. 
H-H does not consider morphology, however, on actual cell mem-
branes, the number of exiting ion channels and locations are based 
on shapes of neurons. How quick or slow soma can produce action 
potentials are depend on how narrow and how many ion channels on 
the producing area. Therefore, we assume that there are strong rela-
tionships between cell shapes and characteristics of action potentials. 
Expanded H-H equations can adapt to the quickness of producing 
action potential by adding axon hillock parameters.
Connectivity between neurons is also important. Geometry varies 
according to cell types. Purkinje cells which are one of the inhibitory 
neurons have complex branches of the dendritic arbor. On the other 
hand, Pyramidal cells which are one of the excitatory neurons and 
multipolar type neurons have one axon and many dendrites, but the 
complexity of geometry is simpler than Purkinje cells. These differen-
tials of geometry cause differences in connectivity.
In this paper, we propose a new neuron growth and deal model and 
simulator considered neuron morphology and connectivity between 
multi cell types. In our model, a characteristic of a growth cone is 
applied to neuron growth and treated as a navigation system, an 
L-system is adapted for creating the geometry of each neuron, and 
Life game is embedded for a cell division rule.
We also adopt glial cells for neuron growth, not only stimulus from other 
neurons. In our model, each neuron receives the energy for growing 
from contacted astrocytes which are one of the glial cells. The direction 
of growth of the growth cones has determined by set goal areas for far, 
and during growing, growth cones try to contract near oligodendrocytes 
to obtain myelin around their axons. A cell division rule for Oligodendro-
cytes follows life game rules. The glial cells are treated as obstacles.
In our simulation system, a user can create various types of neurons, set 
the goals for both dendrites and axons, create connections between 
various functions and geometries of neurons with growth rules and add 
injections such as inhibitory postsynaptic potential (IPSP) or excitatory 
postsynaptic potential (EPSP) on purpose to calculate action potentials.
In conclusion, Fig. 1 shows simulation results of our proposed model. 
In our simulator, variety of geometry can be produced automatically 
based on expanded L-system, variety and flexible connectivity can be 
also produced based on our proposed new neuron growth and death 
model. Furthermore, we added two types of glial cells for growth and 
goal rules and also treat as obstacles. Our proposed model and simu-
lator is quite flexible to simulate cell geometry, action potentials, cell 
connections in each brain region.

Fig. 1 Simulation results of different geometries and neuron connec‑
tions. The upper red neurons are simulated as a Purkinje, middle blue 
neurons are simulated as a Pyramidal cell, and the bottom neurons 
show connections and created action potentials by expanded H‑H 
model
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Most biological brains, as well as artificial neural networks, are capa-
ble of performing multiple tasks [1]. The mechanisms through which 
simultaneous tasks are performed by the same set of units are not 
yet entirely clear. Such systems can be modular or mixed selective 
through some variable such as sensory stimulus [2,3]. Based on simple 
tasks studied in our previous work [4], where tasks consist of the pro-
cessing of temporal stimuli, we build and analyze a simple model that 
can perform multiple tasks using a contextual signal. We study various 
properties of our trained recurrent networks, as well as the response 
of the network to the damage done in connectivity. In this way we 
are trying to illuminate those mechanisms similar to those that could 
occur in biological brains associated with multiple tasks.
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Generalization of learning refers to the phenomenon in which knowl-
edge learned in one context enhances performance in another con-
text. Although the learning environment can never be precisely 
the same in the real world, animals including humans demonstrate 
excellent flexibility to adapt their learned skills in a new environment. 
Despite the universal occurrence of generalization phenomena in 
daily life, there is much lack of understanding about how the brain 
generalizes the skills and knowledge into different environments. In 
particular, most of the previous studies have only focused on identi-
fying the cerebral networks used during the generalization stage, but 
failed to determine the elements during the preceding learning stage 
that could have enabled generalization. Thus, the aim of this study 
was to enhance understanding of the neural mechanisms that enable 
generalization, particularly the generalization of motor learning. In 
this study, we designed a new experimental paradigm called ‘mirror-
erasing generalization task.’ The subjects erased (1) a simple shape 
(square) for the training session, and (2) a complex shape (cursive 
alphabet letter y) for the generalization session, which took place both 
before and after the training session, in an MRI scanner. We found that 
the subjects successfully generalized their motor skills (p < 0.0001) 
acquired during square-erasing to the letter-erasing context. However, 
counterintuitively, skill improvement during training did not correlate 
with the generalization of motor skills (p ~ 0.1). This result implicates 
that the dynamics underlying generalization is possibly nonlinear, and 
that performance enhancement in one specific context is not a reliable 
measure to estimate the generalization performance in another. Then, 
we computationally modeled the neuronal circuitry responsible for 
motor learning generalization and used the fMRI machine to construct 

a functional network model (using frequency between 0.049Hz and 
0.09Hz). More interestingly, we found that the betweenness centrality 
of pars opercularis of left inferior frontal gyrus (IFG) had a significant 
correlation with the generalization performance (R ~ 0.8, p < 0.05, FWE 
corrected), which was the only measure before generalization session 
that correlated with generalization performance. We should note that 
the human pars opercularis of the left IFG has been considered as part 
of a mirror neuron system, which is currently hypothesized to be facili-
tating motor abstraction. This finding suggests that the IFG-mediated 
abstraction of new motor skill acquired during training may be the key 
to generalization of the learned skills in a different context. This study 
potentially provides evidence for the contemporary view that abstrac-
tion plays an essential role in generalization. Furthermore, we suggest 
that the centrality of par opercularis of the left IFG is possibly used to 
make predictions about future generalization performance, which 
opens new possibilities in motor rehabilitation. This study suggests 
that measuring brain functional networks of the patients undergo-
ing rehabilitation programs potentially predict how much their motor 
function would be improved in real life.
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Neurofilaments (NFs) are transported along microtubule tracks in the 
axons and are gradually phosphorylated in this process [1]. At the 
node of Ranvier, the axon is not encased by myelin sheath. It is indi-
cated that phosphorylation of NFs can reduce the transport rate of 
NFs, and therefore influence the formation of axon morphology [2]. 
In the theory of slow axonal transport, the “stop-and-go” model [3] 
can well describe the random kinetic behavior of NFs in axons. On the 
basis of “stop-and-go” model, we introduce the conversion between 
phosphorylation and dephosphorylation of neurofilaments and build 
the “eight-state” model. We assume that the phosphorylation and 
dephosphorylation of NFs has different “on-track” rate (γon), so as to 
achieve the effect of phosphorylation on the transport [4,5]. Through 
our theoretical derivation and simulation, we draw the conclusion that 
the modification on the “on-track” rate and the conversion between 
phosphorylation and dephosphorylation can both slow down the NFs 
transport along the axon. Our conclusion is also consistent with the 
Continuity equation that flux by the multiplication of the number of 
NFs and average velocity is constant at equilibrium state.
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Oscillatory activity over the sensorimotor cortex, known as sensori-
motor rhythms, can be modulated by the kinaesthetic imagination of 
limb movement [1]. These event-related spectral perturbations can be 
observed in electroencephalography (EEG), offering a potential way 
to restore communication and control to people with severe neuro-
muscular conditions via a brain-computer interface (BCI). However, 
the ability of individuals to produce these modulations varies greatly 
across the population. Between 10-30% of people are unable to influ-
ence their SMRs sufficiently to be distinguishable by a BCI decoder [2]. 
Despite this, it has been shown that users can be trained to improve 
the extent of their SMR modulations. This research utilised a data-
driven approach to characterise the skill development of participants 
undertaking a left- and right-hand motor imagery experiment.
Two publicly available motor imagery EEG datasets were analysed. 
Dataset 1 consisted of EEG data from 47 participants performing 200 
trials of left- and right-hand motor imagery within a single session [3]. 
No real-time visual feedback was provided to the participants. Dataset 
2 contained EEG from two sessions of 200 trials each from 54 partici-
pants [4]. Visual feedback was provided to users in the second session 
but not in the first. Various metrics characterising mental imagery skill 
were calculated across time for each participant.
The discriminability of EEG in the 8-30Hz range from left- and right-
hand trials was found to increase across time for both datasets. 
Despite the overall improvement, there was great variability in the 
change of motor imagery skill across participants. For Dataset 1, the 
average change across time of the metric representing the discrimi-
nability of classes was 6.0±21.9%. For Sessions 1 and 2 of Dataset 2, 
the discriminability increased by 11.8±44.0% and 17.4±30.7%, respec-
tively. Session 2 of Dataset 2 contained visual feedback and produced 
a larger overall improvement in motor imagery skill with a lower vari-
ability compared with Session 1.
In this work, we investigated the level of motor imagery skill acqui-
sition during BCI use. The results indicate a baseline level of skill 
improvement that can be expected, and also emphasise the large vari-
ability across participants commonly seen in BCI studies. Overall, we 
provide a useful reference of BCI skill acquisition for future research 
that seeks to increase the rate of skill improvement and decrease the 
amount of variability.
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An almost ubiquitous approach taken in systems neuroscience is that 
of devising stimulus response functions (SRFs), which specify how a 
stimulus is encoded into a neural response, e.g. place fields, tuning 
curves [1]. However, it is clear that the brain itself is able to infer prop-
erties of the environment in real time via neural activity alone, with-
out having to resort to performing experiments on its own response 
to stimuli. A central aim in this work is to explore the relationship 
between the geometric/topological structure of the stimulus space 
(also animal behaviour) and neural activity and to investigate to what 
extent the former can be derived from the latter without having to 
perform the standard operation of constructing dictionaries between 
the two as provided by an SRF. In the last decade, successful attempts 
have been made to eliminate this albeit very useful middleman using 
topological data analysis (TDA) [2,3].
We build on an approach initiated in [3], which uses clique topology, a 
form of TDA. Common statistics related to neural activity and connec-
tivity derived from experimental data are often presented in the form 
of a matrix of correlations or connectivity strengths between pairs of 
neurons, voxels, etc. Analogous statistics can be obtained from stimuli 
presented to the animal, e.g. textures both visual, auditory, images of 
natural scenes, olfaction. Clique topology enables us to test whether 
signatures of structures of stimulus spaces and environments are 
detectable in the correlation structures of the raw data obtained from 
neuronal recordings. The advantage of using clique topology over tra-
ditional eigenvalue-based methods is that the latter is badly distorted 
by monotone nonlinearities, whereas the information encoded in the 
`order complex’ is invariant under such transformations.
The statistical topological approach in [3] could determine whether 
correlations resulting from both the stimulus and response side were 
random or induced by a geometric process (e.g. pairwise distances 
obtained via sampling points from a unit cube in Rd). Here we intro-
duce a new regime of complexes that are derived instead from tex-
tures. In [3] experimental scenarios were considered where neurons 
were tuned to features lying in a continuous coding space where cor-
relations decrease with distance, e.g. hippocampal place cells. Textures 
are in many ways the antithesis of this and also exhibit both repetitive 
and random features. Clique topology techniques on textures have led 
us to a menagerie of order complexes which have very small values for 
Betti numbers throughout the filtration as compared to same-sized 
‘random’ and ‘geometric’ order complexes (Fig. 1). Analogous Betti 
curves have been shown to have been induced by order complexes 
derived from low-rank matrices by Curto (unpublished). The matrices 
that emerge from textures, however, do not generally have low-rank 
and it is an open question as to whether the two can be related.

Fig. 1 A An example of matrix ordering (values ordered according to 
the scale). B Derivation of order complex from a visual texture using 
Gabor filters. C Order matrices and Betti curves for textures (bricks, 
water) and olfactory dataset; images of textures are shown as insets 
on plots. D Order complexes (from A) as a simplicial complexes. E 
Betti curves for random and geometry matrix
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We were surprised to find that datasets from a wider range of modali-
ties appear to exhibit texture-like rather than ‘geometric’ structure. We 
have extracted texture-like order complexes from olfactory datasets 
[4] as well as a simulated dataset from a spiking neural network mod-
elling speech recognition.
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Currently available experimental data make it possible to create com-
plex multicompartmental conductance-based models of neurons. In 
principle, such models can approximate the behavior of real neurons 
very well. However, these models have many parameters and some of 
these parameters often cannot be directly determined in experiments. 
Therefore, a common approach is to tune parameter values to bring 
the physiological behavior of the model as close as possible to the 
experimental data. Rather than tuning the parameters by hand, a more 
principled way of determining good model parameters is to carry out 
a systematic parameter search using an appropriate global optimiza-
tion algorithm. Although many such algorithms have been developed 
and applied successfully in various domains, and high-quality gen-
eral implementations of many popular algorithms are available, the 
majority of these solutions have not been tested in a neural context. 
Our goal in this study was to create a software tool that provides uni-
form access to a large variety of different optimization algorithms; to 
develop a set of benchmark problems for neural parameter tuning; 
and to systematically evaluate and compare the various algorithms 
and implementations using our software and benchmarking suite.
We have created an updated and enhanced version of our previously 
developed software tool. In Optimizer, model evaluations can be per-
formed either by the NEURON simulator (handled internally) or any 
external (black-box) simulator. All functionalities can be accessed from 
the graphical user interface; there is also a command line interface 
for batch processing. The new version was developed in Python 3 to 
support recent open-source Python modules. The repertoire of algo-
rithms was extended by several new methods that proved effective in 
other studies. For many of these search algorithms, parallel optimiza-
tion is also supported. A wide variety of features (including those in 
the eFEL package) can be used to evaluate the error of the optimiza-
tion; multiple, weighted features are also supported. Our optimization 
tool currently supports about fifteen different optimization algorithms 
implemented by four separate Python packages: Inspyred, Pygmo, 
BluePyOpt, and Scipy.
Our neural optimization benchmark suite includes six separate prob-
lems that differ in complexity, model type, simulation protocol, fitness 
functions, and the number of unknown parameters. Our examples 
range from the classical Hodgkin-Huxley model (3 conductance 
parameters) to an extended integrate-and-fire model (10 param-
eters) and a morphologically and biophysically detailed hippocampal 
pyramidal cell (16 parameters). Some of our benchmarks use target 
data generated by a neuronal model with known parameters. How-
ever, in most of our benchmarks, the target data were recorded in 

physiological experiments, or were generated by more complex mod-
els than the one we were fitting.
We then tested the various algorithms on the different model optimi-
zation tasks, and compared the final error (after 10,000 model evalua-
tions) and also the convergence speed (Fig. 1). We found that several 
evolutionary and related search algorithms delivered consistently 
good results across our entire test suite, even for higher-dimensional, 
multi-objective problems. Therefore, we would recommend trying 
these algorithms first for novel optimization problems. We also hope 
to extend our test suite with new problems and algorithms.

Fig. 1 Rankings of the algorithms based on their combined perfor‑
mance on our multi‑objective test case. Top: Ranking based on the 
final error after 10,000 model evaluations. Bottom: Ranking based on 
the area under the error curve (convergence speed). Lower scores 
indicate better performance. Red bars are for multi‑objective algo‑
rithms, blue bars for single‑objective algorithms
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Retinal degenerative diseases such as retinitis pigmentosa and age-
related macular degeneration cause progressive photoreceptor 
loss leading to partial or total patient blindness. Retinal prostheses 
attempt to obviate this loss of photoreceptors by direct stimulation 
of the underlying retinal ganglion cell (RGC) circuitry, and are capable 
of restoring limited visual sensation to blind patients. Because these 
devices typically inject current through implanted electrode arrays, 
their spatial resolution is significantly limited, and their capacity for 
selective stimulation of distinct RGC types has not yet been estab-
lished. In particular, selective stimulation of ON and OFF RGCs (which 
exhibit opposite light responses in vivo) constitutes a long-standing 
open problem in retinal prosthesis design.
Infrared neural modulation (INM) uses pulsed infrared light to deliver 
sharp thermal transients to neural tissue, and is capable of both neural 
stimulation and inhibition with a high spatial precision. This technique 
relies on at least two distinct mechanisms: a temperature gradient 
dependent capacitive current, and thermosensitive activation of the 
TRPV ion channels. For retinal prostheses, this high stimulus resolution 
offers an attractive alternative to the low resolution of current electri-
cal prostheses; however, it is unclear how infrared-evoked currents 
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may vary between the wide variety of RGC types in mammalian 
retina, or whether these differences may be harnessed for selective 
stimulation.
In this study, a single-compartment Hodgkin-Huxley-type model 
was simulated in a NEURON environment. The model included leak, 
sodium, potassium, calcium and low voltage activated calcium cur-
rents based on published data [1,2]. Thermally-evoked currents were 
simulated by a dT/dt dependent capacitive current based on GCS the-
ory of bilayer capacitance [3].
Our results show that INM responses differ between ON and OFF RGCs. 
In particular, OFF cells have a prolonged depolarisation in response to 
millisecond timescale heat pulses, whilst ON cells exhibit a short depo-
larisation with a larger post-pulse hyperpolarisation. This difference is 
mainly due to the low voltage activated calcium current that is present 
in OFF and absent in ON RGCs. This prediction is yet to be confirmed 
experimentally, but may have important implications for the develop-
ment of infrared retinal prostheses.

References
1. Fohlmeister JF, Miller RF. Impulse encoding mechanisms of ganglion cells 

in the tiger salamander retina. Journal of Neurophysiology. 1997; 78(4): 
1935‑47.

2. Wang XJ, Rinzel J, Rogawski MA. A model of the T‑type calcium current and 
the low‑threshold spike in thalamic neurons. Journal of Neurophysiology. 
1991; 66(3): 839‑50.

3. Eom K, Byun KM, Jun SB, Kim SJ, Lee J. Theoretical study on gold‑nanorod‑
enhanced near‑infrared neural stimulation. Biophysical Journal. 2018; 
115(8): 1481‑97.

P93 
Investigation of Stimulation Protocols in Transcutaneous Vagus 
Nerve Stimulation (tVNS)
Charlotte  Keatch1, Paul  Stoddart2, Elisabeth  Lambert3, Will  Woods4, 
Tatiana  Kameneva5

1Swinburne University of Technology, Biomedical Engineering, 
Melbourne, Australia; 2Swinburne University of Technology, ARC Training 
Centre in Biodevices, Melbourne, Australia; 3Swinburne University 
of Technology, Department of Health and Medical Sciences, Melbourne, 
Australia; 4Swinburne University of Technology, Faculty of Health, Arts 
and Design, Melbourne, Australia; 5Swinburne University of Technology, 
Telecommunication Electrical Robotics and Biomedical Engineering, 
Melbourne, Australia
Correspondence: Charlotte Keatch (ckeatch@swin.edu.au) 
BMC Neuroscience 2020, 21(Suppl 1):P93

Transcutaneous vagus nerve stimulation (tVNS) is a type of non-inva-
sive brain stimulation that is used increasingly in the treatment of a 
number of different health conditions such as epilepsy and depres-
sion. Although there is a great deal of research into different medi-
cal conditions that can be improved by tVNS there is little conclusive 
evidence into the optimal stimulation parameters, such as stimulation 
frequency, pulse type or amplitude. Understanding whether varia-
tion of these stimulation parameters can directly influence the brain 
response could improve treatment delivery.
The aim of this project is to determine whether varying the stimula-
tion parameters of tVNS can influence the induced brain response, 
and if there is an optimal set of stimulation parameters that can be 
determined for targeted treatment of different medical conditions.
Twenty healthy participants were selected based on their suitability 
for both magnetoencephalography (MEG) and magnetic resonance 
imaging (MRI) based on predetermined exclusion criteria. The experi-
mental sessions were carried out at the Swinburne Imaging Facility, 
Swinburne University of Technology. Four different stimulation proto-
cols were delivered via electrical stimulation to the left ear; active stim-
ulation to the cymba concha at stimulation frequency of 24 Hz regular 
pulses, sham stimulation to the ear lobe at stimulation frequency of 
24 Hz regular pulses, stimulation to the cymba concha at stimulation 
frequency of 1 Hz regular pulses, and stimulation to the cymba concha 
at stimulation frequency of 24 Hz pulse frequency modulated (PFM) 
pulses (modulated at 6 Hz).

Participant brain dynamics were analysed in response to stimulation 
through different signal processing techniques. First the raw data was 
passed through the software MaxFilter which uses Signal Space Sepa-
ration (SSS) of Maxwell’s equations to remove major sources of noise 
and artifacts. The stimulation artifact was then removed from the 
data by spline interpolation, which removed part of the data from the 
onset of the stimulation pulse and then interpolated to reconstruct 
the signal. The data was then downsampled and filtered before apply-
ing Fast Fourier Transforms (FFT) to obtain power spectrums at sen-
sor level. The response to different protocols could be contrasted by 
taking ratios for all participants and was then averaged to see group 
response at sensor level.
Preliminary results show that results vary between individuals, with 
different brain areas activated due to the stimulation. Comparison 
between the active stimulation of the vagus nerve at 24Hz to sham 
stimulation of the ear lobe shows a dipole response to the active 
stimulation in the parietal lobe. Comparison of the PFM stimula-
tion with the regular 24 Hz stimulation of the vagus nerve shows an 
inhibited response in the modulation frequency of 6 Hz in comparison 
with other frequency bands. Finally, comparing the 1 Hz with the 24 
Hz active stimulation of the vagus nerve shows that the 1 Hz stimula-
tion drives the brain more strongly than the 24 Hz across all frequency 
bands. These preliminary results may be used as a stepping-stone to 
investigate the effect of tVNS on brain dynamics and setting up stimu-
lation protocols that may have therapeutic effects.
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Visual information is conveyed in a feedforward manner to progres-
sively higher levels in the hierarchy, beginning with the analysis of 
simple attributes, such as orientation and contrast, and leading to 
more complex object features from one stage to the next. In contrast, 
visual systems have abundant feedback connections, whose number 
is even larger than the feedforward ones. Top-down influences, con-
veyed by the feedback pathways across entire brain areas, modulate 
the responses of neurons in early visual areas, depending on cogni-
tion and behavioral context. Li et al. [1] showed that top-down signals 
allowed neurons of the primary visual cortex (V1) to engage stimulus 
components that were relevant to a perceptional task and to discard 
influences from components that were irrelevant to the task. They 
showed that V1 neurons exhibited characteristic tuning patterns 
depending on the array of stimulus components. Ramalingam et al. 
[2] further examined dynamic aspects of V1 neurons in the tasks used 
by Li et al., and revealed the difference in the dynamic correlations 
between V1 responses evoked by the two tasks. Using a V1 model, we 
also proposed the neural mechanism of the tuning modulations by 
top-down signal [3].Top-down and bottom-up information are pro-
cessed with different brain rhythms. Fast oscillations such as gamma 
rhythms are involved in sensory coding and feature binding in local 
circuits, while slower oscillations such as alpha and beta rhythms are 
evoked in higher brain areas and may contribute to the coupling of 
distinct brain areas. In this study, we investigate how information 
of top-down influence is conveyed by feedback pathway, and how 
information relevant to task context is coordinated by different brain 
oscillations. We present a model of visual system which consists of 
networks of V1 and V2. We consider the two types of perceptual tasks 
used by Li et al., bisection task and vernier one. We show that visual 
information relevant to each task context is coordinated by a push-pull 
effect of top-down signal. We also show that top-down signal reflect-
ing a beta oscillation in V2 neurons, coupled with a gamma oscillation 
of V1 neurons, enable the efficient gating of task-relevant informa-
tion in V1. This study provides a useful insight to understanding how 
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rhythmic oscillations in distinct brain areas are coupled to gate task-
relevant information encoded in early sensory areas.
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Taste perception is an important function for life activities, such as 
ingestion of nutrition and escape of toxic foods. Gustatory informa-
tion is first processed by taste receptors in the taste buds present in 
the tongue. After that, it is transmitted to the orbitofrontal cortex 
(OFC), the hypothalamus, and the amygdala. In the course of a series 
of information processing processes, the gustatory cortex (GC) pro-
cesses information on the quality and strength (concentration) of taste 
itself. Currently, taste research is proceeding with electrophysiological 
and molecular biological research on receptors. However, the process-
ing mechanism of taste information encoded in each part of the taste 
transmission pathway is not well understood.
Furthermore, in addition to the higher-order processing of taste infor-
mation, the OFC, located above the GC, integrates taste information 
and other sensory information such as tactile sensation, smell, and 
color to determine the flavor (flavor) of food and guide behavior. We 
proposed a binding mechanism of taste and odor information in the 
OFC [1]. A recent study has shown an alternative function of OFC, or 
working memory function of taste information [2]. The study showed 
that OFC neurons of the rhesus monkeys encoded a gustatory working 
memory in a delayed match-to-sample task. OFC neurons exhibited a 
persistent activity even when a gustatory stimulus presented in the 
sample period was turned off, whereas neurons of the primary gusta-
tory cortex (GC) did not show a significant persistency of the activity. It 
is unclear how the gustatory working memory in the OFC is shaped by 
the interaction between the GC and the OFC.
To address this issue, we focus on a delayed match-to-sample task, 
in which monkeys have to decide whether the first juice stimulus 
is the same as the second stimulus separated by a delay period. We 
develop a model of gustatory system that consists of network mod-
els of GC and OFC. Each model of GC and OFC has two-dimensional 
array of neurons, which encode information of three kinds of foods, 
orange, guava, and tomato. These network models were based on the 
Izhikevich neuron model [3] and biophysical synapses mediated by 
neurotransmitters such as AMPA, NMDA, and GABA. The neural unit 
consists of a main neuron and an inhibitory interneuron, mutually con-
nected with AMPA and GABA synapses. Main neurons are reciprocally 
connected with AMPA and NMDA synapses. The NMDA-synaptic con-
nections between these networks are formed by Hebbian learning in 
a task-relevant way. The gustatory information of three foods is rep-
resented by dynamical attractors in the GC and OFC networks. Simu-
lating our model for match/nonmatch trails, we explored the neural 
mechanism by which the working memory of gustatory information is 
generated in the OFC. We show that the working memory of gustatory 
information is shaped by the recurrent activation mediated by short-
term synapses of OFC neurons. In addition, we examined how working 
memory formed by the OFC is used for match/nonmatch decision-
making by adding a decision layer to the model.
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We present a novel Bayesian method for identifying the change of 
dynamic network structure in working memory task fMRI data via 
model fitness assessment. Specifically, we detect dynamic commu-
nity structure change-point(s) based on overlapped sliding window 
applied to multivariate time series. We use the weighted stochastic 
block model to quantify the likelihood of a network configuration, 
and develop a novel scoring criterion that we call posterior predic-
tive discrepancy by evaluating the goodness of fit between model 
and observations within the sliding window. The parameters for this 
model include latent label vector assigning network nodes to inter-
acting communities, and the block model parameter determining the 
weighted connectivity within and between communities. The GLM 
analyses were conducted in both subject level and group level and the 
contrast between 2-back, 0-back and baseline were used to localise 
the regions of interest in task fMRI data.
The working memory task fMRI data in the HCP were pre-processed 
and GLM analyses were applied. With the extracted time series of 
regions of interest, we propose to use the Gaussian latent block model 
[1], also known as the weighted stochastic block model (WSBM), to 
quantify the likelihood of a network and Gibbs sampling to sample a 
posterior distribution derived from this model. The Gibbs sampling 
approach we adopt is based on the work of [1,2] for finite mixture 
models. The proposed model fitness procedure draws parameters 
from the posterior distribution and uses them to generate a replicated 
adjacency matrix; then calculates a disagreement matrix to quantify 
the difference between the replicated adjacency matrix and realised 
adjacency matrix. For the evaluation of the model fitness, we define 
a parameter-dependent statistic called the posterior predictive dis-
crepancy (PPD) by averaging the disagreement matrix. Then we com-
pute the cumulative discrepancy energy (CDE) from PPD by applying 
another sliding window for smoothing and use CDE as a score crite-
rion for change point detection. The CDE increases when change 
points are contained within the window, and can thus be used to 
assess whether a statistically significant change point exists within a 
period of time.
We first applied the algorithm to the synthetic data simulated from 
the Multivariate Gaussian distribution for validation. We visualise the 
Gibbs iteration of sampled latent labels and the histogram of the block 
parameters reflecting the characterisation of the connectivity within 
and between communities. We then demonstrated the performance 
of the change point detection with different window sizes. In real 
working memory task fMRI data analyses, the fixed effects analyses are 
conducted to estimate the average effect size across runs within sub-
jects at the subject level. At group level, the mixed effects analyses are 
conducted, where the subject effect size is considered to be random. 
In this work, we mainly focus on the memory load contrast (2-back vs 
0-back, 2-back vs baseline, or 0-back vs baseline).
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Recent improvements and performance enhancements in the NEU-
RON (neuron.yale.edu) reaction-diffusion module (rxd) allow us to 
model multiple relevant concentrations in the intracellular and extra-
cellular space. The extracellular space is a coarse-grained macro-
scopic model based on a volume averaging approach, allowing the 
user to specify both the free volume fraction (the proportion of space 
in which species are able to diffuse) and the tortuosity (the average 
multiplicative increase in path length due to obstacles). These tissue 
characteristics can be spatially dependent to account for regional or 
pathological differences.
Using a multiscale modeling approach we have developed a pair of 
models for spreading depolarization at spatial scales from microns to 
mm, and time scales from ms to minutes. The cellular/subcellular-scale 
model adapted existing mechanisms for a morphologically detailed 
CA1 pyramidal neuron together with a simple astrocyte model. This 
model included reaction-diffusion of K+, Na+, Cl− and glutamate, 
with detailed cytosolic and endoplasmic reticulum Ca2+ regula-
tion. Homeostatic mechanisms were added to the model, including; 
Na-K- ATPase pumps, Ca2+ pumps, SERCA, NKCC1, KCC2 and gluta-
mate transporters. We use BluePyOpt to perform a parameter search, 
constrained by the requirements of realistic electrophysiological 
responses while maintaining ionic homeostasis. This detailed model 
was used to explore the hypothesis that individual dendrites have dis-
tinct vulnerability to damage due to area-volume ratios leading to dif-
ferent intracellular Ca2+ levels.
At the tissue-scale we adapted a simpler point neurons model, and 
densely packed them in a coarse-grained macroscopic 3D volume. The 
models include a simple model for oxygen and dynamic changes in 
volume fraction. This allows us to model the effect of changes in tissue 
diffusion characteristics on the wave propagation during spreading 
depolarization.
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In the field of neurosciences, the free-energy principle (FEP) stipulates 
that all viable organisms cognize and behave using probabilistic mod-
els embodied in their brain in a manner that ensures their adaptive fit-
ness in the environment [1].
Here, we report on our recent theoretical study that supports the use 
of the FEP as a more physically plausible theory, based on the princi-
ple of least action [2]. We recapitulate the FEP carefully [3] and evalu-
ate that some technical facets in its conventional formalism require 
reformulation with finesse [4]. Accordingly, we articulate the FEP as 
living organisms minimize the sensory uncertainty, which is the aver-
age surprisal over a temporal horizon, and reformulate the recogni-
tion dynamics of the brain’s ability for actively inferring the external 
causes of sensory inputs. We effectively cast the Bayesian inversion 
problem in the organism’s brain to find the optimal neural trajectories 
by minimizing the time integral of the informational free energy (IFE), 

which is the upper bound of the long-term average surprisal. Specifi-
cally, we abstain from i) the non-Newtonian extension of continuous 
states, which yields the generalized motion, by recursively taking 
higher-order derivatives of the sensory observation and state equa-
tions, and ii) the heuristic gradient-descent minimization of the IFE in a 
moving frame of reference in a generalized-state space by viewing the 
nonequilibrium dynamics of brain states as drift-diffusion flows that 
locally conserve the probability density. The advantage of our formu-
lation is that only bare variables (positions) and their first-order deriva-
tives (velocities) are used in the Bayesian neural computation, thereby 
dismissing the need for the extra-physical assumptions.
Bare variables are an organism’s representations of the causal environ-
ment, and their conjugate momenta resemble the precision-weighted 
prediction errors in a predictive coding language [5].
Furthermore, we consider the sensory-data-generating dynamics to 
be nonstationary on an equal footing with intra- and inter-hierarchi-
cal-level dynamics in a neuronally based biophysical model.
Consequently, our theory delivers a natural account of the descending 
predictions and ascending prediction errors in the brain’s hierarchical 
message-passing structure (Fig. 1).

Fig. 1 Schematic of the neural circuitry [4], where each cortical level 
is specified by the perceptual states (S(i),V(i)) and their conjugate 
momenta (Ps(i),Pv(i)). The prediction error Ps(0) of incoming sensory 
data at the lowest level induces an inhibitory change in the per‑
ceptual momenta (Ps(1),Pv(1)). Subsequently, the prediction error 
propagates up the hierarchy

The ensuing neural circuitry may be related to the alpha-beta and 
gamma rhythms that characterize the feedback and feed-forward 
influences, respectively, in the primate visual cortex [6].
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Due to the development of machine learning such as a deep neural 
network, Artificial Intelligence (AI) has been used in many areas. Mod-
ern AI technology accurately solves problems such as classification, 
regression, and prediction, but there is a lack of skill to explain the pro-
cess of AI decision in terms of human understanding; it is called a black-
box AI. The black-box AI, in which humans cannot understand the 
decision process, is difficult to use in high-risk areas such as important 
social and legal decisions, medical diagnosis, and financial predictions 
[1]. Although there are highly explainable machine learning methods 
such as a decision-tree, these machine learning methods tend to has 
a low performance and are not suitable for solving a complex problem 
[2]. In this study, I suggest a novel explainable AI method which has a 
high performance based on an integrated model of Reservoir Comput-
ing and Autoencoder. Reservoir Computing, a recurrent neural network 
consists of three layers: inputs, reservoir, and readouts can train nonlin-
ear dynamics using linear learning methods [3]. Recently, a study was 
published in which neural networks induced actual physical laws using 
Variational Autoencoder which can extract interpretable features of the 
learning data [4]. In the integrated model, the features of the training 
data were learned by the autoencoder structure and linear learning 
rule of reservoir computing. Therefore, these features could be repre-
sented as a linear formula form that a human can simply understand. 
To validate the integrated model, I tested the model to predict trends 
of the S & P500 index. The model showed more than 80% accuracy and 
reported that which features were most important to the prediction in 
terms of weighted linear formula.
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The vIRt nucleus in the medulla, apparently composed of mainly 
inhibitory neurons, is necessary for whisking rhythm generation. It 

innervates motoneurons in the facial nucleus (FN) that project to 
intrinsic vibrissa muscles. The nearby pre-Bötzinger complex (pBötC), 
which generates inhalation, sends inhibitory inputs to the vIRt 
nucleus. We explore potential mechanisms of this vIRt synchroniza-
tion, needed for whisking, using analysis of experimental data and 
computational modeling. Using time courses of breathing and whisk-
ing in rats, we compute the relative amplitude An of n-th whisking 
cycles within a breathing cycle. For head-restrained rats, the average 
values of An/A1 are 0.56, 0.46 and 0.43 of the amplitudes for n = 2, 
3, 4. For freely behaving rats, the value for A2/A1is 0.79. The observa-
tions that A1 is larger than subsequent amplitudes suggests that the 
recovery of vIRt neurons from inhibition by the pBötC contributes to 
the synchronization of vIRt neurons. Lower-amplitude periodic whisk-
ing, however, can occur after decay of the pBötC signal. To explain 
how vIRt network generates these “intervening” whisks, and why the 
amplitude A1is larger than the following amplitudes, we construct 
and analyze a conductance-based model of the vIRt circuit composed 
of hypothetical two groups, vIRtr and vIRtp, of bursting inhibitory neu-
rons with spike-frequency adaptive currents and constant external 
excitation. Only neurons in vIRtr are inhibited by the pBötC and inhibit 
FN motoneurons. We denote the strengths of the inhibitory conduct-
ances between neurons across and within each group by gas and gs, 
respectively. If gas is larger than gs, the two groups burst alternately, 
as observed experimentally. If gas is too large, however, one group is 
active and the second is silent. The oscillation amplitude depends lin-
early on the constant external excitation, and the period increases as a 
function of gas-gs. Thus, the external input to the circuit and the level 
of inhibition within the circuit control the amplitude and frequency 
of the intervening whisking, respectively. Our model thus provides a 
means to control the wide range of whisking frequencies observed in 
experiments.
Acknowledgements: supported by NIH grant 5U19NS107466-02.
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The brain is capable of recognizing repetitive acoustic patterns within 
a few repetitions, which is essential for the timely identification of 
sound objects and the prediction of upcoming sounds. Several stud-
ies found neural correlates regarding the predictability of sequence 
patterns, but the underlying neural mechanism is not yet clear. To 
investigate the mechanism supporting the fast emergence of the 
predictive state, we use neural mass modeling to replicate the experi-
mental observations during the sequential repetition [1]. First, we 
investigated the effect of short-term plasticity (STP) to the response 
of a Wilson-Cowan node to a prolonged stimulus, where the node 
consists of an excitatory (E) and an inhibitory (I) population. In total, 
27 combinations of plasticity settings were examined, where the plas-
ticity types include short-term depression (STD), short-term facilitation 
(STF), and no STP, and the connection types include E-to-E, E-to-I, I-to-
E, and I-to-I connections. The simulated signals that best explain the 
observed MEG temporal profiles (i.e., an onset peak followed by a ris-
ing curve) rely on the setting where STD is applied on E-to-E connec-
tion and STF applied on E-to-I connection. Second, with the preferred 
plasticity settings (i.e., STD on E-to-E and STP on E-to-I), we simulated 
the dynamics of a random network in response to regular (REG) and 
random (RAND) sequences in PyRates [2]. The simulated signals can 
reproduce several experimental observations, including the above-
mentioned MEG temporal profiles, the predictability-dependent MEG 
amplitude (i.e., dependency in terms of regularity and alphabet size of 
the input sequence), as well as the MEG responses in the switch condi-
tions (i.e., from REG to RAND, and from RAND to REG). Third, we used 
a simplified two-level network to illustrate the main mechanisms sup-
porting such representation of predictability during the sequential 
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repetition. The simplified network consists of nodes that are selective 
to sound tone (level 1) and nodes that are selective to tone direction 
(level 2). The simulation reveals higher firing rates of I populations 
level-2 nodes during REG than RAND condition, which contributes 
to stronger simulated MEG amplitude via I-to-E connections (Fig 1). 
In conclusion, we provide a possible mechanism to account for the 
experimental observations. First, the increased MEG amplitude is 
mainly due to increased inhibitory activities. Second, the effect of 
alphabet size is due to two forms of STP (i.e., STD on E-to-E and STF 
on E-to-I). Third, the effect of regularity relies on the inclusion of the 
2nd-level nodes that sparsely encodes the repetitive patterns. In short, 
the more predictable sequence patterns cause a stronger accumula-
tion of inhibitory activities in direction-selective areas via STP, which 
in turn leads to a higher MEG amplitude. This mechanism emphasizes 
the need for STP at each stage of the bottom-up process, whereas the 
involvement of top-down processes is not necessary.

References
1. Barascud N, Pearce MT, Griffiths TD, Friston KJ, Chait M. Brain responses in 

humans reveal ideal observer‑like sensitivity to complex acoustic patterns. 
Proceedings of the National Academy of Sciences. 2016; 113(5): E616‑25.

2. Gast R, et al. PyRates—A Python framework for rate‑based neural simula‑
tions. PloS one. 2019; 14(12): e0225900.

P102 
Ephaptic coupling in white matter fibre bundles modulates axonal 
transmission delays
Helmut  Schmidt1, Gerald  Hahn2, Gustavo  Deco3, Thomas Knösche1

1Max Planck Institute for Human Cognitive and Brain Sciences, Brain 
Networks, Leipzig, Germany; 2Universitat Pompeu Fabra, Computational 
Neuroscience Group, Barcelona, Spain; 3Universitat Pompeu Fabra, 
Barcelona, Spain
Correspondence: Thomas Knösche (knoesche@cbs.mpg.de) 
BMC Neuroscience 2020, 21(Suppl 1):P102

Axonal connections are widely regarded as faithful transmitters of 
neuronal signals with fixed delays. The reasoning behind this is that 
local field potentials (LFPs) caused by spikes travelling along axons 
are too small to have an effect on other axons. We demonstrate that, 
although the local field potentials generated by single spikes are of 
the order of microvolts, the collective local field potential generated 
by spike volleys can reach several millivolts. As a consequence, the 
resulting depolarisation of the axonal membranes (i.e. ephaptic cou-
pling) increases the velocity of spikes, and therefore reduces axonal 
transmission delays between brain areas.
We first compute the local field potential using the line approximation 
[1,2] for a spike in a single axon. We find that it generates an LFP with 
about 20 microvolts amplitude, which is too weak to have a significant 
effect on neighbouring axons (Fig. 1A). Next, we extend this formal-
ism to fibre bundles to compute the LFP generated by spike volleys, 
with different levels of synchrony. Such spike volleys can generate 
LFPs with amplitudes of several millivolts (Fig. 1B), and the amplitude 
of the LFP depends strongly on the level of synchrony of the spike 
volley. Finally, we devise a spike propagation model in which the 
LFPs generated by spikes modulate their propagation velocity. This 
model reveals that with increasing number of spikes in a spike volley, 
the axonal transmission delays decrease (Fig. 1C). To the best of our 
knowledge, this study is the first that investigates the effect of LFPs 
on axonal signal transmission in macroscopic fibre bundles. The main 
result is that axonal transmission delays decrease if spike volleys are 
sufficiently large and synchronous. This is in contrast to studies investi-
gating ephaptic coupling between spikes at the microscopic level (e.g. 
[3]), which have used a different model setup that resulted in increas-
ing axonal transmission delays. Our results are a possible explanation 
for the decreasing stimulus latency with increasing stimulus intensity 
observed in many psychological experiments (e.g. [4]). We speculate 
that the modulation of axonal transmission delays contributes to the 

flexible synchronisation of high frequency oscillations (e.g. gamma 
oscillations).

Fig. 1 A Spike profile (top) and resulting LFP in a single axon 
(bottom). B Spike profile (top) and LFP generated by fully synchro‑
nised spike volley (bottom). C Axonal delays as function of number 
of spikes and bundle radius in the presence (solid) and absence 
(dashed) of ephaptic coupling
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Neurons of a specific type have intrinsic variety in their electrophysi-
ological properties. Intracellular parameters, such as ion channel 
conductances and kinetics, also have high variability within a neuron 
type, yet reliable functions emerge from a wide variety of parameter 
combinations. Recordings of electrophysiological properties from 
populations of neurons under different experimental conditions or 
perturbations produce sub-groups that form “electrophysiological 
phenotypes”. For example, different properties may derive from wild-
type vs. disease model animals or may change across multiple age 
groups [1].
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Populations of neuron models can represent a neuron type by vary-
ing parameter sets, each able to produce the outputs of a record-
ing, and all spanning the ranges of recorded features. We previously 
generated model populations using evolutionary search with an 
error function that combines soft-thresholding with a crowdedness 
penalty in feature space, allowing coverage of the empirical range of 
features with models. The technique was used to generate a popula-
tion of dopamine neuron (DA) models, which captured the majority 
of empirical features, generalized to perturbations, and revealed sets 
of coefficients predicted to reliably modulate activity [2]. We also used 
this technique to construct striatal medium spiny neuron (MSN) model 
populations, which recapitulated the effects of extracellular potassium 
changes [3] and captured differences in electrophysiological pheno-
type between MSNs from wild-type mice and from the Q175 model 
of Huntington’s disease. Our approach becomes prohibitively com-
putationally expensive, however, when we seek to produce multiple 
populations that represent many phenotypes from across a spectrum. 
For example, to recreate the non-linear developmental trajectory 
observed across postnatal development of DAs [1] we would need to 
perform multiple optimizations.
Here we demonstrate the construction of model surrogates that map 
model parameters to features spanning the range of multiple elec-
trophysiological phenotypes. We sampled from parameter space and 
simulated models to create a surrogate training set. Using our evolu-
tionary search as prior knowledge of our parameter space enabled a 
dense sampling in regions of the high-dimensional model parameter 
space that were likely to produce valid features. We trained a deep 
neural network with our datasets, producing a surrogate for our model 
that maps parameter set distributions to output feature distributions. 
This can be used in place of the neuron model for model sampling, 
allowing rapid construction of populations of models that match dif-
ferent distributions of features from across multiple phenotypes. We 
demonstrate this approach using DA developmental age groups and 
MSN disease progression states as targets, facilitating a mechanistic 
understanding of parameter modulations that generate differences in 
phenotypes.
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Large scale brain models encompassing cortico-cortical, thalamo-cor-
tical and basal ganglia processing are fundamental to understand the 
brain as an integrated system in healthy and disease conditions but 
are complex to analyze and interpret. Neuronal processes are typically 
segmented by region and modality in order to explain an experimen-
tal observation at a given scale and then integrated to a global frame-
work [1]. Here, we present a set of functional requirements applied to 
validate the recently developed IBEx model [2] against a learning task 
involving coordinated activity across cortical and sub-cortical regions 
in a brain-computer interface (BCI) context involving volitional control 
of a sensory stimulus [3]. The original IBEx model comprises interact-
ing modules for supra-granular, infra-granular cortical layers, thalamic 
integration, basal ganglia parallel processing and dopamine-mediated 
reinforcement learning. We decompose and analyze each subsystem 

in the context of the BCI learning task whereby parameters are tuned 
to comply to its functional requirements. Intermediate conclusions are 
presented for each subsystem according to the constraints imposed to 
satisfy the requirements, before re-incorporating the subsystem in the 
global framework. Consequences of model modifications and param-
eter tuning are assessed at the scales of the subsystem and the whole 
brain system. The relation between infra-granular spiking activity in 
different cortical regions, thalamo-cortical delta rhythms and higher-
level description of cognitive or motor trajectories (according to the 
brain region) is displayed. The relation to phenotypes associated to 
Huntington’s disease is exposed and the framework is discussed in 
perspective to other state-of-art integrative efforts to understand 
complex high-order brain functions [4,5].
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We introduce executable circuits for two higher order olfactory pro-
cessing centers in the brain of Drosophila melanogaster implicated in 
learning and memory, the lateral horn (LH) and mushroom body (MB). 
Despite the large amounts of data available on these two neuropils, 
there is a dearth of executable neural circuit models governing learn-
ing and memory in the MB and the LH. We use the recently-released 
Hemibrain dataset [1] as a biological basis of our implementations to 
analyze cell types, numbers and connectivity for realizing our compu-
tational models for both neuropils. Our implementations utilize the 
FlyBrainLab environment [2] to deliver the capability to visualize neu-
ral circuits morphologically or with diagrams, can run on GPUs, and 
are designed to facilitate customization of neuron and synapse mod-
els at a per-cell and per-cell type level.
We first study the neural types and connectivity of mushroom body 
neurons, a neuropil that implements the capability for associative 
learning. We model individual lobes that comprise the mushroom 
body and each of their so-called compartments, along with connectiv-
ities between the so-called Kenyon cells (KCs), mushroom body output 
neurons (MBONs) and dopaminergic neurons (DANs), thereby provid-
ing an interactive circuit diagram that allows for customizable ablation 
or activation experiments (Fig. 1). Implementing an interface between 
the input to the MB from antennal lobe projection neurons (PNs), we 
utilize the observed PN-to-KC connectivity and provide comparisons 
against randomly generated instantiations of PN-to-KC connectivity, a 
long standing hypothesis about the nature of PN-to-KC connectivity.
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Fig. 1 Visualization and exploration of the entire MB circuit in the 
Hemibrain dataset using FlyBrainLab (top). Customizable circuit 
diagram of the mushroom body (bottom)

Second we investigate the connectivity within the LH, a neuropil asso-
ciated with innate memories, and the connectivity between the MB 
and the LH. We analyze in detail the connectivity between PNs, lateral 
horn local neurons and output neurons. We construct an executable 
circuit of the LH based on our analysis.
The implementations we provide are a step towards building inte-
grated models of sensory systems derived from biological data. Our 
approach showcases the impact an integrative ecosystem can have on 
building executable circuit models for understanding the functional 
logic of neurocomputation in the brain of model organisms.
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Investigating the dynamics and function of large-scale spiking neu-
ronal networks with realistic numbers ofsynapses is made possible 
today by state-of-the-art simulation code that scales to the largest 
contemporary supercomputers. These implementations exploit the 
delayed and point-event like nature of the spike interaction between 
neurons. In a network with only chemical synapses the dynamics of all 
neurons is decoupled for the duration of the minimal synaptic trans-
mission delay such that the dynamics of each neuron can be propa-
gated independently for the duration of the minimal delay without 
requiring information from other neurons. Hence, in distributed simu-
lations of such networks, compute nodes need to communicate spike 
data only after this period [1].
Electrical interactions, also called gap junctions at first seem to be 
incompatible with such a communication scheme as they couple 
membrane potentials of pairs of neurons instantaneously. Hahne 
et al. [2] however demonstrate that communication of spikes and 
gap-junction data can be unified using waveform-relaxation meth-
ods [3]. Despite these advances, simulations involving gap junctions 
scale only poorly due to a communication scheme that collects global 
data on each compute node. In comparison to chemical synapses, gap 
junctions are far less abundant. To improve scalability we exploit this 
sparsity by integrating the existing framework for continuous interac-
tions with a recently proposed directed communication scheme for 
spikes [4]. Using a reference implementation in the NEST simulator 
(www.nest-simulator.org, [5]) we demonstrate excellent scalability of 
the integrated framework, accelerating large-scale simulations with 
gap junctions by more than an order of magnitude. This allows, for the 
first time, the efficient exploration of the interactions of chemical and 
electrical coupling in large-scale neuronal networks models with natu-
ral synapse density distributed across thousands of compute nodes.
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Background: Short-term synaptic plasticity (STP) is the dynamic of 
change in the synaptic weight with respect to the presynaptic spiking 
activity. Recent studies showed that STP is involved in several brain 
processes. Several computational works have been done on inferring 
STP parameters [1-4]; however, these studies utilized in-vitro signals of 
intracellular recordings (except Ghanbari et al.) from rodents to create 
their models, which is not necessarily representative of in-vivo human 
brain dynamics. To this end, we developed a parameter inference 
method which estimates parameters of STP induced by DBS, verified 
by experimental data obtained from intracranial recordings of single-
neuron activity in surgical patients.
Method: To acquire spiking activity, two closely spaced microelectrodes 
were placed in the thalamic ventral intermediate nucleus (Vim) dur-
ing awake DBS surgeries. One electrode was used to record single-unit 
spiking activity, while the other was used to deliver stimulation pulses at 
various frequencies (5Hz, 20Hz, 30Hz, 50Hz, 100Hz, 200Hz). The included 
data were collected from 15 patients [5]. The narrow stimulus pulses 
were removed, after which data were high-pass filtered to better isolate 
single unit activity. Using stimulus artifacts as triggers, we extracted the 
instantaneous firing rate of neurons in response to each DBS pulse of the 
5Hz stimulation trains, and averaged over all inter-pulse intervals. Due 
to the low stimulation rate (i.e. 5Hz), no STP is induced in this data. The 
resultant waveform is equivalent to the impulse response.
In order to mimic STP behavior, we used the Tsodyks-Markram phe-
nomenological model, which generates the postsynaptic current 
according to the spiking history of the presynaptic neuron [6]. To 
reconstruct the firing rate induced by DBS, we give the pulse train of 
DBS as the input of the Tsodyks-Markram model. The model generates 
a postsynaptic current in response to DBS pulses. We use this response 
to make modulated pulse trains that represent the effect of STP by 
changing the amplitude of each pulse. The modulated pulse train is 
convolved with the impulse response of the neuron in order to make 
an estimation of the DBS-induced firing rate. The estimated firing rate 
is compared with the experimental instantaneous firing rates through-
out the stimulation trains at each of the other stimulation frequencies.
To achieve the true parameters of the Tsodyks-Markram model we 
should minimize the error between experimental and estimated firing 
rate. True parameters should be valid for all frequencies, therefore we 
define the error function as the average error of 30Hz, 50Hz, 100Hz, 
and 200Hz frequencies. To minimize the error, we employ Bayesian 
Adaptive Direct Search [7], which is a fast non-derivative optimization 
algorithm. The optimization algorithm should select parameters such 
that the output of the model most accurately represents the dynamic 
changes which occur to the synaptic weights induced by each individ-
ual successive stimulus pulse throughout individual stimulation trains.
Results: The figure below (Fig. 1) shows the experimental data versus 
the model output generated by the parameter estimation algorithm. 
The estimated parameters show a good match for all frequencies, veri-
fying the validity of this approach. Overall, the results suggest that this 
method can be used for the assessment of STP dynamics of in-vivo 
human neuronal recordings.

Fig. 1 The output of the model with estimated parameters that 
shows matching between experimental firing rate extraxted during 
DBS surgery (black), and the model output (blue)
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Gamma rhythms with frequencies over 30 Hz are thought to reflect 
cortical information processing. However, signals associated with 
gamma rhythms are notoriously difficult to record due to their low 
energy and relatively short duration of the order of a few seconds. In 
our experiments, of particular interest was the 40 Hz synchronization 
of neurons, which is believed to be indicative of temporal binding. 
Temporal binding glues together spatially distributed representa-
tions of different features of sensory input, e.g., during the analysis of 
a visual stimulus, to produce a coherent description of constitu-
ent elements.
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Our goal was to investigate the effect of systemic cocaine injection 
on the local field potentials (LFPs) recorded from the medial prefron-
tal cortex (mPFC) of mice. We used male PV-Cre mice infected with 
a viral vector [1] that makes some proteins sensitive to light, such as 
the members of the opsin family, including retinal pigments in visual 
systems. By genetic engineering, channelrhodopsins was coupled to 
sodium channels express in neurons and increase their excitability 
when exposed to blue light [1].
We previously used nonlinear dynamics tools, such as delay embed-
ding and false nearest neighbors [2,3], to estimate the embedding 
dimension and the delay time for attractor reconstruction from 
LFPs [4]. While nonlinear dynamics is a powerful tool for data analy-
sis, recent developments suggested that ensemble empirical mode 
decomposition (EEMD) could be better suited for short and noisy time 
series. The traditional EMD method is a data-driven decomposition of 
the original data into orthogonal Intrinsic Mode Functions (IMFs) [5]. In 
the presence of noise, the time scale separation is not perfect, and IMF 
mixing produces significant energy leaks between modes. The advan-
tage of EEMD is that by adding a controlled amount of noise to the 
data leads to a between demixing of the IMFs. We also performed a 
Hilbert-Huang [5] transform to the demixed IMFs and computed the 
instantaneous frequency spectrum. Our results indicate that cocaine 
significantly shifts the energy distribution towards earlier durations 
during the trial compared to control. Our findings allow us to estimate 
the contribution of different spectral components quantitatively and 
develop a dynamical model of the data.
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Holographic microscopy allows one to measure subtle volume 
changes of cells submitted to challenges such as an osmotic shock 
or sudden increase in extracellular potassium. Interpreting volu-
metric data however remains a challenge. Specifically, relating the 
amplitude of volume changes to the biophysical properties of cells 
such as passive permeability to water or the rate of water transport 
by cation chloride cotransporter is a difficult but important task. 
Indeed, mechanisms of volume regulation are key for cell resilience 
and survival. Experimentally, the second author measured the volume 
response as well as the change in sodium concentration of astrocytes 
submitted to bath applied: hypo-osmotic solutions, solutions with 
high potassium concentration or solutions containing glutamate. 

Overall, he measured the time course of the response of over 2000 
astrocytes. In order to interpret this rich data, we developed a math-
ematical model based on our biophysical knowledge of astrocytes. 
This model relates on the one hand the experimental perturbations of 
the extracellular medium and on the other the properties of the cell 
such as its various conductances or strengths of transporters to its 
responses in terms of volume change, changes in ionic concentrations 
and in membrane potential. Determining the biophysical properties of 
cells thus boils down to a problem of model calibration. This presenta-
tion is mainly focused on the work of the first author who designed 
and implemented a gradient-based optimization algorithm, to esti-
mate model parameters and find the values of the parameters which 
best explain the data coming from distinct modalities and astrocytes.
A first computational challenge is to combine data from different 
modalities. In some experiments, the sodium response is measured 
while in others, the volume response is inferred from phase meas-
urements. We also take advantage of the fact that expert knowledge 
provides information on variables which are not measured. For exam-
ple, even if membrane potential is not measured, we impose that it is 
between -100 mV and -50 mV at equilibrium. Combining these differ-
ent information sources translate into a complex loss function. Fur-
thermore, using a priori knowledge on the value of parameters, we 
developed a Bayesian approach. Another challenge comes from the 
fact that different measurements come from different cells. Our goal is 
thus not to infer a single set of parameters but rather to infer how bio-
physical parameters are distributed within the population of cells. This 
was achieved by using a Tikhonov approach which penalizes param-
eter values laying far from the average of the distribution.
With our algorithm, we were able to infer the strength of the sodium 
potassium ATPase pump in each cell with a good precision. This could 
be useful in identifying cells which are more vulnerable. Parameters 
related to water transport such the passive membrane permeability to 
water or the rate of water transport through cation chloride cotrans-
porters are elusive and cannot be determined by conventional meth-
ods. Our inference algorithms provided information on these values. 
Finally, our algorithm is flexible enough to adapt rapidly to take 
advantage of new experiment type or new data modality.
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Myelin sheaths around axonal lengths are formed by mature oligo-
dendrocytes, and play a critical part in regulating signal transmission 
in the nervous system. Contrary to traditional assumptions, recent 
experiments have revealed that myelin remodels itself in an activity-
dependent way, during both developmental stages and well into 
adulthood in mammalian subjects. Indeed, it has shown that myelin 
structure is affected by extrinsic factors such as one’s social environ-
ment and intensified learning activity. As a result, axonal conduction 
delays continuously adjust in order to regulate the timing of neural 
signals propagating between different brain regions. While there is 
strong empirical support for such phenomena, the plasticity mecha-
nism has yet to be extensively modeled in neurocomputational fields. 
As a preliminary step, we incorporate adaptive myelination in the form 
of state-dependent delays into neural network models, and analyze 
how it consequently alters its dynamics. In particular, we ask what 
role myelin plasticity plays in brain synchrony, which is a fundamen-
tal element of neurological function. Brain synchrony is simplistically 
represented in coupled phase-oscillator models such as the Kuramoto 
network model. As a prototype, we equip the Kuramoto model with 
a distribution of variable delays governed by a plasticity rule with 
phase difference gain that allows the delays and oscillatory phases to 
evolve over time with mutually dependent dynamics. We analyzed the 
equilibria and stability of this system, and applied our results to large 
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dimensional networks. Our joint mathematical and numerical analy-
sis demonstrates that plastic delays act as a stabilizing mechanism 
promoting the network’s ability to maintain synchronous activity. At 
a high-dimensional network level, our work also shows that global 
synchronization is more resilient to perturbations and injury towards 
network architecture. Specifically, our conducted numerical experi-
ments imply that plastic delays play a positive role in improving a 
large-dimensional system’s resilience in achieving synchrony from a 
sustained injury. Our results provide key insights about the analysis 
and potential significance of activity-dependent myelination in large-
scale brain synchrony.
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Neural synchrony in the brain is often present in an intermittent fash-
ion, i.e. there are intervals of synchronized activity interspersed with 
intervals of desynchronized activity. A series of experimental studies 
showed that the temporal patterning of neural synchronization may 
be very specific, exhibiting predominantly short (although potentially 
numerous) desynchronized episodes [1], and may be correlated with 
behavior (even if the average synchrony strength is not changed) [2-4]. 
Prior computational neuroscience research showed that a network 
with many short desynchronized intervals may be functionally differ-
ent than a network with few long desynchronized intervals [5]. In this 
study, we investigated the effect of noise on the temporal patterns of 
synchronization. We employed a simple network of two conductance-
based neurons that were mutually connected via excitatory synapses. 
The resulting dynamics of the network was studied using the same 
time-series analysis methods used in prior experimental and com-
putational studies. It has been well known that synchrony strength 
degrades with noise. We found that noise also affects the temporal 
patterning of synchrony. Increase in the noise level promotes dynam-
ics with predominantly short desynchronizations. Thus, noise may be 
one of the mechanisms contributing to the short desynchronization 
dynamics observed in multiple experimental studies.
Acknowledgements: This work was supported by NSF grant DMS 
1813819.
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In recent years, a wealth of Drosophila neuroscience data have 
become available. These include cell type, connectome and synap-
tome datasets for both the larva and adult fly [1-4]. To facilitate inte-
gration across data modalities and to accelerate understanding the 
functional logic of the fly brain, we developed an interactive comput-
ing environment called FlyBrainLab [5].
FlyBrainLab brings together tools enabling the morphological visu-
alization and exploration of large connectomics datasets, interactive 
circuit construction and visualization, multi-GPU execution of neu-
ral circuit models for in silico experimentation, and libraries to aid 
data analysis. FlyBrainLab provides the flexibility to readily navigate 
between the in vivo circuits and executable in silico circuits. Moreo-
ver, FlyBrainLab methodologically supports the efficient comparison 
of fly brain circuit models, either across model instances developed by 
different researchers, or across different developmental stages of the 
fruit fly. We provide two example comparisons below.
First, we constructed a wild-type biological central complex (CX) 
circuit followed by a corresponding interactive baseline CX circuit 
diagram (Fig. 1, left). This enabled us to automatically map three CX 
circuit models described in the literature into executable circuits 
(Fig. 1, middle-right). With these circuits on the same platform, we 
devised the same set of inputs to the CX models and an evaluation 
criterion. The evaluation of the function of the executable circuits 
revealed the differences in modeling assumptions and the less visible 
details underlying the mapping between neuroanatomy, neurocir-
cuitry and computation in the executable circuits. Based on these and 
other comparisons, new executable CX circuit models can be devel-
oped, evaluated and scrutinized by the research community.

Fig. 1 From the wild‑type biological CX circuit and its circuit diagram 
(left column), two additional models of the CX are instantiated and 
compared (middle and right columns)

Second, by integrating biological data across adult and larval flies 
we developed executable models for early olfactory systems in 
both developmental stages. Circuit models are implemented for the 
Antenna, the Antennal Lobe and the Mushroom Body, and are inter-
actively configurable. We evaluated the I/O characteristics of adult 
and larva, and discovered significant differences in odorant encoding 
capabilities. Noticeably, the adult excels in disparately representing 
differing odorant identities while requiring 10x higher neural hard-
ware and as such much higher energy consumption. Such tradeoff 
between computation and energy requirement suggests a general 
principle of adaptation to environmental niches which we are cur-
rently exploring.

Acknowledgments: The research reported here was supported 
by AFOSR under grant #FA9550-16-1-0410 and DARPA under 
contract #HR0011-19-9-0035.



Page 66 of 123 BMC Neurosci 2020, 21(Suppl 1):54

References
1. Chiang AS, et al. Three‑dimensional reconstruction of brain‑wide wiring 

networks in Drosophila at single‑cell resolution. Current Biology. 2011; 
21(1): 1‑1.

2. Takemura SY, et al. Synaptic circuits and their variations within different 
columns in the visual system of Drosophila. Proceedings of the National 
Academy of Sciences. 2015; 112(44): 13711‑6.

3. Berck ME, et al. The wiring diagram of a glomerular olfactory system. Elife. 
2016; 5: e14859.

4. Xu CS, et al. A connectome of the adult drosophila central brain. BioRxiv. 
2020.

5. Turkcan MK, et al. FlyBrainLab: an interactive computing environment for 
the fruit fly brain. Society of Neuroscience. 2019.

P113 
Dynamically damped stochastic alpha‑band relaxation activity 
in 1/f noise and alpha blocking in resting M/EEG
Rick  Evertz1, Damien  Hicks2, David  Liley3

1Swinburne University of Technology, Melbourne, Australia; 2Centre 
for Human Psychopharmacology, Optical Sciences Centre, Melbourne, 
Australia; 3The University of Melbourne, Department of Medicine, 
Melbourne, Australia
Correspondence: Rick Evertz (revertz@swin.edu.au) 
BMC Neuroscience 2020, 21(Suppl 1):P113

Dynamical and physiological basis of alpha band activity and 1/f noise 
is a subject of continued speculation. Here we conjecture, on the basis 
of empirical data analysis, that both of these features can be dynami-
cally unified if resting EEG is conceived of being the sum of multiple 
stochastically perturbed alpha band oscillatory relaxation processes. 
The modulation of alpha-band and 1/f noise activity by dynamic 
damping is explored in eyes closed (EC) and eyes open (EO) resting 
state Magneto/Electroencephalography (M/EEG). We assume that 
the resting M/EEG being recorded is composed of a superposition of 
stochastically perturbed alpha-band relaxation processes with a dis-
tribution of dampings, the functional form of which is unknown. We 
perform the inverse problem and take measured M/EEG power spec-
tra and compute the distribution of dampings using Tikhonov regu-
larization methods. The characteristics of the damping distribution are 
examined across subjects, sensors and recording condition (EC/EO).
We find that there are robust changes in the estimated damping dis-
tribution between EC/EO recording conditions across participants. 
Our findings suggest that alpha-blocking and the 1/f noise structure 
are both explicable through a singular process of dynamically damped 
alpha-band activity. The estimated damping distributions are typi-
cally found to be bimodal or trimodal (Fig. 1). The number and posi-
tion of the modes is related to the sharpness of the alpha resonance 
(amplitude, FWHM) and the slope of the power spectrum. The results 
suggest that there exists an intimate relationship between resting 
state alpha activity and 1/f noise with changes in both governed by 
changes to the damping of the underlying alpha relaxation processes. 
In particular, alpha-blocking is observed to be the result of the most 
weakly damped distribution mode (peak at 0.4 - 0.6s^-1) becoming 
more heavily damped (peak at 1.0 - 1.5s^-1). Reductions in the slope 
of the 1/f noise are the result of the alpha relaxation processes becom-
ing more broadly distributed in their respective dampings with more 
weighting towards heavily damped alpha activity. The results suggest 
a novel way of characterizing resting M/EEG power spectra and pro-
vides new insight into the central role that damped alpha-band activ-
ity may play in the interesting spatio-temporal features of resting state 
M/EEG.

Fig. 1 Top panel: Power spectrum for EC and EO (dashed) condi‑
tions plotted in logarithmic and linear coordinates. Power spectrum 
generated using the estimated damping distributions in the forward 
problem are shown for EC and EO (solid) alongside the measured 
power spectra. Bottom panel: Typical damping distribution results 
found in EC and EO for subjects who demonstrate alpha blocking

Future work will explore the more complex case where we expect a 
distribution over both frequency and damping for the stochastic 
relaxation processes, elucidating any frequency dependent damp-
ing effects between conditions. The inverse problem can be solved 
via gradient descent methods where we estimate the 2-dimensional 
probability density function over frequency and damping from a given 
power spectrum.
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We consider a ring network for the delay eyeblink conditioning, and 
investigate the effect of diverse firing activities of granule (GR) cells on 
the eyeblink conditioning under conditioned stimulus (tone) by vary-
ing the connection probability pc from Golgi to GR cells. For an opti-
mal value of p*c, individual GR cells exhibit diverse spiking patterns 
which are well- or poor-matched with the unconditioned stimulus 
(airpuff). Then, these diversely-recoded signals via parallel-fibers (PFs) 
from GR cells are effectively depressed by the error teaching signals via 
climbing fibers (CFs) from the inferior olive. Synaptic weights at well-
matched PF–Purkinje cell (PC) synapses of active GR cells are strongly 
depressed via strong long-term depression (LTD), while no LTD occurs 
at poor-matched PF–PC synapses. This kind of “effective” depression 
at PF-PC synapses coordinates firings of PCs effectively, which then 
exert effective inhibitory coordination on cerebellar nucleus (CN) 
(which evokes conditioned response (CR; eyeblink)). When the learn-
ing trial passes a threshold, CR occurs. In this case, the timing degree 
Td becomes good due to presence of poor-matched spiking group 
which plays a role of protection barrier for the timing. With further 
increase in trials, strength of CR SCR increases due to strong LTD in the 
well-matched spiking group, while its timing degree decreases. Thus, 
the overall efficiency degree Le (taking into consideration both timing 
and strength of CR) for the eyeblink increases with trials, and eventu-
ally saturates. By changing pc, we also investigate the delay eyeblink 
conditioning and find that a plot of Le versus pc forms a bell-shaped 
curve with a peak at p*c (where the diversity degree D in firing of GR 
cells is also maximum). The more diverse in spiking patterns of GR 
cells, the more effective in CR for the eyeblink.
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Fig. 1 a Diversity degree D versus the connection probability  pc 
from Golgi cells to granule cells. b1 Timing degree  Td versus  pc, b2 
strength of conditional response  SCR versus  pc, and b3 overall effi‑
ciency degree  Le versus  pc
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Information streams are processed in the brain by populations of neu-
rons tuned to perform specific computations, the results of which are 
forwarded to subsequent processing stages. Building on theoretical 
results for the behavior of single neurons and populations, we inves-
tigate the extent to which a postsynaptic cell (PSC) can detect the 
information present in the output stream of a population which has 
encoded a signal. In this two-stage system, illustrated in Figure 1A, the 
population is a simple feedforward network of integrate-and-fire neu-
rons which integrate and relay the signal, reminiscent of auditory or 
electroreceptor afferents in the sensory periphery. Depending on the 
application, the information relevant for the PSC may be contained in 
a specific frequency band of the stimulus, requiring the PSC to prop-
erly tune its information encoding to that band (information filtering). 
In the specific setup studied here, information filtering is associated 
with detecting synchronous activity. It was found that synchronous 
activity of a neural population selectively encodes information about 
high-frequency bands of a broadband stimulus, and it was hypoth-
esized that this information can be read out by coincidence detector 
cells that are activated only by synchronous input. Firstly, we test this 
hypothesis and match the key characteristics of information filtering, 
the spectral coherence function, of the PSC and the stimulus and of 
the time-dependent synchrony in the population output and the 
stimulus (Fig. 1B, left); we show that the relations between the syn-
chrony and PSC thresholds and between the synchrony window and 
PSC time constant are roughly linear (Fig. 1B, right), which implies that 
the synchronous output of the population can be taken as a proxy 
for the postsynaptic coincidence detector and, conversely, that the 
PSC can be made to detect synchrony (or coincidence) by adjusting 
its time constant and threshold. Secondly, we develop an analytical 
approximation for the coherence function of the PSC and the stimulus 
and demonstrate its accuracy by comparison against numerical simu-
lations (Fig. 1C), both in the fluctuation-dominated and mean-driven 
regimes of the PSC.

Fig. 1 A System diagram of the two‑stage neural system. B Matching 
coherence functions to relate synchronous output criteria to PSC 
parameters. C Band‑pass filtering of information from a broadband 
stimulus by the two‑stage neural system
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The role of astroglia has long been overlooked in the field of compu-
tational neuroscience. Lately their involvement in multiple higher-
level brain functions, including neurotransmission, plasticity, memory, 
and neurological disorders, has been found to be more significant 
than previously thought. It has been hypothesised that astrocytes 
fundamentally affect the information processing power of the mam-
malian brain. As the glia to neuron ratio increases when moving 
from simpler organisms to those more complex, it is clear that more 
attention should be directed to glial involvement. Despite the recent 
advances in neuroglial research there still exists a lack of glia-specific 
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computational tools. Astroglia differ considerably from neurons in 
their morphology as well as their biophysical functions [1], making it 
difficult to acquire reliable simulation results with simulators made 
for studying neuronal behaviour. As the differences in cellular dynam-
ics of astrocytes compared to those of neurons are significant, there 
clearly exists a need for tailored methods for simulating the behaviour 
of glial cells.
One such astrocyte specific simulator has been developed [2]. In 
simulations ASTRO uses MATLAB and NEURON environments [3] 
and is capable of representing various biologically relevant astroglial 
mechanisms such as calcium waves and diffusion. In this work we used 
ASTRO to simulate several astrocytic functions with the help of exist-
ing in vivo morphologies from various brain areas. We concentrated 
on calcium transients, as calcium-mediated signaling is thought to be 
the main mechanism of intra- and intercellular messaging between 
astroglia and other neural cell types. The time-scales of these calcium-
mediated events have recently been shown to differ considerably in 
different spatial locations of astrocytes. We were able to reproduce 
these results in silico by simulating a morphologically detailed compu-
tational model that we developed based on previous work [4,5]. This 
was partly due to ASTRO’s capability to analyse the microscopic cal-
cium dynamics in fine processes, branches and leaves.
With our model ASTRO proved to be a promising tool in simulating 
astrocytic functions and could potentially offer novel insights to glia-
neuron interactions also in future work.
Acknowledgements: The work was supported by Academy of Finland 
through grants (297893, 326494, 326495) and the European Union’s 
Horizon 2020 Framework Programme for Research and Innovation 
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In isolated neural systems devoid of external stimuli, the exchange 
between neuronal, synaptic and putatively also glial mechanisms 
gives rise to spontaneous self-sustained synchronous activity. This 
phenomenon has been extensively documented in dissociated cor-
tical cultures in vitro that are routinely used to study neural mecha-
nisms in health and disease. We examine these mechanisms using a 
new data-driven computational modeling approach. The approach 
integrates standard spiking network models, non-standard glial mech-
anisms and network-level experimental data.
The experimental data represents spontaneous activity in dissoci-
ated rat cortical cultures recorded using microelectrode arrays. The 
recordings were performed under several experimental protocols that 
involved pharmacological manipulation of network activity. Under 
each protocol the activity exhibited characteristic network bursts, the 
short intervals (100ms to 1s) of intensive network-wide spiking inter-
leaved by longer (~10s) periods of sparse uncorrelated spikes. The 

data was analysed to extract, among other properties, duration, inten-
sity and frequency of burst events [1].
The computational model incorporates fast burst propagation and 
decay mechanisms, as well as the slower burst initiation mechanisms. 
We first constructed the fast part of the model as a generic spiking 
neuronal network and optimized it to the experimental data describ-
ing intra-burst properties. We developed a model fitting routine rely-
ing on multi-objective optimization [2]. The optimized ‘fast’ model 
was then extended with a selected astrocytic mechanism operating 
on a similar time-scale as the network burst initiation [3]. Typically, 
the burst initiation is attributed to a combination of noisy inputs and 
the dynamics of neuronal (and synaptic) adaptation currents. While 
noise provides necessary depolarization of cell membrane the adapta-
tion currents prohibit fast initiation of the next burst event. The noise 
might account for the randomness in ion channel opening and clos-
ing, the spontaneous synaptic release and other sources of random-
ness. The adaptation accounts for the kinetics of various ion channels. 
We explore the role of a non-standard deterministic mechanism intro-
duced through slow inward current from astrocytes to neurons.
We demonstrate that the fast neuronal part of the model successfully 
reproduces intra-burst dynamics, including the duration and intensity 
of network bursts. The model is flexible enough to account for sev-
eral experimental conditions. Coupled to the slower astrocyte-neuron 
interaction mechanism the system becomes capable of generating 
bursts with the frequency proportional to the one seen in vitro.
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Pyramidal neurons are abundant in the neocortex and known to con-
tribute to diverse and complex cognitive functions. To better under-
stand the role of individual pyramidal cell types we need neuron 
models that can be efficiently and reliably simulated and analyzed 
when embedded into circuit-level models yet that maintain the nec-
essary structural and functional complexity. In this study we contrib-
ute to this goal the following ways: 1) We review and compare over 
50 published mammalian cortical pyramidal neuron models available 
in the literature and public repositories (with the focus on models 
implemented in the NEURON simulation environment). 2) We test two 
recently published tools that tackle critical issues for detailed neuron 
modeling, the role of model complexity and size and the sensitivity to 
numerous and occasionally unreliable model parameters.
In goal 1, we compared the models based on the following criteria: the 
brain area and layer, number of compartments, biophysical properties, 
software used to simulate the model, and the amount of experimental 
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data used to construct and fine-tune the model. Based on this work, 
we chose a layer 2/3 pyramidal cell model from the rat somatosensory 
cortex, acquired from the Blue Brain Project data portal [1], as our test 
case. We used two recently published toolboxes, Neuron_Reduce and 
Uncertainpy, to analyze the model. Neuron_Reduce [2] is designed for 
simplifying the morphology of the model while replicating the model 
dynamics and accelerating the simulations considerably. Uncertainpy 
[3] allows the user to examine the impact of uncertainty and sensitivity 
of the model parameters.
The analyses carried out in this work show that Neuron_Reduce tool-
box is an effective tool for simplifying the morphological structure of 
neuron models. With moderate reduction of the model (preserving 
10-25% of the original model compartments) the Neuron_Reduce 
toolbox simplifies the dendritic structure of the cell while replicating 
the behavior of the original model. However, a dramatic reduction 
(preserving 3% of the original model compartments) led to changes 
in the shape of action potentials. The results obtained with Uncer-
tainpy suggest that the reduced model shows sensitivity to only a sub-
set of model parameters among those that affect the original model. 
For example, while the original model depends on several somatic 
conductances, the reduced model is sensitive mainly to sodium and 
potassium channel conductances. Based on our testing, both tool-
boxes will be useful tools for analyzing models in neuroscience. In 
addition, they can help the re-use of compartmental models in new 
modeling initiatives, particularly when modeling multiple spatiotem-
poral scales of the brain phenomena.
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Transfer entropy is an established method for the analysis of directed 
relationships in neuroimaging data. In its original formulation, transfer 
entropy is a bivariate measure, i.e., a measure between a pair of ele-
ments or nodes [1]. However, when two nodes are embedded in a 
network, the strength of their direct coupling is not sufficient to fully 
characterize the transfer entropy between them. This is because trans-
fer entropy results from network effects due to interactions between 
all the nodes.
In this theoretical work, we study the bivariate transfer entropy as a 
function of network structure, when the link weights are known. In 
particular, we use a discrete-time linear Gaussian model to investigate 
the contribution of small motifs, i.e., small subnetwork configurations 
comprising two to four nodes. Although the linear model is simplis-
tic, it is widely used and has the advantage of being analytically trac-
table. Moreover, using this model means that our results extend to 
Granger causality, which is equivalent to transfer entropy for Gaussian 
variables.
We show analytically that the dependence of transfer entropy on the 
direct link weight is only a first approximation, valid for weak coupling. 
More generally, the transfer entropy increases with the in-degree of 
the source and decreases with the in-degree of the target, which sug-
gests an asymmetry of information transfer between hubs and periph-
eral nodes.

Importantly, these results also have implications for directed func-
tional network inference from time series, which is one of the main 
applications of transfer entropy in neuroscience. The asymmetry of 
information transfer suggests that links from hubs to peripheral nodes 
would generally be easier to infer than links between hubs, as well as 
links from peripheral nodes to hubs. This could bias the estimation of 
network properties such as the degree distribution and the rich-club 
coefficient.
In addition to the dependence on the in-degree, the transfer entropy 
is directly proportional to the weighted motifs involving common 
parents or multiple walks from the source to the target (Fig. 1). These 
motifs are more abundant in clustered or modular networks than in 
random networks, suggesting a higher transfer in the former case. Fur-
ther, if the network has only positive edge weights, we have a positive 
correlation to the number of such motifs. This applies in the mamma-
lian cortex (on average, since the majority of connections are thought 
to be excitatory) – implying that directed functional network inference 
with transfer entropy is better able to infer links within brain modules 
(where such motifs enhance transfer entropy values) in comparison to 
links across modules.

Fig. 1 Network motifs involved in the bivariate transfer entropy from 
node X to node Y
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Prosocial behaviours, actions that help others, are vital for maintain-
ing social bonds and are linked with improved health. However, our 
ability to learn which of our actions help others could change as we 
get older, as existing studies suggest declines in reinforcement learn-
ing across the lifespan [1]. This decline in associative learning could be 
explained by the significant age-related decrease in dopamine trans-
mission [2] which has been suggested to code prediction errors [3]. 
Alternatively, prosocial learning might not only rely on learning abili-
ties but also on the motivation to help others. This motivation, which 
is reduced in disorders such as psychopathy, might also shift with age, 
with a trend for lower levels of antisocial behaviour in older adults [4]. 
Interestingly, the decrease in dopamine levels in older adults could 
also support this hypothesis of increased prosociality, as higher dopa-
mine has been linked to lower altruism [5].
Here, using computational modelling of a probabilistic reinforcement 
learning task (Fig. 1), we tested whether younger (age 18-36) and older 
(age 60-80, total n=152) adults can learn to gain rewards for them-
selves, another person (prosocial), or neither individual (control). We 
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replicated existing work showing younger adults were faster to learn 
when their actions benefitted themselves, compared to when they 
helped others [6]. Strikingly however, older adults showed a reduced 
self-bias, compared to younger adults, with learning rates that did 
not significantly differ between self and other. In other words, older 
adults showed a relative increase in the willingness to learn about 
actions that helped others. Moreover, we find that these differences in 
prosocial learning could emerge from more basic changes in personal-
ity characteristics over the lifespan. In older adults, psychopathic traits 
were significantly reduced and correlated with the difference between 
prosocial and self learning rates. Importantly, the difference between 
self and other learning rate was most reduced in older people with the 
lowest psychopathic traits. Overall, we show that older adults are less 
self-biased than younger adults, and this change is associated with a 
decline in psychopathic traits. These findings highlight the importance 
of examining individual differences across development and have 
important implications for theoretical and neurobiological accounts of 
healthy ageing.

Fig. 1 Behavioural task and data. A Reinforcement learning task: 
participants played for either themselves, the other participant, or 
no one. B Group‑level learning curves showing choice behaviour in 
the three learning conditions for each age group. C Comparison of 
learning rates from the computational model. D Median difference 
between learning rates in the other and self conditions. Asterisks 
represent significant differences (p<.05)
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Avalanches display non-Poisson distributions of correlated neuronal 
activity that may play a significant role in signal processing. The phe-
nomenon appears robust but mechanisms remain unknown due to 
an inability to gather large sample sizes, and difficulties in identifying 
neuron morphology, biophysics, and connections underlying ava-
lanche dynamics. We set out to understand the relationship between 
power-law activity patterns, their values, and the neural responses 
observed from every neuron across different layers, cell populations, 
and the entire cortical column using a detailed M1 model with 15 
neuron types that simulated the full-depth of a 300µm diameter col-
umn with 10,073 neurons and ~18e6 connections. Self-organized and 
self-sustained activity from our simulations have power-law values 
of -1.51 for avalanche size and -1.98 for duration distributions, which 
are in the range noted in both in vitro and in vivo neural avalanche 
preparations reported by Beggs and Plentz (2003). We applied a 0.57 
nA, 100ms stimulus across 40µm in diameter and full column depth 
at each of 49 gridded locations (40µm) across the pia surface of our 
400µm diameter cylindrical cortical column. Stimuli applied to 4 loca-
tions (8.2%) produced no sustained responses. Self-sustained activity 
was seen in the other 45 locations, which always included activity in 
IT5B or IT5B and IT6. In 6 locations activity was restricted to IT5B or 
IT5B/IT6 alone (avalanche size: ~ -2.8). Intermittent spread of activ-
ity from IT5B/IT6 across other neuron types and layers was seen in 
24 locations (avalanche size: ~ -2.0). In 15 locations, frequent spread 
of activity to other neuron types and layers was observed (avalanche 
size: ~ -1.5). Avalanches were defined using binned spiking activity 
(1ms bins). Each avalanche was composed of adjacent bins filled with 
one or more action potentials, preceded and followed by at least one 
empty bin. A prolonged 10-minute M1 simulation with different con-
nectivity produced 15,579 avalanches during sustained activity after 
the initial 100ms stimulation. Again, IT5B/IT6 activity was constant and 
punctuated by more widespread activity. Three distinct patterns of 
activity spontaneously recurred and could be characterized by delta, 
beta, or gamma frequency dominance. All large-scale avalanches were 
composed of 1 or a combination of these 3 recognizable patterns. 
Between the large-scale avalanches we saw three patterns of activity: 
1) continuous IT5B and IT6 neuron activity, 2) vigorous layer 5 and IT6 
activity, or 3) vigorous layer 5 and IT6 activity that transitioned to con-
tinuous IT5B and IT6 activity. Since cortical column activity with just 
IT5B and IT6 activity showed little correlation (very steep and narrow 
distributions of avalanche sizes and durations), we hypothesize that 
the addition of avalanches with layer 5 and IT6 activity (activity pat-
terns 2 and 3 above) result in more correlated activity and power-law 
values closer to -1.51 and -1.98 for size and duration respectively. In 
conclusion, the increase in correlated activity among neuronal compo-
nents parallels the emergence of clearly identifiable activity patterns 
across time and cortical layers and may generate rhythmic activity.
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Fig. 1 Forty‑nine raster plots each showing 60 seconds of activity 
across all 10,073 neurons after a 100 millisecond 0.57 nano‑amperes 
current was applied to a volume of the cortical column 40 um in 
diameter and spanning the full 1,350 um depth from pia to white 
matter
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Communication and oscillatory synchrony between distributed neu-
ral populations is believed to play a key role in multiple cognitive 
and neural functions. These interactions are mediated by long-range 
myelinated axonal fibre bundles, collectively termed as white matter. 
While traditionally considered to be static after development, white 
matter properties have been shown to change in an activity-depend-
ent way through learning and behavior: a phenomenon known as 
white matter plasticity. In the central nervous system this plasticity 
stems from oligodendroglia, which form myelin sheaths to regulate 
the conduction of nerve impulses across the brain, hence critically 
impacting neural communication. We here shift the focus from neural 
to glial contribution to brain synchronization and examine the impact 
of adaptive, activity-dependent change in conduction velocity on the 
large-scale phase-synchronization of neural oscillators.
We used a network model built of reciprocally coupled Kuramoto 
phase oscillators whose connections are based on available primate 
large-scale white matter neuroanatomy data. Our computational and 
mathematical results show that such adaptive plasticity endows white 
matter networks with self-regulatory and self-organizing properties, 

where conduction delay statistics are autonomously adjusted to 
ensure efficient neural communication. Specifically, our analysis 
shows that adaptive conduction velocities along axonal connections 
stabilizes oscillatory neural activity across a wide range of connectiv-
ity gain and frequency bands. Resulting conduction delays become 
statistically similar, promoting phase-locking irrespective of the dis-
tances. As a corollary, global phase-locked states are more resilient to 
diffuse decreases in connectivity, reflecting damage caused by a neu-
rological disease, for instance. Our work suggests that adaptive myeli-
nation may be a mechanism that enable brain networks with a means 
of temporal self-organization, resilience and homeostasis.
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Calcium plays highly critical roles in various physiological processes 
such as muscle contraction, neurotransmission, cell growth and prolif-
eration. Intracellular calcium handling mechanisms have been studied 
extensively. However, concepts of intracellular calcium dynamics must 
be complemented with the knowledge of calcium spread in tissues 
where neighbouring cells are coupled to each other forming a syn-
cytium. Intercellular calcium waves (ICW) are ‘complex spatiotempo-
ral events’ essentially comprising of an elevated level of intracellular 
calcium that appears to spread from the initiating/stimulated cell to 
the coupled neighbours [1]. Gap junction mediated diffusion has been 
identified as a crucial mechanism for ICW in syncytial tissues [2].
The complex structure of syncytial tissue, coupled with different sig-
nalling molecules and their varied mechanisms of involvement makes 
it difficult to study ICW from a quantitative point of view using in vitro 
or in vivo experiments. Though mathematical models describing ICW 
propagation in two-dimensions exist, there is no report of a biophysi-
cal model to account for three dimensional propagation of ICW in vivo 
in syncytial tissues. A key objective of our work was to realize, using 
the NEURON platform, a model for 3-D propagation. Several compu-
tational labs (primarily working on neural networks) make use of this 
platform to build models. However to our knowledge, in none of the 
existing cellular network models has chemical coupling of cells been 
incorporated. Successful implementation of our developed tech-
nique would produce a biophysically detailed model incorporating 
structural, electrical as well as chemical aspects that could be used to 
upgrade all existing models once suitable changes in parameters are 
made.
Gap junctions, in the NEURON platform, have usually been modelled 
as low resistance electrical shunts between connected cells [3]. In a 
novel approach we modelled the gap junction such as to enable it to 
transfer calcium between connected cells, based on the ion’s electro-
chemical gradient. We have equipped the detrusor smooth muscle 
cell model with intracellular calcium handling mechanisms and then 
modified the gap junctional connection to incorporate intercellular 
calcium flow, besides non-specific current. We have successfully simu-
lated calcium spread from the source cell to its adjoining neighbours 
and beyond. Within the network, as the distance from the source cell 
increases, extent of calcium flow diminishes as it propagates due to 
diffusion, buffering and its being pumped out of the cells (Fig. 1).
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Fig. 1 Calcium transients triggered in connected neighbouring cells 
due to ICW propagation from stimulated source cell

Our model is in a preliminary stage and is yet to be tuned. Literature 
pertaining to ICW in detrusor is scant. Hence the model would need to 
be tuned in terms of overall cellular response, with active ion channels 
integrated. Subsequently, techniques mimicking messenger regenera-
tion would need to be incorporated, besides passive diffusion.
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The cerebellar circuitry has been modeled widely, with realistic and 
accurate models now existing for most of the cerebellar neurons 
[1]. The glial cell population of the cerebellum, however, has been 
largely neglected by computational modelers. No realistic whole-cell 
models have been previously implemented for any of the cerebellar 
glial cell types; oligodendrocytes, microglia, or astroglia. In this work, 
we were interested in reconstructing a detailed morphology for the 
best-known cerebellar astroglial cell type, Bergmann glia. Bergmann 
glia are radial astrocytes of the cerebellar cortex, with somata located 
at the Purkinje cell layer, 3-6 long processes extending through 
the molecular layer, and endfeet. The processes give rise to smaller 
appendages characterized by microdomains that enwrap neuronal 
synapses [2]. The reciprocal communication between Bergmann glia 
and the neighboring neurons is vital for development and plasticity of 
the cerebellum [3].
Currently no reconstructions of cerebellar glial cells are available in 
public databases. The reconstruction of Bergmann glia required both 
an astroglial stem tree as well as a more detailed morphology for 

reconstructing the astroglial nanoscopic architecture. The stem tree 
was built with the NEURON CellBuilder tool [4] with values found from 
literature [2,5]. For the nanoscopic architecture, a 3D reconstruction 
of a Bergmann glial appendage was recreated based on a video file 
[2] with AgiSoft Metashape and Blender. As the exact reconstruction 
of the nanoscopic architecture would be computationally unfeasible, 
a novel computational tool ASTRO [6] was used to define statistical 
properties from the reconstructed appendage. The final morphology 
was assembled with ASTRO and verified functionally by simulating 
microscopic calcium dynamics with the tool.
Acknowledgements: We are very grateful to Prof. Helmut Ketten-
mann for providing us the video file of Bergmann glia appendage. The 
work was supported by Academy of Finland (Nos. 326494, 326495).
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Transitive inference – deducing that “A is better than C” from the 
premises “A is better than B” and “B is better than C” – is a basic form 
of deductive reasoning; both humans and animals are capable of 
it. However, the mechanism that enables transitive inference is not 
understood. Partly, this is due to the absence of a concrete, falsifiable 
formulation of the so-called cognitive explanation of transitive infer-
ence (which suggests that subjects combine the facts they observe 
into a mental model, which they then use for reasoning). In this work, 
we use the predictive coding method to derive a precise, mathemati-
cal implementation of the cognitive explanation of transitive inference 
(Fig. 1A shows a schematic representation of the model we use). We 
test our model by simulating a set of typical transitive inference exper-
iments and show that it reproduces several phenomena observed in 
animal experiments. For example, our model reproduces the gradual 
acquisition of premise pairs (A > B, B > C) and the simultaneously 
emerging capability for transitive inference (A>C) (Fig. 1B). We expect 
this work to lead to novel testable predictions that will inspire future 
experiments and help to uncover the mechanism behind transitive 
inference. Further, our work adds support to predictive coding as a 
universal organising principle of brain function.
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Fig. 1 A Schematic representation of the predictive coding network 
used to model transitive inference. B Model predictions of pairwise 
value differences in a hierarchy stimuli A > B > C. As the premises A > 
B and B > C are learned, the model’s evaluations become consistent 
with the hierarchy
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Electroencephalography is a neuroimaging technique that works by 
monitoring electrical activity in the brain. Electrodes are placed on the 
scalp and local changes in voltage are measured over time to produce 
a collection of time series known as electroencephalograms (EEGs). 
Traditional signal processing metrics, such as power spectral densities 
(PSDs), are generally used to analyze EEG since frequency content of 
EEG is associated with different brain states. Conventionally, PSD esti-
mates are obtained via discrete Fourier transforms. While this method 
effectively detects low-frequency components because of their high 
powers, high-frequency activity may go unnoticed because of its rela-
tively weaker power. We employ a topological Bayesian approach that 
successfully captures even these low-power, high-frequency compo-
nents of EEG.
Topological data analysis encompasses a broad set of techniques that 
investigate the shape of data. One of the predominant tools in topo-
logical data analysis is persistent homology, which creates topologi-
cal descriptors called persistence diagrams from datasets. In particular, 
persistent homology offers a novel technique for time series analysis. 
To motivate our use of persistent homology to study frequency con-
tent of signals, we establish explicit links between features of persis-
tence diagrams, like cardinality and spatial distributions of points, 
to those of the Fourier series of deterministic signals, specifically the 
location of peaks and their relative powers. The topological Bayes-
ian approach allows for quantification of these cardinality and spatial 

distributions by modelling persistence diagrams as marked Poisson 
point processes.
We test our Bayesian topological method to classify synthetic EEG. We 
employ three common classifiers: linear regression and support vec-
tor machines with linear and radial kernels, respectively. We simulate 
synthetic EEG with an autoregressive (AR) model, which works by 
recasting a standard AR model as linearly filtered white noise, ena-
bling straightforward computation of PSDs. The AR model allows us 
to control the location and width of peaks in PSDs. With this model in 
hand, we create five classes of signals with peaks in their PSDs at zero 
to simulate the approximate 1/f behavior of EEG PSDs, four of which 
also have oscillatory components at 6 Hz (theta), 10 Hz (alpha), 14 Hz 
(low beta), and 21 Hz (high beta); the fifth class (null) lacks any such 
component. We repeat this process for two different widths of peaks, 
narrow (4 Hz) and wide (32 Hz). With data in hand, we extract features 
using periodograms, persistence diagrams, and our Bayesian topologi-
cal method, then independently use these features in classification for 
the wide and narrow width cases. Preliminarily, while both the Bayes-
ian topological method and periodogram features obtain near perfect 
for the narrow peak case, the Bayesian topological method outper-
forms the periodogram features over all tested classifiers in the wide 
peak case.

P127 
A quantification of cross‑frequency coupling via topological 
methods
Alan  Cherne1, Christopher  Oballe1, David  Boothe2, Melvin  Felton2, Piotr 
 Franaszczuk2, Vasileos  Maroulas1

1University of Tennessee, Department of Mathematics, Knoxville, 
United States of America; 2U.S. Army Combat Capabilities Development 
Command, United States of America
Correspondence: David Boothe (david.l.boothe7.civ@mail.mil) 
BMC Neuroscience 2020, 21(Suppl 1):P127

A key feature in electroencephalograms (EEG) is the existence of dis-
tinct oscillatory components – theta (4-7 Hz), alpha (8-13Hz), beta 
(14-30Hz), and gamma (40-100Hz). Cross frequency coupling has 
been observed between these frequency bands in both the local field 
potential (LFP) and electroencephalogram (EEG). While the associa-
tion between activity in distinct oscillatory frequencies and important 
brain functions is well established, the functional role of cross fre-
quency coupling is poorly characterized, but has been hypothesized 
to underlie cortical functions like working memory, learning, and com-
putation [1,2].
The most common form of cross frequency coupling observed in brain 
activity recordings is the modulation of the amplitude of a higher fre-
quency oscillation by the phase of a lower frequency oscillation, a phe-
nomenon known as phase-amplitude coupling (PAC). We present a 
method for detecting PAC in signals that avoids some pitfalls in exist-
ing methods and combines techniques developed in the field of topo-
logical data analysis (TDA). When analyzing data using TDA, an object 
called a persistence diagram, is commonly constructed. In the case of 
time series the persistence diagram that is generated represents com-
pactly all the peaks and valleys that occur in the signal. We inspect the 
persistence diagrams to detect the presence of phase-amplitude cou-
pling using the intuition that PAC will impart asymmetry to the upper 
and lower segments of the diagram. This representation of the data 
has the advantage that it does not require the choice of Fourier analy-
sis parameters, binning sizes, and phase estimations that are neces-
sary in current methods [3].
We test the performance of our metric on two kinds of synthetic sig-
nals, the first is a phenomenological model with varying levels of 
phase-amplitude coupling [4] as defined by the Kullback-Liebler 
divergence from the uniform case of signals with no PAC. The second 
is from simulated single cell neuronal data based on a layer 5 pyrami-
dal cell [5,6]. Finally, we benchmark this method against methods 
explored previously [4] in EEG data recorded from human subjects.
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Gamma band neuronal oscillations are involved with sensory process-
ing ubiquitously in the central nervous system. They emerge from the 
coordinated interaction of excitation and inhibition and are a biologi-
cal marker of local active network computations [1]. Visual features as 
contrast and orientation are known to modulate broad band gamma 
activity in the primary visual cortex (V1) of primates [2]. In mouse V1, 
however, a narrow band within gamma oscillation was found to dis-
play specific functional sensitivity to visual features [3].
Here we present a network of recurrent excitatory-inhibitory spiking 
neurons reproducing the gamma narrow band dynamics in mouse 
V1 observed in [3], building on previous works of our group [4,5]. By 
combining experimental data analysis and simulations, we show that 
a proper design of the simulated thalamic input results in the network 
to exhibit both narrow and broad band gamma activity.
We reproduced the spectral and temporal modulations of V1 local 
field potentials of awake mice presented with gratings of different 
contrast levels by approximating the thalamic input rate with two lin-
ear functions defined over complementary contrast ranges. We pro-
pose a theoretical framework in which the external thalamic drive is 
responsible for inducing the emergence of broad by triggering cortical 
resonances and narrow band gamma activity by inducing entrainment 
to an oscillatory drive. Our results support in particular the hypothesis 
of a subcortical origin of the narrow gamma band [3].
Our network provides a simple and effective model of contrast-
induced gamma activity in rodents V1. The model could be easily 
extended to reproduce the modulation of V1 gamma activity induced 
by other visual stimulus features. Moreover, the model could help to 
investigate network dynamics responsible for pathological dysfunc-
tions of physiological visual information processing in mice.
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Parkinson’s Disease (PD) is known to be associated with over-synchro-
nized oscillations in the beta frequency range (13-35Hz) in motor cor-
tex and basal ganglia (BG) [1]. Although the mechanisms underlying 
the emergence of these oscillations are poorly understood, several 
excitatory-inhibitory loops have been identified in the cortex-BG net-
works that might initiate or generate them.
Recent experimental data suggests that striatal spiny projection neu-
rons (SPNs) are phase locked to the beta oscillation cycles [2]. Indeed, 
transient change in the SPNs firing rate is sufficient to unleash oscilla-
tions into the mutually connected globus pallidus externus (GPe) sub-
thalamic nucleus (STN) network [3].
Here, we investigate the effect of temporal synchrony of SPNs activ-
ity on beta oscillations simulating a biologically plausible BG model 
with spiking neurons [4]. The likely source of correlations in the SPNs is 
thalamo-cortical input, since striatal connectivity is too sparse. There-
fore, we injected correlated inputs to the SPNs. Our model showed 
the emergence of beta band aberrant synchronization as the network 
switches from the uncorrelated to the correlated input. Crucially, 
inputs displayed a fixed firing rate, that is the over-synchronization 
emerged only because of the input synchrony. Furthermore, increased 
input correlation resulted in enhanced Globus Pallidus internus (GPi) 
firing rate as observed experimentally [5]. Next, we investigated the 
possible consequences of these results for Deep Brain Stimulation 
(DBS) simulating high frequency injections into the STN. Our pre-
liminary results showed that even a short window of stimulation was 
enough to reduce beta oscillations in the firing rate of STN, GPe and 
GPi nuclei.
Our study provides innovative observations about the origin and 
propagation of PD-related beta oscillations in the BG and their reduc-
tion due to DBS. It paves the way toward in silico testing of DBS 
parameters that could be used to determine optimal parameters of 
stimulation offline rather than during surgical implants.
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Despite the success of cochlear implants (CIs) over more than three 
decades, wide inter-subject variability in speech perception is 
reported [1]. The key factors that cause variability between users are 
unclear. We previously developed an information theoretic model-
ling framework that enables estimation of the optimal number of 
electrodes and quantification of electrode discrimination ability [2,3]. 
However, the optimal number of electrodes was estimated based 
only on statistical correlations between channel outputs and inputs, 
and the model did not quantitatively model psychophysical measure-
ments and study inter-subject variability.
Here, we unified information theoretic and machine learning tech-
niques to investigate the key factors that may limit the performance 
of CIs. The framework used a neural network classifier to predict which 
electrode was stimulated for a given simulated activation pattern 
of the auditory nerve, and mutual information was then estimated 
between the actual stimulated electrode and the predicted one.
Using the framework, electrode discrimination was quantified with 
a range of parameter choices, as shown in Figure 1. The columns 
from left to right show how the distance between electrodes and 
auditory nerve fibres, r, the number of surviving fibres, N, the maxi-
mum current level (modelled as the percentage of surviving fibres, 
N, that generate action potentials for a given stimulated electrode), 
and the attenuation in electrode current, A, affect the model perfor-
mance, respectively. The parameters were chosen to reflect the key 
factors that are believed to limit the performance of CIs. The model 
shows sensitivity to parameter choices, where smaller r, larger N, and 
higher attenuation in current lead to higher mutual information and 
improved classification.

Fig. 1 Model performance with a range of parameter choices

This approach provides a flexible framework that may be used to 
investigate the key factors that limit the performance of cochlear 
implants. We aim to investigate its application to personalised con-
figurations of CIs.
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Curation and knowledge dissemination of the computational neu-
roscience field requires many unique considerations as it utilizes 
language, methods, and ideas from diverse areas including biology, 
chemistry, physics, mathematics, medicine, and computer science. 
In order to effectively facilitate curation and knowledge dissemina-
tion for the computational neuroscience community we must first 
develop a robust representation of its existing literature. Using unsu-
pervised topic modeling approaches, a metadata tagging schema was 
developed for computational neuroscience literature from ModelDB 
(a repository of computational neuroscience models), and compared 
to that of a larger neuroscience corpus. This analysis shows key differ-
ences in the types of discoveries and knowledge addressed in neu-
roscience and its computational subdiscipline, and gives insight into 
how an automated question answering system might differ between 
the two.
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Retinal prostheses can restore visual sensations in people that have 
lost their photoreceptors by electrically stimulating surviving retinal 
ganglion cells (RGCs). Currently, there are mainly three types of retinal 
prostheses under development, based on their implantation locations: 
epi-retinal, sub-retinal and suprachoroidal [1]. Clinical studies from all 
three types of devices indicate that, although a sense of vision can be 
restored, the visual acuity obtained is limited and functional vision, 
such as navigation and facial recognition remains challenging. One 
major difficulty is associated with the low spatial resolution obtained 
from electrical stimulation, i.e. the large spread of activation amongst 
RGCs leads to blurred or distorted visual percepts. Particularly, with 
epi-retinal implants, experiments have revealed that the leading cause 
of widespread activation is the unintended activation of passing RGC 
axons, which lead to elongated phosphines in patients [2].
This work proposes to use rectangular electrodes oriented parallel to 
the axon bundles to prevent the activation of passing axon bundles. 
Here, we first used simulation to investigate the interaction of neural 
tissue orientation and stimulation electrode configuration on the RGC 
activation patterns. A four-layer computational model of epiretinal 
extracellular stimulation that captures the effect of neurite orientation 
in anisotropic tissue was applied, as previously described [3], using a 
volume conductor model known as the cellular composite model. As 
shown in Figure 1a, our model shows that stimulating with rectan-
gular electrode aligned with the nerve fiber layer (i.e. passing axon 
bundles), can be used to achieve selective activation of axon initial 
segments, rather than passing fibers.
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Fig. 1 Simulated membrane potentials a and experimental calcium 
imaging b results both indicate that a rectangular electrode oriented 
parallel to the axon bundles can lead to localised RGC activation by 
avoiding the unintended activation of passing axon bundles

The simulation results were then confirmed with experiments. Here, 
data were acquired from adult Long Evan rats by recording the 
response of RGCs from whole-mount retina preparations using cal-
cium imaging. Electrical stimulation was delivered through a diamond 
coated carbon fiber electrode with a length of 200µm and diameter 
of 10µm. The electrode was placed either parallel or perpendicular to 
the RGC axon bundles. Biphasic stimuli with different pulse durations 
of 33-500µs were tested. Our experimental observations (Fig. 1b) are 
consistent with the expectations of the simulations, and the use of rec-
tangular electrodes placed parallel to axon bundles can significantly 
reduce the activation of RGC axon bundles. When using biphasic 
stimulation as short as 33µs, the activated RGCs were mostly confined 
to the region below or very close-to the electrode, as observed using 
confocal microscopy.
To conclude, this work provides a stimulation strategy for reducing the 
spread of RGC activation for epi-retinal prostheses. Using ultrashort 
pulses together with rectangular electrodes parallel to the RGC axon 
bundles, the performance of epi-retinal prostheses will be improved 
significantly, thus promising to restore a higher quality of vision to the 
blind.
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The brain continuously processes sensory information from multiple 
modalities, giving rise to internal representations of the outside world. 
If and how the information from multiple modalities is being inte-
grated has extensively been investigated over the past years, leading 

to more insight in multisensory integration (MSI) and its underlying 
mechanisms [1]. However, the different experimental paradigms used 
to investigate MSI involve different cognitive resources and situational 
demands. In this study, we investigated how different experimental 
paradigms of MSI reflect on behavior output and in their correspond-
ing neural activity patterns. We did so by designing a recurrent neural 
network (RNN) with the biological plausible feature of differentiating 
between excitatory and inhibitory units [2]. For each of the three mul-
tisensory processing tasks considered [3,4], an RNN was optimized to 
perform the tasks with similar performance as found in animals. Net-
work models trained on different experimental paradigms showed 
significant distinct selectivity and connectivity patterns. Selectivity 
for both modality and choice was found in network models that were 
trained on the paradigm that involved higher cognitive resources. 
Network models trained on paradigms that involve more bottom-
up processes mostly experienced choice selectivity. Increasing the 
level of network noise in network models that at first did not experi-
ence modality selectivity led to an increase in modality selectivity. We 
propose that a higher range of selectivity arises when a task is more 
demanding, either due to higher network noise (which makes the task 
harder for the animal) or a more difficult experimental paradigm. The 
higher range of selectivity is thought to improve the flexibility of the 
network model, which could be a necessity for the network models 
to achieve good performance, and the resulting neural heterogene-
ity could be used for more general information processing strategies 
[5,6].
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A fundamental ingredient for perception is the integration of informa-
tion from different sensory modalities. This process, known as multi-
sensory integration (MSI), has been studied extensively using animal 
and computational models [1]. It is not yet clear, however, how dif-
ferent brain areas contribute to MSI, and identifying relevant areas 
remains challenging. Part of the reason is that simultaneous electro-
physiological recordings from different brain areas has developed only 
recently [2], and the intensity, noise profile and delay responses are 
diverse for different sensory signals [1]. Furthermore, computational 
models have traditionally focused only on a few areas, a limitation 
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imposed by the lack of reliable anatomical data on brain networks. 
We present here a theoretical and computational study of the mecha-
nisms underlying MSI in the mouse brain, by constraining our model 
with a recently acquired anatomical brain connectivity dataset [3]. 
Our simulations of the resulting large-scale cortical network reveal 
the existence of a hierarchy of crossmodal excitability properties, with 
areas at the top of the hierarchy being the best candidates for inte-
grating information from multiple modalities. Furthermore, our model 
predicts that the position of a given area in such hierarchy is highly 
fluid and depends on the strength of the sensory input received by the 
network. For example, we observe that the particular set of areas inte-
grating visuotactile stimuli changes depending on the level of visual 
contrast. By simulating a simplified network model and developing its 
corresponding mean-field approximation, we determine that the ori-
gin of such hierarchical dynamics is the structural heterogeneity of the 
network, which is a salient property of cortical networks [3,4]. Finally, 
we extend our results to macaque cortical networks [5] to show that 
the hierarchy of crossmodal excitability is also present in other mam-
mals, and we characterize how frequency-specific interactions are 
affected by hierarchical dynamics and define functional connectivity 
[6]. Our work provides a compelling explanation as of why is it not 
possible to identify unique MSI areas even for a well-defined multisen-
sory task, and suggests that MSI circuits are highly context-dependent.
Acknowledgements: This study was financed in part by the University 
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de Nivel Superior Brasil (Capes) - Finance Code 001.
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Recent advances in computational modeling, genome-wide associa-
tion studies, neuroimaging, and theoretical neuroscience pose better 
opportunities to study neuropsychiatric disorders, such as schizophre-
nia (SZC) [1]. However, despite a repeated examination of its well-char-
acterized phenotypes, our understanding of SZC’s neurophysiological 
biomarkers or cortical dynamics remain elusive.
This study presents a biophysical spiking neuron model of perceptual 
inference, based on the predictive coding framework [2]. The model, 
implemented in NetPyNE [3], incorporates various single-cell models 
of both excitatory and inhibitory neurons [4,5], mimicking the circuits 
of the primary auditory cortex. This model allows for the exploration of 
the effects bio-genetic variants (expressed via ion-channels or synaptic 
mechanism alterations, see [6]) have on auditory mismatch negativity 
(MMN) deficits, a common biomarker for SZC [7]. More particularly, the 
model distinguishes between repetition suppression and prediction 
error and examines their respective contribution to the MMN. The first 

part of this report establishes the model’s explanatory power using 
two well-known paradigms: the oddball paradigm and the cascade 
paradigm. Both can reproduce the electrophysiological measures of 
the MMN among healthy subjects. Later, via tuning the parameters of 
single-neuron equations or the network’s synaptic weights, the model 
exhibits the expected LFP changes associated with SZC [8].
Therefore, this model enables exploring how biogenetic alterations 
affect the underlying components of the observed MMN deficits. 
Novel, yet preliminary, predictions are presented and suggested 
future steps for validations are listed. This model could support studies 
exploring genetic effects on the MMN (or other aspects of predictive 
coding) in the auditory cortex.

References
1. Krystal JH, et al. Computational psychiatry and the challenge of schizophre‑

nia. 2017.
2. Bastos AM, et al. Canonical microcircuits for predictive coding. Neuron. 

2012; 76(4): 695‑711.
3. Garrido MI, Kilner JM, Stephan KE, Friston KJ. The mismatch negativity: a 

review of underlying mechanisms. Clinical Neurophysiology. 2009; 120(3): 
453‑63.

4. Beeman, D. Comparison with human layer 2/3 pyramidal cell dendritic 
morphologies. Poster session presented at the meeting of Society for 
Neuroscience 2018, San Diego.

5. Vierling‑Claassen D, Cardin J, Moore CI, Jones SR. Computational modeling 
of distinct neocortical oscillations driven by cell‑type selective optogenetic 
drive: separable resonant circuits controlled by low‑threshold spiking and 
fast‑spiking interneurons. Frontiers in Human Neuroscience. 2010 Nov; 4: 
198.

6. Mäki‑Marttunen T, et al. Functional effects of schizophrenia‑linked genetic 
variants on intrinsic single‑neuron excitability: a modeling study. Biological 
Psychiatry: Cognitive Neuroscience and Neuroimaging. 2016; 1(1): 49‑59.

7. Dura‑Bernal S, et al. NetPyNE, a tool for data‑driven multiscale modeling of 
brain circuits. Elife. 2019; 8: e44494.

8. Michie PT, Malmierca MS, Harms L, Todd J. The neurobiology of MMN and 
implications for schizophrenia. Biological psychology. 2016; 116: 90‑7.

P136 
Effect of independent noise on the synchronization of interacting 
excitatory‑inhibitory networks
Lucas  Rebscher1, Christoph  Metzner2

1Technische Universität Berlin, Neural Information Processing, Berlin, 
Germany; 2Technische Universität Berlin, Department of Software 
Engineering and Theoretical Computer Science, Berlin, Germany
Correspondence: Lucas Rebscher (lucas.rebscher@campus.tu‑berlin.de) 
BMC Neuroscience 2020, 21(Suppl 1):P136

Gamma rhythms play a major role in different processes in the brain, 
such as attention, working memory and sensory processing. The com-
munication-through-coherence (CTC) hypothesis [1,2] suggests that 
synchronization in the gamma band is one of the key mechanisms in 
neuronal communication and counterintuitively noise can have ben-
eficial effects on the communication [3].
Recently, Meng et al. [4] showed that synchronization across interact-
ing networks of inhibitory neurons increases while synchronization 
within these networks decreases when neurons are subject to inde-
pendent noise. They focused on inhibitory-inhibitory connections 
with gamma band activity produced by the interneuronal network 
gamma mechanism (ING). However, experimental and modeling stud-
ies [5] point towards an important role of the pyramidal-interneuronal 
network gamma (PING) mechanism in the cortex and the established 
view is that cortico-cortical connections are predominately excitatory 
[6].
We build up on Meng et al. [4] results and intend to verify if their find-
ings can be observed in interacting gamma rhythms produced by a 
PING mechanism. In our ongoing research we model interacting excit-
atory-inhibitory networks and analyze how synchronization changes 
depending on strength and correlation of noise in different network 
settings. We expect to see the same effect in our model as (1) the delay 
of spiking by inhibition is integral to both ING and PING and (2) Meng 
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et al. [4] replicated the effect in different neuron models as well as 
relaxation oscillators.
Uncovering whether, and if yes, under which conditions, stochastic 
fluctuations can also have beneficial effects on gamma oscillations 
produced by a PING mechanism, would further our understanding of 
inter-regional communication. However, importantly, it might also 
yield mechanistic explanations for altered neuronal dynamics in psy-
chiatric disorders, since for example, disturbances in neuronal oscil-
lations in the gamma band, especially reduced synchronization, are a 
key finding in schizophrenia [7].
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We apply techniques from the field of computational mechanics 
to evaluate the statistical complexity of neural recording data from 
fruit flies. First, we connect statistical complexity to the flies’ level of 
conscious arousal, which is manipulated by general anaesthesia (iso-
flurane). We show that the complexity of even single channel time 
series data decreases under anaesthesia. The observed difference in 
complexity between the two states of conscious arousal increases as 
higher orders of temporal correlations are taken into account. We then 
go on to show that, in addition to reducing complexity, anaesthesia 
also modulates the informational structure between the forward and 
reverse-time neural signals. Specifically, using three distinct notions 
of temporal asymmetry we show that anaesthesia reduces tempo-
ral asymmetry on information-theoretic and information-geometric 
grounds. In contrast to prior work, our results show that: (1) Complex-
ity differences can emerge at very short time scales and across broad 
regions of the fly brain, thus heralding the macroscopic state of 
anaesthesia in a previously unforeseen manner, and (2) that general 
anaesthesia also modulates the temporal asymmetry of neural signals. 
Together, our results demonstrate that anaesthetised brains become 
both less structured and more reversible.
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One of the most prevalent characteristics of neurobiological systems 
is the abundance of recurrent connectivity. Regardless of the spatial 
scale considered, recurrence is a fundamental design principle and a 
core anatomical feature, permeating the micro-, meso- and macro-
scopic levels. In essence, the brain (and, in particular, the mammalian 
neocortex) can be seen as a large recurrent network of recurrent net-
works. Despite the ubiquity of these observations, it remains unclear 
whether recurrence and the characteristics of its biophysical proper-
ties correspond to important functional specializations and if so, to 
what extent.
Intuitively, from a computational perspective, recurrence allows infor-
mation to be propagated in time, i.e. past information reverberates so 
as to influence online processing, endowing the circuits with memory 
and sensitivity to temporal structure. However, even in its simpler for-
mulations, the functional relevance and computational consequences 
of recurrence in biophysical models of spiking networks are not clear 
or unambiguous and its effects vary depending on the type and char-
acteristics of the system under analysis and the nature of the com-
putational task. Therefore, it would be extremely useful, from both 
an engineering and a neurobiological perspective, to know to what 
extent is recurrence necessary for neural computation.
In this work, we set out to quantify the extent to which recurrence 
modulates a circuit’s computational capacity, by systematically meas-
uring its ability to perform arbitrary transformations on an input, 
following [1]. By varying the strength and density of recurrent connec-
tions in balanced networks of spiking neurons, we evaluate the effect 
of recurrence on the complexity of the transformations the circuit can 
carry out and on the memory it is able to sustain. Preliminary results 
demonstrates some constraints on recurrent connectivity that opti-
mize its processing capabilities for mappings that involve both linear 
memory and varying degrees of nonlinearity.
Additionally, given that the metric we employ is particularly compu-
tationally-heavy (evaluating the system’s capacity to represent thou-
sands of target functions), a careful optimization and parallelization 
strategy is employed, enabling its application to networks of neurosci-
entific interest. We present a highly scalable and computationally effi-
cient software, which pre-computes the thousands of necessary target 
polynomial functions for each point in a large combinatorial space, 
accesses these target functions through an efficient lookup opera-
tion, caches functions that need to be called multiple times with the 
same inputs and optimizes the most compute-intensive hotspots with 
Cython. In combination with MPI for internode communication this 
results in a highly scalable and computationally efficient implementa-
tion to determine the processing capacity of a dynamical system.
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The medial entorhinal cortex (MEC) supports the brain’s represen-
tation of space with distinct cell types (grid, border, object-vector, 
head-directions and speed cells). Since no single sensory stimulus can 
faithfully predict the firing of these cells, attractor network models 
postulate that spatially-tuned firing emerges from specific connectiv-
ity motives. To determine how those motives constrain the self-organ-
ized activity in the MEC, we tested mice in a spontaneous locomotion 
task under sensory-deprived conditions, when activity likely is deter-
mined by the intrinsic structure of the network. Using 2-photon cal-
cium imaging, we monitored the activity of large populations of MEC 
neurons in mice running on a wheel in darkness.
To reveal network dynamics we applied dimensionality reduction 
techniques to the spike matrix. This way we unveiled the presence 
of motifs that involve the sequential activation of neurons (“waves”). 
Waves lasted from tens of seconds to minutes, swept through the 
entire network of active cells and did not exhibit any anatomical 
organization. Waves were not found in spike-time-shuffled data. Fur-
thermore, waves did not map the position of the mouse on the wheel 
and were not restricted to running epochs. Single neurons exhibited 
a wide range of locking degrees to the waves, indicating that the 
observed dynamics is a population effect rather than a single cell phe-
nomenon. Overall, our results suggest that a large fraction of MEC-L2 
neurons participates in common global dynamics that often takes the 
form of stereotyped waves. These activity patterns might couple the 
activity of neurons with distinct tuning characteristics in MEC.
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It is widely accepted that humans have limited cognitive resources 
and that these finite resources impose restrictions on what the brain 
can compute. Although endowed with limited computational power, 
humans are still presented daily with decisions that require solv-
ing complex problems. This raises a tension between computational 
capacity and the computational requirements of solving a problem. In 
order to understand how hardness of problems affect problem-solv-
ing ability we propose a measure to quantify the difficulty of problems 
for humans. For this we make use of computational complexity theory, 
a widely studied theory used to quantify the hardness of problems 
for electronic computers. It has been proposed that computational 
complexity theory can be applied to humans, but it remains an open 
empirical question whether this is the case.
We study how difficulty of problems affects decision quality in com-
plex problems by studying a measure of expected difficulty over ran-
dom instances (i.e. random cases) of a problem. This measure, which 
we refer to as instance complexity (IC), quantifies the expected hard-
ness of a decision problems; that is, problems that have a yes/no 
answer. More specifically, this measure captures how constrained the 
problem is, based on a small number of features of the instance. Over-
all, IC has three main advantages. Firstly, it is a well-studied measure 
that has been proven to be applicable to a large range of problems for 
electronic computers. Secondly, it allows calculation of expected hard-
ness of a problem ex-ante, that is, before solving the problem. And 
lastly, it captures complexity that is independent of a particular algo-
rithm or model of computation. Thus, it is considered to characterize 

the inherent computational complexity of random instances, which is 
independent of the system solving it.
In this study we test whether IC is a generalizable measure, for 
humans, of the expected hardness of solving a problem. For this pur-
pose, we ran a set of experiments in which human participants solved 
a set of instances of one of three widely studied NP-Complete prob-
lems, namely the Traveling Salesperson, the Knapsack Problem or 
Boolean Satisfiability. Instances varied in their IC. We show that par-
ticipants expended more effort on instances with higher IC, but that 
decision quality was lower in those instances. Together, our results 
suggest that IC can be used to measure the expected computational 
requirements of solving random instances of a problem, based on an 
instance’s features.
The findings of this study speak to the broader question of whether 
there is a link between the computation model in humans and elec-
tronic computers. Specifically, this study gives evidence that the aver-
age hardness of random instances can be characterized via the same 
set of parameters for both computing systems. This provides support 
that computational complexity theory applies to humans. Moreover, 
we argue that decision-makers could use IC to estimate the expected 
costs of performing a task. One reason is that the estimation of IC 
can be done without having to solve the problem. Furthermore, the 
results of this study suggest that IC captures the hardness of a random 
instance. Most importantly, our findings suggest that people modu-
late their effort according to IC. Altogether, this generates future ave-
nues for research, based on IC, that could shed light into the cognitive 
resource allocation process in the brain.
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Functional features of populations of synapses are typically inferred 
from random electrophysiological sampling of small subsets of syn-
apses. Are these samples unbiased? Here, we developed a biophysi-
cally constrained statistical framework for addressing this question 
and applied it to assess the performance of a widely used method 
based on a failure-rate analysis to quantify the occurrence of silent 
(AMPAR- lacking) synapses in neural networks. We simulated this 
method in silico and found that it is characterized by strong and sys-
tematic biases, poor reliability and weak statistical power. Key con-
clusions were validated by whole-cell recordings from hippocampal 
neurons. To address these shortcomings, we developed a simulator of 
the experimental protocol and used it to compute a synthetic likeli-
hood. By maximizing the likelihood, we inferred silent synapse fraction 
with no bias, low variance and superior statistical power over alterna-
tives. Together, this generalizable approach highlights how a simu-
lator of experimental methodologies can substantially improve the 
estimation of physiological properties.
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Computational neuroscientists build biophysically detailed models 
of neurons and neural circuits primarily to understand the origin of 
dynamics observed in experimental data. Much of these efforts are 
dedicated to match ensemble activity of the neurons in the mod-
eled brain region while often ignoring multimodal information flow 
across brain regions and associated behaviors. Although these efforts 
have led us to improved mechanistic understanding of electrophysi-
ological behavior of diverse types of neurons and neural networks, 
these approaches fall short of linking detailed models with associ-
ated behaviors in a closed-loop setting. In this study, we bridged that 
gap by developing biophysically detailed multimodal models of brain 
regions involved in processing visual information, generating motor 
behaviors and making associations between visual and motor neural 
representations by deploying reward-based learning mechanisms. We 
build a simple model of visual cortex receiving topological inputs from 
the interfaced Atari-game ‘pong’ environment (provided by the Ope-
nAI’s Gym). This modeled region processed, integrated and relayed 
visual information about the game environment across the hierarchy 
of higher order visual areas (V1/V2 -> V4 -> IT). As we moved from V1 
to IT, the number of neurons in each area decreased whereas the syn-
aptic connections increased. This feature was included in the model to 
reflect the anatomical convergence suggested in the literature and to 
have a broader tuning for input features in progression up the visual 
cortical hierarchy. We used compartmental models of both excita-
tory and inhibitory neurons interconnected via AMPA (for excitation) 
or GABA (for inhibition) synapses. The strengths of synaptic connec-
tions were adjusted so that the information was reliably transmitted 
across visual areas. In our motor cortex model, neurons associated 
with a particular motor action were grouped together and received 
inputs from all visual areas. For the game Pong, we used two popula-
tions of motor neurons, for generating “up” and “down” move com-
mands. All the synapses between visual and motor cortex were plastic, 
so that the connection strengths could be increased or decreased via 
reinforcement learning. When an action was generated in the model 
of motor cortex driven by visual representation of the environment in 
the model of visual cortex, that action generated a move in the game, 
which in turn updated the environment and triggered a response to 
the action: reward (+1), punishment (-1) or no-response (0). These 
signals drove the reinforcement learning at the synapses between 
visual cortex and motor cortex by strengthening or weakening them 
so that the model could learn which actions were rewarding in a given 
environment. Here we present an exploratory analysis as a proof-of-
concept for using biophysically detailed modeling of neural circuits to 
solve problems that have so far only been tackled using artificial neu-
ral networks. We aim to use this framework to further simplify to make 
it more deep-learning-like and also to extend the architecture to make 
it biologically realistic. Comparing the performance of trained models 
using different architectures will allow us to dissect the mechanisms 
underlying production of behavior and will bridge the gap between 
the electrophysiological dynamics of neural circuits and associated 
behaviors.
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We used the NEURON simulator with NetPyNE to develop a biophysi-
cally-detailed model of the macaque auditory thalamocortical system. 
We simulated a cortical column with a cortical depth of 2000um and 

200um diameter, containing over 12k neurons and 30M synapses. 
Neuron densities, laminar locations, classes, morphology and biophys-
ics, and connectivity at the long-range, local and dendritic scale were 
derived from published experimental data (Fig. 1). We used the model 
to investigate the mechanisms and function of neuronal oscillatory 
patterns observed in the auditory system in electrophysiological data 
recorded simultaneously from nonhuman primate primary auditory 
cortex (A1) and the medial geniculate body (MGB), while the awake 
subjects were presented with different classes of auditory stimuli, 
including speech.

Fig. 1 Dimensions of simulated A1 column with overall laminar cell 
densities, layer boundaries, cell morphologies and distribution of 
populations

The model A1 includes 6 cortical layers and multiple populations 
of neurons consisting of 4 excitatory (intratelencephalic (IT), spiny 
stellate (ITS), pyramidal-tract (PT), and corticothalamic (CT)), and 4 
inhibitory types (somatostatin (SOM), parvalbumin (PV), vasoactive 
intestinal peptide (VIP), and neurogliaform (NGF)). Cells were distrib-
uted across layers 2-6, except NGF cells which were also included in 
L1, as these have been identified as important targets of the thalamic 
matrix. The A1 model was reciprocally connected to the thalamic 
model to mimic anatomically verified connectivity. The thalamic 
model included the medial geniculate body (MGB) and the thalamic 
reticular nucleus (TRN). MGB includes core and matrix populations of 
thalamocortical (TC) neurons with distinct projection patterns to dif-
ferent layers of A1, and thalamic interneurons (TI) projecting locally. 
TRN included thalamic reticular neurons (RE) primarily inhibiting MGB.
Thalamocortical neurons were driven by artificial spike generators 
simulating background inputs from non-modeled brain regions. Audi-
tory stimulus related inputs were simulated using phenomenologi-
cal models of the cochlear auditory nerve and the inferior colliculus 
(IC) that captured the main physiological transformations occurring 
in these regions. The output of the IC model was then used to drive 
the thalamocortical populations. This allowed us to provide any arbi-
trary sound as input to the model, including those used during our 
macaque in vivo experiments, thus facilitating matching model to 
data.
We used evolutionary algorithms to tune the network to generate 
experimentally-constrained firing rates for each of the 42 neural popu-
lations. We tuned 12 high-level connectivity parameters, including 
background input and E->E, E->I, I->E, I->I weight gains, within param-
eter value ranges constrained biologically. Each simulated second 
required approximately 1 hour on 96 supercomputer cores. For the 
evolutionary optimization we ran 100 simultaneous simulations (9,600 
cores) every generation. To the best of our knowledge, this is the first 
time evolutionary optimization has been successfully used for large-
scale biophysically-detailed network models.
We will use our model to determine mechanistic origins of spatiotem-
poral neuronal oscillatory patterns observed in vivo using an iterative 
modeling data-analysis process. At the end of the process, to confirm 
model predictions, we will use targeted deep brain electrical micro-
stimulation and pharmacological manipulations.
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A common approach to understanding neuronal function is to build 
accurate and predictive models of the excitable membrane. Models 
are typically based on voltage clamp data where ion channels of dif-
ferent types are pharmacologically isolated and the stationary state 
and timescale of (in)activation are estimated based on the transmem-
brane currents observed in response to a set of constant voltage steps. 
The basic method can be extended with different stepping protocols 
or input waveforms and by performing parameter fits on the full time 
series. Further improvements are achieved with parameter estimation 
on additional current clamp data, an active field of research. Some 
examples of employed estimation approaches include adaptive cou-
pling to synchronise the model to data, driving neurons with chaotic 
input signals, and using distributions of parameter values in a path 
integral method.
Enabled by our GPU enhanced neural networks (GeNN) framework [1], 
we here present work that makes a different conceptual advance of 
performing parameter estimation in an online closed loop approach 
while the neuron is being recorded. In doing so we can select stimula-
tions that are highly informative for the parameter estimation process 
at any given time. We can also track time dependent parameters by 
observing how parameter estimates develop over time.
To demonstrate our new method we use the model system of the B1 
motor cell in the buccal ganglion of the pond snail Lymnaea stagna-
lis. Neurons are recorded with two sharp electrodes in current clamp 
mode. We have built a conductance based initial model from a pub-
lished set of Hodgkin-Huxley conductances [2], using standard param-
eter estimation methods and data we obtained with a simple set of 
current steps. To perform closed loop parameter estimation, we use 
a genetic algorithm (GA) in which a population of 8192 model neu-
rons with candidate parameter values is simulated on a GPU (NVIDIA 
Tesla K40c) in parallel and in real time. Models are then compared to 
the response of the recorded neuron and selected for goodness of fit, 
as is standard for a GA approach. The novel element of our method is 
the next step, where we evaluate a pool of candidate stimuli against 
the model population, selecting the stimulus with the most diverse 
responses for the next epoch. The selected stimulus is then applied to 
both the recorded neuron and the population of models and the nor-
mal GA procedure continues.
Figure 1 shows a representative example of online fitting to a neuron. 
We first fit a set of 52 parameters to fine-tune model kinetics to the cell 
under stationary conditions. Then, we restricted fitting to non-kinetic 
parameters (maximum conductances, equilibrium potentials, and 
capacitance) and continued to run the algorithm described above, 
while at the same time manipulating sodium levels in the extracellu-
lar bath. The online fitting procedure can detect and track the change 
in sodium concentration as putative changes in sodium conductance 
and reversal potential.

Fig. 1 Example fitting run. Sodium‑free saline is washed in (epochs 
1‑50), and gradually removed (51‑100). Left: Voltage of the neuron 
(red) and best model (blue) in response to a ramp stimulus. Bottom: 
Spike counts with the same stimulus. Right: Value distributions of 
some of the fitted parameters (y axis) through time (x axis). The model 
recapitulates the change in sodium (top 2 plots)
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In insects, olfactory receptor neurons (ORNs) are grouped in hairs 
(sensilla) in a stereotypical way. For example, in Drosophila each sensil-
lum houses 2 or 4 ORNs. ORNs that are co-housed in the same sensil-
lum interact with each other via a non-synaptic mechanism (NSI, see 
Fig. 1a), a mechanism which is still not fully understood. The mecha-
nism could simply be a spandrel or instead improve the function of 
the insect olfactory system. A number of hypotheses have been sug-
gested [1] trying to explain the potential role of NSIs.



Page 82 of 123 BMC Neurosci 2020, 21(Suppl 1):54

Fig. 1 a Non‑synaptic interaction (NSI) between ORNs is probably 
mediated by an electrical field interaction between closely apposed 
ORNs in olfactory sensilla. b Our model: two ORN types and their 
respective PNs and LNs, in the AL. Each ORN type is tuned to a set of 
odorants and converges onto its corresponding PNs. Each PN excites 
its respective LNs, and is inhibited from LNs of the other type

We analyzed two hypotheses that suggest that NSIs play a role in odor 
sensing in mixtures with a computational model of the first two lay-
ers of the Drosophila olfactory system - the ORNs on the antennae 
and the glomeruli, with projection neurons (PNs) and local neurons 
(LNs), in the antennal lobe (AL, see Fig. 1b). The model is the first to 
consider NSIs between ORNs in the context of the circuits of the first 
and second layer of processing in the insect olfactory pathway. We 
constrained the model by reproducing the responses to a set of typi-
cal odor stimuli reported in the literature. Then, we tested the feasi-
bility of the hypotheses and compared the advantages of having NSIs 
against a control network which lacked any interaction between ORNs 
or PNs, and with a network without NSIs but strong lateral inhibition in 
the AL, a mechanism proposed to be a valid alternative to NSIs.
The two tested hypotheses were: 1) NSIs could improve the concen-
tration ratio identification of a mixture of odorants by increasing the 
dynamic range over which it can be perceived without distortion. 2) 
NSIs could help insects to distinguish mixtures of odorants emanat-
ing from a single source against those emanating from two separate 
sources, by improving the capacity to encode the correlation between 
olfactory stimuli.
For the first hypothesis, we observed that: 1) When comparing the 
capacity to encode the ratio of the concentration of short synchro-
nous whiffs via PN responses, both networks, the one with NSIs and 
the one with AL inhibition, outperform the ‘control network’. Moreo-
ver, the NSIs help more than the LN inhibition for this task. This effect 
is stronger for very short stimuli (<100ms) than for longer stimuli. 2) 

When a network with LN inhibition (with NSIs) is stimulated with asyn-
chronous whiffs of two odorants, its PN outputs in response to the 
second whiffs are strongly (mildly) altered by the response to the first 
whiff.
More complex interpretations are needed when assessing the capacity 
to encode the correlation between two odorants. We noted that: 1) In 
terms of average PN activity, the network with LN inhibition is able to 
encode stimulus correlation but the network with NSI mechanism is 
not, but 2) In terms of peak PN activity (response higher than a given 
threshold), the network with NSI mechanism encodes correlations bet-
ter than the one with LN inhibition. This improvement is bigger for 
shorter whiff durations (<100 ms).
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Large-scale brain simulations are important tools for investigating 
brains’ dynamics and function. However, due to insufficient comput-
ing power and a lack of detailed connectivity data, brain models built 
at the cellular level have often been limited to the scale of individual 
microcircuits [1]. Larger models of multiple areas have typically been 
built at a higher level of abstraction. However, recent data [2] showed 
that, in the cortex, there are features of neuronal activity which can 
only be reproduced by modelling multiple interconnected microcir-
cuits at the cellular level.
Even small mammals have trillions of synapses and as each synapse 
typically requires at least 32 bits of storage in a simulation, a model of 
this scale requires terabytes of memory – more than any single desk-
top machine has available. Therefore, until now, simulating large-scale 
models has required access to a distributed computer system. Such 
systems are costly and power-hungry, meaning that they are normally 
shared resources, accessible only to a limited number of well-funded 
researchers for limited runtimes. Neuromorphic systems are a poten-
tial alternative but few are currently able to simulate the density of 
connectivity found in the brain and most are still prototypes with lim-
ited availability. Alternatively, Graphical Processing Units (GPUs) have 
proved useful in tasks including training deep learning systems. In our 
previous work [3] we showed that using GeNN – our GPU accelerated 
spiking neural network simulator – models with around 100×103 neu-
rons and 1×109 synapses could be simulated on a single GPU at a sim-
ilar speed to supercomputers and neuromorphic systems. However, 
individual GPUs do not have enough memory to simulate larger brain 
models and GPU clusters suffer from the same issues as any other dis-
tributed computer systems.
Here, we present extensions to GeNN that enable it to ‘procedurally’ 
generate connectivity and synaptic weights ‘on the go’ as spikes are 
triggered instead of retrieving them from memory. This approach is 
well-suited to GPU architectures because their raw computational 
power is often under-utilised when simulating spiking neural networks 
due to memory bandwidth limitations. We demonstrate the power of 
our approach with a model of the Macaque visual cortex consisting of 
4×106 neurons and 24×109 synapses [4]. We find that, with our new 
method, this model can be simulated correctly on a single GPU and up 
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to 35% faster than supercomputer simulations [5]. We believe that this 
is a significant step towards making large-scale brain modelling acces-
sible to more researchers.

Fig. 1 Results of macaque visual cortex model simulation. A‑C 
Raster plots of activity of 3% of neurons in 3 areas. Blue: excitatory, 
red: inhibitory. D‑F Statistics for each population across all 32 areas 
simulated using GeNN and NEST (supercomputer). D Average firing 
rates. E Average pairwise correlation coefficients. F Average irregular‑
ity measured by revised local variation
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Epilepsy is a neurological disorder characterized by recurrent seizures 
that are transient symptoms of synchronous neuronal activity in the 
brain. Epilepsy affects more than 50 million people worldwide [1]. In 
Australia, over 225,000 people live with epilepsy [2]. Seizure predic-
tion allows patients and caregivers to deliver early interventions and 
prevent serious injuries. Electroencephalography (EEG) has been used 
to predict seizure onset, with varying success between participants 
[3,4]. There is an increasing interest to use electrocardiogram (ECG) to 
help with seizures detection and prediction. The aim of this study is to 
use long-term continuous recordings of EEG and ECG data to forecast 
seizures.
EEG and ECG data from 7 patients was used for analysis. Data was 
recorded using 21 EEG electrodes and 3 ECG electrodes by Seer with 
an ambulatory video-EEG-ECG system. The average period of record-
ing was 95 hours (range 51-160 hours). Data was annotated by a clini-
cian to indicate seizure onset and offset. On average, 4 clinical seizures 
occurred per participant (range 2-10). EEG and ECG data were band-
pass filtered using Butterworth filter (1-30 Hz for EEG, 3-45 Hz for ECG).
A characteristic of a system that is nearing a critical transition is critical 
slowing, which refers to the tendency of the system to take longer to 
return to equilibrium after perturbations, measured by an increase in 
signal variance and autocorrelation [5]. The variance and autocorrela-
tion of EEG and ECG signals were calculated for each electrode in 1 s 
window for each time point. The autocorrelation value was set to the 
width of half maximum of the autocorrelation function. The instanta-
neous phases of variance and autocorrelation signals were calculated 
at each time point using Hilbert transform. To extract long (1 day) and 
short (20 s in EEG, 10 min in ECG) cycles in the variance and autocorrela-
tion signals, a moving average filter has been applied. The relationship 
between seizure onset times and phase of variances and autocorrela-
tion were investigated in long and short cycles. The probability distri-
bution for seizure occurrence was determined for each time point. The 
seizure likelihood was determined at three levels: low, medium and 
high, based on two thresholds defined as functions of maximum sei-
zure probability. Data analysis was performed in Python 3.
Results show that the variance and autocorrelation of EEG data 
increased at the time of seizure onset in 66.7% and 68.3% of cases, 
respectively. The variance and autocorrelation of ECG data increased 
at the time of seizure onset in 60% and 50% cases, respectively. Long 
and short cycles of variance and autocorrelation had consistent 
results. Result indicate that critical slowing may be present in a neu-
ral system during seizures and this feature could be used to forecast 
seizures.
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Electrical stimulation of neural systems is a key tool for understand-
ing neural dynamics and ultimately for developing clinical treatments. 
Many applications of electrical stimulation affect large populations 
of neurons. However, computational models of large networks of 
spiking neurons are inherently hard to simulate and analyze. We 
evaluate a reduced mean-field model of excitatory and inhibitory 
adaptive exponential integrate-and-fire (AdEx) neurons which can be 
used to efficiently study the effects of electrical stimulation on large 
neural populations. The rich dynamical properties of this basic corti-
cal model are described in detail and validated using large network 
simulations. Bifurcation diagrams (Fig. 1) reflecting the network’s state 
reveal asynchronous up and down-states, bistable regimes, and oscil-
latory regions corresponding to fast excitation-inhibition and slow 
excitation-adaptation feedback loops. The biophysical parameters 
of the AdEx neuron can be coupled to an electric field with realistic 
field strengths which then can be propagated up to the population 
description. We show how on the edge of bifurcation, direct electrical 
inputs cause network state transitions, such as turning on and off oscil-
lations of the population rate. Oscillatory input can frequency-entrain 
and phase-lock endogenous oscillations. Relatively weak electric field 
strengths on the order of 1 V/m are able to produce these effects, 
indicating that field effects are strongly amplified in the network. The 
effects of time-varying external stimulation are well predicted by the 
mean-field model, further underpinning the utility of low-dimensional 
neural mass models.

Fig. 1 Bifurcation diagrams depict the state space of the E‑I system 
in terms of the mean external inputs. a‑b Mean‑field model and AdEx 
network without adaptation with up and down‑states, a bistable 
region bi (green dashed contour) and an oscillatory region  LCEI (white 
solid contour). c‑d With somatic adaptation. The bistable region is 
replaced by a slow oscillatory region  LCaE
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The hierarchical nesting of sleep spindles and cortical slow oscillations 
is considered a precursor of successful episodic memory consolidation 
where it, presumably, sets the stage for memory traces migration from 
short-term hippocampal storage to longer-lasting neocortical sites [1]. 
Spindles are thought to be generated in the thalamus and projected 
onto cortical sites, while slow oscillations originate in the cortex and 
migrate in wave-like patterns to the thalamus, hence the interplay 
between the two rhythms is orchestrated within the thalamocortical 
circuitry. The state-of-the-art mass models of the thalamocortical loop, 
however, only consider relevant motifs and patterns in sleep but dis-
card network effects. Here we take the first steps towards integrating 
thalamocortical projections into a large-scale brain model and model-
ling whole-brain cortical slow-wave activity and thalamic spindles as 
seen in non-REM sleep.
We model the thalamus as a network node containing one excita-
tory and one inhibitory mass representing thalamocortical relay 
neurons and thalamic reticular nuclei, respectively. With little devia-
tions, our model follows the thalamic component developed in [2]. 
In the thalamic submodule, we investigated its spindling behaviour 
upon changing, firstly, conductances of rectifying and T-type cal-
cium current, by which the thalamus can be parametrised in three 
oscillatory regimes: fast oscillations, dominated by Ca current; spin-
dle regimes with a balanced interplay of Ca and rectifying currents, 
and slow delta oscillations for strong hyperpolarisation. Next, by the 
application of external excitatory firing rate drive, which simulates 
excitatory source connected to the thalamus, we found dynamically 
interesting spindle-promoting regimes in interaction with thalamic 
conductances (see Fig. 1 for estimated number of spindles), and by 
changing the parameters or external drive, we were also able to 
control the inter-spindle interval, spindle duration, and shape of 
spindle envelope.

Fig. 1 Various oscillatory regimes for isolated thalamus. Each panel 
shows estimated number of spindles (color‑coded) in 60 seconds‑
long simulation dependent on excitatory rate drive to thalamocorti‑
cal relay mass (TCR) and thalamic reticular nuclei (TRN). Different 
panels encode different conductances for potassium leak current 
(gLK) and rectifying current (gh)

Secondly, we connected the thalamic node to one cortical node, 
modelled as interconnected excitatory and inhibitory adaptive expo-
nential integrate-and-fire neuronal masses [3]. The excitatory mass 
contains a spike-triggered adaptation mechanism by which the node 
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is parametrised to sit in the limit cycle generating slow oscillations by 
the means of excitation-adaptation feedback loop. We investigated the 
dynamical repertoire of the connected model concerning the connection 
strength and network delays. Our preliminary results indeed show that, 
upon connection, the thalamic spindles are imprinted into cortical node 
activity
where they modulate slow oscillation envelope, and that slow oscil-
lation activity of the cortex, in turn, shapes spindling behaviour of 
thalamocortical relay mass by affecting spindle duration and inter-
spindle interval. Our connected model also conserves the phase-phase 
and phase-amplitude couplings reported in the literature on observed 
EEG data or other thalamocortical models.
Our results suggest that thalamic mass model of spindle activity can be 
connected to various mass or mean-field models of cortical nodes and, 
after careful treatment of network connections and delays, we believe 
that our conclusions would carry over to the large-scale network model.
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One way to study the fluctuations of cortical activity is the ignition, 
i.e. the fast transition from low to high firing rate on cortical regions. 
The capability of cortical regions to flexibly sustain an ‘ignited’ state 
of activity has been related to conscious perception and hierarchical 
information processing. Also, we theoretically showed that the pro-
pensity of cortical regions to be ignited is tightly linked to the core-
shell structure of the human connectome, i.e. the shells of strongest 
within-connected subsets of regions [1]. Moreover, the weight of 
connections (in particular the inputs) has the greatest influence in the 
propensity of a region to get ignited. Now, using the connectomes of 
non-human organisms (macaque [2], mouse [3], rat [4] and fruit fly [5]), 
we assessed whether the relationship between ignition and both local 
and mesoscale structural organization is maintained in the related 
organisms. The ignition capabilities of each connectome are obtained 
from the whole-brain mean-field model, using simulations of the 
resting-state cortical activity. Then, the structural organization is ana-
lyzed using thes-core decomposition for the mesoscale level, and the 
degree, betweenness centrality and participation index for the local 
level. The order in which cortical regions are ignited is correlated to 
both thes-core and the strength of the regions (i.e. hubs) of the differ-
ent organisms (Fig. 1). Moreover, we found that ignition recruitment 
is primarily related to weights of the inputs, rather than the outputs, 
of each region. The local level better explains the region propensity 
to get ignited in the case of macaque and rat, whereas the mesoscale 
fits better in the case of the fruit fly and mouse. We suggest that the 
weighted organization of non-human connectomes, as in the human, 
operates as a structural principle of ignition rooted in evolution.

Fig. 1 Ignition recruitment is related to input weights in the local 
and mesoscale level. A‑F The scatter plots of the coupling gain of 
ignition (x‑axis) and the mesoscale level, A smax, B out‑smax, and 
C in‑smax (y‑axis), and local level, D strength, E out‑strength, and F 
in‑strength of each region of the cocomac (blue), rat (orange), mouse 
(green) and drosophila (red) dataset
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Mice use whiskers to explore their environment. Whisker stimulation 
elicits a neural response in primary (S1) and secondary (S2) somatosen-
sory cortex, two highly interconnected and hierarchically organised 
brain regions. Their interaction has been related to stimulus detection 
[1], although its precise functional role remains unclear [2]. Here, we 
aim to assign a function to this circuit for a stimulus detection task, by 
assessing how S1-S2 interactions facilitate stimulus perception.
We have conditioned mice to detect 2-photon optogenetic stimu-
lation of random ensembles of S1 cells. This allows us to control the 
number of stimulated cells on a trial by trial basis, and to separate the 
initial stimulus representation from the ensuing network response. 
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Simultaneously, we record the calcium activity of both stimulated and 
unstimulated cells in S1 and S2, rendering an all-optical approach to 
study neural dynamics [3]. In short, we are able to directly stimulate S1 
neurons, hence defining the initial stimulus in S1, while recording the 
subsequent S1 and S2 neural response.
Mice were conditioned to report the photostimulus by licking a water 
spout. The task was divided into Go trials, where a varying number 
(5 - 150) of cells were stimulated, and Catch trials without stimula-
tion. Behavioural accuracy increased as more cells were stimulated 
(Fig. 1A), indicating that our task operated in the regime of perception.
We observed strongly elevated, sustained neural population activity in 
both S1 and S2 on successful Go trials (Hits), compared to both unsuc-
cessful Go trials (Misses) and to licking behaviour in the absence of a 
stimulus (False Positives). This suggests that S1 and S2 encode infor-
mation during Hit trials that is different from both passive stimulus-
induced activity and neural signals driven by movement and reward.
To confirm whether neurons indeed encoded stimulus information, 
we performed a stimulus decoding analysis on S1 and S2 neural activ-
ity separately. We only consider trials where mice licked (i.e. Hits and 
False Positives), to avoid a behavioural bias. Here, we observe a sig-
nificant difference between S1 (where the stimulus occurred) and S2 
(Fig. 1B): Stimulus information could only be decoded from S2 after a 
considerable time post-stimulus, while S1 could be decoded directly 
post-stimulus. Hence, stimulus information has propagated (directly 
or indirectly) from S1 to S2.
Furthermore, we find a striking dynamic property of information cod-
ing in the S1-S2 circuit. Directly post-stimulus at 1s, decoding accuracy 
in S1 depends on the stimulus strength, the number of stimulated 
cells (Fig. 1C). However, after a delay of 3s, we find that accuracy has 
increased, and has become independent of the original stimulus 
strength (Fig. 1C). S2 decoding accuracy increased equivalently (not 
shown), even though S2 decoding performs at chance level directly 
post-stimulus (Fig. 1B).
The stimulus detection task design requires the animals to elicit the 
same response, independent of stimulus strength. Our results show 
that the S1-S2 circuit dynamically performs this computation: by 
propagating stimulus information between S1 and S2, the neural code 
becomes independent of the original stimulus strength. Hence, we 
uncover a putative mechanism of how interregional communication 
can transform stimulus information to facilitate stimulus detection.

Fig. 1 A Behavioural accuracy (fraction of correct trials) is plotted 
against the number of photostimulated (PS) neurons Nps (P‑values, 
Wilcoxon). B Decoding accuracy was calculated per time point with 
logistic regression. Shaded areas indicate std. across 6 mice. Red box 
indicates the 2‑photon stimulus. C Decoded probability of PS in S1 for 
2 time points (indicated by triangles in B), split by Nps
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In the primate brain, the neurons that selectively respond to faces are 
observed and considered as the basis of face recognition [1]. Although 
such face-selective neurons are observed in infant animals [2], the 
origin of face-selectivity is still under debate, because conflicting find-
ings have raised questions whether this neuronal selectivity can arise 
spontaneously [3], or requires training from visual experience [2]. 
Here, we show that face-selective neurons can spontaneously arise 
in untrained deep neural networks (DNN), together with the previous 
notion that DNN could be considered as a visual cortex model that can 
perform human-level visual function and predict neuronal responses. 
Using biologically-inspired neural networks, AlexNet, we measured 
responses of the last convolutional layer to the image sets of face 
and 15 non-face classes. We found that face-selective neurons arise 
in untrained AlexNet with randomly permuted weights, where the 
face-selective neuron was defined as a neuron that showed a signifi-
cantly higher response to face images compared to non-face images. 
To qualitatively examine the feature-selective response of these face-
selective neurons, we reconstructed the preferred feature images of 
individual neurons using the reverse correlation method. We found 
face-components, such as eyes, nose, and mouth, in preferred feature 
images of face-selective neurons whereas no noticeable shape was 
found in neurons with no selectivity. Next, to test whether the selec-
tive response of these neurons could provide sufficient information to 
classify a face from other objects, we trained a support vector machine 
(SVM) to classify whether the given image was a face using neural 
responses of the untrained network. As a result, the SVM trained with 
only face-selective neurons shows significantly better performance 
than that trained with neurons with no selectivity. Next, to examine 
whether the face-selective neurons show view-point invariant char-
acteristics observed in monkeys, we measured the responses of the 
permuted AlexNet while face images from five different angles were 
provided to the network. Surprisingly, the face-selective neurons in 
the network show viewpoint invariant responses and their level of 
invariance increased along the network hierarchy in the permuted 
AlexNet, similar to that in monkey IT. Lastly, to examine the origin 
of face-selectivity in untrained neural networks, we implemented 
a randomly initialized network where values in each weight kernel 
were randomly drawn from a weight distribution of the pre-trained 
AlexNet. We found that the number of face-selective neurons abruptly 
decreases when the weight variation is reduced to 52% of that in the 
pre-trained network. These results suggest that statistical variation 
present in the random feedforward projections could solely drive 
the emergence of innate face-selective neurons in the visual system. 
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Overall, our findings provide insight into the origin of cognitive func-
tions in both artificial and biological neural networks.

Fig. 1 Spontaneous emergence of face selectivity in untrained 
networks. a An untrained AlexNet. b Tuning curves for face‑selec‑
tive neurons in untrained network. c Preferred feature images in 
untrained network. d Face classification performance of SVM using 
face‑selective neurons in untrained network
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Number sense is an ability to estimate number of visual items (numer-
osity) without counting, which is observed in newborn animals of 
various species. In single-neuron recordings in numerically naïve 
monkeys, it was observed that individual neurons can respond selec-
tively to the numerosity [1]. This suggests that number-selective neu-
rons spontaneously arise for a foundation of innate number sense, 
but it remains unclear how these neurons originate in the absence of 
learning. Here, using a deep neural network (DNN) designed from the 
structure of a visual pathway (AlexNet), we show that number tuning 
of network units can spontaneously arise in untrained networks, even 
in the absence of any learning. To devise an untrained network, we 
randomly permuted the weights of filters in each convolutional layer 
of the pre-trained AlexNet and examined the response to images of 

dot patterns representing numbers from 1 to 30. For stimuli, we used 
three different sets to ensure invariance of the number tuning for cer-
tain geometric factors (stimulus size, density, and area). A network unit 
was considered to be number-selective if its response significantly 
changes across the numerosity (p < 0.01, two-way ANOVA) but there 
is no significant effect for the stimulus set or interaction between two 
factors (p > 0.01). Importantly, number-selective units were observed 
in the permuted AlexNet (9.58% of units in the last convolutional 
layer), even though the network was never trained for any task after 
being permuted. Observed number-selective units followed the 
Weber-Fechner law observed in the brain, where the width of the tun-
ing curves increases proportionally in the numerosity. We also showed 
that these units enable the network to perform a number discrimi-
nation task, by training a support vector machine (SVM) to compare 
numerosities in two different images using the response of number-
selective units. Next, to explain how number-selective units emerge in 
permuted networks, we hypothesized that the number tuning to vari-
ous numerosities can be initiated from the monotonic unit activities 
in the earlier layer, the response of which monotonically decreases or 
increases as the given numerosity increases. To test this idea, we per-
formed a model simulation for the randomly weighed summation of 
tuning curves of increasing and decreasing activities and confirmed 
that tuning to all the tested numerosities was successfully gener-
ated. Notably, the curve tuned to smaller numbers was generated by 
the summation of strongly weighted decreasing activities and weakly 
weighted increasing activities. As expected, in the permuted AlexNet, 
we observed that number-selective units tuned to smaller numbers 
receive strong inputs from the decreasing units and vice versa. These 
results suggest that number-tuned neurons may spontaneously arise 
from the statistical variation of feedforward projections in the visual 
pathway during the early development stage. This finding provides 
new insights into the origin of cognitive functions in biological brains, 
as well as in artificial neural networks.

Fig. 1 Spontaneous emergence of number‑selective units in 
untrained deep neural networks. a Stimuli encoding different numer‑
osities and geometric factors. b An untrained AlexNet was devised by 
randomly permuting the weights of the pre‑trained AlexNet. c Tuning 
curves of individual number‑selective network units
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When an ambiguous sensory stimulus is given, our brain often actively 
interprets the given stimulus to dissolve ambiguity. A particular exam-
ple is the condition of ‘bistable perception’, where a given stimulus 
can be interpreted as two different states. Under this ambiguity, our 
perception alternates between two possible interpretations quasi-
periodically with switching frequency varying across individuals. This 
characteristic dynamics of bistable perception is thought to reveal 
how the brain recognizes incomplete visual signals to lead to a per-
ceptual decision, and a number of studies have been performed to 
investigate the mechanism of its rhythmic perceptual alternation. 
However, understanding the dynamics of bistable perception has 
proved elusive, as it is a complicated process involving interrelated 
cognitive and motor processes even including top-down intention 
and eye movements. Recent studies reported that specific eye move-
ment occurs during bistable perception [1], but it is still not known 
whether eye movements can actively induce perceptual decision, or 
they are just accompanied after the decision. Here, we show that eye 
movement may not solely induce perceptual behavior, but the eye 
movement patterns reflect the perceptual decisions for interpretation 
of ambiguous stimuli. We performed a human psychophysics experi-
ment with simultaneous eye-tracking, using three bistable stimuli – 
racetrack, rotating cylinder, and Necker cube. We found that eye gaze 
slowly oscillates with 5-10s intervals, the period of which was posi-
tively correlated to the frequency of perceptual switch. In addition, we 
found that eye gaze movements were observed in the opposite direc-
tions before two different perceptual decisions are made. The pre-
ceding eye gaze can thus predict the perceptual decision with ~90% 
accuracy. We also found that the frequency of the saccadic eye move-
ment during free viewing, which does not require any active interpre-
tation, was correlated with the period of perceptual switch, implying 
that dynamics of eye movement reflects the characteristic of bistable 
perception. Next, to isolate the effect of eye movement from inten-
tion, we first asked the subjects to have a strong intention to switch 
(or stay) their perceived state during experiments. With such manipu-
lations, we found that both perceptual decision and eye movements 
were significantly altered, compared to the case of non-intended tri-
als. We then controlled visual stimuli so that the subject’s eye move-
ment follows the traces of intention-controlled trials, without actual 
intention to change their behavior. Under this condition, even though 
subjects’ eye movements mimic those of the intended trial, perceptual 
decisions were not significantly biased. This suggests that eye move-
ments alone cannot bias perceptual behavior in bistable perception. 
Taken together, the results suggest that 1) rhythmic eye movement 
correlates with active visual perception, 2) preceding eye gaze trajec-
tory predicts individual decision but 3) eye movement may not solely 
induce perceptual decision. These results collectively suggest a rela-
tionship between eye movement control, top-down intention, and 
active perception.

Fig. 1 Eye gaze reflecting perceptual decisions A Three bistable 
perception tasks with eye‑tracking B Gaze and perceptual response C 
Gaze trajectories before decision D Correlation between the period of 
gaze oscillation and perceptual alternation. E Gaze position can pre‑
dict perception F Intention alters perceptual behavior but replicated 
eye gaze without intention does not alter perception
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Both the brain and recent deep neural networks (DNNs) can success-
fully perform visual object recognition at similar levels. However, to 
acquire this function, DNNs generally require a large amount of train-
ing with a huge number of labeled data, whereas the brain does not 
appear to need such artificially labeled images to learn. Moreover, 
human infants, who certainly never experienced any training, are 
still able to classify unfamiliar object categories [1]. The mechanism 
by which the immature brain can categorize visual objects without 
any supervisory feedback remains elusive. Here, we suggest a bio-
logically plausible circuit model that can correctly categorize natu-
ral images without any supervision. Instead of supervised signals, 
which are believed to be essential to train the system, we focused on 
the temporal continuity of the natural scene. Natural visual stimuli 
to which infants are exposed repeatedly have temporal continuity 
[2], unlike the dataset of images used to train artificial DNNs. In this 
regard, to detect the discontinuity in a natural scene that is potentially 
equivalent to the border of the image cluster of the same object, we 
designed a ‘differential unit’ (Fig. 1, DU). The DU estimates the differ-
ence between the current input and delayed input before seconds, 
and thereby can detect the temporal difference of visual input in real-
time. In addition to the DU, to memorize the representation of visual 
objects, we also designed a ‘readout network’ (Fig. 1, k-Winners-Take-
All network and readout), which is linked to the filtered pool5 units 
of randomized AlexNet. The randomized AlexNet corresponds to the 
early visual pathway of infants and functions as an image abstractor, 
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where its weights are randomly initialized and fixed. The connection 
weights between the readout and pool5 units can be updated by Heb-
bian plasticity, but because the DU continuously inhibits the readout, 
the plasticity was blocked initially. However, when the temporal dif-
ference of response becomes below a certain threshold (which means 
that the same object was consistently detected), the DU stops the inhi-
bition, and connections between the ensemble of pool5 units (highly 
activated for that object) and the readout are strengthened. During 
the test session, we can identify the category of the given test images 
by simply choosing the readout that shows the highest response. To 
validate the model performance, we made a sequence of images by 
sorting the CIFAR-10 dataset by categories, which mimics the tem-
poral continuity of the natural scene. The model was trained by the 
designed image sequence, and tested by a separate validation set. As 
a result, we achieved 35% classification accuracy, which is significantly 
higher than the chance level of 10%. Based on the present findings, 
we suggest a biologically-plausible mechanism of object categoriza-
tion with no supervision, and we believe that our model can explain 
how the visual function arises in the early stages of the brain without 
supervised learning.

Fig. 1 The overall structure of the model. The model consists of the 
randomly initialized AlexNet (image abstractor), temporal kernel, dif‑
ferential unit (DU), k‑Winner‑Take‑All network and readout
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The Morris-Lecar model (MLM) [1] is a classical biophysical model of 
spike generation by the neuron, which takes into account dynam-
ics of voltage-dependent ion channels and realistically describes 
the spike waveform. MLM predict that upon stimulation of the neu-
ron with sufficiently large constant depolarizing current Istim, there 
exists a finite interval of Istim values where periodic spike generation 
occurs [2-4]. Numerical simulations show that the cessation of peri-
odic generation of spikes above the upper boundary of this inter-
val occurs through damping of the spike amplitude, arising with a 
delay inversely proportional to Istim value. In particular, the damped 
dynamics can be divided into four successive stages: 1) minor primary 
damping, which reflects a typical transient to stationary state, 2) pla-
teau of nearly undamped periodic oscillations, which determines the 

aforementioned delay, 3) strong damping, and 4) reaching a constant 
asymptotic value. As the last two stages resemble the well-known 
exponentially-damped harmonic oscillations, we tackled to find an 
analytical description for these stages [5].
First, we have linearized the MLM equations at the vicinity of the 
stationary asymptotic value of the neuronal potential. The resulting 
equations have been then reduced to an inhomogeneous Volterra 
integral equation of the 2nd kind. In turn, the latter has been trans-
formed into an ordinary differential equation of the second order with 
a time-dependent coefficient at the first-order derivative. As this time 
dependence was just an exponential decay, we considered its asymp-
totic value and analytically solved the final equation. In order to verify 
the analytical solution found, we have compared it with the numeri-
cal solution obtained using the standard MATLAB tools for systems of 
ordinary differential equations.
We have accurately shown that the linearized system of equations of 
the MLM can be reduced to a standard equation of damped harmonic 
oscillations for the neuron potential. Since all coefficients of this equa-
tion are explicitly expressed through the parameters of the original 
MLM, one can directly (i.e. without any fitting) compare the numeri-
cal and analytical solutions for dynamics of the neuron potential at the 
stages of strong damping and reaching a constant asymptotic value. 
The results allow a quantitative study of the applicability boundary of 
linear stability analysis that implies exponential damping.
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Spontaneous focal synchronization of collective spiking followed by 
induced traveling waves can occur in the cortical sheet and in cul-
tured planar neuronal networks. In the first case, it is focal epilepsy 
leading to a seizure and, in the second, it is synchronization that origi-
nates from one of a few steady nucleation sites resulting in a so-called 
population spike. Assuming functional similarity between the nuclea-
tion sites and non-lesional epileptic foci, the major unsolved issue in 
both cases is that whether activation of the focus occurs inside it (i.e., 
autonomously relative to the interaction with surrounding neuronal 
tissue) or from the outside. The “internal” scenario implies that the 
focus spatially contains some pacemakers. In turn, several experimen-
tal findings indicate a complex spatially non-local activation of epilep-
tic focus [1-4]. In modeling studies, we address the issue in order to 
verify the validity of this conclusion.
We use generative mechanistic model of planar neuronal network 
exhibiting irregular spontaneous population spikes, which emerge 
from a few spontaneously-formed stationary nucleation sites. The 
model consists of leaky integrate-and-fire neurons connected by syn-
apses with short-term plasticity, forming spatially-dependent “small-
world” network topology, where synaptic connection probability 
decreases exponentially with the distance between neurons. Spiking 
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activity in the network occurs due to some fraction of pacemaker neu-
rons. Importantly, the spatial configuration of pacemaker neurons 
was artificially engineered in order to resolve the above-mentioned 
problem: all pacemakers were placed within a circular central spot 
so that their spatial density was equal to the average density of neu-
rons. Leaving the global dynamic regime unaffected, this spatial con-
figuration crucially helps to clarify the activation process, visualizing of 
which is hindered at spatially-uniform pacemaker distribution.
Extensive simulations [5] have shown that steady and spontaneous 
nucleation sites of population spikes (i) can emerge in spatial regions, 
which are far away from the spot with pacemakers and (ii) can be acti-
vated even without direct links from pacemakers. The results dem-
onstrate the principle possibility of external, or remote, activation of 
a focal source of epileptic activity in the brain and favor the interpre-
tation in the above-mentioned experimental findings. The suggested 
deterministic model provides the means to study this network phe-
nomenon systematically and reproducibly.
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Controllability of the brain system has been studied in the domain of 
network science. However, most of studies on the controllability of 
the brain have not considered the nonlinear nature of the brain. In the 
present study, we suggest a computational framework to control the 
brain system with a consideration of nonlinear brain dynamics. Our 
framework is based on a hypothesis that a brain with a disease has 
specific brain dynamics different from that of a normal brain and can 
be analyzed by using an energy landscape analysis. For both normal 
and abnormal brain systems, multistable activation states (attractors) 
and transition rates were investigated by performing an energy land-
scape analysis based on a pairwise maximum entropy model. In the 
current virtual framework, we simulated how dynamics of a disease 
brain can be changed to that of the normal brain by external treat-
ments under biological constrains. By doing this, we tried to find a 
strategy for optimal treatments that control the target brain to gen-
erate brain state dynamics similar to that of the healthy brain. We 
assumed that the target brain changes not only at a treated region or 
treated connectivity, but also it induces changes in the neighbors that 
the treated region interacts. By allowing changes in the neighborhood 
in response to the treatment to a target region, we showed an opti-
mal controllability that takes into account of the nonlinear responses 
of the brain after treatment. We applied the current framework to 
find a virtually optimal way of perturbing the network system of the 
schizophrenia to induced healthy state dynamics. We expect that this 
computational framework for controllability would help treatment 
planning for the nonlinear brain system, after empirical evaluation and 
validation.
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The role of the forebrain of the zebra fish has not been clearly under-
stood particularly during the opto-motor behaviors. Most studies 
on the opto-motor behavior have been researched in terms of inter-
actions between the retina and the tectum. However, the role of 
the forebrain has not been fully explored. In the current study, we 
explored how the forebrain works during the zebra’s opto-moto 
behavior by estimating the context-dependent effective connectivity 
between the tectum and the forebrain using dynamic causal model-
ling (DCM) of the calcium signals. We hypothesized that the forebrain 
plays a role in modulating the tectum as top-down process. For the 
six lavar zebra fish (elavl3: H2B-GCaMP6f, 5~7dpf) during opto-motor 
behavior [1], we applied principal component analysis to the calcium 
imaging time series to identify neural modes that respond synchro-
nously to the optic stimulus. As a result, three neural modes at the 
forebrain and two (left/right) neural modes at the tectum were iden-
tified and used to construct a functional circuitry for the zebra fish. 
A DCM with a convolution-based dynamic neural state model and a 
dynamic calcium ion concentration model for calcium signals [2] was 
applied to fit the time series of the five modes. Onsets of both stimuli 
were assigned to the bilateral tectum to derive the system. The left 
and right stimuli were used independently as two modulation inputs 
to effective connectivity. Using DCM, we inverted effective connec-
tivity among the fully connected nodes. For a group level analysis of 
the direction-dependent effective connectivity, we used parametric 
empirical Bayesian analysis of the individual effective connectivity. 
The neurons related to opto-moto behaviors in the forebrain were 
not highly lateralized compared to those at the tectum. The left and 
right optic stimulation modulated the effective connectivity from the 
forebrain to the tectum in a direction dependent way. When respond-
ing to a directional stimulus, the mode in the tectum suppresses the 
contra-lateral neural mode. Our computational modelling results sug-
gest the active involvement of the forebrain in modulating top-down 
effective connectivity for opto-motor behaviors.
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Multi-photon calcium imaging (CaI) makes it possible to analyze dis-
tributed neural activity in the neuronal level. Most studies using CaI 
have analyzed the neural system in terms of functional connectivity, 
i.e., temporal synchrony among nodes, which lacks information on the 
asymmetric interactions, called effective connectivity. Recent compu-
tational modelling techniques have been introduced to infer effective 
connectivity among neural populations using dynamic causal mod-
elling (DCM) [1,2]. These studies have used a firing-rate based neural 
state dynamic model, combined with a calcium ion kinetic model in 
the neural population level, which is not appropriate to model neu-
ral interactions among individual neurons. In the single neuron level, 
a quadratic gaussian integrate-and-fire neural state model (QGIF) in 
combination with a calcium kinetic equation was proposed to fit CaI 
at a single neuron [3]. To make it applicable to exploring interactions 
among multiple neurons, we extended the previous model of [3] to a 
general circuit with multi-nodes in the DCM framework. We utilized 
a QGIF model for a single neuronal activity, with conductance based 
neural connectivity (synaptic conductances are approximated with 
alpha function), and a CaI state dynamic equation. Bayesian model 
optimization is applied to find optimal model parameters (e.g., effec-
tive connectivity) using a variational expectation maximization 
scheme implemented in the DCM. We confirmed the reliability of the 
proposed modeling and model inversion process using simulation 
experiments. We applied the proposed method to explore effective 
connectivity among neural cells from the neural activity observed in 
CaI at the rodent’s barrel cortex during successful and failed whisk-
ing. The results suggest the plausibility of the proposed method in the 
analysis of neural interactions observed in the CaI in the neuron level.
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Brain computer interfaces (BCI) are amongst the exhilarating applica-
tions of computational neuroscience and have been increasingly the 
focus of research around the world. Currently, abundant effort in BCI 
research is devoted to offline analysis of recorded data to achieve 
higher accuracies in decoding [1]. Although this has led to the devel-
opment of new methods and algorithms, the problem of online 
decoding of subject intentions remains a challenging one [2]. One of 
the restrictive steps of BCI design is the need for complex preprocess-
ing steps required to extract features from the recorded signals to be 
used by the classifiers to distinguish intentions of the subject [1]. The 
other hindering factor is the variability of the recorded signals. EEG 
recordings use between 20-128 electrodes at sampling rates of 250 up 
to 1KHz for BCI applications. This data is recorded from the whole brain 
and in/between subject(s) variability intensifies the problem even fur-
ther. This problem is currently mitigated through manual and careful 
feature engineering steps and tweaking of classifier parameters.

We are proposing to reduce the complexity of the architecture by 1) 
using only raw recorded signals with no preprocessing, 2) reducing 
the number of channels used for classification and 3) a single convo-
lutional neural network (CNN) to be used for classification amongst all 
subjects. We have limited our preliminary results to EEG signal analy-
sis of a left/right/rest motor imagery task as this is the most popular 
signal used in BCI applications. We have previously shown [3] that our 
proposed CNN can reliably decode intentions utilizing same archi-
tecture for multiple subjects. Here, we are extending our method to 
4 new subjects and show that drastically reducing channels has insig-
nificant effect on decoding results. We have also expanded our decod-
ing results to 3-class classification and obtained the same decoding 
accuracies by only using a few channels for classification. Our results 
are summarized in Table 1.

Table 1 Summary of results

2‑Class 3‑Class

# of electrodes all 10 2 all 10 3

S1 (64) 84 84 72 60 60 58

S2 (64) 89 90 81 68 66 60

S3 (38) 90 88 80 73 74 70

S4 (22) 86 86 78 82 80 75

Our results show that drastically reducing the complexity of data, 
can still yield comparable performance while using a single decoder 
for multiple subjects. Since the choice of the channels for decoding is 
based on the mental task, one can envision the use of these methods 
to create practical, reliable online BCI solutions. Also using raw data 
for analysis and the use of a single architecture to classify all subjects 
allows for a hardware to be designed to even further improves effi-
ciency of the system.
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In computational neuroscience there is a great demand to incorporate 
more molecular and cellular level detail into mathematical models of 
neuronal networks. This is deemed necessary in order to recreate phe-
nomena such as learning, memory and behavior in silico. However, 
numerical simulation of such multi-scale models is resource inten-
sive, if not impossible. This problem has been partially overcome by 
using simplified synapse, neuron and population models that replace 
biological variables and mechanisms from the models with phenom-
enological descriptions. While useful, this approach causes informa-
tion loss that might diminish the value of such models, as the variables 
might lack biological meaning.
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In this study we present approximation as an alternative to simplifica-
tion. By using mathematical model order reduction (MOR) methods 
approximations can be derived algorithmically. Here we compute 
reduced models with the Discrete Empirical Interpolation Method 
(DEIM) [1] algorithm along with its advanced variants. The appeal of 
these methods is that there is no need to linearize the model, make 
assumptions of the system behavior or discard any variables. A 
reduced model can be simulated efficiently in a low-dimensional sub-
space where a smaller number of equations needs to be solved. An 
approximation of the original high-dimensional model can be recon-
structed at any time. The acceleration in simulation time gained this 
way requires no special hardware and can be readily implemented in 
any programming language.
We discuss results from approximating three nonlinear systems; 
chemical reactions in the synapse, a compartmental neuronal net-
work and a multi-dimensional mean-field model [2-4]. We have made 
the code to approximate the mean-field model open source [https://
github.com/Mikkolehtimaki/neuro-mor]. We demonstrate the value 
of reduced models in computational neuroscience and explain the 
pros and cons of several different reduction methods with regards to 
the above models. Especially implementation of mathematical model 
order reduction algorithms in neuronal simulators and using reduced 
models in neuromorphic hardware are potential applications of these 
methods for enabling multi-scale simulations of brain activity.
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Finely-timed spike relationships provide knowledge of putative mono-
synaptic connections in populations of neurons. Recent experiments 
involving hippocampal in vivo recordings were able to demonstrate 
such a relationship by means of the cross-correlation function (CCF) 
[1,2]. A sharp peak within a few milliseconds in the CCF indicates the 
presence of a connection. Yet, neurons that are not monosynaptically 
connected can emit spikes within some short temporal distance as a 
result of network co-modulation [3], usually in the form of background 
noise. In general, there is an agreement that CCFs are shaped by either 
the connectivity, synaptic properties, or background activity [4]. How-
ever, it remains unclear whether and how the postsynaptic intrinsic 
neuronal properties such as the ionic currents’ nonlinearities and time 
constants shape the CCFs between pre- and postsynaptic neurons. 

The presence of presynaptic-dependent postsynaptic signatures may 
serve to differentiate between correlation and causation.
We address these issues by combining biophysical modeling, numeri-
cal simulations and dynamical systems tools. We extend the frame-
work developed in [5] to describe an ultra-precise monosynaptic 
connection by including ionic currents with representative dynamics. 
The model consists of two neurons receiving uncorrelated noise where 
the presynaptic neuron sends a fixed number of synaptic events to the 
postsynaptic neuron. CCF is computed as an average over a number 
of trials. We consider a number of scenarios corresponding to differ-
ent levels of the ionic currents, their nonlinearities and effective time 
constants.
Our results show the emergence of an additional slower and wider 
temporal relationship, after the sharp peak in the CCF. This relation-
ship depends on the dynamic properties present in the postsynaptic 
neuron model (ionic currents) in the subthreshold regime. Upon a syn-
aptic event, if the neuron is not on the verge of a spike, it will increase 
its voltage following some dynamics, which depends particularly on 
the effective time constant, and which will be reflected in the CCF. 
This temporal relationship may not be clearly observed in experi-
ments due to a high signal-to-noise ratio and is not capturing external 
modulation effects. We explain this effect using a phase-plane descrip-
tion where we capture the spike-initiation nonlinearity in terms of 
nullclines and connect it to the CCF.
We expect that these results will help the identification of monosyn-
aptic connections between different neuron types, in particular, those 
connections among neurons from different classes.
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Phase transitions are often used to describe pathological brain state 
transitions observed in neurological diseases such as epilepsy. Typi-
cally, the study of the dynamics of neurons that are nonlinearly cou-
pled and have complex network structures is done via large scale 
numerical simulations, which are mathematically intractable. Other-
wise, analysis is performed where the network structure is averaged 
over and made spatially homogeneous. For a networked nonlinear 
dynamical system, phase transitions or bifurcations are computed via 
changes in the local stability around the fixed points. However, in such 
a system it is very difficult to compute the fixed points as the dimen-
sionality of the system becomes large due to nested nonlinearities. 
We know from numerical simulations that the system becomes ‘cha-
otic’ [1] as the order parameter (variance of the connectivity matrix) is 
increased and that microscopically this phase transition corresponds 
to an exponential increase in the number of fixed points [2]. This 
phase transition has also been computed for heterogeneous network 
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structures such as Dale’s law [3]. However, it is very difficult to numeri-
cally verify these results. To quantify the change in network dynam-
ics, we compute the entropy, a quantity which describes the number 
of states or information in a system. We show in this paper that the 
Network entropy (NE), a term derived from Shannon Entropy, can be 
used as a numerical indicator of a change in the number of equilib-
ria. Hence, it is also a numerical method to estimate the change in sta-
bility of a network. It is developed via a Symbolic Dynamic approach 
based on probability distributions of the system state, which provides 
a measure of the number of states of the system.
In this paper, a first order neural model with a time-constant and 
instantaneous synapses is networked. The network connectivities are 
described by a random matrix with mean and variance. Dale’s law can be 
integrated into the model by changing the connectivity matrix. We esti-
mate the stability of a network via measuring the entropy of the network 
states using numerical simulations with different realisations of the con-
nectivity matrix. The result demonstrates that the transition points from 
the analytical results for each case coincided with the measured NEs. It 
suggests the NEs can be used in numerical simulations to estimate the 
changes in the number of the fixed points, a.k.a. the phase transitions. 
This work provides a novel approach to estimate the network states and 
phase transitions via numerical simulations. Future works are needed 
to discover the mathematical relationship between the fixed points 
and entropy. Furthermore, it is interesting to use entropy to predict the 
dynamical behaviours of a system in an early stage. The discovery can be 
used to understand the brain state transitions and for the early diagnosis 
of neurological diseases, such as epilepsy.
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This work focuses on the dynamics of large networks of neurons, and 
particularly aims to study the effects of brain structures and func-
tions on state transitions, such as those found in epilepsy. We derive 
a measure of synchronization based on network structures to identify 
a state change in the system, specifically, the state change between a 
non-seizure state and a seizure state.
Currently, the modelling framework in theoretical neuroscience focuses 
on using dynamical systems analysis of neural field models, and numeri-
cal simulations to disentangle the influences of structure and function 
on brain dynamics. However, these models and methods use continu-
ous spatial averages of network connectivity. In this work, we are par-
ticularly interested in the spatial structures and functions that induce 
a state transition from a state of intrinsically fluctuating and complex 
activity (non-seizure state), to a state of synchronisation and simplistic 
activity (seizure state). Using a first order neural network model with a 
discrete spatial field given by a coupling matrix, a set of self-consistent 
equations that describe the nature of the activity of network structures 
with populations of neurons, can be derived using dynamical mean field 
theory [1]. This set of self-consistent equations can be solved semi-ana-
lytically, and we use these solutions to derive a measure of synchronisa-
tion and hence, excitability: the coefficient of variation (CV). The CV is 
a common measure of synchrony used in theoretical neuroscience [2], 
but it has also been recently used in the analysis of animal model data 
[3]. We use the derived expression of CV to show that under certain 

network structure and function conditions there exists a transition from 
a state of intrinsic fluctuating activity to a state of synchronization and 
hyper-excitation. This state transition is analogous to the transition from 
a non-seizure to a seizure state. Furthermore, we calculate the CV for 
numerically simulated time series outputs of the model used, to com-
pare and verify our analytical expression of CV.
This measure of CV defined in this work is dependent on the network 
structures that are thought to be instrumental in initiating seizure 
transitions in the brain. As seizure events are typically due to patho-
logical brain structures and function, we have used the CV as a theo-
retical measure of whether particular brain structures are susceptible 
to epileptic state transitions in the brain.
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Studying the dynamics of a neuron network has been a challenge to 
computational Neuroscience [1,2]. Doing so in a neuron network with 
topographic organization is even more demanding due to the bound-
ary condition, i.e. the interruption of the topographic pattern of con-
nection in network edges, which changes network boundary activity. 
The neurons on the edge of the network present underside behav-
ior due to a lack (or excess) of connections and a torus solution may 
introduce undesired oscillations. Facing such strain, this work presents 
a method based on mean field potential (i.e. first and second-order 
statistics of neuron network dynamics) to sustain neuron boundary 
activity – such as neurons on the core of the layer network activity – 
without introducing an oscillation component.
This method is based on the rescaling presented on CNS previous 
works and consists of:
Step 1: Calculating the scale factor k_i for any neuron i in network as 
follows: for a neuron i, k_i is given by the average of total number of 
connections received divided by the average of total number of con-
nections that would be received IF the network had no boundaries – 
was a set of infinity neurons;
Step 2: Increasing the synaptic weights by dividing them by the square 
root of the scale factor;
Step 3: Providing each cell with a DC input current with a value corre-
sponding to the total input lost due to network edge (boundary cut).
In essence, the boundary correction method numerically estimates 
the normalized density function of connection on the first step, then 
weights each neuron connection based on this density, and finally bal-
ances the threshold to grant the neuron/layer activity. This method 
was successfully applied on consolidated models such as Brunel [1] 
and PD [2], among others.
Firstly the models were reimplemented and the results were repro-
duced. Secondly, a topographic patter of connection was introduced 
to the models including the consideration that neurons near each 
other have a higher probability of connection then those further from 
each other. A different activity rises on both network boundary neu-
rons and sometimes on core neurons. This method was applied and 
the activities were driven back to the original ones.
The algorithmic of rescaling method can be found in any one of exam-
ple-application available in GitHub (https://github.com/ceciliaromaro/



Page 94 of 123 BMC Neurosci 2020, 21(Suppl 1):54

recoup-the-first-and-second-order-statistics-of-neuron-network-
dynamics)
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A physiologically-based model of arousal dynamics is extended to 
incorporate the spectral effects of light (as an input to the model) on 
the circadian rhythms, melatonin dynamics and subjective sleepi-
ness. Doing this, photopic illuminance in the model is replaced with 
melanopic irradiance which, reflects the role of melanopsin, a pho-
topigment expressed in ipRGCs (intrinsically photosensitive retinal 
ganglion cells). Melanopsin-expressing ipRGCs are the primary cells 
in the retina mediating the effect of light to different non-visual 
related brain regions. Melanopsins are short wavelength sensitive 
and their main target is the circadian clock located in suprachiasmatic 
nuclei (SCN), with output signals regulating sleep/wake cycles, alert-
ness, and hormone secretion. The melanopic irradiance is thus used 
as the light input to the model, which affects the dynamic circadian 
oscillator, melatonin (hormone produced in pineal gland) profile 
and sleepiness. The dynamic circadian oscillator is extended accord-
ing to the melanopic irradiance definition and tested against experi-
mental circadian phase dose- and phase-response data. The function 
which demonstrates melatonin suppression in presence of light is 
re-calibrated against melatonin dose-response data for monochro-
matic and polychromatic light sources. A new light-dependent term 
is then introduced into the homeostatic weight component of sub-
jective sleepiness to represent the direct effect of light. The new term 
responds dynamically to light and is calibrated against experimental 
data with different light spectrums. The model predictions are com-
pared to a total of 14 experimental studies containing 26 data sets for 
14 different spectral light profiles. The extended melanopic model 
shows an average reduction in prediction error relative to the model 
used prior. Overall, incorporating melanopic irradiance allows simula-
tion of wavelength-dependent responses to light observed in experi-
ments and explains most of the observations. Models demonstrating 
the effect of light on circadian dynamics, sleep, and sleepiness need to 
use ipRGC-influenced responses as a non-visual measure of light; e.g., 
melanopic irradiance, instead of the traditionally used illuminance 
based on the visual system.
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Spikes are usually initiated at the axon initial segment (AIS), the most 
excitable site of a neuron. Yet other regions of the neuron are also 
excitable; indeed, axonal excitability is critical for spike propagation. 
While there are many studies on somatic and dendritic excitability, 
axon excitability has yet to be thoroughly investigated in most neurons 
because the small size of the axon precludes most experiments. There 
are some recordings from the cut end of axons (i.e. blebs) suggesting 
that axons do not spike repetitively during sustained depolarization 
but, instead, spike only at the onset of abrupt depolarization, consist-
ent with class 3 excitability. However, it remains unclear whether tran-
sient spiking accurately reflects axon excitability or is an artifact of axon 
damage. Using a novel optogenetic approach, recent experiments 
from our lab have shown that axon does indeed have class 3 excitabil-
ity. Although the optogenetic method is less invasive than bleb record-
ings, it still has some limitations that necessitated simulations in order 
to definitively interpret the experimental results. I have built a multi-
compartment model of a pyramidal neuron with a detailed myelinated 
axon that reproduces the observed experimental data collected in our 
lab. The model has helped us confirm the site of spike initiation based 
on the shape (kinkiness) of spikes recorded in the soma. Simulations 
also confirmed that even when targeting the axon for photostimu-
lation, a small degree of stray light can hit the dendrites and evoked 
spikes in the AIS. The results ultimately confirm that unlike spike initia-
tion in the AIS, which relies on class 1 excitability, spike propagation in 
the axon occurs on the basis of class 3 excitability (Fig. 1).

Fig. 1 A Experimental results. B Simulation results. Current injec‑
tion and photostimulation of the soma evoked repetitive spiking, 
consistent with class 1 excitability. However, current injection and 
photostimulation of the axon evoked a single spike at stimulus onset, 
consistent with class 3 excitability
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Neuronal oscillations are ubiquitous in the brain and emerge from the 
combined activity of the participating neurons (or nodes), the connec-
tivity and the network topology. Recent neurotechnological advances 
have made it possible to interrogate neuronal circuits by perturbing 
one or more of its nodes. The response to periodic inputs has been 
used as a tool to identify the oscillatory properties of circuits and 
the flow of information in networks. However, a general theory that 
explains the underlying mechanisms and allows to make predictions is 
lacking beyond the single neuron level.
Threshold-linear network (TLN) models describe the activity of con-
nected nodes where the contribution of the connectivity terms is lin-
ear above some threshold value (typically zero), while the network is 
disconnected below it. In their simplest description, the dynamics of 
the individual nodes are one-dimensional and linear. When the nodes 
in the network are neurons or neuronal populations, their activity can 
be interpreted as the firing rate, and therefore the TLNs represent fir-
ing rate models [1].
Competitive threshold-linear networks (CTLNs) are a class of TLNs 
where the connectivity weights are all negative and there are no self-
connections [2,3]. Inhibitory networks arise in many neuronal systems 
and have been shown to underlie the generation of rhythmic activity 
in cognition and motor behavior [4,5]. Despite their simplicity, TLNs 
and CTLNs produce complex behavior including multistability, peri-
odic, quasi-periodic and chaotic solutions [2,3,6].
In this work, we consider CTLNs with three or more nodes and cyclic 
symmetry in which oscillatory solutions are observed. We first assume 
that an external oscillatory input is added to one of the nodes and, by 
defining a Poincaré map, we numerically study the response proper-
ties of the CTLN networks. We determine the ranges of input ampli-
tude and frequency in which the CTLN is able to follow the input 
(1:1 entrainment). For this we define local and global entrainment 
measures that convey different information. We then study how the 
entrainment properties of the CTLNs is affected by changes in (i) the 
time scale of each node, (ii) the number of nodes in the network, and 
(iii) the strength of the inhibitory connections. Finally, we extend our 
results to include other entrainment scenarios (e.g., 2:1) and other net-
work topologies.
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Orientation selectivity (OS) is a key feature of neurons in the mam-
malian primary visual cortex. In rodents and rabbits, these neurons 
are randomly distributed across V1 while in cats and all primates, cells 
with similar OS preferences cluster together into cortical columns. 
Could it be that mammals with smaller primary visual cortices, rela-
tively undifferentiated cortices or poor-resolution vision are restricted 
to having salt-and-pepper OS maps? This is not true, because in gray 
squirrel, a highly visual rodent with good spatial resolution and a V1 
that is highly differentiated, no clear functional organisation of OS 
preferences exists in V1. We do not know yet why the maps coding OS 
preferences are so radically different in rodents/rabbits compared to 
the clear similarities across other mammalian visual systems.
Several models of cortical OS maps have been created incorporat-
ing Hebbian plasticity, intracortical interactions and the properties of 
growing axons. But these models mainly focus on maps arising from 
intracortical interactions. Here we focus on two factors contributing to 
map formation: the topography of retina and phylogeny. One promis-
ing method of predicting whether or not a species has pinwheel maps 
is to look at the central-to-peripheral ratio (CP ratio) of retinal cell den-
sity. We have found that animals with high CP ratios (>7) have orien-
tation columns while those with low CP ratios (<4) have random OS 
maps. We also investigated whether the development of OS maps is 
influenced by a genetic factor related to phylogeny. A problem with 
the existing literature is that OS maps have been investigated in only 
a small subset of mammals. We suggest that the rodents and rabbits 
might have lost the genetic capacity to develop OS maps, but that the 
mammalian line may have originally evolved with the genetic capacity 
to create orientation columns.
We studied a highly visual marsupial, the Tammar wallaby (Macropus 
Eugenii), which represents a phylogenetically distinct branch of mam-
mals for which the orientation map structure is unknown. The topog-
raphy of RCC’s in wallabies is very similar to cats and primates. They 
have a high density of RGC in the retinal specialization, indicated by 
a high CP ratio of 20. If orientation columns are the mammalian norm 
and if species with high CP ratios have OS maps, we would predict the 
existence of orientation columns in wallaby cortex. We used intrin-
sic optical imaging and multi-channel electrophysiology methods to 
examine the functional organization of the wallaby cortex. We found 
robust OS in a high proportion of cells in the primary visual cortex and 
clear orientation columns similar to those found in cats and primates 
but with bias towards vertical and horizontal preferences, suggesting 
lifestyle-driven variations. The findings suggest that orientation col-
umns are the norm and it might be that the rodents and rabbits are 
unusual in terms of mammalian cortical architecture.
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Background: Large-scale brain networks [1] are characterized by 
global and local functional and structural metrics [2,3] that have fur-
thered our understanding of brain function [4]. These metrics are 
based on the idea that information in a network flows along the short-
est paths, either topological [5] or geometrical [6]. In this work, we 
propose two functional network connectivity measures based on the 
physical concept of flow [7,8], encompassing both geometrical and 
temporal aspects of neural activity. We term the first measure modal 
fastest flows, a time-averaged representation of the (fastest) flow lines 
revealing portions of physical space along which a particle (e.g., wave 
packet, information, spike) would travel at the maximal speed possi-
ble. The second measure, fastest neural routes, refers to a dense matrix 
where the weights are the average transit time a packet of information 
would take to travel from region ‘j’ to region ‘i’.
Method: (generation of fastest flow lines): We use our neural-flows 
toolbox [8,9] to derive flow fields from source-reconstructed MEG 
data. Fastest flow lines are then generated in 3 steps. First, we esti-
mate flow vectors halfway between pairs of regions, transforming flow 
vectors into an edge property rather than a nodal property. Second, 
we trace a flow line starting from j, following the fastest flow to one 
of its nearest neighbours within a small spherical region. This process 
is done iteratively until reaching region i, and repeated for every pos-
sible region-pairwise combination. Flow lines are the sequences of 
maximal instantaneous speeds. Third, we average the values of each 
flow line to produce a matrix of fastest flows between pairs of regions.
Results: (modal fastest flows and fastest neural routes): We time-aver-
aged the modal fastest flows (MFF), into a single matrix of conduction 
speeds. A comparison between functional connectivity derived from 
MEG timeseries and our MFF, indicates high similarity, quantified with 
the correlation matrix distance (cmd) [10] – 0 if matrices are equal, and 
1 if completely different – and in this case cmd = 0.18. Paths high-
lighted by flow lines are not necessarily the shortest (in physical dis-
tance). Thus, we combine MFF with pairwise distance metrics to derive 
the fastest neural routes of information flow: the euclidean distance 
between pairs of regions, and the flow line lengths. Distributions 
of transit times are presented in Figure 1. Our MFF matrix combined 
with the fibre length of structural connectome, can be used as a first 
approximation of heterogeneous time delays (s) in brain networks.

Fig. 1 Flows are estimated from source‑reconstructed MEG and 
defined at the sources. We then translate flows into edge propeties. 
Then, we derive the matrix of fastest flows (m/s), which strongly 
resembles traditional functional connectivity (Pearson’s correlation 
coefficients). To estimate the fastest routes (ms), we use different 
distance metrics
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Human brain function relies on the integration and coordination of 
neuronal activity on multiple scales. Several works have revealed that 
this is possible through spontaneous or evoked synchronization of 
activities of neural circuits in the brain, allowing spatially correlated 
patterns that propagate in time to emerge, known as brain waves [1]. 
These brain waves have been observed in empirical macroscopic and 
mesoscopic measurements [2,3] and computational brain network 
models [4], and have been shown to support various brain functions 
such as visual perception [5]. However, brain waves are rarely investi-
gated in resting-state experimental settings (i.e., without performing 
an explicit task).
Here, we investigate large-scale spatiotemporal brain waves in rest-
ing-state human magnetoencephalography (MEG), which is becoming 
a popular imaging modality due to its high spatial and temporal reso-
lution, enabling more accurate analysis of macroscopic brain waves. 
We use source reconstructed single-subject MEG data projected onto 
the cortical surface and then decompose the signal into various typi-
cal frequency bands from delta to gamma. We find that organized 
patterns of waves traveling in space and time exist in the resting-state 
data at the different frequency bands; an example of which is shown 
in the time snapshots of the alpha-filtered MEG signal in Figure 1A 
and the corresponding phase maps in Figure 1B. Using the methods 
in [3] for estimating instantaneous phase speeds, we find that, in gen-
eral, waves with higher temporal frequencies tend to propagate more 
rapidly (Fig. 1C). In addition, the speeds match those in the literature 
using other modalities (e.g., electrocorticography in [2]), suggesting 
the reliability of our analyses. In summary, our work shows that mac-
roscopic brain waves can be observed in resting-state MEG data even 
for a single subject, enabling the use of MEG alongside computational 
models in future investigations on how brain waves affect and relate 
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to large-scale brain networks and the emergence of cognition and 
behavior.

Fig. 1 A Spatiotemporal variation of MEG signal filtered at the alpha 
frequency band. B Spatiotemporal phase maps of the signal in panel 
A. C Kernel density distribution of wave propagation speeds at differ‑
ent frequency bands
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The brain consumes 20% of the body’s energy, 10 times more than 
predicted by its mass, which makes it highly sensitive to metabolic 
disturbances [1]. Asphyxia and epileptic seizures disrupt energy and 
oxygen availability in the brain, leading to pathological activity in 
the electroencephalogram (EEG) [2-4]. Modelling the bidirectional 
relationship between brain activity and energy resources is crucial to 
understand brain disorders where metabolic disturbances are impli-
cated. Most models of brain activity do not explicitly include meta-
bolic variables and so are unable to address dynamical constraints on 
energy resources. Here, we explore the roles of energy demand and 
energy supply in Hodgkin-Huxley neurons augmented with the energy 
resource dynamics of Na+/K+ pumps [4]. Using a small-scale network 
of excitatory and inhibitory neurons, we show that during high energy 
demand and low energy supply (extreme hypoxia) the model simu-
lates scale-free burst suppression with asymmetric longer-duration 
bursts (Fig. 1) – similar to empirical EEG from infants recovering from 
hypoxia. During normal energy demand and low-to-moderate energy 
supply the model generates several types of epileptic seizures (Fig. 1). 
We also show multiple mechanisms for seizure terminations depend-
ing on the magnitude of hypoxia. Seizure termination during low 
energy supply is due to depletion of local energy resources, while dur-
ing moderate energy supply ion (Na+& K+) imbalances terminate the 
seizure. This suggests that seizure termination due to lack of energy is 
a potential mechanism for postictal generalised EEG suppression. Our 
results unify burst suppression during hypoxia and epileptic seizures, 
and our modelling provides a general platform to study brain patholo-
gies linked with metabolic disturbances.

Fig. 1 Unification in a single model of pathological patterns seen 
during baby hypoxia and epileptic seizures. Middle: Phase transitions 
between the regimes of hypoxia, healthy continuous activity and 
epilepsy in the energy demand‑supply plane. Left: Model generated 
scale‑free burst suppression in hypoxia showing power law regimes 
with asymmetric burst shape. Right: Model generated epileptic 
seizures

References
1. Raichle ME. The brain’s dark energy. Science‑New York Then Washington‑. 

2006; 314(5803): 1249.



Page 98 of 123 BMC Neurosci 2020, 21(Suppl 1):54

2. Roberts JA, Iyer KK, Finnigan S, Vanhatalo S, Breakspear M. Scale‑free burst‑
ing in human cortex following hypoxia at birth. Journal of Neuroscience. 
2014; 34(19): 6557‑72.

3. Jirsa VK, Stacey WC, Quilichini PP, Ivanov AI, Bernard C. On the nature of 
seizure dynamics. Brain. 2014; 137(8): 2210‑30.

4. Wei Y, Ullah G, Ingram J, Schiff SJ. Oxygen and seizure dynamics: II. Compu‑
tational modeling. Journal of Neurophysiology. 2014; 112(2): 213‑23.

P174 
Modal‑polar representation of evoked response potentials
Rawan El‑Zghir1, Natasha  Gabay2, Peter  Robinson3

1The University of Sydney, Sydney, Australia; 2University of Sydney, School 
of Physics/Complex Systems, Sydney, Australia; 3The University of Sydney, 
School of Physics, Sydney, Australia
Correspondence: Rawan El‑Zghir (relz2030@uni.sydney.edu.au) 
BMC Neuroscience 2020, 21(Suppl 1):P174

Event related potentials (ERPs) have grabbed the attention of neuro-
scientists as significant voltage fluctuations of the brain after a visual, 
auditory, or sensory stimulation to the nervous system. ERPs and cor-
relation functions between signals at different points are key elements 
for investigating cognitive features and signal processing of the brain. 
To predict ERPs and correlation functions corresponding to distinct 
arousal states, we use a corticothalamic neural field theory which 
contains physiologically based parameters corresponding to different 
physical quantities. Within this framework, ERPs and correlation func-
tions depend on transcendental equations which are not analytically 
tractable. We approximate the temporal transfer function in terms 
of poles or resonances to derive formulas for the ERP and correlation 
functions which greatly simplify their analytic forms. The dominant 
resonances of the system correspond to slow frequency, alpha, and 
beta frequencies. Our calculations are based on contour integration 
via the Cauchy-residue theorem that allows us to find explicit expres-
sions for the ERP and correlation functions in terms of real and imagi-
nary parts of the residues and poles. For each arousal state, we isolate 
the different resonances of the system and find that the eyes-closed 
wake state is distinguished by a more prominent alpha resonance 
compared to the eyes-open wake state, as expected. We found that 
8 poles are sufficient to study the main dynamics of the system in the 
awake eyes-closed case (with around 3 % accuracy at the alpha peak) 
and 10 poles for the awake eyes-opened case (with around 2 % accu-
racy at the alpha peak). Similarly, we found that 8 poles are sufficient 
to reproduce ERPs corresponding to REM and S1 sleep stages, whereas 
only 6 poles are sufficient to study the dynamics of deeper sleep 
stages (slow wave sleep). This framework provides a physiologically-
based tool which predicts ERPs and correlations corresponding to a 
given transfer function.
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This study proposes a compact analytic model that describes the ori-
entation preference (OP) and ocular dominance (OD) maps of the pri-
mary visual cortex (V1) in hypercolumns, within which OP and OD are 
arranged as pinwheels and stripes. This model consists of two parts: 
(i) an OP operator, which uses a linear combination of weighted par-
tial derivatives to incorporate the small-scale local neuron sensitivity 
to the preferred orientation of the visual inputs; and (ii) a receptive 
field (RF) operator, which models the spatial RF structure of V1 sim-
ple cell, and it is derived from finding the neural activities at arbitrary 
location with a directional anisotropic modulation of projections from 
neighboring neurons at scales of a few tenths of a millimetre. The 
parameters of the proposed OP-OD map model are tuned to maximize 
the neural response at the desired OP, by matching the width of OP 

tuning curves with experimental results. Moreover, we find that the 
weights of the partial derivatives in OP operator do not significantly 
affect the OP selectivity of the neuron, whereas the overall envelope 
of the RF operator does. This agrees with Hubel and Wiesel’s predic-
tion [1], that orientation tuning width of V1 simple cell is related to the 
elongation of its RF.
The simplified OP-OD map is used to provide inputs to neural field 
theory (NFT) analysis of the approximate periodic OP-OD structure of 
V1. This is done by decomposing the OP-OD map representation in 
Fourier domain to generate a sparse set of Fourier coefficients. In addi-
tion, only the least number of coefficients, which are enough to pre-
serves the basic spatial arrangement of OP-OD map, are passed to NFT 
for investigating OP map related neural activities. The decomposition 
is also applied on more realistic OP maps generated from published 
models and its properties are discussed.
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Understanding the image features that are encoded by neurons 
throughout the hierarchy of visual cortical areas, particularly in areas 
higher in the hierarchy that have more complex response properties 
than in V1, is a challenging yet fundamental goal in visual neuroscience 
that is often achieved by visualising their pattern of responses [1]. Visu-
alising image features responsible for driving activity of individual units 
in a hierarchical system used for visual processing for the purposes of 
understanding the system’s functioning and information representation 
is also encountered in the study of deep convolutional neural networks.
In this study we train deep convolutional neural networks on spik-
ing data recorded from individual neurons in a mid-tier visual area 
(the dorsomedial area, DM) of the anaesthetised marmoset monkey 
whilst the animal is presented with changing patterns of spatiotem-
porally white noise [2]. We show that convolutional neural networks 
are capable of learning statistically significant input-output relation-
ships of these neurons and are thus able to perform classification of 
the spiking behaviour of the neuron given the stimuli. Furthermore, 
we applied deconvolutional techniques [3] used to visualise image 
features encoded by the convolutional model, thus allowing visualisa-
tion of input image features that are significant to determining spik-
ing behaviour, by proxy, of the neuron. A comparison between the 
features recovered using this technique and those recovered by tradi-
tional methods of analysis is presented.
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The neocortex is a brain region responsible for many higher-order 
functions. Sensory signals arriving from different areas are integrated 
into the neocortex. Oscillations at certain frequency bands are believed 
to coordinate activity in many areas [1]. Resonance refers to the abil-
ity of a system to generate an amplified response if the input oscilla-
tion is tuned in a specific frequency band. Recent work showed the 
role of inhibition on the control of theta (4-11 Hz) oscillations through 
resonance [2]. By using optogenetic activation interneurons (inhibitory) 
induced theta-band-limited spiking in pyramidal (excitatory) neurons. 
On the other side, direct optogenetic activation of pyramidal cells did 
not generate any resonance pattern. Although it is clear that this phe-
nomenon is neuron-specific, the network architecture responsible for 
the observed resonance and how this is related to the correct gating of 
the signals in such a network is currently unknown.
We address these issues by constructing a microcircuit biophysical mini-
mal model of the neocortex using the Hodgkin-Huxley formalism [3]. 
We consider two pyramidal cells (PYR), one parvalbumin-positive (PV) 
interneuron, and one somatostatin-expressing (SOM) interneuron. These 
cells are interconnected with exponential decaying event-driven syn-
apses where short-term depression/facilitation is present when appropri-
ate [4]. Every cell spontaneously fires while receiving a noise input process 
to simulate in vivo synaptic barrage [5]. We apply periodic currents with 
different frequencies into PV cells and evaluate the PYR firing rate.
By applying oscillatory activation in PV, theta-band resonance was 
induced in PYRs whereas direct activation of PYRs did not show reso-
nance, as experimentally reported. First, our results highlight the 
importance of post-inhibitory rebound in order to transfer signals 
from PV to PYR cells. Secondly, our results show that SOMs, adapta-
tion, depression, and facilitation regulate these resonance effects. We 
explain these effects in terms of additional frequency filters that are 
added to the system: adaptation and facilitation act as a high-pass 
filter while depression acts as a low-pass filter. SOM cells regulate the 
low frequencies since they connect to other neurons through facilita-
tion. In summary, when a current with a specific frequency is applied to 
the PV cells, this input signal is processed by a combination of filters, in 
the form of synapses and ionic currents, until a final output is produced 
from PYR cells. Our results highlight the importance of the combined 
activity of different neocortical cells in flexibly selecting inputs.
Acknowledgments: This work was supported by the National Science 
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The impedance of a neuron reflects the frequency-dependent input-
output relationships and is typically computed using sinusoidal 
inputs [1]. Oscillatory currents with gradually increasing frequencies 
or broadband noise have been used so the response is equally tested 
at all frequencies [2,3]. The ability of a neuron to amplify its response 
to specific non-zero input frequencies (resonance) has been ques-
tioned [4]. The question arises of whether the differences in the type 
of response (low- vs. band-pass) can be ascribed to the type of input 
and not necessarily to the details of the frequency content. More 
specifically, whether and how the use of different types of biophysi-
cally plausible periodic inputs (e.g., sinusoidal, synaptic-like) produce 
qualitatively different frequency-dependent input-output curves. We 
address these issues by injecting different types of inputs to biophysi-
cally plausible neuronal models including currents that are known to 
produce subthreshold (membrane potential) resonance in response 
to sinusoidal inputs. All input signals have the same amplitude and 
frequency content, but the frequencies may come in “different order” 
(e.g., monotonically increasing, randomly distributed or “shuffled”). 
The waveforms include sinusoidal, square-waves and synaptic-like 
functions. The impedance is computed either (i) as the ratio of the 
Fourier transforms (FT) of the voltage (V) and the current (I) or (ii) by 
the difference in the amplitude envelope responses normalized by the 
input amplitude.
We show that if the inputs involve abrupt changes (e.g., square-waves, 
synaptic-like), transients contribute to the output signal, which quali-
tatively modify the impedance profile. This can cause a mismatch 
between the impedance computed using (i) vs. (ii) given that the FT 
captures these transients as higher harmonics (Fig. 1). Therefore, a res-
onance observed in the response pattern may not be captured by the 
impedance using standard definitions and may require a more care-
ful analysis. Furthermore, when input frequencies are presented in a 
“shuffled” order, these transient effects produce responses with addi-
tional amplification to the higher frequency responses.

Fig. 1 Three different inputs applied to the linear model. From top 
to bottom: oscillatory input, synaptic input, and pulse input. First 
column: voltage series. Second column: voltage‑envelopes. Third 
column: Impedance profile computed from the Fourier transform 
method and from the envelope method. The figure shows how 
different the impedance profile can be even within the same input 
frequency content

Our results highlight both the flexibility and limitations of the imped-
ance profile measurements and demonstrate that resonance may be 
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present in neuronal systems, but are not apparent unless one uses 
the appropriate types of inputs and output metrics. Furthermore, our 
results question the ability of the standard impedance metric to make 
predictions for a more general class of inputs.
Acknowledgments: This work was supported by the National Science 
Foundation grant DMS-1608077 (HGR).
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Short-term plasticity (STP) is the process by which a synapse changes 
its efficacy in a history-dependent manner. It is hypothesized that 
STP’s information processing capabilities are connected to the way it 
implements temporal filtering in response to a sequence of presyn-
aptic events [1,2]. Depression (STD) and facilitation (STF) refer to the 
decrease and increase (e.g., Fig. 1A-B) of the efficacy in the synaptic 
response to a presynaptic spike as compared to the previous one. 
Sequences of presynaptic spikes create synaptic temporal filters (TFs) 
(e.g., Fig. 1). STD and STF lead to low-pass and high-pass (Figs. 1A- B) 
TFs. The presence of both STD and STF may lead to band-pass TFs 
(Fig. 1C). These synaptic TFs are communicated to the postsynaptic 
membrane potential. However, it is unknown whether the properties 
of the postsynaptic TFs (PSTFs) are inherited from the synaptic TFs or 
there is additional processing involved.
We report on the results of a computational study aimed at identifying 
the types of TFs and PSTFs in response to periodic presynaptic inputs 
and their dependence on the biophysical and dynamic properties of 
the participating components. We implement biophysically plausible 
(conductance-based) computational models of a synapse with STP [3], 
which drives a post-synaptic cell. We characterize the TFs that arise in 
the synapse. We determine the conditions under which synaptic low-, 
high- and band-pass filters arise in terms of the STP and synaptic time 
constants and the presynaptic input frequency. We also determine 
how the long-term time constants of the synaptic envelope responses 
(Fig. 1, black curves) depend on the STP time constants, which operate 
at the single event level. While the envelopes for the low- and high-
pass TFs have a single time constant that depends on depression or 
facilitation time constants, accordingly, the envelope for the band-
pass TF has three time constants that depends on the time constants 
for (i) depression only, (ii) facilitation only, and (iii) a combination of 
both. This is in contrast to the naïve expectation that there would be 
only two time constants involved (depression and facilitation only). 
We then extend our study to include the postsynaptic cell. We identify 
and characterize the different types of PSTFs in terms of the proper-
ties of the input TF and the properties of the receiving cell. We show 
that while under certain conditions, the PSTFs are qualitatively a copy 
of the synaptic TFs and share many of the TF’s dynamic properties, in 

other biophysical conditions, the PSTF exhibit a higher degree of com-
plexity, which involve a multiplicity of time scales (e.g., depression/
facilitation, synaptic, membrane, ionic currents, summation).

Fig. 1 Representative examples of TFs generated by STP. A low‑pass 
TF. B high‑pass TF. C band‑pass TF. Presynaptic input frequencies are 
50 Hz (Top) and 150 Hz (Bottom). Examples of pairwise depression 
and facilitation are shown in orange and purple. The black envelope 
curves represent the TFs

Overall, our results highlight the complexity of TFs and PSTFs, which 
reflects the complexity of the underlying interactions. This has impli-
cations for the understanding of network filters and the development 
of effective synaptic decoding algorithms.
Acknowledgments: Funded in part by a grant (DMS-1608077 to HGR) 
and a Graduate Research Fellowship (to YM) both from the NSF.
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The advent of experimental techniques that allow for the simultane-
ous recording of an unprecedented number of neurons has created a 
necessity for analysis tools that can handle very large datasets. Non-
equilibrium models from statistical mechanics such as the kinetic 
Ising model have established themselves as natural tools for study-
ing these types of complex networks and datasets. The applicability 
of the kinetic Ising model is however limited by the binary nature of 
its neurons. To alleviate this constraint, we extend previous analyses 
based on statistical mechanics to dynamical models of networks in 
which the state of the neurons can take values according to distri-
butions in the mono-parametric natural exponential family. Using a 
mean field approach, we obtain both dynamical TAP equations for the 
expected activity of these states when the connectivity of the network 
is known as well as a naive mean field estimation of the connectivity 
when the activity of the neurons has been observed. We test the valid-
ity and accuracy of our analytical results by applying them to simula-
tions, obtaining good agreement within specific regions of parameter 
space. For the inference of the network’s connectivity we compare 
to exact learning via gradient ascent, obtaining excellent agreement 
for networks of Gaussian neurons and small discrepancies for Poisson 
networks.
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Hippocampal representation of space over long time scales is dynamic 
[1]. Longitudinal calcium imaging of CA1 neurons of mice repeatedly 
traversing the same environment over weeks exhibits turnover: only 
a small subset of pyramidal cells are active over the entire course of 
the experiment, while most of the population drops in and out of the 
ensemble representation of the environment. Yet, whenever active, 
place cells typically retain their place field location.
Here, we hypothesize that cells turnover in CA1 is due to the interplay 
between two types of synaptic inputs to CA1 pyramidal neurons: a 
stable spatial input from CA3 place cells, and a time-varying non-spa-
tial input. We first test this hypothesis by fitting a statistical model to 
CA1 calcium imaging data of mice repeatedly visiting the same famil-
iar track over the course of two weeks [2]. In the statistical model, cells 
are described as threshold units, active when the sum of the spatial 
and non-spatial inputs they receive is larger than a threshold. Spatial 
(stable) and non-spatial (time-varying) inputs are modeled as gauss-
ian random variables. The statistical model has three parameters: the 
relative width of the distribution of spatial and non-spatial inputs, the 
neuronal threshold, and the auto-correlation of the time-varying non-
spatial inputs. By fitting those parameters, the model quantitatively 
describes all relevant turnover statistics observed in the experimental 
data: the probability that a cell active on one day will be active on sub-
sequent days, the distribution of the total number of sessions in which 
cells are active, and cells survival probability.
Based on these results, we then propose a spiking network model of the 
hippocampus which accounts for turnover dynamics. In the spiking net-
work model, CA1 pyramidal cells integrate spatially-modulated synaptic 
inputs from CA3 place cells, inhibitory inputs from CA1 interneurons, 
and non-spatial inputs from a layer of cortical neurons. Integration of 
a large number of random CA3 spatial inputs generates spatially-mod-
ulated subthreshold voltage in CA1 pyramidal cells, and non-spatial 
inputs modulate the excitability of CA1 cells. While spatial connections 
are stable, a fraction of the non-spatial connections are rewired over 
time. Rewiring non-spatial connections shifts cells excitability, and 
hence determines whether a cell is active and participate to the ensem-
ble representation at a given time or is silent, generating turnover. 
Importantly, whenever cells are active, their place field is in the same 
location of the environment, consistent with experimental findings.
By adjusting the relative width of the distributions of spatial and non-
spatial inputs (which can be calculated analytically) and the auto-cor-
relation of non-spatial inputs, the spiking network model accurately 
fits all relevant turnover statistics observed in the experimental data. 
Finally, introducing (weak) correlations among CA3 spatial inputs, the 
model is also able to capture the distribution of spatial information 
observed in CA1 pyramidal cells.
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Synchronization in neural system plays an important role in many 
brain functions such as perception and memory. Abnormal synchro-
nization can be observed in neurological disorders such as Parkinson’s 
disease, schizophrenia, autism, and addiction. When the coupling 
strength is moderate, the synchronization is highly intermittent even 
in a short time scale. That is, a system exhibits intervals of synchroniza-
tion followed by intervals of desynchronization. Thus, neural circuits 
dynamics may show different distributions of duration of desynchroni-
zation even if the synchronization strength is similar.
In general, some partially synchronized systems can exhibit a few but 
long desynchronized intervals while other systems can yield many but 
short desynchronized intervals. Experimental data thus far has shown 
that neural synchronization follows the latter trend in either healthy or 
diseased brains [1-3]. It was suggested that there are functional advan-
tages of circuitry with many short durations of desynchronization [4].
In this study, we use a conductance-based PING network to study neu-
ral synchronization specifically in the low gamma band. Gamma fre-
quency rhythm is known to play important role in cognitive functions 
such as percept formation, object representation, learning, and mem-
ory. Several experimental studies indicate that while both healthy and 
diseased brains have many short intervals of desynchronization, there 
are differences in their distributions of desynchronization durations 
[2,3,5]. This study explores the cellular and synaptic effects on the tem-
poral patterning of the partially synchronized model gamma rhythms 
and considers potential functional implications of different temporal 
patterns.
Acknowledgements: This work was supported by NSF grant DMS 
1813819.
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The cerebral cortex as a structured network is able to spontaneously 
express different types of dynamics that are continuously changing 
over time according to the ongoing brain state. Transitions across 
brain states correlate with changes in network excitability and func-
tional connectivity giving rise to a wide repertoire of spatiotemporal 
patterns of neuronal activity [1]. The quasi-periodic occurrence of 
travelling waves - namely slow-wave activity (SWA) - characterizes 
the cortical networks under unconscious brain states. The spatiotem-
poral patterns generated under SWA are shaped by the structure and 
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excitability of the underlying network [2,3]. Thus, the emergent wave-
fronts portray the characteristics of the dynamical regime under which 
they have been spawned. Here we aimed to develop novel analytical 
methods to capture wave propagation features and to identify the 
universal fingerprints of the cortical network activity generated by dif-
ferent preparations all spontaneously expressing SWA, in order to gain 
a deeper understanding of functional mechanisms underlying the cor-
tical network organization. To do so, we studied the spatiotemporal 
dynamics of the cortex under SWA in three different frameworks: in 
vivo, performing extracellular recordings of cortical activity in deeply 
anesthetized mice with a superficial multielectrode array; in vitro, 
recording the electrophysiological signals from cortical slices cut from 
ferret visual cortex; in silico, in a simulated multimodular network of 
spiking neurons [2,4]. We studied network dynamics by character-
izing the spatiotemporal patterns of propagation of the activation 
wavefronts developing a phase-based method that allow an accurate 
reconstruction of the waves travelling across the cortex both in experi-
mental and simulated data [5]. We complemented the study of net-
work dynamics with the computation of network synchronization over 
time, evaluating the variability of ongoing synchrony fluctuations that 
entail dynamically changing states, in our case Up and Down states of 
SWA. Finally, we evaluated the dynamical richness of the cortical activ-
ity by estimating the dimensionality of the system dynamics over time. 
We adopted an approach drawn from experimental fluid dynamics in 
physics [6]. Applying an empirical eigenfunction approach by means 
of the algorithm of Singular Value Decomposition (SVD) it is possible 
to quantify the instantaneous energy of the system and its effective 
dimension, and to study the evolution of the system dimension over 
time as well as its dependence on the structure and on the dynamical 
state of the system. In this way, we were able to compare the mecha-
nistic underpinning of SWA when the intact cortex is functionally 
disconnected (in vivo under deep anesthesia) and when it is anatomi-
cally disconnected from the rest of the brain (in vitro in cortical slices), 
and finally exploiting the model, to emphasize the universal nature 
of this slow rhythm highlighting both the differences and similarities 
between experimental conditions.
Acknowledgements: Funded by the EU H2020 Research and Innova-
tion Programme, Grant 720270 (HBP SGA2).
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Epilepsy surgery is a therapeutic option that can alleviate seizures in 
people with refractory epilepsy. The aim of surgery is to remove the 
epileptogenic zone, i.e. the brain tissue that is considered indispen-
sable for seizure generation [1,2]. During the presurgical evaluation 
clinical teams integrate diverse information and if seizure freedom is 
achieved after surgery, it is considered that the epileptogenic zone 
has been resected [1]. Unfortunately, the rates of post-surgical seizure 
freedom are currently sub-optimal, due to the lack of understanding 
the seizure generating mechanism and assessing the consequences of 
surgical resections.
Recent computational studies in large-scale brain networks [3-5] have 
been developed with the aim to inform epilepsy surgery. Here, we use 
a modelling framework that allows to investigate how sets of nodes 
contribute to the seizure generating capability (i.e. ictogenicity) of a 
network [6]. In particular, we use a measure called Set Ictogencity (SI) 
in order to quantify the contribution of a set of nodes to ictogenicity. 
We use artificial networks with various topologies and examine how 
SI varies across different sets of nodes. In networks with small size 
we compute SI for all possible sets of nodes and show that the icto-
genicity across sets depends on network topology. However, in large 
networks the computation of SI of all possible sets is a combinatorial 
problem that becomes intractable. Therefore, we combine computa-
tional models with a genetic algorithm to search for sets with minimal 
size that contribute to the seizure generation.
We demonstrate the potential applicability of these methods by iden-
tifying optimal set of nodes to resect in brain networks derived from 
a cohort of 20 people who underwent epilepsy surgery. In addition, 
we show that this modelling framework has the potential to assist epi-
lepsy surgery by suggesting alternative resection sites as well as allow-
ing the avoidance of brain regions that should not be resected.
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Experimental studies demonstrated that neural populations exhibit 
correlated spiking activity that goes beyond pairwise correlations and 
involves higher-order interactions [1-5]. These higher-order interac-
tions are known to encode stimulus information or the internal state 
of the brain [1-5]. However, the origin of this population activity and 
types of presynaptic neurons inducing the higher-order interactions 
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remain unclear. Here we investigate how the interactions [6] among 
groups of 3, 4, and then N neurons emerge, when they receive com-
mon inputs on top of independent noisy background inputs, assum-
ing simple connecting motifs. Given Poissonian common inputs, we 
calculate the neural interactions among clusters of neurons in a small 
time-window for the limit of the strong common input’s amplitude. 
When 2 or 3 neurons share excitatory/inhibitory common inputs, their 
pairwise and triple-wise interactions are well explained as functions of 
their baseline spontaneous rate, and the common-input’s rate [7].
We analytically solve the interactions for a cluster of more than 3 neu-
rons when all of them share strong excitatory/inhibitory common 
input. Then, extending our analysis to the arbitrary number of N neu-
rons we show that the N-th order interaction among neurons is still 
a simple function of the postsynaptic and common input rates. How-
ever, in larger populations, the N-th order interaction more strongly 
depends on the spontaneous rate of postsynaptic neuron rather than 
input rate. We also observe that larger number of neurons induce 
stronger magnitude of interactions, regardless of interaction’s sign. 
Moreover, shared excitatory inputs to all neurons always generate 
interactions with positive sign, while shared inhibitory inputs induce 
interactions with oscillatory signs with respect to N. Finally, we obtain 
the analytic result when excitatory or inhibitory inputs are shared 
among N-1 out of all N neurons: surprisingly, the N-th order interac-
tions exhibit signs opposite to those found when the common inputs 
is shared by all N neurons.
In all mentioned cases, when the spontaneous activity of postsynaptic 
neurons is low, excitatory inputs can generate strong positive/nega-
tive higher-order interactions, whereas for high spontaneous activity, 
inhibitory neurons can induce large absolute values of higher-order 
interactions. These results are valid for any neuron model and solely 
based on the assumption of strong common inputs given to neurons. 
Since cortical, subcortical, and retinal neurons mostly exhibit sponta-
neous activity less than λ=40 Hz, for small time-window of Δ=5ms, 
these neurons are in low spontaneous regime i.e. λΔ < 0.2. Therefore 
we suggest that the significant higher-order interactions observed in 
retina, hippocampus, and cortices reveal that motifs of strong excita-
tory rather than inhibitory shared inputs are present and dominant 
there.
Finally, we draw a table that links the strength of interactions and 
their signs to motifs, both for low and high spontaneous activity 
regimes. So based on interactions obtained from experimental data, 
it is possible to predict the underlying motif behind it. For example, 
for a specific experiment done in the hippocampal CA3 region [8], the 
observed negative 3rd-order, positive 4th-order, and negative 5th-
order interactions leads us to the architecture of excitatory to pairs, 
that can generate such interactions simultaneously.
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The brain is a network system in which excitatory and inhibitory neu-
rons keep the activity balanced in the highly non-uniform connectiv-
ity pattern of the microconnectome. It is well known that the relative 
percentage of inhibitory neurons is much smaller than excitatory neu-
rons. So, in general, how the inhibitory neurons can keep the balance 
with the surrounding excitatory neurons is an important question.
This study simultaneously recorded electric signals from ~1000 neu-
rons from seven acute brain slices of mice with a MEA (multi-electrode 
array) to analyze the network architectures of cortical neurons. Subse-
quently, we analyzed the spike data to reconstruct the causal interac-
tion networks between the neurons from their spiking activities. The 
utilized analysis mainly consists of the following three steps: first, 
Transfer Entropy was adopted from previous research to reconstruct 
the neural network. Briefly, Transfer Entropy quantifies the amount of 
information transferred between neurons and is suitable for the effec-
tive connectivity analysis of neural networks. This allowed to elucidate 
the microconnectome and the comprehensive and quantitative char-
acteristics of interaction networks among neurons. Second, our study 
distinguishes between excitatory synapses and inhibitory synapses 
using a newly developed method called sorted local transfer entropy 
(fig. 1a). Third, we also applied methods from graph theory to evaluate 
the network architecture. Especially, we observed that the precedence 
in centrality and controlling ability of inhibitory neurons. The central-
ity was quantified with K-core centrality, and the controlling ability 
was quantified with the ratio of nodes included in FVSs (Feedback Ver-
tex Sets). Fourth, we stained acute brain slices and gave layer labels to 
individual neurons. Further detail will be shown in [1].

Fig. 1 a Shows an example of interaction networks among neurons. 
b shows the difference of averaged K core values for all excitatory 
and inhibitory neurons. c shows the difference of ratio of number of 
FVS within excitatory or inhibitory neuron pools. The E/I difference 
was consistently and significantly observed among 7 cortical slices 
(Wilcoxon paired test; p<0.05)

As a result, we found that inhibitory neurons, locating highly cen-
tral and having strong controlling ability of other neurons (fig. 1b-c), 
mainly locate in deep cortical layers by comparing with distribution 
of neurons coloured by NeuN immunostaining data. Preceding the 
observation, we also found that inhibitory neurons show higher fir-
ing rate than excitatory neurons, and that their firing rate also closely 
obey a log-normal distribution as previously known about excitatory 
neurons. Additionally, their connectivity strengths also obeyed a log-
normal distribution.
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Cognition involves the dynamic adaptation of information process-
ing resources as a function of task demands. To date, the neural 
mechanisms responsible for mediating this process remain poorly 
understood. In this study, we integrated cognitive neuroscience with 
information theory, network topology and neuropharmacology to 
advance our understanding of the fundamental computational pro-
cesses that give rise to cognitive function in the human brain.
In our first experiment, we consider the contrast between dynamic 
whole-brain blood oxygen level dependent (BOLD) data from both 
the resting state and a cognitively-challenging N-back task from the 
Human Connectome Project (N = 457) [1,2]. We translated the raw 
BOLD activity levels into time series that represent the dynamics of 
neural information processing by measuring information flows (pair-
wise between regions, using transfer entropy) and information stor-
age (self-prediction in individual regions, using active information 
storage) as a function of time throughout the experiment [3].
Our results show that cognitive task performance alters the whole-
brain information-processing landscape in a low-dimensional man-
ner: during rest, information flowed from granular to agranular 
cortices, whereas this pattern was reversed during the performance 
of the N-back task. These contrasting gradients of information flow 
reflect the difference between a stronger “bottom-up” mode during 
rest (with inputs from sensory cortices sent up for interpretation as 
the dominant flow) versus a stronger “top-down” mode during task 
(where task performance is facilitated by higher level control and the 
increase of associated flows).
To test a hypothesized mechanism for this switch [4], we modulated 
central noradrenaline levels in a double-blind, cross-over atomoxetine 
pharmacological fMRI study (N = 19) [5]. We found that potentiating 
the noradrenergic system altered the information processing dynam-
ics by augmenting information transfer to and from the frontoparietal 
cortices. Together, our results provide a conceptual bridge between 
cognitive function, network topology, information theory and the 
ascending neuromodulatory arousal system.
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Neuronal interactions lead to behavior and cognition, so that investi-
gating the interactions in the brain network is essential to understand-
ing brain function. However, approaches that characterize the causal 
relationships between neuronal time series – causal functional con-
nectivity – have not been well investigated. In this work, we develop 
methodology for inferring the causal functional connectivity between 
neurons. The methodology at the core relies on adapting the PC algo-
rithm, a state-of-the-art method for statistical causal inference, to the 
neuronal time series scenario. We validate the performance of the 
method in synthetic signals generated from continuous time artificial 
neural networks. We further obtain the causal functional connectiv-
ity between neurons in mice brain under different visual stimuli from 
electro-physiological neural recordings.

Fig. 1 This figure compares the accuracy of the neuro‑PC and 
traditional PC algorithm in inferring the causal functional connectiv‑
ity from synthetic neural signals. The signals were generated by a 
continuous‑time recurrent neural network with connection weights 
of 0.5 and connections shown by the motifs in the first row of this 
figure
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Though the electrophysiology techniques that we use to probe neu-
ronal function have made large advancements, neuronal function 
remains shrouded in mystery. Little is known about the current contri-
butions that govern cell excitability across different neuronal subtypes 
and their dendritic compartments in vivo. The picture that we do have 
is largely based on somatic recordings performed in vitro.
Uncovering dendritic current contributions in neuron subtypes that 
represent a minority of the neuronal population is not currently a 
feasible task using purely experimental means. Thus, we employ mor-
phologically-detailed multi-compartment models, and specifically, we 
use two models of a specific type of inhibitory interneuron, the oriens 
lacunosum moleculare (OLM) cell. The OLM cell is a well-studied cell 
type in CA1 hippocampus that is important in gating sensory and con-
textual information.
We use these models to assess the current contribution profile across 
the different somatic and dendritic compartments of the models in 
the presence of levels of synaptic bombardment that would occur 
in vivo and compare them to corresponding in vitro scenarios with 
somatic current injections that generate the same spike rates. Using 
this approach, we identify changes in dendritic excitability, current 
contributions, and current co-activation patterns.
We find that during in vivo-like scenarios the relative timing between 
different channel current activation patterns and voltage are pre-
served. On the other hand, when compared across morphological 
compartments, current and voltage signals were more decorrelated 
during in vivo-like scenarios, suggesting decreased signal propagation. 
We also observe that changes do occur during in vivo-like scenarios 
on the level of relative current contribution profiles. More specifically, 
in addition to shifts in the relative balances of currents that are most 
active during spikes, we report robust enhancements in dendritic 
hyperpolarization-activated cyclic nucleotide-gated channel (HCN, or 
h-current) activation during in vivo-like contexts [1]. This suggests that 
dendritically-located h-channels are functionally important in altering 
signal propagation in the behaving animal.
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Topographic maps are brain structures which connect two regions [1]. 
These maps are essential features of primary sensory signal processing. 
A prototypical animal model of such a system is the mouse retinotopic 
map [2]. Topography is developed using three distinct mechanisms: 
chemotaxis, competition, and activity based refinement [3]. Chemo-
taxis establishes a coarse topography with broad dendritic arbors 
which is followed by three stages of spontaneously generated waves 
of electrical activity in the retina: first at E16-P0, then from P0-P11, and 
finally from P11-P14 [4]. These three periods of have distinct spatio-
temporal characteristics and likely perform different functions in the 
development of the retinotopic system. They are concurrent with 

electrical activity in the SC and the correlations between these sig-
nals guide Hebbian plasticity to make the refinement. Unified models 
of activity and genetics have found success in predicting the effects 
of chemical perturbations, but not activity-based perturbations [5]. 
The activity mechanism in these models condenses the activity into a 
purely spatial and radially symmetric isotropic form.
A good model of electrical activity in brain regions with lateral connec-
tivity and dense homogenous cell types such as those in the SC is neu-
ral field theory (NFT) [6]. A theoretical framework of Hebbian-based 
plasticity that can incorporate time-signatures of activity has been 
developed for NFT [7]. This framework allows for the incorporation of 
a more accurate and complete description of spatio-temporally vary-
ing waves. In this paper we shall demonstrate that NFT can support 
the refinement and establishment of precise topography via waves 
of propagating activity and biologically reasonable Hebbian learning 
rules and therefore establish it as a useful model to study the develop-
ment of topographic systems.
We develop an analytical solution to the field equation by first lin-
earizing the sigmoid activation function. We then proceed with com-
putational analysis of three key parameters: the width of the wave 
stimulus, wave-speed, and the width of the lateral connections. 
Finally, we discuss the limitations of the model, implications of these 
results in the context of the β2 knock-out (an activity perturbation), 
and future directions.
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Neurons and other cells use electrical signals for intra- and intercellu-
lar communication. Accurate mathematical models have been devel-
oped to describe the spatial-temporal dynamics of their voltage in 
response to input current. Best known is the cable equation, which 
describes voltage propagation along the length of a passive cable in 
response to current injection [1]. However, this model is not appropri-
ate for cells with geometries other than the cylinder. Here we study 
the flow of electrical currents in cells with a spherical geometry in 
which only a thin shell close to the surface conducts. Such geometries 
arise for instance in white adipocytes (fat cells), which are cells consist-
ing of an insulating lipid droplet core surrounded by a thin conductive 
cytoplasm shell, and might also be relevant for some types of spheri-
cally shaped peripheral neurons.
First, we construct a circuit model based on the nature of the passive 
membrane, and derive the equivalent of the cable equation for spheri-
cal geometries. We derive the steady-state solution analytically and 
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show that the shape of the voltage profile depends on a single param-
eter that describes its electrotonic compactness. Furthermore, we 
show that, in contrast to the cable equation, the voltage profile across 
the cell is sensitive to the electrode geometry.
Next, we numerically explore the time-dependent solution to step 
input currents. In particular, we find that the charging and discharg-
ing are much faster than one would expect from the membrane time 
constant, which is important when one aims to extract fundamental 
membrane properties from experimental recordings.
Finally, we consider voltage-clamping experiments, often used to 
measure input current of cells and examine the distortions arising 
from imperfect space-clamp.
In conclusion, our study yields an equivalent of the cable equation for 
spherical geometries, which can facilitate further investigations of the 
electrical signals on cells with spherical structures.
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Transfer entropy (TE) [1] is a measure of the flow of information 
between components in a system. It is defined as the mutual infor-
mation between the past of a source and the present state of a tar-
get, conditioned on the past of the target. It has received widespread 
application in neuroscience [2], both for characterising information 
flows as well as inferring effective connectivity from data sources 
such as MEG, EEG, fMRI, calcium imaging and electrode arrays. Previ-
ous applications of TE to spike trains have relied on time discretisation, 
where the spike train is divided into time bins and the TE is estimated 
from the numbers of spikes occurring in each bin. There are, however, 
several disadvantages to estimating TE from time-discretised data [3]. 
Firstly, as time discretisation is a lossy transformation of the data, any 
estimator based on time discretisation is not consistent (it will not 
converge to the true value of the TE in the limit of infinite data). Sec-
ondly, whilst the loss of resolution of the discretisation will decrease 
with decreasing bin size, this requires larger dimensionality of the his-
tory embeddings to capture correlations over similar time intervals. 
This results in an exponential increase in the state space size being 
sampled and therefore the data requirements.
Recently, a continuous-time framework [3] for transfer entropy was 
developed. This framework has a distinct advantage in that it dem-
onstrates that, for spike trains, the TE can be calculated solely from 
contributions occurring at spikes. This presentation reports on a newly 
developed continuous-time estimator for transfer entropy for spike 
trains which utilises this framework. Importantly, this new estimator is 
a consistent estimator of the TE. As it does not require time discretisa-
tion, it calculates the TE based on the raw interspike interval timings 
of the source and target neurons. Similar to the popular KSG estimator 
[4] for mutual information and TE, it performs estimation using the sta-
tistics of K-nearest-neighbour searches in the target and source history 
spaces. Tests on synthetic datasets of coupled and uncoupled point 
processes have confirmed that the estimator is consistent and has low 
bias. Similar tests of the time-discretised estimator have found it to 
not be consistent and have larger bias. The efficacy of the estimator is 
further demonstrated on the task of inferring the connectivity of bio-
phyiscal models of the pyloric network of the crustacean stomatogas-
tric ganglion. Granger causality (which is equivalent to TE under the 
assumption of Gaussian variables) has been shown to be incapable 
of inferring this particular network [5], although it was demonstrated 
that it could be inferred by a generalised linear model.

References
1. Schreiber T. Measuring information transfer. Physical Review Letters. 2000; 

85(2): 461.
2. Wibral M, Vicente R, Lizier JT, editors. Directed information measures in 

neuroscience. Berlin: Springer; 2014.
3. Spinney RE, Prokopenko M, Lizier JT. Transfer entropy in continuous time, 

with applications to jump and neural spiking processes. Physical Review E. 
2017; 95(3): 032319.

4. Kraskov A, Stögbauer H, Grassberger P. Estimating mutual information. 
Physical review E. 2004; 69(6): 066138.

5. Kispersky T, Gutierrez GJ, Marder E. Functional connectivity in a rhythmic 
inhibitory circuit using Granger causality. Neural Systems & Circuits. 2011; 
1(1): 9.

P193 
Input strength dependence of the beta component of gamma‑band 
auditory steady‑state responses in patients with schizophrenia
Christoph  Metzner1, Volker  Steuber2

1Technische Universität Berlin, Department of Software Engineering 
and Theoretical Computer Science, Berlin, Germany; 2University 
of Hertfordshire, Biocomputation Research Group, Hatfield, United 
Kingdom
Correspondence: Christoph Metzner (cmetzner@ni.tu‑berlin.de) 
BMC Neuroscience 2020, 21(Suppl 1):P193

The mechanisms underlying circuit dysfunctions in schizophrenia 
(SCZ) remain poorly understood. Auditory steady-state response 
(ASSRs), especially in the gamma and beta band, have been sug-
gested as a potential biomarker for SCZ. While the reduction of 40Hz 
power for 40Hz drive has been well established and replicated in SCZ 
patients, studies are inconclusive when it comes to an increase in 20Hz 
power during 40Hz drive [1]. There might be several factors explain-
ing the inconsistencies, including differences in the sensitivity of the 
recording modality (EEG vs MEG), differences in stimuli (click-trains vs 
amplitude-modulated tones) and also large differences in the ampli-
tude of the stimuli.
Here, we used a computational model of ASSR deficits in SCZ [2-4], 
in which increased IPSC decay times at GABAergic synapses produce 
ASSR deficits as seen experimentally. We investigated the effect of 
input strength on gamma and beta band power during gamma ASSR 
stimulation. We found that the pronounced increase in beta power 
during gamma stimulation seen experimentally could only be repro-
duced in the model for a specific range of input strengths. More spe-
cifically, if the input was too weak the network failed to produce a 
strong oscillatory rhythm. When the input was in the specific range, 
the rhythmic drive at 40Hz produced a strong 40Hz rhythm in the con-
trol network, however, in the ‘SCZ-like’ network, the prolonged inhibi-
tion led to a so-called ‘beat-skipping’, where the network would only 
strongly respond to every other input. This mechanism was responsi-
ble for the emergence of the pronounced 20Hz beta peak in the power 
spectrum. However, if the input exceeded a certain strength value, the 
20Hz peak in the power spectrum disappeared again. In this case, pro-
longed inhibition due to the increased IPSC times was insufficient to 
suppress the now stronger gamma drive from the input, resulting in 
an absence of the beat-skipping and single peak at 40Hz in the power 
spectrum.
Here, we employed an established model of gamma and beta band 
ASSR deficits in SCZ to explore the dependence of a beta compo-
nent in response to gamma drive on the strength of the input. Our 
finding that the beta component only existed for a specific range of 
input strengths might explain the seemingly inconsistent reporting 
in experimental studies and suggests that future ASSR studies should 
explicitly explore different amplitudes of their stimuli.
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The cerebellum is involved in motor learning, temporal information 
processing and cognition. Inspired by the well-characterised anatomy 
of the cerebellum, several network models and theories of cerebel-
lar function have been developed, such as the Marr-Albus-Ito theory 
of cerebellar learning. However, although morphologically realistic 
cerebellar neuronal models with realistic ion channel dynamics exist 
in isolation, a complete cerebellar cortical model comprising such 
biologically detailed neurons is still missing. Sudhakar et al. have 
implemented a cerebellar granular layer (GL) model composed of 
biologically detailed granule and Golgi cells (GrCs and GoCs) [1]. Here, 
we modified this model and integrated it with a multi-compartmental 
PC model, which included detailed Hodgkin-Huxley type representa-
tions of ion channels [2]. The original GL model had a length of 1.5 mm 
along the transversal axis. As parallel fibres (PFs), the axons of GrCs, 
extend for 2.0 mm along this axis, we rescaled the GL network model 
to 4.0 mm in transversal direction and placed the dendritic tree of the 
PC model at the centre of the network. Additionally, to reduce the 
computational requirements, we employed a sparser density of 1.92 
million GrCs per mm3 in our GL model. Each spine of the PC model 
was connected to the nearest PF within the sagittal-vertical plane, 
which resulted in 143,725 PF inputs to the PC model. Inhibitory input 
from molecular layer interneurons (MLIs) to the PC was modelled 
implicitly by providing inhibitory Poisson input from 1,695 spike gen-
erators. Most of our simulations were run with 5 Hz MF background 
excitation and 8 Hz background MLI inhibition, which resulted in PC 
baseline spike rates between 50 and 60 Hz.
In a first set of simulations, our network was tested in a simple pat-
tern separation task: a patch of excitatory mossy fibre (MF) input to 
the GL was stimulated; the network learnt the input pattern based on 
long-term depression (LTD) at PF-PC synapses; and the PC behaviour 
in response to learnt and novel patterns was compared. The stimu-
lated MF patch had a radius of 100 um. The stimulation resulted in the 
activation of a cylindrical region of the GL above the patch. Activated 
GoCs spread out of the patch along the transversal axis. The initial GrC 
excitation lasted for about 5 ms, after which feedback inhibition from 
GoCs reduced the GrC spike rate to about 50% of the peak value. The 
resulting burst of GrC activity activated the PC model with a delay up 
to 5 ms. In the presence of a sufficient amount of MLI inhibition, the 
PC firing rate initially increased sharply in response to stimulation of 
the MF patch. After the MF input had been learnt based on LTD at the 
PF-PC synapses, the PC spike rate increases in response to learnt MF 
input disappeared, while equivalent novel MF stimuli still resulted in 
spike rate increases. These simulation results predict that a biophysi-
cally detailed PC model embedded in a realistic cerebellar network 
model can, under certain circumstances, employ a rate code to distin-
guish between learnt and novel MF input patterns.
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In spite of a plethora of peripheral lesion experiments documenting 
that structural plasticity causes large scale changes in brain networks 
[1-3], our understanding of the mechanisms of structural plasticity 
remains limited. Structural plasticity acts over extended periods of 
time, albeit at a slow rate, to modify network connectivity by the for-
mation and removal of synapses. Alterations in network connectivity 
are expected to affect network function, but the resulting functional 
consequences of structural plasticity have not been studied in detail.
To study the activity dependent growth characteristics of neurites, 
which underlie network reconfiguration, we previously developed a 
novel model of peripheral lesioning and subsequent repair in a bal-
anced cortical Asynchronous Irregular (AI) spiking network [4]. The 
network used in our model, which represents a physiological brain 
network, was selected since it has been demonstrated to function as 
an attractor-less associative memory store [5]. Using this new model, 
we investigated the functional effects of repair mediated by homeo-
static structural plasticity on the network. We stored associative 
memories in the network and recalled them at different stages of the 
simulation by stimulating a random subset of their neurons: before 
deafferentation, after deafferentation but before repair, and after 
deafferentation during repair. At each recall, recall performance was 
quantified using a Signal to Noise ratio (SNR) metric [6].
Associative memories that include neurons deafferented by the 
peripheral lesion experience a reduction in their recall performance 
proportionate to the number of deprived neurons. Our results indi-
cate that while structural plasticity restores activity of deafferented 
neurons to pre-injury levels, it does not restore the performance of 
the stored associative memories. This suggests that associative memo-
ries stored before a peripheral lesion are not necessarily protected 
in the repair process. Further research is needed to explore whether 
the repair process can be modulated to retain the performance of the 
stored associative memories.
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Introduction: Deep brain stimulation (DBS) is a surgical treatment 
for movement and neuropsychiatric disorders. Here, the subtha-
lamic nucleus (STN) is the most common target for the treatment of 
advanced Parkinson’s disease (PD). Although DBS has proven effec-
tive, the procedure is associated with surgical risks such as infection 
and haemorrhage. Consequentially, we investigated the possibility 
of using ultrasound (US) as a non-invasive and reversible alternative 
of conventional DBS. Here, we expand on our study on the spiking 
behaviour of a computational STN model [1], insonicated with contin-
uous-wave and pulsed US of different intensities. In particular, the sen-
sitivity of the simulated STN response to hyperpolarizing input (e.g., 
GABAergic globus pallidus afferents) is investigated.
Methods: A computational model for insonication of the STN is cre-
ated by combining the Otsuka-model of a plateau-potential gener-
ating STN neuron [2] with the bilayer sonophore model [3,4]. After 
careful validation of our model implementation by comparison with 
theoretical and experimental literature, simulations are performed 
of the STN-neuron insonicated with different ultrasonic intensities 
and pulse waveforms. The robustness of the simulated response to 
GABAergic input is tested by injecting brief hyperpolarizing currents.
Results: Our model results predict intensity dependent spiking 
modes of the STN neurons. For continuous waveforms, three different 
observed spiking modes in order of increasing ultrasonic intensity are 
low-frequency spiking, high-frequency (>120 Hz) spiking with signifi-
cant spike-frequency and spike-amplitude adaptation, and a silenced 
mode. Simulation results indicate that only the silenced mode is 
robust to brief hyperpolarizing input. In contrast, the STN response 
will saturate robustly to the pulse repetition frequency in pulsed US, 
for sufficiently large intensity and pulse repetition frequency.
Conclusion: Model results of the ultrasonically stimulated plateau-
potential generating STN predict intensity dependent spiking modes 
that could be useful for the treatment of PD. High-frequency spiking 
of the STN might “jam” pathological network activity or result in the 
creation of an information lesion due to short-term synaptic depres-
sion, which are potential mechanisms ascribed to conventional DBS. In 
contrast, the silenced mode in which the STN transmembrane poten-
tial is fixed to a stable plateau might be functionally equivalent to sub-
thalamotomy and to depolarization blockage of STN efferents during 
DBS. The former and latter STN mode is induced robustly by pulsed 
and continuous wave US, respectively.
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The locus coeruleus (LC) is one of the most dominant noradrenergic 
systems in the brain that supplies the central nervous system with nor-
epinephrine through widespread efferent projections. Consequently, 
it plays an important role in attention, feeding behaviour and sleep-
to-wake transition [1]. Moreover, studies have shown that the locus 
coeruleus is correlated to the anticonvulsive action of vagus nerve 
stimulation (VNS) [2]. To date, the underlying mechanisms of VNS 
and the LC are, however, not fully understood. Therefore, we derived 
a computational model, such that in silico investigations can be per-
formed. Based on the work of Carter et al. [3], we created a single 
compartment model that matched our in vivo measurements. These 
were extracted from rat brains at the 4Brain lab. The original model 
created by Carter et al. was a conductance-based model of the locus 
coeruleus and hypocretin neurons, used for the investigation of the 
sleep-to-wake transition. When the hypocretin neurons are omitted, 
our measured tonic firing rate of 3.35 ± 0.49Hz could not be reached 
with the original two compartment model by means of continuous 
current injection. The maximal achievable tonic firing rate was 0.75 
Hz for a current of 0.4 A/m2, while a bursting behaviour followed by 
depolarization block was observed for higher inputs. When combined 
into a single compartment model, the required frequency is reached 
with a 0.39 A/m2 current injection. There were no notable differences 
in state occupancies that could explain the difference in firing rate. 
Therefore, we concluded that the lower firing rate observed in the two 
compartment model is solely due to spatial filtering. Finally, we com-
pared the pinch response. The pinch was modelled as a rectangular 
current pulse. With an amplitude of 0.0314 A/m2 and pulse duration of 
0.9 s, an equivalent firing rate (13.64 ± 2.75Hz vs.13.86Hz) and refrac-
tory period (1.186 ± 0.234s vs.1.09s, the measurements and model, 
respectively) are observed.
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Spike-timing-dependent plasticity (STDP) is a fundamental learning 
mechanism that shapes plastic synaptic strengths in brain networks 
according to pre- and post-synaptic spike times [1]. Later, a model of 
voltage-based STDP was proposed based on the postsynaptic mem-
brane potential to explain experimentally observed connectivity 
patterns in cortex [2]. Synaptic plasticity plays a key role in memory 
retention by modulating functional cortical circuitry in memory net-
works. The development of solid-state devices in recent years pro-
vided a means for computational implementation and experimental 
realization of neuromorphic structures designed to emulate adaptive 
behavior of synapses in brain. Particularly, spin-polarized transport 
through magnetic tunnel junctions (MTJs) is a well-characterized 
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mechanism for the implementation of learning process due to the 
rapid and high-density information storage capabilities of MTJs as a 
memory device [3].
Previously, it has been shown that the emergent synaptic structure 
between a pair of neurons characterized by two reciprocally coupled 
synapses with STDP (see Fig. 1A) can be theoretically predicted by 
the effective synaptic strength in the two-neuron motif, i.e. the ratio 
of relative synaptic strengths to their sum [4]. In this study, we con-
sidered a two-terminal single-molecule MTJ that consists of two fer-
romagnetic (FM) cobalt electrodes separated by a phenyl dithiol (PDT) 
molecule (see Fig. 1B, top) and investigated transport properties using 
a non-equilibrium Green’s function (NEGF) formalism. By introducing 
an effective spin-polarized tunneling conductance, i.e. the ratio of 
relative conductances in parallel (P) and anti-parallel (AP) configura-
tions to their sum, we show that the change in the two-component 
conductance crucially depends on the bias voltage applied to the 
MTJ where its behavior is reminiscent of the classical STDP (Fig 1A-B, 
bottom).

Fig. 1 Voltage‑dependent synaptic plasticity in the magnetic tunnel 
junction. A Two‑neuron motif (top) and the change in the synaptic 
strengths induced by spike timings (bottom). B Two‑terminal single‑
molecule magnetic tunnel junction (top) and the voltage‑dependent 
change in the effective tunneling conductance (bottom)

While the optimized window for tunneling conductance is a property 
of the central molecule, the asymmetric change in the effective tun-
neling conductance is determined by the FM electrodes, and hence, 
can be controlled by chemical engineering of the junction. The spin-
polarized current is constant near zero bias voltage, however, when 
a voltage is applied to the junction, the molecular energy levels are 
positioned within the bias window and the spin-polarized current is 
increased (decreased) for positive (negative) bias voltage. This pro-
vides a suitable framework to study voltage-dependent long-term 
potentiation (LTP) and depression (LTD) in MTJs. Ultimately, our results 
may contribute to the further development of neuromorphic memory 
devices engineered based on the adaptive properties of synapses in 
brain networks.
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Several neurological disorders such as Parkinson’s disease and epi-
lepsy are characterized by pathological neuronal synchronization in 
cortical and sub-cortical areas. Therapeutic brain stimulation tech-
niques aimed at shifting the pathological dynamics of the diseased 
brain towards healthy attractor states, are employed to restore physi-
ological patterns of synaptic connectivity by decoupling strongly 
connected neurons [1]. Dynamics of cortical neuronal populations 
crucially depends on the synaptic connectivity of the cortex which 
continually change by spike-timing-dependent plasticity (STDP) [2]. It 
has recently shown that the effect of the STDP on the structure and 
the dynamics of the neuronal networks is profoundly dependent on 
the delay in transmission of the signals between the neurons [3]. In 
particular, propagation delays lead to multi-stability of the network 
structure such that strong bidirectional loops, loosely connected pairs 
of neurons, or asymmetric unidirectional connections can emerge 
between different pairs of neurons under the influence of STDP [4].
In the present study, by theoretical analysis of a reciprocally cou-
pled two-neuron motif we show that the decoupling of the neurons 
and neuronal populations by stimulation depends on the imbalance 
of STDP potentiation/depression rates and time constants and the 
transmission delays. Then the theoretical predictions were numeri-
cally tested in a two-layer model of oscillatory networks composed of 
excitatory and inhibitory neurons where the individual neurons fire 
irregularly. The patterned stimulation is delivered simultaneously to 
all neurons (excitatory and inhibitory) in both layers which are con-
nected to each other by plastic excitatory synapses characterized by 
interlayer propagation delays and are modified according to the STDP 
rule. Figure 1A shows that the stimulation pattern can shape the inter-
layer connections by modulating the slowly evolving synaptic dynam-
ics and accordingly desynchronized the neuronal activity. In this way, 
the synaptic strengths between the layers can change from a strongly 
coupled regime (Fig. 1B, grey) to a more physiologically favored 
weakly connected state (Fig. 1B, colored distribution) due to stimula-
tion. Furthermore, two-neuron loops which were prevalent before 
the stimulation onset, are entirely eliminated after the stimulation 
due to the stimulation-induced decoupling effect (Fig. 1C, red curve). 
Our results may contribute to the further optimization of therapeutic 
brain stimulation protocols and thus can provide new insights to the 
treatment of patients with hyper-synchronized neurological brain 
disorders.
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Fig. 1 Stimulation‑induced decoupling of the synaptic strengths in 
the two‑layer network. A Population activity (A1/A2) and interlayer 
mean coupling (G21/G12). B Distribution of the interlayer synaptic 
strengths before (grey) and after (colored) stimulation cycle. C The 
number of two‑neuron loops (l2) and the interlayer connection asym‑
metry index (C)
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The cerebellar cortex is a brain region deeply involved in sensorimo-
tor coordination and adaptation. It receives external inputs via axons 
called the mossy fibers (MF), delivering diverse information, including 
sensory and motor signals, from other brain regions. Then, the out-
put neurons, Purkinje cells (PC), transmit the result of computation 
by the network. Many studies have elucidated how different stages 
of computation in this neural circuit represents sensory and motor 

information. However, circuit-level information processing has not 
been well-understood.
Here we investigated this question by characterizing how MF firings 
transform into PC outputs in recording data from those cells (n=110 
and 135, respectively) in rhesus monkeys that were performing a sen-
sorimotor task (M. Mulatta; n=2). We trained the animals for a sac-
cadic eye movement task, where they followed a target jumping back 
and forth between two horizontal target locations. The fast pace and 
repetitive nature of the task led to a gradual decline in saccade veloci-
ties (fatigue).
We found that the firing rates of MFs linearly encoded eye speed and 
saccade duration, consistent with previous studies (e.g. [1]). Using the 
linear rate coding property of MFs and also PCs, we constructed the 
rate coding models of individual cells from the data and formed the 
virtual populations of those models for each cell type. This method 
enabled us to analyze eye speed-dependent variability of the popula-
tion responses beyond the firing rate across trials.
By using the virtual population of MFs and PCs, we found that the 
activities of MFs and PCs can be both characterized by low dimen-
sional “manifolds” [2] that resemble the limit cycles. Here, the PC 
manifold is higher-dimensional as compared to that of MFs and has 
more complex representations of variability in eye movements. 
Nonetheless, there exists a linear transformation between the two 
populations [3], which can accurately predict the average and also 
velocity-dependent variability in the firing rate of individual neurons.
Based on these results, we suggest that the MFs deliver a compressed, 
low dimensional copy of sensorimotor information from other brain 
areas, possibly via convergence [3], and the cerebellar cortical circuit 
decompresses/transforms it to higher dimensional outputs, carrying 
the reorganized representation of the behavioral variability.
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Neocortical activity is characterized by the presence of low-dimen-
sional fluctuations in firing rate that are coordinated across neurons 
[1]. Despite a wealth of experiments and models, the role of low-
dimensional fluctuations remains unclear, in part due to limited data 
analysis techniques. While several approaches exist to perform dimen-
sionality reduction [2], there is a lack of methods designed to extract 
frequency-specific, low-dimensional fluctuations from neural signals. 
This is true even with methods aimed at finding rotational structure 
in PCA [3], as these approaches suffer from a lack of frequency‐specific 
separation of components.
Here, we describe a technique termed frequency-separated principal 
components analysis (FS-PCA) that addresses this issue. This talk is 
organized as a tutorial where we first show toy examples that apply 
FS-PCA to artificial signals. Then, we provide an application of FS-PCA 
to both spontaneous and evoked cortical activity. Finally, we discuss 
the interpretation, limitations, and possible extensions of this tech-
nique to problems in systems neuroscience.
FS-PCA is based on recent theoretical advances on the eigenspectrum 
of Hankel matrices [4]. As a first example, we consider a sine wave with 
added zero-mean Gaussian noise (Fig.1a). We show that this signal can 
be converted to a Hankel matrix (Fig. 1b) whose eigenspectrum con-
tains 2f + 1 largest eigenvalues, where f is the number of characteristic 



Page 111 of 123 BMC Neurosci 2020, 21(Suppl 1):54

frequencies of the original signal. The reconstructed signal obtained 
from FS-PCA closely matches the amplitude, phase, and frequency of 
the original signal (Fig. 1c).

Fig. 1 Frequency‑separated principal components analysis of 
artificial and cortical signals. a Example of noisy sine wave. b Hankel 
matrix obtained from “a”. c Top, original and reconstructed signals. 
Bottom, power spectra. d Reconstruction of V1 mean population 
activity. e Distribution of ranked eigenvalues. Inset, relation between 
rank and characteristic frequency of each component

Next, we apply FS-PCA to population recordings from macaque V1 
cortex. We show that the first dimension of the reconstructed signal 
captures the slow, low-frequency fluctuations in mean population 
activity observed over time (Fig. 1d, red line). Adding further dimen-
sions markedly improves the reconstruction of population activity 
(Fig.1d, blue line). Overall, ranked eigenvalues obtained from FS-PCA 
followed an approximate power-law where the highest ranked dimen-
sions captured a large proportion of the data (Fig.1e). In turn, highest-
ranked dimensions had a lower characteristic frequency than lower 
dimensions (Fig.1e, inset). In sum, these results suggest that while a 
broad spectrum of frequencies contributed to population activity, 
fluctuations in spontaneous activity were dominated by low-fre-
quency components.
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Many symptoms of Parkinson’s disease, despite a long history of 
research, are still not completely understood. In particular, there is no 
clear understanding on how Parkinsonian rest tremor is generated and 
even how it can be detected and distinguished from voluntary move-
ments in neural recordings. We use multimodal (MEG and STN LFP) 
brain data, recorded from tremor-dominant PD patients and employ 

t-Distributed Stochastic Neighbor embedding (t-SNE) on it to evaluate 
how distinguishable are distinct behavioral states (rest, tremor, volun-
tary movements). We also describe which data features (both spectral 
and time-domain ones) contribute most to such classification.
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Working memory has a function by which temporal information is 
maintained and recognized in the brain, and is ubiquitous in various 
brain regions. A growing body of working memory research has indi-
cated the neural mechanism underlying the maintenance of working 
memory. Several studies have demonstrated that working memory is 
maintained by a persistent activity of neural assemblies. Other studies 
have proposed that it is maintained by a short-term synaptic plastic-
ity. The mechanism of working memory maintenance is still a matter 
of debate. Furthermore, it is unclear how working memory is linked to 
behavior and decision-making.
In this study, to clarify the neural mechanisms underlying the mainte-
nance and manipulation of working memory, we focus on the function 
of prefrontal cortex in a delayed match-to-categorization task stud-
ied by Freedman et al. [1]. In this task, monkeys were presented with 
a sample and a test stimulus, separated by a delay period, and were 
trained to judge whether these stimuli were from the same category. 
Freedman et al. showed that working memory of category information 
was formed in the PFC. Our previous model demonstrated the neu-
ral mechanism of the working memory shaped in the PFC [2]. In this 
study, we aim to understand a unified mechanism of working memory 
maintenance and its manipulation for behavior. We develop a network 
model that performs the maintenance and recognition of temporal 
information of a sample and a test stimulus. The model consists of the 
networks of IT and PFC. The PFC model is further constructed with a 
positive-feedback-loop layer, a recurrent network, and a decision 
layer. The positive-feedback-loop layer produces a persistent activ-
ity of a previously presented stimulus, allowing the layer to maintain 
information of a sample stimulus as working memory. The recurrent 
network encodes the temporal information of a sample stimulus and a 
test stimulus. The learning of temporal information was made by Back-
propagation Through Time method. The decision layer has neurons 
responding to a match and a non-match trial. We also investigate the 
discrimination ability of our model for more complex tasks that have 
longer temporal sequences and many category numbers.
We demonstrate that maintenance of working memory and encoding 
of temporal sequence are sequentially manipulated in different areas 
of the PFC. We also show that the temporal sequence is encoded by 
activity pattern of the recurrent circuit, independently of task decision. 
The sparseness of activity pattern increases with increasing the num-
ber of category. The principal component analysis of activity patterns 
reveals that the activity patterns of non-match trials move far away 
from the activity patterns of match trials as the learning proceeds. Fur-
thermore, we show that the decision of task trials is adjusted by the 
learning of the connections between recurrent neurons representing 
the activity patterns and decision neurons, according to task context.
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Epilepsy is one of the most common serious neurological disorders 
in the world, typified by repeated unprovoked seizures. Such seizures 
are characterized by an abrupt transition to a hyper-active, and often 
hyper-synchronous, brain state [1]. These in vivo transitions share 
noted similarities to mathematical transitions occurring through bifur-
cations, suggesting that the study of seizure onset is fertile ground for 
interdisciplinary research [2]. Neuromodulation represents a promis-
ing avenue for clinical intervention in patients with epilepsy, although 
the field is still wanting for principled understandings of how such 
devices mitigate seizure onset [3]. Such understanding of neuromod-
ulatory mechanisms may allow for better stimulation strategies to 
reduce the burden of seizures.
Here, we use a network model to probe how sudden transitions into 
oscillatory dynamics, which share clear parallels with seizure onset, are 
influenced by both intrinsic and extrinsic inputs. These extrinsic inputs 
can be viewed as a model of a neuromodulatory intervention. Building 
on a previous model of cortical gamma activity [4], the model consists 
of 500 excitatory and 500 inhibitory all-to-all connected Poisson neu-
rons with heterogeneity implemented in their rheobase analogues.
A combination of numerical simulations and mean-field analyses 
revealed that high variance and/or high frequency stimulation wave-
forms were most efficient in preventing multi-stability in these net-
works, where multi-stability serves as a mathematical harbinger of 
the sudden transition between asynchronous and oscillatory network 
dynamics. Furthermore, our analysis showed that stabilization of neu-
ral activity is via a selective recruitment of inhibitory cells, providing a 
theoretical undergird for the known key role these cells play in both 
the healthy and diseased brain. Interestingly, this effect occurred 
without the need to precisely “target” the inhibitory population, 
highlighting that neuromodulatory devices utilizing these stimula-
tion paradigms may not need to be excessively “precise” in order to 
elicit the desired response. While deep brain stimulation systems have 
long been thought to affect neural circuits via the creation of a “func-
tional” or “informational” lesion [5], potentially through depolarization 
blockade [6], these findings provide theoretical support for a distinct 
mechanism of action through selective interneuronal activation. 
Taken together, these results provide new vistas on the underlying 
mechanisms through which neuromodulatory approaches stabilize 
neural microcircuit activity, utilizing a variety of computational tools 
including numerical simulation, mean-field reduction, and stochastic 
stability analysis.
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A fundamental requirement for brain function is the efficient commu-
nication between different brain regions. This requirement turns out 
not to be trivial in the presence of various noise sources in the brain. 
Two possible strategies taken by the nervous system to face the abun-
dance of noise could be to integrate signals either across time (firing 
rate) or across a population of neurons (synchrony) to retain the signal 
in spite of the uncorrelated noisy background. However, the reliable 
transmission of signals requires either strong and sparse or dense and 
weak connections for reliable transmission of rate codes or synchrony 
codes, respectively [1].
However, the typical connectivity between brain regions is neither 
strong nor dense. Recent work has highlighted the importance of 
feedback connections. Feedback connections can strengthen the 
signals through reverberations in the bi-directionally coupled mod-
ules [2]. This mechanism depends on the matching of the total effec-
tive delay along forward and backward intermodule connections and 
the period of the local oscillations in the modules, determined by the 
within and between module connections. This raises the question 
how the networks in the brain might tune their parameters in a range 
that favours such reliable and economic signal transmission. Here, 
we tested if the biological synaptic plasticity rules can self-organize 
an initially disorganized network to such a tuned regime for reliable 
signal transmission. Inspired by Hebb’s postulate [3], we hypothesized 
that in the presence of abundant synaptic connections between the 
modules in a developmental stage of the nervous system, only those 
with matching parameters for reliable transmission can potentiate. 
While potentiation of these synapses facilitates the reliable transmis-
sion of signals, depression of other ‘unfit’ connections reduces the 
structural cost and gives rise to an efficient substrate for reliable sig-
nal transmission. We found that with STDP, the intermodule connec-
tions with delays matching the oscillation period of a single network 
module were potentiated, whereas other connections were ultimately 
eliminated (Fig. 1a-b). We also found how this mechanism facilitated 
reliable signal transmission to downstream areas in case the network 
consisted of several (up to 10) such modules (Fig. 1c). Our results sug-
gest that STDP can lead to the emergence of networks with tuned 
parameters for reliable and efficient signal transmission out of an ini-
tially inefficient network with an extravagant structural cost.
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Fig. 1 Development of efficient connectivity for reliable signal 
transmission. Scatter plot shows the initial and final weights and 
delays of forward and backward synaptic connections. Distribution of 
the delays in the initial and final states in two directions. Sum of peaks 
of final distribution of feedforward and feedback delays matched the 
resonance period (20‑25ms) of the network modules
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In this work, we present an approach to automatically explore neuron 
and synapse model parameter to archive target dynamics or charac-
terize emergent phenomena which rely on the temporal structure of 
biological recordings that are used as inputs to the models. The asso-
ciated exploration and mapping allow us to assess the role of differ-
ent elements in the equations of the neuron and synapse models to 
build a nontrivial integration of sequential information, which is also 
reflected in the time course of the corresponding model response.
We illustrate this methodology in the context of dynamical invariants 
defined as cycle-by-cycle preserved relationships between time inter-
vals that build robust sequences in neural rhythms. We have recently 
unveiled the existence of such invariants in the pyloric CPG of crusta-
cean, even under the presence of intrinsic or induced large variability 
in the rhythms [1]. The proposed strategy can be generalized for many 
types of neural recordings and models.

During such protocol, we input biological data with a characteristic 
temporal structure to different model neurons. The biological record-
ings are preprocessed online to adapt the corresponding time and 
amplitude scales to those of the synapse and neuron models using a 
set of algorithms developed in our previous works [2,3]. Our method-
ology can then map the neuron and synapse parameters that yield a 
predefined dynamic taking into account the temporal structure of the 
model output. The algorithms allow for a full characterization of the 
parameter space that contributes to the generation of the predefined 
dynamics.
To illustrate this protocol that combines experimental recordings and 
theoretical paradigms, we have applied it to the search for dynamical 
invariants established between a living CPG cell and a model neuron 
connected through a graded synapse model. Dynamical invariants 
are preserved cycle-by-cycle, even during transients. In our validation 
tests, we have mapped the presence of a linear relationship, i.e. an 
invariant, between the interval defined by the beginning of the burst-
ing activity of the two neurons (first-to-first spike interval between 
the living and model neurons) and the instantaneous period of their 
sequence in such hybrid circuit.
The protocol has been used to assess the role of model and synaptic 
parameters in the generation of the dynamical invariant, achieving a 
high efficient mapping in a few minutes. We argue that this approach 
can also be employed to readily characterize optimal parameters in 
the construction of hybrid circuits built with living and artificial neu-
rons and connections, and, generally, to validate neuron and synapse 
models.
Acknowledgements: Funded by AEI/FEDER PGC2018-095895-B-I00 
and TIN2017-84452-R.
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A hybrid robot or hybrot is a technology that combines living cells and 
networks with robotics. This technology is largely undeveloped and 
has been mainly implemented with neuron cultures and multichannel 
electrode arrays [1,2]. Hybrots have a lot of potential to study neural 
networks properties involved in the control of locomotion, sensorimo-
tor transformation and behavior.
Central pattern generators (CPG) are neural circuits that produce 
robust rhythmic sequences involved in motor functions such as 
breathing or walking. Because of their role in generating and coordi-
nating motor rhythms, bio-inspired CPGs have been widely employed 
in robotic paradigms [3] including the design of novel mechanisms for 
autonomous locomotion [4]. However, the intrinsic mechanisms that 
give rise to the coordination of living CPG dynamics have not been 
used yet for hybrid robot implementation.
In this work, we present the first hybrot controlled by a living CPG from 
the crab Carcinus Maenas. The robot and the living neural circuit are 
connected following a closed-loop protocol that involves a dynamic-
clamp setup to communicate both elements through Bluetooth sign-
aling. We show that effective robotic locomotion is achieved when 
it is controlled and coordinated by the flexible rhythmic sequences 
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produced by the circuit of living motoneurons. The robot is equipped 
with a light sensor that sends a sensory feedback to the CPG in the 
form of intracellular current injection. We report the analysis of the 
presence of dynamical invariants in the intervals that build up the 
sequential activations of the living circuit [5] and how they are trans-
mitted to the robot resulting in a coordinated locomotion. In turn, 
the robotic sensory feedback is translated into a variation of the living 
network activity while keeping the motor sequence, which results in a 
coherent response to the change in the environmental light.
Acknowledgements: We acknowledge support from AEI/FEDER 
PGC2018-095895-B-I00 and TIN2017-84452-R.
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Over the last year, major advances have taken place in NEST Simulator 
and its associated tooling. This poster describes updates in NEST 3.0, 
NESTML and NEST Desktop.
NEST 3.0 is the next major version update of NEST. With it, changes 
are made not only to the user interface but also to the inner work-
ings of NEST. In the PyNEST interface, new concepts are introduced 
for the compact and efficient description of large populations of 
neurons and synapses as well as distributions of parameter values. 
The PyNEST Topology module is integrated into the standard PyNEST 
package, so that creation and connection of spatial networks can now 
be performed by calling the standard functions. NEST 3.0 improves the 
expressiveness of model descriptions and the speed of network crea-
tion. A new and improved infrastructure for handling recordings has 
been implemented, with built-in backends to record to memory, ASCII 
files and screen.
NESTML is a domain-specific language for neurons and synapses. It 
serves as a specification and exchange format, where dynamical sys-
tems are expressed in continuous time (e.g., using differential equa-
tions) and have the additional ability to receive and emit precisely 
timed events (representing action potentials). Feature highlights 
include a concise yet expressive syntax inspired by Python, direct 
entry of dynamical equations, and imperative programming-style 
specification of event handling and generation.
NESTML comes with a powerful toolchain, written in Python, and is 
released under the GNU GPL v2.0. It parses a given model and per-
forms code generation (“transpiling”). The generated code targets 
a particular hardware and software platform (e.g. NEST running on 
a high-performance computing cluster) with highly optimised and 
performant code. The toolchain performs detailed analytical and 

numerical analysis to yield optimal solver recommendations, and pre-
cise solutions where possible. Target platforms can be added flexibly 
using Jinja2 templates. As a result, NEST users can now specify neu-
ron and synapse models in the same way they specify the network 
structure, using a domain-specific language that is independent of the 
underlying C++ code.
NEST Desktop is a web-based graphical user interface which ena-
bles the rapid construction, parametrization, and instrumentation of 
neuronal network models typically used in computational neurosci-
ence. The client-server architecture supports installation-free access 
to NEST. The primary objective is to provide an accessible classroom 
tool that allows users to rapidly explore neuroscience concepts with-
out the need to learn a simulator control language at the same time. 
NEST Desktop opens NEST technology for a new user group, namely 
students in the classroom, and contributes to equal opportunities in 
education.
These advances, combined with work on the user-level documenta-
tion and deployment mechanisms, contribute to the creation and 
maturation of the NEST ecosystem as a component of a software infra-
structure for neuroscience.
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All vertebrate brains contain a dense matrix of thin axons (fibers) 
that release serotonin (5-hydroxytryptamine), a neurotransmitter 
that modulates a wide range of neural, glial, and vascular processes. 
Altered serotonergic fiber densities have been associated with a num-
ber of mental disorders and conditions, such as Autism Spectrum 
Disorder, Major Depressive Disorder, and exposure to 3,4-methylen-
edioxymethamphetamine (MDMA, “Ecstasy”). Also, serotonergic fib-
ers can regrow in adulthood and therefore can support the functional 
recovery of the brain after injury. However, the processes that lead to 
the self-organization and plasticity of this fiber system remain poorly 
understood.
Our previous research has shown that the trajectories of serotonergic 
fibers in terminal fields can be modeled as random walks [1,2]. We now 
introduce a computational model that is based on Fractional Brownian 
Motion (FBM), a continuous stochastic process that generalizes normal 
Brownian Motion and allows correlations between non-overlapping 
increments. The model capitalizes on the recently discovered proper-
ties of the reflected FBM (rFBM) in one-dimensional domains [3,4].
FBM is parametrized by the Hurst index (H) that allows subdiffusion (H 
< ½) and superdiffusion (H > ½). We show that in the superdiffusive 
regime rFBM-walks recapitulate some key features of regional sero-
tonergic fiber densities, on the whole-brain scale. Specifically, by using 
supercomputing simulations of fibers as FBM-paths in two-dimen-
sional brain-like domains, we demonstrate that the resultant steady-
state distributions approximate the fiber distributions in mouse brain 
sections immunostained for the serotonin transporter (a marker for 
serotonergic fibers in the adult brain). These results do not sensitively 
depend on the H-value (for H > ½), precise estimates of which are cur-
rently difficult to obtain experimentally.
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This novel framework can support predictive descriptions and manip-
ulations of the serotonergic matrix and it can be further extended 
to incorporate the detailed physical properties of the fibers and 
their environment. We also show that this neuroscience-motivated 
approach can stimulate theoretical investigations of rFBM in two- and 
three-dimensional domains, with potential applications in other fields 
of science.
Acknowledgements: This research is funded by the National Science 
Foundation (grants #1822517 and #1921515 to SJ), the National Insti-
tute of Mental Health (grant #MH117488 to SJ), the California Nano-
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for Science Advancement (a Cottrell SEED Award to TV), and the Ger-
man Research Foundation (DFG grant #ME 1535/7-1 to RM), and the 
Foundation of Polish Science (an Alexander von Humboldt Polish Hon-
orary Research Scholarship to RM).

References
1. Janušonis S, Detering N. A stochastic approach to serotonergic fibers in 

mental disorders. Biochimie. 2019; 161: 15‑22.
2. Janušonis S, Mays KC, Hingorani MT. Serotonergic Axons as 3D‑Walks. 2019.
3. Wada AH, Vojta T. Fractional Brownian motion with a reflecting wall. Physical 

Review E. 2018; 97(2): 020102.
4. Guggenberger T, Pagnini G, Vojta T, Metzler R. Fractional Brownian motion in 

a finite interval: correlations effect depletion or accretion zones of particles 
near boundaries. New Journal of Physics. 2019; 21(2): 022002.

P210 
Seizure pathways change on circadian and slower timescales 
in individual patients with focal epilepsy
Yujiang Wang
Newcastle University, Newcastle upon Tyne, United Kingdom
Correspondence: Yujiang Wang (yujiang.wang@newcastle.ac.uk) 
BMC Neuroscience 2020, 21(Suppl 1):P210

Personalised medicine requires that treatments adapt to not only 
the patient, but changing factors within each individual. Although 
epilepsy is a dynamic disorder characterised by pathological fluc-
tuations in brain state, surprisingly little is known about whether and 
how seizures vary in the same patient. We quantitatively compared 
within-patient seizure network evolutions using intracranial electroen-
cephalographic (iEEG) recordings of over 500 seizures from 31 patients 
with focal epilepsy (mean 16.5 seizures/patient). In all patients, we 
found variability in seizure paths through the space of possible net-
work dynamics. Seizures with similar pathways tended to occur closer 
together in time, and a simple model suggested that seizure path-
ways change on circadian and/or slower timescales in the majority 
of patients. These temporal relationships occurred independent of 
whether the patient underwent antiepileptic medication reduction. 
Our results suggest that various modulatory processes, operating at 
different timescales, shape within-patient seizure evolutions, lead-
ing to variable seizure pathways that may require tailored treatment 
approaches [1].
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Convolutional neural networks (CNNs) have become the-state-of-the-
art for image classification and object detection tasks, as they have 
the ability to combine appearance features in a scene. CNNs used for 
detection and classification tasks primarily process single static images 
to combine the features. In a manner similar to biological brains, some 
neural networks also utilise motion as complementary information to 
aid object detection tasks. However, unlike the brain, these networks 
rarely classify ‘moving objects’ in a scene. Our research analyses a neu-
ral network’s ability to detect unique motion cues in scenes without 
any appearance, to understand the limits for neural networks to pro-
cess motion information. We generated variant CNN models to under-
stand different architectures that can process motion information and 
built a recurrent CNN with information skip layers for our experiments. 
By comparing our network’s detection rates against psychophysical 
stimuli used in human experiments, we found the neural network and 
humans both struggled to correctly detect unique motion in similar 
conditions. When trained for detecting higher orders of motion, stim-
uli observable by even small insects, the network responded strongly 
to the order of motion for which it was trained against, and was, for 
the majority, unresponsive to the other motion orders. To further test 
the ability of motion detection in neural networks, we trained a neural 
network against detecting repeating spatio-temporal signals inside a 
scene of random noise. The results from our experiments show that 
alongside convolutional neural networks’ success in detecting appear-
ance features for object classification, they are able to detect motion 
without appearance. With the understanding of similarities to bio-
logical brains and limitations in which these neural networks perform 
fundamental vision tasks like motion detection, we will have a better 
understanding of a network’s suitability for real-world applications.
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Spiking neurons inherently represent time due to their momentary 
discrete action potentials; as such, they are well poised to process spa-
tiotemporal data. Despite their temporal nature, most computational 
learning rules focus on modulating synaptic efficacy (weight), which 
only indirectly influences a neuron’s temporal dynamics.
Weight-based rules are well suited to solving synchronous spatial 
learning tasks, as demonstrated by the surge of interest in rate-
coded neurons performing frame-based image classification using 
backpropagation.
For temporal tasks, however, weight based learning rules often implic-
itly rely on the temporal dynamics of membrane equations or synaptic 
transfer functions to discriminate between spatially identical, but tem-
porally distinct, inputs.
Allowing spiking neurons to perform some aspect of explicit temporal 
learning offers significant advantages for learning asynchronous spati-
otemporal patterns compared to weight-based rules alone.
With improvements in imaging techniques, there is accumulating evi-
dence for action-potential conduction velocity plasticity over long and 
short timescales [1,2].
The biological mechanisms implementing Conduction Delay Plasticity 
(CDP) could include myelination, changes in axon diameter, changes 
to nodes of Ranvier length, bouton movement, or likely some combi-
nation of these mechanisms and others not listed.
While the precise nature and interaction of the biological mechanisms 
underlying CDP remain elusive, computational models provide a 
framework in which theories can be tested.
Several CDP learning rules have been suggested with greatly varying 
levels of biological fidelity and computational efficiency; in particular, 
we focus on one rule called Synaptic Delay Variance Learning [3].
Here we demonstrate the ability of a Leaky Integrate and Fire spiking 
model using only CDP (no weight learning) to learn a repeating spati-
otemporal pattern in a continuous time input stream with no training 
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signal; that is, the delays self-organise to represent the temporal struc-
ture of the input.
A neuron receives 2000 afferents firing with Poisson distributions of 
10Hz, while the embedded pattern is presented with a Poisson distri-
bution of 5Hz and consists of 500 afferents firing once within a 50ms 
period.
The input is normalised such that the patterns cause no change in 
overall activity during presentations and all afferents involved in the 
pattern are adjusted to maintain a 10Hz firing rate.
After 250 seconds of training, the neuron is tested for 50 seconds and 
successfully responds to 99.7% of pattern presentations with 3.1% 
false positives, averaged over 100 trials.
These results provide a demonstration of CDP as a functional compu-
tational learning rule enabling spiking neurons to perform unsuper-
vised learning of spatiotemporal data.
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Globus pallidus pars externa (GPe) has been seen as a relay nucleus 
in the indirect pathway of the basal ganglia, which simply inverts 
the inhibitory signal arriving from striatum. In this view, the informa-
tion flowing through GPe runs in parallel paths having no interaction 
with one another. However, GPe neurons are fast autonomous oscil-
lators that project axon collaterals spanning a wide area, creating an 
active local inhibitory network. How does local connectivity affect GPe 
steady-state firing and responses to stimuli? To answer that question, 
we constructed network models of GPe using experimentally meas-
ured neuron firing rates and input-output properties and four differ-
ent structures of local connectivity.
GPe neurons are intrinsic oscillators, so they can be simulated using 
phase models, which allow us to predict the time of the next spike 
considering all the synaptic inputs arriving during the inter-spike 
interval (ISI). We experimentally measured the firing rates, phase reset-
ting curves (PRCs), and inter-spike membrane potential trajectories of 
a sample of GPe neurons (n=19) in mouse brain slices. Using the data-
set of PRCs and firing rates, we generated 1000 artificial neurons with 
the diversity of the recorded neurons. The local connectivity in GPe 
is known to be GABAergic, and we can measure the amplitudes and 
kinetics of the unitary synaptic conductances. In addition, the aver-
age probability of connection between any two neurons in GPe can 
be estimated from anatomical studies. As the connectivity patterns 
are unknown, we simulated networks with four qualitatively different 
adjacency matrices (Fig. 1A): “regular”, “random”, “small world” and 
“hierarchical”. Each network was created using the same set of 1000 
neurons and the same total number of connections (10000). At steady 
state, the four networks produced similar distributions of firing rates 
and coefficient of variation of ISI.

Fig. 1 A Simplified representation of the four networks used in the 
study. Each architecture contains the same number of neurons and 
connections. B Perturbation generated by a single IPSP applied to 
one neuron propagates across the entire network. Figures show the 
absolute difference in phase between the perturbed and unper‑
turbed simulations

In the phase model, the local inhibitory synaptic barrage alters the 
stationary density of phase from the uniform distribution of an unper-
turbed oscillator. In the networks simulated here, the neurons spent 
more time at late phases, i.e. near spiking. This was more evident in 
regular and small-world networks compared to hierarchical and ran-
dom networks. The skewed phase density altered the response to an 
external excitatory input, as measured by the PSTH. The networks with 
the greatest skew produced the largest response amplitude and the 
briefest response time course.
Because of the GPe neurons’ autonomous firing and connectivity, 
a local perturbation might propagate through the entire network 
(Fig. 1B). We investigated this by comparing the neurons’ phases in 
matched simulations with and without perturbation by a single synap-
tic input. The disturbance propagated more often in the random net-
work (69%) than in the regular network (61%). When the disturbance 
propagated, it changed the phase of most neurons in the network, but 
did not alter the overall firing rates, ISI distributions, or phase density. 
The perturbations propagated faster and with shorter latencies in hier-
archical and random networks, and slowest with longest latency in the 
regular network.
Our results show that in sparsely coupled networks of autonomous 
oscillator neurons like GPe, the architecture of connections has little 
effect on the steady-state firing rates, yet can determine the response 
to external perturbation, and may allow widespread signal propaga-
tion within the network.
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The brain processes information from different sensory modalities 
in our daily routine, and the neural system should have the ability to 
distinguish whether different signals originate from the same source. 
Experimental data suggested that the brain can integrate visual and 
vestibular cues to infer heading-direction according to Bayesian 
prediction. In the dorsal medial superior temporal (MSTd) area and 
the ventral intraparietal (VIP) area, there exist two types of neurons, 
congruent and opposite neurons. By focusing on a prior distribu-
tion of stimuli that is fully correlated, a recent work by Zhang et al. 
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[1] suggested that those two distinct types of neurons have com-
plementary roles in multisensory integration and segregation. In the 
proposed distributed network architecture, cues of different modali-
ties are processed by different modules, but the modules are recipro-
cally connected. Congruent neurons of given preferred stimuli in one 
module are connected to the congruent neurons in the other module 
with similar preferred stimuli. In contrast, opposite neurons of given 
preferred stimuli in the two modules are connected to their counter-
parts with opposite preferred stimuli. This facilitates the congruent 
neurons to yield Bayesian posterior estimates of multisensory integra-
tion in a broad range of parameters, and the opposite neurons to pro-
vide signals dependent on cue disparity, enabling the segregation of 
cues in subsequent processing. However, in the previous model, there 
are parameter ranges that the inference can only be approximately 
Bayesian. Hence, in this work, we will approach the dynamics analyti-
cally and propose improvements for achieving more accurate Bayes-
ian inference.
Furthermore, the Bayes-optimality in the previous work was based on 
a prior distribution of stimuli that is fully correlated, whereas in prac-
tice, there are many other scenarios described by priors with more 
than one components. For example, studies in causal inference con-
sider prior distributions with a correlated and an independent compo-
nent. In the second part of our work, we propose a neural circuit with 
additional modules to tackle these cases. In addition, we further illus-
trate that the network encodes strong evidence for the correlations 
between the prior information and the network structure. Finally, 
we discuss how the Bayes factor reveals the potential of our network 
model as a decision making neural circuit for causal inference.
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In prospect theory, loss aversion is one important parameter that 
modulates one’s decision in involving risk. Previous studies find that 
amygdala activity is related to the degree of loss aversion during 
the action-selection processes. In this study, we examine the brain 
response associated with decision outcome and how that varies 
across subjects with different degrees of loss aversion. We expect that 
people with high loss aversion experience stronger emotional impact 
when receiving a negative outcome after taking risk. We hypothesize 
a person’s degree of loss aversion could be reflected by the BOLD con-
trast across decision outcomes.
To test this hypothesis, we recorded and analysed the fMRI data of 
twenty-one participants (10 males and 11 females; M age = 17.9 
± 0.75) during the Loss Aversion Task (LAT) [1]. The LAT was imple-
mented with a rapid event-related design in which participants were 
given two options: NoGamble option with a guaranteed outcome 
and Gamble with 50% chance of getting a better-than-NoGamble 
outcome and 50% chance of getting a worse-than-NoGamble out-
come (Fig. 1A). The utility of the two options varied so that one option 
has higher or equal utility respect to another. Participants were pre-
sented with a feedback indicating the outcome. Loss aversion coeffi-
cient (lambda; ƛ= −beta loss / beta gain) is estimated by fitting the 
behavioural responses to the logistic function. A higher lambda value 
indicates stronger loss aversion, with ƛ = 1 meaning equal weight for 
gain and loss.

Fig. 1 A Design of the Loss Aversion Task (LAT). B Example of the 
three feedback conditions: Win, Loss and No gamble. C Lambda is 
negatively correlated with the activity of left posterior insular cortex

We find feedback-related activities at medial prefrontal cortex (mPFC) 
but find no significant difference among the valence of feedback (gain, 
loss, no-gain/loss). Condition contrasts reveal that the activity of the 
left posterior insular cortex during gambling loss relative to guaran-
teed loss is negatively correlated with participants’ lambda (Fig. 1B). In 
the other words, gambling loss elicit stronger insula response relative 
to guaranteed loss in participants with lower lambda, while those with 
higher lambda do not differentiate between gambling and guaran-
teed loss. The insular cortex potentially increases the sensitivity of the 
anticipated loss, or alternatively, reduces the sensitivity to the gamble 
loss [2]. Both interpretations lead to the likelihood a person choose to 
take risk in a long run given both gambling loss and guaranteed loss 
had similar subjective value in the past. In conclusion, the individual 
difference in loss aversion could be capture by condition contrasts in a 
LAT and gives insight to the model of outcome-value encoding.
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Reciprocally connected pairs (RCPs) of neurons are the simplest struc-
tural motif in neuronal networks. More complex structural motifs are 
composed of three or more neurons. RCPs are formed by reciprocal 
synapses, and represent local microcircuits that can act as feedback 
loops. Evidence of the ubiquitous presence of RCPs in the central nerv-
ous system of different animals is well-established. Statistical analysis 
of connections between principal cortical cells has shown that RCPs 
are overrepresented in the somatosensory cortex, neocortex, and 
olfactory bulb. RCPs are also overrepresented in the neuronal network 
of the nematode Caenorhabditis elegans (C. elegans) [1].
In this work we analysed the statistics of reciprocal and undirec-
tional chemical connections between pairs of neurons in the neu-
ronal connectomes of the male and hermaphrodite C. elegans, using 
data recently published in [2]. First, our analysis shows that even if 
all unidirectional connections are removed, i.e. if approximately 63% 
of all connections are removed, approximately 83% of neurons with 
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chemical synapses in the male (87%) in the hermaphrodite) remain in 
the strongly connected cluster, where they are reachable from each 
other through sequences of reciprocal connections. This result shows 
that reciprocal connections provide communication between most 
neurons with chemical synapses in the C. elegans. Second, average 
multiplicity was found to be larger among reciprocal connections than 
unidirectional connections, both among afferent and efferent connec-
tions. The probability that a connection has large multiplicity (over 
10 synapses per connection) is larger among reciprocal connections. 
Third, it was found that most neurons with an above-average number 
of presynaptic neighbors have a number of afferent synapses which is 
on average larger than the average connectome multiplicity. Moreo-
ver, the larger the in-degree of a neuron the larger the multiplicity of 
the afferent connections to this neuron (Fig. 1). The number of effer-
ent connections, however, was found to be largely independent of the 
number of postsynaptic neurons. Fourth, the number of afferent syn-
apses and the number of presynaptic neurons are strongly correlated, 
such that neurons with more presynaptic neighbors receive dispro-
portionally more synapses.
Given the known functional roles of some RCPs, it is possible that 
enhanced multiplicity among RCPs is the result of their function. For 
example, RCPs have been implicated in memory formation. Since the 
formation of long-term memory results in an increase in the number 
of dendritic spines on neurons that are part of a memory engram, it is 
possible that a similar mechanism plays a role in the enhanced multi-
plicity of reciprocal connections in the C. elegans. The enhanced multi-
plicity may in part result from Hebbian structural plasticity. As neurons 
with a larger number of presynaptic neighbors are more likely to be 
activated, they are also more likely to experience prolonged periods 
of high activity, which in turn can induce the formation of more syn-
apses. Conversely, the multiplicity of neurons with less presynaptic 
neighbors should decrease as the result of increased periods of low 
neuronal activity.

Fig. 1 Average synaptic multiplicity win of afferent connections 
to neurons with qin presynaptic neighbors, for the male C. elegans. 
Above‑average multiplicity (>3.61) is indicated by upward (purple) 
triangles and below‑average multiplicity is indicated by downward 
(orange) triangles. Vertical bars measure the standard deviation 
(spread about the average value). The vertical dotted line indicates 
the average number of presynaptic neighbors
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In biological neuronal networks, autaptic connection or autapses are 
synaptic connections between the axon and dendrites of a single 
neuron, which can be either excitatory (glutamatergic) or inhibitory 
(GABAergic). Since their first discovery four decades ago [1], the exist-
ence of autapses has now been documented in various brain regions 
including neocortex, hippocampus and cerebellum [2]. However, the 
functional role of autapses is still unknown [3]. In this work, we show 
the importance of autapses for temporal pattern recognition in simple 
spiking neural networks. The computational task is to recognise a spe-
cific signal sequence in a stream of inputs so that a single output neu-
ron spikes for the correct input signal, while remaining silent for other 
input signals. Having understood the role of autapses and the result-
ing switching mechanism in networks evolved for recognising signals 
of length two and three [4], we were able to define rules for construct-
ing the topology of a network handcrafted for recognising a signal 
sequence of length m with n interneurons. We show that autapses 
are crucial for switching the network between states and observe that 
a minimal network recognising a signal of length m requires at least 
(m-1) autaptic connections. In contrast to solutions obtained by the 
evolutionary algorithm in [4] we show that the number of interneu-
rons required to recognise a signal is equal to the length of the signal. 
Finally, we demonstrate that a successful recogniser network (where 
n is greater than or equal to three) must have three specialised neu-
rons: a “lock”, “switch” and “accept” neuron, in addition to the other 
state maintaining neurons (N0, N1, … Nn-4), whose number depends 
on length of the signal. All interneurons in the network require an 
excitatory autaptic connection, apart from the “accept” neuron.The 
“lock” neuron is always active (thanks to an excitatory autapse), which 
prevents the output from spiking except when the network receives 
the second to last correct input signal and allows the output neuron 
to spike in response to the correct last input. If the lock is released by 
the second to last correct input signal, the “accept” neuron (i) pro-
duces spike/s in the output neuron when the network receives the 
last correct input and (ii) sends a signal to the “switch” neuron, which 
transforms the network back into the start state. The “switch” neuron 
is responsible for the transition between the network start state and 
other possible inter-signal network states. In the future, we intend to 
explore other functional roles of autapses and higher-order loops in 
larger neuronal networks.
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Biological organisms are constantly challenged with navigating odor-
ant scenes comprised of complex time-varying mixtures of volatile 
compounds. To characterize odorant mixture encoding and process-
ing, two seemingly contradictory hypotheses have been considered: 
Elemental and Configural. The Elemental scheme [1,2] encodes mix-
tures linearly with identifiable components, while the Configural 
scheme [3] encodes mixtures as a holistic odor object distinct from 
its components. Here, we advance a feedback normalization model of 
the Drosophila early olfactory system that reconciles the two encod-
ing schemes, and analyze the geometry of the resulting odorant 
encoding space.
Our model consists of Projection Neurons (PNs), Kenyon Cells (KCs) 
and the Anterior Paired Lateral (APL) neuron. To quantify the degree 
to which a mixture is encoded elementally vs configurally, we employ 
the Cosine Similarity (CS) between the KC code of the odorant mixture 
and its pure components. We show that, due to the global feedback 
gain control exerted by the APL neuron and the KC spiking mecha-
nism, the steady-state KC output is an input-invariant sparse com-
binatorial code with consistently 5-10% active neurons. This sparse 
code results in a configural mixture code with low CS scores against 
all pure components, enabling the association of different valences to 
an odorant mixture from its components. Preceding the steady-state 
phase, the circuit makes full use of gradient encoding in the first two 
layers of the olfactory pathway [4] and the APL temporal dynamics 
to encode each mixture elementally with about 25% active neurons. 
This code exhibits a high (∼1) CS score with all pure components in 
the mixture, indicating high linear decodability. Moreover, we demon-
strate that the elemental encoding phase enables cognitive functions 
for odorant processing. For example, combined with an attention-
driven modulation signal, elemental encoding overtakes configural 
encoding in steady state and promotes odorant tracing for navigation.
Next, we investigate the geometry of the odorant and the KC spaces 
and show that smooth interpolation between odorant input vectors 
leads to sharp discontinuities in the KC representation space. Further 
analysis reveals that the steady-state KC combinatorial codes are 
almost binary, concentrating around the corners of a high dimen-
sional cube in KC space.
This sparse grid-like structure gives rise to a distinctive clustering 
of odorant mixture identities in the KC space, with high intra-cluster 
similarity and inter-cluster dis-similarity. This geometric view of the KC 
encoding space suggests that sharp transitions in the KC representa-
tion is the result of crossing cluster boundaries, which leads to large 
jumps across vertices of the KC cube, and explains previous observa-
tions that small compositional changes of mixtures (mixture ratio or 
component identities) can incur large differences in perception. Simi-
larly, the transition from elemental to configural phases across time 
corresponds to a trajectory in the KC space from a subspace spanned 
by KC codes of odorant components to the vertices of the cube.

Fig. 1 A1 PN‑KC‑APL Architecture Overview. A2 Spatio‑Temporal 
Dynamics of Input/Output of PN‑KC‑APL Circuit. B1 Transient and 
Steady‑state KC across binary odorant mixtures shows different 
transition smoothness properties. B2 KC Combinatorial code occupy 
corners of a hypercube. Mixing odorants causes KC response to jump 
between vertices
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Characterizing the functions of neurons in visual cortex is a central 
problem in visual sensory processing. Along the ventral visual path-
way, functions of the neurons in the cortical area V4 are less under-
stood compared to early visual areas V1 and V2. This is primarily 
because of V4 neurons’ highly nonlinear response properties. As a 
consequence, building predictive models for these neurons has been 
one of the challenging tasks in computational neuroscience. Recently, 
models based on convolutional neural networks (CNNs) have shown 
promise in predicting the activity of V4 neurons. More importantly, 
interpreting CNN-based models has offered tools to understand V4 
neurons’ functional properties through visualizing their pattern selec-
tivity. These interpretations, however, are based on models with hun-
dreds of convolutional filters. Therefore, it is challenging to present 
a sparse set of filter bases to model each V4 neuron. To address this 
limitation, we propose two algorithms to remove redundant filters 
in the CNN-based models of V4 neurons. First, CAR compression that 
prunes filters from the CNN based on the filter’s contribution to the 
image classification accuracy. CAR is a greedy compression scheme to 
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obtain smaller and more interpretable CNNs, while achieving close to 
original accuracy. Second, RAR compression that prunes filters based 
on their contribution to the neural response prediction accuracy. Both 
CAR and RAR provide a new set of simpler accurate models for V4 neu-
rons. These models achieve almost similar (for CAR) or higher (for RAR) 
accuracy compared to the original model. Using the compressed mod-
els, we are able to find a sparse set of filters that accurately model V4 
neurons. We identify and visualize a total of 25 filters in AlexNet that 
accurately model V4 neurons in non-human primates. The features 
extracted by these 25 filters can predict the spike rates of 71 V4 neu-
rons with an average correlation coefficient of 51%. By visualizing the 
patterns selected by these models, we further demonstrate that V4 
neurons are modeled via curvature or texture filters, as well as other 
more complicated filters. Our results present one of the first efforts 
to bridge between large-scale convolutional models of neurons and 
interpretable sparse networks.
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Extracellular spike waveforms from recordings in the visual cortex 
have been classified into either regular spiking (RS) or fast spiking (FS) 
units, which are commonly associated with excitatory and inhibitory 
neurons, respectively. While both these types of spike waveforms are 
negative-dominant, we show that there are also distinct classes with 
positive-dominant waveforms, which are not regularly reported. The 
spatial receptive fields (RFs) of these different spike waveform types 
were estimated and we found that each spike type had distinctly dif-
ferent RF structure.
In this study, we systemically classified 1,225 single units (SUs) in cat 
visual area 17 (V1) into five categories by the shape of their spike 
waveforms: RS units (53%, n =645) which are biphasic, have a domi-
nant negative peak, and a slow declining slope at the end of the wave-
form; FS units (18%, n = 226) which are biphasic, have a dominant 
negative peak, and a fast declining slope at the end of the waveform; 
triphasic spiking units (TS, 10%, n = 122) which have a positive first 
peak that is >10% of the negative peak, followed by a large negative 
peak and then a smaller positive peak; compound spiking units (CS, 
7%, n = 82) which are also triphasic but with a significantly longer 
waveform; and positive spiking units (PS, 12%, n = 150) which have a 
positive peak greater than the negative peak.
Of these 1,225 SUs, 341 had their spatial RFs estimated as the spa-
tial filters in a powerful model-based analysis method to objectively 
determine the RF characteristics of the recorded units, which revealed 
the existence of non-oriented and blob-like (orientation bandwidth 
> 110°) and oriented and Gabor-like RFs (orientation bandwidth < 
90°). RS and FS units had mostly oriented RFs (94%, and 96%, respec-
tively), TS and CS units have an even mixture of both RF types (47% 
oriented and 53% non-oriented, and 56% oriented and 44% non-ori-
ented, respectively), while PS units had mostly non-oriented RFs (83% 
blob-like).
Units with non-oriented RFs have similar spatial structures to the cen-
tre-surround RFs reported in the thalamus, suggesting that units with 
non-oriented RFs could have originated from the sub-cortical area. We 
calculated several response properties that are statistically distinguish-
able between cortical and thalamic neural populations: spike-rate, 
burstiness, and response latency. On average, PS units had signifi-
cantly higher spike-rate (t-test, p < 0.01), significantly higher propor-
tion of burst spikes (p < 0.001), and significantly shorter response 
latency (p < 0.001) to RS and FS units. We also recorded from V1 before 

and after the application of muscimol (a cortical silencer) and found 
that PS units remained while RS and FS units did not.
Thus, our results suggest that PS units, which have mostly non-ori-
ented RFs, thalamic-like response properties and remain after corti-
cal silencing, are recordings of axons originating from the thalamus. 
RS and FS units correspond to cortical neurons, which have mostly 
orientated RFs and do not remain after cortical silencing. Our results 
suggest that cortically implanted electrodes are able to record activ-
ity simultaneously from thalamic axon afferents and from the somas of 
cortical neurons, thus allowing us to assess connectivity between two 
brain areas while only recording from one area.
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Growth, formation and movement of biological structures are deter-
mined by characteristics of the environment and requirements for 
obtaining external resources. Likewise, the topological organization 
of the brain, consisting of a set of neurostructures, has a direct effect 
on the brain’s ability to perceive or process data. Additionally, local-
ized damage to a small part of the brain will result in specific distur-
bances of isolated mental facilities, such as perception or movement 
[1]. Many researchers are currently studying regeneration and forma-
tion of a new spatial filling of tissue at the sites of damage. The indi-
vidual variability of the anatomy and connectivity of the brain affects 
the formation of its structure [2]. Studies of both tissue features and 
the distribution and orientation of individual components are widely 
used to visualize the microstructures of individual brain regions or to 
determine the locations of biomarkers [3]. At the same time, it can be 
shown that neurorehabilitation depends not only on the characteris-
tics of the whole brain, but also on the particular features of the dis-
tinct area where growth and recovery occur directly.
In this work, we study cases of regeneration of cortical neurostruc-
tures, when the damaged area is filled with new elements for a long 
period of time. The analysis compares the calculated growth direc-
tions of neurostructures, the calculated trajectories of their growth, 
taking into account the existing environment, and the real growth 
paths identified on the basis of MRI data.
Our study takes into account that the ways of formation of neural 
structures during neurorehabilitation have two main characteristics 
that differ in scale and in details. The first characteristic is the average 
direction of the formation of new neurostructures. Such a direction, as 
a whole, is caused by an increase in the “favorableness” of the environ-
ment in which growth occurs. The second characteristic is a detailed 
following of external elements in the existing biological environment, 
that is, on the one hand, rounding obstacles, and on the other hand, 
the use of convenient “corridors” for growth and advancement (Fig. 1).
Data packages (fMRI) are collected from Human Connectome Project 
(https://www.humanconnectome.org/data/). These fMRI could be 
converted to diffusion-weighted images (dMRI), which are used for 
tractography analysis and for investigate the heterogeneity of micro-
structural features.
The study uses spatial data analysis, which calculates the main cor-
ridors and growth directions, taking into account the available corti-
cal volume filling. Data at the boundaries of tissue are excluded from 
analysis to minimize the impact of partial volume averaging with sur-
rounding tissues.
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Fig. 1 Formation of growth paths depending on the density of 
obstacles
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Introduction: No two brains are alike. Neuroimaging can be used to 
elucidate the neural basis of human identity and to map neural cor-
relates of human behavior and cognition. While most neuroimaging 
features are commonly studied in the highest resolution provided by 
the scanner, brain connectivity studies are traditionally conducted in 
a lower resolution of a predefined atlas. The aim of this study was to 
contrast the identification (fingerprinting) and behavior prediction 
capabilities of the atlas-based brain networks with a novel ultra-high-
resolution model of brain networks. This comparison will explore the 
potential gains of conducting brain connectivity analyses in a higher 
resolution.
Methods: We analyzed neuroimaging and behavioral data acquired 
from 1000 individuals participating in the Human Connectome Pro-
ject (HCP). These individuals formed a “test” group. A repeated MRI 
scan on a different day from 42 of these individuals formed a “retest” 
group. Structural connectivity was mapped using probabilistic trac-
tography of Diffusion MRI. Functional connectivity was mapped using 
resting-state functional MRI. Additionally, surface maps for cortical 
measures of thickness, curvature, sulcal depth, and myelination were 
sourced from the HCP. Hence, each scan was associated with 6 dif-
ferent neuroimaging characteristics of structure, morphology, and 
connectivity, each of which was mapped at the higher resolution of 

vertices (~32,000 nodes per hemisphere) as well as regions compris-
ing an established atlas (180 regions per hemisphere), yielding 12 total 
measures.
For each measure, a similarity metric for all scan pairs was computed. 
This similarity information was used to quantify the extent of identifi-
able information captured by neuroimaging measures. We computed 
the effect size difference in intra- and inter-subject similarity distribu-
tions as an identifiability metric. Hence, higher effect size differences 
translated to higher precision in identification. To capture the extent 
of behavioral associations of every measure, independent component 
analysis was used to decompose 109 behavioral measures sourced 
from HCP to five core continuous dimensions, characterizing cognitive 
performance, illicit substance use, tobacco use, personality-emotion 
traits, and mental health. Variance component modeling was used 
to evaluate the extent to which each neuroimaging measure could 
explain individual variation in each behavioral dimension.
Results: Comparing the correlates of neural identity and behavior in 
atlas-based models with the ultra-high-resolution alternative revealed 
the extent of information gain achieved by the increase in spatial reso-
lution (Fig. 1). Our findings show behavioral associations of all neuro-
imaging modalities significantly increased as a result of the increase 
in spatial resolution. In particular, behavior associations of structural 
connectivity, functional connectivity, and cortical thickness benefit-
ted the most from ultra-high-resolution analyses. The neural correlates 
of individual identity were also better detected in higher resolution, 
especially for structural connectivity and all measures of morphology 
(cortical curvature, thickness, and sulcal depth). The identification 
improvements of functional connectivity and myelination were mini-
mal. We proposed a novel model of high-resolution structural brain 
networks that surpasses the ability of atlas-based alternatives in both 
identification and behavior explanation of individuals.

Fig. 1 Identification effect size (top left) and overall behavior associa‑
tion (top right) captured at the resolution of a well‑established corti‑
cal atlas (violet), and a high‑resolution alternative (pink). Associations 
are decomposed to data‑driven components of behavior (bottom 
row). The dashed lines present the 95% confidence interval. Asterisks 
quantify effect sizes (***: large, **: medium, *: small)

P223 
Less is more: wiring‑economical modular networks support 
self‑sustained firing‑economical neural avalanches for efficient 
processing
Shengjun  Wang1, Junhao  Liang2, Changsong  Zhou3

1Shananxi Normal University, Physics, Xi’An, China; 2Hong Kong Baptist 
University, Hong Kong, China; 3Hong Kong Baptist University, Physics, 
Hong Kong, China
Correspondence: Changsong Zhou (cszhou@hkbu.edu.hk) 
BMC Neuroscience 2020, 21(Suppl 1):P223



Page 122 of 123 BMC Neurosci 2020, 21(Suppl 1):54

Complex neural network in the brain is remarkably cost-efficient while 
the basic mechanisms underlying its structure-dynamics economy are 
not clear. Here we study the intricate interplay between wiring and 
running cost with modular network topology, self-sustained activ-
ity and critical avalanche dynamical mode in biologically plausible 
excitation-inhibition balanced spatial neuronal network. When rewir-
ing the initially wiring-expensive sparse random network gradually 
to wiring-economical modular network, its self-sustained dynamics 
changes from asynchronous spiking to critical avalanches state with 
strongly reduced firing rate and greatly enhanced response sensitivity 
to transient stimuli. Thus, the system can counter intuitively achieve 
much more functional values with much less costs in both wiring and 
firing. The dynamic mechanism is explained as a proximity to Hopf 
bifurcation in the macroscopic mean-field in separated modules 
when increasing the connection density. Our work reveals the generic 
mechanism underlying the cost-economical structural organization 
and function-efficient critical dynamics of neural systems, providing 
insights to brain-inspired efficient computational designs.
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Cortical neural circuits display highly irregular spiking in individual 
neurons but variably sized collective firing, oscillations and criti-
cal avalanches at the population level, all of which have functional 
importance for information processing. Theoretically, the balance 
of excitation and inhibition inputs is thought to account for spiking 
irregularity and critical avalanches may originate from an underlying 
phase transition. However, the theoretical reconciliation of these mul-
tilevel dynamic aspects remains an open question. Herein, we show 
that excitation-inhibition (E-I) balanced network with synaptic kinetics 
can maintain irregular spiking dynamics with different levels of syn-
chrony and critical avalanches emerge near the synchronous transi-
tion point. The mechanism is unveiled by a novel mean-field theory 
that derives the field equations governing the network macroscopic 
dynamics. It reveals that the E-I balanced state of the network mani-
festing irregular individual spiking is characterized by a macroscopic 
stable state, which can be either a fixed point or a periodic motion and 
the transition is predicted by a Hopf bifurcation in the macroscopic 
field. Furthermore, these multiscale variable behaviours can be jointly 
observed in the spontaneous activities of mouse cortical slice in vitro, 
indicating universality of the theoretical prediction. Our theory unveils 
the mechanism that permits complex neural activities in different spa-
tiotemporal scales to coexist and elucidates a possible origin of the 
criticality of neural systems. It also provides a theoretical framework 
for analyzing the macroscopic dynamics of E-I balanced networks and 
its relationship to the microscopic counterparts, which can be useful 
for large-scale modeling and computation of cortical dynamics.
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A recent empirical model of the olfactory sensory neurons (OSNs) 
described on the molecular level the mechanics of the Odorant 
Transduction Process (OTP, Fig. 1A, top) [1]. A system of nonlinear 
differential equations modeling the OTP in cascade with a biological 
spike generator successfully captured the experimentally observed 
responses of OSNs.

Fig. 1 A Model architectures of OTP, CIM and DNP. B1 Instantiations 
of the identification circuits and their corresponding degree of free‑
dom. B2 Comparison between output of OTP (in black) and identified 
models. Peak‑SNRs between original and identified outputs are 
shown to the right. B2 inset Zoomed in view of transient responses

Here we functionally identify the OTP model on the algorithmic level 
with two state-of-the-art system identification methods (i) Channel 
Identification Machines (CIMs) [2] (Fig. 1A, middle) and (ii) Divisive Nor-
malization Processors (DNPs) [3, 4] (Fig. 1A, bottom). We examined 5 
model structures with different degrees of freedom under these two 
model architectures (Fig. 1B1).
Overall, the full temporal DNP successfully captured the OTP dynam-
ics with the highest average and peak signal-to-noise ratios (ASNR 
& PSNR) of 36.6 dB and 41.5 dB respectively when predicting the 
response to a novel stimulus (Fig. 1B2). This is 6 dB higher than the 
identified CIM model of comparable model complexity (rank 2), and 
4 dB higher than the full-rank CIM. While the linear filter alone identi-
fied by the CIM has a PSNR of 29.2 dB that is comparable to the predic-
tion given by the DNP with only FF-D processor, a closer examination 
revealed that it did not predict very well the transient responses at the 
onset of the stimulus that is critical in the context of olfactory encod-
ing. The highly nonlinear transient response is nonetheless well cap-
tured by the full temporal DNP (Fig. 1B2, inset).
Furthermore, we observed that the FF-N and FF-D processors identi-
fied in the full temporal DNP consistently resemble each other in their 
functional forms, with FF-N generally having higher 3 dB Bandwidth 
than FF-D (data not shown). This prompted us to closely examine the 
mechanism that gives rise to the OTP’s 2D encoding property where 
the output of OTP model captures both the odorant concentration 
and concentration gradient. We instantiated a DNP with FF-N and 
FF-D processors modeled as linear lowpass filters with different band-
widths. Surprisingly, the simple model is able to capture the essen-
tial 2D encoding across all stimuli described in [1] (data not shown), 
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suggesting a general approach that enables simultaneous encoding 
of input signal’s amplitude and gradient with divisive normalization.
Concluding, by evaluating two functional identification methods, we 
established a functional description of the empirical OTP model using 
divisive normalization processors. In addition, the identified DNP pro-
vided insights on the form of divisive normalization that leads to the 
simultaneous encoding of both the concentration and concentration 
gradient. Divisive processing has previously been used as a key com-
ponent in describing the functional dynamics of blowfly photorecep-
tors [5], suggesting that DNPs may be universally employed for the 
identification of nonlinear processing in the early sensory systems.
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