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Shape Representation in Primate Visual Area 4 and Inferotemporal Cortex

Abstract
The representation of contour shape is an essential component of object recognition, but the cortical
mechanisms underlying it are incompletely understood, leaving it a fundamental open question in
neuroscience. Such an understanding would be useful theoretically as well as in developing computer vision
and Brain-Computer Interface applications. We ask two fundamental questions: “How is contour shape
represented in cortex and how can neural models and computer vision algorithms more closely approximate
this?” We begin by analyzing the statistics of contour curvature variation and develop a measure of salience
based upon the arc length over which it remains within a constrained range. We create a population of V4-like
cells – responsive to a particular local contour conformation located at a specific position on an object’s
boundary – and demonstrate high recognition accuracies classifying handwritten digits in the MNIST
database and objects in the MPEG-7 Shape Silhouette database. We compare the performance of the cells to
the “shape-context” representation (Belongie et al., 2002) and achieve roughly comparable recognition
accuracies using a small test set. We analyze the relative contributions of various feature sensitivities to
recognition accuracy and robustness to noise. Local curvature appears to be the most informative for shape
recognition. We create a population of IT-like cells, which integrate specific information about the 2-D
boundary shapes of multiple contour fragments, and evaluate its performance on a set of real images as a
function of the V4 cell inputs. We determine the sub-population of cells that are most effective at identifying a
particular category. We classify based upon cell population response and obtain very good results. We use the
Morris-Lecar neuronal model to more realistically illustrate the previously explored shape representation
pathway in V4 – IT. We demonstrate recognition using spatiotemporal patterns within a winnerless
competition network with FitzHugh-Nagumo model neurons. Finally, we use the Izhikevich neuronal model
to produce an enhanced response in IT, correlated with recognition, via gamma synchronization in V4. Our
results support the hypothesis that the response properties of V4 and IT cells, as well as our computer models
of them, function as robust shape descriptors in the object recognition process.
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ABSTRACT 

 
 

SHAPE  REPRESENTATION  IN  PRIMATE  VISUAL  AREA  4 
AND  INFEROTEMPORAL  CORTEX 

 
 

Thomas Michael Murphy 
 
 

Brian Litt, M.D. 
 
 
The representation of contour shape is an essential component of object recognition, but 

the cortical mechanisms underlying it are incompletely understood, leaving it a 

fundamental open question in neuroscience.  Such an understanding would be useful 

theoretically as well as in developing computer vision and Brain-Computer Interface 

applications.  We ask two fundamental questions: “How is contour shape represented in 

cortex and how can neural models and computer vision algorithms more closely 

approximate this?”  We begin by analyzing the statistics of contour curvature variation 

and develop a measure of salience based upon the arc length over which it remains within 

a constrained range.  We create a population of V4-like cells – responsive to a particular 

local contour conformation located at a specific position on an object’s boundary – and 

demonstrate high recognition accuracies classifying handwritten digits in the MNIST 

database and objects in the MPEG-7 Shape Silhouette database.  We compare the 

performance of the cells to the “shape-context” representation (Belongie et al., 2002) and 

achieve roughly comparable recognition accuracies using a small test set.  We analyze the 

relative contributions of various feature sensitivities to recognition accuracy and 

robustness to noise.  Local curvature appears to be the most informative for shape 
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recognition.  We create a population of IT-like cells, which integrate specific information 

about the 2-D boundary shapes of multiple contour fragments, and evaluate its 

performance on a set of real images as a function of the V4 cell inputs.  We determine the 

sub-population of cells that are most effective at identifying a particular category.  We 

classify based upon cell population response and obtain very good results.  We use the 

Morris-Lecar neuronal model to more realistically illustrate the previously explored 

shape representation pathway in V4 – IT.  We demonstrate recognition using 

spatiotemporal patterns within a winnerless competition network with FitzHugh-Nagumo 

model neurons.  Finally, we use the Izhikevich neuronal model to produce an enhanced 

response in IT, correlated with recognition, via gamma synchronization in V4.  Our 

results support the hypothesis that the response properties of V4 and IT cells, as well as 

our computer models of them, function as robust shape descriptors in the object 

recognition process. 
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Chapter 1 

 

 

General Introduction 

 

 

1.1  The Ventral Stream and Models of Object 

Recognition 

 

Detection, categorization and identification are generally agreed upon as being the three 

major components of object recognition.  Salience would seem to be a prerequisite of 

detection and recognition.  The perceptual salience of an object, the degree to which it 

pops-out from the background and captures attention, determines the difficulty of 

locating it in search tasks and the speed of recognizing it in rapid presentations.  It has 

been well covered in the literature.  The Gestalt psychologists identified several 

properties, such as continuity, colinearity or cocircularity, and closure, which confer 
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salience upon objects, although their relative contributions to overall salience and 

manners of integration remain unclear. 

 

Ullman has proposed the idea that salience is a global property that integrates the Gestalt 

factors across an entire object (Shashua and Ullman, 1988; Ullman, 1996).  Closure is 

itself a global property (Yen and Finkel, 1998), and Kovács and Julesz have shown, using 

roughly circular contours, that closure leads to a marked increase in salience (Kovács and 

Julesz, 1993).  In Ullman’s original algorithm, salience is determined by the length, 

continuity and curvature of the contour.  Long, smooth contours with little change of 

curvature and no gaps are calculated to be the most salient.  Curvature covariation has 

been investigated (Chapter 3), and in a detailed study of Ullman’s methodology, Alter 

and Basri have found that, for many images, their algorithm robustly predicted salience 

values in accord with human perception (Alter and Basri, 1996).  In this dissertation, we 

consider closed 2-dimensional bounding contours primarily, and concern ourselves with 

downstream functionalities, namely representation and recognition. 

 

An accepted animal model for object recognition studies is the rhesus macaque monkey 

(Macaca mulatta).  Its cortical area that is predominantly visual in function accounts for 

52% of the cerebral cortex (compared to 27% in humans) (Van Essen, 2003).  Visual area 

4 (V4) of the macaque, an important intermediate hierarchical stage of visual form 

processing of the ventral cortical stream (the “what?” pathway, thought to be responsible 

for shape recognition) between the primary visual cortex (V1) and the inferior temporal 

complex (inferotemporal cortex) (IT) (Van Essen and Gallant, 1994), has received a 
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significant amount of research attention.  Virtually all visual sensory information in the 

ventral pathway passes through extrastriate area V4 on its way to the inferotemporal 

areas (Ungerleider and Mishkin, 1982), with V4 receiving inputs from visual area 2 (V2) 

and providing the major source of input to IT (Felleman and Van Essen, 1987; Felleman 

and Van Essen, 1991). 

 

Selectivity for simple dimensions, such as orientation, spatial frequency, length and 

width, has been demonstrated in V4 (Desimone and Schein, 1987), but these properties 

have also been found in earlier stages of form processing, such as area V1.  The Van 

Essen group, however, has been successful in finding selectivities in V4, thought to be 

form-related, that have not been found in earlier stages.  They have found that nearly all 

V4 neurons, while biased towards polar and hyperbolic stimuli over Cartesian stimuli, 

convey information about all three stimulus classes, with most having tuning curves in 

multiple classes (Gallant et al., 1996).  This, along with their positional invariance, 

perhaps suggests that V4 cells are neither simple feature detectors nor simple filters, but 

rather nonlinear filters broadly tuned along several form-related dimensions.  V4 cells 

responsive to polar stimuli could facilitate the perception of curvature, an important 

feature in natural image understanding, as well as mediate view invariance. 

 

Responses within V4 are dependent upon the spatial relationship between the stimulus 

position in the classical receptive field and the direction of attention (Connor et al., 

1997).  This differential modulation implies that an object-specific attention-based 

representation of the position of visual features, or some intermediate form leading to 
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this, may be present.  Object-centered coordinates such as these within a local reference 

frame could yield translation and scale invariance, desirable in any recognition system, 

biological or artificial.  This is analogous and consistent with the idea of human 

navigation being largely dependent upon a continuously updated egocentric 

representation of object locations, with a lesser dependence upon an enduring allocentric 

map of environmental shape (Wang and Spelke, 2000).  Note that a neural code of human 

spatial navigation based on cells that respond at specific locations and cells that respond 

to views of landmarks has been identified in the hippocampus and parahippocampal 

region (Ekstrom et al., 2003). 

 

Research by Connor and colleagues has identified cells in area V4 that are selective for 

both the local shape and the global position of segments of object borders, with most cells 

strongly responsive to a particular type of boundary conformation at a specific position 

within a larger shape (Pasupathy and Connor, 2001; Pasupathy and Connor, 2002).  

Specifically, these neurons are selective for both the magnitude and direction of curvature 

of a stimulus, and individual V4 cells appear to encode moderately complex boundary 

information at specific locations within larger shapes. 

 

Contour curvature detection, with neurobiological correlates in area V4, is sensitive to 

noise and provides a feature that is important for recognition, with lower level curvature 

calculations proving useful in higher level object recognition.  Pasupathy and Connor 

have pointed out that complex shape representation in area V4 is parts-based (since 

contour segments are defined by conformation and position) as well as distributed (since 
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individual cells encode smaller parts of larger objects) (Pasupathy and Connor, 2001).  If 

shapes are represented as combinations of primitive features then shape recognition could 

be seen as a hierarchical process.  With areas V2 and V4 selective both for the magnitude 

and direction of curvature, area V1 could provide the input to a population of local 

curvature detectors while area V4 could perform global matching between the curvature 

detectors.  It is conceivable that feedback from area V4 to area V1 provides some top-

down control of salience.  A number of studies have proposed neural and computational 

mechanisms for computing curvature (Dobbins et al., 1989).  These lower level curvature 

calculations are consistent with mechanisms, such as end-stopping, available in primary 

visual cortex. 

 

Simoncelli and Olshausen have reported that sensory neurons are evolutionarily and 

developmentally adapted to the statistical properties of the stimuli to which they are 

exposed (Simoncelli and Olshausen, 2001).  It is therefore not surprising that the 

difference between a salient closed contour and a non-salient background is determined 

by a statistic of the contour itself.  Elder and Goldberg consider contour grouping to be 

equivalent to the recovery of sequences of tangents.  They have found that the statistical 

dependencies between neighboring tangents on a contour are much greater than those 

between distant tangents (Elder and Goldberg, 2002).  Since local cues ultimately lead to 

global criteria, and since cocircularity is part of the Gestalt principle of good 

continuation, local curvature consistency on a contour could ultimately enhance global 

contour salience. 
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The surprising finding by von der Heydt and associates – that a majority of cells in V2 

and V4, and a smaller number of cells in V1, carry information about how local features 

belong to objects – is significant.  Specifically, these neurons were seen to code the side 

to which a border in a figure belongs (Zhou et al., 2000).  This response was seen to be 

generated within the visual cortex, not projected down from higher levels, and clearly 

represents global image context integration.  Perception tends to assign contrast borders 

to objects, according to the Gestalt psychologists, and the von der Heydt results show that 

this is accomplished at an earlier cortical level than previously thought. 

 

The research by Hegdé and Van Essen suggests that neurons in visual area V2 encode 

information about many complex shape and contour characteristics and are involved in 

form analysis to an extent not previously realized (Hegdé and Van Essen, 2000).  The 

responsiveness of cells in V2 to complex stimuli, such as angles, arcs, circles, 

intersecting lines, and non-Cartesian (hyperbolic and polar) gratings, while not as 

pronounced as in V4, is apparent.  They have found that most V2 cells showed 

differential responsiveness to these stimuli, suggesting that V2 cells explicitly represent 

complex shape information.  They imply that V2 cells may sample the grating and 

contour stimuli space widely, yielding a simplified, low-dimensional visual 

representation with perceptually relevant information preferentially left intact (Hegdé and 

Van Essen, 2003).  Again, the primitive features that compose the complex shapes could 

be addressed in area V1. 
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Both the von der Heydt as well as the Hegdé / Van Essen results give credibility to a 

hierarchical feedforward flow of visual information model, from V1 / V2 to V4 to IT, to 

support visual form processing.  These results can be considered in the context of 

information theory, with quantification of the amount of stimulus information carried by 

neural responses (Borst and Theunissen, 1999). 

 

The model of Poggio and colleagues has been both consistent with physiological data and 

successful in object recognition tasks.  It is based on simple hierarchical feedforward 

architectures and assumes that both invariance to position and scale as well as feature 

specificity are built up through separate mechanisms (Riesenhuber and Poggio, 1999b).  

Following the paradigm that the average feature complexity as well as receptive field size 

increase from V1 to IT, the model consists of linear, template matching units and non-

linear, pooling units.  Poggio’s main conclusion is that the assignment of different 

features to the correct object (the “binding problem”) does not require complex 

oscillation or synchronization mechanisms.  The model is bottom-up, without the 

absolute requirement of an explicit top-down (attentional or otherwise) signal, and does 

not require an explicit segmentation stage (Riesenhuber and Poggio, 1999a).  Poggio 

proceeds to caste this entire model as a view-based module, which is then incorporated 

into his “Standard Model”.  Here, view- and component-tuned units represent the output 

of the view-based module, and are subsequently used to create view invariant (object-

tuned) units.  These are input to task-related units, performing such visual tasks as 

identification / discrimination or object categorization (Riesenhuber and Poggio, 2003).  
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Feedback pathways for top-down modulation of responses and support of learning may 

also be incorporated. 

 

The work by Hinkle and associates provides some insights into the global significance of 

area V4.  The finding that stereoscopic disparity tuning (conventionally associated with 

the dorsal pathway) is prevalent in area V4 positions it as a major source of disparity 

information for IT and emphasizes the importance of stereoscopic depth cues in the 

ventral pathway (Hinkle and Connor, 2001).  It also suggests that 3-dimensional shape 

information is processed in V4 based on these cues.  A bias towards certain disparities 

has also been observed, possibly reflecting the ventral pathway’s particular emphasis on 

foreground objects or parts of objects projecting towards the viewer. The finding that 

neurons in area V4 are tuned for 3-dimensional orientation (Hinkle and Connor, 2002) 

supports these ideas and further suggests that the initial stages of shape analysis utilize 

depth cues.  Three-dimensional orientation tuning facilitates the computationally difficult 

3-dimensional position invariance and is compatible with both viewpoint-invariant and 

viewpoint-dependent models. 

 

While we consider only 2-dimensional boundary elements in our present effort, a 

complete model of V4 might have to incorporate 3-dimensional information, reflecting 

the internal cortical representation of the real world. 

 

V4 cells respond to a variety of stimulus features – including color (McKeefry and Zeki, 

1997), orientation (Desimone and Schein, 1987; Hinkle and Connor, 2002), disparity 
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(Hinkle and Connor, 2001), and complex spatial patterns (Gallant et al., 1996).  

Extrastriate cells show selectivities to several aspects of form (Gallant et al., 1996) and 

border ownership (Zhou, Friedman and von der Heydt, 2000).  In addition, V4 cell 

receptive field properties are strongly modulated by attention (Reynolds and Desimone, 

2003; Bichot, Rossi and Desimone, 2005; McAdams and Maunsell, 2000; Motter, 1994; 

Connor et al., 1997), and the presence of a small feature within the large receptive field 

can drive cellular response. 

 

Gray and McCormick have observed the synchronous rhythmic firing in the gamma 

frequency band of chattering cells in response to visual stimulation (Gray and 

McCormick, 1996).  The functional significance of these oscillations might be to 

integrate low level visual features.  By recruiting large populations of curvature sensitive 

cells in V4 into synchronous firing, cells representing consistent curvatures on contours 

could be bound together via the similarity of their firing rates.  Hopfield and Brody have 

proposed a mechanism in which groups of cells with similar firing rates synchronize 

(Hopfield and Brody, 2001).  Synchronization occurs naturally in the types of cortical 

architectures studied by Beierlein and colleagues (Beierlein et al., 2000).  Hopfield and 

Brody make the point that in a large ensemble of cells, a large fraction of cells firing at 

the same rate is statistically unlikely.  Thus, a set of connected V4 cells, each sensitive to 

magnitude and direction of curvature, that are coupled by horizontal connections, could 

rapidly synchronize. 
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An intriguing idea has emerged that suggests that area V4, as a key stage in a network of 

cortical and subcortical areas working in concert, contains a retinotopic salience map that 

guides saccadic eye movements during free viewing (Mazer and Gallant, 2003).  It is 

seen that bottom-up, visually driven activity in V4 predicts the direction of subsequent 

saccades and is modulated by top-down, feature attention-related signals.  Information 

about the spatial distribution of activity in V4 could be used in downstream areas to guide 

subsequent exploratory eye movements toward interesting positions in the visual field.  

Future efforts might include modeling the significant contribution of top-down 

information from higher cortical areas.  This not only can localize the regions of interest, 

but also can make adjustments to the iso-curvature segments as well. 

 

Much research has focused on the general neural selectivity of neurons in the 

inferotemporal cortex (Freedman et al., 2003; Baker et al., 2002; Tsunoda et al., 2001; 

Op de Beeck et al., 2001; Booth and Rolls, 1998; Rolls et al., 1997; Gallant et al., 1996; 

Logothetis et al., 1995; Kobatake and Tanaka, 1994; Fujita et al., 1992; Young, 1992; 

Felleman and Van Essen, 1991; Gross et al., 1972).  Other work by Connor and 

colleagues has focused on selectivity for 2-dimensional boundary shape (perhaps the kind 

that actually dominates responses to realistic objects) in the inferotemporal cortex.  It has 

been found that IT neurons integrate specific information, such as curvatures, 

orientations, and relative positions, about the shapes of multiple contour fragments 

(typically 2–4) (Brincat and Connor, 2004).  Explicit signals that code structural 

relationships between parts are generated, useful for high-level object representation, and 

supporting the idea of parts-based shape representation.  This once again may support a 



 11

hierarchical feedforward implementation, with IT input originating in V4.  It is related to 

the fragment-based approach of Ullman and colleagues.  Here, fragments (contour 

segments producing responses in V4) are the component building blocks used to 

represent a large variety of objects belonging to a common class (Ullman et al., 2001). 

 

Other research has focused on specific aspects of IT coding.  In a departure from 

controlled viewing tasks, DiCarlo and Maunsell have seen that most IT neuronal 

responses are unaffected by free viewing, as when a primate behaves naturally and 

visually explores cluttered environments by changing its direction of gaze (DiCarlo and 

Maunsell, 2000).  Tsunoda and colleagues have reported that an object is represented in 

IT by a combination of cortical feature columns, each representing a visual feature, with 

combinations of active and inactive columns used for individual features (Tsunoda et al., 

2001).  Baker and colleagues have trained monkeys to discriminate among stimuli 

consisting of discrete parts (Baker et al., 2002).  After training, responses to learned 

images, though not stronger, are enhanced in selectivity for parts and wholes, indicating a 

possible neural mechanism for holistic effects.  Kiani and colleagues have found that the 

categorical structure of objects (animate and inanimate with further hierarchical 

subdivisions) is represented by the pattern of IT population activity, with objects of the 

same category clustered and evoking similar response patterns (Kiana et al., 2007).  

Zoccolan and colleagues have seen that IT neurons with sharp selectivities for unique 

combinations of diagnostic object features typically have low tolerance to variations in 

position, size, illumination and clutter, and vice versa (Zoccolan et al., 2007).  Op de 

Beeck and colleagues have found evidence for a large-scale, highly reproducible and 
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stable, map of shape selectivity in IT that is largely independent of object class 

familiarity and behavioral task (Op de Beeck et al., 2008).  McMahon and Olson have 

reported that the influences of shape and color sum linearly in most IT neurons, with 

neither conjunction selectivity nor a specialized feature binding process necessary for 

representation (McMahon and Olson, 2009). 

 

As with V4, a complete model of IT might have to incorporate 3-dimensional 

information.  Yamane and colleagues have found evidence in IT for an explicit neural 

code for complex 3-dimensional shape, with widespread tuning for the spatial 

configurations of surface fragments (Yamane et al., 2006; Yamane et al., 2008).  Sereno 

and colleagues have suggested that 3-dimensional shape representations are highly 

localized, yet widely distributed in occipital, temporal, parietal and frontal cortices, with 

distributed networks intersecting both “what” and “where” processing streams (Sereno et 

al., 2002). 

 

Although our approach considers only implementations with neurobiological correlates, 

some insights might be gained by considering state-of-the-art segmentation techniques 

from computer vision.  For example, future successful models might choose to employ 

the image-based algorithm of Shi and Malik (2000).  In their methodology, the perceptual 

grouping problem is solved by extracting the global impression of an image.  Here, image 

segmentation is treated as a graph partitioning problem.  A class-based segmentation 

method (Borenstein and Ullman, 2002), guided by a stored representation of the shape of 

objects within a general class, has similarities to human vision.  It emphasizes the role of 
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high-level information by using class-specific criteria.  Another technique, useful in 

segmenting an image into foreground and background (Yu and Shi, 2003), employs 

parallel processes: one for low-level pixel grouping for feature saliency and another for 

high-level patch grouping for object familiarity. 

 

The state-of-the-art category-level recognition system of Malik and colleagues (Belongie 

et al., 2002) provides a shape description based on the distances between all pairs of 

points on the object’s bounding contour.  Shape context log-polar histograms are 

computed for each point on the contour.  The collection of histograms fully characterizes 

each shape.  Malik solves the correspondence problem between two shapes using optimal 

assignment.  He estimates the aligning transform using these correspondences and 

regularized thin-plate splines.  Finally, he measures similarity between the shapes as a 

function of matching errors between corresponding points and aligning transform 

magnitude. 

 

Another model, that of LeCun and colleagues (LeCun et al., 1998), has been successful in 

several applications, including handwritten character recognition.  It applies machine 

learning techniques to multilayer neural networks, trained with the backpropagation 

algorithm.  It relies more on automatic, gradient-based learning and less on hand-

designed heuristics.  Specifically, it employs convolutional neural networks, specifically 

designed to handle 2-dimensional shape variability.  It uses a learning paradigm to 

globally train all the modules – feature extractors and classifiers – and optimize a global 

performance criterion. 
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A future successful model of V4 would have to incorporate other findings as well.  For 

instance, the position and variability of the color center and retinotopic organization 

within V4 has been investigated (McKeefry and Zeki, 1997).  Also, direction-of-motion 

selectivity after adaptation has been confirmed (Tolias et al., 2005) and has great 

significance. 

 

It seems that recognition might require curvature measurement comparisons over a 

significant image region, the segmentation of contours into target vs. background, and 

possibly the discrimination of the direction of figure.  This suggests the need for both 

horizontal as well as top-down information.  This is very likely accomplished at the level 

of V4.  The possibility of cortical hypercolumns receiving “matched” input from multiple 

other local and distant hypercolumns could be investigated.  It may be the case that the 

synchronization of chattering bursts signifies cliques of connected hypercolumns.  These 

might possibly implement some form of Bayesian inference related to Mumford’s 

framework, with recurrent feedforward and feedback loops integrating top-down context 

and bottom-up stimulation (Lee and Mumford, 2003). 
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1.2  Computational Neuroscience – Necessity and 

Benefits 

 

The somewhat controversial nature of computational neuronal modeling is exemplified 

by the recent “cat brain” debate (Adee, 2009) between Dharmendra Modha, a computer 

scientist on DARPA’s SyNAPSE project who presented a simulation that his team 

claimed approached the scale of a cat’s brain, and Henry Markram, a neuroscientist who 

claimed that the simulation was a hoax, calling into question the legitimacy of brain 

simulation research.  Modha’s position was that the simulation was not a cat brain, but 

rather on the scale of a cat’s brain, in terms of the number of neurons and synapses.  

Markram objected to the impoverished detail in the simulation’s point neurons and 

regarded it as trivial. 

 

We feel that the acquisition of physiological and anatomical data alone is insufficient for 

a complete understanding of neural processing.  To learn how the brain works, 

experimental studies of animal and human nervous systems must be coupled with 

computational brain models.  At this stage, neuroscience requires a quantitative 

framework to integrate and manage its enormous amount of experimental data.  

Computational neuroscience can provide this. 

 

Computational models can aid in conceptualizing experiments and can help to interpret 

experimental results.  The parameter manipulations that are possible within a model can 
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far exceed what is biologically practical.  A model provides access to mechanisms with 

levels of sensitivity and specificity that are unavailable experimentally, as well as the 

ability to record all parameters simultaneously.  Computational protocols may be run 

repeatedly, with little or no preparatory work, without concern for loss or sacrifice of 

specimens. 

 

It is reasonable to think that a sufficiently detailed neuronal model, imbedded within a 

realistic network, will produce realistic behavior.  A good model should be able to 

reproduce experimental results and it should allow us to generate predictions and test 

hypotheses at the appropriate level of detail.  It even has the capacity to contradict 

experimental expectations. 

 

Simplified models may sacrifice biological accuracy for computational efficiency, but 

models do not have to be perfect to be useful.  Therefore, we create models with as much 

physiological and anatomical fidelity as is available to us in the published literature, 

while remaining tractable.  This represents a compromise between the requirements of 

simple computation and biological realism.  We must, however, understand the 

simplifications if we are to understand the connections between our computational 

models and nature. 

 

A typical criticism of computational neuroscience is that it does not generate enough 

predictions.  In fact, some journals deem models that do not make testable predictions to 

be unpublishable.  Also, some parameter choices may be biologically unrealistic and 
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some assumptions made to fill knowledge gaps may be incorrect.  None of these 

shortcomings are insurmountable. 

 

We feel that computational neuroscience should ideally augment, guide and complement 

experimental neuroscience, rather than replace it.  This dual approach should provide 

intuitions and a deeper understanding for both sub-disciplines.  Most importantly, 

computational simulations might lead to interesting and novel insights and unexpected 

results that can later be validated experimentally. 

 

1.3  MATLAB Models 

 

We have used GENESIS (see http://genesis-sim.org/), NEURON (see 

http://www.neuron.yale.edu/neuron/), Java (see http://java.sun.com/), python (see 

http://www.python.org/), etc., to create computational neural models. 

 

Our primary tool, however, is MATLAB.  Its modular design, high-level code, flexible 

interface options, device independence, numerical algorithms and data visualization 

capabilities make it ideal for our purposes.  Unsatisfactory execution time has simply 

never been an issue for us. 

 

With many third-party toolboxes available (such as Bayes Net Toolbox for Matlab: 

http://www.cs.ubc.ca/~murphyk/Software/BNT/bnt.html ), it remains a very popular 
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choice for computational neuroscientists, as well as scientists and engineers in general, 

worldwide. 

 

We have consistently used the latest versions of MATLAB, including MATLAB 

toolboxes, which were available.  Naturally, these have evolved over the course of our 

investigations.  The particular versions used for each piece of the research are noted in 

the Chapters. 
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Chapter 2 

 

 

Research Overview 

 

 

2.1  Chapter Contents 

 

We begin with a curvature-related investigation in Chapter 3.  The salience of a contour 

depends upon several factors, including continuity, closure and curvature consistency.  

We analyze the statistics of curvature variation using a single image from Shimon 

Ullman’s (Shashua and Ullman, 1988) original work on contour salience.  We develop a 

measure based on the arc length of a contour segment over which curvature variation 

remains within a constrained range.  Locally, all contours in the image are similar with 

respect to curvature consistency.  However, when the entire contour is considered, the 

most salient contours are found to have the most consistent curvatures. This finding 

reinforces Ullman’s point that salience is a global property of the object.  We interpret 
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these results in view of Rosenholtz’s (Rosenholtz, 1999) model of salience as a statistical 

measure of outliers from a population.  In addition, we speculate on the visual cortical 

mechanisms in striate and extrastriate cortex required to carry out salience measurements 

on this class of images.  A portion of this material has been previously published 

(Murphy et al., 2003). 

 

In Chapter 4, we continue with an investigation of curvature-sensitivity in macaque V4.  

Cells in extrastriate visual cortex have been reported to be selective for various 

configurations of local contour shape (Pasupathy and Connor, 2001; Hegdé and Van 

Essen, 2003).  Specifically, Pasupathy and Connor found that in area V4 most cells are 

strongly responsive to a particular local contour conformation located at a specific 

position on the object’s boundary.  We use a population of “V4-like cells” – units 

sensitive to multiple shape features modeled after V4 cell behavior – to generate 

representations of different shapes.  Standard classification algorithms (earth mover’s 

distance, support vector machines) applied to this population representation demonstrate 

high recognition accuracies classifying handwritten digits in the MNIST database and 

objects in the MPEG-7 Shape Silhouette database.  We compare the performance of the 

V4-like unit representation to the “shape-context” representation of Belongie and 

colleagues (Belongie et al., 2002).  Results show roughly comparable recognition 

accuracies using the two representations when tested on portions of the MNIST database.  

We analyze the relative contributions of various V4-like feature sensitivities to 

recognition accuracy and robustness to noise – feature sensitivities include curvature 

magnitude, direction of curvature, global orientation of the contour segment, distance of 
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the contour segment from object center, and modulatory effect of adjacent contour 

regions.  Among these, local curvature appears to be the most informative variable for 

shape recognition.  Our results support the hypothesis that V4 cells function as robust 

shape descriptors in the early stages of object recognition.  A portion of this material has 

been previously published (Murphy and Finkel, 2007). 

 

In Chapter 5, we continue our investigation of how contour shape is represented in 

cortex.  We extend our earlier results to consider the recognition properties of a 

population of cells modeled after those found in IT, which nonlinearly integrates specific 

information about the 2-dimensional boundary shapes of multiple contour fragments (V4 

cell inputs) with tuning functions on the shape × position domain (Brincat and Connor, 

2004; Brincat and Connor, 2006).  Using nonlinear least squares optimization and genetic 

algorithms to fit parameters, we create selective IT-like cell populations with similar 

response patterns.  We are principally interested in the number of constituent Gaussian 

terms in the IT-like cells’ total response equations, the linear and nonlinear parts of these 

equations, the amount of nonlinearity and how these aspects relate to the shapes of 

objects (as opposed to their orientations and scales).  We evaluate the performance of our 

IT populations on a set of real images as a function of the V4-like cell inputs.  The 

stimuli (2-dimensional closed contours representing object boundaries) evoke a pattern of 

activity across the population of IT cells.  Shape recognition is evaluated by 

demonstrating that the patterns of activity across the units to members of a particular 

object class resemble each other to a higher degree than they resemble members of any 

other class.  We examine cell response space in more detail using principal components 
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analysis and a 2-dimensional and 3-dimensional non-classical non-metric 

multidimensional scaling analysis.  We find the correlation coefficients of the 

observations (cell responses) and variables (images) and determine the sub-population of 

cells that are most effective at identifying a particular category.  We use a support vector 

machine, as well as a tree-based model, for classification based upon cell population 

response.  In general, we obtain very good results across a wide range of parameter 

values and implementation strategies, comparable to those obtained previously with the 

digit database.  Our results suggest that curvature- and position-sensitive units, as 

described by Brincat and Connor in IT, can function as robust shape descriptors. 

 

We concentrate on realistic biological models of cells – those that have a high biological 

plausibility without burdensome implementation costs – within our networks in Chapter 

6.  We use the Morris-Lecar neuronal model, with genetic algorithms utilized for 

parameter fitting, to more realistically illustrate the previously explored shape 

representation pathway in V4 – IT while remaining faithful to IT cell response patterns.  

As an aside, we demonstrate biologically-based object recognition using spatiotemporal 

patterns within a self-organized winnerless competition neural network with FitzHugh-

Nagumo model neurons.  We conclude with an examination of gamma synchronization in 

the V4 – IT circuit.  We use the Izhikevich neuronal model and demonstrate that an 

initially out-of-phase network’s inherent characteristics and dynamics can induce 

synchronized responses in V4 via PING mechanisms by applying current input to the 

network.  Additionally, we show that a response amplification in IT, correlated with 

recognition, results from the synchronized spiking in V4 and roughly coincides with the 
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onset of synchronization.  Our results suggest that realistic biological models of cells with 

curvature- and position-sensitive response properties, as described by Pasupathy and 

Connor in V4 and Brincat and Connor in IT, can function as robust shape descriptors. 

 

We summarize our results in Chapter 7 and discuss future steps in Chapter 8. 
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2.3  Motivation, Personal Objectives and Research 

Goals 

 

This dissertation was proposed with very specific research goals.  We sought to develop a 

population model of V4-like cells and investigate their ability to represent contour shape.  

We sought to evaluate the performance of this V4 network on the MNIST database of 
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handwritten digits.  We sought to develop a model of IT response based on V4 inputs and 

evaluate the performance of an IT population on a set of real images.  We sought to 

investigate the recognition performance within the IT network as a function of the 

number of V4 subunits and their nonlinear combinations.  Finally we sought to explore 

the connections between our model and current psychological models of object 

categorization.  (Incidentally, all of these objectives have been accomplished.) 

 

Perhaps, though, our motivation and goals should be expanded slightly. 

 

The representation of contour shape is an essential component of object recognition, but 

the cortical mechanisms underlying shape analysis and object recognition are 

incompletely understood, leaving it a fundamental open question in neuroscience.  We 

hope to approach such a neurobiological understanding, which would be useful 

theoretically as well as in developing or improving computer vision and Brain-Computer 

Interface (BCI) methodologies and applications. 

 

Some computer vision approaches to object recognition have begun to achieve 

impressive levels of accuracy and robustness, yet lack a clear connection to known 

cortical constructs.  We hope to narrow the divide between the theoretical computational 

neuroscience and the biological neurophysiology by creating theoretical models of 

abstract computations as well as neural implementations.  Both types of models might be 

able to generate experimentally testable predictions. 
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We ask two fundamental questions: “How is contour shape represented in cortex and how 

can neural models and computer vision algorithms more closely approximate this?”  Our 

primary objective is to determine why the response properties of V4 and IT cells (i.e., 

their receptive fields), and in particular their sensitivities to curvatures and contour 

positions, are useful.  We hope to establish a clear connection between a computer model 

of a recognition system and known cortical constructs within a biologically realistic 

network architecture. 

 

This type of research – in search of an improved theoretical understanding – is essential 

to our field, important in that it is a model problem, interesting in that it resides at the 

center of the mind-brain issue.  Leif Finkel and I began our research together by 

investigating and developing models of striate cortex.  Although none of that earlier work 

is reflected in this dissertation, my personal objective is to continue the recognition work 

that Leif and I started in V4 and IT. 
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Chapter 3 

 

 

Curvature Covariation as a Factor in 
Perceptual Salience 
 

 

3.1  Introduction 

 

The perceptual salience of an object is the degree to which it pops-out from the 

background and captures attention.  The salience of a target determines the difficulty of 

locating it in search tasks, and the speed of recognizing it in rapid presentations.  The 

Gestalt psychologists identified several properties that confer salience upon objects, such 

as continuity, colinearity or cocircularity, and closure.  However, the relative degree to 

which each of these properties contributes to overall salience remains unclear, as does the 

manner in which these factors are integrated. 
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As Ullman pointed out, salience is a global property that integrates the Gestalt factors 

across an entire object (Shashua and Ullman, 1988; Ullman, 1996).  In Figure 3.1, taken 

from Ullman’s original paper, the three circular contours pop out and are more salient 

than the background squiggles.  We are interested, in this paper, in understanding 

quantitatively what factors render the circles salient. 

 

One Gestalt factor that distinguishes the circular contours from the background is closure.  

Closure is itself a global property (Yen and Finkel, 1998), and Kovács and Julesz have 

shown, using roughly circular contours, that closure leads to a marked increase in 

salience (Kovács and Julesz, 1993). 

 

In Ullman’s original algorithm, salience was determined by the length, continuity, and 

curvature of the contour.  Long, smooth contours with little change of curvature and no 

gaps are calculated to be most salient.  In a detailed study of this algorithm, Alter and 

Basri found that, for many images, it robustly predicted salience values in accord with 

human perception (Alter and Basri, 1996).  To our knowledge, a detailed analysis of the 

original Ullman image (Figure 3.1) has not been performed. 

 

We sought to determine, in this image, the degree to which the circular contours are more 

or less cocircular than the background squiggles, over a range of spatial scales.  In other 

words, to what degree does curvature covary across the circular contours as compared to 

across the squiggles.  This study therefore represents an attempt to gather image statistics 

on a single image. 
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Figure 3.1 – Shashua & Ullman image. 
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3.2  Methodology 

 

By deliberate construction, the three closed contours in Figure 3.1 are physically similar 

to the background contours in terms of contrast, thickness, and range of orientations.  The 

background squiggles are not all continuous, but terminate at the borders of the figure, 

forming three open contours.  The closed contours are shorter (239, 244, 243 pixels) than 

the background contours (1238, 2011, 880 pixels), but it is not clear that the terminations 

of the background contours are perceptually significant. 

 

An erosion algorithm was first employed to reduce image contours down to single-pixel 

widths (using the MATLAB bwmorph function).  We were then able to decompose the 

image into closed and background contours and investigate each separately. 

 

Orientations were computed using Freeman & Adelson’s G2 / H2 steerable filters 

(Freeman and Adelson, 1991).  At locations where contours cross, we ascertained that the 

correct orientation was assigned to each contour. 

 

Curvature is a scale-dependent quantity.  Therefore, as illustrated in Figure 3.2, we used a 

weighted average of the curvatures computed over several arc lengths, and assigned the 

averaged value as the curvature at each pixel. This weighted average was chosen to 

provide  some  minimal  smoothing  while  retaining  the true nature of the contours.  The 
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Figure 3.2 – Method of calculation of curvature at each pixel. 
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angle subtraction formulas are corrected modulo 360° so that, for example, the difference 

between a 350° orientation and a 10° orientation is 20°, not 340°. 

 

Once the curvature had been calculated at each pixel, cocircular segments were defined.  

A range (max curvature − min curvature) of curvature values for all contours was 

computed.  Adjacent pixels on the same contour were deemed cocircular if the difference 

in their curvatures was below a set threshold, expressed as a percentage of this total 

curvature range. 

 

All simulations were carried out using the MATLAB application development 

environment (version 6 R12) and the associated Image Processing Toolbox (version 3.1). 

 

3.3  Results 

 

We first investigated a number of technical image processing issues.  We carried out the 

measurements with and without an initial contour-thickening step in an attempt to smooth 

out the thinned contours.  Results were similar in both cases. 

 

Our algorithm is parameterized to allow subsampling of the contours (for example, start 

at pixel x of the contour and consider only every y pixels).  However, the results that we 

present represent a consideration of all pixels.  We also considered calculating curvatures 

using the slope of the line connecting the pixels for θ (instead of the steerable filter result) 
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and the Euclidean distance between pixels for s (instead of the arc length).   Both of these 

approaches were abandoned because of poor results.  Other qualitatively poorer results 

were obtained using Gabor filters instead of steerable filters, performing calculations with 

overlapping segments of the contours, and mid-pixel averaging if greater than threshold.  

All of these techniques were subsequently dropped. 

 

Decomposition of the image yielded three closed contours, three long background 

contours, and a number of short, open cross-hatches.  The mean and standard deviation of 

the curvatures for the closed and background contours were computed.  As expected, the 

mean curvature for each closed contour (0.0202, 0.0204, 0.0185) was close to the inverse 

of its approximate radius (0.0263, 0.0258, 0.0259, respectively), computed by dividing 

the contour length by 2π.  The sign of the curvature is generally determined by the 

direction of contour traversal (clockwise or counter-clockwise). The standard deviation of 

the curvature over the closed contours (0.0284, 0.0310, 0.0343) was significantly less 

than that of the background contours (0.0840, 0.0869, 0.0877).  Thus, overall, the circular 

contours are more cocircular than the background contours.  However, it remained to be 

determined whether portions of the circular contours were more cocircular than portions 

of the background.  This question can be assessed by determining, for each pixel, how far 

one can move along the contour until the curvature deviates past a fixed threshold.  For 

example, in Figure 3.3, the color of the pixel (and accompanying color bar) indicates the 

number of consecutive adjacent pixels on each contour that remain within a threshold of 

45%  of  the  total curvature range of all of the circular contours.  It is apparent that at this 
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Figure 3.3 – Threshold at 45% of curvature range. 
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threshold the closed contours contain much longer stretches of cocircularity, compared to 

the background contours and cross-hatches. 

 

Figure 3.4 provides a similar computation when the threshold has been set to 35% of the 

maximal curvature range.  This stricter threshold cuts down on the extent of contours 

conforming to the curvature constraints.  Although the closed contours still contain 

longer segments meeting this criterion, the difference between the closed contours and 

background squiggles is less dramatic. 

 

Figure 3.5 shows the results with a threshold set at 15% of the maximal curvature range.  

As the definition of cocircularity becomes stricter, i.e., curvature is constrained to a 

narrower range of values, the differences between the circular and background contours 

diminishes.  These results therefore show that at a local scale, all contours in the image 

are similar.  What distinguishes the circular contours (apart from closure) is that they 

maintain a similar curvature over a much longer extent, compared to the squiggles, where 

“similar” can be quantitatively defined.  In other results, not shown here, we have found 

that further loosening of the curvature constraints (i.e., allowing variation over 50% or 

more of the maximum range), yields similar results to the 45% case, up to a limit.  At this 

point (within a threshold of approximately 75% of the maximal curvature range), the 

definition of cocircularity is so loose that its discriminatory power begins to diminish.  

Large portions of all contours (circular and background) begin to appear cocircular. 
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Figure 3.4 – Threshold at 35% of curvature range. 
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Figure 3.5 – Threshold at 15% of curvature range. 
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3.4  Discussion 

 

If curvature covariation is a factor in determining perceptual salience then Figure 3.3 

argues that the circular contours should be more salient than the background.  However, 

as Figures 3.4 and 3.5 demonstrate, the degree to which curvature covariation contributes 

to salience will depend upon the mechanisms and the scale over which curvature 

information is computed in visual cortex. 

 

A number of studies have proposed neural and computational mechanisms for computing 

curvature (Dobbins et al., 1989).  These lower level curvature calculations are consistent 

with mechanisms, such as end-stopping, available in primary visual cortex.  At higher 

cortical levels, Van Essen, Connor and colleagues have shown that cells in areas V2 and 

V4 are selective both for the magnitude and direction of curvature (Hegdé and Van 

Essen, 2000; Pasupathy and Connor, 2001). 

 

Our results show that curvature values on the circles are much more similar over longer 

extents.  A cortical mechanism for distinguishing the circles could thus be based on the 

similarity of firing rates of curvature sensitive cells in V4.  For example, Hopfield & 

Brody (Hopfield and Brody, 2001) have proposed a mechanism in which groups of cells 

with similar firing rates synchronize.  Synchronization occurs naturally in the types of 

cortical architectures studied by Connors and colleagues (Beierlein et al., 2000).  

Hopfield and Brody make the point that in a large ensemble of cells, a large fraction of 
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cells firing at the same rate is statistically unlikely.  Thus, a set of connected V4 cells, 

each sensitive to magnitude and direction of curvature, which are coupled by horizontal 

connections, would rapidly synchronize in response to the circles, but to a much lesser 

degree to the background squiggles. 

 

Salience depends upon the degree to which a target differs from the background.  

Rosenholtz (Rosenholtz, 1999) has proposed that a possible metric for salience is to 

consider the Mahalanobis distance between a target and the background.  Thus, salient 

targets are those whose features are statistical outliers from the background population. 

 

For the Ullman figure, the circular contours are statistical outliers by virtue of their 

consistent curvature relative to the fluctuating curvatures of the background.  The 

contours are also outliers with respect to closure, as discussed above.  One might ask, 

however, why the background squiggles are not salient since they statistically differ 

compared to the circles.  One possible answer relates to Rosenholtz’s (Rosenholtz, 1999) 

explanation of salience asymmetries.  As illustrated in Figure 3.6, the standard deviation 

of curvatures on a circle is much less than on a squiggle.  Thus, curvatures on the circle 

are more consistent, and lie several (circle) standard deviations away from the mean 

curvatures of the squiggles.  But the mean curvature of the squiggle lies close (in terms of 

the standard   deviation of the squiggle distribution) to the mean of the circle curvatures.  

The relative consistency of the circle curvatures distinguishes them from the background. 
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Figure 3.6 – Gaussian model of circle vs. background curvatures. 
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Area V4 is well situated to carry out computations of the type envisioned here.  Connor 

and colleagues have found cells in macaque V4 that respond selectively to the magnitude 

and direction of curvature.  V4 contains an extensive network of horizontal connections, 

which span significant portions of the visual field (Amir et al., 1993).  Through these 

connections, possibly together with top-down information from higher temporal areas, 

V4 is thought to mediate contextual population-based interactions within the scene, such 

as those required in color constancy.  Finally, V4 is known to play a critical role in 

determining salience.  Lesions of V4 render animals incapable of detecting a less salient 

target in the presence of more salient distracters (Schiller, 1993). 

 

3.5  Conclusion 

 

For the single image considered here, the consistency of curvature on a contour is 

correlated with increased perceptual salience.  Salience appears to depend upon the 

statistical distribution of feature properties, such as curvature, over the object, in 

comparison to the background.  These findings support the earlier work of both Ullman 

and Rosenholtz.  The need to compare curvature measurements over a significant image 

region, to segment contours into target vs. background, and possibly to discriminate the 

direction of figure, suggest the need for both horizontal as well as top-down information, 

possibly at the level of V4, in determining contour salience. 
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Chapter 4 

 

 

Shape Representation by a Network 
of V4-like Cells 
 

 

4.1  Introduction 

 

The representation of contour shape is an essential component of object recognition.  

Human observers are exquisitely sensitive to changes in contour shape (Zana and 

Cavalcanti, 2005), and this capacity develops in early infancy (Norcia et al., 2005).  

However, the cortical mechanisms underlying shape analysis are incompletely 

understood. 

 

Visual cortical neurons in monkey extrastriate cortex are sensitive to the fine structure of 

contour shape.  Units in area V2 respond differentially to a variety of local contour 

configurations including angles, arcs and intersections (Hegdé and Van Essen, 2000; 
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Hegdé and Van Essen, 2003).  In area V4, Pasupathy and Connor have described cells 

that are selective for a particular local shape configuration at a particular location on the 

contour (Pasupathy and Connor, 2001).  For example, one neuron might prefer contours 

with a sharp concavity at the northwest corner; another unit might be selective for 

contours with a shallow convexity at the southernmost tip.  The response of these cells is 

further modulated by the local contour configurations at neighboring locations on the 

contour.  Thus, the unit preferring a sharp concavity at the NW corner might be 

potentiated by a sharp concavity located immediately clockwise along the contour, or 

suppressed by a convexity located immediately counterclockwise.  Pasupathy and Connor 

have demonstrated that a population of such V4 units can provide a detailed description 

of the contour shape (Pasupathy and Connor, 2002). 

 

We seek to evaluate the ability of a simulated population of these “V4-like cells” to 

recognize objects in a standard object recognition test bed — the MNIST database of 

handwritten digits.  We construct V4-like units with sensitivities to local curvature, 

relative location of the contour configuration on the contour, distance of the contour 

configuration from the center of mass, convexity / concavity, and modulatory effect of 

adjacent contour locations.  Stimuli (2-dimensional closed contours representing object 

boundaries) evoke a pattern of activity across the population of V4-like cells.  Shape 

recognition is evaluated by demonstrating that the patterns of activity across the units to 

members of a particular object class, e.g., all images of the digit “2”, resemble each other 

to a higher degree than they resemble members of any other class, e.g., images of the 
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digit “3”.  This measure corresponds to that reportedly used by humans and monkeys in 

object classification (Sigala et al., 2002). 

 

For the purposes of this study, we segment each contour into iso-curvature regions, and 

dedicate a V4-like unit to describing each region (its curvature, orientation, distance from 

object center, etc.).  This approach is computationally tractable and connects conceptually 

to previous models of “parts-based” recognition (Biederman, 1987; Riesenhuber and 

Poggio, 1999; Ullman et al., 2001).  However, there is no theoretical need for this initial 

segmentation stage – a large population of V4-like cells could describe overlapping 

regions of the contour in an over-complete representation. 

 

As an initial test, we directly compare the accuracy of recognition using V4-like units to 

the “shape-context” approach of Belongie and colleagues (Belongie et al., 2002).  

Belongie’s algorithm describes contour shape by computing, for each point on the 

contour, the distance and direction to every other point on the contour.  The shape context 

at each point is represented by a histogram of distances to other points versus direction 

(distance and direction are each digitized into ~5 and 12 bins, respectively).  Shape 

matching is accomplished through a sophisticated process of image registration – optimal 

point correspondence followed by a distance measure.  To allow a direct comparison of 

approaches, we use Belongie’s registration and correspondence routines, and simply 

substitute the V4-like curvature-based estimate in place of the shape context histogram.  

Recognition accuracy using the two descriptions (shape context vs. curvature) is found to 

be roughly comparable. 
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We then test the performance of a population of V4-like cells on the MNIST database 

and the MPEG-7 Shape Silhouette database (Jeannin and Bober, 1999) and evaluate 

accuracy of classification.  We analyze the contribution of sensitivities to different 

contour features (position, curvature at neighboring locations, etc.), and find that local 

curvature is the most critical component of the shape description. 

 

4.2  Methodology 

 

To establish the feasibility of using V4-like units for shape recognition, we directly 

compare the V4-like shape representation with Belongie and colleagues’ “shape context” 

algorithm – a state-of-the-art category-level recognition system (Belongie et al., 2002).  

Belongie and colleagues propose a shape description based on the distances between all 

pairs of points on the object’s bounding contour.  Shape context log-polar histograms are 

computed for each point on the contour.  The collection of histograms fully characterizes 

each shape.  Belongie and colleagues solve the correspondence problem between two 

shapes using optimal assignment.  They estimate the aligning transform using these 

correspondences and regularized thin-plate splines.  Finally, they measure similarity 

between the shapes as a function of matching errors between corresponding points and 

aligning transform magnitude.  We employ Belongie’s exact algorithms, but substitute 

V4-like curvature measurements in place of Belongie’s shape context descriptors. 
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We next develop a stand-alone model of V4-like units to evaluate recognition 

performance.  Simple image processing techniques are used to decompose the image into 

closed contours, each of which is analyzed independently (e.g., the inner and outer 

contours of a digit “9” (see Figure 4.2)).  For each image, we extract contours using the 

numerical gradient, and determine a set of boundary points with oriented tangents.  The 

result is a parametric description (x(t), y(t), and tangent(t)) of each contour.  For each 

point along the contour, we compute its angle (0° − 360°) relative to and distance (in 

pixels) from the image’s center of mass.  For consistency, we consider the contour’s 

points such that each contour begins at approximately 3 o’clock and proceeds 

counterclockwise. 

 

Using the parametric forms x(t) and y(t), where 0 < t < L, L being the length of the 

curve, the curvature is given by: 

 

κ(t)  =  ( ( dx/dt ) ( d2y/dt2 ) − ( d2x/dt2 ) ( dy/dt ) )  /  ( ( dx/dt )2 + ( dy/dt )2 )3 / 2 . 

 

Several approaches have been developed for extracting and representing curvature 

information.  The curvature scale space (CSS) shape representation for planar curves 

developed by Mokhtarian and Mackworth (1986, 1992) is based on identifying inflection 

points on the curve at varying levels of detail.  This is accomplished by convolving 

several Gaussian kernels of different space constants with the curvature function.  This 

technique has proven successful in computer vision applications that recognize curved 

objects (Mokhtarian, 1995).  The curvature-tuned smoothing (CTS) method of Dudek and 
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Tsotsos (1997) is another technique for shape representation and recognition of objects.  

Based on smoothed multiscale curvature information and using a dynamic programming 

matching strategy, it is related to the CSS representation.  Wuescher and Boyer’s (1991) 

formulation is something of a departure from Mokhtarian.  Following their methodology, 

we convolve x(t) and y(t) with the derivative of a Gaussian to both smooth (regularize) 

and differentiate the functions.  This results in the discrete curvature, parameterized by 

the Gaussian space constant: 

 

κ(t, σ)  =  ( ( x(t) ∗ g′(t, σ) ) ( y(t) ∗ g′′(t, σ) ) − 

( x(t) ∗ g′′(t, σ) ) ( y(t) ∗ g′(t, σ) ) )  / 

( (x(t) * g′(t, σ) )2 + ( y(t) * g′(t, σ) )2 )3 / 2 , 

 

where 

 

g(t, σ)  =  ( 1 / σ√2π ) exp( −t2 / 2σ2 ) , 

 

∗ is the convolution operator, and ′ is the differentiation operator. 

 

It should be noted that the curvature of the pre-digitized object cannot be calculated 

exactly.  It can only be estimated, with a lower bound on the error of the achievable 

measurement (Worring and Smeulders, 1993). 

 

Following Pasupathy and Connor (2001), this curvature may optionally be squashed: 
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κsquashed  =  ( 2.0 / ( 1 + exp( − 0.125 * κ ) ) ) − 1.0 . 

 

We define the direction of curvature to be orthogonal to the tangent and to point towards 

the interior of the closed contour (Sajda and Finkel, 1995).  It is computed using the 

orientation and inverse tangent. 

 

Next, we segment each contour into iso-curvature regions using one of two methods.  The 

first method is simplistic.  We choose a standard size (in number of boundary points) for 

each region.  Remaining points are evenly distributed.  We choose a starting point on the 

contour (and therefore the starting point for each region) based upon the arrangement that 

yields the lowest average standard deviation of curvature for each region.  Ideally, each 

iso-curvature segment has a zero standard deviation of curvature. 

 

The second method, following Wuescher and Boyer’s (1991) curvature voting technique, 

considers segments of constant curvature (within a curvature tolerance tc) and segments 

of rapidly changing curvature.  Curvature is quantized into bins of a specified width 

(typically 1/2tc bins for every span of 0.10 in curvature), with peaks of the resulting 

histogram representing the curvature values most likely to fit the longest segments.  

Continuing with their methodology, the longest contiguous, constant curvature segments 

in the most prevalent curvature ranges are repeatedly extracted.  The leftover portions of 

the contour are either absorbed by adjoining segments or become segments themselves.  

The pre-determined minimum segment length (lmin) reflects the amount of segment detail. 
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In the experiments described below, unless otherwise noted, a standard size (6 boundary 

points) for each iso-curvature region is chosen for segmentation.  In addition, all contours 

are smoothed using a Gaussian function with a standard deviation of 2 pixels (a sigma 

value of 2). 

 

For each iso-curvature segment of each image, we create feature vectors composed of 

various combinations of features chosen from the following:  mean polar angle of contour 

region (e.g., 3 o’clock), mean curvature of the region, mean curvature of the clockwise 

adjacent region, mean curvature of the counterclockwise region, mean direction of 

curvature of the region, mean distance from the center of mass of the region, an 

indication of whether the region belongs to an inner vs. outer contour, and Gaussian 

averaged response of the region – the simulated response of a population of optimally 

positioned neurons across the curvature × position domain (see Figure 4.5 below).  These 

features all have approximate neurobiological correlates in area V4 and other extrastriate 

areas (Desimone and Schein, 1987; Kobatake and Tanaka, 1994; Gallant et al., 1996; 

Pasupathy and Connor, 1999; Wilkinson et al., 2000; Zhou et al., 2000; Pasupathy and 

Connor, 2001; Pasupathy and Connor, 2002). 

 

It is worth noting several general differences between “curvature context”, as used for the 

direct comparison with the shape context algorithm, and the implemented V4-like units 

used later in this paper.  First, in the direct comparison with shape context, radial distance 

is not considered in the computation of “curvature context” (only curvature and angular 
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direction are employed).  In our stand-alone framework of V4-like cells considered later, 

however, radial distance is one of the features that is examined.  Secondly, “curvature 

contexts” are curvature / angular direction histograms and, like shape contexts, are 

computed with respect to every point on the contour.  In our stand-alone framework of 

V4-like cells, however, curvature, angular direction, distance, etc., are computed with 

respect to the center of mass. 

 

Recognition, both identification and classification, requires some measure of matching – 

that is, some way of describing two objects / images as being more or less similar to each 

other.  We have used various methodologies for comparing groups of segments, including 

histogram cross correlations for curvature-angular position histograms, minimum sum of 

squared differences, image cross correlation, appearance-based parametric eigenspaces, 

and Support Vector Machines (SVMs) (Müller et al., 2001; Schölkopf et al., 2001).  The 

results described here are obtained using the Earth Mover’s Distance (EMD) comparison, 

as elaborated by Rubner and colleagues (Rubner et al., 2000; Rubner et al., 2001).  EMD 

considers two distributions, represented by signatures (sets of weighted features), and is 

defined as the minimal work or cost to transform one signature into the other (i.e., filling 

the “collection of holes” of one distribution with the “properly spread mass of earth” of 

another distribution).  Because the concept of work is based upon the user-defined ground 

distance, which in turn should be based upon perceptually meaningful distance measures 

between individual features, this technique is reported to match perceptual similarity 

judgments better than other distance measures.  For the computation of the EMD between 

color images, for instance, the ground distance between individual colors should correlate 
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strongly with human color discrimination performance (i.e., distance approximately 

matches human perception of the differences between those colors) (Rubner et al., 2000; 

Wyszecki and Stiles, 1982; Tversky, 1977).  Another advantage is that angle comparisons 

(for example, 358° is very close to 2°) can easily be handled. 

 

All simulations were carried out using the MATLAB application development 

environment (version 7.3.0.267 R2006b) and the associated Image Processing Toolbox 

(version 5.3). 

 

4.3  Results 

 

Two example digits (each a “2”) from the extensive MNIST database of digitized 

handwritten digits are shown in Figure 4.1 (A–B).  Calculated “curvature contexts” are 

shown (Figure 4.1 (E–F)) for the circled sample points on the image contours.  The 

histograms have 5 bins for the curvature values and 12 for angular direction.  Note the 

similarity between the histograms for the two example digits.  Two additional digits (each 

a “9”) are shown in Figure 4.1 (C–D).  Note the visual dissimilarity between the 

histograms for the “2’s” (Figure 4.1 (E–F)) versus the “9’s” (Figure 4.1 (G–H)), which 

suggests that curvature context may be a useful shape representation. 

 

Using Belongie’s algorithm, but substituting curvature context for shape context, the 

degree  of match between two “2” digits from Figure 4.1 is determined.  We calculate the 
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Figure 4.1 – Curvature histograms.  We employ the framework of Belongie and 
colleagues, but substitute our curvature measurements for his shape context descriptors.  
(A–B)  Two different stimuli, each representing the digit “2”.  (C–D)  Two different 
stimuli, each representing the digit “9”.  Curvature contexts are computed with respect to 
the circled sampled points.  (E,F,G,H)  The corresponding histograms for the stimuli.  
Histograms have 5 bins for the curvature value and 12 for the angular direction. 
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untransformed correspondences between the points of each of the two images using 

optimal assignment (Figure 4.2 (A)).  We then estimate the aligning transform between 

the two images using these correspondences and regularized thin-plate splines, measuring 

affine and matching costs (Figure 4.2 (B)).  We present a representation of the first image 

after it has been warped into the second image (Figure 4.2 (E)).  Finally, we compute the 

local sum of squared differences and average local sum of squared differences of this 

warping (Figure 4.2 (F)).  Figure 4.2 (C,D,G,H) shows the same calculations for 

matching the two “9” digits from Figure 4.1. 

 

We compare our results, after only one iteration, with those reported by Belongie and 

colleagues.  For each numeric digit (“1’s”, “2’s”, etc.), two example images are randomly 

selected from our test set and compared to each other.  We use Belongie’s shape context 

algorithm to compute the matching cost and SSD and compare the results to those 

obtained using curvature contexts.  In both measures, lower values correspond to better 

matches.  As shown in Table 4.1, “shape context” and “curvature context” shape 

representations achieve comparable recognition accuracies. 

 

The values obtained for the closeness of match depend quantitatively upon the details of 

segmentation and curvature estimation.  The basic contour parameters: x, y, and tangent, 

the discrete and smoothed curvature, and the curvature direction, are shown in Figure 4.3 

for a sample digit image.  Both methods of iso-curvature segmentation are illustrated in 

Figure 4.4 for the same digit image, with different parameter value choices shown for 

each method.  Note that the iso-curvature segments of an inner contour, when present, are 
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Figure 4.2 – Corresponding points, matching costs, and sum of squared differences.  
Belongie’s algorithm is used, with curvature context substituted for shape context.  (A)  
The untransformed correspondences between the images of Figure 4.1 (A–B).  (B)  The 
transformation, with affine cost = 0.23553 and matching cost = 0.10746.  (C)  The 
untransformed correspondences between the images of Figure 4.1 (C–D).  (D)  The 
transformation, with affine cost = 0.26059 and matching cost = 0.18963.  (E)  A 
representation of the stimulus of Figure 4.1 (A) after warping to the stimulus of Figure 
4.1 (B).  (F)  The local sum of squared differences (=0.047503) and average local sum of 
squared differences (=0.04682) of this warping.  (G)  A representation of the stimulus of 
Figure 4.1 (C) after warping to the stimulus of Figure 4.1 (D).  (H)  The local sum of 
squared differences (=0.048906) and average local sum of squared differences 
(=0.048653) of this warping. 
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Table 4.1 – Comparison of results.  Two example images were randomly selected for 
each numeric digit.  Matching costs and sum of squared differences for the shape context 
vs. curvature context comparison are shown. 
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Figure 4.3 – x, y, tangent, and curvature values.  The sample points of the original image 
are shown, as are the computed curvature directions (arrows).  For the smoothed 
curvature, the vertical line separates outer and inner contours.  A sigma value of 2 is used 
for smoothing. 
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Figure 4.4 – Segmentation.  Two different methods, each with 2 sets of parameter values, 
are shown.  Individual iso-curvature regions (segments) are shown as different symbols.  
For the lowest standard deviation method (the left column), different region sizes are 
used (top left, region size = 6, bottom left, region size = 9).  For the constant curvature 
criterion method (the right column), open circles indicate areas "filled in" (1 - coverage).  
For the top right, the curvature tolerance = 0.2, the bin size = 0.04, and the minimum 
segment length = 5, resulting in a coverage (areas not “filled in”) of 88.7%.  For the 
bottom right, the curvature tolerance = 0.1, the bin size = 0.02, and the minimum segment 
length = 4, resulting in a coverage of 75%.  The resulting number of iso-curvature 
segments for each digit is indicated. 
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not required to align with a corresponding outer contour segment.  In the bottom left 

image of Figure 4.4, for example, an inner contour segment begins at approximately 9 

o’clock and ends at approximately 1 o’clock, while its corresponding outer contour 

segment begins at approximately 9 o’clock and ends at approximately 11 o’clock.  The 

standard region size with lowest standard deviation method is shown in the left column.  

The constant curvature criterion method is shown in the right column, with open circles 

representing leftover portions.  The segmentations appear qualitatively reasonable, 

approximating the expected results if the segmentation were performed “by eye”.  For the 

images analyzed, we find that a segmentation region size of 6 pixels results in the greatest 

number of iso-curvature segments (21), while the curvature tolerance 0.2 results in the 

least (10).  The degree to which the segmentation affects system performance is 

considered below. 

 

The simulated response of a population of optimally positioned neurons (corresponding 

to Pasupathy and Connor’s (2002) Figure 2) across the curvature × position domain is 

shown in Figure 4.5.  The responses are modeled as 2-dimensional Gaussian functions, 

centered (“+” symbol) at the mean squashed curvature and angular position of each iso-

curvature segment.  The standard deviation values that are used are those found by 

Pasupathy and Connor (2001) in V4 neurons.  The color-coded amplitude in the resulting 

summed population activity corresponds to the likelihood that a similar curvature / 

angular position combination is present, with peaks representing the salient boundary 

features.  Two example image digits (each a “5”) are shown in the left panels.  Note the 

similarity  between  the  digits.   Two  additional digits (each a “7”) are shown in the right 
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Figure 4.5 – 2-dimensional Gaussian population responses.  The left column contains two 
examples of the digit “5”.  The right column contains two examples of the digit “7”.  The 
means (Gaussian peaks marked with a "+") are from the iso-curvature segments.  The 
standard deviations are from Pasupathy and Connor.  The overlays are the actual images 
that elicited the population responses. 
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panels.  Note the visual dissimilarity between the left and right panels, again suggesting 

that some level of category discrimination is achieved in the curvature × position domain. 

 

A 4-dimensional Gaussian tuning function (corresponding to Pasupathy and Connor’s 

(2001) Figure 3), for three adjacent boundary elements, is shown in Figure 4.6.  Here, 

each individual surface plot represents the 2-dimensional Gaussian response of the 

central boundary element in the squashed curvature × angular position domain.  The rows 

and columns of plots represent the modulatory effects of adjacent contour elements.  The 

rows correspond to different arbitrarily assigned clockwise-adjacent curvatures, while the 

columns correspond to different arbitrarily assigned counterclockwise adjacent 

curvatures.  A hypothetical cell responding optimally would exhibit strong tuning for a 

slight concavity towards the bottom of the image, flanked clockwise by a slight concavity 

and flanked counterclockwise by a slight convexity.  The highlighted portion of the “2” 

digit exhibits these characteristics. 

 

Recognition Performance of V4-like Units 

To initially explore the performance capabilities of the V4-like population, we select 100 

digit images from the MNIST database of handwritten digits as stimuli.  100 images is a 

relatively small data set compared to those used in many character recognition studies 

(Amit et al., 1997; LeCun et al., 1998; Belongie et al., 2002; Sebastian et al., 2003; 

Grigorescu and Petkov, 2003) but provides an indication of performance capabilities.  

(Below we will present results using all 10,000 images in the database.)  The 100-image 

set  contains  several  different example images of each digit.  The feature vector for each 
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Figure 4.6 – 4-dimensional Gaussian responses, with arbitrarily assigned clockwise- and 
counterclockwise-adjacent curvatures.  Counterclockwise values (left to right): -0.2, -0.1, 
0, 0.1 .  Clockwise values (top to bottom): 0.2, 0.1, 0,  -0.1 .  Each individual surface plot 
represents the 2-dimensional Gaussian response of the central boundary element in the 
squashed curvature × angular position domain.  The rows and columns of plots represent 
the effects of hypothetical adjacent contour elements.  Inset:  an example digit, with an 
iso-curvature segment's (the "x"'s) curvature and angle given.  The curvature values of the 
iso-curvature segment (the roughly vertical segment of open circles) that is clockwise on 
the contour as well as the iso-curvature segment (the roughly horizontal segment of open 
circles) that is counterclockwise on the contour are shown. 
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image is compared to that of every other image, and the average distance from one digit 

to all other examples of the same digit is determined.  This average (earth mover’s) 

distance calculation is motivated by human perceptual studies – evidence suggests that 

categorization is based on an average fit approximation to the class, rather than on exact 

matches to prototypes (Kahana and Sekuler, 2002).  If an image’s lowest average 

distance is to a group of images representing the same digit then a match is said to have 

occurred.  Otherwise, an invalid classification results. 

 

Various combinations of parameter values and feature vector arrangements are tried in 

different experiments.  The experiment shown in Figure 4.7, for instance, employs feature 

vectors (one for each iso-curvature segment) composed of the mean angle of the region, 

the mean curvature of the region, the mean direction of curvature of the region, and the 

mean distance from the center of mass of the region.  Figure 4.7 is the matching matrix, 

representing the number of images that are classified correctly.  The blocks of same digits 

are read 0 to 9, bottom left to top right.  It can be seen that only one image is incorrectly 

classified – an image of the digit “6” is classified as a “0” – resulting in a 99% correct 

classification performance.  All of the “0” and “6” digits used, including the one outlier 

“6” digit (in the middle of the figure) that was misclassified, are shown in Figure 4.8.  

Visual inspection shows that the misclassified “6” could easily be confused for a “0”. 

 

As another example, the experiment shown in Figure 4.9 employs feature vectors (one for 

each iso-curvature segment) composed of the mean angle of the region, the mean 

curvature  of  the  region,  the  mean  curvature  of  the clockwise-adjacent region, and the 
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Figure 4.7 – Matching matrix.  For each digit image, the closest match amongst the 
average values for each digit is determined.  Correct matches appear as a contiguous 
rectangle, with width related to the number of sample images for the corresponding digit.  
Digit values are on the axes.  Using the angle, curvature, direction, and distance features, 
with a region size of 6 and a sigma value of 2, the total matching to average is 99%. 
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Figure 4.8 – Misclassified digit.  The identified "6" digit is classified as a "0".  All other 
digits are classified correctly. 
 
 
 
 
 
 
 
 
 
 
 



 64

 
 
 
 

 
 
 
 
 
Figure 4.9 – Matching matrix.  For each digit image, the closest match amongst the 
average values for each digit is determined.  Correct matches appear as a contiguous 
rectangle, with width related to the number of sample images for the corresponding digit.  
Digit values are on the axes.  Using the angle, curvature, clockwise curvature, and 
counterclockwise curvature features, with a region size of 6 and a sigma value of 2, the 
total matching to average is 94%. 
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mean curvature of the counterclockwise-adjacent region.  Figure 4.9 is the matching 

matrix, representing the number of images that are classified correctly.  It can be seen 

that a 94% correct classification performance results from this combination of parameters 

and features.  The six incorrectly classified digits include the unusual “6” that is 

misclassified in Figure 4.7.  It would appear that the choice of parameter values and 

feature vector arrangements used in this experiment is somewhat inferior to the choice 

made for the experiment corresponding to Figure 4.7. 

 

We attempt to identify patterns of parameter values and feature vector arrangements that 

consistently result in superior performance.  Several parameter comparisons are made in 

Figure 4.10.  The top graph gives correct matching performance for several sigma 

(Gaussian smoothing) values and several region sizes for fixed segmentation.  The 

bottom graph gives matching performance for several curvature factors.  We define any 

feature’s “factor” as the degree to which that feature influences similarity judgments 

between images.  In the distance measure, the “factor” is multiplied by the feature’s 

value, and thus provides the scaling coefficient between different features in the N-

dimensional space.  In one case, a distinction is made between inner and outer contours.  

In another case, it is not.  The results suggest that the value of sigma is less important 

than the choice of region size, and that it is not advantageous to consider the distinction 

between inner and outer contours.  Several more parameter comparisons are made in 

Figure 4.11.  The top graph gives matching performance for several sigma (Gaussian 

smoothing) values and several region sizes for fixed segmentation.  The composition of 

the   feature   vector  differs  from  that  used  in  Figure  4.10.   The  bottom  graph  gives 
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Figure 4.10 – Parameter comparisons.  Different line types and abscissa values signify 
different parameter values.  Performance (as the percentage of correct classifications) is 
on the ordinate.  In the top graph, the region size (in points) is varied with different sigma 
values, using the angle, curvature (with a factor of 600), direction, and distance features 
and an inner contour factor of 0.  In the bottom graph, the curvature factor is varied with 
different inner contour factor values, using the angle, curvature, direction, and distance 
features and a region size of 9 and a sigma value of 2. 
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Figure 4.11 – Parameter comparisons.  Different line types and abscissa values signify 
different parameter values.  Performance (as the percentage of correct classifications) is 
on the ordinate.  In the top graph, the region size (in points) is varied with different sigma 
values, using the angle, curvature, clockwise curvature, and counterclockwise curvature 
features.  In the bottom graph, the minimum segment length is varied with the curvature 
tolerance, using the angle, curvature (unsquashed), clockwise curvature, and 
counterclockwise curvature features and a sigma value of 2. 
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performance for several curvature tolerances and several minimum segment lengths, both 

important in segmentation using the curvature voting and grouping methodology.  It 

again appears that region size is more important than the value of sigma that is chosen.  

In addition, curvature tolerance seems to have an optimal operating range. 

 

It can be seen in Figure 4.10 that the method of iso-curvature segmentation using the 

lowest standard deviation arrangement with a standard region size of six points results in 

the best performance, with performance falling off as the region size is increased.  The 

constant curvature criterion method of iso-curvature segmentation, shown in Figure 4.11, 

yields somewhat inferior performance results.  However, using a curvature tolerance of 

0.1, performance is relatively high and stable for a wide range of minimum segment 

lengths.  Performance falls off rapidly with increasing minimum segment length using a 

curvature tolerance of 0.05. 

 

The experiment shown in Figure 4.12, with performance for the angle and direction 

features compared with performance for the angle and curvature features, for different 

region sizes, represents a more extensive test on the region size versus accuracy trade-off.  

As expected, for smaller region sizes, performance for both sets of features is 

comparable.  A divergence in performance, with angle and curvature the superior feature 

vector, is seen for larger region sizes.  It appears that the method of iso-curvature 

segmentation using the lowest standard deviation arrangement with a standard region size 

is optimal for a particular size.  This region size is image-dependent.  The larger the size, 

the  less  curvature  variation  captured,  but  the  more “representational” of the contour’s 
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Figure 4.12 – Parameter comparisons.  Different abscissa values signify different region 
sizes.  Performance (as the percentage of correct classifications) is on the ordinate.  For 
the solid line, only the angle and curvature are used as features.  For the dashed line, only 
the angle and direction are used as features. 
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essential characteristics.  An image with rapidly changing contour curvature values at a 

particular scale would be best characterized by a small region size (and therefore more 

segments) to acquire sufficient detail.  Here, direction and angle (or distance and angle, 

as in the shape context algorithm) might prove as useful as curvature and angle.  

(Consider the discussion of the MPEG-7 Shape Silhouette database below.)  A larger 

region size (and fewer segments) would be sufficient for an image with broadly, gently 

changing contour curvature values at the same scale.  Here, curvature and angle are 

superior.  As always, curvature of the pre-digitized object cannot be calculated exactly 

and is particularly sensitive to quantization error. 

 

A summary of feature vector arrangements for the V4-like units that are considered in 

various experiments, along with the percentage of digit images that are correctly 

matched, is given in Figure 4.13. 

 

A system must perform robustly in the presence of noise to be an appropriate model for 

visual recognition.  To study the robustness of features to signal degradation, noise is 

added to various feature components.  The experiment shown in Figure 4.14, for instance, 

employs feature vectors (one for each iso-curvature segment) composed of the mean 

angle of the region, the mean curvature of the region, the mean direction of curvature of 

the region, and the mean distance from the center of mass of the region.  The correct 

matching performance for several values of Gaussian noise (as a multiplier of the 

segment’s standard deviation) added individually to each of the features is given, with 

error bars.  It appears that curvature is the feature that is the most sensitive to noise. 
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Figure 4.13 – Feature inclusion summary.  Many different arrangements of features for 
the V4-like units were considered.  For each particular combination, the performance of 
the system (as the percentage of correct classifications) is specified in the "matching" 
column.  The inclusion of a particular feature within the combination is indicated with a 
dark box. 
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Figure 4.14 – Noisy features.  Gaussian noise (as the abscissa multiple of standard 
deviation) is added individually to each of the features, represented by different line 
types.  Performance (as the percentage of correct classifications) is on the ordinate.  
Noisy performance using the angle, curvature (with a factor of 600), direction, and 
distance features and an inner contour factor of 0, a region size of 6, and a sigma value of 
2 is shown. 
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In general, one would expect the features most predominantly used by the visual system 

for recognition to be the most robust in the face of noise.  Our finding that curvature is 

the most informative feature would then suggest it should be most insensitive to noise.  It 

is important to note that our additional finding, that noise affects curvature most strongly, 

is not inconsistent with this point.  This follows because noise is added to the 

measurements of this feature and is not inherently part of the feature itself.  Thus, the 

result that degrading curvature information has the largest effect on recognition suggests 

that curvature is the most salient feature for shape recognition. 

 

The experiment shown in Figure 4.15 employs feature vectors (one for each iso-curvature 

segment) composed of the mean angle of the region, the mean curvature of the region, the 

mean curvature of the clockwise-adjacent region, and the mean curvature of the 

counterclockwise-adjacent region.  The correct matching performance for several values 

of Gaussian noise (as a multiplier of the segment’s standard deviation) added individually 

to each of the features is again given, again with error bars.  It again appears that 

curvature (including that of the clockwise- and counterclockwise-adjacent regions) is the 

feature that is the most sensitive to noise. 

 

As a more extensive evaluation, we employ the entire 10,000 digit images from the 

MNIST “Test Set” database of handwritten digits as stimuli.  This image set contains 

approximately 1,000 different example images of each digit.  Using an average distance 

calculation  for  categorization,  various  combinations  of  parameter  values  and  feature 
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Figure 4.15 – Noisy features.  Gaussian noise (as the abscissa multiple of standard 
deviation) is added individually to each of the features, represented by different line 
types.  Performance (as the percentage of correct classifications) is on the ordinate.  
Noisy performance using the angle, curvature, clockwise curvature, and counterclockwise 
curvature features and a region size of 6 and a sigma value of 2 is shown. 
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vector arrangements are again tried in different experiments.  As shown in Table 4.2, an 

experiment employing feature vectors (one for each iso-curvature segment) composed of 

the mean angle of the region, the mean curvature of the region, the mean direction of 

curvature of the region, and the mean distance from the center of mass of the region 

(similar to the experiment represented by Figure 4.7) results in a 97.03% correct 

classification performance.  Figure 4.16 is the matching matrix, representing the number 

of images that are classified correctly.  This result is only slightly inferior to the best 

results achieved by other researchers within their full computer vision applications 

(99.37% [Belongie et al., 2002], 99.3% [LeCun et al., 1998]). 

 

To experiment with other, non-digit objects, we choose images from the MPEG-7 Shape 

Silhouette database (Jeannin and Bober, 1999) as stimuli.  One example image from each 

of several categories is shown in Figure 4.17.  In an experiment employing 20 of these 

categories and feature vectors similar to those used in the experiment represented by 

Figure 4.7 (the mean angle of the region, the mean curvature of the region, the mean 

direction of curvature of the region, and the mean distance from the center of mass of the 

region), a 93% correct classification performance is achieved.  (Specifically – apple: 19 

of 20 matched; bone: 20 of 20 matched; bottle: 20 of 20 matched; cellular phone: 18 of 

20 matched; cup: 20 of 20 matched; elephant: 17 of 20 matched; face: 20 of 20 matched; 

flatfish: 18 of 20 matched; fork: 18 of 20 matched; fountain: 20 of 20 matched; heart: 20 

of 20 matched; key: 19 of 20 matched; lizard: 16 of 20 matched; pencil: 18 of 20 

matched; personal car: 17 of 20 matched; ray: 17 of 20 matched; shoe: 20 of 20 matched; 

teddy: 20 of 20 matched; tree: 18 of 20 matched; watch: 17 of 20 matched.) 
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Table 4.2 – Summary of results for the entire 10,000 digit images from the MNIST “Test 
Set” database.  The angle, curvature, direction, and distance features are employed, with a 
region size of 6 and a sigma value of 2  For each digit image, an average distance 
calculation is used for categorization. 
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Figure 4.16 – Matching matrix for the entire 10,000 digit images from the MNIST “Test 
Set” database.  For each digit image, an average distance calculation is used for 
categorization.  Correct matches appear as dots within the large rectangles on the 
diagonal.  Incorrect matches appear outside the large rectangles.  The area of each 
rectangle corresponds to the number of sample images for the corresponding digit in the 
Test Set.  Digit values are on the axes.  Using the angle, curvature, direction, and distance 
features, with a region size of 6 and a sigma value of 2, the total matching to average is 
97.03%. 
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Figure 4.17 – MPEG-7 Shape Silhouette database.  One example image from each of 
several categories is shown. 
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Although the region size used in the shape silhouette studies (20) is larger than that used 

in the digit studies (6), it should be noted that the scale is different – the shape silhouette 

images are much larger.  In addition, unlike the MNIST data, the MPEG-7 images are not 

uniformly scaled or oriented, making categorization more difficult.  Our results do not 

achieve the performance accuracy achieved in computer vision models, and are also 

slightly inferior to estimates of human visual performance (LeCun et al., 1995; Simard et 

al., 1993), which is not surprising as contour shape provides only one source of 

information used in object recognition.  Nonetheless, the high level of performance 

achieved based solely on contour shape supports the hypothesis that shape representation 

by populations of V4 neurons plays a key role in recognition. 

 

4.4  Discussion 

 

Since Marr (1982), it has been taken that intermediate-level visual cortical areas compute 

a representation of object shape that is used by higher areas for recognition.  The 

discoveries of Pasupathy and Connor (2001), Hegdé and Van Essen (2003), and others 

reveal a previously unsuspected degree of sophisticated shape processing in extrastriate 

visual cortex.  To a large degree, the properties of V4 units represent a biological solution 

to shape description:  if you know “what” the contour looks like at each position along its 

extent, and “where” every kink and bulge is located, the shape is described fairly well. 
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The importance of contour curvature in both human and computer vision has long been 

apparent.  In his seminal work relating information theory to visual perception, Attneave 

(1954) found that information is concentrated along contours – specifically at those 

points on a contour where its direction changes most rapidly, such as curvature peaks.  

This finding has been validated for natural objects (Norman et al., 2001), with contour-

based object identification and segmentation itself being later corroborated empirically 

(De Winter and Wagemans, 2004).  Hoffman and Richards (Hoffman and Richards, 

1984; Richards and Hoffman, 1985), arguing that the visual system decomposes a shape 

into a hierarchy of parts, focus on part boundaries rather than part shapes and segment a 

bounding contour into parts with curvature-extrema-defined endpoints.  While Leyton’s 

(1989) rules governing the perception of shape are based upon the symmetry and 

curvature structure of the shapes, he proposes a more cognitive view of parts, considering 

them temporal or causal processes. 

 

Some researchers have extended this work to incorporate curvature sign, finding the 

human visual system to be substantially more sensitive to changes in concave regions of a 

bounding contour than to changes in convex regions (Cohen et al., 2005; Feldman and 

Singh, 2005).  Others have explored the consequences of this asymmetry in perceptual 

figure-ground assignment (Hoffman and Singh, 1997), visual search (Xu and Singh, 

2002) and speed and accuracy of visual comparisons (Barenholtz and Feldman, 2003).  In 

contrast, Bertamini and Lawson (2006) fail to find evidence that concave targets are 

inherently more salient, instead suggesting that concavities are processed preferentially as 

the result of an early computation of part structure.  Some earlier work has tried to 



 81

characterize psychophysically the cortical mechanisms that underlie the discrimination of 

very small curvatures in a stimulus (Kramer and Fahle, 1996) and has considered how the 

magnitude and direction of curvature affect the strength of long-range interactions 

between neurons (Pettet, 1999).  Researchers have studied the problem of quantifying 

human intuition regarding shape similarity and local deformations (Basri et al., 1998) and 

have defined similarity metrics based on intrinsic properties of the curve, such as length 

and curvature (Sebastian et al., 2003). 

 

Computer algorithms have been developed to extract and recognize the shape of 

silhouettes from the curvature extrema of their bounding contours (Chien and Aggarwal, 

1989).  A computer vision model of contour fragment grouping from contour junction 

information in a 2-dimensional image has been developed (Bergevin and Bubel, 2003).  

In addition, in a Bayesian model of contour grouping, the bounding contour of an object 

in an image is used in conjunction with some prior knowledge about the object (Elder et 

al., 2003).  Similar probabilistic models of perceptual grouping for contour integration 

have been developed for human visual perception (Feldman, 2001), with the importance 

of interpolation in segmentation and grouping processes that act on fragmentary contours 

being demonstrated (Kellman, 2003). 

 

The need for a robust and stable organization and representation of object parts in the 

presence of rigid transformations, occlusions and changes in viewing geometry has led 

some recognition researchers to argue for a role for a skeleton-based descriptor along 

with the bounding contour (Siddiqi and Kimia, 1995).  Others have demonstrated the 
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psychophysical relevance of these descriptors (Siddiqi et al., 1996) or have stated that 

representing objects in terms of their absolute edge locations, as in a contour-based 

descriptor, is seriously flawed, primarily because of the difficulty of finding edges in 

conditions of low signal-to-noise ratio or occlusion or because of the independence of the 

scale of the object in the representation (Burbeck and Pizer, 1995).  It has been proposed 

that skeletal-based descriptors (such a shock-graphs or medial axes) capture the spatial 

arrangement of parts that leads to distinct shapes, thus overcoming a potentially major 

drawback of contour-based descriptors (Sebastian and Kimia, 2005).  A recognition 

framework based upon matching skeletons of 2-dimensional shape outlines has been 

developed by considering these descriptors to be curve-based representations with paired 

contours and additional (often an order of magnitude greater) computational requirements 

(Sebastian et al., 2001; Sebastian et al., 2003). 

 

In a review of shape representation and description techniques, Zhang and Lu (2004) 

point out that contour-based methods fail to capture global shape features and are 

sensitive to noise, as boundary variations can cause significant local effects.  However, 

skeletal-based descriptors also require shape contour information, and are therefore 

somewhat sensitive to effects such as quantization error.  Considering these arguments, 

we attribute our success with contour-based descriptors to methodology and choice of 

application.  Sebastian and Kimia (2005) find that the increased computational 

complexity of skeleton matching is justified by increased robustness in the presence of 

articulation or rearrangement of parts.  However, in applications where variations are 

smaller (such as handwritten character recognition), contour matching is superior because 
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of its relative simplicity and roughly equivalent recognition rate.  More importantly, we 

include such quantities as polar angle of the region, curvature of adjacent regions, 

direction of curvature, distance from the center of mass, etc. (all with approximate 

neurobiological correlates), in our feature vectors.  This, coupled with our contour 

comparisons using the earth mover’s distance, provides us with sensitivity to local curve-

based features, as well as some of the advantages of a representation of the spatial 

relationships among the iso-curvature segments of each image, thus allowing us to 

perform well when shape defects are present. 

 

Our results do not address how cells in V4 achieve their selectivity to contour 

configuration and location.  V4 is retinotopically organized, and sensitivity to a 

configuration at a particular location on the contour (e.g., 3 o’clock) suggests an object-

centered representation.  Several models of cortical curvature detection have been put 

forward aimed primarily at curvature sensitivity in V1 arising from end-stopped receptive 

field structure (Wiesel and Gilbert, 1989; Dobbins et al., 1989).  However, research 

suggests that cells in V2, V4 and related areas carry out a more general, broader 

computation than just estimating curvature.  Riesenhuber and Poggio (1999) have 

proposed that V4 selectivities can emerge from a series of linear and nonlinear 

integrations of early visual responses.  Their model (Riesenhuber and Poggio, 2003) 

accounts for a range of reported receptive field characteristics in V4, and can account for 

how a V4 neuron becomes selective for a particular location on the contour.  Their model 

is bottom-up, without the requirement of an explicit top-down (attentional or otherwise) 

signal, an explicit segmentation stage, or complex synchronization mechanisms for 
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binding elements of the contour together.  It should be noted that V4 cells respond to a 

variety of stimulus features – including color (McKeefry and Zeki, 1997), orientation 

(Desimone and Schein, 1987; Hinkle and Connor, 2002), disparity (Hinkle and Connor, 

2001), and complex spatial patterns (Gallant et al., 1996).  Extrastriate cells show 

selectivities to several aspects of form (Gallant et al., 1996) and border ownership (Zhou 

et al., 2000).  In addition, V4 cell receptive field properties are strongly modulated by 

attention (Reynolds and Desimone, 2003; Bichot et al., 2005; McAdams and Maunsell, 

2000; Motter, 1994; Connor et al., 1997), and the presence of a small feature within the 

large receptive field can drive cellular response.  However, our findings suggest that 

curvature, the feature that is the most sensitive to noise as seen in Figures 4.14 and 4.15, 

would seem to be the most important for shape recognition. 

 

A second issue that remains to be answered, concerns whether and how a global 

description of object shape emerges.  Descriptions of shape based on local characteristics 

can miss, or fail to emphasize, important global or “structural” differences between 

objects.  For example, the digit “3” and the digit “5” are very similar locally:  they have 

similar bottoms and a similar top, but differ in the direction of the upper convexity.  

Focusing on the “upper convexity” as opposed to a smaller segment indicates a parts-

based description.  Higher visual areas may learn to be selective to differences, at a 

variety of hierarchical levels, which distinguish categories of objects.  Top-down effects 

might then focus the response of V4-like units onto those regions or features whose local 

configurations are critical for the class distinction (Hochstein and Ahissar, 2002; Sigala 

and Logothetis, 2002).  Pasupathy and Connor (2001) point out that complex shape 
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representation in area V4 is parts-based (since contour segments are defined by 

conformation and position) as well as distributed (since individual cells encode smaller 

parts of larger objects).  It is thought that a parts-based coding system, using either a 

finite number of primitives or a continuous part representation with graded tuning, has 

the combinatorial power and representational capacity to encode a virtually infinite 

variety of objects (Pasupathy and Connor, 2002; Biederman, 1987; Tsunoda et al., 2001; 

Rolls et al., 1997).  A question raised by Pasupathy and Connor’s results is how many 

such units would be necessary to represent all possible shapes.  If each 5o receptive field 

region requires units for roughly 12 orientations, 5 distances, 5 curvatures plus 5 other 

shapes (sharp corners, etc.) and 2 directions of curvature, that suggests ~1200 different 

V4-like units per hypercolumn – well within the number of cells per layer in extrastriate 

cortex responding to a 5o receptive field region (Van Essen, 2003; Bullier, 2001; Motter, 

2003). 

 

We have shown that a population of units modeled after Pasupathy and Connor’s 

description of V4 cells can classify images from the MNIST database at high levels of 

accuracy.  As the matching matrices of Figures 4.7, 4.9, and 4.16 demonstrate, features 

such as curvature that have neurobiological correlates in or near area V4 are capable of 

functioning as robust shape descriptors in the early stages of shape recognition.  The 

performance of our system depends upon extracting reasonable estimates of local 

curvature.  In digitized images, curvature estimation is a challenging problem.  We have 

used the approach of Wuescher and Boyer (Wuescher and Boyer, 1991; Worring and 

Smeulders, 1993) which far surpasses results we were able to achieve using local 
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curvature filters or direct computation of changes in tangent angle.  The visual system 

exhibits hyperacuity to curvature (Watt and Andrews, 1982; Wilson, 1985) and is 

extremely sensitive to direction of curvature (Cohen et al., 2005) – particularly in regards 

to vernier acuity and other capabilities.  However, our results (and those of Belongie and 

colleagues (Belongie et al., 2002)) indicate that high precision in the curvature estimate is 

not essential – binning the curvature values into a few (3-5) bins (very low, low, mid, 

high, and very high) yields only a small change in overall recognition accuracy.  Most 

critical is the choice of the relevant scale at which to measure curvature and the necessity 

of avoiding large discontinuities in fine-scale curvature estimates that can arise from 

digitization. 

 

Successful object recognition requires a number of processes that have not been dealt 

with in this study.  We begin with a 1-pixel thick segmented contour (i.e., no background 

pixels) and provide the (x, y) coordinates of each pixel.  Thus, our results cannot be 

compared to stand-alone recognition systems, such as that of LeCun and colleagues 

(LeCun et al., 1998) which must handle earlier stages of processing as well.  By using the 

MNIST database of digits, we have largely bypassed issues of scale, rotation and 

translation invariance.  The degree of variability in scale, rotation and translation of the 

images is modest, and is within the range of sensitivity to scale and rotation observed in 

V4 cells (Logothetis et al., 1995).  Use of V4-like units implies that shape responses are 

sensitive to object orientation (the NW corner is not the NW corner anymore after 

rotation).  However, most cortical expert recognition systems (e.g., face recognition 

(Viola and Jones, 2001b; Schneiderman and Kanade, 2004), biological motion 



 87

recognition (Song et al., 2003; Casile and Giese, 2005; Giese and Poggio, 2003)), and 

reading, are sensitive to object orientation as well. 

 

Recognition of objects embedded in more natural image scenes introduces many 

additional complexities, including the need to identify which V4-like units are responding 

to the same contour.  However, initial fast-pass recognition might be plausible based 

merely on the distribution of V4-like cells activated in a region.  Suppose each unit is 

sensitive to local and neighboring curvatures on a segment of contour, as well as to the 

location of this configuration within the visual field region (e.g., a 5o window).  The 

distribution of responses of various such V4-like units within the spatial window might 

provide an initial match to a shape class.  Top-down effects could then aid in 

segmentation and refinement of the contour representation. 

 

Results from Sigala and colleagues (Sigala et al., 2002) suggest that humans categorize 

by comparing objects to well-known members of alternative categories, either directly or 

based on class boundaries (as in SVM).  These investigators also found that humans and 

monkeys learn which features are most diagnostic for distinguishing particular categories.  

In the results presented here, the responses of V4-like units depended with equal weight 

on each feature sensitivity:  e.g., curvature, magnitude, direction of curvature, location on 

the contour.  In other words, each feature had equal weight (after initially multiplying the 

feature by its “factor”) in the shape matching calculation using the Earth Mover’s 

Distance (EMD) comparison (Rubner et al., 2000; Rubner et al., 2001), our most 

consistent distance measurement.  However, in a two alternative forced choice 
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recognition task – e.g., is it a “0” or a “6” – certain features are most informative for the 

decision.  It may be known a priori that a “6” usually has a sharp convexity at 1 o’clock 

(the stem) and a “0” usually does not.  Examination of the response of V4-like units to 

this 1 o’clock segment show that, depending upon their feature sensitivities, some units 

respond roughly equally to both “0’s” and “6’s” (e.g., average curvature and average 

distance from the center of mass, as seen in Figure 4.18).  However, some units respond 

very differently (e.g., averaged direction of curvature, as seen in Figure 4.19), yielding 

separability.  If we weight the units that respond differently more strongly than those that 

respond similarly, we can recompute the performance of the model for discriminating all 

“0’s” and all “6’s”.  Employing this modification, the model performs at 100% – in 

comparison to the 99% performance in the untrained model shown in Figure 4.7.  It 

should be noted that a naive and inappropriate over-weighting of the 1 o’clock iso-

curvature segment across the entire population diminishes the system’s overall 

performance slightly (3%).  Thus, initial responses of V4 units might produce activation 

of both “0” and “6” detectors in higher visual areas.  Faced with this decision, top-down 

inputs could alter the gain or sensitivity of particular V4 cells, thereby effectively 

changing the weighting of curvature features so as to distinguish the “0” vs. “6”.  

Example digits, with 1 o’clock segments highlighted, are shown in Figure 4.20.  The “6” 

digit image in the top left corner had previously been misclassified (see Figure 4.7 and 

Figure 4.8). 

 

These results suggest that top-down inputs can improve classification accuracy by re-

weighting   the   contributions   of   intermediate-level   units.    This   process  can  aid  in 
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Figure 4.18 – Dimensional inseparability of segment features of "0" and "6" images.  The 
1 o'clock iso-curvature segments of each of the "0" and each of the "6" digits is shown in 
the curvature × direction × distance space.  The "0"'s and "6"'s are not separable in the 
curvature or distance from center of mass dimensions. 
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Figure 4.19 – Dimensional separability of segment features of "0" and "6" images.  The 1 
o'clock iso-curvature segments of each of the "0" and each of the "6" digits is shown in 
the curvature × direction × distance space.  The "0"'s and "6"'s are separable in the 
averaged direction of curvature dimension. 
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Figure 4.20 – 1 o'clock segments.  Some sample 1 o'clock iso-curvature segments across 
the population are shown as open circles. 
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identifying regions of interest, and can make adjustments to the iso-curvature 

segmentation as well. 

 

4.5  Conclusion 

 

Our results suggest that curvature- and position-sensitive units, as described by Pasupathy 

and Connor in area V4, can function as robust shape descriptors.  We have demonstrated 

shape categorizations based on curvature representations and established a connection 

between state-of-the-art recognition systems and known cortical mechanisms. 
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Chapter 5 

 

 

Shape Representation and Object 
Recognition in the Inferotemporal 
Cortex (IT) 
 

 

5.1  Introduction 

 

The representation of contour shape is an essential component of object recognition, but 

the cortical mechanisms underlying shape analysis and object recognition are 

incompletely understood, leaving it a fundamental open question in neuroscience.  Work 

in monkey extrastriate cortex shows that visual cortical neurons are sensitive to the fine 

structure of contour shape.  In visual area 4 (V4), an intermediate stage in the ventral 

(shape recognition) pathway in the occipital and temporal lobes extending hierarchically 

from primary visual cortex (V1) to inferotemporal cortex (IT), Connor and colleagues 

have described cells that are selective for a particular local shape configuration at a 
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particular location on a contour within a larger shape.  The response profiles of these cells 

are further modulated by the local contour configurations at neighboring locations on the 

contour (Pasupathy and Connor, 2001).  The Connor group has also demonstrated that a 

population of these V4 units can provide a detailed description of the contour shape 

(Pasupathy and Connor, 2002).  These discoveries reveal a previously unsuspected 

degree of sophisticated shape processing in extrastriate visual cortex. 

 

Other research has focused on neural selectivity for complex 2-dimensional boundary 

shape (perhaps the kind that actually dominates responses to realistic objects (Kovács et 

al., 2003)) in macaque inferotemporal cortex (TEO / PIT and posterior TE / CIT) (Brincat 

and Connor, 2006; Brincat and Connor, 2004; Freedman et al., 2003; Baker et al., 2002; 

Tsunoda et al., 2001; Op de Beeck et al., 2001; Booth and Rolls, 1998; Rolls et al., 1997; 

Gallant et al., 1996; Logothetis et al., 1995; Kobatake and Tanaka, 1994; Fujita et al., 

1992; Young, 1992; Felleman and Van Essen, 1991; Gross et al., 1972).  It has been 

found that IT neurons integrate specific information, such as curvatures, orientations, and 

relative positions, about the shapes of multiple contour fragments (typically 2 – 4).  

Explicit signals that code structural relationships between parts are generated and could 

be useful for high-level object representation, supporting the idea of parts-based shape 

representation.  Processing by these cells thus bears some similarity to the fragment-

based approach to recognition of Ullman and colleagues (Ullman et al., 2001) and the 

components-based approach of Biederman (1987), with fragments / components 

functioning as building blocks used to represent a large variety of objects belonging to a 

common class. 
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Some computer vision approaches to object recognition have begun to achieve 

impressive levels of accuracy and robustness, yet lack a clear connection to known 

cortical constructs.  There is no accepted neurobiological theory as to how object 

recognition, and the underlying analysis of shape, is accomplished.  Such an 

understanding would be useful theoretically as well as to develop or improve computer 

vision and Brain-Computer Interface (BCI) methodologies and applications.  Two 

fundamental questions might be put forth: “How is contour shape represented in cortex 

and how can neural models and computer vision algorithms more closely approximate 

this?” 

 

Here, we continue our investigation of how contour shape is represented in cortex.  In 

doing so, we hope to narrow the divide between the theoretical computational 

neuroscience and neuroengineering and the biological neurophysiology.  Our earlier 

results (Chapter 4) support the hypothesis that curvature- and position-sensitive V4 cells 

– evaluated against the standard MNIST database of handwritten digits and the MPEG-7 

Shape Silhouette database (Jeannin and Bober, 1999) – function as robust shape 

descriptors in the early stages of object recognition.  We demonstrated good shape 

categorizations based on a particular local contour conformation located at a specific 

position on the object’s boundary (curvature representations) and established a 

connection between state-of-the-art recognition systems and known cortical mechanisms. 
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We extend these results to consider the recognition properties of a population of cells 

modeled after those found in IT, which nonlinearly integrates specific information about 

the 2-dimensional boundary shapes of multiple contour fragments (V4 cell inputs) with 

tuning functions on the shape × position domain (Brincat and Connor, 2004; Brincat and 

Connor, 2006).  Using nonlinear least squares optimization and genetic algorithms to fit 

parameters, we create selective IT-like cell populations with similar response patterns.  

We are principally interested in the number of constituent Gaussian terms in the IT-like 

cells’ total response equations, the linear and nonlinear parts of these equations, the 

amount of nonlinearity and how these aspects relate to the shapes of objects (as opposed 

to their orientations and scales).  We evaluate the performance of our IT populations on a 

set of real images as a function of the V4-like cell inputs.  The stimuli (2-dimensional 

closed contours representing object boundaries) evoke a pattern of activity across the 

population of IT cells.  Shape recognition is evaluated by demonstrating that the patterns 

of activity across the units to members of a particular object class resemble each other to 

a higher degree than they resemble members of any other class.  This measure 

corresponds to that reportedly used by humans and monkeys in object classification 

(Sigala et al., 2002). 

 

We examine cell response space in more detail using principal components analysis and a 

2-dimensional and 3-dimensional non-classical non-metric multidimensional scaling 

analysis.  We find the correlation coefficients of the observations (cell responses) and 

variables (images) and determine the sub-population of cells that are most effective at 
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identifying a particular category.  We use a support vector machine, as well as a tree-

based model, for classification based upon cell population response. 

 

Our primary objective is to determine why the response properties of V4 and IT cells 

(i.e., their receptive fields), and in particular their sensitivities to curvatures and contour 

positions, are useful.  We answer this question by constructing a robust model of V4 and 

IT cell properties and functionality and demonstrating its utility at shape recognition and 

categorization tasks.  In general, we obtain very good results across a wide range of 

parameter values and implementation strategies, comparable to those obtained previously 

with the digit database. 

 

5.2  Methodology 

 

In our current work, we focus on natural imagery – in the form of 360 × 360 JPEG 

images – kindly supplied by Drs. Kanwisher and Grill-Spector (Grill-Spector and 

Kanwisher, 2005).  These are significantly more complex – in both information content 

and image processing techniques required – than the MNIST digits used in Chapter 4.  

We select images from this dataset belonging to one of seven different categories (axes, 

cats, fish, guitars, handsaws, hats, and scissors), with ten randomly selected samples from 

each category. 
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As in our previous work, simple image processing techniques and hand-segmentation are 

used to decompose the images into closed-contour silhouettes.  We represent the shapes 

with sets of points sampled from the shape contours.  For each image, we extract 

contours using the numerical gradient and determine a set of boundary points with 

oriented tangents.  The result is a parametric description (x(t), y(t), and tangent(t)) of 

each contour.  For each point along the contour, we compute its angle (0° − 360°) relative 

to and distance (in pixels) from the image’s center of attention (center of mass, centroid, 

center of image). 

 

Following Wuescher and Boyer’s (1991) methodology, we convolve x(t) and y(t) with 

the derivative of a Gaussian to both smooth (regularize) and differentiate the functions.  

This results in the discrete curvature, parameterized by the Gaussian space constant σ: 

 

κ(t, σ)  =  ( ( x(t) ∗ g′(t, σ) ) ( y(t) ∗ g′′(t, σ) ) − 

( x(t) ∗ g′′(t, σ) ) ( y(t) ∗ g′(t, σ) ) )  / 

( (x(t) * g′(t, σ) )2 + ( y(t) * g′(t, σ) )2 )3 / 2 , 

 

where 

 

g(t, σ)  =  ( 1 / σ√2π ) exp( −t2 / 2σ2 ) , 

 

∗ is the convolution operator, and ′ is the differentiation operator. 
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We define the direction of curvature to be orthogonal to the tangent and to point towards 

the interior of the closed contour (Sajda and Finkel, 1995).  It is computed using the 

orientation and inverse tangent. 

 

We define iso-curvature segments as contiguous portions of the bounding contour, 

composed of individual boundary points, with identical or nearly identical curvature 

values. 

 

We segment each contour into iso-curvature regions using one of two methods.  In the 

first method, we choose a standard size (a number of boundary points) for each region.  

Remaining points are evenly distributed.  We choose a starting point on the contour (and 

therefore the starting point for each region) based upon the arrangement that yields the 

lowest average standard deviation of curvature for each region.  Ideally, each iso-

curvature segment has a zero standard deviation of curvature.  The second method, 

following Wuescher and Boyer’s (1991) curvature voting technique, considers segments 

of constant curvature (within a curvature tolerance tc) and segments of rapidly changing 

curvature.  Curvature is quantized into bins of a specified width (typically 1/2tc bins for 

every span of 0.10 in curvature), with peaks of the resulting histogram representing the 

curvature values most likely to fit the longest segments.  Continuing with their 

methodology, the longest contiguous, constant curvature segments in the most prevalent 

curvature ranges are repeatedly extracted.  The leftover portions of the contour are either 

absorbed by adjoining segments or become segments themselves.  The pre-determined 

minimum segment length (lmin) reflects the amount of segment detail.  In the experiments 
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described below, unless otherwise noted, a standard size (18 boundary points) for each 

iso-curvature region is chosen for segmentation.  In addition, all contours are smoothed 

using a Gaussian function with a standard deviation of 2 pixels (a sigma value of 2). 

 

Once an iso-curvature segment is defined, all points on the segment can be thought of as 

having the same curvature value.  An alternative, or refining, method of finding this 

value, after iso-curvature segment assignment, is by using the osculating circle technique 

of differential geometry (Gray, 1997).  Here, the osculating circle – the best circle that 

approximates the iso-curvature segment, with the same tangent and curvature, at its 

midpoint – is found.  This circle’s radius (r) is then related to the segment’s curvature by: 

 

r  =  1  /  | κ(t) | . 

 

For each iso-curvature segment of each image, we create feature vectors composed of 

mean polar angle of contour region (e.g., 3 o’clock is assigned to be 0 radians, 12 o’clock 

is assigned to be π / 2 radians, etc.), mean curvature of the region, mean direction of 

curvature of the region and mean distance from the center of mass of the region.  These 

features all have approximate neurobiological correlates in area V4 and other extrastriate 

areas (Desimone and Schein, 1987; Kobatake and Tanaka, 1994; Gallant et al., 1996; 

Pasupathy and Connor, 1999; Wilkinson et al., 2000; Zhou et al., 2000; Pasupathy and 

Connor, 2001; Pasupathy and Connor, 2002). 
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Recognition, both identification and classification, requires some measure of matching – 

that is, some way of describing two objects / images as being more or less similar to each 

other.  We have used various methodologies for comparing groups of segments, but the 

results described here are obtained using the Earth Mover’s Distance (EMD) comparison, 

as elaborated by Rubner and colleagues (Rubner et al., 2000; Rubner et al., 2001).  EMD 

considers two distributions, represented by signatures (sets of weighted features), and is 

defined as the minimal work or cost to transform one signature into the other (i.e., filling 

the “collection of holes” of one distribution with the “properly spread mass of earth” of 

another distribution). 

 

We compute earth mover’s distances – normalized average-to-average, total matching to 

average, closest matching – as well as a percentage of total distance comparison between 

images and between image categories.  We also incorporate some degree of affine 

transformation invariance in our models. 

 

Some more extensive methodological descriptions can be found in our previous work 

(Chapter 4). 

 

We create populations of cells (from six to several hundred), modeled after those found 

in IT, which integrate specific information (curvatures, orientations, relative positions) 

about the 2-dimensional boundary shapes of multiple contour fragments (V4 cell inputs) 

and which have tuning functions on the shape × position domain (Brincat and Connor, 
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2004; Brincat and Connor, 2006).  We fit each cell’s response pattern with a nonlinear 

Gaussian-based tuning function. 

 

Each IT-like cell has up to six (but typically three) Gaussian constituents (A, B, C, …) 

in its total response equation, each receiving inputs directly from the V4-like cells 

(responding to an image’s iso-curvature segments) and together used to compute the 

nonlinear response of the IT cell.  The Gaussian constituents are essentially variables in 

the total response equations of the IT-like cells.  Each term of these equations may 

include one or more (multiplied together) Gaussian constituents and may also be 

multiplied by a coefficient.  Positive coefficients imply an excitatory contribution to the 

total response; negative coefficients imply an inhibitory contribution to the total response.  

Each Gaussian function is n-dimensional (where “n” is the number of features 

considered).  Any of the image’s iso-curvature segments can contribute to the Gaussian 

constituent function’s response, with response magnitude proportional to the distance 

between the “n” features of the iso-curvature segment and the center of the n-dimensional 

Gaussian constituent.  For a maximal response, the image’s features (in the case of four 

features: the angle, curvature, direction of curvature and distance of each of the iso-

curvature segments) would have to be perfectly aligned with those of the Gaussian 

constituents.  Otherwise, a sub-optimal response would result, determined by Gaussian 

falloffs from the means at rates proportional to the specified standard deviations.  The 

mean and standard deviation of each Gaussian constituent’s 4-feature vector (angle, 

curvature, direction of curvature, and distance) are determined in a variety of ways, 

including averaging iso-curvature segments from a number of actual images, employing 
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iso-curvature segments from a single prototype image, or deriving them entirely from 

data fitting (and random optimization) by performing nonlinear least squares optimization 

(Coleman and Li, 1996; Dennis, 1977) or with genetic algorithms (Goldberg, 1989).  The 

coefficients (for the linear and nonlinear components A, B, C, AB, AC, BC, and ABC) 

are determined in a similar manner. 

 

The desired responses are chosen to be either relative (in the proportion of average-to-

average Earth Mover’s Distances, as in the normalized EMD values to be seen in Figure 

5.6) or, alternatively, absolute (constant high for the active category and constant low for 

all other categories: 20-30 Hz within-category, 1 Hz out-of-category). 

 

Note that each IT-like cell is tuned (trained) with a variable number of images from the 

Kanwisher dataset belonging to one of the seven different selected categories (i.e., a 

subset of the images that will later be used to evaluate (test) the cells).  Rigorous 

evaluations of classification errors and the segregation of training and testing data are not 

essential for our present work, as they were in our previous work (Chapter 4).  Similarly, 

we do not concern ourselves with large datasets as we did previously.  Here, we are 

primarily interested in functional behavior. 

 

For a 3-Gaussian-constituent model of an IT cell of the form ( A + B + C + AB + AC + 

BC + ABC ), a total of 31 parameters must be selected or determined and the distribution 

of all parameter values for all such cells is considered.  For an alternative model of the 
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form ( A + B + C )2  =  A2  +  B2  +  C2  +  2AB  +  2AC  +  2BC, 30 parameters must be 

selected. 

 

We evaluate the performance of our IT population on a set of real images as a function of 

the V4-like cell inputs.  The stimuli (2-dimensional closed contours representing object 

boundaries) evoke a pattern of activity across the population of IT cells.  Shape 

recognition is evaluated by demonstrating that the patterns of activity across the units to 

members of a particular object class resemble each other to a higher degree than they 

resemble members of any other class, corresponding to the measure reportedly used by 

humans and monkeys in object classification (Sigala et al., 2002).  We examine the cell 

population’s response to each image and the response of each cell from the population to 

each of our test images. 

 

To further study the cell response space, we perform a principal components analysis 

(Jolliffe, 2002) and a 2-dimensional and 3-dimensional non-classical non-metric 

multidimensional scaling analysis (Borg and Groenen, 2005; Cox and Cox, 2001).  We 

find the correlation coefficients of the observations (cell responses) and variables 

(images) and determine the sub-population of cells that are most effective at identifying a 

particular category.  We represent the p-values used for testing the hypothesis of no 

correlation.  We construct a support vector machine (SVM) for classification based upon 

cell population response (Müller et al., 2001; Schölkopf et al., 2001).  We train it with six 

randomly-chosen examples from each category and test with two randomly-chosen 

examples from each category.  We also fit a tree-based model for classification, 
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employing Gini’s diversity index criterion for choosing a split (Breiman et al., 1984).  

Finally, representations of particular cells’ Gaussian constituent shape selectivity models 

are rendered on top of actual test images. 

 

All simulations were carried out in a Microsoft Windows XP Professional SP2 

environment on an Intel® Pentium® 4 CPU running at 2.80 GHz with 3.00 GB of RAM.  

All models were constructed using the MATLAB application development environment 

(version 7.9.0.529 R2009b) and the associated Curve Fitting Toolbox (version 2.1), 

Genetic Algorithm and Direct Search Toolbox (version 2.4.2), Image Processing Toolbox 

(version 6.4), Neural Network Toolbox (version 6.0.3), Optimization Toolbox (version 

4.3), Signal Processing Toolbox (version 6.12), Statistics Toolbox (version 7.2) and 

Wavelet Toolbox (version 4.4.1). 

 

5.3  Results 

 

Example Kanwisher natural images from each of the seven sampled categories (axes, 

cats, fish, guitars, handsaws, hats, and scissors) in a typical trial sequence are shown in 

Figure 5.1.  Iso-curvature segments are shown in red or blue.  A blue highlight indicates 

an iso-curvature segment within one of the constituent parts (e.g., an axe handle), a red 

highlight indicates an iso-curvature segment within the other (e.g., an axe blade).  The 

within-category variation in this real image population, including scale and orientation, is 

apparent.   Constituent  parts  and  iso-curvature segments within constituent parts for one 
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Figure 5.1 – Example images.  Image numbers are given.  All 7 categories (axes, cats, 
fish, guitars, handsaws, hats, and scissors) are represented.  Iso-curvature segments 
within constituent parts are highlighted in red or blue. 
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image are shown in Figure 5.2.  Other segment characteristics, such as curvature 

direction, smoothed curvature, and curvature parameters estimated with an osculating 

circle, are also illustrated.  Note that concave curvatures are considered negative, convex 

curvatures positive.  In Figure 5.3 we demonstrate the image normalization performed as 

a prelude to our recognition process.  We expand or contract along the image’s longest 

axis to fill the frame and orient vertically.  We make the claim of affine transformation 

(scale, rotation, translation) invariance.  The degree of variability in scale, rotation and 

translation of the images is modest, and is within the range of sensitivity to scale and 

rotation observed in V4 cells (Logothetis et al., 1995) and this standardization of stimuli 

before the analysis essentially eliminates concerns about rotation and scale invariance.  In 

Figure 5.4 we illustrate the feature vector values for each of the iso-curvature segments 

and for both constituent parts of a single 360 × 360 image.  The features are: angle (made 

by a line to the mid-point of the iso-curvature segment from the center of mass, measured 

counter-clockwise from 3 o’clock), curvature of the iso-curvature segment, direction of 

this curvature and distance (of the mid-point of the iso-curvature segment) from the 

center of mass.  Together, these figures illustrate the simple image processing techniques 

used to decompose each image into closed contours, each consisting of a number of 

independent iso-curvature segments. 

 

To establish a baseline, we initially explore the performance capabilities of a V4-like cell 

population, identical to our earlier work (Chapter 4), and equivalent to an IT network 

without nonlinear components.  We select ten Kanwisher natural images from each of the 

seven  sampled  categories  (axes,  cats,  fish,  guitars,  handsaws,  hats,  and  scissors)  as 
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Figure 5.2 – Parts, segments, curvatures, directions, etc., for one image.  Constituent parts 
(2) and iso-curvature segments within constituent parts (2 red and 8 blue) for one image 
are highlighted.  All curvature directions point “inside” the figure.  The vertical red line 
in the bottom left smoothed curvature plot represents the boundary between the first and 
second constituent part.  The curvature is smoothed with a specific parameter (sigma = 
2).  Note that concave curvatures are considered negative, convex curvatures positive.  
The red arrowed segment in the bottom right plot represents the estimation of curvature 
(k) with an osculating circle of a certain radius (r).  The yellow “x” represents the center 
of this osculating circle. 
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Figure 5.3 – Image normalization.  Each image (with image numbers given) in every 
category is normalized by orienting (degrees of rotation value) vertically and expanding 
or contracting (scale value) to fill the frame.  The center of mass is indicated with a 
yellow “x”.  The red highlights represent the “new” (after normalization) iso-curvature 
segments (without regard for constituent parts). 
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Figure 5.4 – Feature vector values for one image.  Constituent parts and iso-curvature 
segments within constituent parts for one image are highlighted.  The center of mass of 
each constituent part is shown with a black “x”.  The values of the feature vector 
components (angle, curvature, direction of curvature and distance from the center of 
mass) for each iso-curvature segment are shown. 
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stimuli.  The feature vector for each image is compared to that of every other image, and 

the average distance from one image to all other same-category example images is 

determined.  This average (earth mover’s) distance calculation is motivated by human 

perceptual studies – evidence suggests that categorization is based on an average fit 

approximation to the class, rather than on exact matches to prototypes (Kahana and 

Sekuler, 2002).  If an image’s lowest average distance is to a group of images 

representing the same category then a match is said to have occurred.  Otherwise, an 

invalid classification results.  The experiment shown in Figure 5.5 employs feature 

vectors (one for each iso-curvature segment) composed of the mean angle of the region, 

the mean curvature of the region, the mean direction of curvature of the region and the 

mean distance from the center of mass of the region.  Figure 5.5 is the matching matrix, 

representing the number of images that are classified correctly.  The blocks of the same 

categories are read bottom left to top right.  Several images are incorrectly classified, 

resulting in an 85.7143% correct classification performance.  The total matching to 

average methodology is similar to prototype methods.  The affine transformation (scale, 

rotation, translation) invariance of our model is an advantage here.  Alternatively, a 

closest matching methodology could have been employed, resulting in a 98.5714% 

correct classification performance.  Our 85.7% performance is below current image 

processing standards, but encouraging in that it precedes the nonlinear integration of 

boundary components seen in IT.  In our previous work (Chapter 4) we have 

demonstrated the utility of a population of cells without nonlinearity in categorization 

tasks.  Perhaps it is precisely the nonlinear integration component of the IT cells’ 

functionality that facilitates recognition at the highest level. 
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Figure 5.5 – Matching matrix.  For each image, the closest match amongst the average 
image values for each category is determined.  Correct matches appear as contiguous 
rectangles on the diagonal, with widths related to the number of sample images for the 
corresponding category.  Mismatches appear off the diagonal.  Image numbers (with 10 
sample images from each of the 7 categories) are on the axes.  The abscissa can be 
thought of as representing the stimulus categories; the ordinate can be thought of as 
representing the response categories.  Darker bars (black represents the maximum) 
indicate a greater number of matches.  Using the angle, curvature, direction and distance 
features, with a region size of 18 and a sigma value of 2, the total matching to average 
result is 85.7%.  Only whole images are considered (i.e., no constituent parts). 
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Continuing with the same feature vectors, Figure 5.6 illustrates the normalized average-

to-average (earth mover’s) distance between the image categories with our model’s affine 

transformation (scale, rotation, translation) invariance once again an advantage.  It is not 

surprising that the same-category distances – along the diagonal – are the smallest.  Note 

that symmetry would exist only without affine rotations.  (Distance is symmetric, but 

closest match is not.)  These normalized distance values are later used in the creation of 

portions of the cell populations.  Figure 5.7 illustrates the percentage of total (earth 

mover’s) distance comparison for each image and each image category (including 

component parts).  The upper figure pertains to the handsaw “blade” component part, the 

lower figure to the handsaw “handle” component part.  Each contains ten sections along 

the abscissa – one for each handsaw image.  The height of each bar, with values on the 

ordinate, represents the inverse of distance as a percentage of the total distance from the 

handsaw part (“blade” or “handle”) to the other part.  Not surprisingly, each handsaw 

blade is, in general, closest to the population of handsaw blades and each handsaw handle 

is, in general, closest to the population of handsaw handles.  Where this is not the case 

(for handsaw handle number 5, for example), we speculate that the combination of 

component parts (blades plus handles) would facilitate recognition, using, for example, a 

“mixture of experts” classifier with a Hierarchical Mixture Model (HMM) (Jacobs et al., 

1991; Jordan and Jacobs, 1994; Titsias and Likas, 2002). 

 

Each image in a single category (“guitar”) is shown in the top 2 rows of Figure 5.8.  After 

image  normalization  (as  in  Figure  5.3)  and  traversal  of  the  bounding  contour in the 
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Figure 5.6 – Normalized average-to-average Earth Mover’s Distance.  The 7 image types 
(categories) are on the axes.  The abscissa can be thought of as representing the stimulus 
categories; the ordinate can be thought of as representing the response categories.  Cooler 
colors (see the color bar) represent closer distances between the categories. 
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Figure 5.7 – Percentage of total Earth Mover’s Distance comparison.  Each image and 
each image category (including component parts) are considered.  The upper figure 
pertains to the handsaw “blade” component part, the lower figure to the handsaw 
“handle” component part.  Each contains 10 sections along the abscissa – one for each 
handsaw image.  Bar colors correspond to component parts, listed on the right.  The 
height of each bar, with values on the ordinate, represents the inverse of distance as a 
percentage of the total distance from the handsaw part (“blade” or “handle”) to the other, 
color-coded part. 
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Figure 5.8 – Iso-curvature segments.  Each image (with image numbers given) in a single 
category (“guitar”) is shown in the top 2 rows.  After image normalization (as in Figure 
5.3) and traversal of the bounding contour in the counter-clockwise direction (starting at 
approximately 11 o’clock in each normalized image), 8 ordered iso-curvature segments 
can be found for each image.  These iso-curvature segments are highlighted in red.  Only 
whole images are considered (i.e., no constituent parts).  The bottom row shows 3 
different selections of 3 iso-curvature segments each for a single image, highlighted in 
blue, with selected segment numbers given. 
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counter-clockwise direction (starting at approximately 11 o’clock in each normalized 

image), 8 ordered iso-curvature segments can be found for each image.  The bottom row 

shows 3 different selections of 3 iso-curvature segments each for a single image.  These 

selected iso-curvature segments are later used to create the IT cell population through 

averaging, nonlinear least-squares optimization, etc.  The essential components of these 

IT-like cells are known as Gaussian constituents (A, B, C).  They receive their inputs 

directly from the V4-like cells (i.e., their responses are based upon the evaluation of iso-

curvature segments).  The first 2 recognition tasks can be seen as object detection and 

object categorization.  The third (and perhaps final) recognition task – within-category 

identification – is well-illustrated in Figure 5.8.  Consider, for example, the difference 

between the identification of an electric guitar and the identification of an acoustic guitar. 

 

Figures 5.9 and 5.10 illustrate the distribution of parameters for a 6-cell population, with 

each cell created using one of the investigated techniques.  The mean and standard 

deviation of each of the cell’s four features (angle, curvature, direction of curvature, 

distance) for three Gaussian constituents (A, B, C) (for a total of 24 parameters) are 

derived using different techniques (one for each cell): using the average of iso-curvature 

segments (the selected [1 2 3] segments for Figure 5.9; the selected [2 3 8] segments for 

Figure 5.10) from multiple images, using a single prototype image’s iso-curvature 

segments, or entirely from data fitting (and optimized randomly).  The desired response 

can be relative (as in the normalized average-to-average Earth Mover’s Distance value) 

or absolute (20-30 Hz within-category, 1 Hz out-of-category).  Figure 5.9 represents the 

arrangement  “A + B + C + AB + AC + BC + ABC”  with 7 additional (fitted) coefficient 
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Figure 5.9 – Distribution of parameters for a 6-cell population.  Parameter numbers, in 
groups of 6, are given along the abscissa.  The height of each bar, with values on the 
ordinate, represents the parameter value.  The mean and standard deviation of each of the 
cell’s four features (angle, curvature, direction of curvature, distance) for three Gaussian 
constituents (A, B, C) (for a total of 24 parameters) are derived using different color-
coded techniques (one for each cell): using the average of iso-curvature segments (the 
selected [1 2 3] segments for the case illustrated) from multiple images, using a single 
prototype image’s iso-curvature segments, or entirely from data fitting (and optimized 
randomly).  The desired response can be relative (as in the normalized EMD value of 
Figure 5.6) or absolute (20-30 Hz within-category, 1 Hz out-of-category).  The nonlinear 
arrangement “A + B + C + AB + AC + BC + ABC” with 7 additional (fitted) coefficient 
parameters required (for a total of 31) is represented.  Parameter 1 represents A’s angle 
mean, parameter 2 represents A’s angle standard deviation, parameter 3 represents A’s 
curvature mean, parameter 4 represents A’s curvature standard deviation, parameter 9 
represents B’s angle mean, etc. 
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Figure 5.10 – Distribution of parameters for a 6-cell population.  Parameter numbers, in 
groups of 6, are given along the abscissa.  The height of each bar, with values on the 
ordinate, represents the parameter value.  The mean and standard deviation of each of the 
cell’s four features (angle, curvature, direction of curvature, distance) for three Gaussian 
constituents (A, B, C) (for a total of 24 parameters) are derived using different color-
coded techniques (one for each cell): using the average of iso-curvature segments (the 
selected [2 3 8] segments for the case illustrated) from multiple images, using a single 
prototype image’s iso-curvature segments, or entirely from data fitting (and optimized 
randomly).  The desired response can be relative (as in the normalized EMD value of 
Figure 5.6) or absolute (20-30 Hz within-category, 1 Hz out-of-category).  The nonlinear 
arrangement “( A + B + C )2  =  A2  +  B2  +  C2  +  2AB  +  2AC  +  2BC” with 6 
additional (fitted) coefficient parameters required (for a total of 30) is represented. 
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parameters required (for a total of 31).  Figure 5.10 represents the arrangement “( A + B 

+ C )2  =  A2  +  B2  +  C2  +  2AB  +  2AC  +  2BC” with 6 additional (fitted) coefficient 

parameters required (for a total of 30).  The wide variety of parameter values used in the 

cell construction – both between techniques and between nonlinear arrangements and 

segment selections – is apparent.  In Figure 5.11 we show the normalized distribution of 

all parameter values for all cells in a 42-cell population, derived with various techniques 

in the manner of previous smaller populations.  Again, the wide variety of parameter 

values is apparent. 

 

In the top row of Figure 5.12, we show two particular cells’ Gaussian constituent shape 

selectivity models rendered on top of two actual test images.  With affine transformation 

(scale, rotation, translation) invariance and normalized average-to-average EMD distance 

symmetry, these cells would probably still respond well to these images, even though 

they are not ideally aligned.  In the bottom row of Figure 5.12, we show two images’ iso-

curvature segments.  For an IT-like cell to respond maximally to this image, V4-like cells 

(inputs to IT) would have to be perfectly aligned with these contour segments.  Gaussian 

constituents are properties of cells, whereas iso-curvature segments are properties of 

images.  In Figure 5.13 we show the (A, B, C) Gaussian constituents of a particular cell, 

along with the mean and standard deviation for each element of the feature vector (angle, 

curvature, direction of curvature, distance) for each Gaussian function.  Again, for a 

maximal response from this cell, this image’s features (the angle, curvature, direction of 

curvature and distance of each of the iso-curvature segments) would have to be perfectly 

aligned   with  those  of  the  Gaussian  constituents.   Otherwise,  as  is  the  case  for  this 
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Figure 5.11 – Normalized distribution of all parameter values for all cells.  Cell numbers 
in a 42-cell population are on the abscissa.  Parameter numbers are given on the ordinate.  
The parameter values are normalized to range from −1 to +1 (see the color bar).  The 
nonlinear arrangement “A + B + C + AB + AC + BC + ABC” (requiring 31 parameters) 
was the standard for all cells in the population, with the various derivation techniques 
used. 
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Figure 5.12 – Gaussian constituents and iso-curvature segments.  The Gaussian 
constituent shape selectivity models (properties of cells) are shown in the top row (blue 
contours with red-circled centers) for 2 particular cells and rendered on top of 2 particular 
images.  The iso-curvature segments (properties of images) are shown in the bottom row 
(red contours with blue-circled centers) for 2 particular images.  The center of mass is 
indicated with a yellow “x”. 
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Figure 5.13 – Gaussian constituents.  The (A, B, C) Gaussian constituents (blue contours 
with red-circled centers) for a particular cell are rendered on top of an actual image, with 
the mean and standard deviation for each element of the feature vector (angle, curvature, 
direction of curvature, distance) for each Gaussian constituent provided.  The center of 
mass is indicated with a yellow “x”. 
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particular image, a sub-optimal response would result, determined by Gaussian falloffs 

from the means at rates proportional to the specified standard deviations. 

 

In Figure 5.14 we introduce the histogram of IT cell responses.  Here, we show the 

response of one cell from the population to each image.  Clearly, this cell responds 

preferentially to guitars.  This is reminiscent of the study of a single unit in the left 

posterior hippocampus / medial temporal lobe of epilepsy patients with depth electrodes 

by Cristof Koch (Quiroga et al., 2005).  Here, the cells were activated exclusively by 

different views of Jennifer Aniston, for example, and not Julia Roberts, etc.  In the same 

manner, we show in Figure 5.15 the responses of four cells from the population to each 

image.  Although there is wide variability in the response of the cells (both to images 

within- and out-of-category), each clearly favors fish.  Note that these cells are not 

designed to be, nor do they behave like, “grandmother” cells.  They simply respond well 

to cells within a single category, at the exclusion of others.  We have created many IT-

like cells similar to these that respond preferentially to each of the seven categories in our 

sample space. 

 

Principal components analysis (PCA) is used for data visualization and dimensionality 

reduction.  It is a linear method concerned with the correlations between the data 

dimensions, and essentially a coordinate transformation.  It is, however, an engineering 

approach to a data problem, and not at all necessary in the visual system.  Nevertheless, it 

is an efficient means of data compression and representation and is a useful tool for 

analysis,  so  we utilize it.  The responses of all of the cells in our 42-cell population to all 
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Figure 5.14 – Histogram of IT cell responses.  This represents the response of one cell 
from the population to each image.  The 70 images are grouped into 7 categories.  The 
height of each bar represents the response of the cell to each of these images.  The cell’s 
full response equation, including fitted coefficients, is shown above.  This cell responds 
preferentially to guitars. 
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Figure 5.15 – Response of four cells from the population to each image.  The 70 images 
are grouped into 7 categories in each of the 4 panels.  The height of each bar in each 
panel represents the response of each cell to each of these images.  Each cell’s full 
response equation, including fitted coefficients, is shown above its panel.  Each of these 
cells responds preferentially to fish. 
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of the images are subjected to principal components analysis.  In Figure 5.16, all of the 

sample images are projected onto the first two principal components.  A 4-Nearest 

Neighbor classification attempt (Mitchell, 1997) results in a lackluster 15.7 % error.  

Note that this error is appropriately considered a training error, not a testing error.  A 

biplot allows us to show the magnitude and sign of the contribution of each variable (the 

responses of the 42 cells) to the first two principal components, and to visualize how each 

observation (the 70 images – ten from each of seven categories) is represented in terms of 

those components.  We provide this in Figure 5.17.  A Pareto chart (also known as a scree 

plot) is given in Figure 5.18.  These help us to visualize the percentage of total variability 

explained by each principal component.  The lack of an obvious “elbow” indicates that 

all dimensions, or at least more than the first two dimensions, although correlated, 

contribute to the representation.  This fact, coupled with our poor classification 

performance, lead us to seek a more appropriate method of data visualization and 

dimensionality reduction for our cell response space. 

 

We use three-dimensional non-classical non-metric multidimensional scaling (MDS) 

analysis to better visualize our cell response space.  This technique shares some of the 

advantages of the nonlinear dimensionality reduction technique of locally linear 

embedding (LLE), such as a preservation of topology (Roweis and Saul, 2000).  The data 

representing the dissimilarities between the responses of all of the cells in the same 42-

cell population to all of the images is subjected to three-dimensional non-classical non-

metric MDS analysis and we present a Shepard plot in Figure 5.19.  As is typical, our 

goal is to create a configuration (to be seen in Figure 5.20) of points in 3 dimensions with 
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Figure 5.16 – Principal Components Analysis (PCA).  The responses of all of the cells in 
the 42-cell population to all of the images are subjected to principal components analysis.  
The 10 sample images from each of the 7 categories – coded by color and shape – are 
projected onto the first 2 principal components axes.  Classification (4-Nearest Neighbor) 
at this level results in an error of 15.7%. 
 
 
 
 
 
 
 
 
 
 
 
 



 129

 
 
 
 

 
 
 
 
 
Figure 5.17 – Biplot.  As in Figure 5.16, principal components analysis was applied to the 
cell responses.  Of the 42 cells (variables) in the population, 6 representative cells were 
chosen.  The direction and length of each blue vector corresponds to the variable’s 
contribution to the first 2 principal components.  The red dots indicate observations (the 
70 images).  These are the principal component scores – the representations of the 
observations in principal component space. 
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Figure 5.18 – Pareto chart.  As in Figure 5.16, principal components analysis was applied 
to the cell responses.  Principal component numbers are given on the abscissa.  The 
height of each bar, with values on the ordinate, represents the percentage of total 
variability explained by each principal component.  The blue line displays the cumulative 
sum of percentage. 
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Figure 5.19 – Shepard plot.  The data representing the dissimilarities between the 
responses of all of the cells in the 42-cell population to all of the images is subjected to 
three-dimensional non-classical non-metric multidimensional scaling (MDS) analysis.  
Blue circles represent distances, the red line represents disparities, with dissimilarities on 
the abscissa and the ratio of distances to disparities on the ordinate.  Stress (7.3%) 
measures how well the solution recreates the dissimilarities. 
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inter-point distances close to the original dissimilarities.  But here, instead of trying to 

approximate the original dissimilarities themselves, disparities are used as nonlinear, 

monotonic transformations of the dissimilarities, with distances approximating the 

disparities.  The small scatter of blue circles about the red line shows how the distances 

approximate the disparities well.  The nonlinear but increasing red line shows that the 

disparities reflect the ranks of the dissimilarities.  Its concave shape reminds us that the fit 

tends to contract small distances relative to the corresponding dissimilarities and that only 

relative distances between points, and not absolute distances, should be taken literally.  

The stress is a measure of how well the solution recreates the dissimilarities, with smaller 

values indicating a better fit.  A stress of 7.3% is very good, lending confidence to this 

method. 

 

In Figure 5.20, again using our 42-cell population, all of the sample images are projected 

onto the three dimensions resulting from the non-classical non-metric MDS analysis.  A 

4-Nearest Neighbor classification attempt results in a superior 2.9% error, suggesting that 

this type of analysis makes the data most amenable to clustering.  Note again that this 

error is appropriately considered a training error, not a testing error.  The structure of the 

data at this reduced dimensionality is apparent. 

 

In Figure 5.21 we illustrate the hypothesis of no correlation.  The correlation coefficients 

of the observations (cell responses) and variables (image categories) are derived and the 

p-values used for testing the hypothesis of no correlation are obtained.  The black 

rectangles  represent  a  p-value of < 0.05, indicating a significant correlation between the 
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Figure 5.20 – Three-dimensional non-classical non-metric multidimensional scaling 
(MDS) analysis.  As in Figure 5.19, three-dimensional non-classical non-metric MDS 
analysis was applied to the dissimilarities between the cell responses.  On this scatter 
plot, the 10 sample images from each of the 7 categories – coded by color and shape – are 
projected onto the 3 dimensions resulting from the analysis.  Classification (4-Nearest 
Neighbor) at this level results in an error of 2.9 %. 
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Figure 5.21 – Hypothesis of no correlation.  The 70 images are grouped into 7 categories, 
given along the abscissa.  The 42-cell population, with values on the ordinate, is used for 
evaluation of correlation coefficients.  The black rectangles represent a p-value of < 0.05, 
indicating a significant correlation between the observations (cell responses) and 
variables (image categories). 
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observations and variables (i.e., cells correlated with category determination).  This could 

potentially lead us to a sub-population of cells that are most effective at identifying a 

particular category.  (We will explore this concept further in Figure 5.29 and 5.30.)  Note 

that any structure or pattern discerned in the figure’s rectangles is artifactual – simply a 

result of a non-random ordering of the cells.  Also note that there are significantly 

correlated cells for each of the seven categories – some important for just one category, 

indicating a highly discriminating cell, others spanning multiple categories, indicating a 

less exclusive, but otherwise useful, cell. 

 

As a broad demonstration of the discriminatory power of our network, we show the cell 

population responses to each image in two categories in Figure 5.22.  The responses 

(representing IT cell excitation) of each of the cells in the 42-cell population are given for 

each of the ten “guitar” images and for each of the ten “cat” images (on the right).  The 

differences between the populations for each of the categories are visually apparent. 

 

We also construct a support vector machine (SVM) for classification based upon cell 

population response.  In a fairly simple test, we train it with six randomly-chosen 

examples from each category and test it with two randomly-chosen examples from each 

category.  We achieve 100% correct categorization.  In Figure 5.23 we demonstrate the 

use of a decision tree for classification.  This tree-based model employs a set of simple 

rules to achieve classification of image categories.  Using our 42-cell population, we see 

that  only  6  cells  are  necessary  for  100%  performance.   These  several  classification 
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Figure 5.22 – Cell population responses to each image in two categories.  The responses 
of each of the cells in the 42-cell population are given for each of the 10 “guitar” images 
(on the left) and for each of the 10 “cat” images (on the right).  Hotter colors (see the 
color bars) represent a larger degree of IT cell excitation.  The differences between the 
populations for each of the categories are visually apparent. 
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Figure 5.23 – Decision tree for classification.  This tree-based model employs a set of 
simple rules to achieve classification of image categories.  At each non-terminal node, the 
left branch is taken in the case of a “true” decision, the right branch is taken in the case of 
a “false” decision.  Eventually, a terminal node (classification) is reached.  Using our 42-
cell population, we see that only 6 cells are necessary for 100% performance. 
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techniques demonstrate that our network can properly categorize a number of real images 

in a variety ways. 

 

We present the responses of six alternatively-constructed cells to each image in Figure 

5.24.  Each of the six cells in this figure utilizes the parameter set of one of the cells in 

Figure 5.9, with matching construction methodologies.  The mean and standard deviation 

of each of the cell’s four features (angle, curvature, direction of curvature, distance) for 

three Gaussian constituents (A, B, C) are derived using different techniques (one for each 

cell): using the average of iso-curvature segments (the selected [1 2 3] segments for the 

case illustrated) from multiple images, using a single prototype image’s iso-curvature 

segments, or entirely from data fitting (and optimized randomly).  The desired response 

can be relative (as in the normalized EMD value) or absolute (20-30 Hz within-category, 

1 Hz out-of-category).  The nonlinear arrangement “A + B + C + AB + AC + BC + 

ABC” is represented.  Each of these cells responds preferentially to guitars.  Figure 5.26 

is similar to Figure 5.24, but with each of the six cells in this figure utilizing the 

parameter set of one of the cells in Figure 5.10, with matching construction 

methodologies.  Here, the average of iso-curvature segments from multiple images is 

based upon the selected [2 3 8] segments and the nonlinear arrangement “( A + B + C )2  

=  A2  +  B2  +  C2  +  2AB  +  2AC  +  2BC” is represented.  Although each of the cells in 

Figure 5.24 and Figure 5.26 responds preferentially to guitars, the wide variety of 

response profiles – both between techniques and between nonlinear arrangements and 

segment selections – is apparent.  This again illustrates the lack of dependence upon 

specific cellular configurations required to achieve superior performance. 



 139

 
 
 
 

 
 
 
 
 
Figure 5.24 – Responses of six alternatively-constructed cells to each image.  The 70 
images are grouped into 7 categories in each of the 6 panels.  The height of each bar in 
each panel represents the response of each cell to each of these images.  Each cell’s full 
response equation, including fitted coefficients and color-coded to match the construction 
methodology used for Figure 5.9, is shown above its panel.  The mean and standard 
deviation of each of the cell’s four features (angle, curvature, direction of curvature, 
distance) for three Gaussian constituents (A, B, C) are derived using different color-
coded techniques (one for each cell): using the average of iso-curvature segments (the 
selected [1 2 3] segments for the case illustrated) from multiple images, using a single 
prototype image’s iso-curvature segments, or entirely from data fitting (and optimized 
randomly).  The desired response can be relative (as in the normalized EMD value of 
Figure 5.6) or absolute (20-30 Hz within-category, 1 Hz out-of-category).  The nonlinear 
arrangement “A + B + C + AB + AC + BC + ABC” is represented.  Each of these cells 
responds preferentially to guitars. 
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In Figure 5.25 we show the Gaussian constituent response contributions of one of the 

cells of Figure 5.24 to the ten images in the category to which the cell responds optimally 

(“guitar”).  The components of the response are not surprising, since the cell’s 

construction was based on the selected [1 2 3] iso-curvature segments.  Figure 5.27 is 

similar to Figure 5.25, but with the Gaussian constituent response contributions of one of 

the cells of Figure 5.26 given to the ten images in the category to which the cell responds 

optimally (“guitar”).  The components of the response are also not surprising, since the 

cell’s construction was based on the selected [2 3 8] iso-curvature segments.  Note that in 

each case, the Gaussian constituent response contributions are subsequently combined 

nonlinearly and multiplied by coefficients to achieve the total response of each of the IT-

like cells.  Figures 5.25 and 5.27 illustrate the fact that different images may activate the 

IT-like cells, and specifically their Gaussian constituents, differently, yet produce similar 

total responses.  This type of cellular behavior is necessary to achieve the robust 

discriminatory power of our network.  Consider, for example, the first (image 121) and 

seventh (image 127) images of Figure 5.27.  The iso-curvature segments of image 121 

contribute moderately to all three (“A”, “B”, “C”) Gaussian constituents of cell 2, 

whereas the iso-curvature segments of image 127 contribute significantly to Gaussian 

constituent “B” only.  However, both images 121 and 127 produce a total IT response 

close to 40 Hz (as seen in the top right panel of the Figure 5.26). 

 

We continue our investigation of the iso-curvature segments’ contributions to Gaussian 

constituents’  responses  in Figure 5.28, but in greater detail.  The responses (representing 
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Figure 5.25 – Response contributions of one cell.  The Gaussian constituent response 
contributions of one of the cells of Figure 5.24 (cell 2, in the top right panel of the figure, 
constructed using the average of the selected [1 2 3] iso-curvature segments) to the 10 
images (with image numbers given) in the category to which the cell responds optimally 
(“guitar”) is shown.  Iso-curvature segment numbers are given along the abscissas.  The 
height of each color-coded bar, with values on the ordinates, represents the corresponding 
Gaussian constituent’s (A’s, B’s, or C’s) contribution to the cell’s total response to the 
image, with maximum value corresponding to the n-dimensional Gaussian peak at 1 for 
each constituent. 
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Figure 5.26 – Responses of six alternatively-constructed cells to each image.  The 70 
images are grouped into 7 categories in each of the 6 panels.  The height of each bar in 
each panel represents the response of each cell to each of these images.  Each cell’s full 
response equation, including fitted coefficients and color-coded to match the construction 
methodology used for Figure 5.10, is shown above its panel.  The mean and standard 
deviation of each of the cell’s four features (angle, curvature, direction of curvature, 
distance) for three Gaussian constituents (A, B, C) are derived using different color-
coded techniques (one for each cell): using the average of iso-curvature segments (the 
selected [2 3 8] segments for the case illustrated) from multiple images, using a single 
prototype image’s iso-curvature segments, or entirely from data fitting (and optimized 
randomly).  The desired response can be relative (as in the normalized EMD value of 
Figure 5.6) or absolute (20-30 Hz within-category, 1 Hz out-of-category).  The nonlinear 
arrangement “( A + B + C )2  =  A2  +  B2  +  C2  +  2AB  +  2AC  +  2BC” is represented.  
Each of these cells responds preferentially to guitars. 
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Figure 5.27 – Response contributions of one cell.  The Gaussian constituent response 
contributions of one of the cells of Figure 5.26 (cell 2, in the top right panel of the figure, 
constructed using the average of the selected [2 3 8] iso-curvature segments) to the 10 
images (with image numbers given) in the category to which the cell responds optimally 
(“guitar”) is shown.  Iso-curvature segment numbers are given along the abscissas.  The 
height of each color-coded bar, with values on the ordinates, represents the corresponding 
Gaussian constituent’s (A’s, B’s, or C’s) contribution to the cell’s total response to the 
image, with maximum value corresponding to the n-dimensional Gaussian peak at 1 for 
each constituent. 
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Figure 5.28 – Iso-curvature segments’ contributions to Gaussian constituents’ responses.  
The top row represents the responses of 3 cells from the population to each image.  The 
70 images are grouped into 7 categories in each of the 3 top panels.  The height of each 
bar in each panel represents the response of each cell to each of these images.  The left 
panel cell (tuned with the selected [1 2 3] segments) responds preferentially to guitars.  
The middle panel cell (tuned with the selected [2 4 6] segments) responds preferentially 
to guitars.  The right panel cell (tuned with the selected [1 2 3] segments) responds 
preferentially to fish.  The bottom row represents the contributions of the iso-curvature 
segments, singly or in combination, from each of these 3 particular images, to the overall 
responses of the corresponding cells.  These responses are proportional to the alignment 
(proximity) of the iso-curvature segments with the cells’ Gaussian constituents.  Hotter 
colors (see the color bar) represent a larger degree of IT cell excitation. 
 
 
 
 



 145

IT cell excitation) of three cells from the population to each image are shown in the top 

row of this figure.  The left panel cell (tuned with the selected [1 2 3] segments) responds 

preferentially to guitars.  The middle panel cell (tuned with the selected [2 4 6] segments) 

responds preferentially to guitars.  The right panel cell (tuned with the selected [1 2 3] 

segments) responds preferentially to fish.  The bottom row of the figure represents the 

contributions of the iso-curvature segments, singly or in combination, from each of these 

three particular images, to the overall responses of the corresponding cells.  These 

responses are proportional to the alignment (proximity) of the iso-curvature segments 

with the cells’ Gaussian constituents. 

 

In Figure 5.29 we consider sub-populations – subsets of the full IT cell population.  The 

height of each bar in each panel is proportional to the average firing rate of all cells to all 

of the images in each of the categories.  The left panel corresponds to a full, 100-cell 

population.  The seven panels on the right correspond to seven (presumably different) 10-

cell subsets of the full population, chosen to yield the “best” average response (i.e., the 

most differential response with the “cleanest” histogram) to each of the seven categories.  

Clearly, there are subsets of cells in the population that are more adept at certain 

categorizations. 

 

Overall accuracy is investigated and visualized in Figure 5.30.  This figure is similar to 

the right panels of Figure 5.29, but instead of selecting the ten “best” cells from the 

population, we select a variable number of cells, starting with the full 120-cell population 

(100%)  and  steadily  decreasing.   The  percentage  of  “best” cells selected from the full 
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Figure 5.29 – Sub-populations.  The 70 images are grouped into 7 categories in each of 
the panels.  The height of each bar in each panel represents the average firing rate of all 
cells to all of the images in each of the categories.  The left panel corresponds to a full, 
100-cell population.  The 7 panels on the right correspond to 7 (presumably different) 10-
cell subsets of the full population, chosen to yield the “best” average response (i.e., the 
most differential response with the “cleanest” histogram) to each of the 7 categories. 
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Figure 5.30 – Accuracy.  The 70 images are grouped into 7 categories, coded by color.  
This figure is similar to the right panels of Figure 5.29, but instead of selecting the 10 
“best” cells from the population, we select a variable number of cells, starting with a full 
120-cell population (100%) and steadily decreasing.  The percentage of the “best” cells 
selected from the full population for each category is given on the abscissa.  These 
subsets of the full population are chosen to yield the “best” average response (i.e., the 
most differential response) to each of the 7 categories.  The accuracy, with values on the 
ordinate, is defined as the average firing rate to the category divided by the sum of firing 
rates to all categories for the fraction of cells currently selected for each specific category 
(the average response to all images in 1 category divided by the sum of average responses 
to all images in all categories).  A value of 1 represents 100% accuracy – the selected 
cells respond only to images from the category for which they were selected. 
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population for each category is given on the abscissa.  These subsets of the full 

population are chosen to yield the “best” average response (i.e., the most differential 

response) to each of the seven categories.  The accuracy, with values on the ordinate, is 

defined as the average firing rate to the category divided by the sum of firing rates to all 

categories for the fraction of cells currently selected for each specific category (the 

average response to all images in one category divided by the sum of average responses 

to all images in all categories).  A value of 1 represents 100% accuracy – the selected 

cells respond only to images from the category for which they were selected.  This is 

similar to a receiver operating characteristic (ROC) curve, which is a plot of the false 

alarms (false positive rate) on the abscissa against the hits (true positive rate) on the 

ordinate for a criterion range (Zweig and Campbell, 1993).  Here, the hit rate is 

equivalent to sensitivity. We conclude that only a small number of V4 / IT cells may be 

necessary for image recognition at this level.  Assuming that one cell for each image 

category is sufficient for correct categorizations, we might ask why IT would have more 

than one cell representing each category.  This is a fair question, considering the 

biological overhead of maintaining a large population of cells.  The answer, however, is 

nearly identical to that of the “grandmother” cell issue.  In order for the population to 

remain robust in the face of cellular demise and to accommodate the wide variation of 

category members (perhaps much more varied than in our test samples), a greater number 

of cells per category would be required.  However, as we have demonstrated here, this 

number is not prohibitively large. 
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5.4  Discussion 

 

The information concentration along contours, and therefore the importance of contour 

shape and curvature in both human and computer vision, has been apparent since 

Attneave’s (1954) seminal work relating information theory to visual perception.  The 

discoveries of Pasupathy and Connor (2001), Hegdé and Van Essen (2003), and others 

show a large degree of sophisticated shape processing in extrastriate visual cortex.  

These, along with the results of Brincat and Connor (2004, 2006) in the inferotemporal 

cortex, reveal further refinement in the ventral stream and represent, to a large degree, a 

biological solution to shape description and object recognition.  Our results suggest that 

curvature- and position-sensitive units can function as robust shape descriptors.  Our 

model of highly selective IT-like cell response, a function of the number of V4-like cell 

inputs and their nonlinear combinations, is hardy in that it is not rigidly dependent upon 

parameter selection or implementation strategy, yet it performs consistently well in 

recognition tasks. 

 

Several aspects of the Brincat and Connor (2004, 2006) research regarding neural 

selectivity for complex 2-D boundary shape in inferotemporal cortex warrant additional 

consideration.  They have found, for example, that the IT cell tuning functions are 

composed of 1−6 Gaussians (and typically 2–4) on the shape × position domain, with 

neurons integrating specific information about the shapes of multiple contour fragments.  

In our model, these units correspond to iso-curvature segments activating V4 inputs to 
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Gaussian constituents in the total response equations of the IT-like cells.  They may, 

however, also correspond to different kinds of entities, as in a fragment-based approach 

(Ullman et al., 2001) or a components-based approach (Biederman, 1987) to recognition.  

The units / iso-curvature segments / Gaussian constituents are not required to be 

contiguous, as in the clockwise and counterclockwise segments contributing to V4 

responses (Pasupathy and Connor, 1999).  The fact that V4 cells are further modulated by 

contour configurations at neighboring locations does not preclude modulation in V4 by 

non-contiguous segments.  It may be the case that only sequences of three boundary 

elements were measured in V4 and so the non-contiguous response contributions in IT 

would not be surprising.  Their main finding of explicit coding of the structural 

relationships between boundary fragments based on a graded tuning for shape and 

position does offer support for any parts-based shape representation, including our model, 

as does the fact that 2-dimensional boundary shape may dominate IT response to realistic 

objects (Kovács et al., 2003). 

 

Brincat and Connor (2004) have also found that the integration of excitatory contour 

elements (the positive terms in our total response equations) was by purely linear as well 

as nonlinear neuronal sub-populations, whereas the integration of inhibitory contour 

elements (the negative terms in our total response equations) was almost exclusively 

linear.  We enforce this aspect in our models and nonlinear least-squares curve fitting 

works well.  We realize that the derivation of the tuning functions would be impossible in 

this manner without the benefit of observed responses.  Also, the nonlinear interactions 

would be problematic using other construction methods, such as the linear principal 
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components analysis.  Their finding that relative responses were consistent across 

changes in stimulus position and size gives support to the affine transformational aspects 

of our model.  Their finding that tuning for retinotopic position was broadest and weakest 

leads us to conclude that the 6-dimensional shape space (which includes retinotopic 

position) could be reduced to a 4-dimensional space (curvature, orientation, position 

relative to the object’s center of mass). 

 

The successful model of episodic recognition memory by Kahana and colleagues 

(Kahana and Sekuler, 2002) compels us to explore the connections between our model of 

object recognition and the current models of mathematical psychology.  Prototype-based 

theories of categorization typically employ one image from each category.  Exemplar-

based theories like ours, on the other hand, typically require several images (in our case, 

ten) from each category.  Kahana’s noisy exemplar model represents stimuli as 

multivariate normal distributions in feature space.  He employs a deterministic response 

rule, based upon the summed similarity between probes and stored representations, with a 

consideration of interstimulus similarity.  Categorizations are based on an average fit 

approximation to the class, not on exact matches to prototypes.  Other results suggest that 

humans categorize by comparing objects to well-known members of alternative 

categories, either directly or based on class boundaries (as in SVM), and learn which 

features are most diagnostic for distinguishing particular categories (Sigala et al., 2002; 

Sigala and Logothetis, 2002; Dosher and Lu, 1998).  Dynamic filter weighting for 

emphasis (categorization and sub-categorization) might be used to accomplish this in our 

computational model (see our previous results in Chapter 4).  Palmeri and Nosofsky 
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(2001) have found evidence of extreme prototype enhancement, in which category 

prototypes were classified more accurately than any of the other category examples.  This 

would seem to favor a prototype / template-based methodology.  However, they have 

found these category prototypes to be more accurately seen as psychological extreme 

points relative to the categories rather than central tendencies of category instances, 

further supporting exemplar-based theories of categorization. 

 

By some standards, our recognition tasks have been “easy”.  Our categorization 

possibilities (one of ten digits, as in our previous work (Chapter 4), or one of seven 

categories of real images, for instance) are modest.  More difficult (more realistic, 

perhaps, yet less controlled) evaluations, as when information regarding the number of 

categories is incomplete or unknown, might have required a greater degree of 

unsupervised learning or clustering such as k-means clustering or the use of a Gaussian 

Mixture Model (GMM) coupled with the expectation-maximization (EM) algorithm 

(Duda and Hart, 1973; Bishop, 2006).  Additionally, the “class imbalance” issue, with 

many exemplars representing some categories and very few exemplars representing other 

categories, might have to be addressed (Mazurowski et al., 2008; Tang et al., 2009; Liu et 

al., 2009).  More generally, the recognition aspects of similarity and concept learning 

within a Bayesian inference framework, with particular emphasis on the additive 

clustering approach to extracting features that best account for similarity judgments on a 

given set of objects, might be considered (Tenenbaum and Griffiths, 2001). 
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The nonlinear combinations of V4 cell inputs to IT could be generalized by an equation 

of the form: 

 

αA + βB + γC + ... + δAB + εAC + ηBC + ξABC + … . 

 

This might support a Bayesian / probabilistic implementation of recognition with, for 

instance, the joint and conditional probabilities (as in: segment A and segment B are 

coincident with some probability) related to the nonlinear equations.  In a sense, IT would 

be computing 

 

p ( image ⏐ features ) , 

 

with prior 

 

p ( image) / p ( ¬ image ) 

 

and likelihood 

 

p ( features ⏐ image ) / p ( features ⏐ ¬ image ) . 

 

This is somewhat similar to Gold’s work in monkey LIP with Bayesian temporal 

sequence decoding using likelihood ratios and the subsequent addition of logarithms, 

given some feature evidence (Gold and Shadlen, 2000; Gold and Shadlen, 2001). 
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As mentioned above, our Gaussian constituents (A, B, C) were chosen by selecting a 

single prototype, computing the category average, selecting and computing the average 

for a subset of images from a category (e.g., three guitars only), etc.  We have compared 

the coefficients in each case and have found predictable patterns.  We consider the 

requirement that a population of Gaussian constituents be derived directly from and 

aligned roughly with real image iso-curvature segments.  The Gaussian constituents, in 

this case, could be determined using a factorial approach – randomly derived (and 

optimized).  The tuning functions might even be pruned after some initial exposure to 

images, as in the work by Amit and colleagues (Amit et al., 1997).  Also, the effect that 

the inter-category and intra-category distances between the image features have on the 

nonlinear terms of the IT-like cells’ response equations should be considered.  When 

using the normalized average-to-average Earth Mover’s Distances to create the tuning 

functions, for instance, a smaller contribution from the nonlinear terms might be required.  

Tuning functions derived using an absolute response ratio might require a greater 

nonlinear contribution to achieve optimization. 

 

Pasupathy and Connor (2001) point out that complex shape representation in area V4 is 

parts-based (since contour segments are defined by conformation and position) as well as 

distributed (since individual cells encode smaller parts of larger objects).  The same can 

be said for IT to a larger degree.  We consider the relationship between the size of a part 

and the size of an iso-curvature segment and question whether this relationship is time-

varying.  It is thought that a parts-based coding system, using either a finite number of 
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primitives or a continuous part representation with graded tuning, has the combinatorial 

power and representational capacity to encode a virtually infinite variety of objects 

(Pasupathy and Connor, 2002; Biederman, 1987; Tsunoda et al., 2001; Rolls et al., 1997).  

The number of cells required for these types of representations is well within biological 

constraints (Van Essen, 2003; Bullier, 2001; Motter, 2003).  Any parts-based model, 

including ours, must necessarily incorporate some element of reconstruction of the parts.  

This might, for example, be related to boosting or ensemble learning, where a very 

accurate prediction rule is produced by combining rough and moderately inaccurate rules 

(Freund and Schapire, 1999; Viola and Jones, 2001a).  Alternatively, it might be 

implemented using something similar to a “mixture of experts”, perhaps implementing 

some form of Bayesian inference related to Mumford’s framework, with recurrent 

feedforward and feedback loops integrating top-down context and bottom-up stimulation 

(Lee and Mumford, 2003).  In cortex, the hypercolumns themselves might possibly 

implement some form of Bayesian inference (Weiss, 1997).  The work by Rao (2005a) 

explains a variety of attention-related responses in V4 by interpreting visual attention as 

the cortical mechanism for reducing perceptual uncertainty as it integrates top-down and 

bottom-up information.  He has also generated purely theoretical models where 

membrane potentials encode some probability function (Rao, 2004; Rao, 2005b).  

General support for the view that the brain uses Bayesian-like computations – particularly 

the multiplication of prior knowledge with new and possibly uncertain evidence – is 

provided by models such as that proposed by Simoncelli (Stocker and Simoncelli, 2006).  

These ideas are related to those of Yu and Dayan (2002), who consider acetylcholine’s 

role in perceptual inference to be that of modulator between top-down contextual 
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information and bottom-up sensory inputs by determining the relative strengths of these 

sources.  In a system where top-down input indicates what should be expected 

horizontally, acetylcholine’s function, demonstrated with a hierarchical hidden Markov 

model (HMM), is essentially to reflect the uncertainty associated with top-down 

information. 

 

An important issue concerns whether and how a global description of object shape 

emerges.  A requirement of a parts-based description might be that higher visual areas 

learn to be selective to differences, at a variety of hierarchical levels, which distinguish 

categories of objects.  Logothetis and colleagues (Sigala and Logothetis, 2002) have 

found enhanced neuronal representation in primate IT cortex to features that are more 

diagnostic for distinguishing particular categories.  The separability of their stimulus 

space suggests that higher visual areas may learn to be selective to variations which 

discriminate between object categories.  (Consider our efforts to better visualize our cell 

response space in the three-dimensional non-classical non-metric multidimensional 

scaling analysis domain and the subsequent demonstration of separability.)  Top-down 

effects (from IT, etc.) might then alter the gain or sensitivity of particular intermediate-

level units (in V4) and focus their response onto those regions of interest or features 

whose local configurations are critical for the class distinction (Hochstein and Ahissar, 

2002; Sigala and Logothetis, 2002). 

 

An initial fast-pass recognition (shape class) might be plausible based merely on the 

distribution of V4 cells activated.  It is not unreasonable to consider the following 
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scenarios and functional architecture:  IT receives local curvature information 

(“reasonable” regions, not individual curvatures) from V4.  Higher visual areas, including 

IT, contain differentially-activated exemplars (not prototypes) – category cells, not 

grandmother cells – and may be selective to global or topological differences between 

objects which distinguish categories.  These topological properties may be exploited 

within the feedback from IT to V4, providing top-down adjustment of regions / segments, 

including possible re-segmentation based upon top-down impositions, thus improving 

classification accuracy and adding a global aspect to the recognition.  This is related to 

both recognition by geons (Biederman, 1987) and to a class-based segmentation method, 

guided by a stored representation of the shape of objects within a general class, with 

emphasis on the role of high-level class-specific decision criteria (Borenstein and 

Ullman, 2002).  It clearly suggests a recurrent solution, perhaps at each stage, without 

concern of sacrificing speed for accuracy, involving iterative signal refinement via 

feedback from local as well as higher cortical areas, rather than a selective feedforward 

convergence. 

 

Hypothetically, horizontal connections could embody local recurrent processing or lateral 

inhibition – by other cells’ Gaussian constituents or by other categories’ iso-curvature 

segments – in some on-center, off-surround fashion, for example.  Horizontal connections 

in V4 could also facilitate global matching between curvature detectors and provide 

rudimentary local contour grouping.  This represents an extension and use of Elder and 

Goldberg’s research to top-down / global computations, with contour grouping equivalent 

to the recovery of sequences of tangents (Elder and Goldberg, 2002).  Confirmations of 
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spatial relationships and figure directions, adjustments to match the “preferred” contour 

path, and local (contour matching) and global (interaction with other V4 cells) error 

minimization would also be present.  This is consistent with the ideas that border 

ownership (the side to which a border in a figure belongs) and information about how 

local features belong to objects each represent global image context integration and are 

generated within the visual cortex, not projected down from higher levels (Zhou et al., 

2000).  These may, however, restrict the receptive fields to a particular spatial scale. 

 

Alternatively, we could represent the shapes (curvature, direction of curvature, etc.) in 

our model with the responses of steerable curvature filters.  This is certainly a viable 

approach and is roughly equivalent to a distributed representation, but in reality is simply 

a different type of mathematical description.  An obvious advantage is the elimination of 

the initial segmentation requirement.  In a sense, the curvature filters are the image 

segments.  The filters could be constructed from Gabor or Difference of Gaussian filters, 

with morphing and conformal mapping applied.  An initial step would be to determine 

the number of filters and their degrees of coarseness or refinement (i.e., their scales).  

Also, systematic generation, as opposed to some learning paradigm applied to real-world 

images, could be explored. 

 

From a primarily machine vision-oriented perspective, another viable approach would 

again focus on the V4-like model cell populations that respond to both curvature and 

global position on the object and the IT-like model cells that combine these responses 

linearly and nonlinearly.  In some sense, once a closed curve is labeled with its V4-like 
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units, there exists a unique description that characterizes (recognizes or defines) the 

object.  If, at first, the contour were only labeled with curvature (not location) then 

Ullman's idea of recognition by fragments could be used.  Here, fragments (iso-curvature 

segments) are the component building blocks (parts) used to represent a large variety of 

objects belonging to a common class (Ullman, et al., 2001; Riesenhuber and Poggio, 

1999b).  The contour could be divided into small snippets containing several iso-

curvature segments each.  This could be done in several different ways to get varied 

options (similar to attempting to recognize a DNA sequence from small fragments).  

Based on the population of snippets, a recognition stage with a fast matching algorithm 

would determine the leading candidates for shape.  The stored "memorized" candidate 

objects would have complete information, with each curvature associated with a position.  

There would be competition between the alternative global shape choices.  This would 

then become an iterative process – fixing as many snippets as possible with positions, 

determining the global recognition candidates, and feeding them back to the V4 layer. 

 

In this approach, the figure / ground information isn't integrated or propagated locally 

from low-level contour cues.  Rather, it is derived in a feedback manner from 

recognition.  This is consistent with high-level cues and recognition affecting grouping 

cues.  It is also consistent with the fact that the bottom-up / top-down pathways are much 

faster (in terms of conduction velocity) than the horizontal integration.  The model could 

also contain a Bayesian element, similar to Adelson’s likelihood of motion fuzzing-out 

(Adelson and Bergen, 1985), etc., in that a curvature and position on the object could 

have certain likelihoods, sharpening as the iterations proceeded. 
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5.5  Conclusion 

 

Our results suggest that curvature- and position-sensitive units, as described by Brincat 

and Connor in IT, can function as robust shape descriptors.  We have demonstrated the 

utility of cells with response properties similar to those found in V4 and IT by 

constructing computer network models and successfully subjecting them to artificial 

recognition tasks on a set of real images.  Our model of highly selective IT-like cell 

response, a function of the number of V4-like cell inputs and their nonlinear 

combinations, is hardy in that it is not rigidly dependent upon parameter selection or 

implementation strategy, yet it performs consistently well in recognition tasks.  We claim 

that the response properties of V4 and IT cells (i.e., their receptive fields), and in 

particular their sensitivities to curvatures and contour positions, are useful for object 

recognition precisely because they, like our faithful computer models of them, facilitate 

shape representation and categorization by extracting features that correlate with global 

shape.  We have established a connection between a computer model of a recognition 

system and known cortical mechanisms within a biologically realistic network 

architecture. 
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Chapter 6 

 

 

Biologically Plausible Models and 
Synchronization in the Visual Area 4 
(V4) – Inferotemporal Cortex (IT) 
Circuit 
 

 

6.1  Introduction 

 

Since the cortical mechanisms underlying shape analysis and object recognition are 

incompletely understood, explicating the representation of contour shape, an essential 

component of object recognition, remains a fundamental open question in neuroscience.  

In monkey extrastriate visual area 4 (V4), an intermediate stage in the ventral (shape 

recognition) pathway extending from primary visual cortex (V1) to inferotemporal cortex 

(IT), Connor and colleagues have described cells that are selective for a particular local 

shape configuration at a particular location on a contour within a larger shape (Pasupathy 
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and Connor, 2001).  They and other research groups have also seen neural cells with 

selectivity for complex 2-dimensional boundary shape (perhaps the kind that actually 

dominates responses to realistic objects (Kovács et al., 2003)) in macaque inferotemporal 

cortex (TEO / PIT and posterior TE / CIT) (Brincat and Connor, 2006; Brincat and 

Connor, 2004; Freedman et al., 2003; Baker et al., 2002; Tsunoda et al., 2001; Op de 

Beeck et al., 2001; Booth and Rolls, 1998; Rolls et al., 1997; Gallant et al., 1996; 

Logothetis et al., 1995; Kobatake and Tanaka, 1994; Fujita et al., 1992; Young, 1992; 

Felleman and Van Essen, 1991; Gross et al., 1972), finding that IT neurons integrate 

specific information, such as curvatures, orientations, and relative positions, about the 

shapes of multiple contour fragments (typically 2 – 4).  Their tuning functions on the 

shape × position domain are driven by inputs from V4 cells. 

 

Our earlier results (Chapter 4) support the hypothesis that curvature- and position-

sensitive V4 cells – evaluated against the standard MNIST database of handwritten digits 

and the MPEG-7 Shape Silhouette database (Jeannin and Bober, 1999) – function as 

robust shape descriptors in the early stages of object recognition, with shape 

categorizations based on a particular local contour conformation located at a specific 

position on the object’s boundary.  Later results (Chapter 5) suggest that curvature- and 

position-sensitive units, as described by Brincat and Connor in IT, can also function as 

robust shape descriptors.  We developed a robust model of highly selective IT-like cell 

response, a function of the number of V4-like cell inputs and their nonlinear 

combinations, that performs consistently well in artificial recognition tasks on a set of 

real images across a wide range of specific parameter selections and implementation 
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strategies.  We made the claim that the response properties of V4 and IT cells (i.e., their 

receptive fields), and in particular their sensitivities to curvatures and contour positions, 

are useful for object recognition precisely because they facilitate shape representation and 

categorization by extracting features that correlate with global shape. 

 

Here, we continue our investigation of how contour shape is represented in cortex and 

again ask the fundamental questions: “How is contour shape represented in cortex and 

how can neural models and computer vision algorithms more closely approximate this?” 

We wish to approach a neurobiological understanding, useful theoretically as well as in 

developing or improving computer vision and Brain-Computer Interface (BCI) 

methodologies and applications, as to how object recognition, and the underlying analysis 

of shape, is accomplished.  We will again consider why the response properties of V4 and 

IT cells are useful.  In doing so, we hope to establish a clear connection between a 

computer model of a recognition system and known cortical constructs within a 

biologically realistic network architecture. 

 

Specifically, we concentrate on realistic biological models of cells – those that have a 

high biological plausibility (measured in the number of biological features that the model 

can reliably reproduce) without burdensome implementation costs (measured in the 

number of floating point operations per second required to execute the model for some 

relevant period of time) – within our network.  See Izhikevich (2004) for comparisons of 

some well-known models.  We also consider the interaction between V4 and IT from a 

mechanistic perspective. 
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To begin, we use the Morris-Lecar neuronal model, with genetic algorithms utilized for 

parameter fitting, to more realistically illustrate the previously explored shape 

representation pathway in V4 – IT while remaining faithful to IT cell response patterns. 

 

In some neural systems, such as the antennal lobe of the locust, information is 

represented through both space and time coding (Bazhenov et al., 2001a; Bazhenov et al., 

2001b; Laurent et al., 2001), with each stimulus (odor) evoking a specific, reproducible 

pattern of activity across a set of neurons that acts as a dynamic attractor in phase space 

and is robust in the presence of noise.  In response to this fact, a class of dynamical 

systems called competitive networks or winnerless competition (WLC) was introduced to 

produce spatiotemporal coding (Rabinovich et al., 2001).  It was demonstrated that 

olfactory networks could recognize patterns using a WLC strategy and exhibit 

transformations from sensory input to spatiotemporal output in a network with a large 

capacity (≈ e (N – 1) !), where N is the number of neurons in the network.  As an aside, 

we consider these facts and demonstrate biologically-based object recognition using 

spatiotemporal patterns within a self-organized winnerless competition neural network 

with FitzHugh-Nagumo model neurons. 

 

Cortical synchronization can function as a binding mechanism for perceptual 

organization and grouping (Finkel et al., 1998; Yen et al., 1999).  Synchronous 

oscillatory activity in the gamma band is a fundamental process ideally suited for many 

cognitive functions (Fries, 2009) and the distortion of gamma activity is linked to object 
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recognition abnormalities (Lazarewicz et al., 2009).  It has been associated with 

consciousness (Engel et al., 2001), attention (Vidal et al., 2006), memory (Howard et al., 

2003; Sederberg et al., 2003; Miltner et al., 1999), synaptic plasticity and learning 

(Popescu et al., 2009), object representation and perception (Rodriguez et al., 1999) and 

the precise temporal relationships of concurrent stimuli (Tallon-Baudry et al., 1999). 

 

Stimulus-specific synchronous gamma (40 Hz) oscillations, correlates of specific visual 

scene-induced network states, have been observed across cortical columns in cat visual 

cortex (Gray and Singer, 1989; Gray et al., 1989).  In addition, it is likely that oscillatory 

activity (Giocomo and Hasselmo, 2008), particularly in the gamma (30 – 80 Hz) band, 

possibly utilizing reciprocal information transfer (Supp et al., 2007), coupled with 

inhibitory activity (Wang et al., 2000), is required for the information binding and object 

recognition that is localized in the monkey visual area 4 (V4) – inferotemporal cortex 

(IT) feedforward – feedback loop circuit (Kriegeskorte et al., 2008; Deco and Rolls, 

2004; Ungerleider et al., 2008). 

 

We conclude our current investigation of the cortical mechanisms of object recognition in 

areas V4 and IT with an examination of gamma synchronization in the V4 – IT circuit.  

We use the Izhikevich neuronal model and demonstrate that an initially out-of-phase 

network’s inherent characteristics and dynamics can induce synchronized responses in 

V4 via PING (pyramidal interneuron network gamma) mechanisms (Whittington et al., 

2000), involving both inhibitory and excitatory IT cells, by applying current input to the 

network.  Additionally, we show that a response amplification in IT, correlated with 
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recognition, results from the synchronized spiking in V4 and roughly coincides with the 

onset of synchronization. 

 

6.2  Methodology 

 

In general, we use neurobiological models that have been well established in the 

literature.  These are simple and reduced, yet remain faithful to observed phenomena in 

vivo. 

 

6.2.1  The Morris-Lecar Model and Recognition 

 

The Morris-Lecar equations represent a two-dimensional conductance-based reduced 

excitation neuronal model (Morris and Lecar, 1981; Fall and Keizer, 2002; Rinzel and 

Ermentrout, 1998).  The model involves only a fast activating Ca2+ current, a delayed 

rectifier K+ current and a passive leak current.  The principal equations are: 

 

C dV/dt  =  − gCa m∞ ( V − VCa ) − gK w ( V − VK ) − gL ( V − VL ) + Iapp 

 

dw/dt  =  φ ( w∞ − w ) / τ 
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where m is the fraction of voltage-dependent Ca2+ channels open, w is the fraction of 

open channels for the delayed rectifier K+ channels and gL, gCa and gK are conductances 

for the leak, Ca2+ and K+ currents.  The functions: 

 

m∞  =  0.5 [ 1 + tanh ( ( V – v1 ) / v2 ) ] 

 

w∞  =  0.5 [ 1 + tanh ( ( V − v3 ) / v4 ) ] 

 

τ  =  1 / cosh ( ( V − v3 ) / ( 2 · v4 ) ) 

 

are the equilibrium open fractions for the Ca2+ and K+ currents and the activation time 

constant for the delayed rectifier.  Synaptic transmission between neurons is modeled 

using two-state channels.  Depolarization in the presynaptic cell opens voltage-gated 

calcium channels, resulting in calcium influx, transmitter release, postsynaptic receptor 

binding and postsynaptic channel opening.  The current through the postsynaptic 

membrane is: 

 

Isyn  =  gsyn s ( V – Vsyn ) 

 

where 

 

ds/dt  =  α s∞ ( 1 – s ) – β 

 



 168

with 

 

s∞  =  1 / [ 1 + exp ( − ( V – θsyn ) / ksyn ) ] 

 

and where gsyn is the maximal conductance at the synapse, s is the open fraction, Vsyn is 

the reversal potential, the presynaptic potential is above θsyn and ksyn is positive. 

 

Models of Type I oscillator cells can produce arbitrarily low frequencies of oscillations, 

resulting from saddle-node bifurcations.  With the parameter values given in Table 6.1, 

the Morris-Lecar model can behave in this manner. 

 

We create a Morris-Lecar IT cell model which integrates specific information about the 

2-dimensional boundary shapes of multiple contour fragments (V4 cell inputs) with 

tuning functions on the shape × position domain (Brincat and Connor, 2004; Brincat and 

Connor, 2006).  Each cell behaves like a previously defined IT-like cell in Chapter 5, 

with three Gaussian constituents (A, B, C) in its total response equation, each receiving 

inputs directly from the V4-like cells (responding to an image’s iso-curvature segments) 

and together used to compute the nonlinear response of the IT cell.  The Gaussian 

constituents are essentially variables in the total response equations of the IT-like cells.  

Each Gaussian function is n-dimensional (where “n” is the number of features 

considered).  Any of the image’s iso-curvature segments can contribute to the Gaussian 

constituent function’s response, with response magnitude proportional to the distance 

between the “n” features of the iso-curvature segment and the center of the n-dimensional 
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parameter value 
C 20 µF/cm2 

VK − 84 mV 
gK 8 mS/cm2 
VCa 120 mV 
gCa 4 mS/cm2 
VL − 60 mV 
gL 2 mS/cm2 
v1 − 1.2 mV 
v2 18 mV 
v3 12 mV 
v4 17.4 mV 
φ 0.066 / ms 

Vsyn 100 mV 
θsyn 20 mV 
ksyn 2 
α 1 
β 0.3 

 
 
Table 6.1 – Morris-Lecar model parameters. 
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Gaussian constituent.  (See Chapter 4 and Chapter 5 for details about iso-curvature 

segments, Gaussian constituents of response equations, etc.)  For a maximal response, the 

image’s features (in the case of four features: the angle, curvature, direction of curvature 

and distance of each of the iso-curvature segments) would have to be perfectly aligned 

with those of the Gaussian constituents.  Otherwise, a sub-optimal response would result, 

determined by Gaussian falloffs from the means at rates proportional to the specified 

standard deviations.  The mean and standard deviation of each Gaussian constituent’s 4-

feature vector are selected from a previously created population of cells (in Chapter 5).  

The coefficients (for the linear and nonlinear components A, B, C, AB, AC, BC, and 

ABC) are selected in a similar manner.  Responses are chosen to be either constant high 

for the active category and constant low for all other categories (an absolute ratio).  All 

terms in the total response equation are considered to be current inputs into the Morris-

Lecar cell. 

 

From the natural image dataset – in the form of 360 × 360 JPEG images – kindly 

supplied by Drs. Kanwisher and Grill-Spector (Grill-Spector and Kanwisher, 2005), we 

select images belonging to one of seven different categories (axes, cats, fish, guitars, 

handsaws, hats, and scissors), with ten randomly selected samples from each category.  

Note that these same natural images were utilized in Chapter 5.  With these images as 

inputs, we attempt to find a set of synaptic conductances that would, given the pre-

defined Gaussian constituent nonlinear integration response equations, produce the 

optimally matching outputs.  Since our objective function is non-smooth, traditional 

derivative-based optimization methods are not effective.  Instead, we use a genetic 
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algorithm (as found in MATLAB’s Genetic Algorithm and Direct Search Toolbox) 

(Goldberg, 1989) to find the minimum of our objective function, thereby optimizing our 

choice of conductance parameters. 

 

6.2.2  The FitzHugh-Nagumo Model, Spatiotemporal Patterns and 

Winnerless Competition 

 

Following the Rabinovich methodology (Rabinovich et al., 2001) and without the 

requirement of closed loops in the network, we implement a winnerless competition 

network of the two-dynamical-variable FitzHugh-Nagumo model spiking neurons 

(FitzHugh, 1961; Rinzel and Ermentrout, 1998).  In phase space, the network’s dynamics 

are characterized by heteroclinic orbits connecting fixed point or limit cycle saddle 

regions.  These saddle states represent the activity of specific neurons.  The separatrices 

connecting them correspond to sequential switching between the states.  The inhibitory 

interactions are: 

 

τ1 dxi(t) / dt  =  f [ xi(t) ] – yi(t) – zi(t) [ xi(t) – v ] + 0.35 + Si 

 

dyi(t) / dt  =  xi(t) – b yi(t) + a 

 

τ2 dzi(t) / dt  =  Σj gji G [ xj(t) ] – zi(t) 
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where zi(t) is a synaptic current, xi(t) is the membrane potential, yi(t) is the recovery 

variable, f (x)  =  x – 1/3 x3 is the internal FitzHugh-Nagumo nonlinearity, G(x) is a step 

function, Si is the stimulus and gji is the strength of the synaptic inhibition. 

 

With the other parameter values given in Table 6.2, a FitzHugh-Nagumo WLC network 

can produce considerably different patterns in response to different stimuli.  Its high 

dimensionality provides the capacity to store many patterns. 

 

We create such a FitzHugh-Nagumo WLC network with nine cells (i  =  1, 2, … 9 in the 

above equations) and subject it to a population of simple geometric shape images 

(specifically, families of curves) – circles, cardioids, limaçons of Pascal, ellipses and 

ovals of Cassini with governing equations: 

 

circles:   r  =  a 

 

cardioids:  r  =  a * ( 1 + cos (θ) ) 

 

limaçons of Pascal: r  =  a – b * cos (θ) 

 

ellipses:  r  =  √ ( b2 / ( 1 – a2 * cos (θ)2 ) 

 

ovals of Cassini: r  =  √ ( a2 * ( cos (2 θ)  + √ ( ( b / a )4 – sin (2 θ)2 ) ) ) 
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parameter value 
a 0.68 
b 0.8 
τ1 0.08 
τ2 4.1 
v − 1.5 

g15, g27, g37, g84 1.25 
g52, g63, g74, g93 1.5 

g31, g46, g79 1.75 
g19, g76, g78, g91 2.0 

all other gji 0 
 
 
Table 6.2 – FitzHugh-Nagumo model parameters. 
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where r is the radius and a and b are constants.  Gaussian noise (N(0, 1) multiplied by a 

scaling factor) is added to the stimulus to make each shape unique.  Note that these 

values are already somewhat noisy due to image pixilation and steerable filter 

inaccuracies. 

 

The inputs to each of the nine cells represent the measured curvatures of individual pixels 

at specific positions on the bounding contour – equally spaced and approximately forty 

degrees apart.  This is reminiscent of the Connor work (Pasupathy and Connor, 2001).  

Alternatively, we have chosen outliers from the curvature mean, typically at non-uniform 

positions, as the input to each cell, reminiscent of some curvature extrema techniques of 

template matching. 

 

The connectivity between the cells (conductances) is defined by a sparse connection 

matrix, with each neuron having between one and four output connections.  We have 

experimented with several configurations, including: a zero-valued connection matrix, 

uniform nearest neighbor connectivity, uniform connectivity with randomly severed 

connections, sparse random connectivity with weights proportional to the distance 

between the neurons, sparse random connectivity with uniform weighting and a 

methodology requiring non-zero connections to have a curvature difference below a 

parameterized threshold (for example, 5% of the total curvature range).  We have also 

used a scheme where the connection strength between neuron i and neuron j is: 

 

wij  =  exp( − ( cj − ci )2 / c2 ) 
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where ci and cj are the curvature values at points i and j and c is the curvature value of a 

perfect circle containing the points i and j.  Some of these arrangements represent 

symmetric connections and often result in a general lack of periodicity.  For the results 

that we will present here, we implement a connection matrix, with values provided in 

Table 6.2, with weights (ranging from 1.25 to 2.00) proportional to neuron-to-neuron 

distance. 

 

We utilize basic signal processing techniques and examine the response of each 

individual neuron in the network to determine the following features: number of spikes, 

approximate phase, mean number of spikes per burst, mean burst duration and 

approximate period in response to the stimulation.  Subsequently, we employ the k-

Nearest Neighbor classification methodology (Mitchell, 1997) in an attempt to categorize 

the responses. 

 

6.2.3  The Izhikevich Model and Amplification in IT via Gamma 

Synchronization in V4 

 

The Izhikevich equations represent a simple model of spiking neurons as a two-

dimensional system having a fast voltage variable and a slower recovery variable 

(Izhikevich, 2003; Izhikevich, 2007; Izhikevich and Edelman, 2008).  The membrane 

recovery variable accounts for the activation of K+ ionic currents and the inactivation of 

Na+ ionic currents.  As is typical, the fast variable has an N-shaped nullcline, whereas the 
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slower variable has a sigmoid-shaped nullcline.  The principal equations of the 

dimensional form of the phenomenological model are: 

 

C dv/dt  =  k ( v – vr ) ( v – vt ) – u + I 

 

du/dt  =  a { b ( v – vr ) – u } 

 

if  v  ≥  vpeak  then  v  ←  c  ,  u  ←  u + d 

 

where v is the membrane potential, u is the membrane recovery current variable, t is time, 

I is the input current, C is the membrane capacitance, k is the rheobase parameter, vr is 

the resting membrane potential, vt is the instantaneous threshold potential, vpeak is the 

soma’s spike cutoff, a is the recovery time constant (the decay rate), b is the input 

resistance parameter (the sensitivity of the recovery variable to subthreshold fluctuations 

of the membrane potential), c is the soma’s after spike voltage reset and d is the after-

spike reset of the recovery variable (the outward minus inward currents activated during 

the spike and affecting the after-spike behavior). 

 

The alternative form: 

 

v  =  v + τ * ( ( v2 * v2 ) + ( v1 * v ) + v0 − u + I ) 

 

u  =  u + τ * ( a * ( ( b * v ) – u ) ) 
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may also be used.  With full synaptic kinetics, the current is computed as: 

 

I (t)  =  − Idendritic − Isynaptic 

 

with the synaptic current given by: 

 

Isynaptic  =  gAMPA ( v – 0 ) 

+ gNMDA { [ ( v + 80 ) / 60 ]2 / ( 1 + [ ( v + 80 ) / 60 ]2 ) } ( v – 0 ) 

+ gGABAA ( v + 70 ) 

+ gGABAB ( v + 90 ) 

+ Igap 

 

and the conductance given by: 

 

g (t)  =  g0 e– t / τ 

 

with 

 

g0  =  g (t) + c 

 

when the presynaptic cell fires at time t.  The time-step τ  =  R C . 
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With various choices of parameters a, b, c and d, the model can exhibit all known types 

of firing patterns.  Our parameter value choices are provided in Table 6.3.  Some of our 

implementations have included the glutamatergic excitatory regular spiking (RS) cell, the 

most typical neuron in cortex, as well as the GABAergic inhibitory fast spiking (FS) 

interneuron cell.  We typically exclude short-term synaptic plasticity, NMDA and 

GABAB contributions and dopamine-modulated dendritic spike-timing-dependent 

plasticity (STDP), but include the excitatory AMPA and inhibitory GABAA presynaptic 

currents. 

 

However, we have found that even the simpler, alternative form yields excellent results.  

This can best be described as a pulse-coupled neural network (PCNN), with the firing of 

a presynaptic neuron instantaneously changing the variable v by a predetermined synaptic 

connection weight. 

 

We create a population of Izhikevich cell models to explore synchronization dynamics.  

We have explored several topologies and again, even the simplest are effective.  For the 

results that we will present here, we implement ten V4 cells, each receiving a noisy 

injection current.  These cells all have excitatory projections to an IT cell.  The IT cell 

has an excitatory connection to an interneuron, presumably at the level of IT, which may 

or may not have inhibitory feedback connections to the V4 cells.  We again use genetic 

algorithms (Goldberg, 1989) and searches of parameter space to find connection weights 

sufficient to achieve realistic firing objectives (10−40 Hz).  For the fastest computation, 

we employ the forward Euler method. 
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parameter value 
C RS: 100 

FS: 20 
PCNN: x µF/cm2 

k RS: 3 
FS: 1 

PCNN: x 
vr RS: –60 

FS: –55 mV 
vt RS: –50 

FS: –40 mV 
vpeak (soma) RS: 50 

FS: 25 mV 
v2 PCNN: 0.04 mV 
v1 PCNN: 5 mV 
v0 PCNN: 140 mV 
a RS: 0.01 

FS: 0.15 
PCNN: 0.02 (excitatory) 

0.1 (inhibitory) 
b RS: 5 

FS: 8 
PCNN: 0.2 

c (soma) RS: –60 
FS: –55 

PCNN: –65 
d RS: 400 

FS: 200 
PCNN: 8 (excitatory) 

2 (inhibitory) 
τ 5 (AMPA) 

6 (GABAA) 
c 10 (AMPA) 

4 (GABAA) 
 
 
Table 6.3 – Izhikevich model parameters. 
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All simulations were carried out in a Microsoft Windows XP Professional SP2 

environment on an Intel® Pentium® 4 CPU running at 2.80 GHz with 3.00 GB of RAM.  

All models were constructed using the MATLAB application development environment 

(version 7.9.0.529 R2009b) and the associated Curve Fitting Toolbox (version 2.1), 

Genetic Algorithm and Direct Search Toolbox (version 2.4.2), Image Processing Toolbox 

(version 6.4), Neural Network Toolbox (version 6.0.3), Optimization Toolbox (version 

4.3), Signal Processing Toolbox (version 6.12), Statistics Toolbox (version 7.2) and 

Wavelet Toolbox (version 4.4.1). 

 

6.3  Results 

 

The Morris-Lecar model, the FitzHugh-Nagumo model within a winnerless competition 

network and the Izhikevich model within a feedback network have been implemented. 

 

6.3.1  The Morris-Lecar Model and Recognition 

 

The validation of our Morris-Lecar model cell is shown in Figure 6.1.  The top left plot 

depicts this cell’s response to a constant current application.  The bottom left plot shows 

the frequency components of this same response.  We see that the injected current 

produces a response that is primarily 20 Hz – reasonable and expected.  The plot on the 

right  provides  the  oscillation  frequency  of this cell in response to a wide range of input 
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Figure 6.1 – Morris-Lecar model validation.  The top left plot depicts a Morris-Lecar 
cell’s response to a constant current application.  The bottom left plot shows the 
frequency components of this same response.  The plot on the right provides the 
oscillation frequency of the cell in response to a wide range of input currents – typical 
behavior of a Type I oscillator. 
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currents.  This behavior – increased stimulus intensity (current injection) resulting in 

increased frequency of response over a wide range – is typical behavior of a Type I 

oscillator and is necessary for our type of intensity-driven recognition. 

 

In Figure 6.2 we show a Morris-Lecar cell’s response to selected images.  This Morris-

Lecar cell models an IT cell, which integrates specific information about the 2-

dimensional boundary shapes of multiple contour fragments (the V4-like cell inputs, 

responding to an image’s iso-curvature segments).  Its parameters, including Gaussian 

constituents and coefficients, are selected to match those of an IT-like cell created in 

Chapter 5.  The optimal set of synaptic conductances for this cell is found using a genetic 

algorithm.  The sample images on the left side of the figure are presented to the Morris-

Lecar cell at time t = 0, producing the responses on the right side.  This cell, tuned to 

respond to guitars, prefers guitar images above images in other categories. 

 

Note that this situation is not entirely biologically realistic.  The stimulus is presented at 

time t = 0 and the Morris-Lecar IT-like cell appears to respond instantaneously (i.e., 

without regard for synaptic transmission delays through retina, primary visual cortex, 

extrastriate cortex, etc.).  Also, the cell’s spiking is persistent – in contrast to the 

diminishing response seen in cortex.  However, the IT-like cell’s differential firing rate – 

the primary objective of this exercise – is accurate and reflects what the Connor group 

has observed in IT (Brincat and Connor, 2004; Brincat and Connor, 2006). 
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Figure 6.2 – Morris-Lecar cell’s response to selected images.  This Morris-Lecar cell 
models an IT cell, with inputs from V4 cells.  Sample images are on the left side.  Image 
numbers are given.  The corresponding Morris-Lecar cell responses (with image 
presentation at time t = 0) are on the right side.  Response frequency is shown in red.  
This cell, tuned to respond to guitars, prefers guitar images above images in other 
categories. 
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Ten example Kanwisher natural images from each of the seven sampled categories (axes, 

cats, fish, guitars, handsaws, hats, and scissors) are selected.  In Figure 6.3, we show the 

histogram of responses of one similarly-created Morris-Lecar IT cell to each of these 

images.  Again, this cell is tuned to respond preferentially to guitars.  This is similar to 

our work in Chapter 5 with “mathematical” cells and is reminiscent of the study of a 

single unit in the left posterior hippocampus / medial temporal lobe of epilepsy patients 

with depth electrodes by Cristof Koch (Quiroga et al., 2005).  Here, the cells were 

activated exclusively by different views of Jennifer Aniston, for example, and not Julia 

Roberts, etc.  Note that these cells are not designed to be, nor do they behave like, 

“grandmother” cells.  They simply respond well to cells within a single category, at the 

exclusion of others.  We have created many Morris-Lecar IT-like cells similar to these 

that respond preferentially to each of the seven categories in our sample space. 

 

6.3.2  The FitzHugh-Nagumo Model, Spatiotemporal Patterns and 

Winnerless Competition 

 

Our winnerless competition network topography with nine FitzHugh-Nagumo model 

neurons is shown in Figure 6.4.  Notice the unsymmetrical connectivity of the cells and 

their expectations of curvature values from the images’ bounding contours at forty-degree 

increments. 

 

The responses of the nine FitzHugh-Nagumo cells within the same winnerless 

competition  network  when  presented  with  three  different  noisy  images  of geometric 
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Figure 6.3 – Morris-Lecar cell’s response to each image.  The 70 sample images are 
grouped into 7 categories (with 10 in each category).  All 7 categories (axes, cats, fish, 
guitars, handsaws, hats, and scissors) are represented.  The height of each bar represents 
the response of the Morris-Lecar cell (modeling an IT cell) to each of these images.  
Again, this cell was tuned to respond preferentially to guitars. 
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Figure 6.4 – Winnerless competition network topography with 9 neurons. 
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shapes – a circle (top left), an ellipse (top right) and a Cassini oval (bottom middle) – are 

shown in Figure 6.5.  The stimulus for each neuron is proportional to the curvature value 

at a specific location on the shape’s bounding contour (the first neuron responds to the 

value at 0 degrees, the second neuron responds to the value at 40 degrees, …, the ninth 

neuron responds to the value at 320 degrees).  This is much like a V4 cell that is selective 

for a particular local shape configuration at a particular location on the contour within a 

larger shape.  The differences between the nine-cell populations for each shape are 

visually apparent. 

 

As seen in Figure 6.6, a single FitzHugh-Nagumo neuron within the winnerless 

competition network can provide shape discrimination.  On this scatter plot, the responses 

of the third neuron to fifty noisy sample images from each of the three geometric shape 

categories – circles, ellipses, ovals of Cassini – are projected onto the three dimensions of 

our analysis – approximate phase, mean burst duration and approximate period.  A 4-

Nearest Neighbor classification attempt (Mitchell, 1997) results in a superior 1.3% error, 

suggesting that these dimensions make the data, and its visually apparent structure, most 

amenable to clustering.  Note that this error is appropriately considered a training error, 

not a testing error.  Similarly, Figure 6.7 shows the responses of a different FitzHugh-

Nagumo cell (the ninth neuron) within the winnerless competition network to the same 

fifty noisy sample images from each of the three geometric shape categories projected 

onto the same three dimensions.  This time, a 4-Nearest Neighbor classification attempt 

results in a superior 2.0% error.  It should be noted that not all cell responses in the 

network  can  discriminate between shapes, at least not within the same three dimensions. 
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Figure 6.5 – FitzHugh-Nagumo model.  The responses of the 9 FitzHugh-Nagumo cells 
within the same winnerless competition network when presented with 3 different noisy 
images of geometric shapes – a circle (top left), an ellipse (top right) and a Cassini oval 
(bottom middle) – are shown.  Each subplot for each shape represents the response of a 
single neuron (neurons 1 through 9, top to bottom), with time (for 2 seconds) on the 
abscissa and membrane potential on the ordinate.  The stimulus for each neuron is 
proportional to the curvature value at a specific location on the shape’s bounding contour 
(neuron #1: 0°, neuron #2: 40°, neuron #3: 80°, …, neuron #9: 320°).  This is much like a 
V4 cell that is selective for a particular local shape configuration at a particular location 
on the contour within a larger shape.  The differences between the 9-cell populations for 
each shape are visually apparent. 
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Figure 6.6 – FitzHugh-Nagumo neuron within a winnerless competition network.  A 
single neuron from the network can provide shape discrimination.  On this scatter plot, 
the responses of neuron #3 to 50 noisy sample images from each of the 3 geometric shape 
categories – coded by color and shape – are projected onto the 3 dimensions of our 
analysis – approximate phase, mean burst duration and approximate period.  
Classification (4-Nearest Neighbor) at this level results in an error of 1.3%. 
 
 



 190

 
 
 
 

 
 
 
 
 
Figure 6.7 – FitzHugh-Nagumo neuron within a winnerless competition network.  A 
single neuron from the network can provide shape discrimination.  On this scatter plot, 
the responses of neuron #9 to 50 noisy sample images from each of the 3 geometric shape 
categories – coded by color and shape – are projected onto the 3 dimensions of our 
analysis – approximate phase, mean burst duration and approximate period.  
Classification (4-Nearest Neighbor) at this level results in an error of 2.0%. 
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The second neuron, for instance, has a 34% classification error, while the fifth neuron 

shows a 33% error. 

 

6.3.3  The Izhikevich Model and Amplification in IT via Gamma 

Synchronization in V4 

 

The validation of our Izhikevich model cell network is shown in Figure 6.8.  We explore 

a network of ten V4 cells, one IT cell and one Inhibitory cell.  A current injection – 

enough to produce one spike in one cell – is administered at 220 ms and again at 270 ms.  

The top plot shows injections into a V4 cell, which has an excitatory connection to the IT 

cell.  All other connections are severed.  A single IT cell spike results for each V4 cell 

injection.  The middle plot shows injections into the IT cell, which has an excitatory 

connection to the Inhibitory cell.  All other connections are severed.  A single Inhibitory 

cell spike results for each IT cell injection.  The bottom plot shows injections into the 

Inhibitory cell, which has an inhibitory connection to a V4 cell.  All other connections are 

severed.  No V4 cell spikes are produced.  Note the differences in the refractory periods 

for the different cell types.  We have also verified that our Izhikevich cells demonstrate 

the typical behavior of a Type I oscillator. 

 

The Izhikevich model cell network without feedback is shown in Figure 6.9.  Again, we 

explore a network of ten V4 cells, one IT cell and one Inhibitory cell.  Each V4 cell has 

an excitatory connection to the IT cell.  The IT cell has an excitatory connection to the 

Inhibitory  cell.  Noisy and unsynchronized (and different for each cell) current injections 
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Figure 6.8 – Izhikevich model validation.  We explore a network of 10 V4 cells, 1 IT cell 
and 1 Inhibitory cell.  Each plot shows time on the abscissa and membrane potential on 
the ordinate.  A current injection – enough to produce 1 spike in 1 cell (with responses 
graphed in red) – was administered at 220 ms and again at 270 ms.  The top plot shows 
injections into a V4 cell, which has an excitatory connection to the IT cell (with response 
graphed in blue).  All other connections were severed.  A single IT cell spike results for 
each V4 cell injection.  The middle plot shows injections into the IT cell, which has an 
excitatory connection to the Inhibitory cell (with response graphed in blue).  All other 
connections were severed.  A single Inhibitory cell spike results for each IT cell injection.  
The bottom plot shows injections into the Inhibitory cell, which has an inhibitory 
connection to a V4 cell (with response graphed in blue).  All other connections were 
severed.  No V4 cell spikes are produced.  Note the differences in the refractory periods 
for the different cell types. 
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Figure 6.9 – Izhikevich network without feedback.  We explore a network of 10 V4 cells, 
1 IT cell and 1 Inhibitory cell.  Each V4 cell has an excitatory connection to the IT cell.  
The IT cell has an excitatory connection to the Inhibitory cell.  Each plot shows time on 
the abscissa and membrane potential on the ordinate.  Noisy and unsynchronized current 
injections – enough to produce continuous spiking at approximately 20 Hz – were 
administered to the V4 cells only.  The total number of spikes generated in each cell is 
given.  With this arrangement, the coherence of the V4 cell population (with τ = 4) is 
0.282. 
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– enough to produce continuous spiking at approximately 20 Hz – are administered to the 

V4 cells only.  We utilize the population coherence measure defined by Wang and 

Buzsáki (1996), based on coincident firings of neural pairs, to evaluate synchronization.  

With this arrangement, the coherence of the V4 cell population (with τ = 4) is 0.282.  

Eleven spikes are produced in the IT cell. 

 

In Figure 6.10, we explore a similar Izhikevich model cell network of ten V4 cells, one 

IT cell and one Inhibitory cell, but here we include feedback.  Each V4 cell has an 

excitatory connection to the IT cell.  The IT cell has an excitatory connection to the 

Inhibitory cell.  The Inhibitory cell has an inhibitory connection to each V4 cell.  Noisy 

and unsynchronized current injections – enough to produce continuous spiking at 

approximately 20 Hz – are again administered to the V4 cells only.  With this 

arrangement, the coherence of the V4 cell population (with τ = 4) is 0.395.  This 

represents a 40% increase over the coherence value of the V4 cell population in the 

network without feedback, as well as a 73% increase in IT cell spiking frequency – from 

eleven spikes (22 Hz) to nineteen spikes (38 Hz).  It is our contention that this response 

amplification in IT corresponds roughly with classification. 

 

We present a statistical validation of the Izhikevich model cell network in Figure 6.11.  A 

total of 100 experiments (each with different current inputs into the V4 cells) are 

performed.  In each plot, the results of a two-tailed, paired t-test (Press et al., 2007) are 

displayed.  In the top plot, the differences in the numbers of spikes in the V4 cell 

population  –  first  with,  then without, feedback from the Inhibitory cell to the V4 cells – 
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Figure 6.10 – Izhikevich network with feedback.  We explore a network of 10 V4 cells, 1 
IT cell and 1 Inhibitory cell.  Each V4 cell has an excitatory connection to the IT cell.  
The IT cell has an excitatory connection to the Inhibitory cell.  The Inhibitory cell has an 
inhibitory connection to each V4 cell.  Each plot shows time on the abscissa and 
membrane potential on the ordinate.  Noisy and unsynchronized current injections – 
enough to produce continuous spiking at approximately 20 Hz – were administered to the 
V4 cells only.  The total number of spikes generated in each cell is given.  With this 
arrangement, the coherence of the V4 cell population (with τ = 4) is 0.395.  This 
represents a 40% increase over the coherence value of the V4 cell population in the 
network without feedback, as well as a 73% increase in IT cell spiking frequency (from 
11 spikes / 22 Hz to 19 spikes / 38 Hz). 
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Figure 6.11 – Statistical validation of the Izhikevich network.  A total of 100 experiments 
(each with different current inputs into the V4 cells) were performed.  In each plot, the 
results of a two-tailed, paired t-test are displayed.  In the top plot, the differences in the 
numbers of spikes in the V4 cell population – first with, then without, feedback from the 
Inhibitory cell to the V4 cells – are compared.  Here, the null hypothesis – that the 
difference data came from a distribution of mean zero – cannot be rejected (i.e., “with 
feedback” data and “without feedback” data came from distributions with the same mean) 
at the 5% significance level.  In the bottom plot, the differences in the numbers of spikes 
in the IT cell – first with, then without, feedback from the Inhibitory cell to the V4 cells – 
are compared.  Here, the null hypothesis – that the difference data came from a 
distribution of mean zero – is rejected (i.e., “with feedback” data and “without feedback” 
data came from distributions with different means) at the 5% significance level.  We 
conclude that the increased spiking in the IT cell is not a result of increased spiking in the 
V4 cells. 
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are compared.  Here, the null hypothesis – that the difference data came from a 

distribution of mean zero – cannot be rejected (i.e., “with feedback” data and “without 

feedback” data came from distributions with the same mean) at the 5% significance level.  

In the bottom plot, the differences in the numbers of spikes in the IT cell are compared – 

first with, then without, feedback from the Inhibitory cell to the V4 cells.  Here, the null 

hypothesis – that the difference data came from a distribution of mean zero – is rejected 

(i.e., “with feedback” data and “without feedback” data came from distributions with 

different means) at the 5% significance level.  We conclude that the increased spiking in 

the IT cell is not a result of increased spiking in the V4 cells.  This is appropriate, since 

we do not expect the feedback to increase the firing rate of the V4 cells but we do expect 

the increased firing rate in IT to be the result of synchronized, rather than more abundant, 

spiking in V4. 

 

6.4  Discussion 

 

Results such as those of Pasupathy and Connor (2001), Hegdé and Van Essen (2003) and 

Brincat and Connor (2004, 2006) reveal a great deal of sophisticated shape processing in 

the ventral stream.  Although our previous results are based upon faithful “mathematical” 

models, our current results show that realistic biological models of cells with curvature- 

and position-sensitive response properties can function as robust shape descriptors and 

perform consistently well in recognition tasks.  Our success in elucidating the interaction 
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between V4 and IT from a mechanistic perspective provides more integrity to and 

credibility for our model. 

 

We have taken a simplified approach to nonlinear multiplication within our Morris-Lecar 

neuronal models.  At the neural level, there is a clear difference between this and a 

logical “AND” or a simple coincidence detection.  We could have implemented a 

sophisticated model of a coincidence detector, such as that of Mel and colleagues (Poirazi 

et al., 2003a; Poirazi et al., 2003b; Polsky et al., 2004), but instead choose to multiply 

our Gaussian constituents before the dendritic level.  All terms in the nonlinear response 

equations were represented by separate channels into the IT-like cells.  A more advanced 

nonlinear dendritic mechanism might resemble something similar to the results of Magee 

and colleagues (Gasparini and Magee, 2006; Losonczy and Magee, 2006; Losonczy et 

al., 2008). 

 

In our winnerless competition neural network with FitzHugh-Nagumo model neurons, we 

have essentially expressed static curvatures as time- and position-dependent 

spatiotemporal patterns whose activity we examine in 9-dimensional space. The main 

idea is that shape differences are more apparent in spatiotemporal pattern differences than 

in curvature differences. 

 

Some results suggest that invariant pattern recognition, in the face of deformations as 

well as different viewing angles, etc., can be achieved by using temporal coding at the 
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population level (Wyss et al., 2003).  We can therefore justifiably caste our 

spatiotemporal patterns of activity in probabilistic and information theoretic terms 

(Harel et al., 2007), with less than perfect position and curvature information. 

 

A rationalization for non-nearest neighbor connectivity in our network might be similar 

to the “pinwheel” topography and its relationship to short-range connections found by 

Gilbert and colleagues in primary visual cortex (Das and Gilbert, 1999), and the 

supposition that these same arrangements might exist later in the ventral stream. 

 

As we have seen, some spatiotemporal codes might help organize signals for 

classification or clustering.  In his analysis of spike trains, Victor has considered the 

mutual information between stimuli and output clusters and has defined a metric on 

output patterns with distances defined according to costs of transforming one spike train 

into another (Victor and Purpura, 1997; Victor 2000).  This is similar to our use of Earth 

Mover’s Distance (EMD) metrics (Rubner et al., 2000; Rubner et al., 2001) in previous 

chapters.  Here, we have chosen the simpler k-Nearest Neighbor classification 

methodology (Mitchell, 1997). 

 

We might ask some fundamental questions of our WLC network.  For example, how fast 

can stimuli or patterns be distinguished from others?  This might be a particularly 

important question if the individual nodes in the network have different starting points 

(initial values or starting times).  In this regard, the work by VanRullen and Thorpe, 

where the most salient information in the neural code is represented by timing, 
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specifically the first action potentials over the population, is relevant (VanRullen and 

Thorpe, 2002).  Again, we might caste the problem in probabilistic terms and evaluate the 

probability of our hypothesis (a particular categorization, for example) given the current 

data at some point in time (the number of spikes seen arriving in IT from V4 up to that 

point).  As usual, the spike wave could be modified by selectivity and lateral or top-down 

interactions.  Also, we might consider if the patterns should diverge, achieve a steady 

state, coalesce to the same state, etc., and at what points in time.  Finally, we might ask if 

a network can learn an imposed and novel spatiotemporal pattern and exhibit emergent 

connectivity. 

 

Our full Izhikevich cell model, which would allow a true test of our circuit’s recognition 

capabilities, would require the implementation of several additional features.  Initially, 

input arrives at V4 from earlier stages of the ventral stream (visual areas 1 and 2 (V1 and 

V2), etc.), producing asynchronous spiking.  The V4 neurons are tuned to specific 

features (the spiking activity represents the fit).  In subsequent versions of our model, V4 

would activate sub-populations of IT (and not simply a single IT cell), with activation 

strengths governed by the input features’ alignment with IT’s object representation 

expectations.  The stronger the input from V4, the greater the number of IT cells that 

would fire.  Each IT sub-population would have its own set of inhibitory interneurons and 

represent a class.  (Currently, our IT cell represents an “ideally suited” cell or sub-

population and the inhibitory cell represents an ideally synchronized sub-population.)  

There would be synchronous activity within a single inhibitory sub-population and these 

inhibitory cells would synchronize the activity of the appropriate set of neurons in V4 
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(representing the expected features of the category) via PING (pyramidal interneuron 

network gamma) mechanisms (Whittington et al., 2000).  The inhibition would be too 

weak to prevent a spike in V4, but strong enough to shift the spike in time.  It might also 

induce sub-threshold oscillations in V4 cells that encode expected, yet absent, features of 

the object represented by the inhibitory sub-population, making them more sensitive to 

weak inputs not originally detected.  This synchronous activity in V4 amplifies IT 

response, particularly in the IT sub-population that is synchronized with V4 (due to the 

maximal temporal summation / integration of the neuronal input), resulting in 

categorization (Grossberg, 1999).  Thus, we increase not only the frequency of individual 

IT cells, but the number of IT cells participating. 

 

We would expect features that are common to multiple object categories (consider the 

similarity between the axe handles and the Guitar necks in the Kanwisher image 

database, for example) to be inhibited in V4, due to the increased inhibitory input from 

multiple inhibitory cells with connections from different IT sub-populations (multiple 

categories).  Presumably, the inhibition could be enhanced further by the asynchronous 

nature of spiking across the different inhibitory cells and IT sub-populations.  This 

introduces not only amplification, but amplification and competition, into our model. 

 

Our V4 cells, IT cells and interneurons are modeled with one compartment.  Active 

dendritic compartments could be added.  Architecturally, reciprocal connections between 

the excitatory IT cells and inhibitory interneurons could be added and lateral inhibition 

between the Inhibitory cells via GABA connections could be implemented. 
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Given these augmentations, we could confirm our hypotheses by presenting real stimuli 

to the network and showing that response amplification in IT corresponds roughly with 

classification.  To accomplish this, we could extract a pre-determined set of features from 

a real image stimulus.  Using the V4 cells’ defined n-dimensional Gaussian tuning 

functions, we could determine the response of each V4 cell to each feature in the image.  

We could transform this response into an input current to the V4 cell.  We could repeat 

this process with out-of-category images containing only “irrelevant” features (and 

weakly responding V4 cells) and observe a weak / unmodulated / unamplified response in 

IT, as well as with in-category images containing “relevant” features (and strongly 

responding V4 cells) and observe a strong / modulated / amplified response in IT.  We 

could interpret this type of two alternative forced-choice (2AFC) protocol – does the 

stimulus belong to a given category or not – as a demonstration of the analogous 

categorization process.  We might conclude that categorization / response amplification 

in IT requires not only synchronization in V4 but a sufficient response from V4. 

 

Next, we could present different stimuli, from different categories or sub-categories, with 

common features to the network and show that competition arises between at least two IT 

sub-populations, each representing different object categories, with individual V4 

neurons receiving unsynchronized feedback inhibition from the different IT sub-

populations (each of which may be internally synchronized).  We might attempt this type 

of experiment with the following input, for example: an electric guitar with iso-curvature 

segments A1, B1, C1 and D1, an acoustic guitar with iso curvature segments A1, B1, C1 
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and D2, and a cat with iso-curvature segments A1, B2, C1 and D3, and the assumption that 

each iso-curvature segment produces a strong response in some Gaussian constituent in 

some cell. 

 

We could also consider the consequences of a simultaneous presentation of similar or 

dissimilar images or images with occlusions, the biophysical mechanisms of how 

connections are established during learning (the contextual knowledge which eliminates 

the necessity of all-to-all connectivity from IT to V4) and how categories are formed, the 

possible presence of underlying oscillations and the emergent properties of our network. 

 

We have caste V4’s role as one of synchronization and IT as a coincidence detector (and 

not simply a temporal integrator (König et al., 1996)).  We could consider the effects on 

the IT cells’ receptive fields by synchronized or unsynchronized inputs from V4 and, in 

general, the relationship between synchronization in V4 and the non-linear responses in 

IT. 

 

A result by Kanwisher and colleagues (Grill-Spector, 2003; Grill-Spector and Kanwisher, 

2005) places significant constraints on theories of object recognition.  Accuracy as a 

function of stimulus duration was determined for all three recognition tasks – object 

detection, object categorization, and within-category identification.  Using short (20 – 70 

ms) exposure durations of natural image stimuli (the same that we have used), subjects 

knew an object’s category by the time that they knew that the image contained an object 

at all (i.e., detection and differential categorization were coincident).  This is an 
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intriguing coincidence, but possibly more.  We might argue that the ∼60 ms time course 

from independent sensitivities to constituent parts (linear responses) to selectivity for 

multipart configurations (non-linear responses) (Brincat and Connor, 2006), or the ∼60 

ms between categorization and identification (Grill-Spector and Kanwisher, 2005), or the 

∼60 additional ms required to attend to a feature (compared to attending to a location) 

(Reynolds and Desimone, 2003), are all manifestations of the unsynchronized to 

synchronized transformation in our model. 

 

Although the transformation from a distributed coding (in terms of constituent parts) in 

V4 to a sparse coding (in terms of global object shape) in anterior IT, with posterior IT 

mediating between the two, is not yet understood at a mechanistic level, some specific 

facts from Brincat and Connor (2004; 2006) are relevant.  They report that nonlinearity is 

significantly correlated with response sparseness, with the nonlinear integration in IT 

cells possibly increasing the sparseness of the ventral pathway’s shape representation.  

We consider if distributed representations are important for categorization, if sparse 

representations are important for identification and if nonlinear integrations require more 

time.  They have found no clear differences in tuning properties along the anterior-

posterior axis of IT, as well as finding that even the most selective cells responded to a 

variety of global shapes.  However, anterior IT is thought to present increasingly complex 

and sparse parts-level population coding or even holistic coding.  We consider the 

necessity of a distributed representation, given that a sparse representation exists (or vice-

versa), in IT.  Could we instead consider a continuum, either in function or in cortical 

position, with “distributed” cells at one end and “sparse” cells at the other?  Perhaps the 
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“sparse” cells studied by the Connor group were from slightly more anterior areas, or 

simply had more of the typical 1−6 Gaussian subunits with nonlinear interactions.  Could 

we in turn say that the answer is “both” to our key question (is parts-based recognition 

more important at the categorization or identification stage)?  Is it possible that a parts-

based categorization occurs earlier in posterior IT as a distributed representation and a 

more refined parts-based identification occurs later in anterior IT as a sparse 

representation? 

 

The Connor group has found that the within-cell transitions from early linear to later 

nonlinear responses make a larger contribution than the temporal differences between 

cells.  Also, information about simpler components (linear) appears rapidly, while 

information about arrangements of multiple components (nonlinear) evolves gradually, 

with increased processing time required for categorizations that depend upon specific part 

configurations.  We are led to ask if an IT cell responds nonlinearly only when needed.  

Also, does IT require attention to combine Gaussian constituents, with Gaussian widths 

(standard deviations) possibly shrinking from categorization to identification? 

 

We broadly consider the nature of recognition, within and across superordinate 

categories, and wonder if identification uniquely identifies an individual entity, is a lower 

level of categorization, is a more refined categorization, or is a sub-categorization.  We 

consider if additional information (D, E, F, etc., Gaussian constituents, for example) 

could be gathered in the 60 ms between categorization and identification.  Finally, we ask 
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if categorization represents a linear and unsynchronized response, while identification 

represents a nonlinear and synchronized response. 

 

6.5  Conclusion 

 

Our results suggest that realistic biological models of cells with curvature- and position-

sensitive response properties, as described by Pasupathy and Connor in V4 and Brincat 

and Connor in IT, can function as robust shape descriptors.  We have demonstrated the 

utility of cells with response properties similar to those found in V4 and IT by 

constructing network models and successfully subjecting them to artificial recognition 

tasks on a set of real images, where they have performed consistently well.  We claim 

that the response properties of V4 and IT cells (i.e., their receptive fields), and in 

particular their sensitivities to curvatures and contour positions, are useful for object 

recognition precisely because they, like our realistic biological models of them, facilitate 

shape representation and categorization by extracting features that correlate with global 

shape.  We have also demonstrated the interaction between V4 and IT from a mechanistic 

perspective within a biologically realistic network architecture. 
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Chapter 7 

 

 

Summary 

 

 

7.1  Key Points 

 

In Chapter 3, we used the Ullman image (Shashua and Ullman, 1988) and demonstrated 

that the circular contours were more cocircular (the degree to which the contour curvature 

remains constant, within a threshold) and contained much longer stretches of 

cocircularity than the background contours and cross-hatches.  However, as the definition 

of cocircularity became stricter, i.e., curvature was constrained to a narrower range of 

values, the differences between the circular and background contours diminished.  

Therefore, at a local scale, all contours in the image were similar.  What distinguished the 

salient circular contours (apart from closure) is that they maintained a similar curvature 
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over a much longer extent than the background, where “similar” could be quantitatively 

defined. 

 

We found that “shape context” (Belongie et al., 2002) and “curvature context” shape 

representations achieved comparable recognition accuracies for example image stimuli 

from the MNIST database of handwritten digits in Chapter 4.  To explore the 

performance capabilities of a V4-like population, the average earth mover’s distance to 

each category was determined.  Various combinations of parameter values and feature 

vector arrangements were tried in different experiments.  Feature vectors composed of 

mean angle of the region, mean curvature of the region, mean direction of curvature of 

the region and mean distance from the center of mass of the region consistently resulted 

in superior performance.  Results showed that the value of sigma was less important than 

the choice of region size.  It was not advantageous to consider the distinction between 

inner and outer contours.  Also, curvature tolerance was found to have an optimal 

operating range.  It appeared that curvature was the feature that was the most sensitive to 

noise, suggesting that curvature is the most salient feature for shape recognition.  An 

extensive evaluation using the MNIST “Test Set” database and the MPEG-7 Shape 

Silhouette database resulted in high levels of classification accuracy.  Finally, we showed 

that top-down inputs can improve classification accuracy by re-weighting the 

contributions of intermediate-level units. 

 

We utilized sample Kanwisher natural images (Grill-Spector and Kanwisher, 2005) from 

several categories in our analysis in Chapter 5.  We initially explored the performance 
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capabilities of a V4-like cell population (which precedes the nonlinear integration of 

boundary components seen in IT) and achieved mediocre results.  We hypothesized that it 

is the nonlinear integration component of the IT cells’ functionality that facilitates 

recognition at the highest level.  We constructed populations of IT-like cells using a wide 

variety of techniques and parameter values.  We presented histograms of IT cell 

responses, with many cells presenting clear preferential responses to specific categories, 

at the exclusion of others.  Unsatisfied with principal components analysis (PCA), we 

used three-dimensional non-classical non-metric multidimensional scaling (MDS) 

analysis and 4-Nearest Neighbor classification to better visualize our cell response space.  

We also constructed a support vector machine (SVM) for classification.  We illustrated 

the fact that different images may activate the IT-like cells, and specifically their 

Gaussian constituents, differently, yet produce similar total responses – necessary to 

achieve the robust discriminatory power of our network.  We found that there were 

subsets of cells in the population that were more adept at certain categorizations and we 

concluded that only a small number of V4 / IT cells may be necessary for image 

recognition at this level. 

 

In Chapter 6, we constructed and validated Morris-Lecar models of IT cells, which 

integrate specific information about the 2-dimensional boundary shapes of multiple 

contour fragments.  The optimal sets of synaptic conductances for these cells were found 

using a genetic algorithm.  Kanwisher natural images were again used and histograms of 

responses, with differential firing rates to different categories, were found.  We 

developed a winnerless competition network topography with nine FitzHugh-Nagumo 
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model neurons and presented the network response, with visually apparent differences, to 

three different noisy images of geometric shapes.  We considered approximate phase, 

mean burst duration and approximate period of individual neurons in the network and 

were able to perform a superior 4-Nearest Neighbor classification.  We constructed and 

validated an Izhikevich model cell network of V4, IT and Inhibitory cells.  We 

experimented using network arrangements with and without feedback and found a 

substantial increase in V4 cell coherence and average IT cell spiking frequency when 

feedback was engaged.  We hypothesized that response amplification in IT corresponds 

roughly with classification.  We presented a statistical validation of the Izhikevich model 

cell network and concluded that the increased spiking in the IT cell is not a result of 

increased spiking in the V4 cells. 

 

7.2  Conclusions 

 

The consistency of curvature on a contour is correlated with increased perceptual salience 

(the degree to which a target differs from the background).  The degree to which 

curvature covariation contributes to salience depends upon the mechanisms and the scale 

over which curvature information is computed in visual cortex. 

 

Curvature- and position-sensitive units, as described by Pasupathy and Connor in area 

V4, can function as robust shape descriptors.  The demonstration of shape categorizations 
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based on curvature representations establishes a connection between state-of-the-art 

recognition systems and known cortical mechanisms. 

 

More sophisticated curvature- and position-sensitive units, as described by Brincat and 

Connor in IT, can also function as robust shape descriptors.  Our model of highly 

selective IT-like cell response, a function of the number of V4-like cell inputs and their 

nonlinear combinations, is not rigidly dependent upon parameter selection or 

implementation strategy, yet it performs consistently well in recognition tasks. 

 

Realistic biological models of cells with curvature- and position-sensitive response 

properties, including the interaction between V4 and IT from a mechanistic perspective, 

as described by Pasupathy and Connor in V4 and Brincat and Connor in IT, can yet again 

function as robust shape descriptors.  The utility of these cells is demonstrated by 

constructing network models and successfully subjecting them to artificial recognition 

tasks on a set of real images, where they perform consistently well. 

 

Taken as a whole, these conclusions show that the response properties of V4 and IT cells 

(i.e., their receptive fields), and in particular their sensitivities to curvatures and contour 

positions, are useful for object recognition precisely because they, like our faithful 

computer models of them, facilitate shape representation and categorization by extracting 

features that correlate with global shape.  We have established a connection between a 

computer model of a recognition system and known biological phenomena. 
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Chapter 8 

 

 

Future Directions 

 

 

8.1  Open Issues 

 

Our research has left us with some open issues and these are elaborated upon in great 

detail in the Discussion sections of Chapters 3, 4, 5 and 6.  Some of the most important 

are given below. 

 

It remains unknown whether and how a full global description of object shape emerges, 

but top-down effects seem poised to play a critical role.  More specifically, or perhaps 

less ambitiously, we consider the transformation from something more than a distributed 

coding (in terms of constituent parts) in posterior IT to a sparse coding (in terms of global 

object shape) in anterior IT.  Perhaps this can only be answered in terms of the neural 
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binding hypothesis, requiring synchronous oscillations in neuronal ensembles to integrate 

and bind neurons that represent different features of an object (Singer and Gray, 1995).  

Also, we question which of an image’s iso-curvature segments on a contour, and 

subsequently which of the Gaussian constituent terms in a V4 cell’s total response 

equation, are reflected in IT.  We have seen that it is not necessary in our models to 

include all iso-curvature segments, but if not all are used in biological systems then how 

is the selection made and does this mechanism evolve over time? 

 

We would like to compare and contrast categorization and identification, providing a link 

to the Kanwisher data (Grill-Spector and Kanwisher, 2005).  A key question is whether 

parts-based recognition is more important at the categorization or identification stage and 

by how much of a factor (compared to the whole object).  We ask if category-level 

segmentation is parts-based and if individual-level identification is based on the whole 

object.  We consider whether the number, size, relative position independence, or 

refinement of parts increases from categorization to identification.  If possible, we would 

caste the distributed vs. sparse representation in terms of categorization and 

identification.  Also, we question whether scale, rotation and translation invariance are 

affected by these issues? 

 

Finally, we would like to have testable predictions from and experimental verification of 

our computational models.  Our construction methodology allows us to create model cells 

that are selective for a particular local shape configuration at a particular location on a 

contour within a larger shape, as well as to create model cells that nonlinearly integrate 
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specific information about the 2-dimensional boundary shapes of multiple contour 

fragments.  If these cells were constructed to match biological cells like those studied by 

Pasupathy and Connor (2001) in V4 and Brincat and Connor (2004) in IT then our 

models could make predictions about the responses of the actual cells to novel gray level 

patterns presented to the macaques, for example, allowing us to further explore shape 

representation in V4 and IT. 

 

8.2  Next Steps 

 

Our immediate future research has also been outlined in the Discussion sections of 

Chapters 3, 4, 5 and 6.  Our highest priority would be to augment our Izhikevich cell 

network model with sub-populations of IT, each with its own set of inhibitory 

interneurons.  Given this, we could confirm our hypotheses by presenting real stimuli to 

the network and definitively showing that response amplification in IT corresponds with 

classification – possibly extending this to show that neuronal synchronization correlates 

with visual salience.  Some future steps that have not been discussed are mentioned 

below. 

 

We would like to develop phase portraits of our Izhikevich cells and network models 

(Strogatz, 1994).  This would allow us to visualize the nonlinear dynamics of the network 

and facilitate parameter tuning, experiment design, etc. 
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We would like to explore the use of some advanced computer vision techniques, such as 

the inner-distance measurement (Ling and Jacobs, 2007), possibly in conjunction with 

curvature sensitivities, within our recognition system.  Also we would like to consider the 

latest incarnation of the earth mover’s distance metric, computed in linear time using 

wavelets (Shirdhonkar and Jacobs, 2008). 

 

We have only considered simple, 2-dimensional curves.  We would like to experiment 

with fractals and self-similarity at all scales (Mandelbrot, 1977), relevant if only that 

these entities abound in nature.  What would be the consequences in V4 and IT and in our 

computer models, for example, if the Koch curve shown in Figure 8.1 was presented as a 

stimulus?  Also, we would like to study occluded or illusory stimuli, such as some well-

known Kanizsa images (Kanizsa, 1979). 

 

With the techniques, methodologies and experience gained from working in the object 

recognition domain, we would like to explore the possibility of transferring some of our 

knowledge to some emerging higher-level cognitive Brain-Computer Interface (BCI) 

applications, possibly within a general-purpose system (Schalk, 2009), possibly in an area 

that is somewhat related to our current work, such as the detection of class-specific visual 

stimuli (Miller et al., 2009).  We are encouraged by the availability of the next generation 

of mechanically flexible electronics for multiplexed signal measurements (Viventi et al., 

2010).  Extending our experience to another domain, for instance epilepsy, either through 

mathematical modeling (Lytton, 2008) or signal analysis, is also appealing and important, 

with  60  million epilepsy patients worldwide and one-third refractory to medication.  We 
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Figure 8.1 – Koch curve.  The standard Koch curve after 8 iterations (i.e., 48 = 65,536 
segments).  (Courtesy of Alexander M. Murphy.) 
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might also consider the data available from deep brain stimulation EEG recordings 

acquired as images were presented to patients. 

 

The analysis of some recent electrocorticographic (ECoG) recordings, which measure 

synaptic activity across neuronal populations (Crone et al., 2006; Logothetis et al., 2001), 

is intriguing and may have implications for our research.  Jacobs and colleagues (Jacobs 

et al., 2007; Jacobs et al., 2009) have found ECoG activity in the gamma band that may 

be linked to cognitive representations of stimuli.  Intracranial brain recordings of human 

neurosurgical patients observing visually presented alphabetic letters revealed that the 

gamma band ECoG amplitude increased at many electrodes after a letter was presented, 

particularly in the occipital and temporal regions.  The Jacobs group also found some 

coding of shape information for the letters.  For example, one occipital electrode had 

significantly elevated gamma amplitudes for the rounder letters “C”, “D” and “G”, but 

not for the straighter letters “N” and “K”.  This, as well as our synchronization results 

(Chapter 6), compels us to consider if the curvature sensitivities of cells found in V4 and 

IT (Pasupathy and Connor, 2001; Brincat and Connor, 2004) are involved in, or 

modulated by, these gamma-related occurrences.  Furthermore, the precise amplitudes of 

the gamma activities could often be used to identify the letter that was presented.  These 

letter-specific patterns occurred during periods of increased gamma activity and were 

limited to regions with these elevations.  They were linked to the phase of simultaneous 

theta oscillations and emerged ≈ 50 – 100 ms after the overall gamma power increased.  

This offset is of the same order of magnitude as the delay between categorization and 

identification (Grill-Spector, 2003; Grill-Spector and Kanwisher, 2005) in the object 
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recognition process as well as the average lag between the linear and nonlinear response 

components of the IT cells that exhibited mixed selectivities for multipart configurations 

(Brincat and Connor, 2006) (as well as the ∼60 additional ms required to attend to a 

feature (compared to attending to a location) (Reynolds and Desimone, 2003)).  We 

would like to explore the relationship, if any, between these three similar time lapses and 

investigate the correlations between specific recognition events and the onset of stimulus 

patterns.  In individual patients, when the Jacobs group saw two proximal electrodes with 

letter-specific activity, the patterns often occurred at similar time points of peak letter 

specificity.  Finally, we would like to investigate whether this is related to the columnar 

arrangement of V4 and / or IT, with possible considerations of the “pinwheel” 

topography and its relationship to short-range connections found by Gilbert and 

colleagues in primary visual cortex (Das and Gilbert, 1999), yet distinct from the 

retinotopic organization seen in lower areas. 

 

In general, we seek the formation of and answers to the overarching questions in 

neuroscience. 
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