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The effortless ease with which humans move our arms, our eyes, even 
our lips when we speak masks the true complexity of the control pro-
cesses involved. This is evident when we try to build machines to per-
form human control tasks. I will review our work on how humans learn 
to make skilled movements covering probabilistic models of learning, 
including Bayesian and structural learning as well as the role of con-
text in activating motor memories. I will also review our work showing 
the intimate interactions between decision making and sensorimotor 
control processes. This includes the bidirectional flow of information 
between elements of decision formations such as accumulated evi-
dence and motor processes such as reflex gains. Taken together these 
studies show that probabilistic models play a fundamental role in 
human sensorimotor control.
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How can the structure of brain circuits inform large-scale theories of 
brain function? We explore this question in the context of Bayesian 
models of perception and action, which prescribe optimal ways of 
combining sensory information with prior knowledge and rewards to 
enact behaviors. I will briefly review two Bayesian models, deep pre-
dictive coding and partially observable Markov decision processes 
(POMDPs) and illustrate how circuit structure can provide important 
clues to systems-level computation.
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The neuroscience community is just beginning to understand how 
brain rhythms take part in cognition and how flexible are the kinds of 
computations that can be made with rhythms. In this talk, I will dis-
cuss some case studies demonstrating this enormous flexibility and 
important functional implications. Each of the case studies is about 
some form of coordination. Examples include the interaction of mul-
tiple intrinsic time scales in a cortical rhythm in response to a periodic 
input; the ability of a slow rhythm in the striatum to modulate two 
other rhythms in different phases of its period; and the ability of a pari-
etal rhythm to guide the formation, manipulation and termination of a 
kind of working memory.
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Experimental work on the crustacean stomatogastric ganglion (STG) 
has revealed a 2–6 fold variability in many of the parameters that are 
important for circuit dynamics. At the same time, a large body of theo-
retical work shows that similar network performance can arise from 
diverse underlying parameter sets. Together, these lines of evidence 
suggest that each individual animal, at any moment in its life-time, 
has found a different solution to producing “good enough” motor 
patterns for healthy performance in the world. This poses the ques-
tion of the extent to which animals with different sets of underlying 
circuit parameters can respond reliably and robustly to environmen-
tal perturbations and neuromodulation. Consequently, we study the 
effects of temperature, pH, hi K+, and neuromodulation on the pyloric 
rhythm of crabs. While all animals respond remarkably well to large 
environmental perturbations, extreme perturbations that produce 
system “crashes” reveal the underlying parameter differences in the 
population. Moreover, models of homeostatic regulation of intrinsic 
excitability give insight into the kinds of mechanisms that could give 
rise to the highly variable solutions to stable circuit performance.
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Predictions about the future are important for an animal in order to 
interact with its environment. Therefore, predictive computation 
might be a core operation carried out by neocortical microcircuits. We 
explored whether the primary visual cortex can perform such compu-
tations by presenting repeated temporal sequences of static images 
with occasional unpredictable disruptions. Simultaneous recordings of 
150–250 neurons were performed using two-photon Ca++ imaging 
of layer 2/3 neurons labeled with GCaMP6f in awake mice, who were 
head-fixed but free to run on a styrofoam ball. In our visual stimuli, 
each spatial frame consisted of either an oriented grating or a ran-
dom superposition of Gabor filters. We found that most of the neu-
rons (~ 98%) showed a strong reduction in activity over a few repeats 
of the temporal sequence. When we presented a frame that violated 
the temporal sequence, these neurons responded transiently. In con-
trast, a small fraction (~ 2%) had activity that ramped up over several 
repeats, before reaching a steady, sequence-modulated response. This 
partitioning of the neural population into ‘transient’ and ‘sustained’ 
responses was observed for all temporal sequences tested. At the 
same time, the identity of which neurons were transient versus sus-
tained depended on the temporal sequence.
These features—adaptation to a repeated temporal sequence and a 
transient response to a sequence violation—are hallmarks of predic-
tive coding. After a few repeats, the temporal sequence becomes pre-
dictable and can be efficiently represented by a small subset of the 
neural population. The unpredictable frame then elicits an ‘error’ signal 
because it encodes a potentially important novelty. In order to explore 
whether neural novelty signals could be useful to the animal, we per-
formed behavioral experiments with matched visual stimuli that dem-
onstrated that mice could easily learn to lick in response to a violation 
of an ongoing temporal sequence.
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Thalamic deep brain stimulation (DBS) is a therapy option for Essen-
tial tremor (ET), the most common movement disorder. Clinically 
available DBS delivers constant, high frequency electrical stimulation 
and could be improved in terms of efficacy, reduction of side effects, 
and decrease in power usage. Given phased locked stimulation data, 
we propose a method to study the effects of stimulation along both 
the tremor oscillation phase axis and the tremor oscillation amplitude 
axis, with the goal of better informing stimulation strategies. Because 
of noise in tremor recordings and experimental limitations, the ampli-
tude axis is especially difficult to access by direct data analysis in the 
phasic paradigm. We show that a Wilson-Cowan model can be fitted 
to data, and thanks to isochronal and isostable coordinates, we obtain 
response curves and surfaces for the noiseless model. The noise-
less 2D phase response curves and amplitude response curves show 
good agreement with the response curves obtained directly from 
experimental data (Fig. 1). The 3D response surfaces give us the ability 
to make predictions beyond what the noise level of the data can let 
us see. In that sense, our method can be seen as a way of de-noising 
the experimental response to stimulation. Although mathematically 
inspired by a canonical neuroscience model, our model includes the 
various neural populations thought to be involved in the generation 
of ET, and allows for the stimulation of the most common target for ET 
DBS, the ventral intermediate nucleus of the thalamus. Our model pre-
dicts that only certain phases are conducive to amplitude reduction 
through stimulation, the best of which being the phase that brings the 
system closer to the fixed point, where there are no pathological oscil-
lations. This particular phase is amplitude dependent, but in general 
the optimal stimulation phase occurs during the descending part of 

the oscillations, slightly before the trough. Moreover, the response to 
stimulation is linearly dependent on stimulation magnitude. We also 
find that the best phase to stimulate corresponds to the maximum 
positive slope of the PRC. Finally, we report that the effects of stimu-
lation are reduced as the amplitude of the oscillations increases, and 
therefore predict that phasic stimulation will be less effective when 
delivered at higher oscillation amplitudes.
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A key functionality of olfactory sensory neurons (OSNs) in the Dros-
ophila antennae is to jointly encode both odorant identity and odor-
ant concentration. The identity of an odorant is combinatorially 
encoded by the set of responding OSN groups expressing the same 
receptor type, and the size of OSN set varies as the concentration 
changes. The temporal response of an OSN simultaneously represents 
the information of odorant concentration and concentration gradi-
ent. These two aspects of olfactory coding, identity and concentra-
tion, originate in the odorant transduction process. However, detailed 
molecular models of the odorant transduction process are scarce for 
fruit flies. To address these challenges we advance a comprehensive 
model of fruit fly OSNs as a cascade consisting of an odorant trans-
duction process (OTP) and a biophysical spike generator (BSG). We 
model identity and concentration in OTP by an odorant-receptor 
binding rate tensor modulated by the odorant concentration profile 
and an odorant-receptor dissociation rate tensor, and quantitatively 
describe the ligand binding/dissociation process. To biologically vali-
date our modeling approach, we first propose an algorithm for esti-
mating the affinity and the dissociation rate of an odorant-receptor 
pair. We then apply the algorithm to electrophysiology recordings and 
estimate the affinity and dissociation rate for three odorant-receptor 
pairs, (acetone, Or 59b), (methyl butyrate, Or 59b) and (butyraldehyde, 
Or 7a). Second, we evaluate the temporal response of the OSN model 
with a multitude of stimuli, including step, ramp and parabolic odor-
ant waveforms for all three odorant-receptor pairs. The output of the 
model closely reproduces the temporal responses of OSNs obtained 
from in vivo electrophysiology recordings for all three odorant-recep-
tor pairs across all three types of stimuli  (Fig. 1). Lastly, we evaluate 
the model at the OSN antennae population level. We first empirically 
estimate the odorant-receptor affinity using the spike count records in 
the DoOR database for 24 receptor types in response to 110 odorants. 
With estimated affinity values, we simulate the temporal response of 
the OSN population to staircase odorant waveforms. The output of 
simulated OSN population demonstrates that the odorant identity is 

Fig. 1 Response curves and surfaces from isochronal and isostable 
coordinates for “patient 1”. The model response curves agree with 
experimental data
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encoded in the set of odorant-activated OSN groups expressing the 
same receptor type, and, more importantly, the size of the set expands 
or reduces as the odorant concentration increases or decreases. The 
fruit fly OSN model presented here provides a theoretical founda-
tion for understanding the neural code of both odorant identity and 
odorant concentration. It advances the state-of-the-art in a num-
ber of ways. First, it models on the molecular level the combinatorial 
complexity of the transformation taking place in Drosophila antennae 
OSNs. The resulting concentration-dependent combinatorial code deter-
mines the complexity of the input space driving olfactory processing 
in the downstream neuropils, such as odorant recognition and olfac-
tory associative learning. Second, the model is biologically validated 
using multiple electrophysiology recordings. Third, the OSN model 
demonstrates that the currently available data for odorant-receptor 
responses only enables the estimation of the affinity of the odorant-
receptor pair. Our model calls for new experiments for massively iden-
tifying the odorant-receptor dissociation rates of relevance to flies.
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In V1, neuronal responses are sensitive to context: responses to stim-
uli presented within the classical receptive field are modulated by 
stimuli in the surround. Recently, sparse coding models [1] have been 
successful in explaining part of these modulatory effects [2]: Their 
dynamics implements an inference process to seek an optimal (w.r.t. 
accuracy and sparseness) representation of a visual input in terms of 

fundamental features. This is achieved through a competition between 
similarly tuned neurons with overlapping input fields, which also 
mediates contextual modulation. However, this connection scheme 
implies that neurons with non-overlapping input fields do not inter-
act. Therefore, the proposed mechanism does not provide a satisfac-
tory explanation of the mechanisms behind these phenomena, since 
contextual effects are usually caused by surround stimuli positioned 
far from the cRF (e.g. Mizobe et al.) 21 report collinear modulation for 
distance center-surround up to 12 deg). To overcome this limitation, 
we propose an extension of the classical framework [2] by defining a 
new generative model for visual scenes that includes dependencies 
among different features in spatially well-separated locations. To per-
form inference in this model, we also derive a dynamical system that 
can be mapped to a neural circuit and a lateral connection scheme for 
optimally processing local and contextual information.
The result can be interpreted as a neural network where units are 
linked by short range horizontal connections within the same hyperco-
lumn and by long range connections between different hypercolumns 
(Fig. 1b). Each hypercolumn contains units that receive input from a 
localized region of the visual field and builds a sparse representation 
of its input as if it was presented in isolation. In parallel, these local 
representations are combined by providing contextual information 
to each other. In our simulations connections are learned from natural 
images. Long-range connections reflect the co-occurrence of features 
in different visual field locations: this predicts a connectivity structure 
linking neurons with similar orientation and spatial frequency prefer-
ences, which is similar to the typical patterns found for long-ranging 
(3–4 mm) horizontal axons in visual cortex [3]. Subjected to contextual 
stimuli typically used in empirical studies, our model replicates several 
hallmark effects of contextual processing. Hereby local and long-range 
interactions act hand-in-hand, for example in realizing two different 
origins of near and far surround suppression, respectively [4]. In sum-
mary, our model provides a novel framework for contextual process-
ing in the visual system proposing a well-defined functional role for 
horizontal axons.
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Fig. 1 Characterization of the fruit fly OSN model with multiple 
odorants and receptor types. Three odorant‑receptor pairs are tested. 
(a) (Or59b, acetone) (b) (Or59b, methyl butyrate). (c) (Or7a, butyralde‑
hyde). (Odd rows) Stimuli. (Even rows) PSTH from the model output 
and experimental recordings

Fig. 1 (A) Example of stimuli from a natural scene (top) and diction‑
ary of fundamental features (bottom) (B) Scheme of the generative 
model (C) Network architecture to perform inference in the genera‑
tive model
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The retina is organized in convergent and divergent layers that com-
press and expand signals before passing visual information along to 
the brain. Receptive fields anatomically correspond to the collection 
of inputs that converge upon a single retinal output cell. This subunit 
circuit structure produces an information bottleneck because infor-
mation is compressed along the pathway to an output neuron. We 
wondered whether the structure of the retina combined with its adap-
tation properties serve to preserve information given this bottleneck.
A remarkable property of the retina is its ability to adapt its processing 
to environmental conditions. Adaptation to background luminance 
shifts the nonlinear response filters of the subunits over a timescale 
of about a minute. This has the effect of adjusting the linearity of 
responses in a manner that is dependent on the luminance environ-
ment. Another feature of the retina is the diversity of cell types pre-
sent at the output layer. Within types, there are ON and OFF versions 
of cell types which have sensitivities that are complementary but not 
symmetrical. Having complementary cell types combined with adap-
tation mechanisms may allow the retina to leverage these redundan-
cies under certain conditions while having the flexibility to adapt to 
an efficient or predictive code in other conditions. We want to know 
whether the retina adapts its processing to maximize visual informa-
tion transmission by adjusting the subunit response functions in the 
circuit. To quantify the amount of information that is preserved in the 
signals exiting the retina under this kind of set up, we estimate the 
mutual information between a naturalistic stimulus set and the output 
from our model retina circuit. We use a binless estimator to account for 
the fact that the input signals and the outputs are continuous. Consist-
ent with past studies, our preliminary results indicate that the optimal 
thresholds for the nonlinear subunits depend on the amount of input 
noise given a naturalistic distribution of stimulus contrasts. Our work 
builds on past studies by incorporating the known subunit structure 
into the circuit which produces information compression. Under cir-
cumstances where subunits receive independent inputs, rather than 
correlated inputs, the circuit is optimal when ON and OFF subunits 
redundantly encode the most prevalent stimuli for a broad range of 
subunit noise levels. Our preliminary results suggest novel ways in 
which adaptation mechanisms, along with the particular bottleneck 
structure of the retina, enable the retina to adapt the computations it 
produces in different contexts.
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Many ubiquitous features characterize the structure and dynamics 
of local cortical networks. At the level of pair-wise connectivity, it is 
known that the probabilities of excitatory connections are generally 
lower than those for inhibitory, and the majority of reported prob-
abilities lies in the 0.10–0.19 range if the presynaptic cell is excita-
tory and 0.25–0.56 range if it is inhibitory. It is also known that the 
distributions of connection weights have stereotypic shapes with the 
majority of measured coefficients of variation (CV) of unitary postsyn-
aptic potentials in the 0.85–1.1 range for excitatory connections and 
slightly lower values for inhibitory, 0.78–0.96. At the level of connec-
tivity within 3-neuron clusters, several overrepresented connectiv-
ity motifs have been discovered. Information becomes scarce as one 

considers larger clusters of neurons, but even here deviations from 
random connectivity have been reported for clusters of 3–8 neurons. 
Similarly, many universal features characterize activity of neurons in 
local cortical networks. For example, individual neurons exhibit highly 
irregular spiking activity, resembling Poisson processes with close to 
one CV in inter-spike-intervals. Spike trains of nearby neurons are only 
marginally correlated, 0.04–0.15, and, at the network level, spiking 
activity can be described as sustained, irregular, and asynchronous. 
In this study, we pursue a hypothesis that associative learning alone 
is sufficient to explain these network features. To test this hypothesis, 
we trained recurrent networks of excitatory and inhibitory McCull-
och and Pitts neurons [1, 2] on memory sequences of varying lengths 
and compared network properties to those observed experimentally. 
Learning in the network is mediated by changing connection weights 
in the presence of biologically inspired constraints. (1) Input connec-
tion weights of each neuron are sign-constrained to be non-negative 
if the presynaptic neuron is excitatory and non-positive if it is inhibi-
tory. (2) Input weights of each neuron are homeostatically constrained 
to have a predefinedl1-norm. (3) Each neuron must attempt to learn 
its associations robustly, so that they can be recalled correctly in the 
presence of a given level of postsynaptic noise. We explore structural 
and dynamical properties of associative networks in the space of these 
constraints, and show that there is a unique region of parameters that 
is consistent with all of the above-described experimental observa-
tions. In this region, local cortical circuits are loaded with associative 
memories close to their capacity and memories can be successfully 
retrieved even in the presence of noise comparable to the baseline 
variations in the postsynaptic potential, which provides an independ-
ent validation of the theory in terms of the hypothesized network 
function. Confluence of these results suggests that many structural 
and dynamical properties of local cortical networks are simply a 
byproduct of associative learning.
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The theory of attractor neural networks has been influential in our 
understanding of the neural processes underlying spatial, declara-
tive, and episodic memory. Many theoretical studies focus on the 
inherent properties of an attractor, such as its structure and capac-
ity. Relatively little is known about how an attractor neural network 
responds to external inputs, which often carry conflicting information 
about a stimulus. In this talk I will present analytical results concerning 
the behavior of an attractor neural network’s response to conflicting 
external inputs. My focus is on analyzing the emergent properties of 
the megamap model, a quasi-continuous attractor network in which 
place cells are flexibly recombined to represent a large spatial envi-
ronment (Hedrick and Zhang 2016). In this model, the system shows a 
sharp transition from the winner-take-all mode, which is characteristic 
of standard continuous attractor neural networks, to a combinatorial 
mode in which the equilibrium activity pattern combines embedded 
attractor states in response to conflicting external inputs. I derive a 
numerical test for determining the operational mode of the system 



Page 5 of 98BMC Neurosci 2018, 19(Suppl 2):64

a priori. I then derive a linear transformation from the full model to a 
reduced 2-unit model that has similar qualitative behavior. The analy-
sis of the reduced model and explicit expressions relating the param-
eters of the reduced model to the megamap elucidate the conditions 
under which the combinatorial mode emerges and the dynamics in 
each mode given the relative strength of the attractor network and the 
relative strength of the two conflicting inputs. Although my focus on a 
particular attractor network model, I describe a set of conditions under 
which the reduced model can be applied to more general attractor 
neural networks. The reduced 2-unit model captures the amplitude of 
each activity bump but not its radius. I extend this reduced model to 
examine the spatial effects on the system’s behavior by approximat-
ing the activity bump and recurrent connections using two-dimen-
sional Gaussian tuning curves. Analysis of this reduced model reveals 
that these spatial effects underlie the nonlinearities observed in the 
full megamap model but not in the reduced 2-unit model. I compare 
these results to numerical simulations and electrophysiological data 
from an experiment in which hippocampal place cells resolve conflict-
ing external inputs from the medial entorhinal cortex (MEC) and lat-
eral entorhinal cortex (LEC) when local and global cues are rotated in 
opposite directions (Knierim and Neunuebel 2016). In this experiment, 
place cells in the CA3 (which are believed to form attractor neural net-
works) coherently follow the noisy inputs from the LEC rather than the 
much stronger spatial inputs from the MEC. The reduced model pre-
dicts that this surprising response is due to three factors: (1) CA3 place 
cells are initially driven by the LEC input only, (2) the attractor network 
acts in the WTA mode, and (3) connections from MEC to CA3 are gov-
erned by fast Hebbian synaptic plasticity. To bridge the gap between 
the idealistic theory and the noisy electrophysiological data, I run 
numerical simulations using the conductance-based integrate and fire 
model and unsupervised Hebbian plasticity. The noise in the model 
leads to the partial remapping observed experimentally.
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Throughout the course of the day, or even an hour, functional brain 
networks are continuously recruited to process thousands of inputs 
from the outside world and respond to the demands of countless 
behaviors and cognitive processes. Across scales of organization, these 
networks’ small-world and scale-free topologies facilitate optimally 
efficient neural information processing. However, the building blocks 
of these networks (modules or motifs), their emergence, re-organi-
zation during development and time-dependent stereotypy remain 
poorly understood. Unrelated theoretical work has shown that specific 
network patterns emerge as a result of a dynamic system’s propensity 
towards a stable configuration. There is also growing evidence from 
both animal and human studies that a relatively small number of such 
modules are combined (in potentially infinite ways) to give rise to the 
observed functional network topologies. In this study, we investigated 
the organization, size and stereotypy of functional network motifs in 
the developing human brain, using very high-dimensional invasive 
human electrophysiological signals, collected continuously over long 
periods of time (typically several days) from a relatively large num-
ber of children and young adults (n = 39, age < 1 to ~ 23 years) with 
intracerebral electrode grids covering different parts of the brain. 
All patients had recordings from a relatively large number (> 70) of 

electrodes. Information theoretic and contraction theoretic measures 
were used to estimate functional connectivity, identify sub-network 
patterns (motifs) that occurred repetitively over time and indepen-
dently of the area of the brain being spatially sampled, and character-
ize their stability (using an eigenvalue analysis).
A relatively small number of functionally active nodes were estimated, 
which formed stable patterns that occurred repetitively across tempo-
ral scales and brain regions. The size of these patterns (number of acti-
vated nodes) changed with age, with progressively smaller sub-graphs 
(3–4 nodes) emerging as a function of neural maturation. Across ages, 
identified motifs were consistently correlated with network stability. 
These results indicate the although stable functional network motifs 
may be in place early in life to process multi-modal sensory informa-
tion, re-organization of the brain’s neural circuitry as a function of 
neural maturation may lead to increasingly parsimonious modules to 
facilitate increasingly efficient neural information processing. These 
modules may also constitute a network-level biomarker of neural mat-
uration at the macroscale sampled by invasive human recordings.
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A prominent question of sensory processing is how information is rep-
resented and transformed by the neural circuit through multiple layers 
and across multiple areas in order to create perceptions and ultimately 
guide behavior. In order to facilitate uncovering these principles, we 
have created the Allen Brain Observatory. This is a public dataset of 
neural responses collected from visual areas of awake mouse cor-
tex using 2-photon calcium imaging. We systematically recorded 
responses from over 50,0 neurons in over 5 experiments, using a 
high-throughput imaging pipeline. Data were collected from 6 corti-
cal areas and 4 cortical layers. GCaMP6f was transgenically expressed, 
driven by 13 different Cre lines which limit expression to specific sub-
sets of excitatory (10 Cre lines) or inhibitory cells (3 Cre lines). Visual 
responses were imaged in response to an array of both artificial and 
natural stimuli, including drifting gratings, static gratings, locally 
sparse noise, natural scenes and natural movies while the mouse was 
awake and free to run on a running disc. Several metrics were com-
puted to describe the visual responses of the neurons, including orien-
tation and direction selectivity, image selectivity, lifetime sparseness, 
and receptive field areas. Surveying these metrics across areas, layers 
and Cre-defined cell populations, several patterns emerge. Layer 4 
exhibited clear differences across areas and cell populations, but these 
differences were reduced in the other layers. This pattern is consist-
ent with layer 4 predominately carrying feedforward thalamocorti-
cal input, while layers 2/3, 5 and 6 represent higher order responses. 
One of the most striking results in this dataset is the small numbers 
of responsive cells and the remarkable variability of the responses of 
these cells. Only 57% of cells in the Brain Observatory dataset respond 
to any of the visual stimuli presented. Further, even responsive cells 
show large trial-to-trial variability. We fit these neurons to a simple 
wavelet pyramid model with simple (linear-nonlinear) and complex 
components (the “energy” model). Roughly 15% of neurons in the 
dataset show significantly predictable responses to visual stimuli via 
this model, with relatively low explainable variance. All cells also show 
some degree of “complex” behavior, i.e. there are no purely “simple” 
cells according to this model. We compare the representations in each 
layer and area to responses generated by standard Convolutional Neu-
ral Networks, a model derived from the canonical understanding of 
the cat visual system. We find that the mouse cortex are most similar to 
early middle areas of ConvNets, rather than the initial Gabor-like layer 
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thought to describe responses in V1 of cats. Finally, we examine the 
correlation structure of population activity, showing that correlations 
in neural responses have an impact on information transmission in 
an area and layer dependent fashion. Furthermore, we show that the 
“noise” and “signal” correlations are positively correlated throughout 
the mouse visual system, providing strong evidence against certain 
types of theories that exhibit “explaining away”, i.e. theories in which 
neurons with similar mean tuning properties will functionally inhibit 
one another, such as the sparse coding model of Olshausen and Field 
and some probabilistic coding models. This dataset provides a testbed 
for theories of cortical computations and will be a valuable resource 
for the community.
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Brain activity can be understood as the exploration of a dynamical 
landscape of activity configurations over both space and time. This 
dynamical landscape may be defined in terms of spontaneous tran-
sitions within a repertoire of discrete metastable states of functional 
connectivity (FC), or “FC states”, which underlie different mental pro-
cesses. It however remains unclear how the brain’s dynamical land-
scape might be disrupted in altered states of consciousness, such as 
the psychedelic state. The present study investigates changes in the 
brain’s dynamical repertoire in a rare fMRI dataset consisting of healthy 
participants intravenously injected with the psychedelic compound 
psilocybin; the active compound in magic mushrooms. We employed 
a data-driven approach to study brain dynamics in the psychedelic 
state, which focuses on the dominant FC pattern captured by the lead-
ing eigenvector of dynamic FC matrices, and enables the identification 
of recurrent FC patterns (“FC-states”), and their transition profiles over 
time. We found that a FC state closely corresponding to the fronto-
parietal control system was strongly destabilized by the drug, while 
transitions toward a globally synchronized FC state were enhanced. 
These differences between brain state trajectories in normal wak-
ing consciousness and the psychedelic state suggest that psilocybin 
induces an alternative type of unconstrained functional integration at 
the expense of locally segregated activity specific networks support-
ing executive function. These results provide a mechanistic perspec-
tive on the acute psychological effects of psychedelics, and further 
raise the possibility that mapping the brain’s dynamical landscape 
may help guide pharmacological interventions in neuropsychiatric 
disorders.
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Interest in the origin and significance of cross-frequency coupling 
in electrophysiological signals has grown rapidly over the last sev-
eral years, with particular emphasis on phase-amplitude coupling 
(PAC). Much of this recent attention has focused on measures of PAC 
obtained from filtered analytic signals through the comparison of 
phase and analytic envelope. As use of these measures has increased, 
so has an appreciation of their ambiguities, attested by an expanding 
cautionary literature on the topic. Meanwhile, “classical’’ statistically 

motivated measures of cross-frequency coupling derived from spec-
tral representations of higher moments have remained at the periph-
ery of the latest surge of attention, due in large part to a common 
perception that such measures are comparatively difficult to interpret 
and that they relate to a form of cross-frequency coupling distinct 
from PAC. Recently, we have shown that common PAC measures are, 
in fact, fundamentally normalized bispectral estimators which yield 
smoothed estimates of the true signal bispectrum [1]. Differences 
between the measures relate to properties of the respective smooth-
ing kernels. In light of this observation, classical bispectral estimators 
can claim a number of advantages over recently introduced PAC meas-
ures, including more favorable bias properties and freedom from the 
constraints on range and resolution that are inherent in PAC measures. 
Interpretation of the bispectrum is commonly explained in terms of 
``quadratic’’ phase coupling between spectrally narrow signal compo-
nents; in demonstrating the relationship to PAC measures, we develop 
an alternative approach to interpretion through a decomposition of 
the signal into spectrally broad transient components. The relation-
ship between PAC measures and the bispectrum can be understood 
by considering the case of a low-frequency transient, corresponding 
to the ``slow’’ oscillation (SO), accompanied by a transiently windowed 
high-frequency ``fast’’ oscillation (FO). As detailed in Figures 1 and 2 of 
reference [1], windowing of the FO at the scale of the SO implies that 
the bispectrum contains a straightforward representation of the spec-
trum of the SO and the power spectrum of the FO, from which both 
might be directly recovered to good approximation. Moreover, within 
the range of the FO, the phase bispectrum encodes the relative delay 
between the SO and the FO modulating window. With these insights 
we develop guidelines for the evaluation of PAC from bispectral sta-
tistics. This framework addresses a number of the recently identified 
limitations and ambiguities of PAC measures. Finally, some extensions 
of this framework towards the blind recovery of recurring transient 
signal features are briefly considered. The feasibility of this applica-
tion is demonstrated through the identification of auditory evoked 
responses in human intracranial recordings from both controlled 
stimuli (click trains) and uncontrolled ecologically meaningful stimuli 
(a video soundtrack) with no foreknowledge of the stimulus.
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To effectively move in a complex and dynamic environment, limbed 
animals should vary locomotor speed and adapt gaits to the desired 
speed and the environment. With increasing locomotor speed, quad-
rupedal animals, including mice, switch locomotor gait from walk to 
trot and then to gallop and bound. Centrally, the locomotor gaits are 
controlled by interactions between four central pattern generators 
(CPGs) located on the left and right sides of the lumbar and cervi-
cal enlargements of the cord, and each producing rhythmic activity 
controlling one limb. The activity of these CPGs are coordinated 
by commissural interneurons (CINs), projecting across the midline 
to the contralateral side of the cord, and by long propriospinal neu-
rons (LPNs) that connect the cervical and lumbar CPG circuits in both 
directions. We use computational modeling to investigate how the 
CIN and LPN connections between the cervical and lumbar, left and 
right CPGs can be organized and what roles different CIN and LPN 
pathways play in the control and speed-dependent expression of dif-
ferent gaits. Our model contains four rhythm generators (RGs) with 
left–right cervical and lumbar CIN interactions and homolateral and 
diagonal ascending and descending LPN interactions. These interac-
tions are organized via several interneuronal pathways mediated by 
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genetically identified neuron types and are based on their suggested 
functions and connectivity. Supraspinal (brainstem) drives excite all 
RGs, thereby controlling oscillation frequency, and inhibit some CINs 
and LPNs, which allows the model to reproduce the speed-dependent 
gait transitions observed in the intact mice [1]. The model reproduces 
the experimentally observed loss of particular gaits after selective 
removal of genetically identified neurons (V2a, V0 V, or all V0) and the 
speed-dependent disruption of hind limb coordination after deletion 
of ascending (cervical-to- lumbar) LPNs [2]. The model suggests that 
(1) V0Dand V0VCINs together secure left–right alternation, whereas 
V3 CINs promote left–right synchronization, and that (2) V0DLPNs 
support diagonal alternation, whereas V0VLPNs promote diagonal 
synchronization. Thus, V0DCINs and LPNs together stabilize walk and 
V0VCINs and LPNs stabilize trot. The transition from trot to gallop and 
bound occurs when the activity of V3 CINs overcomes the activity of 
(brainstem-drive inhibited) V0VCINs and diagonal LPNs. Our simula-
tions have also shown that external inputs to CINs and LPNs, other 
than supraspinal drives controlling locomotor frequency, can induce 
gait changes independent of speed. These inputs may represent activ-
ities of sensory afferents, which is consistent with multiple experimen-
tal data showing that CINs and LPNs receive direct and indirect inputs 
from sensory afferents. Based on the results of these simulations we 
suggest that CINs and LPNs represent the main neural targets for dif-
ferent local/intraspinal, supraspinal, and sensory inputs to control 
interlimb coordination and adjust locomotor gait to various internal 
and external conditions. The model proposes a series of testable pre-
dictions, including the anticipated effects of the deletion of particular 
identified types of CINs and LPNs, and can be used as a test bed for 
simulating various spinal cord perturbations and injuries.
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Network (population) bursts are a signature neuronal activity in a criti-
cal brainstem region for respiratory rhythm generation, the pre-Botz-
inger complex (pre-BotC). During the initiation of a network burst, the 
pre-BotC shows a consistent pattern of dynamic transitions. Starting 
with mostly silent neurons, the pre-BotC transitions to an intermedi-
ate state with a positive fraction of firing neurons that may include 
tonically spiking and bursting neurons. When a sufficient number of 
neurons becomes engaged in firing, the pre-BotC network finally 
undergoes a transition to a population burst, characterized by a high 
fraction of simultaneously bursting neurons.
Over the last few decades several models of population bursts in the 
pre-BotC have been proposed, including conductance-based models 
featuring various ionic currents, such as INaP and ICAN. While the main 
objective of these models was to identify the bio-physical driving 
sources underlying network burst initiation, the role of the synaptic 
connection patterns in shaping neuronal activity has been relatively 
overlooked. The main reason for this omission is that the models are 
too complicated for a full analytical treatment and, due to computa-
tional limitations, it is difficult to gain full insight into the influence 
of connectivity. To overcome these obstacles, we propose a simpli-
fied model, which is based on a bootstrap percolation process, and is 
defined as follows. For a given graph, every node has three possible 
states: inactive, weakly- active, and fully-active, which correspond to 
silence, tonic spiking and bursting, respectively. We initialize all nodes 
to the weakly-active state with probability p1 and to the fully-active 
state with probability p2, independently of other nodes. As the process 

evolves, an inactive node will transit to the weakly-active state if the 
amount of activity among its neighbors exceeds a threshold k1, and 
if the amount is greater than k2, it will transit to the fully-active state. 
Similarly, a weakly-active node becomes fully-active if the amount of 
activity among its neighbors exceeds k2. Nodes cannot reduce their 
activity levels, and those nodes that are fully-active will not change 
their states until the end of a trial. We analyze this process analytically 
and computationally on various random graph models and address 
three questions. First, we determine values p1 and p2 as functions of 
k1 and k2 for which the network reaches a population burst at the end 
of a trial. Our findings suggest possible reasons why the network may 
fail to generate a population burst after the deletion of a fixed fraction 
of arbitrary nodes in the network, which is consistent with laser abla-
tion of rhythmogenic pre-BotC (Dbx1) neurons in experiments. Sec-
ond, we investigate how structural features of different graph models 
affect the duration of the process. Lastly, we describe how using nodal 
measures we may identify nodes that, when activated initially, are par-
ticularly well suited to ignite a population burst. This result shows that 
local properties of graphs are good descriptors of the spread of burst-
ing activity and also addresses the extent to which successive popula-
tion bursts may feature similar or different initiation mechanisms.
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With new multichannel recording technologies, neuroscientists can 
now record from single cortical regions with high spatial and temporal 
resolution. Early recordings during anesthesia found spontaneous and 
stimulus-evoked waves traveling across single cortical regions. For a 
long time, however, these waves were thought to disappear in awake 
animals and during high-input regimes. By introducing new signal pro-
cessing methods for moment-by-moment detection and characteriza-
tion of spatiotemporal patterns under noise, our recent work has found 
that small visual stimuli evoke waves traveling out from the point of 
thalamocortical input to primary visual cortex in the awake monkey [1]. 
Further, using a measure of directed information transfer across record-
ing sites in V1 of anesthetized monkey, another group has found that 
traveling waves can influence intracortical dynamics during viewing of 
natural stimuli [2]. These results indicate that traveling waves can play 
a role in organizing neural activity during natural sensory processing. 
Their overall computational role in sensory cortex, however, remains 
poorly understood. Here, we introduce a spiking model that captures 
a general network-level mechanism for traveling waves in cortex. We 
study networks in the self-sustained activity regime [3], where conduct-
ance-based networks of neurons can create an internally generated 
noise [4] consistent with the irregular-asynchronous (IA) background 
activity state in cortex [5]. We find that a microscopic property—the 
axonal conduction velocity—profoundly controls the spatiotemporal 
structure of the spontaneous background state. While previous work 
has generally considered the time delays from intraregional recurrent 
fibers to be negligible, these can range up to tens of milliseconds over 
a few millimeters of the cortical surface, and their inclusion shapes self-
sustained activity patterns into spontaneous traveling waves matching 
those observed in recordings from cortex. By studying networks from 
104to 106neurons through a range of connectivity regimes, from very 
sparse (1 synapses/cell) to that found in cortex (10,0 synapses/cell, [6]), 
we identify spatiotemporal patterns ranging fromdense waves, where 
the fraction of individual neurons participating in a passing wave is 
nearly unity, tosparse waves, where this fraction becomes very low. 
The sparse wave regime offers a unique operating mode, where many 
waves can coexist while weakly interacting during their propagation 
across the network. Finally, in collaboration with the laboratory of John 
Reynolds (Salk Institute), we show how spontaneous, sparse traveling 
waves can affect visual processing in the awake marmoset, leading to 
dynamic shifts in perceptual thresholds.
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During non-rapid eye movement (NREM) sleep, the neocortex con-
tinuously alternates between states of neuronal spiking (UP states) 
and inactivity (DOWN states). Similarly, the hippocampus also shows 
continuous alternations between brief periods of neuronal activity 
(SPW-Rs) and relative inactivity. While the durations of active/inactive 
states are dramatically different in the two regions, the hippocampus 
and neocortex are both cortical tissue and are under similar neuro-
modulatory influence during NREM. Thus, it prompts one to wonder 
whether the neocortical UP/DOWN states and hippocampal SPW-Rs 
might be explained by similar mechanisms. Furthermore, the mecha-
nisms by which alternation dynamics in the two regions interact to 
support NREM function are unclear. To address these questions, we 
used an idealized firing rate model of UP/DOWN alternations with four 
distinct dynamical regimes, which are distinguished by the stability 
or transience of UP/DOWN states and encompass those seen in previ-
ous studies. By directly matching model dynamics with experimental 
observations in naturally-sleeping rats, we found that the alternation 
dynamics observed in neocortex and hippocampus during NREM 
reflect two distinct regimes of excitable activity that show character-
istically asymmetric durations of UP/DOWN states. Specifically, we find 
that the neocortical dynamics reflect a stable UP state interrupted by 
transient DOWN states (slow waves), while the hippocampal dynamics 
reflect a stable DOWN state with transient UP states (sharp waves).We 
further considered the effects of including an inhibitory population 
in the model. We find that under conditions of balanced excitation 
and inhibition, neocortical UP- > DOWN transitions can be evoked by 
excitatory input and are followed by a high frequency oscillation at the 
DOWN- > UP transition, as is observed in vivo. We propose that during 
NREM sleep, hippocampal and neocortical populations are in excitable 
states, from which small fluctuations can evoke the transient events 
that support NREM function. The excitable dynamics we describe sug-
gest a mechanism by which the two structures could show a form of 
communication through“stochastic synchronization” of spontaneous 
population events during NREM sleep.
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The moth olfactory network, which includes the antennal lobe (AL), 
mushroom body (MB), and ancillary structures, is a relatively simple 
biological neural system that is capable of learning. Its structural fea-
tures include motifs that are widespread in biological neural systems, 
such as a cascade of networks, large dimension shifts from stage to 
stage, sparsity, noise, and randomness. Learning is enabled by a neuro-
modulatory reward mechanism of octopamine stimulation of the AL, 
whose increased activity induces rewiring of the MB through Hebbian 
plasticity. The goal of this work is to analyze how these various com-
ponents interact to enable learning. To this end, we build a computa-
tional model of the moth olfactory network, including the dynamics of 
octopamine stimulation, which is closely aligned with the known bio-
physics of the AL-MB and with in vivo AL firing rate data of moths dur-
ing learning. To our knowledge this is the first full, end-to-end neural 
network model that demonstrates learning behavior while also closely 
matching the structure and behavior of a particular biological system. 
The model is able to robustly learn new odors, and provides a valuable 
tool for examining the role of octopamine in learning. This octopa-
mine mechanism during learning is of particular interest, since how it 
promotes the construction of new codes in the MB is not understood. 
Specifically, our experiments elucidate key biological mechanisms for 
fast learning from noisy data that rely on an interaction between cas-
caded networks, sparsity, Hebbian plasticity, and neuromodulatory 
stimulation by octopamine.
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Intracellular Ca2+ concentration usually correlates with the neuronal 
pattern and behavioral response. However, noxious cold sensation in 
Drosophila presents a paradox with these associations. Pkd2 and Trpm 
channels are required to trigger nociceptive full body contraction (CT) 
under acute cold [1].Trpm mutants exhibit an increase in [Ca2+] levels 
above control and display reduction of CT behavior, whereasPkd2mu-
tants showed reductions in [Ca2+] level and inhibition of behavior [1]. 
We developed a Hodgkin-Huxley-type model of the cold sensitive CIII 
neurons to investigate interaction of Pkd2, Trpm and SK currents and 
to explain the experimental paradox. Our main mechanism assumes 
that the mutation of Trpm is homeostatically accompanied by a com-
pensatory increase of the total Pkd2 current conductance, which leads 
to an amplified rise of [Ca2+] under noxious cold temperatures. This 
higher [Ca2+] activates stronger SK current which hyperpolarizes the 
membrane potential and suppresses spiking. This leads to inhibition 
of the stereotyped CT behavior under noxious cold stimuli. This model 
prediction is supported by the experiments, which showed 2-fold 
increase ofPkd2 mRNA levels in Trpm mutants relative to control, while 
no change in Trpm mRNA levels was observed inPkd2mutants.
Basic models of the CIII neuron describing responses of Control, Trpm 
and Pkd2 mutants show transitions from silence at room temperature 
to spiking activity below 18 °C, but have distinct features. Models of 
Control and Trpm mutants reach a maximum spike frequency near 
14.5 °C, while Pkd2 mutants exhibited a maximum frequency at 6 °C 
and had a smaller frequency compared to Control and Trpm mutants. 
The decrease of maximum frequency in Pkd2 mutants as well as 
absence of spiking activity for most of the temperature range in Trpm 
mutants may explain the inhibition of CT behavior under noxious cold. 
The [Ca2+] responses of the three models describing control, Trpm 
and Pkd2 mutants are in agreement with the corresponding experi-
mental data [1]. [Ca2+] signal of CIII neurons under noxious cold is the 
strongest in Trpm mutants and the weakest in Pkd2 mutants. Thus, the 
model and experimental results suggest that cold-evoked CT behavior 
is tuned to an optimal Ca2+ level which does not always functionally 
represent level of neuronal excitation. Also, the basic model currently 
exhibits a wide spectrum of qualitatively different activity regimes. 
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Depending on the parameter set, the model could show different 
regimes which are associated with different levels of [Ca2+] and could 
be arranged into an alternative scheme of the temperature coding fol-
lowing the sequence of transitions between regimes: small amplitude 
spiking, period doubling cascade, bursting, large amplitude spiking, 
and rest state along with the temperature going down. These two 
coding schemes provide robust and generic mechanisms of coding 
modality-specific activity patterns by coordinated modality-specific 
activation of two TRP currents.
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The grid system of the mammalian medial entorhinal cortex (mEC) 
exhibits striking modularity. Rat grid cell recordings reveal that spa-
tial grid scales cluster around discrete values separated by constant 
ratios reported in the range 1.3–1.8. Although this modular organiza-
tion has been shown to be a robust and efficient encoding of spatial 
location, its origin is unknown. We present the first proposed mecha-
nism through which geometric sequences of grid scales arise natu-
rally. A series of continuous attractor networks along the longitudinal 
mEC axis that would otherwise generate a smooth distribution of grid 
scales forms modules separated by discrete jumps in scale when excit-
atory connections are introduced (Fig. 1). Moreover, constant scale 
ratios between successive modules arise through robust geometric 
relationships between commensurate triangular grids, whose lat-
tice constants are separated by [sqrt(1.7)] or other ratios, or between 
grids containing local lattice modulations called discommensurations. 

These relationships persist in single neuron spatial rate maps due to 
faithful path integration and are unaffected by perturbations to model 
parameters. We speculate on how excitatory connections between 
attractor networks can be realized by the known architecture of the 
mEC and suggest analyses and experiments that test our model.
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Obtaining recordings from individual cells during behaviour is tech-
nically challenging, especially for the diverse interneuron subtypes 
that tend to be smaller, less accessible, and less identifiable relative to 
excitatory cells. As such, it is difficult to determine inhibitory cell con-
tributions but it is clear that consideration of interneuron subtypes is 
critical to understanding brain function and behavior [3]. To address 
this, we use computational approaches. We focus on the hippocampal 
CA1 interneuron specific 3 (IS3) cell, a cell type that has not yet been 
recorded from in vivo. Notably, though IS3 cells represent a small 
fraction of interneurons in CA1 hippocampus, they possess unique 
circuitry properties in that they only inhibit other inhibitory neurons, 
such as Oriens Lacunosum Moleculare (OLM) interneurons. In vitro, 
photo-activation of IS3 cells at theta frequencies has been shown to 
elicit theta-timed spiking in OLM cells [4]. To explore the potential 
contributions of IS3 cells during in vivo contexts, we use multi-com-
partment IS3 cell models to generate predictions of input populations 
that could either enhance or dampen IS3 cell activities during behav-
ior. We have developed data-driven multi-compartment models of IS3 
cells with active dendritic properties [1], determined realistic synaptic 
parameters along the dendritic morphology of the models [2], and 
estimated numbers of active synapses and presynaptic spike rates 
to generate in vivo-like states for IS3 cell models. Here, we consider 
context-dependent recruitment of IS3 cells during simulated states of 
theta rhythms and sharp-wave associated ripples (SWRs). During these 
states, we use our models to predict the contributions of different pre-
synaptic inhibitory and excitatory input populations.
Our results show that excitatory theta-timed inputs from CA3 and 
entorhinal cortex can modulate the timing of IS3 cell spiking during 
theta rhythms. Moreover, depending on their relative contributions, 
the timing of the IS3 cell model’s spiking can occur anywhere between 
the rising phase and peak of the theta cycle. As well, we show that 
inhibitory inputs can dampen spike recruitment of IS3 cells regard-
less of phase, though less so for inhibitory inputs that are the most 
antiphase relative to excitatory inputs. For our simulated SWR context, 
we show that transiently bursting CA3 inputs alone are sufficient to 
recruit the IS3 cell model to spike. We also show that the presence of 
feedforward inhibition on the proximal dendrites of the model can 
sufficiently dampen IS3 cell spiking during a SWR context. In summary, 
we have simulated in vivo-like contexts where IS3 cell spike recruit-
ment can be either enhanced or dampened. Our results highlight pos-
sible IS3 cell spiking scenarios and thus their potential contributions to 
brain function and behavior.
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Fig. 1 Grid cells with smoothly distributed scales self‑organize into 
discrete modules when excitatory connections along the medial 
entorhinal cortex (mEC) are added. Adjacent modules have fixed 
scale ratios and orientation differences due to robust geometric 
relationships between commensurate triangular lattices
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A first-draft detailed simulation of a piece of the rat neocortex has 
recently been reported by an international collaboration [1]. This work 
integrated the current state of experimental knowledge on the detailed 
3D anatomy and physiology of the various neuron types, and their syn-
aptic properties and connectivity, and was shown to reproduce findings 
from a range of in vivo experiments reported in the literature without 
parameter tuning. On the other hand, for large-scale network simula-
tions, point-neuron models are typically used for describing and analyz-
ing network dynamics and functions. The properties and connectivity 
structure of point neuron models generally are not constrained by bio-
logical data and thus use ad hoc simplifying assumptions. This makes 
some of the mathematically tractable models somewhat disconnected 
from experimental neuroscience. To bridge the gap between these two 
extremes (the detailed and the oversimplified), we aimed to derive point-
neuron network models from data-driven detailed network models in 
an automated, repeatable and quantitatively verifiable manner. The 
simplification occurs in a modular workflow, in an in vivo-like state. First, 
synapses are displaced from dendrites to the soma while correcting for 
dendritic filtering using low-pass filters for the synaptic current numeri-
cally calibrated for each dendritic compartment. Next, point-neuron 
models for each neuron in the microcircuit are fitted to their respective 
morphologically detailed counterparts. Here, generalized integrate-and-
fire point neuron models are used, leveraging a recently published fitting 
toolbox [2]. The fits are constrained by currents and voltages computed 
in the morphologically detailed reference neurons with soma-displaced 
synapses, as described above. Benchmarking the simplified network 
model to the detailed microcircuit model for a range of simulated in vivo 
and in vitro protocols, we found good agreement for both quantita-
tive and qualitative aspects. Our automated approach not only makes 
it possible to continuously update the simplified circuit as the detailed 
network integrates new data, but the modularity of the simplification 
process also makes it applicable to other point neuron and synapse 
models, network models, and simulators. In addition to providing an 
extensive assessment of validity for carefully reduced point neuron net-
work models, our approach is fundamentally important and informative, 
in particular in cases when network functionalities are lost during the 
simplification pipeline. By taking the simplification further to evaluate 
common simplifying assumptions, we further illustrate the contributions 
of specific synaptic and cellular dynamics to the overall response of the 
detailed network, revealing limitations for several common approaches.
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Numerous experiments have been conducted in the past in order 
to monitor the complex interactions that drive activity-dependent 
long-term plasticity of synapses. Spike timing, firing rate and synap-
tic location have been found to be important factors that dynami-
cally contribute to the outcomes of plasticity induction protocols. 
While several theoretical models that implement plasticity rules 
already exist, they have not yet been used in depth to study plasticity 
in neuron models with detailed morphology. Here, we extend previ-
ous phenomenological voltage-based plasticity rules by developing 
a new framework based on three signaling pathways. We apply it to 
a L5 pyramidal cell model with active dendritic properties and real-
istic propagation of voltage. We show that our novel rule not only 
reconciles outcomes of several experiments but also predicts spati-
otemporal patterns of plasticity that are characteristic for individual 
stimulation protocols and their impact on local processes at the syn-
apse, including protocols inducing local plasticity in tuft dendrites. 
Due to this focus on local voltage signals, our framework can explain 
synaptic plasticity in the absence of postsynaptic action potentials, as 
suggested in recent studies. We thereby link experimental results that 
would intuitively seem to require entirely different rules, showing that 
a unifying rule might explain the vast majority of experiments in corti-
cal pyramidal cells if key biophysical pathways are taken into account. 
Ultimately, we can now study how the cell-type specific electrotonic 
properties can explain differences in emerging plasticity by incorpo-
rating our plasticity rule in a variety of existing detailed compartmen-
tal models such as models of hippocampal pyramidal or granule cells. 
To summarize, a simple plasticity rule that utilizes pre- and postsyn-
aptic plasticity pathways can explain experimental results with a large 
variety of induction protocols when the plasticity rule is incorporated 
in the compartmentalized structure of a detailed dendritic model.
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Closed-loop interactions with the nervous system are a powerful 
approach to characterize neural dynamics and control network func-
tions [1, 2]. In particular, neuron models can interact with living neu-
rons in hybrid circuits once proper adaptation is achieved in both 
directions [3, 4]. Such adaptations are not easy to accomplish in a 
manual trial-and-error process, and are better determined with closed-
loop protocols based on real-time event detection [5] and well-defined 
interaction goals and performance measurements. This work presents a 
set of algorithms for the assisted construction of hybrid circuits. These 
algorithms have been implemented in RTHybrid, an open-source 
cross-platform real-time model library [6]. Our real-time algorithms for 
assisted construction of hybrid circuits are based in a general closed-
loop paradigm designed to be modular and effective. The algorithms 
perform as a function of their online measured input parameters the 
following tasks: (1) temporal and amplitude scaling, (2) drift compen-
sation, (3) synaptic tuning/calibration, (4) model turning/calibration, 
(5) automatic activity control, (6) automatic mapping of the dynamics. 
The temporal and amplitude scales are evaluated and matched online 
to create compatible working regimes between the model and liv-
ing neurons [4]. All protocols use three steps: event detection, activity 
and connection characterization and target performance evaluation. 
The events detected online include: spikes, bursts, hyperpolarization 
intervals, voltage ranges, temporal structures, phases, etc. The interac-
tion characterization measures include event timings, instantaneous 
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periods, synchronization levels, target phases, and working/dynamic 
range assessments. When the interaction goal is not fulfilled, the target 
evaluator algorithm changes in an informed and automatic manner the 
parameters of the hybrid circuit. Our algorithms have been validated in 
a hybrid circuit to study the presence of dynamical invariants in CPGs. 
In conclusion, hybrid circuits require experiment-specific adaptations 
to work properly, and the parameters of the implementation must be 
evaluated dynamically on each preparation and even adapted during 
the same experiment. These algorithms can also be used to automati-
cally map the parameter space to achieve a given goal, and in general 
to control/explore/unveil bifurcations and circuit dynamics.
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We do not yet know how the very first nervous systems and their con-
stituting neurons evolved within the animal kingdom. One important 
difficulty comes from the lack of examples of intermediate neuronal 
stages within currently existing animals. Such examples would bridge 
the gap between non-neuronal and neuronal configurations. How-
ever, on the one hand there are basic animals like sponges and placo-
zoa who do not have neurons or a nervous system. On the other hand, 
even the most basic forms of animals with nervous systems, such as 
jellyfish (cnidarians) and comb-jellies (ctenophores) already exhibit a 
nervous system built from complete neurons. So far it is unknown how 
the three fundamental ingredients of modern neurons—electrical 
signaling, synapses, and neuronal elongations—came together in the 
first neurons and why this happened. Compared to modern animals, 
very little is known about the earliest possessors of nervous systems. 
Essentially modern nervous systems complete with eyes and a central 
nerve cord are known from the beginning of the Cambrian period, so 
the very origin of nervous systems must predate that period. However, 
Precambrian animal fossils are enigmatic and difficult to interpret, pro-
viding insufficient information about the behavioural and neuronal 
makeup of these organisms. Molecular phylogenetic studies do pro-
vide important clues concerning the cellular building blocks present 
to these animals but do not allow a clear view of the organization of 
the animals living in these times. Computational neuroscience pro-
vides an important additional instrument to enhance our understand-
ing of the neuronal and behavioural mechanisms that were potentially 
present in very early animals. Modelling very basic animal configura-
tions, using primitive features such as cell-to-cell signalling that can be 
assumed to have been present at this stage, provides a way to assess 
the behavioural capacities of such configurations. Such modelling also 

allows a step by step investigation of potential evolutionary sequences 
of various proto-neuronal features and the behavioural effects they 
induce. All in all, these models provide rigorous thought experiments 
that enable a systematic investigation of various (proto-)neuronal fea-
tures on coordination in a simple body (Fig. 1).
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On its main web page, the Organization for Computational Neurosci-
ence (OCNS) defines Computational Neuroscience as “the study of brain 
function in terms of the information processing properties of the struc-
tures that make up the (sic) nervous system”. As nervous systems ARE 
information processing structures, this definition begs the question 
how the field of Computational Neuroscience distinguishes itself from 
neuroscience as a whole? The definition of Computational Neurosci-
ence provided by OCNS makes an effort to addresses this conundrum 
by further defining CNS as “an interdisciplinary science that links the 
diverse fields of neuroscience, cognitive science and psychology with 
electrical engineering, computer science, mathematics and physics.” 

Fig. 1 Various degrees of emergent coordination on a larger (32 cells 
in circumference, 128 in length) worm‑shaped body. Four different 
experiments, showing 8 frames each: A, lacking elongations; B, 10% of 
cells exhibiting elongations; C, same as B, but no nearest‑neighbour 
connections between cells lacking elongations; D, same as B, but 
with very low transmission speed
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In this presentation, I will propose that THE key concept underlying 
Computational Neuroscience is, in fact, the question of ‘linkage’. More 
specifically, I will propose that ‘linkage’ should not be an abstract ideal, 
but instead, specifically requires the development of computation tools 
and devices as well as an attitude towards science that supports the 
development of “community models’ defined as actual mathematical 
models shared and developed collaboratively across the community of 
those interested in a particular neuronal feature or component. While 
one can argue that standards for academic advancement and the cur-
rent publication process favor isolated models developed by individual 
research groups which therefore, continue to dominate computational 
neuroscience, I will suggest that only shared community models can 
truly support scientific communication, coordination and collaboration. 
Further, of necessity, to be effective I will assert that these community 
models must be ‘realistic’, reflecting the actual physical and physiologi-
cal structure of the components of the nervous systems being studied. 
Not only do community models of this type provide a basis for real col-
laboration, they also, in effect, represent the current state of our under-
standing of neuronal structure/function relationships mathematically. 
In this presentation, these assertions will be considered with respect 
to the development over the last 40 years of a model of the cerebel-
lar Purkinje cell as one of the first computational models used across 
multiple laboratories as well as the historical context provided by the 
emergence of ‘realistic’ community models in Physics in the 16th cen-
tury (Fig. 1). In a companion submission, I will consider, with several of 
my long-term colleagues, how the development of shared simulation 
platforms when combined with a new approach to scientific publica-
tion can drive the development and use of community models.
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Many types of measurements of brain signals rely on the generation of 
images of brain tissue. For example, magnetic resonance imaging (MRI) 
measurements can non-invasively image brain tissue in vivo at millime-
ter resolution. One of the strengths of MRI is that it uses many different 
kinds of pulse sequences to generate images that emphasize different 
contrasts between parts of the brain that have different physical and 
physiological properties, leading to a wealth of different applications in 
scientific research and in clinical practice. But while different brain MRI 
contrasts represent different tissue properties and are sensitive to dif-
ferent artifacts, the relationship between different contrasts is complex 
and nonlinear. We developed a deep fully convolutional artificial neu-
ral network that learns the mapping between different MRI contrasts 
(Fig. 1). Using a publicly available dataset, we demonstrate that this 
algorithm accurately transforms between T1- and T2-weighted images, 
proton density images, time-of-flight angiograms, and diffusion MRI 
images. We demonstrate that these transformed images can be used to 
improve spatial registration between MR images of different contrasts.
The successful transformation between image types also suggests that 

Fig. 1 The first poster created for the CNS meeting, intended to 
represent the initial somewhat disorganized state of the field

Fig. 1 MRI2MRI learns the mapping between different imaging con‑
trasts. (A) Synthesis of PD from T1w: a horizontal slice in one individ‑
ual brain not shown to the algorithm during training, demonstrating 
that the algorithm generalizes outside of the training set. Left: input 
T1w; center: ground truth PD; right: synthesized PD. (B) Synthesis of 
T2w from T1w: input T1w (left), ground truth T2w (center) and synthe‑
sized T2w (right). (C) A many‑to‑one mapping: combination of T1w, 
T2w and PD used to synthesize MRA of an individual brain not used 
during training. The maximum intensity projection along the axial 
dimension for ground truth (left) and synthesized MRA (right)
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the physical and physiological relationships between brain tissue prop-
erties indexed by the different contrasts could be elucidated in future 
work.
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Since the enormous breakthroughs in machine learning over the 
last decade, functional neural network models are of growing inter-
est for many researchers in the field of computational neuroscience. 
One major branch of research is concerned with biologically plausible 
implementations of reinforcement learning, with a variety of different 
models developed over the recent years. However, most studies in 
this area are conducted with custom simulation scripts and manually 
implemented tasks. This makes it hard for other researchers to repro-
duce and build upon previous work and nearly impossible to compare 
the performance of different learning architectures.
In this work, we present a novel approach to solve this problem, con-
necting benchmark tools from the field of machine learning and 
state-of-the-art neural network simulators from computational neu-
roscience. This toolchain enables researchers in both fields to make 
use of well-tested high-performance simulation software support-
ing biologically plausible neuron, synapse and network models and 
allows them to evaluate and compare their approach on the basis of 
a curated set of standardized environments of varying complexity. 
We demonstrate the functionality of the toolchain by implementing 
a neuronal actor-critic architecture for reinforcement learning in the 
NEST simulator [1], successfully training it on two different environ-
ments from the OpenAI Gym [2] and comparing its performance to a 
previously known model of reinforcement learning in the basal ban-
glia [3] and a standard Q-learning algorithm [4].
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Any modeler who has attempted to reproduce a spiking neural net-
work model from its description in a paper has discovered what a 
painful endeavor this is. Even when all parameters appear to have 
been specified, which is rare, typically the initial attempt to reproduce 
the network does not yield results that are recognizably akin to those 
in the original publication. Causes include inaccurately reported or 
hidden parameters (e.g. wrong unit or the existence of an initializa-
tion distribution), differences in implementation of model dynamics, 
and ambiguities in the text description of the network experiment. 
The very fact that adequate reproduction often cannot be achieved 
until a series of such causes have been tracked down and resolved is 
in itself disconcerting, as it reveals unreported model dependencies 
on specific implementation choices that either were not clear to the 
original authors, or that they chose not to disclose. In either case, such 
dependencies diminish the credibility of the model’s claims about the 
behavior of the target system. To demonstrate these issues, we pro-
vide a worked example of reproducing a seminal study [1] for which, 
unusually, source code was provided at time of publication. Despite 
this seemingly optimal starting position, reproducing the results was 
time consuming and frustrating. From this process, we derive a guide-
line of best practices that would substantially reduce the investment 
in reproducing such a study. We propose that these guidelines can be 
used by authors and reviewers to assess and improve the reproducibil-
ity of future network models.
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Deep brain stimulation (DBS) of the subthalamic nucleus (STN) can 
suppress pathological oscillations and alleviate motor deficits in Par-
kinson’s disease. The efficacy and the extent of side effects of DBS 
depend critically on the positioning of the stimulation electrode. In 
particular, with the increased use of directional DBS, it is becoming 
increasingly difficult to find optimal stimulation parameters. A major 
challenge during the positioning of DBS electrodes is the detection 
of hotspots associated with the generation of pathological coherent 
activity. Here, we develop and test a method for localizing confined 
regions of coherent activity based on the local field potential (LFP) 
recorded with multi-contact electrodes. Our approach involves two 
steps, the identification of coherent sources by independent-compo-
nent analysis of the multi-channel recordings in Fourier space, and the 
localization of identified sources by means of current-source-density 
analysis. We benchmark this technique for a range of source sizes and 
source-electrode distances based on synthetic ground-truth data 
generated by a simple LFP model. In this context, sources of coher-
ent activity can be reliably localized even if the source center is not 
contained in the volume covered by the electrode grid. The proposed 
method permits a continuous tracking of source positions, and may 
therefore provide a tool to study the spatio-temporal organization of 
pathological activity in STN. Moreover, it could serve as an intra-opera-
tive guide for the positioning of DBS electrodes, and thereby improve 
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and speed up both the implantation process and the adjustment of 
stimulus parameters.
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The classical firing rate model of basal ganglia suggests that the “Go” 
pathway facilitates a movement, whereas the “No-go” pathway sup-
presses a movement. Strong evidence for this hypothesis was pro-
vided by the demonstration that selective optogenetic stimulation of 
D1-MSNs in mice leads to increased ambulation, whereas optogenetic 
stimulation of D2-MSNs leads to freezing [1]. However, it has also been 
shown that D1- and D2-MSNs co-activate in freely moving mice dur-
ing action initiation [2], which suggests a co-operative rather than an 
antagonistic role for these pathways. In order to systematically investi-
gate the individual and interactive roles of D1- and D2-MSNs in action 
selection, it is necessary to be able to both record D1- and D2-MSNs 
in the same animal, and selectively record and manipulate the action 
encoding neurons. Because this is beyond present experimental tech-
niques, we investigate this issue with the help of a hybrid spiking neu-
ronal network/virtual robot model. The advantage of this approach 
is that D1- and D2-MSNs can be observed/manipulated on the single 
channel and population levels whilst the effect of these manipulations 
can be observed as the trajectories of the robot, thereby bridging the 
gap between striatal recordings and behavioral expression. We first 
demonstrate that our model can reproduce the main features of sev-
eral key motor studies employing optogenetic manipulation, such as 
freezing, increased ambulation [1] and ipsilateral turning [3]. We then 
test the hypothesis that D1- and D2- MSNs are competitive within a 
channel but cooperative on a population level. Our results show that 
in opposition to our original hypothesis, D1- and D2-MSNs co-operate 
within a channel and compete between channels. In this co-operative 
tandem, D1-MSNs drive the action execution while D2-MSNs suppress 
the competing actions. Although the co-operation between D1- and 
D2-MSNs within a channel is facilitated by distance dependent con-
nectivity, an external stimulation to both populations is required 
in order to exhibit a concurrent activation on population level as 
observed in experiments [2]. We also show that D2-D2 connectivity 
is crucial for the competition between the channels. Furthermore, we 
show that individual pairs of D1- and D2-MSNs compete or co-operate 
depending on the distance between their originating channels and 
stimulation paradigms.
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Spike train recovery from fluorescent calcium imaging presents mul-
tiple challenges, including contamination of the signals, parameter 
tuning, and nonlinear dynamics occurring on different time scales. 
We present an unsupervised algorithm for spike deconvolution with 
an emphasis on minimizing parameter tuning and pre-estimation. Our 
optimization problem (Fig. 1A) minimizes the number of spike times, 
also known as the zero-norm. This results in a hard-thresholding that 
helps to debias autoregressive (AR) coefficients from the constrain-
ing of the residual errors of the fluorescent signal. Three constraints 
are enforced to retain biological relevance: (1) spikes must be non-
negative, (2) residual error between calcium levels and measured 
fluorescence must be less than a noise level which can be estimated 
directly from the data, and (3) the calcium signaling follows an order 
p AR model [1]. Rather than fix the AR coefficients to obtain a convex 
program, we optimize them, the calcium levels, and neural activity 
simultaneously, yielding a nonconvex problem. In each step of the 
algorithm, first we project out AR coefficients from the nonconvex 
portion of the objective to obtain a closed form update. Then, using 
these updated AR coefficients, a step is taken in the direction of the 
negative proximal gradient. We benchmark the algorithm on both 
simulated (Fig. 1B) and real data. Current methods for nonlinear 
deconvolution require sequential processing, performing separate 
steps to obtain AR parameters and neural activity. For example, some 
methods use Markov chain Monte Carlo methods to initialize, and 
impose strong assumptions, such as that spiking follows a Poisson 
process. Our approach requires fewer assumptions about the data and 
its structure, and is robust to initialization. We simultaneously solve 
for the AR coefficients, calcium levels, and the neural spiking activity. 
Our ongoing work is focused on inferring a decaying fluorescence or 
calcium baseline. Rather than assuming a fixed baseline, we propose a 
smoothly varying model that can account for a decaying baseline, and 
also incorporate this into the overall inverse problem. This approach 
can be used to predict a nonlinear decrease in baseline fluorescence 
intensity that occurs over the course of imaging, such as that due to 
photobleaching. The dynamic background model can also be used 
to better resolve calcium dynamics that occur on slower time scales. 
In summary, we present a spike deconvolution algorithm for calcium 
imaging that limits parameter tuning, requires minimal estimation of 
parameters beforehand, and is not sensitive to initial values for accu-
rate recovery of spikes. Further, we require fewer assumptions about 
the underlying processes behind the neural activity and less informa-
tion about the structure of the data.

Fig. 1 The top panel gives the simulated, true, and computed 
fluorescence traces. The bottom panel shows the true and computed 
spikes. We recover all spikes, with few false positives
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Principal component analysis (PCA) is a fundamental data decomposi-
tion technique which is used to reduce the dimensionality of the data 
and understand the underlying structure in it. In the presence of an 
additional structure or features (e.g. sparse outliers), it is beneficial to 
use a structured decomposition method to analyze the data. A key 
example is robust PCA (RPCA), which separates the data into low-
dimensional and sparse components; a famous use case is the back-
ground/foreground separation to separate moving objects from their 
surroundings.
We apply RPCA to analyze the data of mouse brain activity provided 
by the Allen Institute for Brain Science. The data is in the form of vid-
eos recorded using wide-field imaging of the calcium activity in the 
cortex dorsal surface. The purpose of our work is to separate the cal-
cium activity generated by the spiking rate from the background activ-
ity. As an additional result, we develop a framework which allows to 
automatically mask the video following the contour of the brain and 
eliminate the blood vessels, tissue, and background from the data. This 
reduces noise caused by the blood vessel activity, reflections from the 
tissue and the skull as well as mouse movements and other limitations 
of the experimental setup and thus gives an efficient way to preproc-
ess the data to improve the quality of analysis with other methods. We 
use an exact RPCA formulation, which decomposes the data D (a cer-
tain matricization of the original video downsampled in time) into a 
low-rank component LR (L and R are low-rank matrices) and a set of 
sparse residuals D-LR by solving the matrix factorization problem cor-
responding to the exact RPCA. Our objective function is the sum of 
the absolute values of the elements of the residual. The input videos 
contain an hour of the recordings from the experiment with 100 Hz 
frequency and 64 × 64 frames; that is, our input data is of the shape 
360000 × 64 × 64. Thus, we obtain a large-scale structured nonsmooth 
nonconvex optimization problem. Using a novel relaxation approach, 
we propose an iterative algorithm based on partial minimization to 
solve this problem. Our algorithm uses only SVD and thresholding 
steps, and therefore can be readily implemented by analysts who 
already use PCA to analyze large-scale data. We reconstruct a video 
from the output of the algorithm to visualize the results. The results, 
shown in Fig. 1, separate the physical brain structure (contours and 
vessels) in the center panel of Fig. 1 from a sparse signal distributed 
throughout the brain (shown using binary thresholding in the right 
panel of Fig. 1). Our ongoing work seeks to characterize whether and 
how this signal carries the underlying spiking activity.
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While the electrotonic properties of biophysically realistic neuronal 
models are most often probed with current injections in the soma or 
single synaptic inputs this is far from being a natural stimulus for real 
neurons. In this project we use analytical methods based on cable the-
ory in combination with detailed passive and active compartmental 
modelling to study the responses of neurons to randomly occurring syn-
aptic inputs in time and dendritic location. We find that under these uni-
form conditions dendrites behave very similarly to point neurons. The 
voltage responses throughout the dendritic tree average out to a con-
stant voltage level similar to a bucket that is filled by multiple faucets. 
Analytically, the voltage integral over the total dendritic length is the 
same regardless of the location of synaptic inputs. In passive numerical 
simulations the individual voltage profiles then average out. The local 
voltage throughout the dendrite would in principle allow decoding of 
the percentage of synapses active at any given time, which could be 
very important for synaptic plasticity rules that correlate synaptic activ-
ity with the overall activity in the cell. In simple active somatic spiking 
models voltages are transformed into number of spikes in a manner that 
further allows decoding of the percentage of active synapses from the 
current firing rate of a neuron. Overall, while well distributed random 
synaptic events are also probably not a natural input to the neuron, our 
calculations serve as a reference point for comparison of the behaviour 
of neurons in more realistic biophysical neural network models.
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Although efficient prediction is essential to survival, little is known 
about what mechanisms allow predictions to be instantiated in neural 
systems. It has recently been shown that optimal encoding of predic-
tive information is at work in the early visual system of vertebrates [5], 
but it remains open whether and how this theory generalizes to other 
systems. Specifically, can predictive information serve as a candidate 
principle to understand neuronal circuit organization, relating structure 
to function [1]? Here, we show that the encoding of predictive informa-
tion indeed sheds light on the role of some specific features of neural 
circuits. We explore how this principle governs circuit organization in 
both the fly visual system and in mammalian cortex, using biophysi-
cally realistic reconstructions of these networks. First, we compute the 
maximal amount of predictive information guiding evasive maneuvers 
[2] that the fly motion discrimination system can encode. By compar-
ing this encoded predictive information with the theoretical optimum 
obtained via an information bottleneck (IB) calculation, we show that 
the optimal encoding of the predictive information: (1) is present in the 
fly vertical motion sensitive system (Vertical Sensitive (VS) cells), and 
(2) is dependent on the presence of strong gap junction connections 
between VS cells (Fig. 1). Gap junctions (GJ) in this circuit are strikingly 
strong (3–4 orders of magnitude stronger than those in cortex) and 
support efficient prediction by passing information between triplets 
of VS cells without the delays incurred by chemical synapses. More 
intriguingly, we further show that the presence of these GJs helps the 

Fig. 1 The original snapshots (left) are decomposed into low rank 
LR (center) and residual D‑LR (right). Residuals correspond to brain 
activity at a particular time moment, shown using a binary image to 
highlight the structure
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downstream readout scheme by preferentially encoding predictive 
features that are informative about the long-range future stimulus, 
thereby enabling successful, brief evasive maneuvers (no more than 
40 ms from start to finish). Secondly, we test the idea that efficient pre-
diction is also an organizing principle in cortex. Here, we evaluate how 
prediction is encoded by exploring how single neurons allocate their 
firing variability to encode prediction error in different layers of the 
blue brain column: a dense computer-generated neocortical network 
of ~ 0.3 mm3 composed of ~ 31,000 cells and ~ 36 million synapses [3]. 
Prediction error, i.e., the expected uncertainty of encoding the future 
stimulus given the past, was shown to account for up to 50% of neu-
ronal response variability in auditory cortex [4]. With this detailed 
model circuit, we show that prediction errors can indeed account for 
firing rate variability of a substantial fraction of pyramidal neurons. We 
further show that it most strongly correlates with the firing variability 
of pyramidal neurons in layers 4 and 5, suggesting that signals sent 
to subcortical areas, such as basal ganglia circuits, may preferentially 
represent predictive information about the stimulus. This supports the 
notion that cortical prediction is used to generate reward signals and 
guide learning. Therefore, our results demonstrate that the efficient 
coding of predictive information may be a general design principle in a 
wide variety of neural systems, constraining circuit connectivity in areas 
downstream of the sensory periphery.
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The incremental trial-by-trial refinement of behavior can be captured 
by reinforcement learning [1] models which map stimuli to actions 
using reward prediction errors (RPEs). Most tasks assessing the neu-
ral underpinnings of RL have used clearly discriminable and unam-
biguous cues, leaving open the question of how the brain copes 
with perceptual uncertainty when learning by trial and error. The 
subjective sense of certainty, or confidence, that accompanies per-
ceptual decisions can substitute for RPEs in the absence of external 
feedback [2] and affect neural activity in canonical RL circuits [3]. In 
the current study, we trained rats to discriminate between horizon-
tally (H)- and vertically (V)-oriented visual stimuli (sinusoidal gratings) 
either embedded in noise or compounded with orthogonal gratings. 
Animals indicated their decision based on a stimulus–response rule: 
H → left and V → right. Following discrimination, ratsexpressed their 
confidence by time wagering [4]: they could wait a self-timed delay in 
anticipation of reward or initiate a new trial. In general, rats’ expressed 
confidence increased with accuracy and was higher for correct than 
error choices. Yet confidence computations overly relied on percep-
tual information congruent with the decision (i.e., rats waited longer 
when the contrast of the grating favoring the choice increased, even 
in the absence of performance increases), while decisions themselves 
weighed congruent and incongruent evidence equally, consistent 
with previous studies in primates [5.6]. This allowed us to identify two 
stimulus conditions for each animal that produced matched decision 
accuracy and reinforcement history, but different subjective con-
fidence levels. Rats were then randomly assigned to a low- (LC) or 
high-confidence (HC) group and performed a reversal learning task, 
which required remapping of the stimulus–response contingency for 
the LC or HC stimuli, respectively. The key finding is that subjective 
certainty potentiated learning: reversal learning was faster in the HC 
group. Motivated by recent work implicating the rat anterior cingulate 
cortex (ACC) and basolateral amygdala (BLA) in learning under uncer-
tainty [7], we chemogenetically silenced projection neurons in these 
regions. Inhibition of the ACC decreased metacognitive sensitivity (i.e., 
the trial-by-trial correspondence between accuracy and confidence; 
[8], rendering confidence reports invariant to the strength of the evi-
dence and thereby attenuating the benefit of certainty on learning. In 
contrast, BLA silencing slowed reversal learning, but left confidence 
reports intact. Finally, we extended the standard RL model to allow 
confidence to directly influence value updating. Fitting this model to 
rat behavior revealed that only BLA inhibition decreased the learn-
ing rate. Conversely, ACC inhibition attenuated the impact of confi-
dence on value computations and decreased the inverse temperature 
parameter in the decision rule that maps action values to choice prob-
abilities, indicating a decreased reliance on the learned information. 
Thus, the ACC may aid in estimating the reliability of perceptual and 
value information to guide action selection, whereas the BLA appears 
to play a more general role in potentiating learning when environ-
mental conditions significantly change.
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A growing body of evidence shows that many organisms commonly 
exhibit Lévy flights (LFs) during their search behavior. For example, tra-
jectories of T cells [1], fruit flies [2], wandering albatrosses [4], human 
saccades [3], and free word association involve power- law distribu-
tions of displacement steps, summarizing frequent nearby explora-
tions and infrequent jumps to distant locations. Although there are 
multiple putative explanations as to why LFs might emerge from case 
specific search constraints, a general theory explaining this behavior 
is lacking. We show that Newton’s optimization method with noisy 
measurements generically leads to heavy tails of the step-size distribu-
tion. The resulting stochastic process is a LF with the tail index α = 1. 
Additionally, the magnitude of large jumps in our model strongly 
depends on the local curvature of the optimized function, with rarer 
jumps close to targets. This suggests that noisy Newton’s optimization 
method may be an efficient way of combining global random explora-
tion with lo- cally optimal exploitation. We thus examine the circum-
stances under which the heavy-tailed steps can be advantageous for 
the search. Since search patterns of many organisms resemble those 
of LFs, our results suggest that they may be employing second order 
derivatives. We further discuss implications of our results for models 
of learning. Plasticity rules are often derived assuming the steepest 
descent method. We argue that even approximate and very noisy sec-
ond order optimization should be more efficient.
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In this study, we investigate a multiscale model of inter-glomerular 
connectivity of the mouse olfactory bulb. Each node in the network 
represents a glomerulus comprised of many neurons. We specify 
probabilistic wiring rules for outgoing connections of individual cells, 
based on tracing data, and study the emergent properties of the 
resulting network of nodes. An important parameter in the wiring 
rules, unknown from experiments, is connection selectivity. It is deter-
mined by the size of each node’s “target set”—the set of nodes where 
all outgoing connections must land. We investigate graph theoretic 
properties of these networks such as weighted degree distributions, 
clustering coefficients, centrality etc. We find that these properties 

differ significantly from well-studied network models (random, small-
world, scale-free, etc.). Finally, we add minimal but biologically realis-
tic nonlinear firing rate dynamics to the networks to study the effect 
of network structure on the processing of sensory data. Using both 
experimentally-derived and artificial stimuli, we find that in these net-
works, regardless of connection selectivity, lateral inhibition mediates 
the sparsening of neural code and the decorrelation of representa-
tions of similar stimuli.
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A central feature of many oscillatory networks is their ability to dis-
play phase-locked solutions where the constituent elements fall into 
a well defined pattern in which the phase difference between pairs of 
oscillators can be determined. The period of the locked network often 
depends on a combination of intrinsic and synaptic properties. Many 
such networks contain an identifiable pacemaker. In these cases, the 
phase-locking of the other network elements is often referred to as 
entrainment because the period of the pacemaker determines the 
overall network period. In this poster, we consider entrainment that 
arises in circadian systems. Such networks are subject to an exter-
nal, pacemaking 24 h light–dark drive in which the intensity and 
total hours of light within the 24 h cycle are important parameters. 
The large amplitude, long-lasting light input necessitates a different 
approach to considering phase locking than in networks that primar-
ily are connected throughout weaker, shorter-lasting synaptic inputs. 
We recently developed a new computational tool, a 1-dim entrain-
ment map, to assess whether and at what phase a circadian oscil-
lator entrains to periodic light–dark (LD) forcing. We have applied 
the map to a variety of circadian oscillators ranging from the Novak-
Tyson model for protein-mRNA interactions to the Kronauer model 
of the human circadian rhythm. The mapF (x)is defined by choosing 
a Poincare section in the phase space of the oscillator through which 
a trajectory is known to pass. We choose a photoperiod that dictates 
how many hours of light to subject the oscillator to within a 24-hour 
cycle. Beginning with a trajectory lying on the Poincare section and 
lettingxdenote the number of hours of light that have occurred since 
the lights last turned on, we evolve a trajectory from the Poincare 
section until it returns back to the section. The mapF (x)measures 
the new number of hours of light that have occurred since the most 
recent onset of the lights. We show that the 1-dim mapF (x)has several 
properties including that it is piecewise increasing, has at most one 
discontinuity and is periodic, F (0)= F (24). A stable fixed fixed point 
of the map corresponds to a stable LD-entrained periodic solution of 
the circadian oscillator to the 24 h period. Using the entrainment map, 
we systematically investigate how various intrinsic properties of the 
circadian oscillator interact with properties of the LD forcing to pro-
duce stable circadian rhythms. For example, we show that when the 
endogenous period of an oscillator is too fast or two slow, the map 
undergoes a saddle-node bifurcation destroying the stable fixed point 
and entrainment is lost. In this poster, we focus on how to use the map 
to study the reentrainment process due to jet lag after long-distance 
travel. We show that the east–west asymmetry of jet lag depends on 
the direction and length of travel, the photoperiod and an individual’s 
endogenous clock; see Fig. 1. Further, we show that individuals can 
experience jet lag after purely north–south travel due to changes in 
the photoperiod between departure and arrival cities. A goal of our 
work is to use the entrainment map on models of the suprachiasmatic 
nucleus in relation to circadian regulation of sleep–wake cycling. The 
mathematical and computational methods used to study these prob-
lems should be of wide interest to members of the CNS community.
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In healthy humans, lung ventilation is tightly controlled to maintain 
physiological levels of CO2. During restful breathing, exhalation is 
largely passive; the lungs deflate as the diaphragm relaxes. In exer-
cise, hypoxia or hypercapnia, active exhalation is engaged to increase 
lung ventilation; the abdominal and thoracic muscles contract during 
the final half of exhalation. This activity is quantifiable in vivo via the 
abdominal nerve (AbN). Active exhalation is thought to originate from 
late-expiratory (late-E) neurons located within the parafacial respira-
tory group (pFRG). However, the mechanisms by which this expiratory 
oscillator is recruited and interacts with the respiratory central pattern 
generator (CPG) are not fully understood. It has been proposed that 
active exhalation emerges during hypercapnia when late-E neurons 
receive excitatory drive from putative central chemoreceptors in the 
retrotrapezoid nucleus (RTN), overcoming inhibition from the respira-
tory CPG. The Kölliker-Fuse (KF) is thought to modulate the strength 
of inhibitory inputs from the respiratory CPG to late-E neurons. Both 
RTN and KF receive inputs from 5-HT neurons located in the medullary 
raphe, some of which are chemosensitive. Systemic administration of 
5-HT1Areceptor (5-HT1AR) antagonist promoted irregular breathing 
and apneas in rodents. This effect was recapitulated by focal applica-
tion of antagonist into the KF. Conversely, systemic administration of 
5-HT1AR agonists ameliorated breathing irregularity and apneas in 
C57BL/6 and Mecp2 deficient mice, and focal administration into the 
KF corrected apneas in the latter. Since deficits of inhibitory input to 
the KF were shown to contribute to apneas in Mecp2 deficient mice, 
we propose that 5-HT1AR agonists inhibit KF and CPG neuron sub-
populations that provide inhibitory drive to late-E neurons, disin-
hibiting the latter. Here, we combined experimental approach with 
computational simulations of the respiratory CPG to test hypotheses 
that 5-HT1AR activation promotes active exhalation in the absence of 
lung inflation feedback. For this, we determined the effects a biased, 
highly selective, and efficacious 5-HT1AR agonist, NLX-101 (aka 
F15599), on resting respiratory motor outputs of decerebrate rats 
under cardio-pulmonary bypass. NLX-101 increased respiratory rate in 
a concentration-dependent fashion, differing significantly from base-
line at ≥ 0.1 μM. Notably, at [NLX-101] ≥ 0.1 μM, late-E bursts emerged 
in the AbN under eucapnia. Simulations of 5-HT1AR agonist-induced 

active exhalation, that best fitted the data, required the following test-
able assumptions: (1) 5-HT1AR activation inhibited KF subpopulations 
that drive post-inspiratory neurons in the Bötzinger complex (BC); (2) 
5-HT1AR directly inhibited post-inspiratory neurons in the BC; leading 
to (3) disinhibition of late-E neurons and emergence of active exha-
lation. In summary, 5-HT1AR agonism evokes active exhalation and 
increases respiratory frequency in a manner resembling the hyper-
capnic response. The data indicates that 5-HT1AR may contribute to 
the emergence of active exhalation in response to hypercapnia. Our 
modeling results suggest that this respiratory response may be medi-
ated by suppression of the KF and post-inspiratory neurons in the BC, 
disinhibiting late-E neurons. Future experimental verification of these 
predictions would provide a mechanistic basis for the indication of 
5-HT1AR agonists to treat respiratory depression.
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Robustness in bursting activity type of central pattern generating 
networks (CPGs) is achieved by the coordinated regulation of many 
membrane and synaptic current parameters. CPG neurons depend 
upon a Na+/K+ pump to maintain the ionic gradients that establish 
the resting potential and thus support other ionic currents. The Na+/
K+ pump produces an outward net current proportional to its activity. 
However, how the Na+/K+ pump and its current are directly involved 
in the mechanisms that allow multiple parameters to interact, thus 
producing and maintaining rhythmic single cell and network activity, 
is not yet fully understood.
We use a half-center oscillator (HCO) mathematical model that 
includes a Na+/K+ pump to replicate the rhythmic alternating burst-
ing of mutually inhibitory interneurons of the leech heartbeat CPG 
under a variety of experimental conditions. This HCO model consists 
of a pair of reciprocally inhibitory model neurons, each represented as 
a single isopotential electrical compartment with Hodgkin and Huxley 
type intrinsic membrane and synaptic conductances. The model has 
eight currents with voltage-dependent conductances (including two 
types of inhibitory synaptic currents, spike mediated and graded) and 
a Na+/K+ pump current, which tracks changes in intracellular Na+ 
concentrations that occur as a result of the Na+ fluxes carried by ionic 
currents. The Na+/K+ pump exchanges two K+ ions for three Na+ 
ions. Its current has a sigmoidal dependence on intracellular Na+ con-
centrations. Na+ currents include the fast spiking current (INa) and a 
persistent Na+ current (IP). Both the hyperpolarization-activated cat-
ion (Ih) and leak currents have Na+ and K+ components. We build a 
large parametric space of this HCO model and its corresponding iso-
lated neuron models by varying a set of 9 key parameters (the maximal 
conductances of the persistent Na+ (IP), slow Ca2+, leak, hyperpolar-
ization-activated (Ih), and persistent K+ currents, across of 50, 75, 100, 
125, and 150 percent of their canonical values [3], the leak reversal 
potential across − 66.25, − 62.5, − 58.75, − 55, and − 51.25 mV, the 
half-activation of the Na+/K+ pump across − 2, − 1, 0, 1, and 2 mV, 
the maximum Na+/K+ pump current across 0.38, 0.41, 0.44, 0.47, and 
0.5 nA, and the slope coefficient across 90, 95, 100, 105, and 110 per-
cent of its canonical value) in all combinations possible (a brute-force 
approach). Then, we systematically explored this parameter space and 
analyzed its 1.65 million of simulated instances each having canonical 
synaptic interactions. For each simulated HCO model we computed 
its bursting characteristics, which we recorded into a row of a SQL 
database table called PumpHCO-db (similar to our previous work). 
This study reports on the results of our ongoing investigation on how 
realistic activity of HCOs is affected by the Na+/K+ pump. We use this 
PumpHCO-db database and follow our methodology described in pre-
vious work to analyze how the Na+/K+ pump influences the robust 
realistic bursting activity of HCO models. We are particularly interested 
in parameter variations corresponding to known neuromodulations 
such as the modulation of Ih and maximal Na+/K+ pump current by 

Fig. 1 The difference in reentrainment times in travel 6 time zones 
west versus east as a function of photoperiod (N) and endogenous 
period (tau_c) computed using 1‑dim maps. Reentrainment along 
the ODC curve is orthodromic. The NPC6 curve indicates parameter 
pairs for which there is no asymmetry in reentrainment times
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myomodulin. Our study here is preliminary to a full investigation of 
the role of the Na+/K+ pump in the robust maintenance of functional 
bursting activity.
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There is an increased focus in the scientific community on data sharing 
and reproducible research. Open formats with publicly available speci-
fications facilitate data sharing and reproducible research. Hierarchical 
Data Format 5 (HDF5) is a popular open format widely used in neu-
roscience, often as a foundation for other, more specialized formats. 
However, certain drawbacks related to HDF5’s complex specification 
have initiated a discussion for an improved replacement. Here, we pro-
pose a novel alternative, the Experimental Directory Structure (Exdir), 
an open specification for data storage in experimental pipelines which 
aims to improve drawbacks associated with HDF5 while retaining its 
advantages. Exdir is not a file format in itself, but a specification for 
organizing files in a directory structure. Within the Exdir structure, 
data is stored using established open source data formats. While HDF5 
stores data and metadata in an internal hierarchy in a single binary file, 
Exdir uses file system folders to represent the hierarchy, where meta-
data is stored in human-readable YAML files, and data is stored in the 
NumPy binary format. The idea of such a solution is already present in 
the scientific community, but no formal standard has been introduced, 
making it unnecessarily hard to share data and develop common 
tools. Exdir facilitates improved data storage, data sharing, reproduc-
ible research, and novel insight from interdisciplinary collaboration. 
We invite the scientific community to join the development of Exdir 
to create an open specification that will serve as a foundation for open 
access to and exchange of data.
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Many pathological conditions, such as seizures, stroke, and spreading 
depression, are linked to abnormal extracellular ion concentrations in 
the brain. Ions move due to both diffusion and electrical migration, 
and to investigate the role of ion-concentration dynamics under path-
ological conditions, one must simultaneously keep track of both the 
ion concentrations and the electric potential in the relevant regions 
of the brain. This remains challenging experimentally, which makes 
computational modeling an attractive tool. Previous electrodiffusive 
models of extracellular ion-concentration dynamics have required 
extensive computing power, and have therefore been limited to either 
phenomena on very small spatiotemporal scales (micrometers and 

milliseconds, see e.g. [1]), or to simplified and idealized 1-dimensional 
(1-D) transport processes on a larger scale. We have previously intro-
duced the Kirchhoff-Nernst-Planck framework, an efficient framework 
for modeling electrodiffusion in 1-D [2, 3]. In this study, we introduce a 
3-dimensional version of this framework. We use it to model the elec-
trodiffusion of ions surrounding a morphologically detailed pyramidal 
neuron, with a focus on highlighting the intricate interplay between 
extracellular ion dynamics and the extracellular potential.
The simulation covered a 1 cubic millimeter cylinder of tissue for over 
a minute, and was performed in less than a day on a standard desk-
top computer, demonstrating the framework´s efficiency. We envision 
that this framework will be useful to elucidate mechanisms behind 
pathologies, such as for example spreading depression propagation. A 
preprint of this work is available at bioRxiv [4].
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Objective: NaV1.1 sodium channel mutations are a well-known cause 
of epilepsy syndromes, some severe (such as Dravet syndrome) and 
some more benign (genetic epilepsy with febrile seizures plus). The 
conventional wisdom is that the many anticonvulsant medications 
that act on sodium channels should be avoided, although this is only 
supported in the medical literature by a few case reports or retrospec-
tive reviews. In this study, we use a computational model to predict 
the effects of carbamazepine in patients Dravet syndrome secondary 
to truncation mutations.
Methods: A thalamocortical model described by Destexhe was modi-
fied to incorporate sodium channels with slow and fast inactivation. 
Truncation mutation was then simulated by reducing interneuron 
sodium channel conductance by 50%. Effects of carbamazepine and 
oxcarbazepine were then simulated by increasing the fast inactivation 
time of sodium channels in cortical neurons, while effects of eslicarbaz-
epine and lamotrigine were simulated by increasing slow inactivation 
time.
Results: Introduction of truncation mutation into the model reduced 
the amplitude of sodium currents from interneurons, decreasing the 
number of action potentials from this population of neurons and lead-
ing to periods of prolonged bursting from pyramidal neurons akin 
to tonic seizures. Simulation of carbamazepine and oxcarbazepine 
reduced spiking rates in both populations, decreasing incidence of 
seizures. Simulation of eslicarbazepine and lamotrigine also decreased 
action potentials in both populations but did not prevent seizures.
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Discussion: This study provides mechanistic evidence that sodium 
channel anticonvulsants can be beneficial in Dravet syndrome, although 
effects may be difficult to predict. This model could be validated with 
patients who have known sodium channel electrophysiology and clini-
cal data documenting efficacy of sodium channel drugs. If validated, the 
model then could be used to predict the potential benefit of sodium 
channel anticonvulsants in a given patient with a known sodium chan-
nel mutation. This represents a prime application for computer mode-
ling to aid in personalized medicine for patients with epilepsy.
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AMPA receptors (AMPAR) are constitutively trafficked from the neu-
ronal plasma membrane to the endosome, where they are sorted 
either to degradation at the lysosome or returned to the membrane 
via recycling vesicles. AMPAR trafficking is controlled by a family of 
proteins known as the Rab GTPases, which coordinate the sorting 
of AMPAR-containing vesicles through the endosomal system. The 
network of Rab proteins can be manipulated in response to synap-
tic activity, or the induction of plasticity, to increase or decrease traf-
ficking rates, or to redirect the movement of AMPARs towards either 
degradation or recycling1. For example, studies in cerebellar and hip-
pocampal cells have revealed the critical importance of Rab7 activa-
tion in the regulation of long term depression, by augmenting the 
Rab7-dependent degradation pathway2. Although many molecular 
models of AMPAR trafficking in synaptic plasticity have been devel-
oped, these have almost exclusively considered trafficking only at 
the plasma membrane, with the crucial subcellular trafficking path-
ways being neglected3. This is largely because the modeling tools for 
detailed spatial simulation of vesicular and endosomal trafficking have 
not been available. Although spatial modeling has advanced in recent 
years, with voxel-based molecular simulators such as STEPS (steps.
sourceforge.net) incorporating spatial effects—diffusion and proba-
bilistic interactions between molecules within realistic neuronal mesh 
structures 4—there has been no explicit account of molecule size or 
excluded volume effects. This approach has the advantage of com-
putational performance and accuracy for small molecules and ions, 
but these simplifying assumptions break down for complex struc-
tures of large size such as vesicles and a new modeling approach is 
required. We have developed Vesicle objects within STEPS as spherical 
structures of user-defined size, which occupy a unique excluded vol-
ume and sweep a path through the tetrahedral mesh as they diffuse 
throughout the cytosol. Hybrid modeling allows us to retain normal 
reaction–diffusion mechanics in the system for other biochemical spe-
cies, such as kinases, receptors, and calcium. The incorporation of phe-
nomena such as endocytosis, exocytosis, and the fusion and budding 
of vesicles to and from intracellular membranes allow us to simulate 
the complete AMPAR vesicular cycle. Our preliminary models using 
this vesicle modeling technology have been successful in replicating 
recent experimental studies revealing the essential role of specific Rab 
proteins in the expression of long term depression at the parallel fiber-
Purkinje cell synapse. It is expected that this new methodology will 
enable us to model synaptic plasticity and other subcellular processes 
at levels of detail that have, until now, remained beyond the reach of 
modeling technologies. We envisage that this will open up entirely 
new avenues of modeling research in all areas of neuroscience and cell 
biology in which the regulation of protein trafficking plays a role.
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Visual texture-the structure of a surface which underlies the percep-
tion of roughness or smoothness, fineness or coarseness-is thought to 
be processed along the ventral visual pathway in the primate. In most 
past studies, texture was typically defined as a spatially homogene-
ous pattern composed of separated elements such as lines or forms. 
The neural correlates of texture perception were tested by comparing 
responses to arrays of oriented line segments with and without the 
presence of differently oriented line segments in the surround. A sim-
ple, low-level mechanism (e.g., orientation-tuned suppression) might 
be sufficient to explain this discrimination. More recently, research-
ers have probed the neural representation of more naturalistic tex-
ture images. These studies demonstrate that, while V1 responses to 
texture can be explained on the basis of local orientation and spatial 
frequency information, responses in V2 and V4 require the inclusion 
of higher order summary statistics, for e.g. correlations between spa-
tially neighboring filters, correlations between filters with neighbor-
ing orientations, etc. However, because of the high dimensionality of 
these statistics, it is still unclear how these statistics relate to the per-
ceptual quality of texture. Specifically, we still do not know whether 
there are neurons in the brain that encode the perceptual qualities of 
smoothness, roughness, fineness, etc. In this study, we focus on four 
basic texture dimensions, which have been suggested to be crucial for 
human visual texture perception: Coarseness, Directionality, Regular-
ity, and Contrast. We devised simple statistics to quantify the degrees 
of the attributes in a given texture image, and then examined whether 
responses of neurons in macaque area V4 to a variety of natural tex-
ture images could be described by selectivity for these perceptually 
relevant texture features. Our results indicate that many V4 neurons 
(about 30% of total recorded units) have strong texture selectivity 
for one or more of the four basic texture features. Textures classified 
based on neural population activity were in strong agreement with 
human perception. Interestingly, when we tested neural representa-
tion of shape information (e.g., curvature of object boundary) in the 
same neural population, neurons with strong texture selectivity were 
rarely overlapped with those having strong shape selectivity (about 
40% of total recorded units). These experimental findings suggest that 
texture and shape encodings are provided by different population of 
V4 neurons and that texture selective V4 neurons extract key psycho-
physical measures of texture by computing simple summary statistics.
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Occlusions, which are everywhere in natural scenes, make object rec-
ognition a challenging problem. Primate inferior temporal (IT) cortex, 
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the final stage of form processing along the ventral visual pathway, 
is likely important (Kourtzi and Kanwisher 2001; Lerner et al. 2002; 
Hegde et al. 2008; Kovacs et al. 1995) but the specific role of IT neu-
rons in representing and recognizing occluded objects is largely 
unknown. In present study, we examined how IT neurons encode 
information about occluding and occluded objects and how these 
signals might subserve shape discrimination. Monkeys were trained 
to report whether two stimuli presented in sequence were the same 
or different. The first stimulus in the sequence was unoccluded, while 
the second was partially occluded with a set of randomly positioned 
dots of variable diameter. As animals performed this sequential shape 
discrimination task, we recorded single-unit responses in IT cortex. We 
found that the responses of IT neurons were predominantly modu-
lated by two factors—the shape of the occluded object and the total 
area of the occluding dots. Consistent with Kovacs et al. (1995), we 
found that many IT neurons maintained their shape preference under 
occlusion. But to our surprise, some neurons responded best to the 
occluded stimuli while others responded best to the unoccluded 
stimulus. For some neurons shape selectivity also increased under 
occlusion. Overall the color of the stimuli and the shape of the occlud-
ers played a minimal role in dictating the responses of IT neurons. Our 
simulation results suggest that IT responses can be modeled on the 
basis of two signals—one that reflects the shape of the occluded stim-
ulus and a second that reflects the area of the occluding dots. Multipli-
cative modulation of the signal that reflects the shape of the occluded 
stimulus by the occluder area followed by an additive modulation by 
the occluder area can recapitulate the responses and shape selectivity 
of ITneurons that respond best to occluded and unoccluded stimuli. 
Thus our results imply that, under the partial occlusion, shape selec-
tivity of some IT neurons seems to be enhanced by taking advantage 
of signal about occluders and those IT neurons might be involved in 
stable object perception under the partial occlusion.
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Neural plasticity describes the process by which synaptic weights 
change in response to inputs and is a primary mechanism by which 
the brain learns. Learning begins prior to birth, with most mammals 
being born with some functionality in hearing, movement and vision. 
Linsker’s [1, 2, 3] seminal three-part paper series provided a compel-
ling model of how learning can occur due to spontaneous activity in 
the absence of environmental input. He showed that structure in syn-
aptic connection densities can evoke temporal correlation in neural 
activity that, through Hebbian plasticity, induces the emergence of 
spatial opponent cells in early layers of cortical processing.
While Linsker considered the spatial aspect of synaptic connectivity 
distributions, the spike propagation delay was assumed to be uniform 
among all neurons in a lamina, and hence had negligible impact. We 
address here the question of how spike propagation delay, due to 
the time taken for an action potential traverses along the axon from 
a presynaptic neuron to a postsynaptic neuron, affects the resulting 
pattern of synaptic connectivity. For myelinated axons, propagation 
delay is primarily a function of distance and axon diameter. Given the 
importance of motion perception in everyday life, an understanding 
of the impact of temporal delays in visual processing and its resulting 
effect upon subsequent neural learning is an important goal that the 
current work seeks to address. A three-layer, feed-forward network of 
Poisson neurons with Gaussian synaptic connection densities is used, 
as in Linsker’s analysis [1]. An expression for covariance between neu-
rons that incorporates both distance-dependent propagation delay 
and an arbitrary post-synaptic potential (PSP) function is derived. We 
show that adding temporal delay destroys the structure of the lag-zero 
covariance and thus inhibits the development of simple cells, which 

is incongruent with the way in which neural systems are expected 
to behave. A more plausible simulation would model a presynaptic 
neuron as impacting a postsynaptic neuron over a finite time. This 
highlights the importance of the time course of the PSP function. We 
show the role that the duration of the PSP plays in determining the 
resulting network structure. We further calculate receptive field size as 
a function of delay, homeostatic equilibrium, and synaptic connection 
parameters. The results show the conditions under which the spatial 
resolution of the developing spatial opponent cells is optimised, and 
find that these conditions accord with experimental observations.
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Sparse coding (or efficient coding) is successful in generating Gabor-
like features using natural input images, which suggests that the visual 
system employs a small number of neurons to represent visual stimuli. 
Models based on efficient coding have been proposed to account for 
some physiological phenomena in the primary visual cortex (V1), such 
as diverse shapes of V1 simple cell receptive fields and visual non-
classical receptive field effects (such as end-stopping effects). Though 
some models based on efficient coding were built from the perspec-
tive of biological plausibility, they did not respect some biological 
constraints, such as Dale’s law (the sign of synaptic connections can-
not change through learning) and local learning. In addition, phase-
reversed cortico-thalamic feedback, a phenomenon observed in cat 
cortex, cannot be explained by current biologically plausible models. 
In this study, we propose a two-layer model of visual pathways from 
the lateral geniculate nucleus (LGN) to V1 based on efficient coding 
using rate-based neurons. The first layer has separate channels for on-
centered and off-centered LGN cells and the second layer represents 
V1 simple cells. There are feedforward and feedback connections 
between two layers and they are initially different. Both feedforward 
and feedback connections consist of excitatory connections and sepa-
rate inhibitory connections. The learning rule of updating connections 
between LGN and V1 is local because it only depends on the pre-syn-
aptic and post-synaptic firing rates. The sign of excitatory or inhibitory 
connections is not allowed to change during learning. 12-pixel by 
12-pixel image patches sampled from ten 512-pixel by 512-pixel pre-
whitened natural images are used as the input stimuli to the model. 
In our simulation, the learning rule is applied after every 100 input 
patches are displayed to accelerate the learning process. Simulations 
demonstrate several interesting points. First, our model can explain 
the emergence of diverse shapes of receptive fields of V1 simple cells: 
Gabor-like receptive fields and a large percentage of blob-like recep-
tive fields. Second, phase-reversed cortico-thalamic feedback naturally 
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emerges because of the structure of learned connections when natu-
ral images are used as input stimuli to train the model. Third, feedfor-
ward and feedback connections tend to be identical during learning. 
Fourth, the overall strength of inhibitory connections between LGN 
and V1 can significantly alter the connection structure and shape the 
receptive fields of V1 simple cells. Our model of implement efficient 
coding incorporates many biological facts such as Dale’s law, non-
negative firing rates, local learning rule and the existence of cortico-
thalamic feedback. The results suggest that efficient coding can be 
realised using simple neural circuits and explain important physiologi-
cal properties of V1.
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Rapid advancement in neuroscientific tools has yielded an extraor-
dinary amount of data regarding the structural and dynamical prop-
erties of cortical circuits. In parallel, there has been vast progress in 
parallel computing and software to allow for unprecedented simula-
tion capabilities. Herein we describe our efforts in combing these two 
exciting advances to develop, in a data-driven manner, a model of the 
mouse primary visual cortex (area V1) comprising ~ 230,000 neurons 
from all cortical layers. For developing our cortical model, we used 
the Brain Modeling ToolKit (BMTK): a python API developed by the 
Allen Institute (github.com/AllenInstitute/bmtk). BMTK allowed us to 
construct our network and integrate seamlessly with NEURON [Hines 
and Carnevale 1997] to allow for parallel simulations. Approximately 
51,000 cells are biophysically detailed, pooled from > 100 models of 
individual neurons from the Allen Cell Types database (celltypes.brain-
map.org). The network receives spike-train inputs from filter models 
representing a variety of functional cell types from the Lateral Genicu-
late Nucleus (LGN) of the thalamus. The LGN filter models were based 
on spatiotemporal fits from experimental recordings in vivo [Iyer et. al, 
in preparation]. The projection architecture from the LGN to the visual 
cortex neurons was based on experimental literature [Lein & Scanzi-
ani 2018]. Purely feedforward simulations showed that the origin of 
direction selective responses observed in certain cortical cell-types in 
our model is dependent on the thalamocortical topology. Moreover, 
experimental measurements were used to fit the excitatory post-syn-
aptic current magnitude that V1 neurons receive in response to grat-
ing stimuli.
After optimizing the LGN input to the column, the recurrent connec-
tivity between cell-types and layers was introduced. The probability 
of connections, strength of connections (unitary PSP), functional con-
nectivity rules, and synaptic placement between all cell-types was 
obtained via a thorough literature search, resulting in a knowledge 
graph that combines the connectivity information with the records of 
literature sources; assumptions were used where data was not avail-
able. As the next critical step, the synaptic weights were optimized to 
produce irregular network activity in response to visual stimulation. 
We will describe the construction and simulations of the V1 model and 
discuss how available or hypothesized information about properties of 
cell types, feedforward connectivity from LGN, and recurrent connec-
tivity has resulted in certain functional properties—such as, for exam-
ple, orientation and direction selectivity. We will also discuss the plans 
to utilize the developed model to unravel the role of certain cell-types 
and connections in generating patterns of neuronal activity and com-
putations in the cortex. The model represents a milestone in the devel-
opment of data-driven simulations of brain activity and computations 
in vivo based on extensive characterization of the brain structure 
in vitro and should provide a valuable resource for the computational 
neuroscience community, in conjunction with the standardized model 
construction and simulation interfaces of the Brain Modeling ToolKit.
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Electrophysiolgy and pharmacology tools have been widely used for 
exploring and controlling the activity of neural networks. While elec-
trophysiology offers a good temporal resolution and pharmacology 
allows very narrow targeting of specific cells, they both have a poor 
spatial resolution. Recently, optogenetic pushed the limits of spa-
tial resolution and accuracy to the level of single cell. Light-induced 
(optogenetic) control of neuronal activity utilize light-activated pho-
tosensitive proteins (microbial opsins), such as channelrhodopsins 
to switch on/off ionic channels. We carried out a series of optoge-
netic experiments on male PV-Cre mice infected with a viral vector 
hChR2(H134R) delivered to the mPFC. Channelrhodopsins hChR2 is 
adapted for mammalian expression with the H134R mutation that pro-
duces a larger and slower photocurrent than wild-type hChR2. In our 
experiments, the optical stimulation was delivered in vivo by a 473 nm 
laser and the local filed potential (LFP) was sampled at 10 kHz. We 
carried out two previous studies, i.e. the control and a cocaine study, 
whereas here we investigated the effect of D1 receptors antagonist 
SCH23390 and D2 antagonist sulpiride. Using the delay embedding 
method, we identified a low-dimensional attractor and unfold its 
phase space trajectory. The main reason we focus on these two dopa-
mine antagonists is because we want to quantify their ability to bring 
the neural activity changed by cocaine back to its control (no cocaine) 
range. As in the previous studies, the mPFC response to a brief 10 ms 
light pulse was recorded for 2 s. During data post-processing, the first 
0.5 s were discarded to remove the transient response of the neu-
ral network. We performed a nonlinear time series analysis of LFPs 
recorded from PV+ neurons in the mPFC using time reversal asym-
metry and false nearest neighbor (FNN) statistics between the original 
signal and surrogate data to identify the nonlinearity in the data set. 
Delay-embedding method used one-dimensional data (time series) of 
the membrane potential to unfold the true high-dimensional phase 
space dynamics. As in the previous study, we used both (1) the auto-
correlation and (2) the average mutual information for estimating the 
lag time. The embedding dimension was determined using the false 
nearest neighbor method.
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The subthreshold resonance properties of neurons are usually meas-
ured by submitting a neuron to the so-called ZAP function and con-
structing the impedance amplitude profile as the ratio of Fourier 
transforms of output and input: Z(f ) = FFTout/FFTin [1, 2]. The reso-
nance frequency corresponds to a peak in Z(f ). In general, for low 
amplitude (~ 10 pA) ZAP functions the voltage response oscillations 
are symmetric about a reference voltage line. However, there is evi-
dence of asymmetric responses to ZAP functions, with non-coincident 
depolarizing and hyperpolarizing membrane resonance frequencies 
[3]. Here we study this effect for high amplitude ZAP functions (> 10 
pA). We propose two different measures than the usual Z(f ). We take 
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the holding membrane potential (Vhold) as reference voltage line 
(voltages above/below it are positive/negative) and, for each fre-
quency, measure the magnitudes of the maximum and minimum volt-
ages normalized by the ZAP amplitude. These will be called Z + (f ) and 
Z-(f ).We studied Z + (f ) and Z-(f ) for a neuron model [4, 5] submitted to 
a ZAP function. For low ZAP amplitudes, Z + (f ) and Z-(f ) are identical 
but for high ZAP amplitudes, Z + (f ) and Z-(f ) have different resonance 
frequencies. We characterized the differences between magnitudes 
ΔZ = Z + (f +)−Z-(f-) and resonance frequencies Δf = f+− f–in the 
two-dimensional diagram spanned by Vhold and the time constant 
of the hyperpolarization-activated currentIh. There are regions in the 
diagram where the neuron can discriminate the frequency change of 
the input current based on its voltage response profile. This suggests 
that a neuron can be sensitive to changes in the frequency of its syn-
aptic inputs, and this sensitivity depends on intrinsic parameters of its 
ionic currents. Our theoretical results reproduce a phenomenon which 
has been observed experimentally [3] suggesting that the quantities 
Z + (f ) and Z-(f ) as defined here can be useful in further studies of reso-
nance phenomena in neurons.
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The Potjans-Diesmann (PD) model [1] reproduces the cortical network 
under a 1 mm2 surface area of early sensory cortex in 1x1 scale. The 
network consists of around 80,000 leaky integrate-and-fire (LIF) neu-
rons divided in eight cell populations representing excitatory and 
inhibitory neurons in cortical layers 2/3, 4, 5 and 6. External input is 
provided by thalamic and cortico-cortical afferents. The model gen-
erates spontaneous activity with layer-specific average firing rates 
and synchrony and irregularity features similar to the ones observed 
experimentally, and allows a study of the propagation of thalamic 
inputs from layers 4 and 6 through all layers. The network, originally 
built in NEST [2], specifies fixed numbers of excitatory and inhibitory 
neurons per layer, the number of connections between these neuronal 
populations and the number of external inputs to each cell popula-
tion. These numbers are based on experimental data. In this work, we 

converted the PD model with rescaling option from NEST to NetPyNE 
(www.netpy ne.org) [3], a high-level interface to the NEURON simulator 
[4] that facilitates the development, parallel simulation and analysis of 
biological neuronal networks. The rescaling option for the PD model, 
not addressed in the original article, but included in the source code 
available at the Open Source Brain (OSB) platform [5], which gener-
ates layer-specific average firing rates within the margins of error 
determined in the original article. The rescaling implemented in the 
NetPyNE version depends on a single parameter in the interval [0, 1], 
which is used to resize the numbers of network neurons, connections 
and external inputs as well as the synaptic weights while keeping the 
matrix of connection probabilities and the proportions of cells per 
population fixed. The NetPyNE implementation, which employs par-
allel NEURON as its backend simulator, opens the possibility of con-
structing network models with the PD model connection topology 
but using compartmental conductance-based neuron models instead 
of LIF neurons. This allows a new array of possible studies, such as 
investigating the interaction between network topology and dendritic 
morphology or channel-specific parameters. Additionally, NetPyNE 
employs a high-level declarative format that clearly separates the 
model parameters from the underlying implementation, making the 
PD model easier to understand and manipulate. NetPyNE enables effi-
cient parallel simulation of the model with a single function call and 
provides a wide array of built-in analysis functions to further explore 
the model.

Acknowledgements
This work was produced as part of the activities of FAPESP Research, 
Disseminations and Innovation Center for Neuromathematics (Grant 
2013/07699-0, S. Paulo Research Foundation).

References
1. Potjans TC, Diesmann M. The cell‑type specific cortical microcircuit: relat‑

ing structure and activity in a full‑scale spiking network model. Cerebral 
Cortex 2014, 24, 785–806.

2. Gewaltig MO, Diesmann M. NEST:NEural Simulation Tool. Scholarpedia 
2007, 2, 1430.

3. Lytton WW, Seidenstein H A, Dura‑Bernal S, et al. Simulation Neurotech‑
nologies for Advancing Brain Research: Parallelizing Large Networks in 
NEURON. Neural Computation 2016, 28, 10, 2063–2090.

4. Carnevale NT, Hines ML. The NEURON Book. 2006, Cambridge, UK: Cam‑
bridge University Press.

P29 
Effects of spike frequency adaptation on dynamics 
of a multi‑layered cortical network with heterogeneous neuron 
types
Renan O. Shimoura, Nilton Liuji Kamiji, Rodrigo F. O. Pena, Vinícius 
Cordeiro, Antônio C. Roque
University of São Paulo, Department of Physics, Ribeirão Preto, Brazil
Correspondence: Renan O. Shimoura (renanshimoura@usp.br)  
BMC Neuroscience 2018, 19(Suppl 2):P29

The cerebral cortex displays a rich repertoire of internally-generated 
dynamic states. Different rhythmic activity can be generated by mech-
anisms at network level (e.g. recurrent excitation-inhibition loops) and 
at neuronal level (e.g. spike frequency adaptation, SFA). Several pro-
cesses can influence SFA and one of them is related to application of 
acetylcholine, which decreases SFA of neocortical neurons [1]. Theoret-
ical studies of cortical activity under SFA effects on population dynam-
ics are based on artificial architectures built from random networks. In 
spite of the usefulness of these models, it is important to have compu-
tational models that try to accurately represent cortical architecture. 
Recently, Potjans and Diesmann (PD) [2] introduced a multi-layered 
network model of the cortical microcircuit based on experimental data 
of mammal neocortex. All neurons of the PD model are described by 
the same leaky integrate-and-fire (LIF) neuron model. Here we study 
how the dynamic properties of the model change when the excitatory 
and the inhibitory neurons are different and described by the adaptive 
exponential integrate-and-fire (AdEx) model. Neuronal parameters are 
tuned so that excitatory neurons are of the regular spiking (RS) type 
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and inhibitory neurons are of the fast spiking (FS) type. SFA can be 
implemented in RS neurons by the change of a single parameter. We 
will call this the heterogeneous PD model (hPD). Initially, we charac-
terized the spontaneous activity patterns generated in the hPD model 
by varying the excitation-inhibition balance and the firing rate of the 
Poissonian background input. Then, we repeated the characterization 
study for different SFA levels of RS neurons. In general, the hPD model 
with SFA displayed lower layer-specific average firing rates than the 
hPD model without SFA. The hPD model with SFA also had mean pop-
ulation spike frequencies closer to experimental data for the awake 
state. Additionally, we found regions in the parameter space display-
ing intermittent network oscillations. We observed the emergence of 
high frequency oscillations in the beta-gamma bands by decreasing 
SFA, in similar fashion to what has been observed when acetylcholine 
is released in the visual cortex [3]. In conclusion, the PD model with 
heterogeneous neuron types provides a good in silico framework to 
study complex network activity behavior and modulatory effects due 
to spike frequency adaptation.
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Hippocampal formation is a C-shaped structure present on the medial 
aspect of the cerebral hemispheres [1]. It is believed to be involved in 
spatial navigation and creation of new episodic memories [2], [3]. This 
is achieved by the unique firing patterns of the cells which comprise 
the HF viz., the place cells [4], head direction cells [5], [6] and the grid 
cells [7]. Several mathematical models have been proposed to explain 
these firing patterns. One of these [8], explains that the firing pattern 
of the medial entorhinal cortex grid cells is based on integration of 
animal motion in environment based on trigonometric principles and 
its projection on to the three rings of intermediate neurons which are 
aligned at 120 degrees to each other. One neuron on each of the three 
rings is connected to a single grid cell which fires when it receives 
coincident input from all the three neurons. This mathematical model 
explains well how the regular hexagonal firing pattern of the grid cells, 
as seen experimentally in animal studies might be obtained. However, 
this model does not explain as to how the trigonometric calculation 
of motion inputs will be achieved during animal motion. The present 
work proposes a model of how this trigonometric calculation might 
be occurring as the animal moves around freely in the environment. 
As the animal moves along a particular direction, the head direction 
cells provide information about the angle along which the animal is 
moving. Let us assume that this information is available for every 

degree along the azimuth. Along with this information, the neurons 
pre-processing (say pre-processing neuron or PN) information for the 
entorhinal grid cells will also receive proprioceptive information from 
the foot pads of the animal (assuming the animal is moving freely in 
the environment using its limbs). For motion along 0, 120 and 240 
degree of the azimuth w.r.t. the orienting cues in the environment, the 
animal motion will be mapped on to the respective rings of interme-
diate neurons in clockwise (CW) direction. And for motion along 180, 
300 and 60 degrees w.r.t. the orienting cues, the animal motion will be 
mapped on to the respective rings of intermediate neurons in counter-
clockwise (CCW) direction. For these 6 directions, thus, there is a sepa-
rate PN which integrates motion and head direction information from 
the proprioceptive and head direction cell neurons respectively. Thus, 
each head direction cell neuron in head direction cell system projects 
to one PN while the proprioceptive inputs are provided equally to all 
the PN neurons. For the remaining head directions, the PN receive 
equal proprioceptive inputs but the head direction cell inputs are 
scaled according to the cosine of the head direction angle due to dif-
ferent strength of synapses which connect the head direction cells 
and the PN cell. Therefore, in all there are 360 PN cells each of which 
receives inputs from the corresponding head direction cell. All the 360 
PN cells also receive equal proprioceptive inputs. After this calculation, 
the different PN cells send currents of different intensity to the rings 
of intermediate neurons. Connectivity between the PN cells and the 
rings of intermediate neurons is such that PN cells coding for 330–30 
degrees will send information to the first ring for motion along the CW 
direction, those for 150–210 degrees to the same ring for CCW motion, 
those for 30–90 degrees to third ring for CCW motion and those from 
210 to 270 degrees to third ring for CW motion, and those for 90–150 
degrees to second ring for CW motion and those from 270 to 330 
degrees to second ring for CCW motion. Thereafter, the rings process 
this information as per the computational model in [8] (Fig. 1).
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Localized deformation on axon is observed in many scenarios, such 
as traumatic brain injury, Alzheimer’s disease (AD), or multiple scle-
rosis (MS). Those observations open up the question—how much 
deformation can block or change the action potential transport? Spe-
cifically, any deviation of the near-cylindrical axonal cross section due 
to cell–cell contact can lead to changes in action potential. However, 
predicting the answer to such question is challenging. The major chal-
lenge here is the length and time scale. The characteristic length scale 
of a human axon spike (non-myelinated) is around 10 mm (spike to 
spike), but the focal geometry change can be 1—10 µm. To simulate 
the shape better with numerical method, the discretized size can go 
as small as 0.1 µm when needed. It requires roughly ~ 10,0003 num-
ber of data points for a 3-D model, or ~ 10,0002 points for a 2-D model. 
The other issue is the nature of the action potential. Since axon poten-
tial is a mutated wave function which is numerically unstable when 
solved using explicit method. For the size of 0.1 µm mesh size, a time 
step of 10–6 µs is needed for an explicit method, or ~ 1 µs time step 
for an implicit method (less overall computational resource). To solve 
the dilemma, we proposed a hybrid 1D-3D model for it. The model we 
proposed consists of two parts: 1. An one-dimensional cable theory 
model with Hodgkin–Huxley membrane capacitor simulating the 
cylindrical of before and after the deformation site. 2. A 2-D meshed 
finite element method (FEM) model for the deformed part and its 
neighbor. The 2-D model currently uses cylindrical coordinate, and it 
can be updated with a 3-D model in the future. The 2-D model uses the 
Laplace equation at the intracellular medium and the Hodgkin–Huxley 
capacitor at the membrane. Those two integrated models interact with 
each other at each time step to ensure that the simulated condition in 
the FEM part is representing its behavior in a long axon.
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Photothrombosis is an established technique for inducing ischemic 
stroke in animal models. It produces focal cerebral infarcts induced 
by the photodynamic effect of anionic xanthene dyes, among which 
Rose Bengal is most frequently used. The general procedure involves 
the administration of the dye in the blood stream, followed by photo 
radiation at the interested location. In the blood circulation system, 
the hydrophilic dyes bind to the vascular endothelium, platelets and 
other blood cells. Upon light exposure, the photoexcitation energy 
of the dye molecules is transferred to singlet oxygen, leading to oxi-
dative stress. The subsequent cascade, including damage to vascular 
endothelium and platelet aggregation, eventually results in ischemia 
and neuronal death [1]. Here, we propose a computational approach 
to quantitatively predict the scale of the lesion in photothrombotic 
procedures which can offer crucial insight in the development and 
implementation of light-induced stroke models in animals. We mod-
eled the relative light intensity distribution in the cortex resulted from 
the light-tissue interaction of a collimated beam. We based our model 
upon McLean’s [2] light beam spread function method, which is capa-
ble of resolving light distributions in highly forward scattering turbid 

media, such as the brain tissue. This method assumes that photons 
arrive to locations via multiple paths of various lengths, thus, result-
ing in time dispersion of light intensity. The impulse response, whose 
vertical section shown in Fig. 1A at different time points as the light 
propagates, was first calculated using the beam spread function. It 
was then temporally integrated to generate the scattering profile of 
a continuous pencil-beam response as shown in Fig. 1B. The pencil-
beam response was subsequently convolved spatially in the transverse 
plain with the geometry of the beam (Fig. 1C) to acquire the intensity 
distribution of photon energy in tissue as illustrated in Fig. 1D. We sim-
ulated the penetration and scattering profile of 532 nm-wavelength 
light, which is one of the characteristic absorption wavelengths for 
Rose Bengal. Fig. 1E demonstrates the normalized intensity distribu-
tion of 532 nm light in the medium, and Fig. 1F is the contour of such 
distribution. We further illustrated that our model could estimate the 
spatial extent of the effective region under photothrombotic protocols 
(Fig. 1G). This model could also be applied in titrating the intensity of 
light beams used to generate infarcts of interested penetration depth 
(Fig. 1H). Photothrombotic models can create well-defined ischemic 
cerebral lesions. Our simulation quantitatively demonstrated how the 
scale of infarction depends on the intensity and the diameter of the 
beam. Our future effort would be oriented in two directions. One is to 

Fig. 1 Figure A, B, C and D, Model Implementation. The impulse 
response, vertical section shown in A, at different time in light 
propagation was first calculated using the beam spread function. 
They were then temporally integrated to generate the scattering 
profile of a continuous pencil‑beam response as shown in B. The 
pencil‑beam response was subsequently convolved spatially with 
the geometry of the beam (C) to acquire the intensity distribution 
of photon energy in tissue as illustrated in D. Figure E and F, Light 
Intensity Spatial Distribution. E, spatial distribution of normalized 
intensity for a 0.5 mm‑diameter beam of 532 nm light. Intensity is 
normalized to the unit volumetric photon power density at the tissue 
surface. F, normalized intensity contour for 532 nm light. Iso‑intensity 
lines are at 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9. Figure G, Effective 
Region. Iso‑intensity curves delineate normalized intensity at 1/e for 
532 nm light beams of different sizes. Intensity is normalized to the 
unit volumetric photon power density at the tissue surface. The color 
in the legend indicates the diameter of the beam. Figure H, Relation 
between Penetration Depth and Surface Intensity. The penetration 
depth is defined along the central axis of the beam where the light 
intensity decays to 0.1 arbitrary unit
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develop a multilayer model to account for the tissue-optics heteroge-
neity of cortex. The other direction will be to integrate our modelling 
approach with developing animal models of micro cortical strokes. 
We would calibrate and modify the models according to pathology 
examinations and incorporate additional stages to bridge potential 
mismatches between the simulation and the histology/pathology.
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The patterns of neuronal activation during planning and decision-
making in freely behaving rats is little understood, partly because the 
cortical areas responsible for behavior integrate a multitude of sen-
sory and motor information. Also, with freely behaving animals, the 
trials do not have precise length and structure, the number of events 
is dynamic and they depend on the decisions the animals make while 
exploring the environment. Here, we use a visualization technique 
based on color sequences [3] to investigate the expression of multi-
neuron firing patterns across the posterior parietal cortex (PPC) and 
frontal motor cortex (AGm) that are specific to various behavioral 
states.
Experimental design and behavioral paradigms: We implemented 
an instructed task where the rat runs to a “Home” well with fixed loca-
tion during a trial, then a free-choice exploratory task where the rat 
searches for a “Target” well located randomly across an arena with 36 
wells. A custom made NeuroNexus micro-drive was implanted in the 
rat’s brain targeting PPC and AGm simultaneously (8 tetrodes in each 
area). Data was high-pass filtered using non-causal Gaussian 300 Hz 
and spikes were detected using an amplitude threshold set at four 
standard deviations. Spikes were sorted and the best responding cells 
(four from PPC and seven from AGm) were selected based on their 
responses during the experimental task.
Visualization using 3D Kohonen maps: Spike-trains were convo-
luted with an exponentially decaying kernel [3] yielding activity vec-
tors by sampling the signals at a frequency of 1 kHz. Activity vectors 
were presented to a 3D Kohonen map for learning, where each node 
of the map has a dimensionality equal to the input space (the number 
of cells). After learning, Kohonen nodes represent cluster centers, i.e., 
stereotypical activity vectors. For visualization, the 3D Kohonen cube 
is mapped on an RGB cube, thus each node of the lattice will have a 
color corresponding to its position in 3D space. Activity vectors sam-
pled from the data are compared one by one to each of the nodes so 
they are marked with the color of the best matching cluster found in 
the lattice. Therefore, each color presented in Fig 1A corresponds to a 
certain pattern of activity (Fig 1C). By plotting the patterns of activity 
along a trial, one can extract the sequence in which the cells fire over 
time (Fig 1B).
Conclusions: Using the visualization technique, we can extract syn-
chronous pattern of spikes (Fig 1A) or firing-rate patterns (Fig 1F). The 
synchronous patterns of spikes were not clearly detected for small τ 
(Fig 1A, τ = 20 ms). For large τ (Fig 1F, τ = 250 ms) a rate covariation was 
visible for approx. 3 s after the rats started to lick in the “Home” well, 
where a specific firing pattern was visible (Fig 1H). This was reflected in 
the color sequence as a greenish color. A different combination of cells’ 

firing was visible (Fig 1J) as a purple pattern immediately after the rat 
left the location of the “Home” well. Our results suggest that behavioral 
events are correlated to specific and coordinated firing patterns across 
PPC and AGm. These patterns evolve on relatively slow time scales 
(> 200 ms). A further investigation is required involving more cells to 
determine if joint-spikes events are present at small time scales.
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To describe the dynamics of large and sparse recurrent networks of 
spiking neurons, Brunel (2000) applied a mean field approach. In this 
theory, neural input, as a large sum of independent spikes, is modeled 
as uncorrelated (white) Gaussian noise, exhibiting a flat power spec-
trum.This approximation corresponds to a nonlinear 1D Fokker–Planck 
equation (FPE).Its analytical solution, combined with the condition of 
self-consistence of neural input and output, allows one to predict the 
firing rates in the network and to distinguish its different firing regimes 
(e.g. synchronized and synchronous states). The condition of a white 
network noise, however, is only approximately fulfilled in the limit of 
very rare firing. In general, spike-trains (ST) from neurons exhibit tem-
poral correlations with non-flat power spectra and the neural input in 
recurrent networks (network noise), being the sum of many such STs, 

Fig. 1 A: Activity patterns recorded from PPC and Agm of free behav‑
ing rats at multiple timescales. A and F: Rastergram of 11 cells (4 from 
PPC and 7 from Agm) are presented for 4 different experimental 
events, each event delimited by white horizontal lines. The events 
are (marked with a black line, from top to bottom): start “Home”, 
end “Home”, start “Target”, end “Target”. Any selected trials in A and F 
(black boxes) are composed of color coded patterns (model vectors) 
extracted from the 3D Kohonen map (B, D, G and I). The white boxes 
in B, D, G and I contain the firing patterns of the recorded neurons at 
a selected time t, patterns highlighted in C, E, H and J
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maintains these temporal correlations (Lindner 2006). A more faithful 
theory of single spike trains in recurrent networks also has to take into 
account these temporal correlations, yielding a more comprehensive 
condition of self-consistence that has so far been exploited in numeri-
cal schemes to determine ST spectra (Lerchner et al. 2006, Dummer 
et al. (2014), Pena et al. 2018). Here we present a theoretical frame-
work, that allows one to take into account self-consistence of ST power 
spectra.In this framework, the network noisecan be approximated 
by the projection of an N-dimensional Ornstein–Uhlenbeck process 
(OU), using a Markovian embedding. Spectra of OUs can be seen as 
a Pàde approximation, the order of which increases with the dimen-
sion. We can formulate a corresponding (N + 1)D FPE, that describes 
the time evolution of a neural ensemble driven by colored noise. 
From its solution, we obtain the ST power spectrum of the neuron. 
We achieve self-consistence, if the power spectrum of our stochastic 
process is proportional to the ST power spectrum. A finite dimensional 
OU cannot fit arbitrary spectra. However, it can fulfill the condition of 
self-consistence in several points. The number of achievable intersec-
tions of input and output is 2 N + 1. Increasing of intersections yields 
better approximations for the spectra of single neurons and network 
noise. In our theory, Brunel (2000) is a zero-order approximation, in 
which the spectra are only self-consistent for the frequency f → ∞, 
i.e. self-consistent with respect to the firing rate.In general, we lack an 
analytical solution for a multidimensional FPE and, hence, we need 
to apply numerical tools for its solution. Furthermore, higher dimen-
sional FPEs are difficult to treat numerically. For a 1D OU, we provided 
a robust numerical procedure to obtain single points of the spectrum 
from the corresponding 2D FPE in the Fourier domain. We can achieve 
self-consistence for three arbitrary points of the spectrum. As in Brunel 
(2000), we use the firing rate, i.e. the spectrum at f → ∞. Additionally, 
we require self-consistence of input and output spectra at f → 0 (cor-
responding to the Fano factor) and at the firing rate f = r0. To find a 
solution, we determine the coefficients of our OU from the solution 
of the FPE iteratively, until self-consistence is achieved. Fig. 1 shows 
one example. For the chosen parameters, the resulting ST spectrum 
from the 2D FPE are close to that measures in a large sparse recurrent 
network.

P35 
Probabilistic analysis of high‑dimensional stochastic firing rate 
models: Bridging neural network models and firing rate models
Ehsan Mirzakhalili, Bogdan Epureanu
University of Michigan, Department of Mechanical Engineering, Ann 
Arbor, MI, United States
Correspondence: Ehsan Mirzakhalili (mirzakh@umich.edu)  
BMC Neuroscience 2018, 19(Suppl 2):P35

Advances in the characterization of neurons and the increase in com-
putational capacity has enabled researchers to build larger and more 

detailed models of neural networks. While such models have proven 
to be helpful, the interpretation of results obtained from such models 
is not straightforward due the lack of necessary analytical and math-
ematical tools. Hence, a framework that enables rigorous analysis 
of detailed network models is invaluable. To establish our proposed 
framework, we start with a network that can resemble working mem-
ory. The duration of the recall and the average firing rate during the 
recall are used to quantify the characteristics of such network mod-
els. The mechanisms that can affect these metrics can be studied by 
varying different parameters of the model one by one. However, such 
analysis cumbersome in large detailed networks. Alternatively, rate 
models can be constructed that can faithfully represent key dynam-
ics of detailed network models especially if noise is incorporated in 
such rate models. Rate models are attractive not only because they 
are computationally efficient, but because they can be analyzed based 
on a rich mathematical foundation of dynamical systems. Hence, the 
effect of parameters of the model on the working presence of working 
memory can be studied by examining of the bifurcation diagram of 
rate models that correspond to such network models. Such determin-
istic bifurcation analyses can only show the existence of multiple sta-
ble or unstable solutions for a firing rate model, which is not enough 
to describe dynamics of network models. However, adding noise to 
rate models enables establishing the connection between rate mod-
els and network models by allowing calculation of metrics such escape 
time and probability of finding the system in each point on the bifur-
cation diagram. Calculation of such metrics and the effects of noise on 
the bifurcation analysis of such dynamical systems and have not been 
investigated previously for analysis of dynamics of neural networks. In 
this research, we introduce a probabilistic framework that contains a 
stochastic bifurcation analysis of rate models in the presence of noise. 
We focus first on models that consist of an excitatory population and 
an inhibitory population. Stochastic differential equations are formu-
lated for firing rate models by considering the states to be large, but 
the noise to be comparatively small. Hence, a linearization of the fir-
ing rate function with respect only to noise can be accurate. Next, the 
system of stochastic differential equations is converted to a Fokker–
Planck equation. The stationary solution of the Fokker–Planck partial 
differential equation reveals the probability of finding the system at a 
certain firing rate. We solve the Fokker–Planck equation numerically 
to find such stationary solutions at various parameter values, hence 
building stochastic bifurcation diagrams. The results obtained from 
the stationary solutions of the Fokker–Planck equation shows how 
noise can change the probability of finding the system in each of the 
solutions in the bifurcation diagram. The results show that the same 
magnitude of noise can affect each stable solution differently. There-
fore, evaluating the probability distribution of solutions to rate models 
can increase the capability of these models to analyze network popu-
lation activity obtained from experiments or numerical models.
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Working memory (WM) is the ability to temporarily maintain informa-
tion about stimuli that are no longer present in the sensory systems. 
WM retention is associated with elevated firing rates in the neural 
populations that encode the memorized stimuli [1]. Classically, WM is 
modelled as a bistable system with a background low-activity state 
and the high-firing rate state that corresponds to the memory being 
retained [2]. Alongside with the firing ratess, oscillatory activity is also 
modulated during WM retention, notably one observes an increase of 
beta power in the stimulus-selective prefrontal populations [3]. One 
hypothesis is that the beta oscillations stabilize the persistent WM, 
thereby preserving a status quo [4]. However, the mechanisms for this 
network stabilization are not understood.

Fig. 1 Self‑consistent spike train power spectrum from a network of 
LIF neurons with high synaptic weights and dominating inhibition 
and the solution of our theory. We obtain a better approximation, 
where self‑consistent is achieved. For a more adequate approxima‑
tion, a higher dimensional OU process is required
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In this work, we propose a mechanism that allows to stabilize WM 
retention in the presence of distractors by a non-selective beta-oscil-
latory input. We consider two identical excitatory-inhibitory popula-
tions described by Wilson-Cowan like equations, the first one being 
selective to the stimulus (S), the second—to the distractor (D). The 
populations are bistable and coupled by mutual inhibition, so only 
one of them could be in the memory state at the same time. Both 
populations received beta-band oscillatory input. In our model, the 
memory state (as opposed to the background state) is associated with 
beta-band resonance. Consequently, the oscillatory input entrained a 
population only if it was in the memory state. Furthermore, oscillatory 
entrainment produced an increase of firing rate in the population, due 
to the non-linear properties of input–output relation of neurons.
We use our model to simulate a prototypical WM task (Fig. 1). Ini-
tially, both populations were in the background state. Then we deliv-
ered an excitatory pulse to the S-population (stimulus presentation), 
switching it to the memory state. Subsequently a similar “distractor” 
pulse was delivered to the D-population. We compared the responses 
of the model with and without the background oscillatory forcing. 
External beta-band input to both populations selectively excited the 
S-population, which lead to additional inhibition of the D-population 
(due to S- > D inhibitory connection). In such condition, presenta-
tion of the distractor was not enough to switch the D-population to 
the active state, so the state of the system (S is active, D is inactive) 
was preserved. Without oscillatory input, the D-population activated, 
returning the S-population to the background. Thus, we found that 
beta-band forcing prevented the distractor from disturbing the beta-
resonant WM trace.
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Although neuronal firing often represents the sum of inputs, many 
computations require multiplication. Multiplication by a constant 
corresponds to a change of slope (gain) of the input–output relation-
ship of a neuron or network [1]. Such gain modulation have been 
observed in individual biological neurons in vivo [1, 2]. In this work, 
however, we evolve a network (rather than single neurons) of model 
neurons (adaptive exponential integrate and fire, [3]) to perform mul-
tiplicative operations. The networks were evolved using a model of 
evolution of complex networks [4] in which the structure of the net-
works is encoded in linear genomes in a way inspired by RNA world), 
and allows for addition or removal of connections in the network, 
changes of synaptic weights, and addition or removal of interneu-
rons. The fitness function in the artificial evolution rewarded for 
the correct number of spikes in response to the input (with linear or 
non-linear input–output relationship, and maximum firing rate lower 
than 200 Hz; Fig. 1); this correct number of spikes varied depending 
on the level of modulation (a second input to the network), with the 
expected response that corresponded to a multiplicative operation. 
Both the input and modulation were encoded as a varying level of 
synaptic activation of interneurons, and the number of spikes on the 
output was measured over 240 ms. We have evolved small networks 
of spiking neurons with both linear and non-linear (exponential, sig-
moid) input–output relationships (Fig. 1). Our preliminary results indi-
cate that it is possible to evolve small networks for such a task, and 
suggest, perhaps unsurprisingly, that larger networks allow for a more 
precise computation of this type.
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Fig. 1 Results of the simulation. A. No input oscillations. B. Beta‑band 
input oscillations. Blue: excitatory firing rates, red: inhibitory firing 
rates. Top panels: S‑population, bottom panels: D‑population

Fig. 1 The input–output relationship of the network for two extreme 
levels of modulation the network was evolved for, corresponding to 
multiplying the response for low modulation (left panel) by about 5 
for high modulation (right panel)
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Biological systems maintain their functionality in presence of noise 
and damage (for a more detailed introduction, see [1]). Such robust-
ness can stem from redundancy of elements, but large artificial neural 
networks are not necessarily more robust than very small networks. In 
order to understand how robustness emerges in spiking neural net-
works performing simple computational tasks, we have evolved very 
small networks of adaptive exponential integrate and fire neurons [2]. 
The networks consisted of 3 inputs, and up to 4 adaptive exponential 
neurons: up to 3 interneurons, and 1 output, with inputs connect-
ing to interneurons, interneurons to output, and recurrent connec-
tions allowed between interneurons. The task of the networks was to 
produce spike(s) on output when the inputs present signals to the 
interneurons in a certain order (Fig. 1). Each signal lasts for 6 ms and 
is followed by silence on all inputs for 16 ms. The artificial evolution-
ary process (in which the structure of the network is encoded in linear 
genomes in a way inspired by RNA world; see [1] for details) allows for 
addition or removal of connections in the network, changes of syn-
aptic weights, and addition or removal of interneurons [3]. We have 
investigated the evolution of such networks in presence of additive 
Gaussian noise (SD 2 mV) on membrane potential, and were successful 
in obtaining networks who were almost perfect (responding with one 
spike to all target subsequences in the output, with hardly any spikes 
elsewhere). Our results show that evolved networks were very robust 
to perturbation of neuronal parameters. The best network from 50 
independent runs was robust to changes of all neuronal parameters 
tested, such as effective resting potential (evolved for − 70 mV, range 
of robustness: [− 60, − 83] mV), reset potential after the spike (− 58; 
[− 45, − 63] mV), spike initiation threshold potential (− 50; [− 48, − 53] 
mV), membrane time constant (20; [9, 100] ms), slope factor (2; [1.0, 

2.7] mV), membrane capacitance (0.2; [0.18, 0.23] nF), subthreshold 
adaptation conductance (2; [− 10, 17] nS), and spike-initiated adapta-
tion (0; [0, 40] pA). Moreover, we have also observed that the evolved 
networks are robust to variation on the length of silences (evolved for 
16 mS, robustness range [10, 50] ms) between signals and the length 
of signals (6; [5, 7] ms), indicating that such network can maintain their 
state.
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Perceptual detection and estimation may be improved in the mul-
tisensory condition relative to the unisensory condition by combin-
ing evidence across sensory modalities. The integrative properties of 
multisensory neurons are often evaluated by comparing the relative 
strength of responses to unimodal and multimodal stimuli using the 
multisensory enhancement index [1]. However, it remains unknown 
which features of multimodal neural responses lead to enhanced per-
ceptual performance in multisensory conditions. Here we use a model 
for the neural implementation of Bayesian inference to reassess the 
commonly used multisensory enhancement index as a measure of 
multisensory integration. The non-uniform population code model 
describes how populations of neurons can perform Bayesian infer-
ence. It assumes that the population structure is matched to the sta-
tistics of the environment, where preferred stimuli are drawn from the 
prior distribution and the neural population response to a stimulus is 
proportional to the likelihood function. It has been shown that, in this 
framework, optimal cue combination is multiplicative at the popula-
tion level [2]. Specifically, a center-of-mass decoding of the population 
will approximate a Bayesian estimate when the population response 
to multiple stimulus cues is proportional to the produce of the 
responses to the individual cues. We show here that the mechanism 
used to implement multiplicative selectivity determines whether mul-
tisensory enhancement is correlated with performance enhancement. 
In the non-uniform population code, optimal multisensory integration 
only depends on the pattern of activity over the population, not the 
strength of the responses. Therefore, if neurons implement perfect 
multiplication of their inputs, multisensory enhancement will be unre-
lated to performance. If neurons implement an approximation mul-
tiplication, then multisensory enhancement may be correlated with 
performance enhancement. Specifically, we examined the responses 
of model neurons that use a sigmoid input–output transformation 
to perform approximate multiplication [3]. In this network, both the 
accuracy of the multiplication and the enhancement index changed 
depending on where the input fell on the sigmoidal curve. Thus, multi-
sensory enhancement was correlated with performance enhancement 
because it was correlated with the accuracy of the multiplication. 
Therefore, in this framework, multisensory enhancement may be cor-
related with, but is not causally related to performance enhancement. 

Fig. 1 The input and response of a suboptimal network. The top 
three lines show the input signals, colour coded for the order in 
which they appear (to facilitate the analysis of the network activity). 
The bottom line shows the voltage of the output neuron (the activity 
of the interaneurons is not shown). During artificial evolution, the 
spikes after the input sequence “A B C” are rewarded (green rectan‑
gles) and any other spikes (red circles) are penalized (such spikes 
occur very rarely in the response of the best networks at the end of 
the successful evolutionary runs)
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This work highlights the importance of using population measures to 
determine which features of multisensory neural responses lead to 
enhanced perceptual performance in multisensory conditions.
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It is a significant challenge to develop physiologically grounded neural 
models that produce ethologically relevant behavior. Deep convolu-
tional networks have potential in this direction, as they can perform 
fairly realistic visual processing. However, many aspects of their behav-
ior, activity, and mechanisms are unrealistic. For example, although the 
architectures of well-known convolutional networks (e.g. ResNet) were 
inspired by primate visual cortex, they are dissimilar in their specific 
layers and connections, and in the statistics of these connections (e.g. 
distributions of sparseness and in-degree). If convolutional networks 
had physiologically realistic architectures, they could be compared 
more directly with the brain. In this direction, the current study opti-
mizes convolutional network hyperparameters to produce networks 
that match various anatomical and physiological data. The networks 
have one-to-one homologies with primate visual areas. The main steps 
in this approach are as follows: (1) assemble data related to physiologi-
cal network architecture (e.g. receptive field sizes in each area; fraction 
of inputs to each area that come from each source) from databases 
and literature; (2) find mathematical expressions for these network 
properties in terms of convolutional network hyperparameters; (3) 
define a cost function based on the difference between physiological 
parameters and corresponding network parameters; (4) find hyper-
parameters that minimize the cost. Care is needed in formulating the 
cost function, to ensure consistency between receptive field sizes 
and spatial resolution across converging paths. If the optimization 
step is successful, this procedure produces a convolutional network 
architecture that is driven by physiological data. A convolutional layer 
generally corresponds to a single layer of a single cortical area. Physi-
ological parameters associated with a layer are the number of neurons 
(estimated from cell density, layer thickness, and cortical surface area), 
the number of extrinsic inputs per neuron (estimated from cell recon-
structions), and receptive field sizes (estimated from electrophysiology 
studies). Parameters associated with inter-area connections include 
the fraction of neurons innervating each target that come from each 
source area, and the percentage of supragranular versus infragranular 
cells that contribute to these projections.
The optimization is a non-convex integer programming problem, a 
type of problem that can be difficult in general. However, good results 
have been consistently obtained so far by converting integer param-
eters to floating point numbers, optimizing with the Adam algorithm, 
and rounding the results. Work in progress includes accounting for 
varying degrees of certainty of different parameters, and testing net-
works derived with these methods on standard vision problems such 
as CIFAR-10. Open-source code is available from https ://githu b.com/
bptri pp/calc. Future work will include application of this approach to 
a model of visually guided grasping. It is also hoped that the approach 
can be generalized to mouse and human networks.

This work is a step toward physiologically grounded neural models 
that produce ethologically relevant behavior. Multiple other steps are 
not addressed here, include developing realistic learning experiences. 
Ultimately, such models may lead to new insights into relationships 
between low-level mechanisms, representations, and behavior.
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The biological computations underlying sensory perception, cog-
nition, and goal-directed movements are thought to emerge from 
interactions across large groups of cortical neurons. While it is now 
possible to record ever larger neural populations, detecting functional 
groupings of neurons and characterizing their computational opera-
tions has proven notoriously difficult. The problem of finding func-
tional groupings is at one level statistical in nature, i.e., showing that 
neurons belonging to one group of neurons are significantly more 
similar in function than other neurons. In cortical areas where the tun-
ing properties of individual neurons are well established, the task of 
grouping neurons according to their functional similarities could seem 
like a trivial matter (e.g., shared orientation tuning). However, a grow-
ing number of studies have shown that these simple tuning models 
are often task or context-dependent and will break down under more 
complex or ethologically relevant conditions. Although measures of 
coordinated spike activity have been widely used to infer the func-
tional relationships between neurons, statistical and theoretical issues 
have limited the success of this approach. Here, we introduce a new 
approach for identifying NETworks of functionally SIMilar neurons 
(SIMNETS). Our approach is based on the premise that we can char-
acterize the computation being performed by a neuron by examining 
the intrinsic relationship between the outputs (spike trains) it emits 
across different sets of inputs. We can represent these relationships 
using a pairwise distance matrix, where each entry represents the 
similarity between two spike trains. We refer to this as a ‘trial similar-
ity matrix’ (TSM). Comparing the TSMs of simultaneously recorded 
neurons allows us to quantify the relationship between their compu-
tational properties. The SIMNETS algorithm involves: (i) calculating 
the similarities between different spike-train time-series generated 
by a single neuron on a neuron-by-neuron basis, (ii) calculating the 
correlation between the resulting TSMs to produce and NxN Correla-
tion matrix (NCM), and (iii) using dimensionality reduction tools com-
bined with agglomerative clustering techniques to identify neurons 
with similar functional properties within the NCM. We have tested 
the SIMNETS algorithm using synthetic data with known ground 
truth. Results show that SIMENTS can identify groups of neurons with 
similar computational properties, even if they use different encoding 
schemes (based on firing rate or precise spike timing). We also dem-
onstrate that clustering performance is severely impaired using stand-
ard approaches that directly compare spike-trainsbetweendifferent 
neurons. To show the generality of the method, we applied SIMNETS 
to two publicly available datasets, including 112 primate V1 neurons 
recorded during the presentation of drifting gratings and a dataset 
of 80 rat hippocampal neurons during a navigation task. Our results 
shown that our algorithm can detect groups of functionally related 
neurons within these diverse neuronal populations. The SIMNETS 
framework provides a principled way to describe the relationship 
between neurons and determine if functional categories are present, 
without having to impose specific encoding modelsa priori. This data 
driven approach will greatly facilitate the analysis of networks of neu-
rons engaged during complex natural behaviors.
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We study finite-size fluctuations in a deterministic coupled spiking 
neural network with nonuniform coupling. We generalize a previously 
developed theory of finite size effects for globally coupled neurons. In 
the uniform case, mean field theory is well defined by averaging over 
the network as the number of neurons in the network goes to infin-
ity. However, for nonuniform coupling it is no longer possible to aver-
age over the entire network. We show that if the coupling function 
approaches a continuous function in the infinite system size limit then 
an average over a local neighborhood can be defined such that mean 
field theory is well defined. We then derive a perturbation expansion in 
the inverse system size around the mean field limit for the covariance of 
the synaptic drive. We also show that the fluctuations in the firing rate of 
a neuron cannot be computed perturbatively in a similar series.
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Spatial and temporal dimensions are fundamental for orientation, 
adaptation, and survival or organisms. Hippocampus has been identi-
fied as the main neuroanatomical structure involved both in space and 
time perception. It has been hypothesized that hippocampus may be in 
fact involved in conceptual understanding of many other dimensions. 
The spatial position of an animal can be reliably decoded from the neu-
ronal activity of several cell populations in the hippocampus. In par-
ticular, place cells in the hippocampus fire at only a few locations in a 
spatial environment, and the position of the animal can be readily read 
out from single active neurons. It has been recently found that some 
neurons in the hippocampus, called “time cells”, fire as time cells coding 
the time interval during a behavioral task. In this study we investigated 
the interval timing, i.e. the ability of perception and use of durations in 
the supra-second range. One important characteristic of interval timing 
is the scale invariance, i.e., the time-estimation error seems to linearly 
increase with the estimated duration. Scale invariance is extremely 
stable over behavioral, lesion, pharmacological, and neurophysiologi-
cal manipulations. Scale invariance has been observed also across 
species from invertebrates to fish, birds, and mammals, such as mice, 
rats, and humans. Although the neuroanatomy of interval timing is still 
under debate, hippocampal lesions have been shown to affect peak 
time in peak-interval procedures. For example, dorsal hippocampal 
(DH) lesions produced leftward shifts in peak times while ventral hip-
pocampal (VH) lesions produced a temporary rightward shift of peak 
times. We mathematically modeled the hippocampus memory of time 
as a random variable with a wide range of values around the desired 
criterion time. The key assumption of our study is that the hippocam-
pus creates a topological map of durations, similar to the spatial map 
created by place cells. As a result, we successfully modeled peak shift 
due to the extent and location of the lesions and were able to identify 
the effect of lesions on scale invariance of interval timing.
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We cast the free energy principle (FEP) in the neurosciences following 
the principles of mechanics, which articulates that all living organisms 
are evolutionally self-organized to tend to minimize the sensory uncer-
tainty about environmental encounters.The FEP is a recent endeavor 
trying to answer to `what is life?’[1], life is characterized by temporal 
regularity and self-adaptiveness, which may be encapsulated, in con-
temporary terms, into autopoiesis and enaction.The FEP suggests that 
the organisms implement minimization by calling forth the informa-
tional FE (IFE) in the brain and thatthe time-integral of the IFE gives 
an estimate of the upper bound of the sensory uncertainty [2].We 
propose that the minimization of the IFE must continually take place 
over a finite temporal horizon of an organism’s unfolding environmen-
tal event.Our scheme is a generalization of the conventional theory 
which approximates minimization of the IFE at each point in time 
when it performs the gradient descent computation [3]. We adopt 
the Laplace-encoded IFE as an informational Lagrangian in imple-
menting the variational FEP in the framework of the principle of least 
action (Hamilton’s principle) [4].And, by subscribing to the standard 
Newtonian dynamics, we consider the IFE a function of position and 
velocity as the metaphors for the organism’s brain variable and their 
first-order time derivative, respectively.The brain variable maps onto 
the first-order sufficient statistics of the probability density launched 
in the organism’s brain to perform Bayesian filtering of noisy sensory 
data called recognition dynamics (RD). In the ensuing Hamiltonian for-
mulation, the RD prescribes momentum, conjugate to a position, as a 
mechanical measure of prediction error weighted by mass, the preci-
sion. We apply our formalism to a biophysically grounded model for 
neuronal dynamics by suggesting that the large-scale architecture of 
the brain be an emergent coarse-grained description of the interact-
ing many-body neurons. The resulting RD is deterministic and hier-
archical, which notably incorporates dynamics of both predictions 
and prediction errors of the perceptual states [5]. Consequently, the 
detail of the neural circuitry from our formulation differs from those 
supported by the generalized filtering which generates only dynam-
ics of predictions of the causal and hidden states, not their prediction 
errors [6]. However, the general structure of message passing, namely 
descending predictions and ascending prediction errors in the hierar-
chical network, shows the close similarity.
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Introduction: In the development of a brain-computer interface, 
the type of signal recording method is crucial. To date, a closed-loop 
neural interface can improve hand and arm function for individu-
als by using intracortical recordings to control muscle stimulation. 
Here we explore whether using brain surface signals recorded via 
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electrocorticography (ECoG) is sufficient for decoding forelimb move-
ment and compare the results to simultaneous intercortical recordings 
of local field potentials (LFP) in rats.
Methods: Three Long-Evans rats received implantations of both intra-
cortical microwires and micro electrocorticography (µECoG) electrodes 
targeting the left forelimb sensorimotor cortex. Before implantation, 
the animals were trained for a novel lever task allowing us to measure 
forelimb extension movement. While animals performed this task, we 
recorded brain activity from 16 intracortical electrodes and 12 µECoG 
electrodes (Fig. 1A). The movement-related information was identified 
in the high frequency band (> 150 Hz). To decode the animals’ move-
ment, a Canonical Correlation Analysis Filter (CCA) algorithm was 
applied to the multi-channel envelopes of high-gamma signals for 
both methods. Finally, we compared the quality of the decodes based 
on each recording method.
Results: Figure 1B illustrates the filtered signal 200–400 Hz of both the 
µECoG electrode array and the intracortical array and demonstrates a 
high correlation between two signals (correlation coefficient r > 0.5). 
The decoding performance of µECoG was similar to LFP for this lever 
task in all three animals (LFP: r = 0.48 +- 0.05, µECoG: 0.45 +- 0.06, 
p > 0.05).
Discussion: Our results suggest that µECoG may replace intracortical 
LFP functionally when developing a closed-loop brain-computer inter-
face that decodes forelimb movement. Less invasive recordings with 
less required power due to smaller recording frequency bandwidth 
will likely speed the development of a clinically viable closed-loop 
brain-spinal interface. In addition, signal processing must be kept effi-
cient in order to process all signals on the implanted device. Here we 
find that µECoG processed as described above allows the decoding of 
forelimb movement in similar accuracy compared to LFPs. Computa-
tional efficiency may be a substantial advantage when designing the 
clinical neural devices to treat brain and spinal cord injury.
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Deep brain stimulation (DBS), as it is currently available, involves 
administering a constant frequency pulse train via electrodes 
implanted into the brain and is known to be an effective treatment 
for a variety of neurological disorders, including Parkinson’s Disease 
and Essential Tremor (ET). There is significant evidence to suggest 
that the ‘closed loop’ approach of delivering stimulation according to 
the ongoing symptoms of the patient has the potential to improve 

both the effectiveness and efficiency of the treatment. The success of 
closed loop DBS depends on being able to devise a stimulation strat-
egy according to the measurable and quantifiable symptoms of the 
patient. A useful stepping stone towards this is to construct a math-
ematical model which can describe the dynamics of the oscillations in 
addition to describing how such oscillations should change as a result 
of applying stimulation. Our work focuses on the use of the Kuramoto 
model to describe tremor oscillations found in patients with ET. We 
show how this model can capture the basic dynamics of tremor oscil-
lations found in such patients and then, using a reduced form of the 
Kuramoto model, we derive expressions which describe how a patient 
should respond to stimulation at a given phase and amplitude. We 
predict that, provided certain conditions are satisfied, the best stimu-
lation strategy should be phase specific but also that applying stimu-
lation at lower amplitudes should have a greater effect. We support 
this surprising prediction with some preliminary results obtained from 
ET patients. In light of our predictions, we also propose a new hybrid 
strategy which effectively combines two of the strategies found in the 
literature, namely phasic and adaptive DBS.
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While retinal circuitry may appear simple compared to higher-level 
areas of the brain, the retina contains a surprising diversity of retinal 
ganglion types (detecting motion, color, etc.) that perform an equally 
wide range of computations to “preprocess” visual input before trans-
mission through the optic nerve. It is often assumed that specific 
retinal ganglion cell types are selective for visual features that are par-
ticularly useful for encoding visual stimuli (e.g. center-surround cells) 
or particularly relevant for an animal’s perceptual world (e.g. sensitivity 
for looming stimuli), comprising a behaviorally-relevant information 
channel encoding specific information about the visual environment. 
This research focuses on motion-sensitive retinal ganglion cells. Spe-
cifically, we ask which types of motion-sensitive cells perform best 
under challenging conditions, for example when the moving target 
is dim relative to the background or under noisy conditions and are 
particularly interested in understanding which ganglion cell types are 
best suited for incorporation into a neuromorphic system for specific 
visual tasks. We construct a number models of retinal ganglion cell 
types implicated in motion-processing, including direction-selective 
models, such as the Hassenstein & Reichardt model [6] or the Barlow-
Levick model [2], as well as motion-sensitive cell types, such as the 
OMS (object-motion sensitive) cell [1] and the W3 cell [3–5]. We then 
examine the performance of these models at detecting varying visual 
stimuli over a range of conditions, including noise and jitter, and dis-
cuss strategies by which outputs of different cell types can best be 
combined to track moving targets in a visual scene. We then compare 
the effectiveness of these strategies on “real-world” videos of visual 
scenes.
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Fig. 1 (a) Alignment of Intracortical microarrays and µECoG elec‑
trodes prior to implantation. (b) Filtered signals from of intracortical 
LFP and µECoG during the lever tasks
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About 16 million Americans have been diagnosed with an alcohol 
use disorder and alcohol use costs the United States approximately 
250 billion dollars a year. Therefore, identifying the factors that lead 
to excessive drinking and understanding the neural mechanisms of 
how they do so is a vital goal in neuroscience. In this study, we used 
information theory and Bayesian modelling techniques to examine 
both neural and behavioral signals that predict alcohol consump-
tion in rodents. We performed in vivo electrophysiological recordings 
in the dorsal medial prefrontal cortex (mPFC, a brain region heavily 
involved in decision-making) of a validated rodent model of excessive 
drinking (alcohol preferring (P) rat) and a control rat line (Wistar) dur-
ing a simple cued alcohol drinking task. We used dynamic information 
theory (mutual information) to examine changes in encoding of future 
drinking (intent) at multiple time points throughout this task by indi-
vidual neurons. We found that P rats showed decreased intent encod-
ing compared to Wistars when consuming alcohol, but similar intent 
encoding when consuming water. These results indicate that encoding 
of alcohol drinking intent is diminished in the mPFC in animals with 
a genetic risk for excessive drinking (P rats). Next, we used behavioral 
data and Bayesian modelling techniques to construct a logistic regres-
sion model incorporating behavioral variables to predict when these 
rodents would drink. Model coefficients for number of previous drink-
ing bouts and distance to sipper were significant for many recordings 
indicating predictive power in determining if the animal would drink 
on a given trial. The model was able to predict future drinking well. For 
instance, receiver operating characteristics area under the curve was 
above 0.8 for 22 of 26 individual animal recordings and for all animals 
combined. These results indicate that the logistic regression model 
developed herein is capable of predicting future drinking in this 
experimental paradigm. Overall, these results identify key behavioral 
variables that influence the decision to consume alcohol and provide 
evidence that the neural processes underlying this decision-making 
process are fundamentally altered in excessive drinking animals. In 
future studies, we will continue to combine these techniques to exam-
ine encoding of behavioral signals and latent variables relevant to the 
prediction of drinking in other brain regions to more fully understand 
the key changes in information processing underlying maladaptive 
decision-making in alcohol use disorder.
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The task of the nervous system is to detect, compute, and make deci-
sions in order to make responses that best suit the survival of the 
organism. Under evolutionary pressures, the organism evolves their 
nervous system to achieve high reliability and precision. Take the 
visual system for example: the in vitro experiment demonstrates that 
the retina can count single photons. However, the nervous system is 
also accompanied with various types of noises, such as synaptic con-
duction, thermal fluctuations of photosensitive molecules, as well 
as stochastic openings and closings of ion channels. Noise is usually 
regarded as a disturbance which lowers reliability and precision. How-
ever, there is a phenomenon in nonlinear physics known as “stochastic 

resonance (SR)” which states something entirely different: the pres-
ence of noise can enhance the detection of a weak sub-threshold 
signal. In this study, we studied the encoding process of a dynamic 
pattern under different contrast levels, and then examined if adding 
noise can enhance the information transfer when the contrast is low. 
We used in vitro electrophysiological recording and computer simula-
tion to investigate how noise influences the encoding process of dif-
ferent light intensity patterns in the retina and tried to identify the 
relevant circuity components that would result in the enhancement. 
We generated our stimulus sequence by hidden markov model, and 
we used a gamma corrected LCD panel for light stimulation which 
focused on the photoreceptor layer of the retina by a microscope 
lens and calibrated by a separate digital microscope on the top with 
an amplified photodiode. The extracellular recording was conducted 
by using 64 channels (electrodes) MEA with the diameter of each elec-
trode 10 mmor 30 mm, and 200mm apart ordered in a square fashion 
to measure the spiking pattern (action potentials) of the retinal gan-
glion cells. Time shifted mutual information analysis (Shannon infor-
mation) was performed for different contrast conditions to quantify 
information transfer. We found that lower the contrast is, lower the 
peak height of time shifted mutual information would be, and this 
scaling was nonlinear. There were different patterns and shapes of this 
time shifted mutual information. Roughly, there were two kinds of the 
pattern: (1) single peak, and (2) double peak, and that lowering the 
contrast would not change the peak location in time and the shape 
of it, just the peak height. This result gives us insights about what the 
limitation of the encoding/detection process is. We are in the process 
of adding spatial uniform or non-uniform noise in the sub-threshold 
contrast level and test SR directly. As for the effect of noise, we per-
formed a simulation using FitzHugh–Nagumo model and the input 
was a periodic sine wave, the results showed that adding noise can 
indeed enhance the phase lock ability of the cells.
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Amongst many studies of small circuits and brain network topologies, 
recurrently connected neurons are universally found in the brain of 
most species, including primates, rodents and insects. These recurrent 
circuits have been suggested to play multiple roles in brain functions. 
Indeed, from an evolutionary point of view, it is cost effective for the 
nervous systems to develop a “Swiss army knife” solution, in which a 
small set of neural circuit motifs are able to perform a variety of func-
tions. However, the exact structure of these circuits as well as how they 
give rise to the diverse functions is still unclear. Some of the known 
functions include robustness, balancing of excitation and inhibition, 
decision making, oscillations and memory. In this project, we system-
atically studied the functions of a class of recurrently connected micro-
circuits, using a computational modeling approach. We first identified 
four-node motifs that are abundant in the current Drosophila connec-
tome (around 22,835 neurons) in comparison to random networks. 
Two approaches are then employed to study the functionalities of 
the over-represented circuits: a dynamical and an information-the-
oretical one. For the dynamical approach, our analysis demonstrated 
that one of the most abundant motifs exhibits diverse functionalities, 
including working memory, decision making, flip-flop switching and 
oscillation. For the information-theoretic approach, we obtained a 
rudimentary set of metrics that partially reflects the system’s dynam-
ics without information about the details of parameters, including the 
distribution of firing rate Fano factor and ISI Fano factor. This can serve 
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as a reference for experimentalists who wish to understand emergent 
properties that arises from the interconnection of neurons but do 
not know the precise parameters or inputs. In summary, our research 
reveals the potential functions of a class of small recurrent circuits, 
and provide insights into the canonical architecture of the nervous 
systems.
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Epilepsy is the fourth most common neurological disease character-
ized by unpredictable seizures interrupting normal brain function. 
Despite considerable advances in the treatment and diagnosis of sei-
zure disorders, about 40% of patients remain pharmacoresistant [1]. 
Seizures are often correlated with hippocampal sclerosis [2], which is 
classified by Watson Grade (WG) ranging from 0 to 5, from less to more 
severe case [3]. To elucidate mechanisms underlying epileptogenesis 
in human hippocampus we use an in vitro workflow to study the excit-
ability of hippocampal neurons in tissue slices from specimens excised 
during brain surgery for the treatment of focal, pharmacoresistant 
epilepsy. We systematically analyzed the morphological and electro-
physiological properties of human hippocampal dentate gyrus gran-
ule cells with different degree of hippocampal sclerosis (WG1 vs. WG4). 
We find that spiking properties such as f-I curve and spike-frequency 
adaptation are correlated with WG, while passive properties such 
as input resistance and the resting potential are not. The majority of 
morphological properties of single-neurons do not correlate with the 
degree of hippocampal sclerosis, further pointing to an excitability dif-
ference as the most prominent single-neuron biomarker. To test the 
implications of the observed differences under realistic scenarios we 
develop biophysically detailed computational models of granule cells 
with active dendrites that reproduce key electrophysiological features 
of human hippocampal granule cells as function of WG. Using these 
models we explored relevant scenarios associated with hippocampal 
sclerosis and the propensity towards seizure initiation.
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The Allen Institute for Brain Science has a mission to understand cor-
tical computations related to the rodent visual pathway. Part of this 
approach is to develop accurate single-neuron models that capture 
basic observations across multiple spatiotemporal scales [1]. The Allen 

Cell Types Database reports an approach for generating single-neu-
ron models from 3D morphologies and somatic electrophysiological 
recordings. While informative, these models are limited to observa-
tions at the soma whereas approx. 95% of neural surface area is along 
their dendrites. Improper characterization of these dendrites can lead 
to gross distortion of their synaptic integration capabilities given 
the main postsynaptic target is along dendritic cables (especially of 
excitatory synapses). To overcome these challenges, we develop a 
model generation workflow based on experimental data from two 
modalities:in vitro somatic intracellular recordings from slice experi-
ments and in vivo extracellular recordings of single units from behav-
ing rodent experiments. Especially regarding the latter data modality, 
a novel extracellular probe called Neuropixels offers the ability to 
measure extracellular action potential (EAP) signatures from multiple 
(up to 10) contacts in vivo [2]. We use these EAP signatures extending 
over hundreds of μm as a constraint for modeling various passive and 
active dendritic properties [3]. Specifically, we modify the fitness func-
tion of the genetic algorithm within our optimization framework to 
include extracellular features, such as the amplitude and the width of 
the backpropagating EAP, extracted from multi-channel recordings in 
freely moving animals alongside intracellular features at the soma. We 
evaluate the two models with regards to their goodness-of-fit against 
in vitro and  in vivo data for excitatory and inhibitory cell classes 
and show how adding  in vivo dendritic features to the optimization 
contributes to capturing key intracellular and extracellular observa-
bles. These results lay the groundwork towards a powerful modeling 
approach leveraging the rich data set at our disposal.
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There has been increased interest and progress in the field of neural 
prosthetics with many exciting efforts focusing on the development 
of brain-machine interfaces to drive sensory devices (e.g. retina, coch-
lea) or motor devices (e.g. prosthetic limbs). Yet, with a few notable 
exceptions, employment of neuro-prosthetics for monitoring and 
intervention in cognitive physiology and pathologies has remained 
limited. Concurrently, cognitive impairment has proven to be among 
the least tractable and most disabling in a wide variety of brain dis-
orders including autism, epilepsy, depression and schizophrenia. 
Despite the intense interest and potential regarding the use of electri-
cal stimulation in cognitive disorders, there is still today a debilitating 
lack of understanding about where, when and how to inject current 
into cortical circuits to modulate higher-level brain processing. At the 
same time, the Allen Institute for Brain Science has developed a large-
scale approach for the robust and reproducible deconstruction of cor-
tical circuitry toward understanding how the interplay of components 
gives rise to high-level processing [1]. We use a similar approach to 
address the challenges linked to understanding and predicting brain 
stimulation effects with the primary goal being to tackle the funda-
mental question of how to inject current to transform the specificity 
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and capability of electrical stimulation devices either in open- or 
closed-loop mode to ameliorate cognitive disorders. Specifically, using 
a combination of biophysically detailed simulation workflow (allow-
ing the exploration and permutation of key parameters in electrical 
stimulation entrainment) in parallel with novel, multi-patch brain slice 
experiments we seek to understand electric field effects at the single-
neuron level and how different parameters such as the distance from 
the electrode or stimulation characteristics impact sub-threshold and 
spiking responses of single neurons. We use this platform to gener-
ate novel insights toward significantly refining brain stimulation tech-
niques in therapeutic neuroscience research.
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Extracellular potential in the brain reflects the activity of transmem-
brane currents of neural and glial cells. The long range of the electric 
field leads to significant correlations between recordings at distant 
sites, complicating the analysis. Reconstructing the Current Source 
Density (CSD) which is the local origin of the potential facilitates data 
interpretation. In 2012 we introduced Kernel Current Source Den-
sity method (KCSD), a model-based reconstruction method, which 
allows source estimation from arbitrary distribution of electrodes. 
The method is also guarded against over-fitting by constraining com-
plexity of the inferred CSD model. Here we revisit the method on the 
occasion of a new open Python implementation which includes new 
functionality and several additional diagnostic tools as compared to 
the original. The goal of this presentation is to advertise the method, 
the new implementation, and the new diagnostics available. Specifi-
cally we (1) analyze spectral properties of the method; (2) introduce 
error maps to investigate accuracy of the reconstruction; (3) introduce 
L-curve for estimation of optimal reconstruction parameters. The new 
implementation allows to perform reconstruction for 1D, 2D, and 3D 
setups, assuming sources distributed in the whole tissue, inside a 
slice, or on single cells when the cell morphology is available and the 
potential comes from that cell. The toolbox accompanied by a tuto-
rial Jupyter notebook is available at https ://githu b.com/Neuro infla b/
kCSD-pytho n
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Knowledge of electrical properties of neural tissue, such as conductiv-
ity, is important in various applications such as therapeutic electrical 
stimulation of the nervous system and electrical impedance tomog-
raphy. It is also essential for the interpretation of intrinsic electrical 
signals in neuroscience such as single and multi-unit activity, the local 
field potential and electroencephalogram. It is usually assumed that 
neural tissue can be described by a locally homogeneous conductiv-
ity that captures the bulk properties of heterogeneous cellular micro-
structure. However, the cellular structure of tissue creates a complex 
partition of intra- and extra-cellular spaces that are separated by a 

high impedance membrane. These microstructural inhomogeneities 
lead to complicated current paths through the tissue, invalidating 
assumptions that allow a description based on a simple conductivity.
Here, we review our recent work that begins with the underlying het-
erogeneous microstructure of neural tissue and derives its bulk electri-
cal properties in the form of the tissue admittivity, which generalized 
the usual conductivity [1–4]. A novel aspect of the admittivity is that 
it has both spatial and temporal spectral frequency dependence. 
New expressions are given for the admittivity of several tissue types 
including isotropic tissues with fibers oriented randomly in all (three-
dimensional) directions and laminar tissues types with fibers oriented 
randomly within planes that are stacked upon each other. The spatio-
temporal spectral frequency dependence of the tissue admittivity 
leads to non-trivial spatiotemporal electrical filtering properties of 
neural tissue, which we illustrate here. First, we show how a variation 
in a temporal parameter, namely applied pulse-width, can affect a 
spatial property like the profile of the extracellular potential. Second, 
we showed that, for tissue with a homogeneous structural anisotropy, 
variation in a spatial variable, namely distance from the electrode, can 
nonetheless affect the degree of electrical anisotropy.
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We have developed a network model where one can independently 
modulate both local and global features of the network connectivity. 
Our application of local microstructures is based on the SONET model 
[1], where one can specify the frequencies of different two-edge 
motifs in the network. We have extended this approach to allow for 
the inclusion of global structure in the patterns of connections, such 
as connections based on an underlying geometry. Using this model, 
we investigated how the influence of microstructure (motifs) on the 
emergence of synchronous events is modulated by spatial features of 
the network.
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The combined impact of cellular noise sources and network dynamics 
on the intrinsic variability of cortical activity is not known. We quanti-
fied this variability by analyzing how somatic membrane potentials in 
simulations of neocortical microcircuitry with biological noise sources 
diverged from identical initial conditions. By selectively disabling noise 
sources, we found that any combination of noise or subthreshold per-
turbations causes chaotic divergence of membrane potentials with 
similarly high steady-state variability. However, the rate at which mem-
brane potentials diverged depended on which noise sources were 
active, with synaptic noise dominating the rate. We found that, in spite 
of this high intrinsic variability, thalamocortical inputs can overcome 
chaotic network dynamics to produce reliable spike timing. However, 
synaptic noise causes a substantial residual spike-timing variability, 
and the rate by which this evoked activity diverges is similar to spon-
taneous activity. Thus, any mechanism of reliable cortical coding must 
be robust to the limits set by the interplay of synaptic noise and chaos.
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We report on an in silico implementation of voltage-sensitive dye 
imaging (VSDI) for validating and exploring mesoscopic neural activity 
in a biologically detailed digital reconstruction of rat somatosensory 
cortex. This model comprises a network of 31,346 morphologically 
detailed neurons arranged in a 462 × 400 × 2082 μm columnar micro-
circuit. We evaluated the behavior of our in silico VSDI model against 
several findings reported in literature, including the relative contribu-
tions of different cell morphologies and cortical layers to the VSD sig-
nal, the fraction of the VSD signal due to spiking versus subthreshold 
activity, and the phase velocity of a stimulus driven VSDI wavefront. 
Using simulated VSDI measurements, we confirm that our recon-
structed microcircuit exhibits stimulus-evoked response dynamics 
that are qualitatively similar to experimental findings. Furthermore, 
we show that contrary to widely held assumptions, dendritic projec-
tions within L2/3 but emanating from L5 pyramidal cells contrib-
ute significantly to the VSD signal (Fig. 1). In addition, we observe a 

morphology-dependent low-pass filtering effect in L5 contributions 
to the VSD signal, due to the increased dendritic path length between 
L5 somas and their L2/3 apical projections. Last, we find that individ-
ual spikes do not make measurable contributions to the VSD signal 
except during periods of highly synchronous activity, during which 
back propagating action potentials, and not somatic spikes, dominate 
spike-related contribution.
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We present a full-scale cellular level model of the CA1 area of the hip-
pocampus of a rat. The model is built using a bottom-up data-driven 
workflow, along the same lines followed to implement a cortical col-
umn [1]. Starting from a set of reconstructed morphologies for primary 
morphologically defined cell types, associated electrophysiological 
traces, and data-driven channel kinetics, we implemented biophysi-
cally accurate neurons models consistent with statistics of features 
extracted from the experimental traces. A virtual volume [2] was 
populated according to densities and proportions determined in [3]. 
The neurons we connected according to the approach previous devel-
oped for the neocortex [4], and the resulting connectivity and synaptic 
properties were validated against a number of experimental findings. 
The current release is composed by 42 types of neuron (24 excitatory 
and 18 inhibitory) divided into 13 morphological types, 17 morpho-
electrical types, 156 potential pathways, and 7 intrinsic synapse types. 
Simulations of the network show interesting emergent properties, 
such as theta oscillations in a LFP-like signal. The oscillations emerge 
from the intrinsic connectivity of the CA1 circuit driven by the sponta-
neous miniature events without any external input, as observed exper-
imentally [5]. Furthermore, the network activity propagates along 
the septo-temporal axis, consistently with what has been observed 
experimentally [6]. Phenomena like oscillations and traveling waves in 
the theta rhythm range can play important roles in shaping the hip-
pocampus function, but their mechanisms are not completely under-
stood. The full-scale CA1 model represents an important tool to shed 
light on the cellular mechanisms behind such phenomena, elucidate 
the physiological conditions in which they can occur, and eventually 
reveal their role in the brain.
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Fig. 1 Neurites within layer 2/3, belonging to cells in layers 2/3 and 
5, drive the VSD signal. (a) Surface area contributions for each layer by 
depth. a1 Raw (unscaled) surface areas by depth; a2 Effective (scaled) 
surface area by depth
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Increasing computing power and availability of high-performance 
computing (HPC) resources have made it easier for neuroscientists to 
simulate and visualize large-scale brain network models.
However, one bottleneck for scientists developing, researching and 
sharing large-scale networks is the lack of efficient data formats to 
describe such models. A widespread practice is to represent models 
with simulator specific code such as hoc, SLI or python. XML based 
formatshave been proposed as a solution.But the use of XML quickly 
becomes problematic when scaling up to large realistic networks. 
Thus, an open specification is needed that is compact, computation-
ally fast, yet also easy to read and edit. To meet these demands, the 
Allen Institute (AI) and the Blue Brain Project (BBP) have jointly devel-
oped the SONATA (Scalable Open Network Architecture TemplAte) 
Data Format—an open-source framework for representing neuronal 
circuits. The framework utilizes both organizations’ expertise with 
large-scale HPC network simulation, visualization and analysis. It was 
designed for memory and computational efficiency, as well as to 
work across multiple platforms. Even though AI and BBP use differ-
ent approaches to modeling and use different tools, the format allows 
networks built by one institute to be simulated by the other and vice 
versa. We provide the specification documentation, open-source refer-
ence APIs, and model and simulation output examples with the inten-
tion of catalyzing support and adoption of the format in the modeling 
community. The specification describes a format for representing 
nodes (cells) and edges (synapses/junctions) of a network. It uses 
table-based data structures, hdf5 and csv, to represent nodes, edges 
and their respective properties. Furthermore indexing procedures for 
fast and parallelizable lookup of individual nodes and edges. The use 
of hdf5 provides both efficiency in space and read-time. The format 
includes specifics properties and naming conventions, but also allows 
modelers to extend node and edge model properties as they desire, 
to ensure models can be used with a variety of simulation frameworks 
and use cases. Besides network representation, saving the output 
of large-scale network simulations presents formidable challenges. 
The output format must not only be standardized for reproducibility 
and analysis across teams, but also optimized for memory and read/
write performance. The data format architecture we present here 
offers solutions to both problems. A systematic schema for describing 
simulation reports makes it easy for users to exchange their data, and 
moreover the underlying hdf5 based format permits efficient storage 
of variables like spike times, membrane potential, and Ca2+ concen-
tration. Lastly, to bring together network models, simulation output, 
and various run-time conditions (duration, time step, temperature, 
etc.), the specification includes aJSON-based fileformat for configur-
ing simulations, including specifying variables to record from, and 
stimuli to apply. This will help reduce the guesswork normally needed 
to reproduce and adjust other organization’s simulations. The rapid 
advancement in neuroscientific data generation, large-scale data-
driven modeling, and simulation capabilities makes the development 
of standards for network simulations necessary. The SONATA Data For-
mat and framework are open to the community to use and build upon 
with the goal of achieving such a standard data format.
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Spike-timing dependent synaptic plasticity has been characterized on 
a pairwise level in vitro. However, many of the identified forms of plas-
ticity are inherently unstable in recurrent networks. For example, for 
hebbian-style plasticity the strengthening of a connection increases 
the likelihood that it will be strengthened further, leading to runaway 
potentiation. Homeostatic mechanisms have been proposed to stabi-
lize the system, but physiological evidence for them remains indirect 
and inconclusive. For a morphologically detailed model of a cortical 
microcircuit in conjunction with a biologically constrained, calcium-
based model of plasticity we characterized the stability of plastic con-
nectivity in a population of neurons in the absence of an explicitly 
homeostatic mechanism. We explored the evolution of the strengths 
of 24 million recurrent glutamatergic synapses and their stability 
under in vivo-like conditions with simulated external input. We found 
that while individual synapse weights evolved significantly, there was 
a remarkable degree of stability in terms of average synaptic strength 
both on the single cell and population level. We then further char-
acterized how the observed shift of synaptic strength between indi-
vidual synapses affected the response properties of neurons, such as 
their average firing rates or their selectivity for individual stimuli and 
observed an increase in both for neurons in cortical layer 5.
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Synaptic connections in the brain form a highly dynamical map, 
constantly adapting to external stimuli and internal dynamics: new 
connections can be formed, while existing ones can be modified or 
eliminated throughout the entire life of the organism. This adaptabil-
ity of synaptic connections is referred to as “synaptic plasticity” and it 
is thought to be the foundation of learning and memory. Despite all 
the interest of the scientific community, experimental and theoretical 
work on synaptic plasticity is highly fragmented: only a few connec-
tion-types have been characterized experimentally, i.e. those between 
layer 5 thick-tufted pyramidal cells in the neocortex, and no model so 
far has been able to reconcile this sparse body of data. In this work, 
we integrated state of the art data and theories on synaptic plastic-
ity to design a unifying model of a plastic glutamatergic synapse in 
the neocortex. In particular, we extended a previous calcium-based 
model of spike-timing dependent plasticity (STDP) [1] to account for 
more detailed synaptic dynamics: stochastic vesicle release, accurate 
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NMDAR- and VDCC-mediated calcium currents, postsynaptic calcium 
accumulation and clearance, and timescales of plasticity expression. 
Parameters of the model were then constrained to reproduce in vitro 
STDP data from layer 5 thick-tufted pyramidal cells in the somatosen-
sory cortex [2]. The optimized parameters were than applied to all 
other excitatory connections in the same brain area, with the sole 
exception of the potentiated over depressed synapse ratio, re-calcu-
lated for each connection-type to match the expected mean release 
probability [3]. We successfully validated our generalization approach 
against independent plasticity data on layer 2/3 to layer 5 pyramidal 
connections [4], layer 2/3 to layer 2/3 pyramidal connections and layer 
4 to layer 4 spiny stellate connections [5]. Our results show that the 
biophysics of synaptic transmission and the spatial extent of neuronal 
morphologies play a crucial role for synaptic plasticity, due to their 
influence on the magnitude and time course of postsynaptic calcium 
transients. Furthermore, we demonstrated how a few data points are 
required to parametrize a large and heterogeneous set of connections, 
hinting that only a small set of targeted in vitro experiments could be 
necessary to completely characterize the features of synaptic plasticity 
in the brain.
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Neural circuits generate body movements using rhythmic signals, 
however, little is known about characteristics of these signals, and 
their transformation to behavior. Here, we implement the dynamic 
worm, an in silico model for the nematode Caenorhabditis elegans, to 
understand how the nematode’s nervous system transforms stimuli to 
behavior. The model emulates the response of the nervous system to 
stimuli, translates neural activity to muscle forces and muscle impulses 
to body movements, and implements feedback to account for envi-
ronmental entrainment. We validate the dynamic worm in both signal 
propagation directions; back propagating external force applied to 
the body, and investigate touch response behaviors by injection of 
current into sensory and inter neurons. We are able to generate loco-
motion behaviors typical to the nematode from external force waves 
and identify a set of stimuli that generate coherent locomotion. In 
particular, we show that only precise combinations of both sensory 
and inter neurons generate coherent movements, such as crawling 
forward, backward and turns. The characteristics of the movements 
resemble experimentally identified locomotion patterns. We show 
that neural dynamics associated with distinct movements can be 
mapped and classified using low dimensional space, but even more 
importantly, we show that the transformations between the layers of 
the model are dynamic and require full simulation for each stimulus. 
By exploring the effect of the environment on locomotion, we find 

that specific environmental parameters facilitate typical locomotion 
behavior, and environmental sensory feedback can entrain, sustain 
and switch between movements. Taken together, our results show 
that the nervous system encompasses mechanisms of movement ini-
tiation, activated by constant stimulation, and mechanisms of move-
ment sustainment through entrainment by the environment (Fig. 1).
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Although it is widely known that dopamine (DA) neurons play critical 
roles in associative learning, the mapping of neurons and their effect 
on learning still remains unclear. In olfactory learning, it has been 
shown that superfusion of dopamine on mosquito brain strongly 
modulates activities of antennal lobe (AL) neurons. We therefore study 
neural population coding of mosquitoes AL projection neurons sub-
ject to dopamine modulation.
Projection neurons encode different stimuli via population fixed 
points in the response of Projection Neurons (PNs). Methods of dimen-
sion reduction, such as Optimal Exclusive Threshold Reduction (OETR), 
have been shown to be effective in inference of low dimensional odor 
space which spans fixed points associated with monomolecular stim-
uli. Furthermore, the odor space assists in recognition and classifica-
tion of PN responses to mixtures of these stimuli. In our work, we apply 
the OETR method to multi-neuron recordings from mosquitoes PNs in 
three phases: before (S1), during (Dop), and after (S2) superfusion of 

Fig. 1 A: Layers in modeling C. elegans neuromuscular activity. 
Left to right: Layer 1: Modeling the nervous systems as a dynami‑
cal system encompassing the full somatic connectome including 
connectivity neural dynamics. Layer 2: Mapping neural dynamics 
to dynamic muscle impulses (forces). Layer 3: Muscle impulses are 
mapped to a biomechanical body model that incorporates body 
responses and interaction with the environment. Neural stimuli are 
integrated forward to resolve body movements. External forces are 
propagated backward to resolve corresponding neural dynamics. 
B: Typical locomotion patterns generated by three types of external 
wave forces, corresponding to forward (top), backward (middle), 
180° turn (bottom) movements. The external force is propagated 
backward to resolve neural dynamics, which are integrated forward 
to produces movements. Locomotion patterns are characterized 
using body snapshots, sampled every 2 s, (left), curvature (middle) 
and muscle force (right)
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dopamine over the brain of mosquitoes. We first test which stimuli 
produce separable fixed points, and once we found these, we con-
struct a low dimensional odor space to map the fixed points and tran-
sients reaching them. We then examine the representation of the fixed 
points in different phases. The trajectories of the fixed points in three 
different phases (S1, Dop, and S2) reveal that (i) superfusion of dopa-
mine has longer term effects on the AL encoding space, and that (ii) 
the degree of modulation differs from one odor to another. Particu-
larly, neural responses to benzaldehyde show significant fixed point 
relocations in both Dop and S2 phases, while the fixed points associ-
ated with ammonia almost do not change their location in all three 
phases (see Fig. 1A). To investigate how dopamine modulation could 
rearrange neural connectivity in the AL, we employ a network model 
which infers the connectome of neurons in the AL from neural data 
and the odor space. In particular, the model is obtained through con-
vex optimization and provides connectivity matrices of interneurons 
(LNs) and PNs which interact through lateral inhibition. We solve the 
convex optimization problem in three different phases of dopamine 
superfusion (S1, Dop, and S2) and find the connectomes associated 
with each phase. Connectome analysis indicates that the distribu-
tion of connectivity matrices is being modified to accommodate the 
observed relocation of fixed points in the odor space (see Fig. 1B). We 
therefore ask what are the changes the lateral inhibition from LN to PN 
is undergoing by fixing the connectivity within the LNs for all phases. 
We find that the distribution of lateral inhibition connections narrows 
in transition from S1 to Dop and narrows further in transition from 
Dop to S2. Taken together our results provide a first structural descrip-
tion of neural encoding modulation and possible anatomical changes 
associated with dopamine-mediated olfactory learning. These results 
can be used to explore the connectivity patterns of dopamine neurons 
within the AL and their functionality with respect to learning.
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In 1949 Hebb [1] proposed cell assemblies, i.e. groups of interacting 
neurons, as building blocks of information processing in the cortex. 
A signature of an active cell assembly in parallel spike recordings are 
synchronous or spatio-temporal spike patterns (STPs) [2, 3]. Modern 
electrophysiological techniques enable the simultaneous recording 
of hundred(s) of neurons and thereby increase the chances to observe 
active cell assemblies.
In two recent publications we developed a method, called SPADE, to 
detect statistically significant spike patterns in massively parallel spike 
data (MPST), where 100 or more parallel spike trains are available. The 
method was first limited to synchronous spikes [4], and then extended 
to spatio-temporal patterns [6]. The method reduces the computa-
tional costs for extraction of all possible repeated spike patterns by 
employing frequent itemset mining. To avoid a massive multiple test-
ing problem it reduces the number of pattern candidates by pooling 
patterns with the same number of neurons and number of occur-
rences. SPADE then evaluates the statistical significance of the found 
patterns using a non-parametric Monte-Carlo sampling under the null 
hypothesis of independence. Finally, significant patterns are tested for 
conditional significance against each other. In [5] we applied SPADE to 
search for repeated synchronous patterns in MPST from electrophysi-
ological data recorded from motor and premotor cortex of macaque 
monkeys. The monkeys performed a delayed reach-to-grasp task, 
where they had after a preparatory period to pull and hold an object 
using a side or precision grip and with high or low force. The recorded 
data were analyzed for the occurrence of significant synchrony in dif-
ferent behavioral epochs. We found a variety of significant synchro-
nous patterns with high specificity to behavior. Here we present the 
challenges that such data pose when aiming to detect significant 
STPs and how this can be addressed by deploying SPADE. In particu-
lar we extend the statistical evaluation to test separately patterns of 
different temporal length, because otherwise the statistic presents 
a bias in favor of shorter patterns. By doing so, we now complement 
the previous results with the information provided by STPs. We ana-
lyze pattern compositions in terms of involved neurons and temporal 
arrangements in relation to behavior, confirming the expectation that 
extending the search to STPs increases the chance to detect patterns 
involving a larger number of neurons. In conclusion we show that the 
majority of the found spatio-temporal patterns is temporally locked to 
the movement onset and exhibit different neuronal composition for 
different grip modalities (precise grip or side grip).
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Fig. 1 Fixed points of benzaldehyde and ammonia in three phases, 
S1, Dop, and S2. D_ij indicates the euclidean distance from phase j to 
i in the odor space. Figure B. Distribution of lateral inhibition matrix, B, 
from LN to PN in S1, Dop, and S2 phase respectively
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Many computational models and widely used learning algorithms, 
such as back-propagation [1] (BP), require a form of bidirectional 
synaptic weights. Xie and Seung [2] have shown that BP, under some 
circumstances, can be equivalent to the Contrastive Hebbian Learn-
ing (CHL) algorithm. CHL has been proposed to explain biological 
phenomena such as hippocampal replay, where neural activity is 
transmitted back-and-forth between the hippocampus and the pre-
frontal cortex. CHL uses the transpose of the synaptic matrix to form 
a reverse connection between layers to account for weight changes in 
the forward connection. However, there is no evidence that cerebral 
areas talk to each other in a direct bidirectional way (weight transport 
problem). This means that using neural networks with symmetric syn-
aptic weights is not biologically plausible. In this work, we propose 
an alternative mechanism that enables CHL without the use of sym-
metric weights for feedback transmission. The proposed mechanism 
is not solely based on synaptic plasticity but exploits the dynamics 
of neurons in combination with a Hebbian learning rule. We combine 
a recently proposed random back-propagation algorithm [3] with 
CHL. As with CHL, the neural network is trained in two phases, but in 
the reconstruction phase, feedback to previous layers is done using 
fixed random matrices. The proposed learning scheme uses continu-
ous non-linear ordinary differential equations to describe the neural 
dynamics of the model. The layers of the feed-forward and the feed-
back subnetworks are treated as coupled neural systems, meaning 
that the information can be transmitted in a synchronous or asyn-
chronous way without affecting the overall computation, as long as 
there is enough time for the individual dynamics to reach their cor-
responding equilibria. The current algorithm embeds dynamics from 
both the input and the output (target) signals to the neural dynamics 
through the feedback and the non-linear coupling. In addition, dur-
ing the backward phase, a feedback corrects the error of the network 
based on the target signal. This error is propagated backward through 
constant random matrices. This draws some similarity to target propa-
gation [4], where the gradient of the loss is computed with respect to 
the output and is propagated backwards to the previous layers of the 
network. We demonstrate that the proposed model is capable of per-
forming on a variety of different tasks, such as digit (MNIST, 98% test 
accuracy) and letter classification (eMNIST, 85% test accuracy), logical 
operation (XOR problem, 100% accuracy), sequence prediction (suc-
cessful prediction of a sinusoidal wave and Lorentz attractor), and an 
autoencoder encoding and decoding MNIST data set. The proposed 
learning scheme can be used in combination with other neural mod-
els so that more complex biological phenomena can be studied.
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The processing of visual information depends strongly on the statis-
tics of features in the visual field. The visual circuit that processes this 
information should be both robust to the precise statistics of the vis-
ual environment, and flexible to account for a broad variety of visual 
features. Perhaps the most compelling changes in visual statistics are 
due to movement, yet how the neural circuitry underlying visual pro-
cessing accounts for these remains unknown. Allen Brain Observatory 
data provided by the Allen Institute for Brain Science, along with other 

studies, suggest that the brain’s response to sensory input is strik-
ingly modulated by locomotion. Specifically, the VIP group of neurons 
becomes preferentially activated during locomotion and influences 
multiple synaptic pathways in V1. The goal of this study is to investi-
gate synaptic weights and firing rates of populations of neurons in V1 
thought to be responsible for the coding of Gabor-like features and 
explain how these change when the animal switches behavioral state 
(from static to running an vice versa). The activity of these neurons is 
determined not only by their receptive fields, but also by lateral con-
nections which modulate activity due to the surround. VIP neurons 
have been shown to interact with this circuit in a switch-like fashion, 
but there is presently no computational model that accounts for the 
algorithmic consequences of these interactions. We use a Bayesian 
model previously developed for visual inference in both images and 
videos (thus emulating what animals would see while moving in the 
environment). In this model the connection between neurons pri-
marily depends on the co-occurrence probability of features that the 
neuron responds preferentially to. The differences in the synaptic 
connectivity computed on images and videos capture the predicted 
influence of movement on the neural processing of visual information. 
The model further enables us to propose a role for VIP neurons at the 
circuit level, and to explain movement dependent changes in the sign-
aling pathways. Finally, the obtained neuronal activity trends can be 
compared to activities of neurons in mice brains’ during a visual recog-
nition task when the mice are running. As such our results may play a 
key role in interpreting the high variability seen in V1 activity.
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The functional role of neural circuits in the brain can be modeled as 
a transformation of inputs into some desired outputs. In this work, a 
recurrent neural network is trained to classify spatially clustered inputs 
into classes. This task serves as a testbed to ask questions about the 

Fig. 1 In the simple case of high dimensional input and low 
dimensional output (here there are sixty input clusters and four class 
labels), the dimensionality of the network representation smoothly 
transforms from high to low across the unrolling of the network 
dynamic (time step). More interesting phenomena happen when the 
task parameters are modified
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nature of neural representations as clusters are transformed into out-
puts defined by class assignment. We use a metric of dimensionality 
to quantify this transformation and see how it behaves as a function 
of the input and output dimension. We explore possible ways that this 
metric can be used to gain deeper insight into the workings of the 
network and used to influence the training process, resulting in new 
classes of solutions (Fig. 1).
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How does the connectivity of a network system combine with the 
input that the network receives so to shape the response to the input 
itself? We approach this question by relating the internal network 
response to the statistical prevalence of connectivity motifs, a set of 
surprisingly simple and local statistics on the network topology. The 
resulting motif description provides a reduced order model of the net-
work dynamics. Through this framework we compute the dimension-
ality of the response. The dimensionality that we study is tightly link to 
the number of PCA components that are needed to describe the state 
of the network. We study this measure at the vary of the connectivity 
(statistics of motifs) and of the input structure. We find that different 
network topologies are able to expand or compress the dimensional-
ity and this can be accomplished locally at the single neuron level by 
increasing or decreasing specific network motifs (e.g. divergent con-
nections). Furthermore, we link these properties to how the network 
responds to inputs. The total dimensionality of the network response 
does depend on the input properties and in particular by the strength 
of the input drive and its dimensionality. The network can then oper-
ate in different regimes by compressing the input dimensionality or 
by matching it being more or less sensitive to the input drive. At last 
we connect these properties to whether the network is fully excita-
tory or balanced (considering a balanced network of excitatory and 
inhibitory neurons). Balanced networks show a variety of behaviors 
that go beyond the capabilities of fully excitatory systems. We charac-
terize how the dimensionality of such systems varies with connectiv-
ity motifs and to input properties. Overall the framework we develop 
provides powerful theoretical tools to understand the functionality of 
neural network systems in terms of high level descriptors such as the 
dimensionality that are linked to neural correlations and neural repre-
sentation properties.
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Realistic axons are complex. This makes it difficult to predict the behav-
ior during action potential (AP) propagation. It is often assumed that 
APs successfully propagate down the axon. When previous literature 
investigated APs in axons, it predicted AP propagation in electronically 
symmetric axons. Yet, we cannot predict propagation in electronically 
asymmetric axons. In this study, we looked at the sodium conductance 
(gNa) of the axon, which determines the axon’s excitability. We initi-
ated APs in a collateral branch and tested if it successfully propagates 
to the end of the axon. The simplest model we used was a neuron with 
maximum three collateral branches. We simulated our neurons, study-
ing the threshold gNa required for APs to propagate while varying the 
distance of the collateral branches along the axon and sub-branches 

within collateral branches. From this research, we would like to 
develop a theory to predict AP propagation. That, in turn, we hope will 
tell us more about how neurons compute. Since the neurons are basic 
blocks of our nervous system, we also hope this will help future stud-
ies to improve treatment for neurological disorders.
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Predicting when an action potential can propagate in neuronal axons 
is a long-outstanding problem in both mathematics and neurosci-
ence. Previous related research showed when an axon is electrotoni-
cally symmetric, the action potential propagation can be predicted. 
However, most axons are not electrotonically symmetric. This research 
uses simulation to provide evidence by looking at a key parameter: the 
sodium conductance of the axon. We hope to generate a fundamental 
theory to predict the action potential propagation linearly that can be 
used for different axon geometries. Predicting action potential propa-
gation may help us better understand neuron computation as well as 
how disorders may affect computation. For instance, axonal sprouting 
as seen in epilepsy may hinder propagation. My colleagues and I each 
looked at different configurations of axons. I tested the case where the 
length of a sub-branch on a collateral branch varies. I looked at four 
parameters: the electrotonic length of the sub-branch, the electro-
tonic length of collateral branch, the distance of the sub-branch from 
the main axon, and the distance of the parent branch from the soma. 
We may approximate how the sub-branch affects propagation by 
looking at different combinations of these four parameters.
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Measuring the processing capabilities of different nervous systems has 
always been an interesting point for neuroscience. We observed that 
some capabilities can be measured by the ratio of specialist and gener-
alist neurons that belong to the Kenyon cells (KCs) of the locust olfac-
tory system [1]. These types of neurons are part of the neural diversity 
of the biological nervous systems, specifically, they represent the het-
erogeneity in neural response to stimuli. While specialists react to a 
few stimuli, generalists respond to a wide range of them [2]. Hence, it 
is suggested that specialist neurons are essential for stimuli discrimi-
nation and generalist ones extract common and generic properties 
from them [3]. The requirement of specialists for pattern recognition 
was proven by us [4], but we also observed that sometimes general-
ists were needed for this task. Thus, there is a certain ratio of these two 
types of neurons depending on the stimulus complexity [1]. When 
the input complexity was low, the minimum classification error was 
achieved with almost any ratio of specialists/generalists (S/G). When 
this complexity was intermediate, both were required to minimize 
the classification error, usually in a similar proportion. Finally, when 
the complexity was high, only specialists were needed for the error 
minimization. As we linked the complexity level to a S/G ratio and to 
a classification success [1], we can invert this relationship to estimate 
the stimuli complexity and olfactory system accuracy by analyzing the 
S/G number from neural recordings. Therefore, we used recordings 
from KCs of the locust for calculating this ratio, based on the neural 
responses of 43 neurons for 17 different stimuli [5]. We estimate that 
the percentage of generalists in the KCs of locust is 23.26% [6]. This 
ratio involves an intermediate complexity of 51.34% according to our 
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calculations, which also provides information about the number of dif-
ferentiable odors by the locust since complexity and capacity seem 
to be related [7]. To contrast these results, we measured the complex-
ity of patterns in the projection neurons (PNs) of the antennal lobe, 
using the recordings of 14 PNs for 3 different odorants. The complexity 
degree observed for this reduced number of neurons and odors was 
63.38% that is not too far from the 51.34% calculated from KCs. This 
complexity implies that all PNs are generalists, which coincides with 
the recordings data [5]. Finally, from the two complexity values shown, 
we can estimate that the reliability of odor discrimination process in 
the locust could be comprised between 74.87% and 92.04%.
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Insect olfactory system is capable classifying an almost infinite quan-
tity of odorants at different concentrations. This task is carried out 
in three processing stages, starting at the insect antenna, passing 
through antennal lobe (AL) and finally the odorants are classified at 
the mushroom body (MB). The strategies that the system applies in 
each of these layers to discriminate stimuli have been extensively stud-
ied. Regarding the AL and MB, three mechanisms have been proposed 
as of great importance to assure and improve the success of odorant 
classification. These strategies are an heterogeneous threshold dis-
tribution in the Kenyon Cells (KCs) at the MB [1, 2], a mechanism for 
gain control at the AL layer [3] and sparse coding in the KCs [5] layer to 
improve pattern differentiation while providing energetic efficiency. In 
this work, we use a model of the insect olfactory system that takes into 
account the biological facts about the network architecture and also 
includes the three strategies explained above. The model is based on 
neural networks and supervised learning [7, 2] and our goal is to study 
how information processing takes place in the biological system by 
testing the relevance of these mechanisms in the energetic cost and 
the performance of the network on a pattern classification task, paying 
more attention to threshold distribution and sparse coding, The het-
erogeneous thresholds are introduced in the model through a learn-
ing algorithm that allows the network to find an optimum threshold 
distribution for KCs for a certain classification problem. Gain control 

is achieved through the renormalization of patterns in the input layer 
so that the activation of the neurons is uniform for all patterns. Finally, 
an activity regulation term is introduced in the supervised algorithm 
learning rule with the aim of controlling the level of activity in the KCs. 
The activity regulation term (ART) is defined as1/NKC [SUMKC(yi-s)]2, 
where the parameter NKC is the number of KCs, s ∈ [0,1] allows to con-
trol the level of activity in the KCs layer from no activity with s = 0 to 
maximum activity with s = 1, and yi is the activation of i-th KC in the 
network. The results show that a model including the activity regula-
tion term outperforms one that lacks it for the classification problem 
presented (a simplified version of MNIST dataset [8]). Also, the model 
obtains better results when the connection probability between AL 
and MB neurons is low, in the interval [0.1–0.3], and the sparsity level 
in KC layer is high, which is consistent with what is observed in the real 
biological system [5, 6] and assures energetic efficiency.
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It has been shown that the highly correlated neural activity known to 
appear under anesthesia is severely reduced in a mouse model of Alz-
heimer’s disease (AD) [1]. It has also been shown that AD mice develop 
a sub-group of silent excitatory neurons alongside with highly hyper-
active excitatory neurons [2] and that the correlated neuronal activity 
under anesthesia can be restored by enhancing the inhibitory synap-
tic inputs into the hyperactive excitatory neurons [1]. Taken together, 
these studies suggest that in AD mice changes in the balance of inhibi-
tory connections to subgroups of excitatory cells shift network-wide 
activity. We propose a neural network model that explains these phe-
nomenological changes in the overall network behavior. We charac-
terize how a separation between excitatory and inhibitory functional 
connectivity gives rise to correlated population activity. Our analysis 
explains why these correlations are disrupted by changes in circuit 
connectivity.
Our model includes rate-based neuron units that are explicitly sepa-
rated into excitatory and inhibitory types. Hence, our model con-
nectivity matrix is constrained to have columns with positive entries 
and columns with negative entries, representing input from excita-
tory and inhibitory populations accordingly. The eigenvalue spectra 
of such random matrices have been shown to have outliers [3] which 
we further constrain by requiring a tight balance—a sum of excitatory 
and inhibitory connections into each unit that are matched exactly. 
This constraint has been shown to remove the outlier eigenvalues 
[4] and give rise to highly correlated activity across the network with 

http://yann.lecun.com/exdb/mnist/
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slow-wave-like dynamic of the mean activity [5] that resembles activ-
ity in wild-type mice.
In addition to this population-wide component of activity, our tightly 
balanced network model exhibits chaotic fluctuations of single-unit 
activity around the population mean. We show that the residual activ-
ity resembles fully random neural network models but with a time-
varying magnitude that depends on the mean activity. The strength of 
the residual chaotic activity in the tightly balanced network is deter-
mined by the variance of the synaptic strengths, while the magni-
tude of the correlated activity component is determined by the mean 
strengths of the excitation and inhibition. We model the pathology 
observed in AD mice by breaking the tight balance between excitation 
and inhibition within subgroups of excitatory neurons, while main-
taining the overall excitation/inhibition balance in the network. This 
pathology shifts the network into an uncorrelated, chaotic state that 
resembles the recordings from AD mice.
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We present a first view of a new type of neuron model currently under 
development which is significantly different from membrane or action 
potential based models. The neuron is conceptualized as a unit with 
an internal processing system G (including the proteome and the 
nuclear transcription system), an axonal system A, conceptualized as 
a Boolean vector plus parameters h attached to each vector unit (pre-
synapse), and a dendritic system D (postsynapse) similar to system A 
but with an evaluation function F. GLIF type models can be recovered 
by equating G with a sigmoidal activation function, F with a majority 
rule, and parameters h with synaptic weights. We concentrate on the 
interaction of G and h under random conditions. A system of neurons 
of 100–1000 neurons is set up with systemically differing conditions, 
according to the biological observations on lognormal properties 
[1]. We load it with patterns which adjust h parameters by Hebbian 
learning and where the h parameters inform the internal network G 
to adjust protein expression levels. The internal network G will reach a 
state where the internal values are read out to adjust h parameters, in 
this way altering the processing properties of the neurons, both den-
dritic (postsynaptic) and axonal (presynaptic). So we have an internal 
storage of previous information that can adjust h parameters at a later 
time. A neuron may be ready for read-out after a succession of stor-
age events (avalanche model), but different rules also may be used. 
The system is able to replicate detailed data on neural plasticity (e.g. 
[2]). It creates levels of memory for pattern storage and retrieval. The 
h parameters are able to record an active pattern and to construct a 
frequentist representation by pre- and postsynaptic connections. 
The internal G system stores selected features from the h system and 
rewrites them back to the system. In this way the learned patterns of 
synaptic connectivity can be adjusted and locally overwritten by the 
internal storage systems G. Synaptic connectivity overall is adjusted 
based on those local overwrites through continuing network activity. 

The G-based overwrite may happen continuously or according to an 
avalanche model, i.e. rare updates followed by a concerted rewrite 
of all instances of h values that have differing G system values. We 
evaluate the system at first by a randomized overwrite for h in order 
to study the evolution of the system between elimination of overwrit-
ten weights and escalation/dominance of these weights. This is the 
basis for meaningful editing, which allows to process information. 
The results of the random test runs are used to evaluate storage and 
processing properties of the combined G/h system. The G read-out 
extends to the Boolean evaluation functions f. At present, these oper-
ate according to majority rules, but they can be edited to include local-
ized cluster supralinear summation or inhibitory veto. The edit of the 
Boolean evaluation function will be studied separately, also in a rand-
omized fashion. The goal of the system is to perform meaningful pat-
tern memory and abstraction tasks.
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In a near-threshold sensory detection task, an animal sometimes 
detects and sometimes misses the same physical stimulus. A sim-
ple hypothesis is that perceptual variability is linked to variability in 
sensory-evoked responses in the brain as early as primary cortex. 
Response variability arises in part from the interaction of sensory 

Fig. 1 A: Sensory‑evoked responses are variable. Here we predict 
whether responses are large (orange) or small (blue), using (B) fea‑
tures of the pre‑stimulus activity. C: Ideal observer analysis of sponta‑
neous and sensory‑evoked activity, based on matched filter detection 
alone (single eye) or pre‑stimulus state‑dependent matched‑filter 
detection (pair of eyes). LFP trace shown is a period of spontaneous 
(no sensory inputs) activity in which accounting for pre‑stimulus state 
(during orange bar) would prevent a false alarm (gray box)
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inputs with ongoing activity and is partially predictable based on the 
pre-stimulus cortical state. If variability in evoked responses is linked 
to perception, and if that variability is predictable, we would expect 
that it would be possible to predict based on ongoing activity whether 
sensory cortex is primed to detect a sensory input. Here, we deter-
mine the pre-stimulus features that are predictive of variability in the 
evoked response in the awake animal. We then ask what implications 
these observations have for the detectability of a stimulus. Using data 
obtained from multi-electrode recordings across the cortical depth 
in S1 of awake mice, we systematically quantify how much variability 
in the sensory-evoked LFP response is predictable from ongoing LFP 
activity (Fig. 1AB). This interaction has been studied extensively in the 
anesthetized animal [e.g., 1, 2], where the major predictors of response 
variability are the degree of cortical synchronization, quantified by 
the amount of low-frequency power, and the phase of low-frequency 
oscillations at which sensory input occurred. Similarly, we found that 
the degree of synchronization was predictive, but instead of oscilla-
tion phase, the instantaneous level of activation of the LFP in layer 4 
was a useful predictor. Specifically, positive excursions in the LFP and 
more low-frequency (1–5 Hz) power in the LFP in the pre-stimulus 
period predicted larger sensory-evoked responses (“high-response 
state”). Using a regularized estimator of current-source density (CSD)
[3] on single trials, we localized the most predictive ongoing signal 
to a current source location near layer 4. Finally, we found that no 
significant predictive power was gained by increasing the complex-
ity of the decoder or by utilizing the full array of channels. Thus, the 
most predictive signatures of ongoing activity are remarkably simple 
and could be accessible to downstream areas. Next, we examined the 
impact of predictable variability on an ideal observer analysis of the 
detectability of sensory events (Fig. 1C). We built a detection model, in 
which the detection threshold is either fixed, or adaptive and based on 
the pre-stimulus features that are predictive of evoked variability. We 
quantified the accuracy of the model in terms of the simulated hit rate 
and the false alarm rate. Detection was more accurate in the adaptive 
threshold model. In the fixed-threshold model, pre-stimulus features 
predicted hit and miss trials. This relationship was weaker in the adap-
tive-threshold model, where hits as well as false alarms were nearly 
equally as likely to occur in low- or high-response state. In summary, 
if sensory perception is built on the cortical response and variability in 
this response is completely unpredictable, then perceptual variability 
would to some extent be determined by cortical variability. However, if 
cortical variability is predictable and downstream circuits in the brain 
make this prediction, then the perceptual variability could be decou-
pled from cortical variability.
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High-resolution, non-penetrating devices for direct electric stimula-
tion of sensory cortex have the potential to become neuroprosthetic 
devices that can compensate for deficits in sight or hearing. The effect 
of extracellular electric stimulation with such devices, however, has so 
far not been investigated thoroughly, in particular in context of the 

variety of stimulation patterns possible with high-density electrode 
arrays and neuron types. In the context of visual neuroprosthetic 
devices, the ability to selectively stimulate different groups of neurons 
to potentially create many different phosphenes (visual impressions), 
is important.
Here, we combine neuronal modeling and electrostatic volume-con-
ductor theory to investigate the effect of electrical stimulation on 
the generation of neuronal action potentials. In general a successful 
stimulation will depend on properties of the neuron like the position, 
morphology, and membrane properties, as well as the electrical stimu-
lation pattern, i.e., the geometrical arrangement of the stimulating 
contacts, electric pulse amplitudes and temporal forms, etc. To quan-
tify the stimulus excitability of the neurons we first consider the sen-
sitivity, that is, the minimum stimulation current amplitude (threshold 
current) needed to generate an action potentials for a particular neu-
ron and stimulation pattern. We also investigate the selectivity, that is, 
the dependence of the threshold current on the position of the neu-
ron. Biophysically detailed multicompartment models of cortical neu-
rons using the NEURON simulation environment [1] and LFPy [2] are 
used in the simulation. The neurons are assumed to be embedded in 
an infinite homogeneous, isotropic and ohmic medium. We compute 
electric potentials as generated by intracranial electroencephalogra-
phy (ECoG) electrode arrays, and impose these as boundary conditions 
for the electric potential immediately outside each neuronal compart-
ment. These imposed potentials in turn affect the neuronal dynam-
ics, and the generation of action potentials.We first study stylized 
morphologies and demonstrate a critical role of their orientation and 
position relative to the applied electric field, and also of the polarity 
of the stimulation current [3, 4]⁠. We further investigate the sensitivity 
and selectivity of morphologically detailed biophysical models, includ-
ing models from the Allen Brain Institute and the Blue Brain Project, to 
various configurations of the electrode arrays.
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Proper digestive functioning requires a variety of coordinated activi-
ties in the gastrointestinal tract. During the starved state, peristal-
tic waves are the dominant pattern of motility in the small intestine. 
After a meal, the intestine switches to a mixing pattern reminiscent of 
the beating pattern produced by interacting oscillators with different 
frequencies. This helps to break up food particles and increase nutri-
ent absorption. These patterns are also modulated by temperature 
and a variety of pharmacological agents. Rhythm-generating cells 
electrically connected to the smooth muscle known as interstitial 
Cells of Cajal (ICC) drive the patterns of motility. The mixing pattern is 
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particularly dynamically interesting and is generally explained as an 
interaction of two classes of ICC, oscillating at different frequencies 
(1). We suggest that intrinsic dynamics of a single ICC can explain the 
mixing pattern as well. We developed models of ICC contains intracel-
lular calcium dynamics, and Hodgkin-Huxley representations of key 
ionic currents. Both the endoplasmic reticulum and mitochondria are 
intracellular calcium stores that could produce calcium oscillations 
with different periods in the cytosol. We used a mathematical model 
of subcellular dynamics (4) to observe interactions between calcium 
oscillations from the ER and mitochondria. Variation in the concen-
tration of one organelle can control the period of oscillation through 
the other organelle. A combination of two of the subcellular models, 
assuming weak diffusive coupling, produced a beating pattern. We 
compared the results of this model to our experimental recordings 
of muscle contractions from murine small intestines. Our model sug-
gests a mechanism for this mixing pattern: interactions between two 
oscillatory calcium subsystems in a single ICC. We also investigated the 
effects of temperature on motility patterns by adjusting Q10 values 
and incorporating the dynamics of TRPA1 channels into our model. 
These results explain how temperature can affect the frequency of 
oscillations, which is consistent with experimental data (3). As the 
TRPA1 channel is also sensitive to menthol, we show that our model 
reproduces experimental data on menthol treatment of ICC (2). This 
model shows that factors affecting the internal calcium dynamics 
impact the period of oscillations, while factors which affect membrane 
based currents primarily affect amplitude In conclusion, we demon-
strate that ICC are capable of producing a variety of basic regimes of 
activity corresponding to key motility patterns.
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Could two drastically different rhythms such as in cat locomotion 
and paw-shaking be controlled by the same network of neurons? To 
answer this question, we built a model of a multifunctional central pat-
tern generator (CPG). Our model, constructed as a half-center oscilla-
tor (HCO), is able to produce multistability of a locomotion-like rhythm 
and a paw-shake-like rhythm. It uses a novel mechanism involving 
two slow currents, i.e. slowly inactivating calcium current and slowly 
inactivating sodium current [1]. Transient paw-shake-like activity can 
be elicited in our model, and this transient activity exhibits asymmetric 
trends throughout consecutive bursts in accordance with experimen-
tal data. Here, our model has only the locomotion-like rhythm present, 
and generates only transient paw-shake-like activity. We investigated 
the model’s responses to various types of afferent stimulation dur-
ing locomotion-like activity and transient paw-shake-like activity. We 
predict that applying a 1-second pulse of current to groups Ia and II 

afferents from cat hip flexors and extensors during locomotion, which 
have access to the flexor- and extensor half-centers of CPG rhythm 
generator [2], will evoke a paw-shake response in that hindlimb. 
According to our model, the duration of this transience depends on 
the phase of stimulation in the locomotion rhythm. Also, the duration 
of transience increases with the duration of the pulse. The duration 
of transient paw-shake-like activity could be extended when a short 
pulse of current is applied during transient paw-shake-like bursting. 
We predict that applying a short 20-millisecond pulse of excitatory 
current to groups Ia and II afferents from either hip flexors or exten-
sors during a paw-shake response will extend the duration of the paw-
shake response. Furthermore, the duration of the paw-shake response 
would increase as the duration of this stimulus increases until some 
threshold duration is reached at which the duration of the paw-
shake response will remain roughly constant as the stimulus duration 
increases. In addition, the extension of the response would depend on 
the phase of pulse application in the paw-shaking cycle. The extended 
paw-shake response could last longer if the pulse is applied during the 
extensor phase as opposed to the flexor phase if the pulse is applied 
near the beginning of the paw-shake response. The asymmetry weak-
ens if the pulse onset is delayed during the paw-shake response. These 
predictions are robust and can be tested experimentally to investigate 
whether the obtained responses during locomotion and paw-shaking 
are consistent with the idea that the two rhythmic behaviors are gen-
erated by the same multifunctional CPG. Confirming these predictions 
experimentally would provide strong evidence for the hypothesis that 
the paw-shake response in cats is generated as a transient response of 
the locomotion CPG.
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Central Pattern Generators (CPGs) are oscillatory neuronal circuits con-
trolling rhythmic movements [1]. Movements like breathing have to be 
continually regulated for an animal to meet environmental demands 
[2–4]. The Pre-Bötzinger Complex (PBC), located in the medulla of the 
brainstem, produces patterns controlling inspiratory phase of breath-
ing. Prolonged hypoxia leads to dysrhythmia in this CPG, causing apnea 
or cessation of breathing. We focus our study on potential role of Na+/
K+ pump in intermittent intrinsic patterns which we discovered in a 
model of a Pre-Bötzinger Complex neuron. Our hypothesis is that these 
patterns are similar to intermittent patterns of tadpole swimming [5]. 
The major function of the Na+/K+ pump is to maintain the ion gradi-
ents of Na+ and K+ in a 3:2 exchange ratio, consuming one ATP mol-
ecule per cycle. The pump is electrogenic and activity dependent, it 
directly contributes to neuronal dynamics across entire voltage range 
of operation. By serving the function of maintaining the ionic gradients 
and contributing to neuronal dynamics, the pump presents advantages 
and pathological risks. We developed a model of a PBC neuron which 
is intrinsically bursting based on a persistent sodium current dynam-
ics. The model describes dynamic intracellular Na+ concentration 
which determines the reversal potential for all sodium currents. Fast 
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sodium, persistent sodium, delayed-rectifier potassium, slow calcium, 
leak, h-current and the pump contribute to membrane potential. The 
pump current is controlled by a parameter for maximal pump strength 
which reflects ATP levels within the cell. The higher value corresponds 
to more ATP available for the pump to consume. We demonstrate that 
our model produces functional bursting under normoxia and that the 
decrease of the pump strength corresponding to hypoxia generates 
intermittent bursting. Shifting K+ reversal potential (EK) drastically 
affected the interbout interval of the intermittent activity, the more 
hyperpolarized, the longer the interbout interval. The more depolarized 
EK is, the less of an increase in the maximal pump strength is necessary 
to restore functional activity. We investigated dynamical mechanisms 
underlying the role of the Na+/K+ pump. We find that this carries sig-
nificance towards further understanding pathological vulnerabilites in 
the respiratory centers of the brain.
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It has been reported that stimulus presentation reduces the level of 
neuronal variability. The mechanism underlying this phenomenon, 
however, is yet to be elucidated. Here, we present evidence suggest-
ing that changes in trial-to-trial variability are determined by changes 
in single-neuron relaxation times. We estimated non-parametrically 
the single-cell autocorrelation (AC) times during spontaneous and 
stimulus-evoked activity in the cortex (gustatory and pre-frontal) and 
the medio-dorsal thalamus of alert rats. We found broad distribu-
tions of AC times in all areas, ranging from less than 20 ms to more 
than 4 s (our largest observation window); their distributions were 
right-skewed and long-tailed. We found that single-cell AC times 
changed between the two conditions: neurons with spontaneous 
slow AC times became fast after stimulus presentation, and vice versa. 
We uncovered a relationship between changes in AC times (between 
spontaneous and evoked conditions) and stimulus-induced changes 
in trial-to-trial variability, at the single-neuron level. While the overall 
Fano factor dropped during evoked periods compared to spontane-
ous periods in all areas, consistent with previous reports, we found 
that such reduction was entirely driven by the subpopulation of 
neurons whose AC times was also reduced by the stimulus. Changes 
in AC time between spontaneous and evoked condition thus predict 
the observed changes in trial-to-trial variability at the single-cell level. 
These results suggest that local circuit dynamics in both cortex and 
thalamus evolves through sequences of metastable states, where state 
durations are modulated by stimulus presentation.
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Calcium signaling in neurons is typically initiated by Ca2+ influx 
through voltage-gated channels in the plasma membrane. In many 
neuronal types, however, it has been shown that the resulting increase 
of cytosolic [Ca2+] can be significantly modulated by a release/uptake 
of Ca2+ by intracellular stores. A protocol commonly used toanalyz-
esuch modulation consists of depolarizing the membrane by expo-
sure to a high-K+ pulse and recording the resulting transient [Ca2+] 
response, either in control conditions or in the presence of drugs that 
activate/inhibit Ca2+ fluxes arising from specific intracellular stores. 
The detailed time course of these fluxes, however, is rarely analyzed. 
We have developed a combined experimental and computational 
method that permits to separate the principal contributing fluxes 
and to extract their time courses. We applied this method to freshly 
isolated magnocellular neurons from the rat supraoptic nucleus, 
with [Ca2+] kinetics recorded using Fura-2 based ratiometric imag-
ing. Wemodeledthe [Ca2+] kinetics as resulting from depolarization-
induced Ca2+ entry, Ca2+ clearance by pumps and exchangers at 
the plasma membrane, Ca2+ release from the endoplasmic reticulum 
(ER), and Ca2+ uptake by the ER. The clearance rate function was iden-
tified from experiments in which the ER fluxes were blocked. We show 
that in response to a series of depolarization steps, the [Ca2+] eleva-
tion can be either potentiated or attenuated, depending on the filling 
state of the ER. We identify the time course of the calcium-induced-cal-
cium-release flux mediating the potentiation and of the ER re-uptake 
flux mediating the response attenuation. The principal functional role 
of the magnocellular neurons consists in the release of hormones 
arginine-vasopressin or oxytocin, in response to physiological stimuli. 
Weanalyzethe role that the usage-dependent potentiation/attenu-
ation of the [Ca2+] response may play in the patterning of action 
potential bursts, which in turn control the release of vasopressin from 
the nerve terminals into the bloodstream.
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The color of a light depends on surrounding lights. This effect is 
likely mediated, at least in part, by double opponent (DO) neurons 
in area V1. DO neurons have two characteristic properties: they are 
cone opponent and they have opposite color preferences in differ-
ent parts of their spatial receptive field (RF). As a result, DO neurons 
respond maximally to color boundaries and weakly to full-field color 
stimuli. How these neurons integrate color signals across their RFs, 
however, is not well understood. For this reason, physiological and 
psychophysical spatial color processing are difficult to relate quantita-
tively. We identified V1 DO neurons in awake behaving monkeys using 
spike triggered averaging. We presented stimuli that activated non-
overlapping regions of the RF individually or simultaneously. Using 
an adaptive closed-loop stimulus generator, we identified stimuli that 
drove the same neuronal response but differed in how strongly they 
activated two regions of the RF. We encountered two classes of DO 
neurons that were selective for either blue-yellow or red-green edges. 
Almost all blue-yellow and some red-green DO neurons responded 
to a weighted sum of color signals from the two non-overlapping 
regions of their RFs. Consequently, these neurons responded to chro-
matic contrast between the two regions of their RFs irrespective of the 
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absolute chromaticities that defined the edge. For example, a blue-
yellow DO neuron responded identically to a blue-yellow edge and to 
an edge between a saturated and an unsaturated blue (or yellow). A 
subset of red-green DO neurons combined color signals across their 
RFs nonlinearly. This nonlinearity may be due to complex interactions 
between cone opponent and cone non-opponent signals across space 
that have previously been identified with spike triggered covariance 
analysis.
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Voltage-sensitive dye imaging (VSDI), which is an important neuro-
physiological technique to investigate the dynamics of the brain, can 
extract changes in the membrane potentials of large neural popula-
tions with high spatial (20 ~ 50 m) and temporal resolution (1 ~ 2 ms). 
The VSDI signal reflect changes in the neural population activities. 
However, the VSDI signal itself does not reflect connectivity across 
neural populations. Thus, a computational analysis is essential to 
estimate effective connectivity among neural populations reflected 
in the VSDI data. In the present study, adopting the dynamic causal 
modeling (DCM) [1], we developed a novel framework for effective 
connectivity analysis of VSDI data; VSDI-DCM. The VSDI-DCM consists 
of two parts; hidden neural state and VSDI observation models, which 
describe dynamics of the activity of neural population and transfor-
mation from hidden neural states to the VSDI signals, respectively. 
All model parameters in both of neural and observation models are 
simultaneously estimated to minimize prediction errors with observed 
VSDI data by Bayesian inferences. We analyzed VSDI data of the hip-
pocampal slices of mice, downloaded from [2]. In this experiment, the 
temporoammonic pathway was stimulated four times with 100 ms 
intervals. For the for first stimulus, hyperpolarization after the stimula-
tion was observed in CA1 region, but this inhibition was reduced for 
the latter stimuli. We extracted VSDI signals at the Hilus, CA1, and CA3 
regions of the hippocampus. For the neural state model among these 
three regions, we employed a Jansen and Rit model [3], with three sub-
populations (two excitatory and one inhibitory neural populations) 
for each region and three types of directional interactions between 
pairs of regions. We further added memory term to describe adaptive 
properties of the neural spikes. We used linear combinations of three 
sub-populations for observation model of VSDI signals. As a result, 
VSDI-DCM successfully fits VSDI signals in both wild type mouse and 
the epileptic Arx conditional knock-out mutant mouse. In the mutant 
mouse, hyperpolarization did not decrease for the consecutive stimuli. 
We found that adaptive parameters of the VSDI-DCM play an essential 
role for differentiate responses in the mutant from those of the wild 
type. We believe that VSDI-DCM could be used for the investigation of 
the mesoscale brain dynamics.
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The computational modeling of the cerebral cortex may be useful to 
unravel the encoding mechanism for the given stimuli in the form of 
effective connectivity. The purpose of this study is to estimate effective 
connectivity among neuronal populations of the mouse barrel cortex 
using calcium imaging functional data.
We analyzed functional calcium imaging data of neuronal responses 
evoked by whisker stimulation in the mouse barrel cortex, which was 
downloaded from a public database (https ://crcns .org/data-sets/ssc/
ssc-1) [1]. Calcium image data were measured while a mouse was per-
forming a pole localization task. To estimate the effective connectiv-
ity among five clusters of neurons, we used Dynamic causal modeling 
(DCM) [2] with Jansen and Rit model [3] and a calcium image time 
series evoked by touching whiskers. We performed waveform sorting 
of valid neuronal responses in the barrel cortex using principal com-
ponent analysis for time series of behaviorally successful trials. We 
visually identified five representative calcium signal modes evoked 
by whisker stimulation from 6176 neurons. Using time series of these 
modes, we estimated effective connectivity among these modes 
evoked by whisker stimulation using DCM, a Bayesian method for 
inferring a causal architecture in the dynamic system (Fig. 1). For the 
DCM, we used a convolution-based model for neural state transition 
model, which was initially proposed by Jansen and Rit. We also made 
an observation model for the calcium imaging, which maps neuronal 
state to calcium imaging data. The calcium imaging data with a given 
external input were used to fit both neural state transition model and 
calcium imaging observation model. Among several possible models 
with different inputs, we chose an optimal model after Bayesian model 
comparison. As a result, three modes showed strongly excitatory while 
two modes inhibit other modes. The degree of inhibition was relatively 
weak compared to excitatory connectivity. The current method pro-
vides a method to explore the relationship between amplification and 
suppression of the canonical microcircuit in the barrel cortex using 
DCM for calcium imaging data set. In this framework, we are further 
working on establishing more precise models for calcium imaging 
data and validation test using simulation studies.

Fig. 1 Effective connectivity among 5 modes (waveforms). Black 
solid and dashed lines mean excitatory effects and red solid and 
dashed lines mean inhibitory effects

https://crcns.org/data-sets/ssc/ssc-1
https://crcns.org/data-sets/ssc/ssc-1
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The functionality of the brain depends fundamentally on the con-
nectivity of its neurons for everything from the propagation of affer-
ent signals to computation and memory retention. Connectivity arises 
from the apposition of complex branched axonal and dendritic arbors 
which each display a diverse array of forms, both within and between 
neuronal classes. Despite this complexity, neurons of different classes 
have been observed to form synapses in highly specific ways [1], 
leading to potentially highly structured connectivity motifs within 
neuronal networks. Whilst the large-scale EM studies necessary to 
definitively constrain synaptic connectivity remain prohibitively slow 
[2]and viral synaptic tracing is limited to small neuron numbers [3], 
putative synaptic locations from the close juxtaposition of dendrite 
and axon are more readily measured [4] and provide the potential set 
of all possible synaptic contacts; the backbone upon which neuronal 
activity can fine tune connectivity. It has been shown that much of 
the specificity in putative connectivity can be explained by a detailed 
analysis of the statistical overlap of different axonal and dendritic 
arbors [5] in a manner analogous to Peters’ rule where synapses are 
assumed to form uniformly where possible [6]. However such analyses 
rely on full neuronal reconstructions with large numbers of param-
eters and are difficult to apply intuitively to microcircuits. We have 
investigated the number of putative synapses that form between arti-
ficial arbors generated using a generalised minimum-spanning tree 
algorithm that mirrors the structure of real neurons [7]. We have found 
that the number of putative synaptic contacts depends linearly on just 
four properties of the arbors: the volume of the region where dendrite 
and axon overlap, the length of the axonal and dendritic arbors within 
this region, and the maximum dendritic spine length at which synap-
tic contacts can form. The relationship between these four parameters 
and the estimated synapse number can be expressed as a single equa-
tion (adapted from results in [8] and [9]) and accurately models the 
number of putative synapses between reconstructed cortical neurons 
[10]. We have additionally shown that this relationship is specific to 
typical dendritic and axonal structures as morphologies that resemble 
knock-out mutants with pathologically clustered dendrites do not fit 
our predictions. Other deviations from the predictions of our study 
could provide insights into the degree of targeting in neurite growth 
processes in different brain regions as more detailed connectome data 
becomes available. Overall our work provides an intuitive way to esti-
mate the putative synaptic connectivity of microcircuits, greatly sim-
plifying the parameters necessary for analytical and numerical studies 
of biophysically detailed neuronal networks.
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The concept of a hypercolumn is used to subdivide discriminable pat-
terns of continuously shifting feature preferences into discrete topo-
graphical units [1–3]. In the visual cortex such hypercolumns consist 
for example of repeating pinwheel patterns [4–6] and seem to follow 
a universal design principle across mammalian species [7] because the 
number of pinwheels per hypercolumn area is constant near pi [8]. We 
find using curated biological data that this constant relationship is a 
general consequence of a fixed number of neurons per hypercolumn 
and that differences in absolute pinwheel densities are a mere conse-
quence of differences in the neuronal density. Low neuronal densities 
would therefore result in large hypercolumns and vice versa. In agree-
ment with previous results [9], our analysis of the characteristic orien-
tation preference hypercolumns in the primary visual cortex yields a 
constant number of ~ 30,000 neurons per pinwheel and defines a mini-
mum of ~ 300 pinwheels below which organisms lack hypercolumns 
altogether. Using a computational model based on optimal wiring 
principles we confirm our empirical results by showing that similarly 
structured hypercolumns appear with fixed cell numbers indepen-
dently of the overall network size. Furthermore we show that a fixed 
hypercolumn size is compatible with the absence of hypercolumns in 
rodent species. Overall, our results provide further evidence for a uni-
versal design principle in the visual cortex across mammalian species.
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In neural circuits, neurons send out tree-shaped dendritic structures 
to collect inputs from their presynaptic partners. Different cell types 
are visually identifiable by the characteristic shapes of their dendrites 
[4, 5] and these also critically affect their respective computations. A 
large number of branching statistics have been proposed as objective 
criteria to capture differences between cell types and to distinguish 
disease or mutation phenotypes [1]. Yet, as we show here, most of 
those widely used statistics show trivial correlations that are essen-
tially entirely explained by optimal wiring considerations [6], consist-
ent with their poor power for sorting dendritic tree shapes into their 
respective cell types [2]. Using a simple maximum entropy model 
based on minimum spanning trees, we were able to reproduce almost 
all relationships between the commonly used branching statistics. To 
verify our model we studied a large set of real dendritic trees, covering 
a multitude of different cell types, species, developmental stages and 
brain regions [3]. Our study not only gives a comprehensive overview 
of all commonly used statistics and emphasizes the need for more 
powerful branching statistics, but more generally indicates a potential 
randomness of dendritic arborizations in the brain constrained only 
by optimal wiring considerations and the space they innervate. The 
model we propose can furthermore serve as a basis to test the power 
of yet to be invented branching statistics and is also likely useful to 
study other branching structures found in nature, such as river net-
works, botanical trees, and blood vessel structures.
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Dendritic growth is the process that ultimately leads to cell type spe-
cific neuronal morphologies and contributes to building mature neu-
ral circuits, shaping their computational properties. Dendritic tree 
morphology is strongly constrained by optimal wiring consideration-
sand by functional properties relevant to behaviour. However, the 
rules controlling the fine regulation of branch outgrowth, pruning 
and stabilisation that leads to the mature arbour elaboration remain 
largely unknown. In this work we study the growth phases of ventral 
Class I dendritic arborisation (da) neurons of the Drosophila mela-
nogaster larva peripheral nervous system at a high temporal resolution 
that allows resolving the fine elements that compose the growth pro-
cess. The Class I da neurons, which are proprioceptive and respond 
to contractions in the larva body during crawling, do not obviously 
gain from satisfying optimal wiring constraints. Therefore, we use this 
system to study how their specific functional requirements may be 
combined with optimal wiring constraints during the developmen-
tal growth process that leads to the dendritic morphologies of these 
cells. Genetic manipulation of the sensory neuron’s shape interferes 
with their sensory function and disrupts crawling behaviour, suggest-
ing that the feedback of information about body movement depends 
on precise dendritic morphology. Hence, we probed the contribution 
of the class I ventral cell’s dendrite characteristic comb-like geometry 
in sampling the mechanosensory inputs arising from the contraction 
of body wall during crawling behaviour, by recording high resolution 
calcium imaging in freely crawling larvae. Using these recordings, 
we show strong correlations between calcium signal change in the 
deformed comb-like dendritic branches caused by the contraction of 
the body wall in a series of periodic strides during forward and reverse 
crawling. We then utilized genetically encoded green fluorescent 
protein markers for ventral Class I da cells, and recorded high tempo-
ral resolution non-invasive, in vivo time-lapse microscopy images of 
dendrite arbour morphogenesis in the embryo and its maturation in 
the larva. The time-lapse data enabled us to constrain computational 
growth models that clearly defined the different development stages 
of dendritic pattern formation. Furthermore, they revealed how this 
individual type of neurons controls branching to achieve its mature 
shape while respecting minimal wiring constraints. Our findings unveil 
how single neurons can develop specialised dendrite patterns that 
support a well-defined function while minimizing wiring costs associ-
ated with their dendritic trees, shedding light on general principles of 
structure–function emergence in single neurons.
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A stroke occurs when the blood supply to the brain is either halted or 
significantly reduced. The study of the effectiveness of brain stimula-
tion techniques is of growing interest in modern stroke research. The 
major challenges of the exploratory analysis of brain signals are high 
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dimensionality and massive size of the data. Dimensionality reduc-
tion is necessary to facilitate computation and interpretation of the 
results. One of the techniques for dimensionality reduction introduced 
in [1] and [2] is Spectral Principal Component Analysis (SPCA), which 
accounts the oscillatory patterns in these signals. In contrast to the 
conventional Principal Component Analysis (PCA) which is the instan-
taneous linear mixture of the signal, SPCA is defined as a linear con-
volution of the signal at all lags. In this project, we study LFP signals 
recorded from 32 channels located on rats’ brain cortices for 1 h before 
and 5 h after a stroke. A stroke was artificially induced by occluding 
the medial cerebral artery (MCA). We extract signal summaries from 
these high-dimensional data by SPCA to study the difference in the 
brain network among rats that received early stimulation post-stroke 
and those that did not receive stimulation. Also, the LFP signal at each 
epoch was regressed against the first two spectral principal compo-
nents to examine the temporal correlation of the coefficient that cor-
responds to the loading of signal summary 1. We studied the spatial 
correlation of the regions of electrodes placement by combining chan-
nels into 4 clusters using hierarchical clustering algorithm. The number 
of clusters was determined by the inspection of dendograms across all 
epochs. We extracted signal summaries of each cluster for every epoch 
and computed their cross-correlation. The results suggest that post-
stroke LFP signals of the non-stimulated rat are highly synchronized as 
opposed to the rat whose whisker was stimulated (Fig. 1). These results 
are consistent with the brain signals of sham (non-occlusion) rats.
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1440 is the date generally accepted for the invention of movable type 
printing (i.e. the printing press) by Johannes Gutenberg. Don Quixote, 
generally regarded as the first novel with modern structure was pub-
lished by Cervantes in 1605, 165 years later. It was another 60 years 
(1665) before the Secretary of the Royal Society of London organ-
ized the first periodical focused exclusively on Science. The full adop-
tion and best use of a new technology clearly takes time. Originally 
titled Philosophical Transactions: Giving some Account of the present 
Undertakings, Studies, and Labours of the Ingenious in many con-
siderable parts of the World” the journals founder, Henry Oldenburg, 
defined the purpose of the new journal at the outset to support “reg-
istration” (date stamping and provenance), “certification” (peer review), 

“archiving” and of particular importance “dissemination”. Referring to 
the importance of dissemination in particular, Oldenburg wrote to 
Robert Boyle in 1664, that through the journal: “…all ingenious men 
will thereby be incouraged to impact their knowledge and discoverys”. 
The question that we address in this presentation is whether and how 
the digitalization of scientific (and human) communication could and 
should re-implement these original objectives for scientific publish-
ing. Specifically, we will argue that the more than 350 year old form 
of communication currently represented by off-line and now on-line 
scientific journals is particularly inappropriate and limiting for com-
putational neuroscience. Having worked on this problem through 
the GENESIS simulation platform for 35 years (Fig. 1), we will present a 
specific new form of publication workflow and associated tools for the 
review, archiving and dissemination of computational models through 
the process of publishing the models themselves, not paper versions 
of the models. Perhaps most importantly, this new workflow intrinsi-
cally considers and supports collaboration in a way that the printing 
press never could and current journals can not. Our presentation will 
attempt to make clear that such a change is not simply a digital nicety, 
but instead will likely be crucial for advancing our understanding of 
nervous systems by accelerating the convergence of concepts and 
theories in computational neuroscience. As one more historical note, 
while Philosophical Transactions was established in 1665, it wasn’t 
accepted as the official journal of the Royal Society until 1752 when 
the name was changed to the “Transactions of the Royal Society”. The 
question this presentation will pose to consider is whether it will take 
less than 225 years from the establishment of the internet to launch 
a new form of scientific journal and whether it will take less than 
87 years for the scientific community to accept that form?

Fig. 1 Connectivity between different clusters post‑stroke. Left is the 
non‑stimulated rat. Right is the stimulated rat

Fig. 1 Cover for the first Book of GENESIS—representing the impor‑
tance and hope for collaborative science



Page 51 of 98BMC Neurosci 2018, 19(Suppl 2):64

P95 
Disentangling diverse patterns of synaptic efficacy in vivo and their 
causes
Abed  Ghanbari1, Naixin  Ren2, Christian  Keine3, Carl  Stoelzel2, Bernhard 
 Englitz4, Harvey  Swadlow2, Ian H.  Stevenson2

1University of Connecticut, Department of Biomedical Engineering, 
Storrs, CT, United States; 2University of Connecticut, Department 
of Psychological Sciences, Storrs, CT, United States; 3Carver College 
of Medicine & University of Iowa, Department of Anatomy and Cell 
Biology, IA, United States; 4Radboud University & Donders Institute 
for Brain, Cognition and Behaviour & Department of Neurophysiology, 
Netherlands
Correspondence: Abed Ghanbari (abed.ghanbari@uconn.edu)  
BMC Neuroscience 2018, 19(Suppl 2):P95

Short-term synaptic plasticity (STP) causes the effect of presynaptic 
spikes on a postsynaptic neuron to vary on timescales ranging from 
a few milliseconds to a few seconds. STP has been extensively stud-
ied in vitro by stimulating a presynaptic input with pulses of different 
frequencies and observing depression or facilitation in the postsynap-
tic potentials or currents. These studies have shown that the type and 
timescale of STP varies by cell type and brain region. However, since 
recording postsynaptic potentials (PSP) or currents (PSC) in vivo is 
challenging, STP has not been fully characterized in awake, behaving 
animals. Here rather than observing PSP/PSCs directly, we model how 
presynaptic spikes alter postsynaptic spiking and infer STP parameters 
from spike observations alone. In particular, we model the short-term 
changes in the probability of a postsynaptic spike following a presyn-
aptic spike—the synaptic efficacy. Previous work has argued that, in 
depressing synapses, this probability or efficacy is larger when pre-
synaptic spikes are preceded by long interspike intervals (ISIs), and 
in facilitating synapses efficacy is larger for short intervals. However, 
in practice, the observed correlation between pre- and postsynap-
tic spiking is a mixture of multiple underlying phenomena. Here we 
develop a model-based approach for decomposing these short-term 
changes into four components: (1) short-term synaptic plasticity, (2) 
integration of PSPs, (3) history effects, and (4) slow common inputs. 
The observed spike probability depends on each of these factors as 
well as the synaptic strength itself and the distribution of presynaptic 
spike times. We developed an extension of a typical generalized linear 
model (GLM) to use only pre- and postsynaptic spike observations. 
This method allows us to characterize short-term synaptic dynamics 
of a wide range of synaptic behaviors in vivo. The estimated synaptic 
parameters as well as plasticity parameters could be compared with 
in vitro measurements. To validate our model, we examined its per-
formance for four putative synapses using only pre- and postsynaptic 
spike observations. We find that lateral-geniculate nucleus-to-visual 
cortex (LGN-V1) data is consistent with short-term synaptic depression 
where postsynaptic spike probability increases at long presynaptic ISIs 
(which allow for recovery from the depression). Data from the auditory 
nerve-to-spherical bushy cells (ANF-SBC) synapses, on the other hand, 
is consistent with short-term synaptic facilitation, and spike history 
causes decreased postsynaptic spiking at short presynaptic ISIs. There 
is a wide range of efficacy patterns in the multi-electrode hippocam-
pus (HC) data, but, in many cases, common input from theta oscilla-
tions has an impact on the observed efficacy. Lastly, a pair within 
thalamus shows depressing pattern similar to LGN-V1 connection with 
stronger integration. These results demonstrate how short-term syn-
aptic efficacy reflects a combination of many factors, and interactions 
between these factors give rise to a wide diversity of effects of presyn-
aptic spikes on postsynaptic spiking. As the number of simultaneously 
recorded neurons increases, this approach is likely to be useful for 
characterizing STP in multi-electrode array recordings as well as study-
ing how differences in STP affect postsynaptic spiking.
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By 2020 roughly 200 million people worldwide will suffer from degen-
erative retinal diseases. While a variety of sight restoration technolo-
gies are being developed, retinal neuroprostheses (‘bionic eyes’) are 
the only devices with FDA approval. These devices aim to restore func-
tional vision by electrically stimulating remaining cells in the retina, 
analogous to cochlear implants. However, these devices stimulate reti-
nal axon fibers as well as cell bodies: this leads to elongated and poorly 
localized percepts that severely limit the quality of the generated 
visual experience1. We previously developed a computational model 
that describes these distortions and accurately predicts a patient’s 
perceptual experience for any pattern of electrical stimulation 3–5. 
However, improving the design of neuroprosthetic devices will require 
a solution of the inverse problem: What is the optimal stimulation 
protocol that elicits a desired visual percept? To answer this, we used 
our model to generate synthetic data that predicted elicited percepts 
in an Argus II epiretinal prosthesis patient. These synthetic percepts 
were used as features in a regularized regression optimized to find the 
stimulation protocols that would minimize perceptual distortions of 
Snellen letters. Compared to conventional protocols currently used in 
patients, in which each electrode is stimulated with an amplitude that 
is linearly related to the luminance of the corresponding location in 
the visual field, the percepts produced with the optimized stimulation 
protocols confer a potential substantial advantage, both in terms of 
expected visual acuity and overall delivered charge: Stimulation proto-
cols proposed by the algorithm only sparsely activated the electrode 
array and compensated for the perceptual distortions thought to be 
caused by axonal stimulation. Future work will include more sophisti-
cated machine learning methods that can compensate for spatiotem-
poral distortions across a wider range of implants.
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Simple models of short term synaptic plasticity that incorporate facili-
tation and/or depression have been created in abundance for differ-
ent synapse types and circumstances. The analysis of these models has 
included computing mutual information between a stochastic input 
spike train to the presynaptic synapse, and some sort of representa-
tion of the postsynaptic response. While this approach has proven 
useful in many contexts, for the purpose of determining the type of 
process underlying a stochastic output train, it ignores the ordering 
of the responses, leaving an important characterizing feature on the 
table. In this work we use a broader class of information measures on 
output only, and specifically construct hidden Markov models (known 
as epsilon machines or causal state models) to differentiate between 
synapse type, and classify the complexity of the process. We find that 
the machines allow us to differentiate between processes that oth-
erwise have similar output distributions. We are also able to under-
stand these differences in terms of the dynamics of the model used 
to create the output response, bringing the analysis full circle. Hence 
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this technique provides a complimentary description of the synaptic 
filtering process, and potentially expands the interpretation of future 
experimental results.
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We introduce a computational model capturing the high-level features 
of the complementary learning systems (CLS) framework. In particular, 
we model the integration of episodic memory with statistical learn-
ing in an end-to-end trainable neural network architecture. We model 
episodic memory with a nonparametric module which can retrieve 
past observations in response to a given observation, and statistical 
learning with a parametric module which performs inference on the 
given observation. We demonstrate on vision and control tasks that 
our model is able to leverage the respective advantages of nonpara-
metric and parametric learning strategies, and that its behavior aligns 
with a variety of behavioral and neural data. In particular, our model 
performs consistently with results indicating that episodic memory 
systems in the hippocampus aid early learning and transfer gener-
alization. We also find qualitative results consistent with findings that 
neural traces of memories of similar events converge over time. Fur-
thermore, without explicit instruction or incentive, the behavior of our 
model naturally aligns with results suggesting that the usage of epi-
sodic systems wanes over the course of learning. These results suggest 
that key features of the CLS framework emerge in a task-optimized 
model containing statistical and episodic learning components, sup-
porting several hypotheses of the framework.
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Over the last few years there has been a dramatic increase in the 
number of mouse lines with GCaMP expression throughout much of 
neocortex offering the opportunity to image cortical activity using 
calcium indicators with high signal-to-noise and genetically-targeted 
expression. Widefield calcium imaging has emerged as a valuable 
tool to measure meso-scale brain calcium dynamics using these new 
indicators. Its strengths, a large field-of-view with a high sampling 
rate, permit experiments that simultaneously image activity from the 
entirety of dorsal cortex, revealing a dynamic systems-level represen-
tation of cortical interactions during mouse behavior. However, the 
interpretation of these widefield data is complicated by the substan-
tial mixing of calcium signals with hemodynamics. Here, we present a 
new approach to demixing hemodynamic signals from calcium activ-
ity using the strategy that signals observed in GFP mice should be 
removed from GCaMP mice. We motivate this approach by showing 
that a linearization of the Beer-Lambert equation—where in our sys-
tem four pathlength parameters would typically be estimated using 
simulations—can be exactly captured by a linear model with two 
variables. Using this insight, we gather data from awake mice express-
ing GFP or GCaMP using a multi-spectral widefield macroscope that 
alternates two backscatter measurements (575 nm and 630 nm) simul-
taneously with a fluorescence measurement. With two backscatter 
measurements, we train spatially-detailed regression models to find 
what amount of fluorescent variance in GFP mice can be explained by 
the backscatter data at each pixel. We generalize these primary models 
across mice using a meta-model trained on shared features of the data 

to estimate spatial detail unique to each animal. We quantify the suc-
cess of this approach demixing hemodynamic variance in several com-
monly used Cre driver lines with different cortical laminar expression 
patterns and show in what conditions this approach offers advantages 
over non-spatially-detailed demixing. We also demix GCaMP data and 
show that we can remove stereotyped hemodynamic responses to 
visually-evoked activity (Fig. 1). This method offers a means to quantify 
and demix hemodynamic contamination at every pixel in a widefield 
movie, and is an essential step towards converting fluorescence meas-
urements to calcium activity.
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What if we could design an autonomous flying robot with the naviga-
tional and learning abilities of a honeybee?
In the ‘Brains on Board’ project we have brought together experts in 
computational neuroscience, bio-inspired robotics, animal behaviour 
and neurophysiology from three UK universities to realize this vision. 
Autonomous control of mobile robots requires robustness to environ-
mental and sensory uncertainty, and the flexibility to deal with novel 
environments and scenarios. Animals solve these problems by having 
flexible brains capable of unsupervised pattern detection and learn-
ing. Even ‘small’-brained animals like bees exhibit sophisticated learn-
ing and navigation abilities using very efficient brains of only up to 1 
million neurons, 100,000 times fewer than in a human brain. Crucially, 
these mini-brains nevertheless support high levels of multitasking and 
they are adaptable, within the lifetime of an individual, to completely 
novel scenarios; this is in marked contrast to typical control engineer-
ing solutions. In the Brains on Board project we fuse computational 
and experimental neuroscience to develop a ground-breaking new 
class of highly efficient robot controllers, able to exhibit adaptive 
behaviour while running on powerful yet lightweight accelerated 
embedded systems hardware such as NVIDIA’s Jetson TX2 and Mov-
idius’ Myriad II systems. On this poster we present an overview of the 
Brains on Board project and discuss preliminary results:
1. We have developed the SpineCreator-SpineML-GeNN toolchain to 
make best use of embedded GPU accelerators for autonomous robots 

Fig. 1 Demixing hemodynamics in GFP and GCaMP mice. A) Left, 
map of average response (averaged 1.5–2.0 s post stimulus) to a 
100 ms flashed visual stimuli given to the right eye of a GFP mouse 
(Cux2‑IRES2‑CreERT2;Ai140, left). Right, time‑course of raw trace (red) 
and a trace demixed using the meta model (black) extracted from 
a pixel near V1 cortex (red dot, left). B) Map of response (averaged 
1.5–2.0 s post stimulus) of a visual response in a GCaMP6f mouse 
(Cux2‑IRES2‑CreERT2;Ai148). Time course of responses plotted as in A, 
with their difference (raw‑demixed) in gray
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and obtain sufficient compute power to run bee brain simulations in 
real time on a flying robot.
2. We have completed a first proof of concept system, based on a Par-
rot bebop II with NVIDIA Jetson TX1 “backpack” (see Fig. 1), that has 
flown autonomously and avoided walls using a simulation of the bee’s 
visual system.
3. We have created a bee virtual reality system for closed-loop behav-
ioural experiments with walking bees.
4. We have obtained large quantities of 2D bee flightpath data through 
radar tracking and a 3D harmonic radar tracking system is close to 
completion.
5. We have developed novel computational neuroscience models for 
reward estimation in bees and fruit flies, models of the visual system 
and oculo-motor reflex, and a model of the central complex related to 
navigation.
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Abnormal gamma band power across cortex and striatum is observed 
in Huntington’s disease (HD) in both patients and animal models. The 
origin of this phenomenon is not well understood, nor is its functional 
relevance to disease pathology. To address the former, we devel-
oped three hypotheses and a computational model for fast-spiking 
interneurons (FSIs) that was based on observations from mice striatal 

anatomy and physiology. First, we considered if abnormal cortical 
activity alone can account for an increased gamma power recorded in 
the striatum, with the common assumption that FSIs are responsible 
for such high frequency oscillations. Second, we asked if a reorgani-
zation of corticostriatal projections in terms of driving strength can 
account for increased gamma in the striatum. Third, we considered if 
changes within the striatal micro-circuit can explain the increase in 
gamma power therein. Changes of peak gamma frequency and power 
ratio were readily reproduced by our computational model, account-
ing for several experimental findings reported in the literature. Our 
results also suggest that cortical changes alone are unlikely to account 
for the full range of phenomena observed in striatum, and that instead 
both a reorganization of corticostriatal drive and specific population 
changes to intra-striatal synaptic coupling are present in HD.
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Corticothalamic neural field theory (NFT) has successfully explained 
a wide variety of phenomena, ranging from EEG spectra and evoked 
potentials to nonlinear phenomena such as seizures and Parkinso-
nian oscillations. Measures such as spectra, correlation and coherence 
functions are widely used to probe cognitive events and information 
processing experimentally. Most recently, prior work showed that the 
eigenmodes of a single brain hemisphere are close analogs of spheri-
cal harmonics. They are also the building blocks for bihemispheric 
modes, whose structure and symmetry properties explain many fea-
tures of resting state and task-related activity. This eigenmode expan-
sion is of use because it helps us understand the dynamics of the 
brain’s activity in terms of its natural modes. Here, corticothalamic NFT 
is analyzed on a sphere and used to derive the transfer function, the 
power spectrum, the correlation function, and the cross spectrum in 
terms of spherical harmonics. The results are analyzed and compared 
with planar NFT in both finite and infinite geometries. The results of 
spherical and finite-planar geometries converge to the infinite-pla-
nar geometry in the limit of large brain size. The main effects of the 
spherical modal structure are explored, particularly to understand the 
number of modes that contribute significantly to these observable 
quantities and the effects of the finite spatial extent of the cortex.
The main results are that when we truncate the modal series it is found 
that, for physiology plausible parameters, only the lowest few spatial 
eigenmodes are needed for an accurate representation of macro-
scopic brain activity. Cortical modal effects can lead to a double alpha 
peak structure in the power spectrum, although the main determi-
nant of the alpha peak is corticothalamic feedback. At the large brain 
size limit, spherical and finite-planar geometries converge to the infi-
nite geometries. In the spherical geometry, the coherence function 
between points decays monotonically as their separation increases at 
a fixed frequency, but persists further at resonant frequencies. The cor-
relation between two points is found to be positive, regardless of the 
time lag and spatial separation, but decays monotonically as the sepa-
ration increases at fixed time lag. This analysis of physiologically-based 
corticothalamic NFT in a spherical geometry will enable more realistic 
modeling and analysis of experimental brain signals in future.
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Fig. 1 Aspects of the Brains on Board project: a) Computational 
model of the central complex of bees, b) radar tracked flight trajecto‑
ries of bees, inset: bumble bee with harmonic radar tracking antenna, 
harmonic radar instrument, c) Parrot bebop quadcopter with Jetson 
TX1 “backpack”, c) Illustration of the SpineCreator‑SpineML‑GeNN 
toolchain
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We study how the two sound localization cues, interaural time differ-
ence (ITD) and interaural level difference (ILD) can be re-weighted in 
order to re-learn new peripheral condition in spatial hearing. In human 
the ITD is used for low frequency sound localization, the ILD is used for 
high frequency localization, and between 1000 Hz and 1500 Hz there 
is a transition zone, where both mechanisms play a role. The ITD and 
ILD are computed in the early (peripheral) binaural auditory pathway 
and then the information is transduced into the late (central) process-
ing involving mainly cerebral cortex. Hearing impairment of certain 
type on one ear leads to re-calibration of the localization mechanisms. 
The ITD can deliver its time difference (phase difference) as long as 
the attenuation of the affected ear does not exceed the phase differ-
ence discrimination capabilities. The ILD re-calibration can be quickly 
re-learned to set a new level balance between the two ears to signal 
the sound direction in the intersection of the horizontal and the mid-
dle plane. Experiments show that such re-learning is accomplished 
in one to two days. These experiments of a partner group in our joint 
experimental and theoretical project aim at describing the situation 
in hearing impaired listeners and after introducing binaural hearing 
aids or binaural cochlear implants. We study the dynamic of the re-
learning, re-learning spurious location with the enforced visual cue 
and spurious or distorted ITD and ILD cues. We will present preliminary 
results of phenomenological modeling the late (central) processing 
of the localization cues with the implications for further experiment-
ing and the use of binaural hearing prosthetics for sound and speech 
localization.
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Advances in recording of ongoing activity from large populations of 
neurons have increasingly shown that information processing arises 
from the collective behaviour of whole neural circuits. Both in vitro 
and in vivo recordings suggest that these circuits operate near a criti-
cal state poised between fully random and structured activity. Inves-
tigations on the role of neural criticality have focused on processing 
advantages in neural encoding, including transmission, storage and 
computational power [1]. However, little attention has been paid 
to the role of neural criticality on accurate downstream decoding of 
information. The aim of this study is to understand the impact of neu-
ral criticality on linear readout of in vitro multi-electrode activity.
We recorded spontaneous population activity from cultured corti-
cal networks under control and pharmacological conditions includ-
ing a GABA_A receptor antagonist (PTX) and an NMDA/AMPA 
receptor antagonist (APV-DNQX). As previously reported, the distri-
bution of active electrodes during burst activity followed a power 
law and the slope of the control condition in log–log scale was close 
to the expected mean field exponent in the critical state (α = 1.52) 
(Fig. 1 a. left) [2]. We then trained a linear readout to determine the 
network of origin of sampled bursts from different networks. Clas-
sification error was nearly 0% until approximately 90% of units were 
discarded. By comparison, deviations from the critical state through 
pharmacological alteration markedly disrupted performance (panel 
a. right). We then used a phenomenological branching model where 
each spike causes a given number of spikes in downstream units [1] 
as determined by a branching ratio (σ) defined as the average num-
ber of descendant to ancestor units across consecutive time-points. 

Criticality within the branching paradigm arises at a value of σ = 1 at 
which activity is propagated without amplification (> 1) or extinction 
(< 1). We simulated a population of N = 100 units and as with in vitro 
networks, we trained a linear readout to classify network bursts. Again, 
classification accuracy of the readout was highest near the critical 
state (σ = 1). These results were robust across different probabilities of 
spontaneous activity (Fig. 1 b) and connection probabilities between 
pairs of units. We generalized these findings through a probabilistic 
analysis of bursting behaviour within the branching paradigm. We 
found that as the branching ratio decreased from the critical value 
(σ < 1) and when it increased (σ > 1), the probability of spiking within 
a burst approached 0 and 1 respectively (Fig. 1 c). Hence, it is only in 
the critical state that the unique dynamics of the network can emerge 
(not fully silent nor saturated) and accurate readout is possible. Taken 
together, our results suggest a novel role of neural criticality in format-
ting network activity to promote its accurate readout by downstream 
structures. Furthermore, our findings provide a platform for character-
izing neural codes that are optimally advantageous for sensory and 
motor decoding (Fig. 1).
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Fig. 1 Left: Number of electrodes active per avalanche for control, 
APV‑DNQX and PTX conditions. Right: Readout accuracy of popula‑
tion activity. Classification performance is normalised by number of 
networks classified. b. Linear discrimination performance of network 
bursts from networks with various probabilities of spontaneous activ‑
ity g. Vertical dashed line, σ = 1. Horizontal dashed line, chance‑level 
performance. c. Average spike probability of individual units within 
a burst for different burst threshold levels (θ). Numerical values are 
averaged over units and time‑steps



Page 55 of 98BMC Neurosci 2018, 19(Suppl 2):64

Empirical evidence suggests that the neocortex represents informa-
tion using sparse distributed patterns of activity. There exist a variety 
of sparse coding algorithms demonstrating how to compute sparse 
representations, and a number of mathematical results on the capac-
ity of sparse representations. Here we focus on dendritic computations 
and analyze properties of sparse representations from a pattern recog-
nition viewpoint. Are sparse representations useful for neuronal pat-
tern recognition, and under what conditions? The literature on active 
dendrites and NMDA spikes suggest that a large portion of the den-
drites on pyramidal neurons recognize patterns with a small number 
of synapses. As few as 8–10 active synapses out of 20–30 can initiate 
dendritic spikes. Given the presence of noisy and unreliable neural 
inputs, can such a small number of synapses reliably detect patterns? 
We propose a formal mathematical model for recognition accuracy of 
binary sparse representations using active dendrites. We derive scaling 
laws that characterize the chance of false positives and false negatives 
when detecting patterns under adverse conditions. We describe three 
primary results. First, we show that using high dimensional sparse 
representations, a network of neurons can reliably classify a massive 
number of patterns under extremely noisy conditions. The results 
hold even when synapses subsample a tiny subset of the target pat-
terns or when individual neurons themselves are unreliable. Second, 
the equations predict dendritic NMDA spiking thresholds that closely 
match experimental findings. Finally, we consider two existing com-
putational models of active dendrites: the Poirazi/Mel neuron and the 
HTM neuron. Through simulations we show that the scaling behavior 
of these two models closely matches the theory. We show dramatically 
improved recognition accuracy over published results when “good 
parameters” (as predicted by the theory) for sparsity and dimension-
ality are applied, even when the total number of synapses are held 

constant. The equations assume uncorrelated inputs. Using simula-
tions we also show that the overall trends hold with correlated inputs, 
although the absolute errors are higher. In summary, the theory pre-
sented here complements existing work and represents a practical 
mathematical framework for understanding the accuracy and robust-
ness of sparse representations in cortical networks (Fig. 1).
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Supported by recent computational studies, nonnegative sparse cod-
ing (NSC) is emerging as a ubiquitous coding strategy across brain 
regions and modalities. A combination of nonnegative matrix factori-
zation (NMF) and sparse coding, NSC allows populations of neurons 
to collectively encode high-dimensional stimuli spaces using a com-
pressed, sparse, and parts-based neuronal code. Specifically, we argue 
that neuronal circuits can (1) achieve sparse codes through competi-
tion, and (2) implement NMF by utilizing spike-timing dependent 
plasticity with homeostasis (STDPH). We applied NMF to two differ-
ent datasets: (1) receptive fields in the dorsal subregion of the medial 
superior temporal area (MSTd), and (2) neurophysiological and behav-
ioral recordings from rat retrosplenial cortex (RSC). In both cases, we 
were able to show that applying NMF to major inputs into these brain 
regions can result in a sparse representation that captures important 
aspects of neuronal response properties of these brain regions. Fur-
thermore, we found similar results applying STDPH to the RSC dataset. 
These findings support a growing body of evidence that suggests bio-
logical neurons use plasticity, such as STDPH, to produce sparse, com-
pact stimulus representations that vastly reduce the dimensionality of 
their inputs..
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Various neuronal circuits, including a range of central patterns genera-
tors (CPGs) in the brainstem and spinal cord of many species, exhibit 
rhythmic activity patterns. In many CPGs, these patterns consist of 
sequential activations of different neuronal populations that interact 
through synaptic connections. Significant effort has gone into explor-
ing, using experimental and theoretical methods, the extent to which 
the intrinsic bursting or pacemaking capabilities of neurons within 
these populations are responsible for the existence of the network 
rhythms in which they participate. For example, experimental studies 
have established the existence of intrinsically bursting neurons in the 
pre-Botzinger complex (preBotC) of the mammalian respiratory brain-
stem, and certain experimental manipulations of burst-supporting 
conductances in these neurons have eliminated respiratory rhythms. 
Moreover, recent optogenetic studies in the rodent spinal cord have 
shown that neurons active in extensor or flexor phases of locomotor 
rhythms can autonomously generate rhythmic activity. These stud-
ies, however, leave open an important question: What happens to 
this intrinsic bursting when the burst-capable neurons are embed-
ded within the full network with which they interact? In many cases, 
it remains unknown whether the intrinsic bursting capabilities of 
subsets of neurons affect the emergent dynamics once these neurons 

Fig. 1 (A) Pyramidal neurons (left) have thousands of excitatory syn‑
apses, most of which are located on active distal dendritic segments. 
Neuron model containing an array of independent active segments 
(right). (B) Error on the binary classification task described in (Poirazi 
and Mel 2001). Error rates are dramatically improved by increasing the 
underlying dimensionality and sparsity of the input representation 
even when the number of synapses are held constant. The behavior 
is an almost exact match to error probabilities as predicted by the 
theory
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are embedded within a synaptically interconnected circuit and how 
this bursting capability contributes to the properties of these circuits’ 
rhythmic outputs. In this study, we use highly reduced neuronal mod-
els of CPGs composed of small numbers of neuronal populations to 
highlight some key principles relating to these issues. In particular, 
we show that neurons’ intrinsic dynamic properties naturally become 
masked by the network interactions that support multi-phase rhyth-
mic outputs. We establish these results using two models: a half-center 
locomotor network in which extensor and flexor units are coupled 
with reciprocal synaptic inhibition and a respiratory network com-
prising several neuronal populations, including respiratory neurons 
in the preBotC. In the locomotor case, we demonstrate that changes 
in drives that switch units’ intrinsic dynamics from oscillatory or burst-
ing to tonic spiking have no impact on the existence or frequency of 
network rhythms. Effects of drives on rhythm frequency are shown 
to derive instead from the transition mechanisms, such as escape or 
release, underlying phase switching within the rhythms, with par-
ticular transition mechanisms persisting across parameter changes 
that alter intrinsic dynamics. Subtly, however, intrinsic dynamics can 
affect which transition mechanisms can arise within a given parameter 
regime. In the respiratory case, we similarly illustrate a lack of impact 
of preBotC intrinsic dynamics on a variety of properties of network 
rhythms including frequency and amplitude responses to changes 
in drive; consequences of modulation of inhibition; and even effects 
of blockade of the persistent sodium current that may underlie the 
intrinsic rhythmicity within the preBotC. We also show that inclusion of 
a second excitatory component in the network, the recently identified 
post-inhibitory complex (PiCo), has little effect on network rhythms, 
despite the intrinsic oscillation capability of the PiCo.
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Huntington’s disease (HD) is a neurodegenerative disorder with severe 
movement and cognitive dysfunction. Structural and functional neu-
ropathology in HD occurs in the striatum, mainly targeting medium 
spiny neurons (MSNs), which are regulated largely by striatal fast spik-
ing interneurons (FSIs). MSNs are categorized by the expression of 
dopamine receptors (D1 or D2) and their contribution to the direct 
(D1) and indirect (D2) pathways of the basal ganglia. Q175, a trans-
genic mouse model of HD, exhibits molecular phenotype changes, 
neuronal dysfunction, and involuntary limb movement. Our recent 
in vitro work showed increased input resistance in both D1 and D2 
MSNs of 12-month old Q175 mice compared to wildtype (WT), but 
reduced rheobase and action potential amplitudes only in D1 MSNs of 
Q175 versus WT [1]. This modeling study aims to identify mechanisms 
that might account for this differential vulnerability, allowing us to 
gain further insight into striatal dysfunction mechanism in the context 
of HD. We constructed a 122-compartment conductance-based MSN 
model in NEURON, based on two published models [2, 3]. We used our 
recent optimization method [4] to fit parameters controlling the con-
ductance and kinetics of several ion channels of the model to empiri-
cal data from several D1 and D2 neurons in WT and Q175 mice. Error 
functions comprised multiple features of voltage traces from several 
current clamp steps. Applying machine learning techniques that rank 
parameters’ importance to firing properties reduced the number of 
optimized parameters from 17 to 8. This technique was also used to 
fit parameters of an FSI model to data from WT and HD model mice. 
Compared to WT MSN models, the Q175 MSN models had lower con-
ductances of fast and persistent sodium (Na+), slow A-type potassium 
(K+), and T-type calcium channels. These findings were consistent 
with published RNA sequencing analysis in the striatum of Q175 mice 

[5, 6]. Rheobase, differentially reduced in D1 but not D2 neurons of 
Q175 mice, is a strong correlate of neuronal suprathreshold excitabil-
ity. Analyses showed that the conductance of the persistent Na+ , fast 
and slow A-type K+, and delayed rectifying K+ channels were the 
most important determinants of rheobase in our models. The mean 
conductance of persistent Na+ and slow A-type K+ channels were 
decreased in both Q175 D1 and D2 MSN models; delayed rectifier 
K+ channel conductance was reduced only in Q175 D1 MSN models. 
Adjusting conductance parameters of the fitted WT MSNs based on 
known up/downregulation of certain genes in Q175 mice was suffi-
cient to account for the rheobase differences between WT and Q175 
for D1 but not D2 model MSNs. This computational study of cellular 
modeling study complements our recent findings of increased den-
dritic branching complexity and lower EPSC frequency in D1 but not 
D2 MSNs of Q175 mice [1]. Together this work lays the foundation for 
constructing a model of the pathological effects of HD on the striatal 
network.
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Large-scale oscillatory activity such as that observed in human M/EEG 
is believed to arise from a combination of cortical (e.g. intracolumnar 
excitatory-inhibitory coupling) and thalamocortical rhythmogenic 
mechanisms. Whilst considerable progress has been made to char-
acterize these mechanisms separately, relatively little work has been 
done that attempts to unify intracortical and thalamocortical rhythmo-
genesis within a single theoretical framework. Building on previous 
work [1–8], here we present and examine a whole-brain connectome-
based neural mass model that combines detailed long-range cortico-
cortical connectivity based on primate and human tract tracing data 
with strong, recurrent thalamocortical circuitry. In the model each 
network node represents an individual cortico-thalamo-cortical motif 
with four components: a classic Wilson-Cowan1ensemble of excita-
tory and inhibitory cortical neuronal populations, coupled to a pair 
of excitatory specific relay and inhibitory reticular thalamic nucleus 
populations. This system is able to reproduce a variety of known fea-
tures of human M/EEG recordings, including a 1/f spectral profile; 
spectral peaks in the alpha, theta, beta, and gamma ranges; and dis-
tance-dependent covariance (functional connectivity) structure that 
is shaped by the underlying anatomical connectivity. Consistent with 
previous theoretical and experimental observations [2, 3], we also find 
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that increasing sensory drive to thalamic regions triggers a suppres-
sion of dominant low frequency rhythms in favour of higher-frequency 
activity, and also results in an increased susceptibility to entrainment 
of the entire system by exogeneous stimulation. We find that increas-
ing cortico-cortical connectivity does not disrupt but in fact stabilizes 
the thalamocortical alpha rhythm, and that varying cortico-cortical 
conduction delays within physiologically plausible limits modifies, but 
does not fundamentally alter, the power spectrum and overall dynam-
ics. Finally, we investigate the role of convergence and divergence of 
corticothalamic and thalamocortical projections, respectively, in deter-
mining oscillatory and resonance behaviour in the model, and their 
implications for the role of the thalamus in promoting and coordinat-
ing cortico-cortical synchronization. Taken together, our results clarify 
the role of cortical network topology and conduction delay structure 
in shaping both thalamocortical and corticortical rhythmic activity 
and large-scale brain communication.
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Neurons are conventionally said to be “specific” or “selective” to a spe-
cific feature of stimulus if it responds differentially to the feature char-
acterizing the given stimulus. For instance, neurons in the primary 
somatosensory cortex (S1) have been classified as “noxious-specific” 
when they respond to pinching by forceps (noxious stimulus), but not 
to bush stroke (innocuous stimulus) in many studies. Despite the wide-
spread adoption of this simple approach, however, it should be recog-
nized that the given stimulus could have another feature that can be 
encoded by the neurons, such as texture or dynamics. If we consider 
these additional features as candidates for the selectiveness of the 
neurons, the differential responsiveness of the neurons to pinching 
or brush stroke cannot be interpreted as “noxious-specific” or not. In 
this case, additional stimulus that has distinct feature characteristics 
with pinching and brush could help characterizing the neural selec-
tivity. Indeed, we found many S1 neurons of mice showing differen-
tial responsiveness to pinching by forceps are not “noxious-specific”, 
but selective to the features of texture or dynamics by applying 3 
types of stimuli with distinct feature characteristics (pinching by for-
ceps, brush stroke, and touching by forceps) using in vivo two-photon 
Ca2+ imaging. Moreover, we introduce a theoretical framework to 

characterize the neural selectivity in multidimensional sensory feature 
space, which are based on the stimulus-feature design matrix and the 
acquired experimental results. 1. If all feature vectors of the stimulus-
feature matrix are unique and the number of unique feature vector (d) 
equals to 2 s, (s is the number of stimuli with unique feature character-
istics), unique selectivity of neurons can be specified, regardless of the 
experimental results. 2. If there is a unique orthogonal (hyper) plane 
that can be implemented to classify the experimental results, unique 
selectivity of neurons can be specified. 3. If there are orthogonal 
(hyper) plane implementable, but they are not unique, the selectivity 
cannot be specified and more stimuli are necessary for characterizing 
the neural selectivity. 4. If there is no orthogonal (hyper) plane imple-
mentable to the experimental results, there are two scenarios. First, 
it can be possible to add reasonable unique feature vector and try to 
implement orthogonal plane again. Second, interpret the results as 
“mixed selectivity” of the neurons. We systematically analyzed previ-
ous studies characterizing selectivity of sensory neurons using brush 
and forceps based on our framework and it turned out that many of 
the previous results that characterized neural selectivity cannot be jus-
tified in multidimensional sensory feature space.
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Physical connections between different human gray matter regions 
occur through long-range white-matter fiber-bundles. These fiber-
bundles can be traced through diffusion weighted imaging and pro-
cessed to estimate a whole-brain structural connectivity (SC) matrix 
(the human connectome). Using this network approach, anatomic 
connections between any two brain regions connected by white mat-
ter fibers (or streamlines) constitute anedge. This complex topologi-
cal organization is based partly on genetics and environment, with a 
high common architecture across individuals. However, a more unique 
individual fingerprintt relies on deviations from this common archi-
tecture due to genetics and environment. Here we expand a recently 
proposed framework obtaining optimal identifiability in brain con-
nectomics, to identify the extent to which genetically identical mono-
zygotic (MZ) twins share SC, and to isolate the sub-circuits that display 
high MZ twin shared (or genetic) fingerprinting. To assess the results, 
we used the same approach for test–retest of di-zygotic (DZ) twins, 
and a null model based on randomly shuffling the SC profiles of the 
MZ group. Test–retest of the same subjects is an upper-boundary for 
the expected MZ identifiability, whereas DZ is a lower boundary and 
shuffled MZ is a null model for identifiability. The data sample included 
148 pairs of twins from the Human Connectome Project (HCP), 74 MZ 
pairs and 74 DZ pairs. Weighted SC matrices included, for every edge, 
the average fractional anisotropy (FA) of the streamlines connecting 
each pair of brain regions within a multimodal 374 region parcellation. 
To avoid solutions with negative values, we used the non-negative 
matrix factorization (NNMF) heuristic algorithm to decompose and 
subsequently reconstruct SC matrices for a different number of com-
ponents (ranging from 2 to 74). For each decomposition, we calculated 
the explained variance of each component and components were 
added in an explained variance descending fashion while evaluating 
the differential identifiability. Optimal reconstruction was obtained by 
choosing the reconstruction that corresponds to the maximum dif-
ferential identifiability (Idiff). As recently proposed, Idiffis measured 
as the correlation gain in same-subject test–retest with respect to 
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between-subject gain. Note that we here expand this concept to MZ- 
and to DZ-twins, hence allowing for genetic heritability as well as envi-
ronmental fingerprint evaluation. At optimalIdiff, individual SC were 
reconstructed for MZ and DZ subjects, and pairwise intra-class correla-
tions (ICC) for every edge were obtained. Finally, we obtained a differ-
ential ICC matrix (i.e., ICCMZ–ICCDZ). Large positive ICC values indicate 
edges of high heritability, accounting for environment. The regions 
with most highly heritable connections include: parietal superior (L), 
precuneus (L), cingulum medial (L), cingulum anterior (R), temporal 
inferior (L), and fusiform (L). In summary, through a novel data-driven 
framework which expands on a recent approach for optimal identifia-
bility on test–retest data, we can detect the most important structural 
connections and subsequent gray-matter regions that are associated 
with heritability.
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Synchronization of neural activity has been associated with several 
neural functions. Abnormalities of neural synchrony may underlie dif-
ferent neurological and neuropsychiatric diseases. Neural synchrony 
in the brain at rest is usually very variable and intermittent. Experi-
mental studies of neural synchrony in different neural systems report 
a feature which appears to be universal: the intervals of desynchro-
nized activity are predominantly very short (although they may be 
more or less numerous, which affects average synchrony). This kind 
of short desynchronization dynamics was conjectured to potentially 
facilitate efficient creation and break-up of functional synchronized 
neural assemblies. Cellular, synaptic, and network mechanisms of the 
short desynchronizations dynamics are not fully understood. In this 
study we use computational neuroscience methods to investigate the 
effects of spike-timing-dependent plasticity (STDP) on the temporal 
patterns of synchronization. We employed a minimal network of two 
simple conductance-based model neurons mutually connected via 
excitatory STDP synapses. The dynamics of this model network was 
subjected to the time-series analysis methods used in prior experi-
mental studies. We found that STDP may alter synchronized dynamics 
in the network in several ways depending on the time-scale of action 
of plasticity. However, in general, the action of STDP tends to promote 
dynamics with short desynchronizations similar (i.e. dynamics simi-
lar to those observed in prior experiments). Complex interplay of the 
cellular and synaptic dynamics may lead to the activity-dependent 
adjustment of synaptic strength in such a way as to facilitate short 
desynchronizations in the activity of weakly coupled intermittently 
synchronized neurons.
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Accumulating evidence suggests that astrocytes, a major glial cell 
type, communicate bidirectionally with neurons and play many 
important roles in the mammalian brain, such as modulating synaptic 

transmission. Many of these functions are regulated by or linked 
to astrocyte intracellular Ca2+ signaling. We showed in our recent 
experimental and computational work [1, 2] that astrocyte Ca2+ tran-
sients evoked by a single, focal application of ATP (activating astrocyte 
G-protein coupled receptors) are temporally heterogeneous due to 
specific variability in the biological mechanisms underlying the Ca2+ 
transients. In our current work, we examine astrocyte Ca2+ activity 
in response to multiple deliveries of ATP stimuli, to assess how astro-
cytes may respond to neuronal activity and what their Ca2+ dynamics 
under different experimental conditions reveal about the inputs they 
are receiving. We use two-photon microscopy to measure Ca2+ activ-
ity in mouse cortical astrocytes expressing the genetically-encoded 
Ca2+ indicator GCaMP5G. We evoke Ca2+ activity through brief 
(60 ms), focal applications of ATP with varying application time inter-
vals (from 15 s to 4 min). We find that these evoked Ca2+ transients 
are much more variable than responses to single stimuli. This added 
variability arises mainly from interactions related to the timing of 
repeated stimuli, temporally heterogeneous Ca2+ responses to each 
stimulus (including variability in response latency), and spontaneous/
intrinsic astrocyte Ca2+ activity (which is also noisy and unpredict-
able). Given this high variability, we are interested to see whether we 
can observe any patterns in the evoked Ca2+ responses and to bet-
ter understand the variability underlying these responses. We use a 
phenomenological, statistical modeling approach (rather than a bio-
physically detailed, mechanistic one) to examine our data, due to the 
complexity of the data and the fact that many details of the biologi-
cal mechanisms underlying spontaneous and evoked astrocyte Ca2+ 
activity remain unknown. First, we ignore the variability in the shape 
of Ca2+ responses and, instead, make the Ca2+ recordings binary, 
consisting of only two observable states: On or Off. We then examine 
the On and Off dwell times for both spontaneous and evoked astro-
cyte Ca2+ activity, and develop Hidden Markov Models based on our 
results and knowledge of the biology underlying the Ca2+ activity. By 
comparing the results generated from these models (e.g. dwell times, 
the probability of a cellular region being On at any given time during 
the recording, etc.), we find that the simplest model that reproduces 
our results consists of 3 hidden states (an Off/Closed state and two 
On/Open states). Furthermore, we determine which transition rates, at 
the minimum, must change and by how much in order to switch the 
Ca2+ activity from spontaneous to evoked. Lastly, we simulate Ca2+ 
responses to multiple stimuli (by incorporating time-variable transi-
tion rates) with different time intervals of application and compare the 
variability in the resulting Ca2+ activity with our experimental data.
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A key question in systems neuroscience is the nature of the relation-
ship between synaptic connectivity and neural activity. The latter is 
thought to underpin cognition, perception, memory, etc., and the 
degree to which activity shapes topology and topology constrains or 
supports activity is of great interest to neuroscience and those devel-
oping biologically-inspired computers.We now have access to datasets 
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containing recordings from large populations of neurons as well as 
techniques for assessing the the flow of information between them 
[1]. Also, highly sophisticated algorithms for the detection of commu-
nities on directed, weighted, graphs have been developed [2] as have 
sophisticated self-organizing microcircuit models capable of broadly 
replicating key features of synaptic topology [3]. Theoretical studies 
have predicted that even a small degree of clustering can drastically 
influence network activity [4]. Combined this data and these analytical 
tools allow us to begin to probe the nature of the activity/connectiv-
ity relationship. We use 512-MEA recordings on organotypic cultures 
whose information flow has been determined using transfer entropy 
(TE) [1]. We also used a plastic, self-organizing model MANA (Metaplas-
tic Artificial Neural Architecture) which grows all synaptic connectivity 
in response to external drive while also organizing its own firing rates 
to a lognormal distribution. MANA has been shown to be able to real-
istically, broadly, replicate known features of synaptic topology [3]. In 
order to detect community structure we used OSLOM (Order Statistics 
Local Optimization Method) [2], which assesses putative communities 
according to their probability of occurring in a random network. Statis-
tically significant modules were detected in both functional connectiv-
ity networks derived from cultures and synaptic connectivity networks 
derived from MANA. When rasters were segregated by community 
membership heterogenous inter- and homogenous intra-community 
activity was readily apparent (Fig. 1). A technique for comparing the 
inter-spike interval distributions (ISID) of different neurons was devel-
oped specifically to assess this. Clustering algorithms performed on 
the metric space of these ISID distances assigned neurons in the same 
community to largely distinct and contiguous regions of the space 
indicating that communities were indeed comprised of neurons with 
similar firing dynamics. These results held for both the organotypic 
cultures and MANA networks despite the differing nature of (func-
tional vs. structural) of their topology. Interestingly, this technique 
can be used independently to cluster spike trains in arbitrary rasters 
according to activity type (e.g. regular spiking, fast spiking, intrinsically 
bursting, etc.). Lastly OSLOM communities in MANA were found to 
reliably correspond with their constituent neurons’ relationship to the 
network’s external drive, suggesting that OSLOM could be used to find 
functionally distinct assemblies in living networks.
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The transmembrane ionic currents which underlie action potentials 
give rise to electric fields in the extracellular space. The high frequency 
component of these electric fields, due to spiking neurons, is referred 
to as multi-unit activity (MUA), whereas the lower frequencies, pri-
marily due to synaptic activity, are referred to as local field potentials 
(LFPs). Interpretation of these signals and source-localization is often 
challenging, so accurate modeling approaches are critical. Typically, 
these fields are modeled in a post hoc form, i.e. a traditional neuronal 
model simulation is run, and then the electric fields are calculated 
from that simulation. Because the conductivity of the extracellular 
space is relatively high, the electric fields are generally assumed to 
be too weak to feedback and influence their own generation. How-
ever, in brain regions of lower conductivity, extracellular potentials 
may play a functional role by influencing membrane potentials, and 
therefore dynamics of nearby neurons—this is known as ephaptic 
coupling. The closed-loop nature of ephaptic coupling cannot be 
modeled using post hoc approaches. We are optimizing more appro-
priate methods to investigate how different conditions influence the 
magnitude of ephaptic effects. We have previously shown that extra-
cellular field potentials in simplified networks of model cortical neu-
rons can impede synchronization. In order to study these effects in 
greater detail, we have developed a generalized framework for mod-
eling ephaptic coupling in morphologically more-realistic neurons. 
We compare the coupling properties of neurons with “stellate-like” 
and “pyramidal-like” morphologies to further understand the role that 
neural geometry plays in ephaptic coupling. Being able to efficiently 
explore ephaptic coupling from a computational perspective will 
allow us to better understand the conditions in which electric fields 
may influence neuronal dynamics in general.
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Rhythmic activities reflecting the near-synchronous activity of large 
ensembles of neurons are commonly observed in many brain areas. 
We are here motivated by the observation of multiple, simultaneous 
gamma-rhythms in the olfactory bulb [4, 2] and by the modular struc-
ture that has been predicted to arise from the extensive structural 
plasticity of the olfactory bulb [5, 1]. It suggests that different bulbar 
subnetworks that result from the exposure to different odors can sup-
port their own different gamma-rhythms. More generally, gamma-
rhythms and their coherence across different neuronal networks and 
brain areas have been proposed to be relevant for the communication 
between these networks. This raises the question how such rhythms 
interact with each other. Are the synchronization properties of these 
collective oscillations similar to those of individual oscillators? This 
is not the case. We show that for strong, inhibitory coupling differ-
ent ING-rhythms can become synchronized by noise. Importantly, in 

Fig. 1 A raster with 1 ms bins over 3 s depicting activity in a MANA 
network when neurons are ordered arbitrarily and segregated by 
excitatory (black) and inhibitory (red) neurons. Below: The same raster 
when neurons are sorted by their community membership as identi‑
fied by OSLOM. The differing number of rows arises since neurons can 
reside in more than one community
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contrast to the case of stochastic synchronization, noise synchronizes 
the rhythms even if the noisy inputs to different neurons are com-
pletely uncorrelated (Fig. 1). Key for the synchrony across networks is 
the reduced synchrony within the networks: it substantially increases 
the frequency range across which the networks can be entrained by 
other networks or by periodic pacemaker-like inputs. More specifically, 
the noise-enhanced synchronizability of these rhythms arises from a 
network mechanism: it requires a minimal network size and emerges 
from the variability in the number of oscillators that participate in the 
collective oscillation and the resulting variability of the oscillation 
frequency. We condense this new synchronization mechanism into 
a simple iterated map, which captures the reverse period-doubling 
bifurcation that leads to the synchronization. The synchronization 
mechanism is robust. We demonstrate it for networks comprised of 
different classes of neuron models (integrate–fire, Morris-Lecar of type 
1 and of type 2) with different synaptic couplings and for different 
network connectivities. Functionally, we find that through this syn-
chronization noise can enhance learning by spike-timing dependent 
plasticity. Some of these results have been presented in [3].
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Understanding the diversity of cell types in the brain has been an 
enduring challenge and requires detailed characterization of indi-
vidual neurons in multiple dimensions. To profile morphological and 
electrophysk properties of mammalian neurons systematically, we 
established a single cell characterization pipeline using standardized 
patch clamp recordings in brain slices and biocytin-based neuronal 
reconstructions. We built a publicly-accessible online database, the 
Allen Cell Types Database, to display these data sets. Intrinsic physi-
ological and morphological properties were measured from over 1,800 
neurons from the adult laboratory mouse visual cortex. Quantitative 
features were used to classify neurons into distinct types using unsu-
pervised methods. We establish a taxonomy of morphologically- and 
electrophysiologically-defined cell types for this region of cortex with 
35 m-types, 17 e-types, and 112 me-types, as well as an initial corre-
spondence with previously-defined transcriptomic cell types using 
the same transgenic mouse lines (Fig. 1).

Fig. 1 Interaction of two networks of IF‑neurons exhibiting ING‑
rhythms. The inputs to the neurons consist of uncorrelated Poisson 
spike trains. Increasing the spike‑rate variability in the inputs leads to 
the synchronization of the two rhythms (1:1) via other phase‑locked 
states (2:3, 1:2). B1‑B3: Spectra of the two networks. B4‑B6: Two‑
dimensional projection of the attractor. B7‑B8: Spectra as a function 
of noise. B9: Phase diagram as a function of the ratio of the mean 
inputs to the two networks and the noise strength. Color indicates 
the frequency ratio of the rhythms

Fig. 1 Correspondence between electrophysiology, morphology, 
and transgenic labels. (a‑f ) t‑SNE projection in electrophysiology 
space showing e‑types (a‑b), m‑types (c‑d), and transgenic lines (e‑f ). 
(g) Correspondence between e‑ and m‑types
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Coincidence detector neurons are cells that generate spikes prefer-
entially to synaptic inputs that arrive (nearly) simultaneously. Coin-
cidence detection is a fundamental computation by which neurons 
extract timing information from their inputs. Examples of superb 
coincidence detectors are principal cells of the medial superior olive 
(MSO) in the mammalian auditory brainstem. MSO neurons encode 
sound source location with high temporal precision by distinguish-
ing submillisecond timing differences among inputs. Distinctive bio-
physical properties contribute to the remarkable temporal precision 
of MSO neurons. For instance, inactivation of sodium current (INa) and 
activation of low-threshold potassium current (IKLT) provide dynamic, 
voltage-gated, negative feedback in subthreshold voltage ranges that 
can deny adequate summation and spike generation unless the inputs 
occur with near simultaneity [1, 3]. We investigate additional structural 
and dynamical specializations in coincidence detector neurons. Using 
mathematical analysis and simulations of a two-compartment neuron 
model, we show that the electrical coupling between soma and axon, 
as well as the distribution of INa and IKLTin soma and axon regions of a 
model MSO neuron, can be configured to enhance coincidence detec-
tion sensitivity. Specifically, we find that a two-compartment model 
with a “feedforward” configuration—one in which the input regions 
of a cell (soma and dendrites) strongly drive activity in the spike-
generating output region (axon), but backpropagation from the axon 
into the soma is weak—is significantly advantageous for coincidence 
detection. In the feedforward configuration, spikes are generated 
with greater efficiency (fewer INa channels) than a one-compartment 
model. In addition, INa inactivates more than in models with weak 
feed forward coupling. The feedforward configuration can, therefore, 
more effectively enable INainactivation to prevent spike-generation 
in response to non-coincident inputs. A dynamic IKLT current further 
enhances coincidence detection sensitivity in these models. Our find-
ings confirm and elucidate physiological studies of MSO neurons, such 
as the observation that the site of spike-generation is electrically iso-
lated from the soma with weak backpropagation of action potentials 
[2]. An innovation in our method is to formulate a family of two-com-
partment neuron models, parameterized by the strength of coupling 
between input regions (soma + dendrite) and output regions (axon) 
of a cell. We create a parameter space of coupling configurations, and 
systematically investigate this family of models to study the relation-
ships between structure, dynamics, and computation in coincidence 
detection neurons. While our work focuses on the remarkable MSO 
neurons, our framework can be used more generally to explore effects 
of soma-axon coupling on dynamics and computation in neurons 
well-described by a two-compartment framework.
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The substantia nigra pars reticulata (SNr) is one of the primary output 
nuclei of the basal ganglia and receives converging GABAA receptor 
mediated synaptic inputs from the direct and indirect pathways. Due 
to this convergence, the SNr is thought to be important in behaviors 
associated with these two pathways such as decision making and 
motor control. Consistent with this idea, abnormal activity within the 
SNr is associated with parkinsonian symptoms, seizures and impaired 
decision making. Therefore, understanding how the SNr integrates 
inputs from these two pathways may be critical for understanding 
basal ganglia function.
The projections from indirect and direct pathways form synapses at 
distinct locations on SNr neurons and are known to undergo short-
term plasticity. Striatal neurons of the direct pathway preferentially 
form synapses on the distal dendrites of the SNr neurons and undergo 
synaptic facilitation [1, 2]. In contrast, neurons from the external seg-
ment of the globus pallidus of the indirect pathway form basket-like 
synapses around the somas of SNr neurons and undergo synaptic 
depression [1, 3]. The functional significance of the location of these 
synapses is unclear; however, these spatial characteristics may influ-
ence their short-term plasticity properties. GABAA synapses are prone 
to breakdown of the reversal potential (EGABA) mediated by increases 
in the intracellular Cl-concentration [Cl-]i [4]. Due to the differences 
in size and in the distribution of the Cl-extruder KCC2, we hypoth-
esize that dendritic and somatic compartments may have different 
susceptibilities to breakdown of EGABA, which may contribute to dif-
ferences in the properties of direct and indirect pathway synapses 
on SNr neurons. To test this hypothesis, we constructed a novel con-
ductance-based model of an SNr neuron with dendritic and somatic 
compartments. After establishing that the model’s dynamics matches 
a range of experimental observations on SNr firing patterns, we used 
the model to investigate the effects of [Cl-] dynamics on EGABA and 
short-term synaptic plasticity. We show that GABAA- and KCC2-medi-
ated fluctuations in [Cl-]ican explain many aspects of the short-term 
plasticity seen with GABAergic inputs from the direct and indirect 
pathways in the SNr. Integration of GABAA receptor-mediated synap-
tic inputs to somatic and dendritic compartment is not unique to SNr 
neurons and therefore these results may have implications for other 
brain regions.
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Pharmacological compounds that selectively block voltage-gated ion 
channels are a fundamental tool in neuroscience. Much of our cur-
rent theoretical understanding is based on the interpretation of data 
from experiments dependent on pharmacological manipulations. The 
mechanism(s) of action for the most commonly used pharmaceuti-
cal blockers of voltage-gated ion channels are well understood and 
fall into one of three mechanistic categories: (1) pore obstruction, (2) 
shift in activation/inactivation curves, or, less commonly, (3) changes 
in ion selectivity. Despite this knowledge, the mechanism of blockade 
is rarely considered when interpreting or simulating experimental 
data. Generally it is assumed that selective blockade of an ion channel 
is functionally equivalent regardless of the mechanism. In this theo-
retical study we show that this assumption may not always be true. To 
illustrate this idea we simulated blockade of a persistent sodium cur-
rent (INaP) in the respiratory pre-Bötzinger complex (pre-BötC) via two 
commonly used sodium channel blockers with distinct mechanisms 
of action: tetrodotoxin (TTX) and riluzole (RZ). TTX directly obstructs 
the Na+ pore [1], whereas RZ shifts inactivation in the hyperpolariz-
ing direction [2]. In vitro blocking studies have shown that INaP is criti-
cal for rhythmogenic oscillations in the isolated pre-BötC, which has 
lead to the hypothesis that INaP may be a necessary component of 
rhythmogenesis in respiratory circuits. This hypothesis however, has 
fallen out of favor due to the observation that INaP block by RZ fails 
to stop respiratory rhythms in intact preparations. This conclusion is 
dependent on the assumption that RZ effectively blocks INaP in in vivo 
preparations.
Our study shows that, due to RZ’s mechanism of action, INaP can easily 
be reactivated after blockade by transient hyperpolarizing perturba-
tions. This is not the case with simulated TTX blockade of INaP. In intact 
preparations, the pre-BötC receives strong inhibition during the inter-
burst interval, which may allow INaP to recover from inactivation after 
RZ blockade. Consistent with this idea, our simulations of the RZ appli-
cation in the intact respiratory network predict that RZ but not TTX will 
fail to effectively block INaP. Additionally, depending on the excitabil-
ity of the pre-BötC, effective blockade of INaP by TTX may stop respira-
tory rhythms. Therefore, the failure of RZ to stop respiratory rhythms in 
experiments is not sufficient to rule out the role of INaP in respiratory 
rhythm generation. These simulations illustrate the importance of con-
sidering the mechanism of action when interpreting and simulating 
experimental data from pharmacological blocking studies.
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We analyze the effect of weak-noise-induced transitions on the 
dynamics of the FitzHugh-Nagumo neuron model in a bistable state 
consisting of a stable fixed point and a stable unforced limit cycle. 
Bifurcation and slow-fast analysis give conditions on the parameter 
space for the establishment of this bi-stability.
In the parametric zone of bi-stability, weak-noise amplitudes may 
strongly inhibit the neuron’s spiking activity. Surprisingly, increasing 
the noise strength leads to a minimum (and even silencing of the spik-
ing activity) in the spiking activity, after which the activity starts to 
increase monotonically with increase in noise strength. We investigate 
this inhibition and modulation of neural oscillations by weak-noise 
amplitudes by looking at the variation of the mean number of spikes 
per unit time with the noise intensity. We show that this phenomenon 
always occurs when the initial conditions lie in the basin of attraction 
of the stable limit cycle. For initial conditions in the basin of attraction 

of the stable fixed point, the phenomenon however disappears, unless 
the time-scale separation parameter of the model is bounded within 
some interval. We provide a theoretical explanation of this phenom-
enon in terms of the stochastic sensitivity functions of the attractors 
and their minimum Mahalanobis distances from the separatrix isolat-
ing the basins of attraction.
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The rodent cerebral cortex consists of a few millions neurons that are 
highly connected by a complex network of synapses. Many factors 
contribute to generating functional connections among neurons, 
although the precise mechanisms of this process are not well under-
stood. The shape and relative positions of neurons in space are among 
the principal geometrical factors that govern the formation of physi-
cal connections between neurons and enable functional synapses to 
form [1–2]. How do the detailed anatomical properties of neuronal 
morphologies influence the connectivity of the network they gener-
ate? To what extent is the structure of the neuronal network encoded 
in the genetic information of an organism and to what extent do the 
connectivity patterns emerge from a combination of stochastic events 
and interactions between growing structures? These questions are 
important for the digital reconstruction of morphologically detailed 
neuronal networks that accurately reproduce the statistical properties 
of the equivalent biological networks. To study the effect of different 
morphological properties on the resulting network, we have designed 
a simple generative model based on the theory of random walks. We 
study the statistical properties of the connectivity of a sequence of 
networks each of which is generated by morphologies of increasing 
complexity, e.g., simple random walks, non-intersecting, targeting ran-
dom walks. A large number of structural and statistical properties of 
the connectivity of biological networks can be reproduced by artificial 
networks of random morphologies. In addition, interactions between 
the growing morphologies are able to reproduce local structural 
properties that are present in the biological networks. This indicates 
that stochastic interactions play a significant role in the generation 
of complex connectivity patterns, and should not be ignored. Since 
the generative model proposed here represents a major simplifica-
tion of the highly elegant process of neuronal development, we can-
not conclude that the same rules govern the actual growth of neurons 
into connected networks. We can however, propose that basic princi-
ples, derived from fundamental mathematical and physical proper-
ties of interacting morphologies, are crucial in the formation of these 
networks.

References
1. Peters A. Thalamic input to the cerebral cortex. Trends in Neuroscience 

1979, 2, 183–185.
2. Kalisman N, Silberberg G, Markram H. Deriving physical connectivity from 

neuronal morphology. Biol. Cybern. 2003, 88(3), 210–218.

P123 
Moving towards the Single Cell Projectome: A multi‑modal 
approach to assessing single‑cell morphology and connectivity 
for classification of layer 2/3 neurons in mouse V1
Katie Link, Karla Hirokawa, Nile Graddis, Jennifer Whitesell, Bryan 
MacLennan, Changkyu Lee, Soumya Chatterjee, Staci Sorensen, Julie 
Harris
Allen Institute for Brain Science, Modelling, Analysis and Theory, Seattle, 
WA, United States
Correspondence: Katie Link (katiel@alleninstitute.org)  
BMC Neuroscience 2018, 19(Suppl 2):P123



Page 63 of 98BMC Neurosci 2018, 19(Suppl 2):64

Population studies of neurons in the mouse primary visual cortex 
(VISp) have elucidated numerous axonal projections to cortical and 
subcortical regions across the brain [1, 2]; however, the specific, long-
range projections of individual neurons remain poorly understood. 
While previous studies have evaluated local connectivity in relation-
ship to morphology [3, 4], the full morphology of individual neurons, 
including their dendrites and local and long-range projections, have 
rarely been described [5]. The combination of these important neu-
ronal properties may significantly enrich our understanding of excit-
atory cell types and their circuitry in the cortex. [6]. We used a novel 
approach, relying on multiple imaging modalities, to efficiently extract 
quantitative features from the local morphology and long-range 
projections of single neurons labeled in vivo. Beginning with in vivo 
2-photon microscopy, we were able to reconstruct the dendritic struc-
ture of neurons in the intact brain. We observed known and novel fea-
tures of layer 2/3 neurons, including distinct apical dendrite polarity 
as well as rare basal dendrite extensions towards the pia. Subsequent 
serial, 2-photon tomography, followed by automatic image segmen-
tation, directly provided the complete projection target map of sin-
gle VISp neurons by brain region and layer with respect to the Allen 
Mouse Common Coordinate Framework (CCF). These images were also 
used for efficient reconstruction of the full morphology of individual 
neurons, although with coarser z-sampling than the current standard. 
Finally, reclaimed sections from serial tomography underwent confo-
cal imaging, which confirmed these characteristic dendritic and axonal 
features, and allowed us to describe dendritic spine density. Statistical 
learning methods applied to single-cell, connectivity and morphology 
data were then used to describe multiple classes of layer 2/3 neurons 
in mouse visual cortex. These novel cell descriptions will inform circuit 
and connectivity models of the visual cortex, as well as reveal the sig-
nificance of incorporating projection target information in future cell 
type classification studies.
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In a previous study, we used a measure of directed connectivity, W, 
based on increases in mutual information at consistent time delays 
in order to define directed functional connections between intracra-
nial EEG electrode sites in human participants. For each participant, 
we constructed functional networks for 20 data blocks (30 s each) 
using this measure and showed that the connectivity and topology 
of these networks, as well as the latencies of individual connections, 
are conserved over multiple time scales. Interestingly, for some elec-
trode pairs there was clear periodicity in their cross-coupling func-
tions, and the power spectra of the signals from these pairs displayed 
coincident peaks around theta/alpha frequencies, suggesting that 
the increases in directed coupling for these pairs may be related to 

rhythmic synchronous activity at the two electrode sites. Periodicities 
in the cross-correlation between two signals, or phase locked activ-
ity at the same frequency, can be well captured by the coherence 
function, therefore, to better understand the mechanisms behind 
the directed coupling we observe, we used the same recordings to 
compute the magnitude squared coherence function between differ-
ent brain regions. We find that the coherence functions for pairs with 
a large value of W generally display a dominant peak in the 6–12 Hz 
range. Although the peak frequency varies across subjects, within a 
subject, the frequency of maximum coherence is consistent across dif-
ferent electrode pairs. This relationship between directed functional 
coupling and theta/alpha coherence is further evidenced by a strong 
correlation between the value of the maximum coherence, Cmax, 
andWacross all participants and sites. Along with the dominant peak, 
there was an overall positive shift in coherence at all low frequencies 
as compared to higher frequencies (> 32 Hz), withWalso being strongly 
correlated with the value of this mean low frequency coherence. Given 
the definition of coherence as a frequency domain representation of 
the cross-correlation function (normalized by power), these observa-
tions suggest that the rhythmicity of the cross-coupling functions 
arises from rhythmic synchronous activity in the theta/alpha band, 
whereas the peak in the cross-coupling function, which defines W, 
is due to a broadband correlated component in the 2–32 Hz range. 
Next, we estimated the latency in milliseconds between sites using 
the cross-spectrum phase at the most coherent frequency, and find 
that it is in good agreement with the preferred time delay estimated 
from the mutual information analysis. Such phase and timing relation-
ships are critical if these oscillations are indeed responsible for modu-
lating large-scale neuronal communication. Lastly, because we used 
relatively long blocks (30 s), it is possible that rhythmic and broad-
band coupling are not simultaneous, but rather occur independently 
at different times during the block. In order to assess the time course 
of these oscillatory and broadband components, we computed time 
resolved versions of C max and W, and find that these time series track 
each other quite reliably, indicating that the correlated broadband sig-
nals are concurrent with the synchronous oscillatory activity. Together, 
our findings support the idea that coherent low frequency rhythms 
may serve as a mechanism to reliably transmit neural representations 
encoded in correlated broadband activity over large distances.
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Short frequency-modulated (FM) sweeps are an integral compo-
nent of animal communication. In human speech, FM sweeps are 
the main constituents of formant transitions characterising speech 
sounds. In this study, we used a combined theoretical and experimen-
tal approach to investigate the neural representation and encoding 
mechanisms of FM-sweeps in the subcortical human auditory system. 
At the lower levels of the auditory pathway, FM-sweeps are repre-
sented as trajectories along the array of frequency-selective neurons 
forming the tonotopic axis. However, in the cerebral cortex and, to a 
smaller extend, in the sensory thalamus and the inferior colliculus, a 
more abstract representation occurs where neurons activate selec-
tively to sweep direction.
Intracranial recordings in mammals identified delayed excitation as 
the principal neural mechanism inducing sweep direction selectivity 
in subcortical auditory regions. However, the specific circuitry under-
lying direction selectivity, and potential effects of top-down modula-
tion are unknown. Here, we introduce? a novel biophysical model of 
sweep direction selectivity that addresses the specific circuitry and 
potential top-down modulation effects. The model consists of three 
arrays of neural ensembles: a frequency-selective array representing 
neurons along the tonotopic axis, and two direction-selective (up/
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down) arrays. Each ensemble in the up- (down-) specific layer receives 
direct input from a single ensemble in the frequency-selective layer, 
and delayed inputs from adjacent, lower (higher) frequency-selective 
neurons. Ensembles were modelled using a mean field approxima-
tion; forward connections were modelled using realistic synapses. In 
parallel, we ran an experiment where human participants were asked 
to adjust a probe pure tone to match the pitch elicited by a short FM 
sweep. The FM sweeps had two different directions, three different 
average frequencies, and five different absolute gaps between the 
starting and ending frequencies. FM-sweeps with frequency gaps up 
to 400 Hz were perceived as eliciting a pitch percept that was robustly 
replicated across subjects. Intriguingly, we found a linear relationship 
between the elicited pitch and the frequency gap. The shift between 
the average frequency of the sweep and the perceived pitch was 
biased towards the frequencies present during the ending sections 
of the sweep, so that up-sweeps were consistently perceived as hav-
ing the higher pitch in contrast to down-sweeps of the same aver-
age frequency. We reasoned that this perceptual effect could be the 
consequence of a predictive mechanism facilitating the activation 
of forthcoming frequency-selective neurons in the tonotopic axis. To 
test this hypothesis, we incorporated an excitatory facilitatory pre-
dictive mechanism in our model. This mechanism shifted the activa-
tion weight of the populations away from the first milliseconds of the 
sweeps, when the sweep direction has not been resolved yet, resulting 
in a bias towards the frequencies activated at the ending of the sweep. 
The resulting bias was linearly related to the size of the frequency 
gaps, mirroring the observed human perceptual results. Together, our 
results indicate the presence of facilitatory predictive mechanisms in 
the sweep direction encoding system of the human auditory pathway.
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Neurons require the ability to adapt to constantly-changing stimuli in 
order to maintain a functional nervous system. This process, synaptic 
plasticity, occurs in two known forms which have opposing effects 
on synaptic physiology. Hebbian plasticity induces rapid, persistent 
changes at individual synapses in a positive feedback manner. Homeo-
static synaptic plasticity (HSP) is a negative feedback effect that occurs 
in response to chronic alterations in network activity, and prevents 
the network instability that would result if synaptic strengthening or 
silencing due to Hebbian plasticity were allowed to go unchecked. 
Together, these two forms of plasticity underpin nervous system func-
tions such as movement, learning and memory, and perception, while 
preventing pathological states such as epilepsy. The current hypoth-
esis for HSP states that synapses are modified globally in a uniform, 
multiplicative manner. Such a mechanism preserves the relative syn-
aptic strengths encoded during Hebbian plasticity. Termed “synaptic 
scaling,” this hypothesis implies that HSP and Hebbian plasticity are 
independent of one another and thus operate via separate mecha-
nisms. Here, we use a large HSP data set to demonstrate that multipli-
cative scaling does not fully account for the mathematical differences 
between a distribution of mEPSC amplitudes from chronically silenced 
cultured cortical neurons and a distribution of amplitudes from 
untreated control neurons. Using the concept of data standardization, 
we develop a novel and rigorous method for calculating the mathe-
matical transformation accompanying HSP. Our method, comparative 
standardization, contains both a multiplicative and an additive fac-
tor but does not constrain the range of values these factors can take, 

allowing for an additive factor of zero in a purely multiplicative trans-
formation. We show that homeostatic plasticity is best modeled with 
a non-zero additive factor. Because the value of the additive factor is 
negative, this results in the weakest synapses showing little amplifi-
cation while stronger synapses show robust amplification. Based on 
these results, we propose a new model in which HSP, in addition to its 
main function of preserving network stability, heightens the differen-
tial synaptic strengths encoded during Hebbian learning.
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Developing detailed neuronal models that account for the distribution 
of ion channels that governs neuronal function allows us to simulate 
brain activity at a high spatiotemporal resolution, and to simulate con-
ditions that are not feasible within standard experimental methods. 
Naturally, the simulations produced from such models are determined 
entirely by how biologically accurate the model is. As such, model vali-
dation, including its refinement based on fitting relative to empirical 
observations, is a critical step for proper model construction. This pro-
cess of fitting a model to neuronal recordings is both computationally 
intensive and difficult to constrain. Here, our goal is to understand the 
hurdles in optimization and develop new strategies to improve effi-
ciency; that is, to optimize the optimization. The process of construct-
ing biophysically realistic neuronal models starts with target data: 
empirical recordings from neurons that contain a range of neuronal 
responses to user-defined stimuli. The parameters in our neuronal 
models represent the biophysical properties of the neuron in question 
such as ion channels distribution and membrane electric properties. 
Parameters are allowed to vary according to the certainty with which 
they have been experimentally constrained, from determined values 
to large ranges of uncertainty. Constraining the unknown, free param-
eters of the model to fit the recorded data forms an inverse problem 
where one cannot constrain all the values of the biophysical prop-
erties of the neuron, forcing one to guess appropriate parameters 
based on observations from the neurons response to the stimuli. We 
compare the neuron’s response to the model response using a score 
function which rank how similar they are. Score functions compares 
different aspects of the neuronal response, such as AP height or width, 
or the root mean square difference between the two responses. To fit 
the model response to the neuronal response, we use an optimization 
algorithm to minimize the score function. This process often generates 
multiple models, each with different underlying parameter sets that 
nevertheless all match the experimental data to similar degrees. Iden-
tifying which of these models best reflects the actual neuronal physiol-
ogy remains a challenge.
Here, we demonstrate a new technique that identifies the optimal 
combination of score functions, which in turn sheds light on how such 
scores can be improved with revised experimental stimuli. Using well-
established models that contain 12 free parameters, we extensively 
sampled the parameter space at different distances from the original 
parameter set. By applying an array of score functions and evaluating 
their performance, we could identify the most effective score function 
for parameter estimation. We then performed a parameter sensitivity 
analysis for each of the parameters to estimate which score function 
would be most effective to constrain them. Using the above method, 
we were able to find the true value of 6/12 parameters of the model 
reliably.
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These analyses instruct which stimulations and score functions should 
be used when fitting a model to a specific neuron and points which 
parameters can be constrained in the model. Our novel approach to 
analyze neuronal models’ parameter space will help neuroscientist 
quickly identify the biophysical properties required within models that 
best explain experimental observations.
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Ca2+ signaling underlies many processes central to the basic func-
tions of neurons, such as synaptic plasticity. Altered functions of 
the proteins involved in Ca2+ signaling, alongside with those of ion 
channels and receptors, have been proposed as a mechanism for 
schizophrenia [1]. While modeling based on Hodgkin-Huxley-type of 
descriptions of the ion-channel dynamics and cable theory is a foun-
dation of our understanding of the rapid neuronal biophysics and 
network interactions, the biochemistry of the intracellular signaling 
that governs slower processes in neurons remains poorly understood. 
New models of biochemical networks offer valuable tools for shedding 
light on these phenomena. However, the large temporal (milliseconds 
to hours) and spatial scales (nanometers to micrometers) underlying 
these processes, and the fundamentally stochastic nature imposed by 
the small numbers of molecules within each signaling domain (e.g., a 
dendritic spine), causes true multiscale simulation of these processes 
to be computationally costly, and often prohibitive. This is particu-
larly evident in parameter optimization tasks where the model has to 
be simulated thousands or millions of times with different parameter 
values. In this work, we relax the requirement of an extensive spatial 
scale and build a biochemically detailed single-compartment model 
capable of predicting induction of long-term potentiation (LTP) in 
glutamatergic synapses. Our model is based on a previous stochastic 
multi-compartmental model of dendritic plasticity in a CA1 pyramidal 
cell [2]. Our model describes the dynamics of the signaling networks 
mediating beta-adrenergic receptor-dependent potentiation, and 
includes descriptions for the dynamics of the key signaling molecules 
PKA, cAMP, CaM, and CaMKII. Furthermore, we analyze how well the 
obtained single-compartment model can be tuned to reproduce the 
induction of plasticity as observed in experimental studies of cortical 
pyramidal cells. In particular, we aim at reproducing both tetanus-
induced LTP (as in [3]) and spike-timing dependent LTP (as in [4]). For 
the latter, we employ multi-compartmental models of cortical neurons 
from the database of [5] to predict the interaction between the time 
of a spike in the post-synaptic neuron and the magnitude of the Ca2+ 
inputs at the synaptic site. Our model offers a unique platform for 
studying contributions of genes associated with mental disorders to 
the induction of synaptic plasticity. It also allows modeling the effects 
of candidate pharmacological treatments that could be used to main-
tain a baseline level of LTP induction under altered disease conditions.
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Since Penfield, direct electrical stimulation (DES) of the cortical sur-
face has been used extensively to understand the function of differ-
ent brain regions. Future applications will involve neuroprostheses to 
improve quality of life for people suffering from neurological damage. 
To effectively engineer DES for these applications, we need to under-
stand how the electric current flows through the brain. Current flow is 
controlled both by the anatomy and by the associated electrical resis-
tivity ⍴ of three components: (1) the cerebrospinal fluid (CSF), (2) gray 
matter, and (3) white matter. Knowing the effective resistivity of the 
different cortical layers, and how the currents spread is important for 
targeting electrical stimulation to different brain regions and for cal-
culating the neural response to DES. It is also required for accurate EEG 
and MEG modeling and for understanding LFP propagation. Given its 
widespread importance, we were surprised to find the huge reported 
spread in the literature for previously measured resistivity values for 
CSF, gray matter, and white matter (Fig. 1).
Why is the variability so large? We have identified two reasons. First, 
most previous measurements employed a 2-point method, which 
actually measured the contact resistance ⍴c which is a property of the 
contacts in series with the brain, instead of the sheet resistance which 
is a property of the layered structure of the brain. We show our contact 
resistance measurements in Fig. 1. Note that our values are consistent 
with the large reported values for gray and white matter in the litera-
ture. Second, for layered systems, all of the layers must be included. 
This was neglected previously. The standard method is to use 4-point 
measurements [1]. We made multipoint measurements using clini-
cal electrocorticography (ECoG) grids in 8 humans by stimulating 
between a pair of electrodes using biphasic, bipolar, constant-current 
pulses, while recording the voltages across all the non-stimulating 

Fig. 1 Comparison of our apparent and contact resistivities with 
values reported in the literature. ⍴a indicates the apparent resistivity, 
while ⍴c indicates the contact resistivity
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electrodes. We fit our data using a simple apparent resistivity ⍴a 
model. For our first seven subjects, we stimulated electrodes 1 cm 
apart and measured the voltages at 62 locations. We found the mean 
apparent resistivity to be 0.76 with a standard deviation of 0.13 O-m. 
For our eighth subject, we stimulated electrodes 1, 3, and 5 cm apart 
and measured the voltages at 30 locations. We found the mean appar-
ent resistivity to be 0.72 with a standard deviation of 0.07 O-m. Our 
results demonstrate the importance of correctly modeling all three 
components together in order to determine the true resistivity of each 
one. They also show the utility of multipoint measurements.
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Multi-scale models in neuroscience typically integrate detailed bio-
physical neurobiological phenomena from molecular level up to 
network and system levels. Such models are very challenging to 
simulate despite the availability of massively parallel computing sys-
tems. Model Order Reduction (MOR) is an established method in engi-
neering sciences, such as control theory. MOR is used in improving 
computational efficiency of simulations of large-scale and complex 
nonlinear mathematical models. In this study the dimension of a non-
linear mathematical model of plasticity in the brain is reduced using 
mathematical MOR methods.
Traditionally, models are simplified by eliminating variables, such as 
molecular entities and ionic currents, from the system. Additionally, 
assumptions of the system behavior can be made, for example regard-
ing the steady state of the chemical reactions. However, the current 
trend in neuroscience is incorporating multiple physical scales of the 
brain in simulations. Comprehensive models with full system dynam-
ics are needed in order to increase understanding of different mecha-
nisms in one brain area. Thus the elimination approach is not suitable 
for the consequent analysis of neural phenomena. The loss of informa-
tion typically induced by eliminating variables of the system can be 
avoided by mathematical MOR methods that strive to approximate 
the entire system with a smaller number of dimensions compared to 
the original system. Here, the effectiveness of MOR in approximating 
the behavior of all the variables in the original system by simulat-
ing a model with a radically reduced dimension, is demonstrated. In 
the present work, mathematical MOR is applied in the context of an 
experimentally verified signaling pathway model of plasticity [1]. This 
nonlinear chemical equation based model describes the biochemi-
cal calcium signaling steps required for plasticity and learning in the 
subcortical area of the brain. In addition to nonlinear characteristics, 
the model includes time-dependent terms which pose an additional 
challenge both computational efficiency and reduction wise. The 
MOR method employed in this study is Proper Orthogonal Decom-
position with Discrete Empirical Interpolation Method (POD + DEIM), 

a subspace projection method for reducing the dimensionality of 
nonlinear systems [2]. By applying these methods, the simulation 
time of the model is radically shortened. However, our preliminary 
studies show approximation error if the model is simulated for a very 
long time. The tolerated amount of approximation error depends on 
the final application of the model. Based on these promising results, 
POD + DEIM is recommended for dimensionality reduction in com-
putational neuroscience. In summary, the reduced order model con-
sumes a considerably smaller amount of computational resources 
than the original model, while maintaining a low root mean square 
error between the variables in the original and reduced models. This 
was achieved by simulating the system dynamics in a lower dimen-
sional subspace without losing any of the variables from the model. 
The results presented here are novel as mathematical MOR has not 
been studied in neuroscience without linearisation of the mathe-
matical model and never in the context of the model presented here 
(Fig. 1).
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In normal vision, our eyes flicker (saccade) between behaviourally per-
tinent objects in the environment. During ocular transit we become 
effectively blind as processing of motion-blurred images is suppressed 
in all parts of the visual system. Recent primate work has shown that 
traveling waves of local field potential propagate through visual area 
V4 after a saccade [1]. These waves help to increase visual sensitivity, 
and therefore may alleviate suppression. My research goal is to create 
a neuronal network model to classify and analyze the rapid dynam-
ics of wave initiation and interactions with the substrate. Previous 
work has shown very fast switching between wave and non-wave 
states through the modulation of Gaussian coupling kernels, that 
mirror the center-surround topologies in the visual cortex [2]. I have 
investigated the wave dynamics produced by different kernel param-
eters through an optical flow methodology, that allows models of any 

Fig. 1 Simulation time (left) and Root Mean Square error (right) of 
the reduced model compared to the full dimensional model, for 
DEIM dimensions as function of POD dimension
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dimensionality to be analyzed as 2D vector fields. Networks are com-
posed of simple spiking (Izhikevich) neurons which allow large lattices 
with high computational efficiency [3]. Machine learning techniques 
can then be applied to automatically classify extracted features from 
very large numbers of simulations, to produce a databank of dynamic 
patterns for comparison with experimental data.
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Line attractors have been suggested as a dynamical mechanism for 
encoding graded information (i.e., value of a continuous variable), 
such as working memory, oculomotor control, locomotion, and sen-
sory processing. As a natural extension of point attractors, the attrac-
tive states in a line attractor consist of an infinite set of fixed point, all 
of which lie on a line (or more generally, a curve) in the state space. 
Therefore, different initial conditions would potentially converge to 
different fixed points on the line, and graded information is preserved 
in this process. The stability along the line attractors could naturally 
provide stable propagation along a feed-forward network (FFN) that 
enables graded-information propagation with pulse gating, which 
is an information-processing structure that widely exists in brain. In 
this research, we use a Fokker–Planck method to describe the system 
to understand the effects of pulse gating in information transfer in a 
high dimensional, non-linear, feed-forward integrate-and-fire net-
work. We use synaptic current amplitudes and moments of membrane 
potential’s probability distribution to describe the iterative popula-
tion dynamics and identify an approximate line attractor (therefore, a 
graded information propagation domain) in the state space consisting 
of amplitude and the first 2 moments. An analysis of the line attrac-
tor shows that it is an attracting one-dimensional principal manifold 
consisting of a central saddle surrounded on either side by stable 
fixed points. Along the linear manifold defined by the fixed points, 
the dynamics are slow because of ghost effect from a fold bifurca-
tion in the system. We show that a cusp catastrophe gives rise to the 
line attractor, whose robustness underlies the ghost dynamics near 
the fold of the cusp. For the robustness of the line attractor, a further 
investigation into the slowness measure on the linear manifold exhib-
its a broad, roughly linear range in the parameter space where the 
trajectories move slowly, indicating a large region over which graded 
information could be faithfully propagated. The graded propagation, 
or the line attractor, is robust, since the region has a non-zero area in 
the parameter space. The cusp catastrophe helps us show how line 
attractors work in biologically realistic neuronal networks. Moreover, 
since the fold of this cusp separates a graded propagation region in 
the parameter space, from a region of bi-stability, we demonstrate that 
pulse gating current, synaptic coupling strength, and variance of the 
system can be used to enable or disable attracting one-dimensional 
manifolds and thus, form a switch between graded/binary informa-
tion-transferring channel in feed-forwards networks.
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Population vector has been well established computationally to 
decode the intended movement direction recorded from motor corti-
cal neuronal firings [1]. Movement direction can be computed frpm, 
the vectorial sum of the preferred directions of each participating 
motor neuron. However, decoding of movement direction using the 
non-invasive fNIRS (functional near-infrared spectroscopy) optical 
imaging has yet to be established. Towards this goal, the paper focuses 
on deriving the computation of the neural activation of a group of 
neurons imaged by each optrode to produce the computed popula-
tion vector. In order to determine the groups of motor cortical neurons 
that are participating in generating the population vector, we apply 
the assumption that task-related neurons co-vary with the movement 
direction. Since the population of motor cortical neurons is recorded 
simultaneously by multiple optrodes, the difference between the 
hemodynamic responses of all other recorded channels with respect 
to a reference channel can be used a measure to determine whether 
the other channels co-vary with the reference channel. This co-varying 
relationship can be determined by the difference of the hemody-
namic signals between any other channel and the reference channel. 
We will use a matrix format to show the co-varying relationship of the 
difference-signal between all other channels with respect to the ref-
erence channel to visualize which groups of neurons are participating 
in the movement. Once the task-related groups of neurons are identi-
fied, then the vectorial sum of these groups of neurons can be used 
to compute the population vector as described by Georgopoulos [1]. 
Using our proposed computational method to compute the vectorial 
sum of hemodynamic signals, we validated the population vector of 
the intended movement direction experimentally in human subjects 
which had been shown earlier that movement can be decoded from 
the hemodynamic signals from the optrodes [2, 3]. To validate the pro-
posed computational method, human subjects were asked to move 
in two orthogonal directions while the hemodynamic signals were 
recorded. The results showed that the population vector could be esti-
mated from the hemodynamic signals of the simultaneously-recorded 
optrodes, demonstrating the parallel-processing of neural firings by 
groups of neurons in the motor cortex.
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Visually evoked signals in the retina pass through dorsal lateral genic-
ulate nucleus (dLGN) on the way to the primary visual cortex (V1). 
This is however not a simple one-way flow of information, as there 
is a significant feedback from V1 back to neurons in dLGN. Despite 
numerous experimental and modeling studies, the functional role of 
this feedback is still debated. In the present study we use a firing-rate 
model, the extended difference-of-gaussians (eDOG) model, to study 
key features of visually evoked cortical feedback effects on dLGN relay 
cells. Our analysis indicates that a special mix of excitatory and inhibi-
tory cortical feedback accounts best for available experimental data. 
In this configuration ON-center relay cells receive feedback from ON-
center cortical cells, consisting of a fast and spatially narrow excitatory 
component and an (indirect) inhibitory component which is slow and 
spatially widespread. Here, the excitatory and inhibitory ON–ON feed-
back connections are accompanied by inhibitory and excitatory OFF–
ON connections, respectively, following a phase-reversed (push–pull) 
arrangement. To facilitate further applications of the eDOG model, we 
have developed the Python tool (pyLGN), which allows for easy adap-
tation of the model to new situations. The advantage of this tool lies 
in its computational and conceptual ease, allowing for fast and com-
prehensive exploration of various scenarios for the organization of the 
cortical feedback.
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Astrocyte research has turned out to be a fascinating and popular 
research field with two groups of researchers having opposite opinions 
about the importance of astrocytes in brain information processing and 
plasticity [1–3]. We believe that computational modeling of the bio-
physics of neuron-astrocyte interactions can greatly help address the 
dilemma.We have therefore, as the first ones, characterized, categorized, 
and evaluated in detail more than a hundred published computational 
models of single astrocytes, astrocyte networks, neuron-astrocyte syn-
apses, and neuron-astrocyte networks [4] as well as studied the repro-
ducibility and comparability of some of the models [5]. Based on this 
knowledge and additional experimental findings, we have constructed 
and implemented new neuron-astrocyte synapse models [6]. In this 
study, we propose to gather the state-of-the-art experimental and com-
putational knowledge to help guide the future astrocyte research. Two 
of the most important challenges in experimental work on astrocytes 
are the lack of selective pharmacological tools and the partially con-
tradictory results obtained in in vivo and in vitro studies [1–3]. In com-
putational studies on astrocyte, the most important challenges are the 
creationof new models without clear explanation how they differ from 
the previously published models and what new predictions the mod-
els make [4]. Furthermore, combining unclearly given model details in 
the publications with nonexistent online model implementations make 
the reproducibility and comparability studies as well as the develop-
ment of previously published models impossible, or at least difficult [4, 
5]. We want to emphasize the importance of using common descrip-
tion formats for defining the models in the publications and description 
languages for exchanging the models through online repositories. Our 
overall goal is to develop both detailed and reduced models of neu-
ron-astrocyte interactions for different brain areas, allowing additional 

testing and clarification of the controversies observed in experimental 
wet-lab studies [1–3]. Only through systematic integration of in vivo, 
in vitro, and in silicodata, using reproducible science approach, are we 
be able to understand how astrocytes may contribute to brain informa-
tion processing and plasticity.
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Introduction and goals: Analysis of Spiking Neuronal Network (SNN) 
dynamics has been one of the central topics within the computational 
neuroscience community, including theoretical studies on character-
izing dynamical regimes in SNN models, incorporating various phe-
nomenologically described biophysical mechanisms, and interpreting 
them through comparison of in vitro/in vivo against in silico data. Par-
ticularly, in vitro recordings from dissociated cultures (e.g. Marom and 
Shahaf 2002; Waagenar et al. 2006; Suresh et al. 2016) have been often 
combined with SNN models. A number of contributions examined 
SNN or mean-field models aiming to explain what initiates, maintains 
and modulates the experimentally observed properties of population 
activity (Latham et al. 2000; Giuliagno et al. 2004; Wallach et al. 2008; 
Baltz et al. 2011; Mesquelier and Deco 2013; Gigante et al., 2015; Lonar-
doni et al. 2017). The in vitro literature seems to converge towards the 
following: dissociated neurons self-organize into random networks 
(possibly with distinct hubs) and develop spontaneous population 
bursts, the brief periods of intensive spiking activity spreading across 
the culture. In neocortical cultures, it has been hypothesized that this 
activity emerges from random fluctuations of uncertain origin and is 
maintained by complex interaction of somatic and synaptic currents. 
Three major types of synaptic receptors, the excitatory glutamatergic 
(AMPA-R and NMDA-R) and the inhibitory GABAergic, have impact on 
the spread, duration, and frequency of bursts; AMPA-R is often asso-
ciated with fast initiation, NMDA-R with maintenance, and GABAA-R 
with dampening of population activity (Teppola et al. 2011). We here 
examine how much of the experimentally observed complexity and 
variability in spiking patterns can be captured by the conventional 
SNNs. We particularly focus on contribution of the three indicated 
receptor types to the overall system dynamics.
Methodology: We constructed a model composed of integrate-
and-fire neurons with appropriate somatic currents. The synaptic 
model includes short-term plasticity on the presynaptic side and the 
three considered receptor types on the postsynaptic side. In order to 
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properly challenge our model, we used a rich set of data systemati-
cally collected while pharmacologically manipulating specific synaptic 
receptors (see Teppola et. al. 2011). We carried out model fitting using 
a powerful but computationally demanding genetic algorithm. The 
model was simulated for many parameter sets, and in silico data was 
collected and analyzed to extract the same measures used to quanti-
tatively describe the experimental data. The analysis of in silico data 
had to be reliable and fully automatic, which is challenging for the 
existing algorithms (Cotterill et al. 2016). Distributions of the obtained 
measures for in silico and in vitro data were compared to compute the 
goodness of fit and identify optimal parameters. We tested various 
combinations of optimized parameters and data measures.
Challenges and results: Preliminary tests give relatively good fit of 
the measures reflecting the spontaneous population burst structure 
and less success in fitting the burst frequency (see Fig. 1). Comparable 
results are obtained across a relatively large parameter space suggest-
ing the need to better constrain the model fitting procedure.
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Network burst activity promoted by neuronal populations plays a fun-
damental role in the formation of a functional network during early 
development of the neocortex [1]. The synchronous periodic pat-
terns of activity are observed in cerebral cortex in vivo, in cortical slice 
preparations in vitro, and in dissociated in vitro cortical cell cultures [1, 
2]. In dissociated cell cultures, the network burst (NB) activity is driven 
by excitatory neurotransmission, which is primarily mediated by the 
action of glutamate on two types of glutamatergic ionotropic recep-
tors AMPA and NMDA. Inhibitory neurotransmission is mediated by the 
action of GABA on GABAergic receptors. GABAergic neurotransmis-
sion is thought to control the dynamic pattern formation in neuronal 

networks by organizing spatially and temporally the network activity 
rather than only reducing firing probability. The complex interplay and 
contribution of the excitatory and inhibitory receptors emerging on 
the level of network dynamics is, however, not well understood [3]. The 
aim of this study is to examine the diverse role of fast  GABAA receptors 
on shaping the fast AMPA receptor and the slow NMDA receptor medi-
ated recurrent excitatory neurotransmission in initiating, maintaining 
and terminating the network wide bursts dynamics in three weeks’ old 
dissociated postnatal rat cortical cultures. In order to study the role of 
 GABAA receptors on AMPA and NMDA receptor driven network burst 
(NB) structures, the extracellular activity was systematically recorded 
with microelectrode array technique under several combinations of 
receptor antagonists such as I. mature control cultures without phar-
macology, II. with partial AMPA receptor suppression (NBQX), III. with 
partial NMDA receptor suppression (D-AP5), IV. with  GABAA receptor 
suppression (PTX), V. disinhibited cultures from II with PTX, and VI. 
disinhibited cultures from III with PTX. The NB structures are analyzed 
as burst measures from the detected NBs such as burst length, rising 
and falling phase, maximum firing rate and burst-size as well as the 
electrode recruitment at time. We show the diverse actions of  GABAA 
receptors on shaping the NB structure and overall network dynam-
ics. The action of GABA is shown to dampen the termination of the 
slowly recruited NBs in NMDA mediated cultures and to dampen the 
initiation of faster recruited NBs in AMPA mediated NBs in cultures at 
the end of the third week in vitro. The here presented results can be 
used to fine-tune data-driven computational network level models of 
in vitro cell cultures. Well-validated network models can help address 
the altered involvement of excitatory and inhibitory receptors in cog-
nitive disorders such as schizophrenia and Alzheimer’s disease.
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Fig. 1 Preliminary results obtained from model fitting to the control 
data set (no pharmacological manipulations). After segmenting 
recordings into population bursts, the following measures are 
extracted: falling and rising times of a burst, interval between succes‑
sive bursts, size of a burst (number of spikes divided with the bursting 
time), and population firing rate at the burst peak. Row one: Distribu‑
tion of each extracted burst measure (blue and red—experimentally 
obtained data divided into training (blue) and test set (red); grey—in 
silico data obtained by simulating the model optimized using the 
training set). Row two: Goodness of fit on the scale of 0 (optimal fit) 
to 1 (fitting failed), five fitting trials shown (x axis)

Examples of network-wide firing rate burst profiles [Hz]. Row one: 
The data of control recording (blue) in comparison to the data of NMDA‑R 
(green) and NMDA‑R with  GABAA‑R (red) suppression. Row two: The data 
of the control recording (blue) in comparison to the data of the recording 
condition when AMPA‑R (green), and AMPA‑R with  GABAA‑R (red) suppres‑
sion. Thin lines represent individual network‑wide burst profiles, whereas 
the thick line represents the average over all. The results show that the 
maximum firing rate decreases and the late state of the burst profile dis‑
appears after NMDA‑R suppression. Furthermore, results demonstrate that 
the maximum firing rate increases and network‑wide bursts lengthens 
after disinhbition. Firing rate maintains at a higher level for extended time 
period after AMPA‑R suppression. In addition, the duration of burst profile 
shortens after disinhibition.
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Deep brain stimulation (DBS) is a valuable tool for ameliorating drug 
resistant pathologies such as movement disorders and epilepsy. DBS is 
also being considered for complex neuro-psychiatric disorders, which 
are characterized by high variability in symptoms and slow responses 
that hinder DBS setting optimization. Experimental opportunities with 
human subjects are too limited to fully explore the stimulation space 
and design new stimulation approaches. In this work we developed an 
in-silico environment to examine the effects of electrical stimulation in 
regions neighboring a stimulated brain region. We used the Jansen-Rit 
neural mass model of single and coupled brain regions to simulate the 
response to a train of electrical current pulses at different frequencies 
(10–160 Hz) on the local field potential recorded in the amygdala and 
cortical structures in human subjects. We found that using a single 
region model, the evoked responses could be accurately modeled fol-
lowing a narrow range of stimulation frequencies. Including a second 
coupled region increased the range of stimulation frequencies whose 
evoked responses could be efficiently modeled. This modeling frame-
work provides an environment to explore, safely and rapidly, a wide 
range of stimulation settings not possible in human brain stimulation 
studies. The model can be trained on a small dataset of stimulation 
responses to develop an optimal stimulation strategy for an individual 
patient (Fig. 1).
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Neuroscientists make use of a wide variety of techniques for dealing 
with the problem of missing data. Some techniques are simple and 
in common use, such as adaptiven, listwise deletion (i.e. complete 
case analysis), mean substitution, or last observation carried forward 
(LOCF). Others come from the fields of statistics or machine learning, 
such as multiple imputation or alternating least squares (ALS). Yet oth-
ers are ad hoc, designed by experts based on their knowledge of their 
specific data. In many cases, the choice of a missing data technique 
appears to be based on following past practices. While continuity with 
past research is important, significant improvements in results may 
be observed when empirically or theoretically proven techniques are 
used.
In this study, we compare five missing data techniques using an elec-
trodiagnostic nerve test dataset. This electrodiagnostic nerve test, 
used clinically and for research, consists of five waveforms which are 
often summarized in about thirty key measurements. Since the test 
has not yet been used with matrix-based machine learning algorithms, 
past studies have most often used adaptiven, assuming missing val-
ues are missing completely at random. However, as international users 
of this test begin to combine datasets and collaborate with the aim 
to create a large international database of normative results, there is 
an increasing need for a systematic approach to missing data, which 
this study aims to meet. The five missing data techniques were chosen 
because they are in common use in neuroscience and clinical studies 
(mean substitution and complete case analysis) or because they are 
well established in statistics and machine learning (multiple imputa-
tion, matrix completion with ALS, and a linear regression predictor). 
The goal was to determine which techniques provided the best fit for 
both missing values and the overall variances and covariances. We 
found that matrix completion’s performance included much larger var-
iance than the other methods, though it was not significantly different. 
Listwise deletion is unable to fill missing values and its performance in 
filling the covariance matrix was significantly worse than linear regres-
sion and multiple imputation. Linear regression performed better 
than mean substitution (pval = 0.014, pcov < 0.001) but not as well as 
multiple imputation (pval < 0.001, pcov < 0.001). The results are shown 
in Fig. 1. Multiple imputation is an effective method of filling missing 
data in this electrodiagnostic nerve test dataset. Linear regression also 
performs adequately, but the other methods should be avoided. We 
believe that these results, which are consistent with other literature, 
will generalize to other matrix datasets in neuroscience.

Fig. 1 Recorded and simulated response to electrical stimulation in 
the amygdala. The stimulation was at 10–160 Hz, 6 mA. The simula‑
tion was done using a 1‑region and 2‑region Jansen‑Rit neural mass 
model

Fig. 1 Error rates for each method when filling (A) the value matrix 
and (B) the covariance matrix. Outliers for matrix completion exist 
well beyond the bounds of the figures
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Multi-stable perception refers to the association of the same visual 
stimulus with multiple alternative percepts. So far multi-stability has 
been studied primarily in the context of low-level vision and shape 
recognition. Multi-stability has also been observed during the percep-
tion of body motion, especially if the associated depth information is 
ambiguous [1]. In this case the same action stimulus is associated, for 
example, with multiple alternative walking directions. In psychophysi-
cal experiments it has been demonstrated that body motion percep-
tion can show spontaneous perceptual switching between different 
interpretations and hysteresis, if a stimulus parameter is gradually var-
ied that introduces a bias for one of the two perceptual interpretations. 
We present a physiologically-inspired neural model that provides a 
unifying account for this perceptual multi-stability and multiple psy-
chophysical experiments that characterize the underlying perceptual 
dynamics. Our model includes the following parts: (1) a deep neural 
hierarchy that recognizes body shapes from silhouette features and 
shading gradients of the moving figure; (2) a fast dynamic neural layer 
that can be interpreted as 2D neural field whose dimensions encode 
the stimulus view and the temporal order of the body shapes within 
action sequences; (3) a slower bistable read-out network that pools 
neural responses over the body shapes belonging to the same action 
and view over time-points. Our model provides a unifying account for 
a number psychophysical results from the literature, and from our own 
experiments: (a) dependence of percept probabilities on shading cues, 
(b) illusory misperception of walking direction for body stimuli that are 
illuminated from below [2]; (c) perceptual hysteresis for the gradual 

variation of disambiguating shading cues of body motion stimuli [3]. 
Our results show that the multi-stability of body motion perception 
can be accounted for in a simple way by the interaction between deep 
example-based neural networks for the recognition of body shapes 
and an elementary physiologically plausible cortical activation dynam-
ics (Fig. 1).
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In order to build more accurate models of the neural circuitry and algo-
rithms underlying learning, memory, and perception, it is imperative to 
properly characterize and identify the response properties and firing 
patterns of the neocortex across a multitude of experimental manipu-
lations–allowing for a subsequent identification of the roles that differ-
ent neocortical information traces play in orchestrating and facilitating 
our conscious experiences. Related to this mission, it is often useful to 
record neocortical firing patterns via laminar probe electrodes–which 
span the ubiquitously layered structure of the neocortex, and allow 
for an in vivo investigation of the response characteristics of individ-
ual feature-sensitive cortical columns–the computational units which 
make up the cortical hierarchy. One general pattern of spiking activ-
ity that is readily observed from such recordings involves elevated 
firing rates of cells spanning multiple layers of the cortical column. 
Such population-level firing events are often referred to as network 
burst events, or “UP” states, and are observed to occur in response to 
a given cortical column’s preferred stimulus feature as well as sponta-
neously. While past attempts have aimed to characterize the structure 
and function of these network burst events, such analyses have been 
limited, in part, by an overly generalized definition of network burst 
events; whereby such events are defined simply as periods of elevated 
firing rates spanning multiple neocortical layers. While useful in some 
contexts, this definition ignores the possibility that multiple activa-
tion profiles (and functionalities) may underlie different network burst 
events, and also makes it difficult to precisely define boundaries of 
burst events occurring among other independent spiking events or 
among trains of successive burst events. Acknowledging these limita-
tions in studying network burst events, our goal was to engineer an 
analysis pipeline capable of detecting and discriminating between 
specific patterns of population spiking activity. This approach was cho-
sen to allow researchers to define network burst events in a manner 
that implicitly includes spatiotemporal structure as a defining char-
acteristic–while also providing a new methodological approach for 
defining and detecting other forms of population codes that occur 
throughout the brain. To meet our goal, we treated burst detection 
as an image-recognition problem, and trained a deep convolutional 
neural network to detect a specific activation pattern of spikes occur-
ring across the cortical laminae during burst-like periods of activity. 
As a golden standard for learning this structure, isolated burst events 
emerging during quiescent periods were extracted from laminar 
probe data recorded from rat auditory cortex, and subsequently used 
to train a deep neural network to discriminate between the structure 
of such network burst events and other forms of firing activity (e.g. 
burst-like activity with shuffled spikes to remove spatiotemporal struc-
ture). This trained network was then applied to over a dozen laminar 
probe datasets recorded from different rats and different regions of 

Fig. 1 Schematic illustration of model architecture. Two feedforward 
pathways code for body snapshots at the ~ 70–150 ms timescale. 
Their outputs are combined to drive the non‑autonomous dynamic 
neural field that codes for stimulus view (with local excitation, mid‑
range inhibition) and gait phase (forward excitation, backward inhibi‑
tion) at full gait cycle time scale (~ 1.2–1.5 s). A final bistable read‑out 
network represents perceptual dynamics at the ~ 2–10 s timescale 
and exhibits perceptual hysteresis
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auditory cortex in order to characterize the true, stereotyped structure 
of network burst events, as well as to characterize the effect of anes-
thesia on such events.
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The common approach to studying brain responses at macro- and 
mesoscopic scales relates some physiological measure, such as EEG, 
LFP or BOLD response, to the timing of external driving events. In this 
mode of inference (call it mode S), the stimulus is abstracted into a 
discrete set of event times associated with a typically limited number 
of alternative conditions, which, in effect, encode a low-dimensional 
parameter space within the stimulus. With microscale single- and 
multi-unit data, by contrast, it is common to elicit receptive fields over 
high-dimensional stimulus spaces, which might, for example, encode 
detailed spatial or spectro-temporal properties of the stimulus. In 
this mode of inference (call it mode R), the response, rather than the 
stimulus, is abstracted to a low-dimensional form (“spikes’’), facilitating 
the recovery of detailed receptive fields properties. Macro- and meso-
scopic recordings are less amenable to mode R inference because few 
similarly unambiguous response elements are at hand. We describe 
here a novel strategy for overcoming this barrier which takes advan-
tage of properties of higher order spectra. This approach recovers 
transient signal features that best approximate the bispectrum. The 
signal may then be characterized according to the occurrence times 
of the transients. Although demonstrated in its application the bispec-
trum, the extension to other higher order spectra is straightforward. 
The approach is validated through the blind identification of auditory 
evoked responses in human intracranial recordings from both con-
trolled stimuli (click trains) and uncontrolled ecologically meaningful 
stimuli (a video soundtrack) with no prior information about the stim-
ulus. In human intracranial data recorded from 17 epilepsy patients, 
the distribution of transient responses modulated by click-train stimuli 
was compared to that of traditionally computed evoked responses. For 
all patients with recordings in the vicinity of primary auditory cortex 
on Heschl’s gyrus, both the blindly recovered transient responses and 
normally computed evoked responses showed significant modula-
tion by the stimulus, defined as one or more time points at which the 
response reached FDR corrected q < 0.01 significance. In most cases, a 
close correspondence was observed between the form of the tran-
sient and the evoked response, demonstrating the blind recovery of 
the evoked response. At locations on lateral temporal cortex, signifi-
cant stimulus-driven modulation was observed less frequently than 
evoked responses, and the forms of recovered transients tended to 
differ from the evoked waveforms, implying that low-level acoustic 
stimulation was not the primary driver of responses in these areas.
Mode R inference with spectro-temporal properties of ecologically 
meaningful auditory speech stimuli revealed a gradation of the tem-
poral response window along the medial-to-lateral axis of Heschl’s 
gyrus: transients recorded from lateral cortex responded to complex 
acoustic stimulation with a more prolonged window of integration. 
While medial responses were associated with low-level transient 
acoustic properties of the stimulus, lateral responses tended to accom-
pany the onsets and transitions of phrases within speech stimuli. 
Responses in neither area showed clear evidence of spectral selectiv-
ity. These results validate the technique and demonstrate its ability to 
reveal new aspects of cortical auditory processing.
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Orientation preference is a prominent feature of the mammalian visual cor-
tex, but the mechanisms underlying its development remain elusive. Spon-
taneous cortical activity is thought to play an important role in the matu-
ration of orientation selectivity [1], yet it is still unclear how spontaneous 
activity shapes this process.
Here we address this question by combining chronic imaging experi-
ments and computational analyses. We used GCaMP6 s to image visu-
ally evoked responses with moving grating stimuli and spontaneous 
activity in ferret primary visual cortex, from four days prior to the 
natural time of eye-opening (~ P30 in ferrets) until about a week after 
eye-opening. Prior to P30, the eye lids were transiently opened when 
probing the cortex with grating stimuli. This setup allows us to assess 
the emergence and refinement of orientation selectivity and its rela-
tionship to spontaneous activity during early development. We found 
that, already at the earliest time point measured (P26), visual stimuli 
robustly evoke responses that are modular (i.e., patchy), extend over 
the whole field of view, and are highly variable across trials. Typically, 
weak orientation tuning is evident at this stage, but its layout only 
coarsely resembles the mature organisation. Indeed we observe con-
siderable reorganisation until a near mature layout is reached a few 
days after eye-opening. Intriguingly, we find signatures of the mature 
layout of orientation domains that are not yet present in its early lay-
out, but in the spatial structure of early spontaneous activity. This is 
revealed by calculating the partial correlation coefficients between the 
future orientation preference map and the early spontaneous activity 
patterns while controlling for the correlation with the early orientation 
preference map. Thus, early spontaneous activity appears to contain 
information about the mature layout of orientation preference, sug-
gesting a role in refining its organisation. To determine if early spon-
taneous activity could indeed drive the refinement of orientation 
preference, we built a correlation-based model of early visual cortex, 
assuming that locations with positively correlated spontaneous activ-
ity become more similar in their tuning at later stages in development, 
whereas negatively correlated locations become more dissimilar. 
Using the measured spontaneous correlation structure and layout of 
orientation preference in the early cortex, our model predicts aspects 
of the subsequent reorganization of orientation preference towards 
its mature layout. The model predicts that spontaneous activity and 
the orientation preference map become increasingly similar in their 
layout during development and we confirm this prediction with our 
experimental data. Thus, this correlation-based approach captures 
the refinement of orientation preference as well as of its relationship 
to spontaneous activity. We conclude that early cortical spontaneous 
activity plays a significant role in driving the refinement of the circuits 
underlying orientation preference in visual cortex.
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The Multispike Tempotron [4] is a synaptic-like model learning rule 
for spiking neurons. It is trained to elicit a precise number of spikes in 
response to a sequence of temporally precise presynaptic spike pat-
terns that is embedded in background spiking activity. Each individual 
pattern elicits a specific number of spikes. As teaching signal, only 
the total number of output spikes for the complete input sequence is 
used. Thus, for successful learning, the neuron is required to arrange 
the total number of output spikes in time such that the occurrence 
times of the patterns are matched. The Multispike Tempotron model 
in [4] used the homogeneous Poisson process, the commonly used 
stochastic model for single neuron spiking statistics in the neocortex, 
to simulate both, the embedded patterns and the background noise. 
However, the Poisson process is a mathematically convenient but 
deficient model for the spiking statistics of cortical neurons, which is 
likely more regular than Poisson [1]. Moreover, large and task-related 
trial-by-trial variability [2–3] implies changing network conditions. In 
this work we examine how different spike train statistics of presynaptic 
input that deviate from Poisson, impact the learning and generaliza-
tion capabilities of the Multispike Tempotron.
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Building predictive models of neural activity is a central aim of com-
putational neuroscience. To better understand the various represen-
tations in mouse visual cortex, we aim to build stimulus–response 
models for neurons in cortical areas VISp, VISl, VISal, VISrl, VISpm, and 
VISam. Data from these brain areas was collected as part of the Allen 
Brain Observatory at the Allen Institute for Brain Science. The Allen 
Brain Observatory dataset includes data from hundreds of animals 
exposed to a standardized set of visual stimuli while calcium fluores-
cence was recorded from a cortical visual area. However, despite this 
large dataset, learning the stimulus–response mapping function for 
individual neurons is a challenging problem. The chief difficulty is that 
stimulus–response mapping functions are inherently high-dimen-
sional and nonlinear while response data for a single neuron is limited 
by experimental demands and intrinsically noisy. One of the most suc-
cessful approaches for tackling this problem is to linearize the stimu-
lus–response mapping by preprocessing the stimulus with a carefully 
chosen nonlinear transform. For our model, we constructed a nonlin-
ear transform using a pyramid of spatio-temporal Gabor filters (along 

with appropriate nonlinearities) to create a set of model “simple” and 
“complex” cells that densely tile the stimulus [1]. We then use regu-
larized regression to find a linear mapping between the transformed 
stimuli and the estimated responses of each recorded neuron. Neural 
responses were estimated from the differential fluorescence traces 
using an L0 regularized deconvolution algorithm [2]. Before fitting 
the models, we separated the stimuli used in the Allen Brain Obser-
vatory into two classes, ‘natural’ and ‘artificial’. ‘Natural’ stimuli included 
natural movies and images. ‘Artificial’ stimuli included static gratings, 
drifting gratings and locally sparse noise. We fit models in these two 
stimulus regimes separately in order to determine which type of stim-
ulus best allows for the construction of predictive stimulus–response 
models. We find that models fit using natural stimuli both generalize 
better and are more interpretable. We also find that across all corti-
cal visual areas the fit models tended to utilize far more “complex cell” 
regressors than “simple cell” regressors. This suggests that neural rep-
resentations in mouse cortex, even in the first cortical visual area VISp, 
contain few if any true “simple cells” and may exhibit higher-order tun-
ing earlier in their visual hierarchy than other species, such as cats and 
primates.
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Historically, most studies of receptive fields were undertaken using 
electrophysiology, with a recent shift towards calcium imaging as a 
method of choice. Electrophysiology and Ca2+ imaging both con-
stitute noisy observations of the underlying neural activity. However, 
the statistical properties of the raw signals, as well as the sources and 
effects of the introduced noise, are quite distinct. To interpret receptive 
fields derived from Ca2+ imaging in the context of existing literature, 
it is crucial to understand how these differences are reflected in the 
detectability and properties of receptive fields derived from different 
recording modalities, for it is impractical to perform every experiment 
with each modality. To address this issue, we first computed receptive 
fields from extracellular spikes recorded using Neuropixels [1] silicon 
probes in three visual regions, directly, using the spike-triggered aver-
age (STA). Then, we calibrated a biophysically inspired model that 
relates spiking activity to observed fluorescence (MLSpike, [2]) on 
‘ground truth’ data, in vivo Ca2+ recordings paired with juxtacellu-
lar electrophysiology, where the Ca2+ -dependent fluorescence was 
consistent with the Allen Brain Observatory (http://obser vator y.brain 
-map.org/visua lcodi ng/), a public resource providing standardized 
in vivo characterization of single neuron activity in mouse visual cortex 
based on Ca2+ -imaging. Following calibration, we computed model 
calcium activity from above spike trains, and analyzed the synthesized 
Ca2+ data using techniques developed for mapping of classical recep-
tive fields based on responses to locally sparse noise in the Allen Brain 
Observatory data processing pipeline. We found that such analysis 
readily yielded receptive fields, which largely agreed with those iden-
tified directly from the electrophysiological recordings via STA, and 
investigated the sensitivity of the obtained receptive field structure 
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to the parameterization of the Ca2+ forward model. We observed 
that statistical detectability and the quality of the correspondence 
is dependent on several factors. (1) Quality of the synthetic calcium 
data: low signal-to-noise ration results in worse correspondence and 
detectability. (2) Event detection strategy: the advantage of sophisti-
cated event detection strategies (e.g. L0 event detection [3]) is most 
pronounced with the calcium signal to noise ratio is low. (3) Region-
specific properties of the spiking response (e.g. potentially degree of 
burstiness, sparseness). Generally, correspondence and detectability 
were better in primary visual cortex than in higher visual areas.
In the future, this data-driven modeling approach may provide a 
Rosetta Stone for receptive field comparison across recording modali-
ties, as well as inspire improvements to algorithmic receptive field fit-
ting procedures.
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How different neuronal populations represent and transmit informa-
tion about the external world is a central question of systems neurosci-
ence. The Allen Brain Observatory contains the results of two-photon 
calcium imaging from populations of hundreds of neurons in awake 
mice passively viewing visual stimuli. Its recordings span layers two 
through six in areas V1 and the secondary areas LM, AL, PM, AM and 
RL and are in response to both artificial and naturalistic stimuli. This 
dataset offers a powerful new tool for examining population coding 
in the mouse visual system. To assess information processing across 
visual areas and layers, we examined how well different visual stimuli 
can be decoded from the population’s trial-by-trial responses, compar-
ing different visual areas and layers. We found that visual stimuli can 
overall be best decoded from layers 2/3 and 4 in areas V1 and LM, with 
different decoding performance in genetic lines (Cre lines) labelling 
different populations of cells. We then asked whether the structure 
of trial-by-trial correlations between neurons (“noise correlations”) 
was optimal for decoding. We found stimulus-specific and Cre line-
specific effects of noise correlations on decoding. Noise correlations 
almost always improved the decodability of natural scenes, except 
in layer five-specific lines in area LM. In contrast, noise correlations 
decreased the decodability of drifting grating direction in most areas 
and Cre lines, but increased the decodability of drifting gratings in 
certain excitatory populations. These demonstrate differential modes 
of population encoding for different stimulus classes and by different 
neural populations. Thus motivated, we further examine the structure 
of noise correlations across neurons in these different layers and visual 
areas. We show universal patterns in how noise correlations depend 
on stimulus tuning and distance between neurons, and in the dimen-
sionality of population activity.
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An appealing recent principle for neural population codes is that 
correlations among neurons organize neural activity patterns into a 
discrete set of clusters, which can each be viewed as a noise-robust 
population codeword. Previous work supports that this clustering 
principle—which can in theory offer a neural code numerous advan-
tages—applies to the retinal ganglion cell population (RGC) code. 
However, the previous approaches used to identify these latent clus-
ters from data involved methods that are not biologically plausible. 
For example, these methods are restricted to an offline setting. Here, 
we combine experimental and theoretical methods to address the 
question of how downstream processing areas, such as primary visual 
cortex, could extract the previously identified noise-robust clusters. 
Based on recent results on the structure of clusters of the retinal gan-
glion cell population code, we investigated the use of a spiking neu-
ral network model with feedforward, activity-dependent plasticity 
that represents an implicit generative model whose latent states cor-
respond to distinct combinations of neuronal activities. Importantly, 
learning and decoding of clusters with this type of network model can 
be implemented online. We found that the readout neurons of this 
neural network model developed, after learning on real RGC popula-
tion response data, strong tuning for the latent clusters identified by 
our previous, non-biologically plausible machine learning method for 
the same data. This learned specificity for the previously-identified 
RGC population clusters was statistically significant when compared 
to control networks. To our knowledge, these results are the first to 
demonstrate the existence of a biologically plausible neural network 
model (in particular, unsupervised learning and decoding can be done 
in real time) that is capable of decoding clusters from real RGC popu-
lation activity data that were previously identified using non-biologi-
cally plausible, sophisticated machine learning methods.
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The Subthalamic Nucleus (STN) plays a fundamental role in arresting 
automated responses during response conflict. It prevents premature 
activation of the output of the Basal-Ganglia (BG) to buy the Execu-
tive-Control (EC) system in prefrontal cortex (PFC) time to resolve the 
conflict and elicit more appropriate behaviors. Experiments in pri-
mates have shown that theta band (4–8 Hz) power in the Local Field 
Potential (LFP) and spike rates in the STN increase commensurate 
with the level of conflict. Moreover, recent lines of evidence suggest 
that the STN can act as a conflict detector by integrating competing 
motor signals to prevent impulsive responses. Adapting prior cellu-
lar models of STN and Globus Pallidus externus (GPe), we have built 
a novel large-scale biophysically constrained and reciprocally coupled 
subthalamopallidal (STN- GPe) network. We perturb the network with 
simulated cortical signals representing competing motor actions to 
understand the electrophysiological basis of the STN signal modula-
tions and how cortico-STN topography impact these computations. 
Our results show a balance between intrinsic behaviors of the STN-GPe 
network and specific patterns of cortical drive is necessary for theta 
band expression in the network. We conjecture that theta-dependent 
increased spiking in the STN network is the key component for “brak-
ing” unwanted impulsive responses.
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Cognitive flexibility is a critical executive function, defined by the abil-
ity to adapt goal-directed behaviors to changes in the environment. 
One of its central components is the ability to prioritize relevant stim-
uli while ignoring conflicting representations. Despite their impor-
tance, the computational principles underlying cognitive flexibility are 
poorly understood. To examine these neural mechanisms, we devel-
oped a novel rule-guided, two-alternative forced choice sensory 
attention task in which mice flexibly used two different cue sets (an 
auditory or a visual cue set) to infer a rule (either attend to an auditory 
or a visual target). Mice performed the task in blocks where they had 
to switch from using one cue set to another without external cueing. 
On average, mice performed equally well in either block, regardless 
of the presentation order. The abrupt transition between the blocks 
led to an increase in error rate, indicating that mice readjusted to 
using different sensory cues over a span of approximately 10 trials. We 
recorded PFC ensemble activity during the task using multi-electrode 
arrays. A substantial fraction of PFC neurons responded selectively to 
one of the four cue types through a brief increase in trial-to-trial spik-
ing reliability. In addition, a subset of neurons were selective for rule 
meaning and were invariant to the cue identity. This finding suggests 
that the PFC contains a cue set-specific pool of neurons that encode 
individual cues, and a cue set-invariant pool of neurons that encode 
rule meaning. How do these cue set invariant responses arise in the 
PFC? To address this question, we implemented a multi-neuron gen-
eralized linear model (GLM) to help infer connectivity profiles within 
the PFC. Neurons preferring the same cue-set are strongly positively 
coupled with each other. In contrast, inputs from neurons preferring 
the other cue set was weak and inhibitory. This suggests that the PFC 
is functionally organized into two ensembles, each preferring a dif-
ferent cue set. Additionally, cue set-invariant neurons sampled selec-
tively from co-tuned neurons in both cue sets with coupling strengths 
that varied with trial number relative the onset of the cue set switch. 
In particular, inputs from co-tuned neurons in the current context are 
strengthened while those from the opposite context are weakened. 
We next asked how the mediodorsal thalamus (MD), which is recur-
rently connected to the PFC, could contribute to this cue set-specific 
organization of PFC activity. MD neurons responded selectivity for 
each cue set. Unlike PFC, we could not decode rule-meaning infor-
mation from the MD, suggesting that the MD exclusively represents 
task context. Further, our GLM analysis revealed two populations of 
MD neurons—rate-modulated cells that were negatively coupled to 
PFC neurons of the opposite context, and temporally-modulated cells 
that provide a modulatory coupling to PFC neurons that preferred the 
same context. Therefore, by inhibiting the irrelevant context, MD neu-
rons enhance tuning and selectivity within the PFC. In support of this, 
transiently suppressing MD neurons reduced PFC tuning strength and 
increased behavioral inflexibility.
Taken together, our work reveals a critical role for the MD in permitting 
cognitive flexibility by stabilizing PFC ensembles that are selective for 
the current sensory context, while suppressing those that are selective 
for the previous/irrelevant context.
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During delay tasks, some neurons in the murine thalamocortical sys-
tem and hippocampus (‘time cells’) display transient spike responses 

with timing that is repeated reliably across trials. These transient 
responses confer a short term memory of the stimulus and context 
during the delay period, with reliable responses extending to delays 
of up to 1 s or more. We wondered what neural network structures 
could facilitate the generation of such dynamic memory patterns. 
We show that in a simplified formalism of a dynamic recurrently-con-
nected network (DRN), the number of unique dynamic patterns grows 
exponentially with network size, so that even sparsely firing DRNs of 
only moderate size can reliably store non-overlapping memories of 
practically arbitrary duration. Additionally, sparse connectivity allows 
smaller networks overall (i.e. more neurons but with dramatically 
reduced connectivity) to generate activity cycles of length comparable 
to fully connected networks, which is important because as brain net-
works grow it becomes physically impossible to fully connect them. 
The DRN formalism emphasises the role in neural function of transient 
yet repeatable dynamics. Unlike reservoir networks, the connectivity 
matrix does not need to be finely tuned (random connectivity suf-
fices), and the dynamics implement indefinite (not fading) memory. 
Activity levels are assumed to be controlled by local inhibition, and 
gating of input patterns is assumed to be controlled by modulatory 
signals from thalamus and subcortical structures. In particular, recent 
experimental evidence suggests that inputs from the MD thalamus 
convey contextual information and can modulate cortical synaptic 
strengths. Sparse activity and sparse connectivity, as investigated here, 
are likely to be critical components in gating of neural signals and the 
battle against noise-induced degradation of the memory patterns, 
since sparsity allows weight modulation to have a selective rather than 
a broad effect on network dynamics. Future work will investigate these 
mechanisms.
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A fundamental goal of neuroscience is the characterization of the rela-
tionship between stimuli and neural response. Classical stimuli, such 
as ramps and sinusoids, have been used because they are straight-
forward to analyse and often easy to generate with the equipment 
available. Although such stimuli are responsible for much of what we 
know about the tuning properties of sensory neurons, they often do 
not allow a complete characterization of neural response. In the pre-
sent work, we recorded extracellular potentials from single neurons in 
cortical area MST in head-restrained awake monkeys (Macaca mulatta) 
while presenting classical visual motion stimuli (sinusoids and ramps) 
and a more naturalistic unpredictable stimulus motion with a band-
limited Gaussian white noise (GWN) velocity profile. Visual stimuli 
were projected on a screen directly in front of the monkey, which was 
rewarded for following the stimuli by smooth pursuit eye movements. 
Data was collected from preferred directions eliciting maximal spiking 
activity. From the neural recordings during GWN stimulus motion we 
constructed probabilistic multi-dimensional neural tuning functions 
dependent on retinal and extra-retinal variables such as image and 
eye velocity and position by an information-theoretic approach [1]. 
The calculated tuning functions show a gain-field like behaviour with 
the probability of a spike depending on two or more different explana-
tory variables. Gain fields have been found in various areas of the 
brain describing how neurons combine information from more than 
one source. We then used these tuning functions to predict neural 
responses to classical sinusoidal and ramp stimuli and compared the 
predictions to measured responses. The tuning functions derived by 
the information-theoretic analysis of GWN stimuli where insufficient to 
fully predict the neural responses to sinusoidal or ramp stimuli in MST.
Our preliminary results indicate that there is a significant difference 
in the spiking behaviour of individual neurons in the MST between a 
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GWN stimulus in the preferred direction and sinusoidal or ramp stim-
uli. The differences could be due to tuning specific for a certain class of 
responses, to missing variables in the characterisation of tuning func-
tions, or to some aspect related to predictability of the signal. Missing 
variables are one possible explanation, since the amount of data col-
lected usually only allows for 2D tuning functions, while neurons often 
show tuning to more than two explanatory variables (e.g., retinal slip, 
eye velocity, and image acceleration). However, it is well-known that 
the smooth pursuit system contains a predictive mechanism that in 
case of predictable stimuli allows zero-latency tracking despite the 
considerable onset delay in the smooth pursuit response. Based on 
our preliminary results we hypothesize that the found differences in 
neural responses between predictable and unpredictable reflect the 
action of this prediction mechanism.
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IDTxl is a new open source toolbox for effective network inference 
from multivariate time series using information theory, available from 
Github at http://githu b.com/pwoll stadt /IDTxl . The primary application 
area for IDTxl is the analysis of brain imaging data (import tools for 
common neuroscience formats, e.g. FieldTrip, are included); however, 
the toolkit is generic to analysing multivariate time-series data from 
any discipline and complex system. For each target node in a network, 
IDTxl employs a greedy iterative algorithm to find the set of parent 
nodes and delays which maximise the multivariate transfer entropy. 
Rigorous statistical controls (based on comparison to null distributions 
from time series surrogates) are used to gate parent selection and to 
provide automatic stopping conditions for the inference. We validated 
the IDTxl Python toolkit on different effective network inference tasks, 
using synthetic datasets where the underlying connectivity and the 
dynamics are known. We tested random networks of increasing size 
(10 to 100 nodes) and for an increasing number of time-series obser-
vations (100 to 10000 samples). We evaluated the effective network 
inference against the underlying structural networks in terms of preci-
sion, recall, and specificity in the classification of links. In the absence 
of hidden nodes, we expected the effective network to reflect the 
structural network. Given the generality of the toolkit, we chose two 
dynamical models of broad applicability: a vector autoregressive (VAR) 
process and a coupled logistic maps (CLM) process; both are widely 
used in computational neuroscience, macroeconomics, population 
dynamics, and chaotic systems research. We used a linear Gaussian 
estimator (i.e.Granger causality) for transfer entropy measurements in 
the VAR process and a nonlinear model-free estimator (Kraskov-Stoeg-
bauer-Grassberger) for the CLM process. Our results showed that, for 
both types of dynamics, the performance of the inference increased 
with the number of samples and decreased with the size of the net-
work, as expected. For a smaller number of samples, the recall was the 
most affected performance measure, while the precision and specific-
ity were always close to maximal. For our choice of parameters, 10000 
samples were enough to achieve nearly perfect network inference 
(> 95% according to all performance measures) in both the VAR and 
CLM processes, regardless of the size of the network. Decreasing the 

threshold for statistical significance in accepting a link lead to higher 
precision and lower recall, as expected. Since we imposed a single 
coupling delay between each pair of processes (chosen at random 
between 1 and 5 discrete time steps), we further validated the perfor-
mance of the algorithm in identifying the correct delays. Once again, 
10000 samples were enough to achieve nearly optimal performance, 
regardless of the size of the network. We emphasise the significant 
improvement in network size and number of samples analysed in this 
study, with 100 nodes/10000 samples being an order of magnitude 
larger than what has been previously demonstrated, bringing larger 
neural experiments into scope. Nonetheless, analysing large networks 
with 10000 samples and using the model-free estimators is computa-
tionally demanding; therefore, we exploited the compatibility of IDTxl 
with parallel and GPU computing on high-performance clusters.
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Owing to the rapid development of neuromorphic technologies, the 
emulation of large neuronal networks has recently become feasible 
[1]. These novel hardware platforms offer advantages compared to 
classical simulation, such as low power consumption and increased 
speed, at the cost of limited flexibility and reduced control over the 
dynamics. A particular scenario in which acceleration plays an impor-
tant role is Bayesian inference by probabilistic sampling. As an answer 
to experimental data suggesting that such sampling is realized in the 
brain at a neuronal level [2, 3], circuit-level theories of sampling with 
biological neurons have been recently developed [4, 5]. In this work, 
we present a sampling-network implementation with leaky integrate-
and-fire neurons [4] driven by the activity of a decorrelation network 
[6] on the BrainScaleS neuromorphic platform [7]. The underlying 
theory allows the training of a population of neurons to approximate 
target distributions that are either specified explicitly or defined 
implicitly by data samples. The BrainScaleS system is a spiking, mixed-
signal, neuromorphic device running at a speed-up of 104compared 
to biological real time. The decorrelation network is a deterministic 
spiking network consisting of self-activating inhibitory neurons with 
random recurrent connections. By inducing negative correlations in 
its output spike trains, it counters (positive) shared-input correlations 
that appear when functional neurons in the sampling network receive 
random connections from noise-generating sources. This combination 
of a functional and a noise-generating network allows an implementa-
tion that is completely contained in the hardware and can fully ben-
efit from its accelerated dynamics. We used the implemented spiking 
sampling network to learn various target distributions and perform 
inference in the associated probability spaces. For example, when 
trained on a subset of the MNIST dataset, we achieved an accuracy 
of 93.3 + 0.6–1.3% at a processing rate of 20,000 images per second. 
As generative models of the learned distribution, our networks were 
able to complete partially covered patterns and also generate new 
data without external input (“dreaming’’). Training was done based 
on the wake-sleep algorithm, with the hardware in the loop: param-
eter updates were calculated on the host computer using the spiking 
activity on the neuromorphic device. The ability to train such networks 
despite a lack of precise parameter control is of particular interest 
for new nanoelectronic architectures currently under development 
that make use of analog—therefore inherently imprecise—elements 
(Fig. 1).

http://github.com/pwollstadt/IDTxl
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Brain hierarchical networks cooperate and compete in wide variety 
of spatial and temporal scales producing robust sequential dynamics. 
Many anatomical and functional motifs emerge dynamically among 
different brain elements depending on the interconnections in the 
network and the intrinsic oscillations of the nodes, which can corre-
spond to different levels of the neural hierarchy, from single neurons 
to large neural ensembles with coherent activity. From this perspec-
tive, we build here a winnerless-competition heteroclinic network of 
oscillatory nodes to study how an endogenous or external periodic 
frequency can control the switching among different subprocesses 
relying on the coherence and coordination of the network sequential 
activity. We relate this dynamical switching to attention processes and 
cognitive/behavioral brain functions. The network dynamics is mod-
eled with a basic rate-phase motif model based on an adaptation of 
the generalized Lotka-Volterra model (GLV) [1, 2]. Such dissipative 
models are convenient approaches able to describe two key aspects 
of cognitive dynamics: sequential transient behavior and the intrinsic 
oscillatory nature of its constituent elements. Taking into account the 
observed metastable informational patterns in experimental record-
ings, the proposed basic dynamical model helps to understand differ-
ent informational phenomena that can be related to behavioral and 
cognitive activity in the framework of the same structural heteroclinic 
network. In particular, we show that rhythmic signals in a heteroclinic 

motif network can effectively produce a wide variety of coordinated 
sequential activations with key computational properties such as 
spectrum control, dynamical filtering, information modality binding 
and encoding enhancement. In the view of our results, we propose a 
complementary view on brain rhythms from the perspective of their 
interaction with neural sequential dynamics involved in a wide variety 
of information processing tasks. Results of our simulations show that 
multifunctional motif networks with sequential activations entrained 
by external rhythms, described by a simple frequency and amplitude, 
can evolve through distinct dynamical states. These states can be 
related to different brain functions and characterized by the broad-
ness of their frequency spectrum, their level of regularity and the spe-
cific features of the sequential activations generated in a heteroclinic 
network. These results also suggest the analysis of sequential activity 
in novel protocols that use rhythmic input using, for instance, tran-
scranial stimulation or evoked potentials to relate neural activity to 
cognitive functions, and their associated pathologies [3–5]. As far as 
we know, this is the first time such an approach is proposed and can 
provide insight for the design of novel experimental paradigms with 
rhythmic transcranial or sensory stimulation.
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Unusual behaviors in autism spectrum disorder have been supposed 
due to the elevation of an excitation/inhibition (E/I) ratio of neurons 
[1]. It has been hypothesized that this E/I imbalance causes atypical 
neural connectivity in autistic brains [2]. However, how the E/I balance 
affects neural connectivity remains unclear. The purpose of this study 
is to understand relationship among the E/I ratio, the connectivity, and 
information transfer based on the Izhikevich’s spiking neural network 
model [3]. Our model consists of two neuron groups, each of which 
has 1000 excitatory or inhibitory neurons. An excitatory neuron has 
100 connections to others in the same group and three connections 
to neurons in the other group. An inhibitory neuron is connected to 
100 excitatory neurons in the same group. Inter and intra connections 
are updated according to the spike-timing-dependent plasticity rule 
[4]. We conducted experiments with different E/I ratios, and evalu-
ated inter connectivity and transfer entropy. Fig. 1 shows the averaged 
weights of interconnections and the transfer entropy. Here, we defined 
group1 as a neuron group with a higher value of weights to the other 
group than the other, for each trial. We tested the model with each 
E/I ratio 10 times. Our results show that when the E/I ratio was close 
to 8.2:1.8, asymmetric connections were organized between groups 
(Fig. 1A, B). We also found that the transfer entropy from group 1–2 
was higher than the opposite transfer entropy (Fig. 1C and D) which 
was among zero (Fig. 1 D). Figure 1. Panel A and B show connection 

Fig. 1 Classification, inference and dreaming of handwritten digits: 
A Following the transfer of the model from software to hardware, the 
iterative training recovered a classification rate close to the reference 
performance level of the ideal software implementation. B Exam‑
ples of digits generated by the spiking network on the hardware. 
C The network was able to complete and correctly classify partially 
occluded digits
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weight from group 1–2 and from group 2–1, respectively. Panel C 
and D show the transfer entropy from group 1–2 and from group 
2–1, respectively. Our simulation demonstrated that the typical E/I 
ratio (around 8:2) caused asymmetric intergroup connections and the 
higher transfer entropy. We suppose that this bias for the asymmetric 
connectivity and directionality of information transfer might be a basis 
of functional organization of a brain. This may imply atypical connec-
tivity in autistic brains might originate from the E/I imbalance, which 
leads to atypical information processing.
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Timescales of fluctuations in single-neuron spiking activity are 
reported to vary depending on cortical areas in a resting-state 
macaque brain, implying that the timescales contribute to areal func-
tional specialization [1]. However, it remains unclear what intrinsic 
neural properties cause the various timescales. The purpose of this 
study is to identify the key parameter of a spiking neural network 
model to determine the timescale. We focus on the intrinsically burst-
ing (IB) neurons that have a shorter refractory period than the regular 
spiking (RS) neurons. The IB neurons, if injected dc current, fire burst 
of spikes, in contrast, the RS neurons fire a few spikes with short inter-
spike period, i.e. refractory period. We evaluated the timescales in neu-
ral networks consisting of one thousand Izhikevich’s spiking neurons 
[2], where the ratios of the number of the IB neurons to that of the RS 
ones were varied. The timescaleTwas evaluated using the decay of the 

spike-count autocorrelationRfor pairs of time bins (currently, 150 ms) 
based on the equation (1) in Fig. 1, which shows the timescales aver-
aged over all neurons in networks with various ratios of the number 
of the IB neurons to that of the RS ones. When the timescale becomes 
large, neurons tend to maintain the number of spikes per bin. Only 
within the range of the ratio, from 0.95 to 1.35, the exponential decays 
of the autocorrelation, which were observed in macaque brain [1], 
were observed. The median of the timescale for 10 trials became large 
as increase in the number of the IB neurons. This trend indicates that 
the IB neurons contributes to the maintenance of their firing rates 
rather than the RS neurons. We speculate that difference of refractory 
period between RS and IB neuron lead this result. As we mentioned 
above, refractory period of RS neuron is larger than IB neuron (i.e. the 
time to next spike is long), therefore, fluctuation of firing rate of RS 
neuron within each bin is larger than IB neuron.
Future issues The current model had random connectivity, although 
the existing computational study figured out that the biologically 
realistic connectivity, e.g., layer-specific connectivity, also contributes 
to reproduce the various timescales [3]. We plan to investigate how 
these factors, i.e., the intrinsic properties of an individual neuron and 
connectivity between neurons have impact on the timescales. Further-
more, how the various timescales yield functional differentiation is an 
interesting question.
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Cholinergic inputs from the basal forebrain modulate various visual 
cortex functions, including visual discrimination, contrast response 

Fig. 1 Averaged weights of interconnections and the transfer 
entropy

Fig. 1 Spike‑count autocorrelation was computed with time bins 
(D = 150 ms) for each ratio of the number of the IB neurons to that 
of the RS ones. Each color corresponds to the ratio. The timescale T 
is defined as an exponential decay of the autocorrelation R with a 
coefficient A and an offset B. Solid lines show the exponential fit as 
a function of time lag kD between bins. The value of the timescale is 
the median for 10 trials
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function, orientation tuning, signal to noise ratio (SNR), and plasticity. 
Acetylcholine (ACh) has been known to exert its modulatory action 
via two distinct acetylcholine receptors (AChR), namely nicotinic ACh 
receptors (nAChRs) and muscarinic ACh receptors (mAChRs) [1]. To 
understand the mechanisms underlying cholinergic neuromodulation 
in the primary visual cortex (V1), we developed a biophysical model of 
V1 neurons incorporating both nicotinic and muscarinic neuromodu-
latory effects. The model was implemented in NEURON and NetPyNe 
using Python [2]. The cholinergic mAChRs modulation was modeled as 
the inactivation ofImandIKCachannels, and nAChRs as an extra ohmic 
current [3]. The external stimulus was given byIext(t) = log10(C + 1)
cos(θ − θ0) [4], which enables simulation of grating bars with contrast 
levelCand orientationθ, whereθ0is the neuron’s preferred orientation. 
An extra synaptic background input was injected into the neuron to 
mimicin-vivolike activity. To study how ACh modulates orientation 
tuning, first we estimated the orientation selectivity index (OSI) [4] 
both with and without ACh. The response curves and the measured 
OSI were compared to our own experimental data. To determine the 
influence of ACh on the SNR, we computed the coherence function 
between the membrane voltage time series and the external synap-
tic input. Finally, to study the influence of ACh modulation in synap-
tic communication and information flow we computed the Granger 
causality between coupled neurons. Our results show that synaptic 
background is fundamental to increase the orientation selectivity 
in neurons with mAChRs and also nAChRs increases the information 
capacity of the cell. The comparisons between the response curves 
generated by the neuron model and experimental response curves 
showed good agreement.
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Critical slowing-down has been demonstrated in both computational 
models [1, 2] and experimental preparations [3] as neurons transition 
from subthreshold quiescence to supra-threshold spike formation. In 
single neurons, this nonlinear increase in neuronal sensitivity—charac-
terized by growth in amplitude simultaneous with decay in frequency 
of soma voltage perturbations—is known to obey power-law scaling 
in the region of the bifurcation that defines spike formation. We inves-
tigate the behavior of a stochastic type-I Hodgkin-Huxley point neuron 

exposed to inhibitory synaptic activity mediated byγ-aminobutyric 
acid (GABA) type-A receptors as it is driven toward threshold from 
below by an excitatory input current. The model includes the effects 
of both intrinsic ion-channel noise as well as inhibitory synaptic noise 
modeled as multiple Poisson-distributed impulse trains with saturat-
ing response functions. The influence of anesthesia is included by 
reducing the inhibitory synaptic decay rate and is intended to model 
the primary effect of the GABAergic agent propofol. We find that for a 
given distance from spiking threshold, increasing anesthetic effect is 
associated with augmented signatures of critical slowing: fluctuation 
amplitudes and correlation times grow as spectral power is increas-
ingly focused at 0 Hz. Additionally, anesthesia significantly modifies 
the inverse square root power-law scaling for variance and correlation 
time divergences anticipated for deterministic saddle-node bifurca-
tions in such a way that their observability is reduced as anesthetic 
effect is increased. Compared to the case of no synaptic input, applica-
tion of linear multivariate Ornstein–Uhlenbeck analysis to the model 
equations reveals this effect to be the consequence of an additional 
slow eigenvalue that effectively swamps those of the underlying point 
neuron unless the distance to spiking threshold is sufficiently small. If 
subthreshold voltage fluctuations are communicated from neuron to 
neuron by electrical gap junctions, subthreshold dynamics may play 
an important role in determining neuronal behavior and thus overall 
cortical dynamics. Anesthesia is predicted to significantly alter these 
subthreshold dynamics and this may contribute to the overall effect of 
anesthesia on the cortex.
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We present a network measure for identifying brain regions that most 
effectively spread epileptic seizures (i.e., “influential seizers”). Using the 
“Epileptor” model recently proposed by Jirsa et. al. (“On the Nature of 
Seizure Dynamics,” BRAIN, 2014), we simulate seizure spread on the 
macaque connectome. We first show that the model’s results accord 
well with clinical data, with regions in the temporal lobe most likely 
to initiate severe seizures, followed by regions in the frontal lobe. We 
then present a centrality measure that uses network structure alone to 
accurately identify influential seizers, without running dynamical sim-
ulations. These results suggest that baseline brain connectivity predis-
poses particular regions to be more seizure-prone than others, even 
without pathological network reorganization. Our results also hint at 
improved, less invasive neurosurgical procedures to treat patients with 
focal epilepsy.
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Experimental evidence for cortical networks operating in the balanced 
state is overwhelming [1, 2, 3]. In this state, strong recurrent inhibition 
yields almost vanishing correlations in the input to neurons [4, 5]. The 
balanced state, however, only restricts average correlations in the net-
work due to the large convergence of connections. Here we show that 
balanced networks can show a rich correlation structure between indi-
vidual neurons that is explained by the effective connectivity of the 
network [6]. The latter is determined by the anatomical connections 
and the sensitivity of neurons to inputs. Large heterogeneity in effec-
tive connections causes nearly unstable linearized dynamics in various 
directions of the high-dimensional space of all neurons, leading to 
multiple-neuron responses with largely different time courses [7]. As 
a consequence distributions of correlations across neurons become 
broad, but approximately centered around zero. A large dispersion 
of correlations, as for example obtained from recordings in macaque 
motor cortex, can therefore be used as an indicator of a rich dynamical 
repertoire, which is hidden from macroscopic brain signals, but essen-
tial for high performance in such concepts as reservoir computing [8, 
9].
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The prefrontal cortex (PFC) flexibly encodes task-relevant representa-
tions and outputs biases to mediate higher cognitive functions like 
working memory and rule-based action. The relevant neural ensem-
bles undergo task-related changes in oscillatory dynamics at beta- 
and gamma frequencies. However, the impact of those changes on 
target networks and their functional significance for cognition are 
poorly understood. In this work, we used computational modeling to 

explore these issues. First, we characterized the network response of a 
biophysically detailed model of the deep PFC output layer driven by a 
single input. We show that strong feedback inhibition causes the PFC 
to generate internal oscillations in the beta/gamma range and to pre-
fer external oscillations at slightly higher frequencies. Importantly, we 
show that the fastest oscillation frequency that can be relayed by the 
output network maximizes local inhibition and is equal to a frequency 
even higher than that of the preferred external oscillation; we call this 
phenomenon population frequency resonance. Functionally, adaptive 
cognition requires dynamic mechanisms that can flexibly route signals 
in different ways using the same underlying neural circuitry. Changes 
in oscillatory synchronization across rate-coding populations of neu-
rons in PFC have been implicated in a variety of cognitive tasks that 
require flexible routing. Using a version of our model that includes 
multiple inputs from rate-coding populations in different dynami-
cal regimes (asynchronous activity and periodic activity with variable 
synchrony and frequency), we show that the dynamical states of input 
populations can exhibit a stronger influence over downstream compe-
tition than their activity levels (firing rates). Specifically, when multiple 
inputs from parallel or convergent pathways drive target populations 
connected to shared interneurons, these dynamics bias competition 
in favor of the most frequency-resonant input. Essentially, the output 
population with the shortest period between activations tends to be 
the dominant driver of local inhibition that suppresses all popula-
tions connected to the same interneurons. This form of biased com-
petition, mediated by oscillations, increases with input synchrony and 
enables an output population driven by a weaker frequency-resonant 
input to suppress lower-frequency competing responses to stronger 
inputs. Furthermore, the frequency-resonant bias can be amplified to 
produce winner-take-all selection by plasticity of recurrent connec-
tions that strengthen output responses (e.g., across repeated trials of 
task). Our model predicts that the experimentally-observed PFC beta 
and gamma oscillations could leverage frequency-resonance to bias 
responses in the output layer, and that task-related modulation of 
oscillatory synchronization could govern the flexible routing of signals 
in service of cognitive processes like output gating from a working 
memory buffer and the selection of rule-based actions.
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Sensory deficits, such as hyper- and hyposensitivity, as well as sensa-
tion avoidance and seeking behaviors, are frequently associated with 
autism spectrum disorders (ASDs). Quantitative differences in the 
properties and responses of individual sensory neurons—and their 
networks—compared to their neurotypical counterparts, potentially 
drive these deficits. Empirical studies suggest that neural networks 
from autistic individuals and animal models feature altered neuronal 
excitability, connectivity, and stimulus response variability. The pre-
cise link between these alterations and the behavioral symptoms, 
though as yet unknown, is key to understanding ASDs. I will present 
some recent progress in examining this link using a computational 
approach. Individual neurons and their local interactions are simulated 
to examine the relationship between spike train correlations and vari-
ability, neuronal excitability, synaptic strength, and spike frequency 
adaptation (SFA). Our findings indicate that impaired SFA and weak-
ened synaptic strengths increase spike train variability and neuronal 
excitability, a combination which might have consequences for sen-
sory processing.
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Experimental findings and theoretical considerations indicate that 
cortical networks operate in a critical state between fully ordered and 
chaotic dynamics which is characterized by collective neuronal burst-
ing (avalanches) occurring on a wide range of spatial and temporal 
scales. At this state, a number of information-theoretic measures are 
maximized, suggesting a high significance of critical dynamics for 
cortical function. However, concrete proposals for how criticality can 
practically be used in sensory processing are rare and abstract.
In this contribution we present a theory of information integration in 
heterogeneous cortical networks receiving heterogeneous external 
inputs. Our central idea is that we do not require the whole network 
of size N to be in a critical state: Instead, we define N subnetworks 
by connecting all N units inside each subnetwork with recurrent 
couplings at a critical coupling strength alpha crit(Fig. 1(a), yellow 
regions). Now a critical dynamics only emerges if an external input co-
activates units belonging to one of the subnetworks (Fig. 1(b), inset). 
If we interpret the external input as evidence about the presence of 
particular feature combinations in a scene (a “figure”), the critical 
dynamics can be used efficiently for rapid integration of information 
that ‘belongs together’, thus supporting cortical functions such as 
texture segmentation and figure-ground segregation. Starting with 
the analytically tractable Eurich-Herrmann-Ernst model [1], we extend 
the derivation of avalanche statistics from a global homogeneous 
coupling to a general class of heterogeneous, non-negative cou-
pling matrices. In particular we show that this model is equivalent to 
a group action of translations on the N-torus. The avalanche statistics 

can be derived from the volume of the corresponding regions on the 
torus using ergodicity. This mathematical connection paves the way 
for analytical investigations of the effects of different connectivity 
schemes on collective network events. To show that criticality in sub-
networks can be efficiently used for tasks such as feature integration 
we investigate the capacity to embed N randomly drawn subnetworks 
of size N into a large connectivity matrix ofNunits in total. We find that 
by introducing inhibitory connections between two units that do not 
share a common subnetwork it is possible to embed a large number 
of subnetworks before runaway activity emerges (Fig. 1(b)). Although 
the inhibitory system is not analytically tractable anymore we can still 
describe the phase space boundary of the transition to runaway activ-
ity (Fig. 1(b), black line) analytically. Over the whole phase space, two-
alternative forced choice detection accuracy between external stimuli 
containing a “figure” and containing only unrelated features is high 
and requires only a small observation time interval by means of a coin-
cidence detection scheme of synchronous events (“avalanches”).
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High performance computing (HPC) resources provided at supercom-
puter centers worldwide are impacting modeling, simulation, data 
processing and analytics essential to basic and clinical neurosciences 
research. The US Brain Initiative, the European Human Brain Pro-
ject and the recently (Dec 2017) signed International Brain Initiative 
(Japan, Korea, Europe, US, Australia etc.) all deal with large scale com-
puting and data processing and utilize supercomputing resources. 
Complex empirically-based models of cells and large scale networks 
are developed in labs around the world and require HPC for large scale 
simulations; new experimental methods for brain structure/function 
generate avalanche of data requiring computationally intensive analy-
sis—all of these for understanding of how the normal brain functions 
or brain functions related to neurodegenerative diseases. As the scale 
of both of these increase, HPC is increasingly applied for neuroscience 
research. The Neuroscience Gateway (NSG http://www.nsgpo rtal.org), 

Fig. 1 (a) Embedding subnetworks with critical dynamics (yellow) 
into larger networks. From toy examples to realistic sizes. (b) 2‑AFC 
performance in a “figure‑detection” task in dependence on number 
Ne of embedded subnetworks of size Ns. Inset, target versus dis‑
tracter avalanche sizes for the parameter combination indicated with 
the gray circle

Fig. 1 NSG architecture—web portal and programmatic access

http://www.nsgportal.org
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funded by the US NSF and NIH, catalyzes computational neuroscience 
research by lowering or eliminating the administrative and techni-
cal barriers that can make it difficult for neuroscience researchers to 
access and use supercomputer resources for large scale simulations 
and data processing. It provides free and open access to supercomput-
ers for neuroscientists from anywhere in the world. Supercomputer 
time is acquired via the peer reviewed allocation process managed 
by the NSF Extreme Science and Engineering Discovery Environment 
(XSEDE) project. Since inception in early 2013, it has over 600 regis-
tered users (and growing), and provided many tens of millions of core 
hours on XSEDE HPC resources to neuroscientists, including ~ 10 mil-
lion supercomputer core hours/year in recent years. NSG architecture 
(see attached diagram) is designed to be accessed through a simple 
web portal or programmatically using RESTful services. NSG provides a 
streamlined environment for uploading models, setting data process-
ing parameters, specifying HPC job parameters, querying running job 
status, receiving job completion notices, and storing and retrieving 
output data. The NSG transparently distributes user’s jobs to appropri-
ate XSEDE HPC resources. NSG provides a large number of neurosci-
ence tools, software, pipelines and data processing tools—BluePyOpt 
(from EU HBP project), Brian, CARLSim4 (GPU based network tool), 
DynaSim (Matlab tool for dynamical systems), EEGLAB, Freesurfer, 
Human Neuocortical Neurosolver (modeling tool to interpret EEG/
MEG etc. data), MATLAB, MOOSE, NEST, NetePyne, NEURON, Octave, 
Parameter Search Tool, PGENESIS, PyNN, Python, R, TensorFlow, TVB-
Personalized Multimodal Connectome etc. The poster will describe 
how the NSG architecture (both web based and programmatic REST 
service) allows implementation of these tools for users and the usage 
mode of these tools, as well as how NSG interfaces with projects 
such as the Open Source Brain and its users. In recent years NSG has 
become a development and dissemination platform for new neurosci-
ence tools and pipelines, as well as a tool for neuroscience education. 
The poster will describe how NSG is evolving as a result of all of these 
natural requirements from the neuroscience community (Fig. 1).
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Computational model of the decision-making process under conflict 
can be considered as a process of choice making among multiple-
choices of conflicting situations. Conflict is defined as choosing only 
one choice among many other options, when choosing one option 
could nullify the selection of other options. Such process assumes 
the decision is a binary choice of “yes” or “no,” based on the Boolean 
logic of binary logic of “1” or “0.” Yet, the computational underlying the 
decision-making process may require fuzzy logic of probability rather 
than Boolean logic of “true” or “false.” Therefore, in order to account for 
the continuum of probability values which range between 0 and 1 in 
the underlying computations that comprise of the decision-making 
process, which can be represented by the continuous range of neu-
ral firing rates. Most importantly, in computing the conditional prob-
ability that underlies the decision which may not reach the threshold 
for absolute true or false, the probability of decision may be a better 
representation of the underlying decision than absolute decision. 
Towards this goal to compute the conditional probabilities in the 
decision-making process, the selection of choices can be considered 
as an optimization process to maximize gains while minimize loses. 
We propose to use the optimization process for gain-maximization 
and loss-minimization as the operating principle for making complex 
decisions. More importantly, in order to account for the social interac-
tion of reciprocity in trust and fairness [1], the decision has to balance 
between trust-behavior (which is opposite to risk-taking behavior) 
and fair-behavior (which requires taking into the account of the other 

interacting person into account). We propose a computational method 
to take all of the above considerations into account by, not only maxi-
mizing the perceived gains while minimizing the perceive losses, but 
also updating the expectation assumptions in trust-making when the 
trust is violated in the social interaction. In other words, when expec-
tation of the predicted behavior of the person interacting with does 
not correspond to the reality in outcome, then an updating of the 
expectation prediction will be adjusted to correspond to the reality. 
This adjustment in the prediction of reciprocity behavior would also 
alter the conditional probability based on the response of the person 
interacting with. The prediction of the reciprocity behavior is com-
puted by the conditional probability of the product of the risk in trust-
ing the person and the degree of fairness between the two individuals. 
In order to validate the computational model, we test the hypothesis 
with decisions made by human subjects playing a social reciprocity 
game of trust and fairness. The underlying conditional probabilities of 
risk and fairness can be estimated depending on whether the expecta-
tion predictions are updated when the trust is violated. We found that 
there is a good approximation between the conditional probability 
and the updating of the expectation prediction.
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In neuroscience, computational modeling has become an important 
source of insight into brain states and dynamics complementary to 
classic experiments. This is due to the potential to observe and manip-
ulate variables in the model that are difficult to assess in the living 
brain. Neural mass models (NMMs) are computationally efficient mod-
els for simulating large-scale brain dynamics as observable with neu-
roimaging techniques such as EEG/MEG or fMRI [1]. They model the 
dynamic interactions between large, lumped populations of different 
cell types at the meso- and macroscopic scale. Thereby, a single neu-
ral mass reflects the mean-field approximation of the average behav-
ior of a cell population of interest. In this work, we present PyRates, a 
Python framework that provides the means to build a large variety of 
different NMMs within a well defined mathematical structure. PyRates 
is a commitment to open and reproducible computational neurosci-
ence, since each model and functionality within the framework is 
documented in detail, thoroughly tested and equipped with working 
examples for the user. To model the neural masses, we provide both an 
differentio-differential approach for maximal computational efficiency 
and an integro-differential approach that allows for a flexible imple-
mentation of various neurobiological features. These features include 
plasticity mechanisms, various synaptic and axonal properties as well 
as different descriptions of the population dynamics. This allows for a 
highly customizable neural mass design able to approximate a wide 
range of input–output relationships. PyRates organizes all neural 
masses of a model in a graph structure optimized for fast information 
passage and a high degree of parallelization. We show via numerical 
simulations how PyRates can replicate and extend established NMMs, 
or build novel NMMs based on the same formal skeleton. To this end, 
we start out with the thoroughly investigated Jansen-Rit model and 
replicate key behaviors of the model in PyRates [2]. We then continue 
by extending the Jansen-Rit model at multiple levels (axonal, synap-
tic & population properties), thereby demonstrating how biophysical 
mechanisms originally proposed within specific models can be easily 
plugged into potentially very different NMMs in PyRates. Finally, we 
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discuss how the framework can be used in combination with various 
neuroimaging and network analysis tools and conclude that PyRates 
makes a substantial contribution to open and reproducible neurosci-
ence by providing a unified, fully tested and well documented frame-
work for spatially discrete, rate-based neural simulations (Fig. 1).
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Virtually all neural processes in vertebrate brains are physically 
embedded in a dense matrix of axons (fibers) that release serotonin 
(5-HT), a major neurotransmitter. In contrast to point-to-point pro-
jections, serotonergic fibers do not have well-defined destinations 
and instead appear to random-walk through brain regions, produc-
ing a meshwork with regionally-specific densities. We have recently 
proposed that these densities may emerge as a consequence of the 

stochastic behavior of individual fibers [1]. This process is likely to be 
fundamental to the brain architecture, but it is also important for the 
understanding of disorders and conditions associated with altered ser-
otonergic signaling. Changes in serotonergic fiber densities have been 
reported in Autism Spectrum Disorder [2] and Major Depressive Disor-
der [3], and they also have been observed after prolonged exposure to 
MDMA (“Ecstasy”) [4]. Serotonergic fibers in the mouse somatosensory 
cortex were visualized with fluorescence immunohistochemistry and 
imaged (in 3D) with confocal laser scanning microscopy (as z-stacks 
of optical sections, at a resolution of around 150 nm). Individual fib-
ers were manually traced with Fiji ImageJ or automatically segmented 
in BisQue (http://bioim age.ucsb.edu/bisqu e). All analyzed fibers were 
assumed to be realizations of the same stochastic process and were 
modeled using the von Mises-Fisher (vMF) probability distribution. 
Long trajectories (more than 500 points) were selected and smoothed 
to avoid laser-scanning artifacts (with a moving average of 10 points). 
For each “current” direction of a fiber, the “next” direction was assumed 
to have the vMF distribution with the parameters μ (a unit-vector rep-
resenting the “current” direction) and the concentration parameter 
κ. The fiber κ was calculated using an efficient maximum likelihood 
estimator [5]. A robust κ estimate (with the mean of around 250) 
was obtained for the selected brain region and sampling frequency 
(Fig. 1A). Simulated fibers with the same stochastic process closely 
resembled the small- and large-scale structure of serotonergic fibers 
(Fig. 1B). We are currently extending this novel approach to other brain 
areas and experimentally investigating whether the vMF concentra-
tion parameter can predict local serotonergic fiber densities.
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Fig. 1 Structure of PyRates. Neural populations (P) are connected 
within and across micro circuits via connection strengths (C) and 
delays (D). Connections terminate at synapses that are either 
excitatory (black) or inhibitory (red). Populations are defined by a) 
pulse‑to‑wave transforms that transform incoming, pre‑synaptic 
input into post‑synaptic average membrane potential changes and 
b) wave‑to‑pulse transforms that transform the average membrane 
potential back into average firing rates that can in turn be transmitted 
to other populations

Fig. 1 A: The distribution of the estimated κ values of 54 seroton‑
ergic fibers in layer IV of the mouse primary somatosensory cortex. 
B: A simulated fiber with κ = 250 (serotonergic varicosities were not 
modeled)
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Introduction: Humans derive spontaneously judgements about 
agency and social interactions from strongly impoverished stimuli, 
as impressively demonstrated by the seminal work by Heider and 
Simmel (1944). The neural circuits that derive such judgements from 
image sequences are entirely unknown. It has been hypothesized that 
this visual function is based on high-level cognitive processes, such as 
probabilistic reasoning. Taking an alternative approach, we show that 
such functions can be accomplished by relatively elementary neural 
networks that can be implemented by simple physiologically plausible 
neural mechanisms, exploiting an appropriately structure hierarchical 
(deep) neural model of the visual pathway.
Methods: Extending classical biologically-inspired models for object 
and action perception (Riesenhuber & Poggio 1999; Giese & Poggio 
2003) by a front-end that exploits deep learning for the construction 
of low and mid-level feature detectors, we built a hierarchical neural 
model that reproduces elementary psychophysical results on animacy 
and social perception from abstract stimuli. The lower hierarchy levels 
of the model consist of position-variant neural feature detectors that 
extract orientation and intermediately complex shape features. The 
next-higher level is formed by shape-selective neurons that are not 
completely position-invariant, which extract the 2D positions and ori-
entation of moving agents. A second pathway extracts the 2D motion 
of the moving agents. Exploiting a gain-field network, we compute the 
relative positions of the moving agents. The top layers of the model 
combine the mentioned features into more complex high-level fea-
tures that represent the speed, smoothness of motion and spatial 
relationships of the moving agents. The highest level of the model 
consists of neurons that have learned to classify the agency of the 
motions, and different categories of social interactions.
Results: Based on input video sequences, the model successfully 
reproduces results of Tremoulet and Feldman (2000) on the depend-
ence of perceived animacy on motion parameters, and its dependence 
on the alignment of motion and body axis (Hernik et al. 2013). In addi-
tion, the model correctly classifies four categories of social interactions 
that have been frequently tested in the psychophysical literature (fol-
lowing, chasing, fighting, guarding) (e.g. Scholl and McCarthy, 2012; 
McAleer et al., 2011a).
Conclusion: Using simple physiologically plausible neural circuits, 
the model accounts simultaneously for a variety of effects related to 
animacy and social interaction perception. This leads to interesting 
predictions about neurons involved in the visual processing of such 
stimuli.
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Many real-world data sets, especially in biology, are produced by 
highly multivariate and nonlinear complex dynamical systems. For 
example, a motivating application for this work is brain imaging, and, 
more specifically, modeling the whole-brain neural activity of the 
larval zebrafish from calcium imaging data. Standard vector autore-
gressive models are limited by their linearity assumptions, and gen-
eral-purpose, large-scale statistical models such as, for example, LSTM 
networks, may require large amounts of training data, not always read-
ily available in biological applications, in order to capture complex 
nonlinear dynamical processes; moreover, such models generally lack 
interpretability. In this work, we introduce a novel approach for learn-
ing a nonlinear differential equation model, which describes calcium 
dynamics in the brain using both observed voltage-like variables, 
reflecting voxel activity, and hidden recovery-like variables, reflecting 
excitability. Namely, we propose a variable-projection optimization 
approach to estimate the parameters of the multivariate (coupled) van 
der Pol oscillator, and demonstrate that the proposed model can accu-
rately capture the nonlinear dynamics of the brain data. Furthermore, 
in order to improve the predictive accuracy when forecasting future 
brain-activity time series, we propose to use our analytical model as 
an unlimited source of simulated data for LSTM pretraining, effectively 
imposing an oscillator prior on LSTM, which improves the predictive 
performance of both LSTM and our van der Pol models.
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Studying neural systems is a complex task due to their complicated 
non-linear dynamics, affected by multiple learning and adaptation 
mechanisms, and because they process information in very different 
spatial and temporal scales. In addition, the inability to simultaneously 
observe more than a few signals of the ones involved in these dynam-
ics makes these systems only partially observable. In this context, the 
traditional stimulus–response paradigm prevents a full characteriza-
tion of the non-stationary neural activity, influenced by the previ-
ous situation and feedback. Closed-loop technology in experimental 
neuroscience provides novel ways of bidirectional interaction with 
neural systems, as well as online observation and control, that can 
largely overcome such difficulties [1]. One example of effective closed-
loop implementations are hybrid circuits between living neurons and 
computational models. In this work we introduce RTHybrid, a cross-
platform real-time software model library designed to build hybrid cir-
cuits, which is also open-source. To comply with the precise temporal 
restrictions of data acquisition and activity-dependent stimulation, in 
the scale of milliseconds or lower, a real-time system is needed [2–5]. 
RTHybrid is a multiplatform tool, developed to run over two of the cur-
rently most common open-source real-time solutions for Linux: Xeno-
mai and Preempt-RT. It has a GUI to facilitate the experimental design 
and where the hybrid circuit parameters can be chosen to launch the 
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hybrid interaction. Moreover, hybrid protocols can be run from com-
mand line loading XML configuration files to implement experiment 
automation, and uses open-source drivers for National Instruments’ 
(and several other manufacturers’) DAQ devices. Due to the temporal 
thresholds established in closed-loop interactions, models, both neu-
ral and synaptic, computational cost must be constrained. Spatial and 
temporal scale differences among the living neurons and the models 
also present some technical complications that should be addressed. 
RTHybrid contains a convenient set of neuron and synapse models, as 
well as automatic calibration algorithms, that meet all the mentioned 
requirements. We report hybrid circuit functionality and latency meas-
urement validation tests, in CPG circuits. Many researchers and labo-
ratories overlook closed-loop technology despite its benefits due to 
the difficulties in installation, design and implementation. These 
handicaps can be surpassed by standardization of real-time software 
for experimental neuroscience. RTHybrid is a first step in developing a 
cross-platform and user-friendly real-time multipurpose software tool 
to implement open and closed-loop experiments, available as open-
source software for neuroscientists.
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Many neural rhythms that present sequential activation of its con-
stituent elements use inhibition as the main mechanism to shape 
rhythmic activity [1], allowing neurons to express their excitability in 
specific time windows, and effectively balancing the robustness of 
the sequence and the flexibility to tune the phases. For example, in 
cases such as the crustacean pyloric Central Pattern generator (CPG), 
in addition to keeping the sequence [2, 3], phase adaptations are most 
likely essential for optimizing the function of the motor plant which 
moves and processes food. Thus, it is important not only to control the 
sequence of elements, but also to tune actual phase intervals in which 
neurons are active within a rhythm.
The variability of the pyloric CPG activity was assessed under differ-
ent conditions by measuring precise time references such as the first 
and last spike within bursts. These references were used to define time 
intervals to quantify the rhythm variability. This analysis demonstrated 
a large flexibility in several intervals and a strong robustness of the 
circuit in keeping not only the activation sequences but also specific 
temporal relationships. In particular, we report the presence of dynam-
ical invariants in the form of strong correlations between specific time 
intervals [4].
A conductance-based model of the pyloric CPG was used to assess the 
role of the asymmetric connectivity between the neurons in shaping 
the rhythm and keeping the LP-PYs-PDs sequences even in irregular 
bursting regimes [4, 5]. The model does not reproduce the invariants 

found in the experiments despite of the introduction of variability by 
setting the model dynamics in a chaotic regime, indicating that the 
flexibility required to build the invariants is not captured by commonly 
used conductance-based models.
We also designed and implemented hybrid circuits by connecting 
neuron models to the living CPG circuit to better understand the ori-
gin and relevance of the unveiled dynamical invariants and their role 
in balancing flexibility and robustness in the rhythm [3, 6, 7]. We show 
that as a function of the connectivity parameters the dynamical invari-
ants do arise between living and model neurons.
Dynamical invariants as the ones observed in CPGs, underlie rhythm 
programming and functionality and could be present in other net-
works, including those related to brain rhythms in vertebrates.
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“Ignition” [1] refers to the ability of local neural events to propagate 
through a network and alter its global configuration. Ignition has 
been observed on virtually all scales of spatial and temporal resolu-
tion. Deco et al. [2] developed a method which uses a point process [3] 
to define spontaneous events on the ultraslow timescale of fMRI. We 
extend their approach to EEG in order to investigate ignition dynam-
ics on the millisecond timescale. We combine the temporal resolution 
of high-density EEG, EEG source imaging, fMRI and diffusion tensor 
imaging (DTI). In particular, we introduce a dynamic functional con-
nectivity (FC) measure based on the idea of ignition to investigate 
network dynamics in response to coherent dot kinematograms (RDK) 
in 19 healthy subjects engaged in a motion discrimination task. EEG 
and MRI (T1- and T2-weighted, DTI) data were acquired for each sub-
ject on separate sessions. A distributed linear inverse solution (LAURA) 
(Cartool software [4]), was used to estimate source activity from EEG 
epochs time-locked to the RDK onset (− 500 to 1000 ms). Subject-
specific source reconstructions were informed by individual T1 images 
[5]. DTI data were used to obtain structural connectomes (SC). Source 
waveforms were extracted from 14 regions of interest (ROI) function-
ally defined with an fMRI motion localizer [6]. We first focus on the 
alpha band (8–15 Hz), one of the predominant frequencies of brain 
rhythms and neuronal communication [7]. We obtain band-limited 
power (BLP) via Hilbert transform and define a point process for each 
ROI: We take as “events” the time points at which the BLP crosses a 
threshold (1 standard deviation above the mean) from below. FC is 
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computed based on the assumption that two ROIs presenting events 
within a certain delay d ∈]0,D] are functionally connected. The maxi-
mum delay D = 25 ms was derived from the maximum average fiber 
length between any pair of ROIs. Furthermore, connections not sup-
ported by the SC are removed [8]. The spatiotemporal profile of net-
work activity was evaluated by computing the overall inflow (events 
within the network that precede an event in a given ROI) and outflow 
(events within the network that follow an event in a given ROI) for 
each ROI over time. This reveals an evolution in time from early local 
dynamics in occipital areas toward later global interactions reach-
ing regions of the parietal and prefrontal cortex. An additional peak 
around 200 ms may reflect the recurrent processing of motion signals 
and the shift from functionally specialized areas (e.g., middle-temporal 
cortex/V5) into integrative networks and decision-making circuits [10, 
11]. These preliminary results show that dynamic FC informed by local 
point processes can be used to capture important spatiotemporal 
information about perceptual processing, promising the investigation 
of ignition dynamics from a network perspective on a finer temporal 
scale.
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The interaction between neural activity and the hemodynamic 
response is known as neurovascular coupling (NVC). Proper NVC is 
a factor in maintaining brain health and can occur through multiple 
signaling pathways that are targets of ongoing research. Nitric oxide 
(NO) is a potent vasodilator [2, 6, 7] and neural activity modulator [1, 3, 
4, 5, 8] that can freely diffuse across cell membranes and carry signals 
between neurons and vessels. NO released from neurons vasodilates 
arteries before being degraded by its interaction with hemoglobin 
(Hb) in the blood. The dynamics of NO-mediated NVC is dependent 
on the location and magnitude of NO production and degradation 
as well as its diffusion through tissue. Physiological NO concentra-
tions are lower bound by production rates that cause dilation of the 
smooth muscle and upper bound by its toxic inhibition of cytochrome 

c oxidase (CcO). Using a computational model of NO diffusion we 
show that in order to generate physiologically plausible dilations 
without toxic inhibition of CcO, proximal production of NO is required. 
Additionally we show that vessel size is an important factor in deter-
mining arteriole sensitivity to NO and can account for larger dilations 
observed in smaller arteries as well as its dysregulation in diseased 
states. We also investigate how vasodilation can affect the concentra-
tion of NO in brain tissue.
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Extracellular electrical recordings are a common tool in experiments 
involving awake, behaving animals. Using such recordings to detect 
neural correlates of behavior often requiresspike sorting, i.e., labeling 
each spike by the (putative) identity of the cell that generated it. A 
common method is to detect spikes by thresholding, then perform 
spike-sorting via, e.g., clustering waveform feature vectors or tem-
plate-matching on the waveforms [1]. Though such methods can be 
relatively fast, they have a number of known limitations, including (i) 
difficulty sorting spikes that overlap in time, (ii) a bias toward cells with 
larger spikes, and (iii) difficulty in systematically quantifying the uncer-
tainty in spike assignments [2]. We propose a physics-based approach 
to spike detection and sorting within a Bayesian statistical framework 
designed to address these issues. As in all Bayesian methods, the goal 
is to find the model parameters that optimize the posterior probabil-
ity given the observed data. In spike sorting, these model parameters 
would include spike-to-cell assignments and spike waveforms associ-
ated to each cell [2]. Our point of departure from previous methods 
is the discovery, due to Mechler et. al., that data from n-trode (e.g., 
tetrode) recordings can be used to “triangulate” the source of spikes 
because the contacts are at slightly different distances to signal 
sources [3, 4]. Their method relies on a dipole model of spike-to-probe 
signal transduction. Using this idea, we augment cell IDs by source 
location, dipole orientation and amplitude, and spike times That is, we 
construct a computational model for how a small number of current 
dipoles can account for the observed data, and optimize the model 
parameters to fit the data. Mathematically, this takes a form similar to 
a gaussian mixture model (GMM), but one in which every data sam-
ple is represented as a sum of waveforms from some subset of the 
mixture components. This allows us to take into account overlapping 
spikes and smaller spikes near the noise floor. We test our algorithm 
using simulated data from a separate extracellular recording and noise 
model that we have constructed, allowing us to determine sorting and 
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localization accuracy with respect to a known ground truth. We find 
that our algorithm is usually able to localize neurons to within approxi-
mately 30 um of their true position, and achieve sorting accuracy rates 
roughly 20 percentage points better than a vanilla GMM-based clus-
tering method that uses the PCA components of the waveform. How-
ever, in situations where localization cannot be done accurately, the 
algorithm becomes less effective (Fig. 1).
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The hippocampus can exhibit different oscillatory rhythms within the 
sleep–wake cycle, each of them being involved in cognitive processes. 
For example, theta-nested gamma oscillations produced during wake-
fulness are associated with spatial navigation and working memory 
tasks, whereas Sharp-Wave-Ripple (SWR) complexes produced dur-
ing slow-wave sleep play an important role in memory consolidation. 
Different factors might be involved in the transitions between these 
rhythms, such as a change in the functional connectivity within the 
hippocampus, the presence of some rhythm regulator persistent fir-
ing neurons or even the entries from the afferent structures. Some 
neuromodulators, such as Acetylcholine (ACh), whose concentration 
is higher during wakefulness than sleep, were proposed by different 
authors for explaining the connectivity variations [1][2], as well as 
influencing the persistent firing of neurons through CAN channels [3]

[4]. But though we understand the influence of ACh on individual cells 
for different receptor types and locations [5], its quantitative effects 
on the whole hippocampal network remain unclear. In this context, 
we have built a computational model of the hippocampal formation 
considering the varying concentration of ACh as well as different input 
signals. Our model uses point neural models (single-compartment) 
but having realistic dynamics (conductance-based Hodgkin-Huxley 
neurons, including CAN channels). Based on [1], the network func-
tional connectivity was also changed between wakefulness and slow-
wave sleep by varying the weights of some synaptic connections. 
Moreover, the stimulation entry of the network was derived from real 
sEEG measurements recorded during wake/sleep in the prefrontal 
cortex (projecting on the entorhinal cortex) of epileptic patients from 
University Hospital of Nancy, France. The output of the model was 
simulated at different levels (spiking dynamics and field potentials). In 
order to obtain a reasonable approximation of the LFP of the whole 
population, as measured by a macroscopic electrode placed within the 
network, the microscopic anatomy of the neurons was approximated 
by a dipole, while the macroscopic anatomy of the hippocampal struc-
ture was reproduced by positioning and connecting the neurons in an 
anatomically realistic manner. This output was compared with in vivo 
sEEG signals from the human hippocampus. Our main finding is that 
such a model can indeed reproduce both theta-nested gamma oscil-
lations and SWR complexes in humans by changing the level of ACh, 
with but little influence of the input stimulus. The network functional 
connectivity seems to determine the high frequency component of 
the rhythms, whereas individual neurons’ CAN channel conductance 
influence its low frequency component (Fig. 1).
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Fig. 1 Algorithm overview: (1) From initial positions, weight data 
samples by the probability of being produced by a dipole at each 
position, using the forward model. (2) Use these weighted samples 
to update the dipole and position for each neuron. Estimate each 
neuron’s spiking probability from the number of spikes assigned to it. 
(3) Calculate the waveforms generated by these dipoles. (4) Subtract 
off waveforms from the signal to estimate the noise covariance. (5) 
Update the data sample weights using the waveforms, and return to 
step 2)

Fig. 1 Topology of the entorhinal cortex and the hippocampus 
used in the model. The arrows represent the functional connectivity 
between the different regions (thicker arrow indicate more numerous 
synaptic connections) : the red arrow indicates a connection that is 
enhanced by ACh, blue dotted arrows indicate a connection that is 
reduced by ACh, and the green arrow indicates a connection that is 
not changed by ACh
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Magnetoencephalography (MEG) is a widely used non-invasive brain 
imaging technique whose high temporal resolution makes it ideal for 
exploring the operation of the auditory system. Individual auditory 
stimuli elicit a series of peaks and troughs in the event-related mag-
netic field (ERF), where the most prominent peak, the N1 m, shows 
sensitivity to nearly every stimulus property that has been examined. 
The peaks and troughs of the ERF function as landmarks as they can 
be identified in the ERF of most subjects, albeit they vary greatly 
from subject to subject. Despite improvements in localization meth-
ods—and although the general biophysics of MEG generation is well 
known—we still have a poor understanding of how ERFs are gener-
ated and what they signify. According to one view, the response is the 
linear sum of separable components, each generated by a spatially 
defined generator with a well-defined information processing func-
tion. However, it has proven difficult to perform component separa-
tion in a reliable way and to map components to anatomical structure. 
Similarly, it seems unlikely that purely local events in, for example, pri-
mary fields could represent the full intracortical counterpart of ERFs, 
which emerge as a superposition of activity across larger swathes of 
cortex. Thus, cortical activations generating ERFs should have both 
spatial and temporal dynamics. Here, we provide a mechanistic view 
on how AC responds to sound. Our starting point is a previous model 
encapsulating the anatomical structure of AC with its multiple core, 
belt, and parabelt fields. Taking an analytical approach, we find solu-
tions to the AC system dynamics at the cost of a simplified descrip-
tion. This includes simplified presynaptic plasticity and assumes that 
the state variables inhabit the linear portion of the spiking-rate non-
linearity. The linearization of the spiking rate together with assump-
tions of symmetry of the weight matrices allows us to transform the 
coupled state equations into decoupled equations which are ana-
lytically solvable and provide a description of the system dynamics 
in terms of so called normal modes. We show how the ERF response 
originates from a mixture of these dynamical elements, and how these 
elements directly depend on the anatomical structure as expressed in 
the weight matrices. There is also a non-dynamical modulation of the 
signal which accounts for the topography of the primary currents and 
therefore includes the effects of connection type (i.e., feedforward vs. 
feedback) as well as the orientation of the primary currents and their 
distance from the MEG sensor. In our account, each peak and trough of 
the ERF is not due to a dedicated response generator but, rather, arises 
out of the network properties of the entire AC. This analysis also gen-
erates several predictions for teasing out whether the large variations 
of the ERF across individual subjects is due to subject-specific topog-
raphy of the cortical surface, to subject-specific cortical dynamics, or 
to a mixture of these effects. Finally, our results point to the interplay 
between synaptic plasticity, tonotopic representation, and the analysis 
of time information in cortex forming a richer tapestry of interactions.

P179 
Noisy deep networks with short‑term plasticity make similar errors 
as mice in a detection of change task
Jiaqi  Shang1, Brian  Hu2, Shawn  Olsen2, Stefan  Mihalas2, Doug 
 Ollerenshaw2, Marina  Garrett2, Justin  Kiggins2, Peter  Groblewski2
1Northwestern University, Northwestern University, Evanston, IL, United 
States; 2Allen Institute for Brain Science, Modelling, Analysis and Theory, 
Seattle, WA, United States
Correspondence: Brian Hu (brianh@alleninstitute.org)  
BMC Neuroscience 2018, 19(Suppl 2):P179

The ability to detect changes in an environment is fundamental for 
survival in a dynamic world. However, the neural mechanisms underly-
ing this ability are not well understood. We developed a new behav-
ioral paradigm that systematically measures the neural activity in the 
visual cortex of awake, behaving mice during a change detection task. 
During the task, the mice view a sequence of eight natural images 
separated by blank screens and reports if the current image is differ-
ent from the last image presented. Mice are able to learn the task and 
generalize well to untrained image sets. Preliminary results showed a 
robust behavioral asymmetry across animals and image sets. Specifi-
cally, the response probability matrix (Fig. 1, panel a) shows that for 
most image pairs A and B, the transition from A to B is not the same 
as B to A. One hypothesis for this behavioral asymmetry is that dif-
ferences in contrast at spatial frequencies mice are most sensitive to 
cause short-term depression on specific pathways. To test this hypoth-
esis, and to understand the overall underlying mechanism that gives 
rise to a decision during the task, we built a computational model 
that is trained on the same task. First, the model uses a 4-layer con-
volutional neural network (CNN) trained on CIFAR-10 image dataset to 
embed the natural images used in the experiment into a low-dimen-
sional (84) input for the decision module. Gaussian noise is added to 
each layer of the network to simulate biological noise in the system. 
Then, synaptic depression is added to the CNN output by multiply-
ing it with a synaptic efficacy function that includes both usage and 
recovery rates. Lastly, the decision module uses a simple network with 
one hidden layer to perform a binary classification and generate out-
puts that correspond to go or no-go behavioral decisions. The model 
learns the task, as shown by the transition matrix (Fig. 1, Panel b) that 
has lower response probabilities along the diagonal where the input 
images is a repetition of the last image. We are able to generally repro-
duce the behavioral asymmetry observed in behavioral experiments 
(compare Fig. 1, panels a and b). Interestingly, for our model to match 
behavioral data, we had to put a strong penalty on missed detections. 
We also find that models without synaptic depression are unable to 
learn the task and do not show the behavioral asymmetry observed in 

Fig. 1 Quantification of behavior during a change detection task. 
Mice are presented a sequence of grayscale natural images, each 
for 250 ms. Between each image, mice are shown a gray screen for 
500 ms. Animals are trained to respond when the current image they 
observe is different from the last image they saw. (a) Confusion matrix 
averaged over multiple mice, where rows show the initial image 
index and columns show the final image index after the change. 
Warmer colors indicate higher response probabilities. (b) Confusion 
matrix for the model, with the same image ordering as for the mice
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the experiments. We believe that short-term depression can be used 
by the model as a regularizer that allows the large space of images to 
be separated into much lower dimensions. We will investigate whether 
the model learned on training sets can generalize to novel images sets, 
as mice are capable of doing. Finally, we will study how recurrent neu-
ral networks, which have a memory module, can be used to unravel 
the mechanism behind this task, and more generally to detect change.
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To better understand how brain processes inputs and performs 
tasks rapidly, how it maintains stability while preventing the spread 
of undesirable activity such as seizures, how it develops, and how it 
responds to damage have provided much of the motivation for the 
current brain research. The brain connectivity is often quantified via 
connectivity matrices (CMs). In particular, anatomical CMs (aCMs) sum-
marize the known anatomical connectivity between brain regions, 
functional CMs (fCMs) are determined from the correlation of activity 
in brain regions using low-frequency functional magnetic resonance 
imaging (fMRI), and effective CMs (eCMs) quantify the neural effect of 
one region to another. Previously, a method based on neural field the-
ory (NFT) for computing eCMs from the experimental fCMs was devel-
oped which has successfully detected the underestimated strengths of 
connections in the anatomical images. However, we do not yet fully 
understand the statistical properties of connectivity, e.g., some of the 
functional connections appear to be negative even when anatomi-
cal connections are all positive. In this study, a theory aim to explain 
the observed statistical properties of strengths of brain connectiv-
ity is expanded using NFT. The theory shows, first, how the observed 
lognormal distribution of overall connection strengths, as well as the 
lognormal distribution of connection strengths at each fixed Euclidean 
distance between brain regions can emerge from the approximately 
exponential fall-off with distance of axonal connectivity; second, 
how observed negative connection strengths are incorporated in the 
derived eCMs; and third, how to better interrelate the structural con-
nectivity to the functional connectivity. The theory is verified using 
NKI-Rockland fMRI dataset.
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The cerebellum is a brain region best known for its role in sensorimo-
tor coordination and is involved in rapid learning of precise move-
ments. In classical theories on cerebellar motor learning, the most 
important role is played by the Purkinje cells (PC), which fire a burst 
called a complex spike (CS) from a climbing fiber input that delivers 
an error feedback signal, and the CS triggers intracellular processes 
inducing plasticity in PC coding of the sensorimotor information, 
and therefore leading to learning [1]. However, a precise role of CSs 

still remains as a question since experimental evidence shows that 
the CS frequency does not reflect the size of a motor error, therefore 
contradicting this view [2]. Here we address this question by analyz-
ing simultaneous recordings of eye movements and PC firings in the 
oculomotor vermis of three rhesus monkeys (M. Mulatta), which per-
formed saccadic adaptation tasks. Here we used the cross-axis adap-
tation paradigm where the visual target sequentially jumped twice in 
two different directions separated by 90º, causing a substantial retinal 
slip and therefore forcing an animal to learn complex movements to 
reduce the error [3]. In data sets selected by recording quality and 
sensitivity of simple spike firing to eye movements, we found that the 
timing of CSs represented sensory signals, the onsets of target move-
ments. Therefore, the CS firing rate significantly increased within a 
narrow (~ 100 ms) time window related to the target onset, but the 
overall spike count during each trial is preserved between adaptation 
and non-adaptation sessions ([CS rate in adaptation]/[CS rate in pre-/
post-adaptation] = 1.00 ± 0.02, mean ± SEM), suggesting that sensory 
stimuli strongly affect timing of CS firing. On the other hand, sim-
ple spike (SS) activity is better explained by the motor context [4–6], 
and showed movement direction-dependent changes that lasted 
until post-adaptation sessions. However, these changes could not be 
explained by simply rotating the directional tuning of the single PC SS 
activity, in the same way as the eye movements adapted, but rather 
involved more complex changes in SS bursts and pauses [7]. We sug-
gest that those direction-dependent plasticity in encoding of eye 
movement by individual PCs reshape the population-wide response 
during adaptation.
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The morphology of neurons is typically considered a defining fea-
ture of neural cell types. For example, 14 types of bipolar cells can be 
discriminated in the mouse retina based on their morphology [1–3], 
leading to a classification in good agreement with genetic and physi-
ological data [4–5]. Similarly, many retinal ganglion cell types can 
be discriminated based morphological properties [6]. Given recent 
advances in automatic reconstruction and crowd-based tracing tech-
niques, the amount of available data is rapidly increasing (see e.g. 
www.neuro morph o.org). However, machine learning methods to 
automatically classify neurons based on their morphology often rely 
on fairly simple representations. Typically, these methods consider 
the neurite density in three dimensions or low dimensional projec-
tions thereof or convert neural morphoplogies into expert-defined 
summary statistics. The similarity between two neurons can then be 
measured using simply the euclidean distance in these feature spaces. 

http://www.neuromorpho.org
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However, such representations may discard much of the fine-grained 
information contained in neural morphologies. Here we systematically 
compare different feature sets based on morphometric statistics or 
neurite density maps, with techniques based in graph theory and the 
recently proposed persistence [6]. Using regularized logistic regression 
we investigate which morphological representations allow reliable dis-
crimination of neural types within meaningfully defined cell classes. To 
this end, we analyze datasets from retinal bipolar cells and ganglion 
cells as well as interneurons from the primary visual cortex.
In this context, we introduce MorphoPy, a Python toolbox that bundles 
the state-of-the-art methods for representation and analysis of neural 
morphologies (https ://githu b.com/beren slab/Morph oPy).

References
1. Helmstaedter M, Briggman KL, Turaga SC, et al. Connectomic reconstruc‑

tion of the inner plexiform layer in the mouse retina. Nature 2013, 500, 
7461

2. Kim JS, Greene MJ, Zlateski A, et al. Space–time wiring specificity sup‑
ports direction selectivity in the retina. Nature 2014, 509, 7500.

3. Greene MJ, Jinseop SK, Seung HS. Analogous convergence of sustained 
and transient inputs in parallel on and off pathways for retinal motion 
computation. Cell reports 2016, 14(8), 1892–1900.

4. Shekhar K, Lapan SW, Whitney IE, et al. Comprehensive classification of 
retinal bipolar neurons by single‑cell transcriptomics. Cell 2016, 166(5), 
1308–1323.

5. Franke K, Berens P, Schubert T, et al. Inhibition decorrelates visual feature 
representations in the inner retina. Nature 2017, 542, 439.

6. Sümbül U, Song S, McCulloch K, et al. A genetic and computational 
approach to structurally classify neuronal types. Nature Communications 
2014, 5, 3512.

P183 
Online accurate spike sorting for hundreds of channels
Baptiste Lefebvre, Olivier Marre, Pierre Yger
Institut De La Vision, Computational Neuroscience, Paris, France
Correspondence: Pierre Yger (pierre.yger@inserm.fr)  
BMC Neuroscience 2018, 19(Suppl 2):P183

Understanding how assemblies of neurons encode information 
requires recording of large populations of cells in the brain. In recent 
years, multi-electrode arrays and large silicon probes have been devel-
oped to record simultaneously from thousands of electrodes packed 
with a high density. To tackle the fact that these new devices challenge 
the classical way to perform spike sorting, we recently developed a 
fast and accurate spike sorting algorithm (available as an open source 
software, called SpyKING CIRCUS), validated both with in vivo and 
in vitroground truth experiments. The software, performing a smart 
clustering of the spike waveforms followed by a greedy template-
matching reconstruction of the signal, is able to scale to up to 4225 
channels in parallel, solving the problem of temporally overlapping 
spikes. It thus appears as a general solution to sort, offline, spikes from 
large-scale extracellular recordings. In this work, we implemented this 
algorithm in an “online” mode, sorting spikes in real time while the 
data are acquired, to allow closed-loop experiments for high density 
electrophysiology. To achieve such a goal, we built a robust architec-
ture for distributed asynchronous computations and we proposed 
a modified algorithm that is composed of two concurrent processes 
running continuously: (1) “a template-finding” process to extract the 
cell templates (i.e. the pattern of activity evoked over many elec-
trodes when one neuron fires an action potential) over the recent 
time course; (2) a “template-matching” process where the templates 
are matched onto the raw data to identify the spikes. Templates are 
updated online with a density-based clustering algorithm adapted for 
data streams, to keep track of drifts over time. A key advantage of our 
implementation is to be parallelized over a computing cluster to use 
optimally the computing resources: all the different processing steps 
of the algorithms (whitening, filtering, spike detection, template iden-
tification and fit) can be distributed according to the computational 
needs.Our software is therefore a promising solution for future closed-
loop experiments involving recordings with hundreds of electrodes.
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P184 Identifying an appropriate time step is among the first tasks 
when numerically solving ordinary differential equations. Often times, 
it is not possible to determine the optimal time step a priori. This is 
especially true in complex neuronal simulations, where the discrete 
nature of spikes and high degree of connectivity between neurons 
leads to a complex system of ordinary differential equations. For these 
systems, the time step must be selected based on empirical observa-
tion rather than from theoretical deduction. Yet it is crucial that appro-
priate time steps are determined before trusting the results from a 
neuronal simulation, as integration errors can have unpredictable 
consequences on the model’s dynamics. As we show in this work, fur-
ther complicating the process of determining the optimal time step is 
the poor transferability in the empirically obtained time steps when 
scaling up to larger neuronal networks. We show that the time step 
is not only dependent on the intrinsic properties of the neuron, but 
are also strongly dependent on the size and connectivity of the net-
work. To explore time step sensitivity, we use a biophysically detailed 
model of the neocortex adapted from Traub et al. [1] which contains 
14 neuron types with 50 to 137 compartments each. Simulations are 
carried out using the GEneral NEural SImulation System (GENESIS) 
[2]. Neurons are organized into microcolumns containing up to 21 
neurons. These microcolumns are repeated to create models of three 
system sizes with 65, 1040, and 16640 neurons. The number of syn-
aptic connections for the three system sizes are 6790, 1756170, and 
449308275, respectively. To simulate resting neuronal activity, neurons 
are randomly driven with independent Poisson distributed excitatory 
postsynaptic potentials with an average firing rate between 1 and 
10 Hz. For each system size, the connectivity probabilities and random 
Poisson inputs are held fixed and simulations are carried out using the 
exponential Euler integration method with three time step sizes of 50, 
5, and 0.5 µs. Average spiking rates for excitatory pyramidal neurons in 

Fig. 1 Average spiking rates for excitatory pyramidal neurons in layer 
2/3 (P23RS) and layer 5 (P5IB) and inhibitory neurons in layer 2/3 
(I23LTS) and layer 5 (I5LTS) for the three time step sizes used in this 
study

https://github.com/berenslab/MorphoPy
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layer 2/3 (P23RS) and layer 5 (P5IB) and inhibitory neurons in layer 2/3 
(I23LTS) and layer 5 (I5LTS) for each time step size are shown in Fig. 1. 
For the smallest system size with 65 neurons, we do not observe any 
significant effect of due to altering the time step, suggesting that 50 µs 
is adequate. However, when increasing the system size, model behav-
ior changes from being dominated by excitatory activity to being 
dominated by inhibitory activity. Therefore, we are unable to extrapo-
late the time step convergence study results from the small, 65 neuron 
model to the large neuronal networks, despite being made up of iden-
tical neurons with the same intrinsic properties. Further work is ongo-
ing to elucidate why smaller time steps are required for larger system 
systems, but early evidence suggest it is due stacking of input spikes, 
which becomes more frequent as the number of neurons and synaptic 
connections increases. Work is also underway to compare the results 
with implicit integration methods.
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Perisomatic and distal apical regions of layer 5 pyramidal neurons are 
viewed as two distinct “zones” that mediate action potential initiation. 
Electrical coupling of these two zones plays a functional role in the 
associative processing attributed to these neurons because it allows 
them to detect coincident input to their perisomatic and distal apical 
regions [1]. However, while it is known that layer 5 pyramidal neurons 
have inhomogeneous distributions of voltage-dependent frequency 
preferences that are established by a variety of ionic conductances 
[2, 3], it is not well known what role subthreshold electrical coupling 
between perisomatic and distal apical regions could play in multi-fre-
quency coupling in the brain. To assess the subthreshold interaction 
between perisomatic and distal apical zones, we characterized the res-
onance properties of a biophysically-realistic compartmental model of 
a neocortical layer 5 pyramidal neuron. Consistent with recently pub-
lished theoretical and empirical findings, our model was configured to 
have a “hot zone” in distal apical dendrite and apical tuft where both 
high- and low-threshold Ca2+ ionic conductances had densities 1–2 
orders of magnitude higher than anywhere else in the apical dendrite 
[4]. We simulated injection of “chirp” currents with linearly increasing 
frequency to calculate the transfer impedance between the soma and 
distal apical dendrite/tuft, and a dimensionless term we introduce 
called resonance quality. Transfer resonance analysis revealed that 
changes in subthreshold electrical coupling were found to modulate 
the transfer resonant frequency of signals transmitted from distal 
apical dendrite and apical tuft to the soma, which would impact the 
frequencies that individual neurons are expected to respond to and 
reinforce. We used the insights from transfer resonance analysis to 
demonstrate phase-locking of somatic frequency preference for dis-
tal apical input to a somatic modulating signal. Specifically, we simu-
lated injection of a slow sinusoidal modulating signal into the soma 
while simultaneously simulating injection of multiple sine waves, each 
at a different frequency determined from transfer resonance analysis, 
into distal apical compartments. Our results demonstrate a form of 
phase modulation of power where the amplitude of the faster signals 

transmitted from distal apical compartments to the soma is varied as 
a function of the phase of the slower somatic modulating signal. This 
type of process may underlie phase-amplitude coupling observed in 
EEG data.
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How constrained is brain activity by underlying neuronal connectiv-
ity? Here we apply concepts from network science to understand the 
role connectivity plays in generation of large scale brain dynamics [1]. 
We simulate a network of multiple cortical brain regions each spatially 
distinct and connected through cortico–cortico white matter tracts. 
We vary connectivity between simulated patches and measure the 
small worldness of network connectivity. Additionally, we explore how 
physiologically relevant factors like synaptic conductance, neuronal 
origin, and neurotransmitter type interact with ‘who is connected to 
who’ network graphs to change large scale brain dynamics [2]. We use 
a modified version of the Traub cortical model [3] implemented in the 
GEneral NEural SImulation System (GENESIS) [4] simulation frame-
work on high performance computing resources. The model includes 
three neurotransmitters (AMPA, NMDA and GABA), 12 neuron types, 
modeled using 15 voltage gated channels, within 50 to 137 compart-
ments. This level of biophysical fidelity allows one to observe changes 
in the local field potential (LFP) as an emergent property of the physics 
of the simulation. In order to keep overall levels of neuronal activity 
sparse, and to emphasize the role of cortical connectivity on network 
behavior simulated neurons were tuned to eliminate intrinsic activ-
ity. Activity levels in individual patches were manipulated by changes 
in local connectivity probability and the prevalence of Poisson dis-
tributed noise inputs. Initial simulations indicate that in a network of 
four patches (of about 1000 neurons each) that long range connec-
tivity can significantly alter model behavior by shifting the LFP from 
1/f like background activity to large scale oscillations. We expand our 
model to include multiple cortical regions and focus our analysis on 
generation of large scale brain dynamics hypothesized to be strongly 
impacted by cortical connectivity such as: 1, the generation of 1/f in 
the power spectrum of the local field potential (LFP), 2, the relation-
ship between local and global oscillatory behavior in the LFP, and 3, 
multiscale dynamics from spikes to changes in the LFP.
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We investigated the widely-held belief that transcranial direct current 
stimulation (tDCS) raises or lowers the probability of neuronal action 
potential generation [1]. We used GENESIS to simulate a network of 
neurons with fully realized spatial geometry, including realistic den-
dritic arborization. We show that taking into account individual neu-
ronal morphology produces variation in stimulation outcomes with 
consequences on both spiking and network level activity, including 
oscillatory activity as observed in LFP and EEG. We implemented the 
hypothesized tDCS mechanism initially with an input current injected 
directly into the soma where spike generation is initiated. However, it 
is known that current densities can vary greatly as a function of the 
spatial relationship between the stimulating electrodes and the region 
being stimulated [2] and as a function of the spatial morphology of 
the cells in questions [3]. We extended the somatic stimulation model 
to a whole-cell stimulation model where stimulation arrives at every 
compartment with current amplitudes scaled according to compart-
ment orientation and surface area. We found that despite similar 
characteristics in the single-neuron case (e.g. probability of firing as a 
result of a spike train into the soma), network-level activity is greatly 
impacted by whole-cell stimulation. Specifically, we observe a greater 
range of variability in both firing rate and power spectral density in 
response to stimulation. In addition, we show that the network-level 
effects of tDCS are dependent on the orientation of the main trunk of 
the axon relative to the electric field, highlighting its important role 
in action potential initiation and propagation. These results could be 
used for predictive modeling of the functional outcomes of tDCS in 
specific regions, extending existing approaches of modeling current 
density by additionally incorporating information about the orienta-
tion of the cortical surface. Spatial orientation-dependent variation in 
efficacy could be particularly important to account for in regions with 
high variability in spatial extent across individuals.
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Simulating extracellular recordings of single/multiple neurons or of 
complete populations is an important and challenging task both for 
understanding the nature of extracellular field potentials (LFP) at dif-
ferent scales and for validating signal processing tools (e.g. despiking/
spike sorting). State of the art models [1], based on neuron models 
having multiple active or passive compartments, show that the extra-
cellular signatures of both synaptic sources and membrane sources 
during action potentials depend on the geometry of the neurons 
and on the position of the measuring electrode with respect to this 
geometry. The simulation methodology, based on the NEURON envi-
ronment [2] and the LFPy python package [3], could require a high 
computational burden for large neuronal populations [4]. We propose 
a new method to simulate the extracellular images of action poten-
tials. Our method takes into account the geometry of the neuron and 
the position of the electrode, but only requires to model the dynamics 
of a single compartment. Different shapes are next obtained using a 
filter based on the geometrical properties of the recording setup, with 
an overall much smaller computational burden.
More precisely, we start from the classical assertion that at every time 
instant t, the potential recorded by the electrode is a weighted sum 
of the membrane currents of all compartments, the weights depend-
ing on the medium conductivity (assumed constant) and the geom-
etry (relative position of the compartments and the electrode). The 
basic idea of our method is to model the membrane current sources 
active during the action potential as a moving dipole, oriented paral-
lel to the axon and moving with a certain speed along it. In this case, 
one can show that this weighted sum is equivalent to a convolution 
between a geometry-conductivity based filter and the membrane cur-
rents of a single active compartment. Our model of extracellular spikes 
is thus generated by a single-compartment Hodgkin-Huxley neuron, 
convolved with a filter, analytically computed using the shape of the 
considered neuron. We have tested our model by comparing it with 
the NEURON/LFPy simulation of a neuron having the same structure 
(same shape and number of active compartments), in our case a 
simple ball-stick model (see Fig. 1). The resulting extracellular spikes 
showed a very good correlation between the two models (mean value 
above 0.9). Moreover, their shapes were also close to experimental 
extracellular recordings reporting different spike shapes, depending 
on the type of neuron (inhibitory/excitatory) and on the position of 
the electrode with respect to the soma or to the axon [5].
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The basal ganglia is a subcortical structure common to all vertebrates, 
which receives input from many cortical areas, and routes its output 
mainly to the thalamus. Both habit learning and action selection are 
associated with that part of the brain; however, not much is known 
about concrete implementation of these functionalities. A novel, inte-
grated theory of learning and action selection, proposed by Collins 
and Frank (2014), provides a mechanistic description of how the basal 
ganglia works. That theory differs from conventional reinforcement 
learning in one critical aspect: decisions are not based on the learned 
value of an action, but rather on payoff and cost of the action, which 
are both learned distinctly, and the motivational state. According to 
this theory, the motivational state balances two behavioural strate-
gies: minimization of cost on the one hand, and maximization of pay-
off on the other. The theory also maps remarkably well on the relevant 
physiological features: the basal ganglia circuit includes two main 
pathways—the action-facilitating Go pathway, and the action-inhib-
iting NoGo pathway—which are differently modulated by dopamine. 
Payoffs and costs might be represented by activity of neurons in those 
pathways, and the motivational state by tonic activity of dopaminergic 
neurons, which inhibits the NoGo pathway and amplifies the Go path-
way. However, there remains a difficult question: how does the basal 
ganglia acquire its separate knowledge of payoff and cost of actions? 
We propose a learning mechanism capable of learning the mean pay-
offs and costs of actions. We designed this learning mechanism to infer 
the payoffs and costs solely from prediction errors, which encode the 
surprise about the outcomes of actions, and are thought to be the 
dominant feedback signal in the basal ganglia. The learning rules we 
propose formalize the idea that, to learn payoff and cost, positive rein-
forcement should mainly strengthen the Go pathway, while negative 
reinforcement should mainly strengthen the NoGo pathway. We dem-
onstrate the learning mechanism’s capability to learn payoffs and costs 
both numerically and—in the case of purely stochastic or purely deter-
ministic rewards—also analytically. Furthermore, our model accounts 
for experimental results concerning the effects of dopamine depletion 
on willingness to exert effort. In an experiment by Salamone et al. [1], 
rats could choose between pressing a lever to obtain a food pellet, 
and obtaining free lab chow. Normal animals were willing to press 
the lever for pellets, but after dopamine depletion, they preferred 
costless lab chow. Our model accounts for this behaviour both quali-
tatively and quantitatively: under dopamine depletion, the activity of 
NoGo neurons is enhanced. Hence, the cost of lever-pressing is over-
weighted and the costly action is supressed. Previous work showed 
that the model also accounts for the effect of dopaminergic manipula-
tions on decision making under risk, and that the proposed learning 
rules are consistent with known synaptic plasticity and the properties 
of dopaminergic receptors in the basal ganglia.
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While central pattern generators (CPGs) are involved in animal loco-
motion from leech to humans, their role inC. elegansis still unclear. 
With detailed behavioral, biomechanical, physiological, and neuroana-
tomical information available, the question of whether it is possible for 
a chain of CPGs to drive forward locomotion can be answered through 
a brain-body-environment computational model.C. eleganslocomotes 
in an undulatory fashion, generating thrust by propagating dorsoven-
tral bends along its body. Three hypotheses for its locomotion have 
been postulated: (a) Stretch-receptor feedback driven mechanism for 
generating and propagating oscillations; (b) A CPG in the head for 
generating oscillations with stretch-receptor feedback propagating 
the wave down the body; and (c) A chain of multiple network CPGs 
in coordination along the body. Existing neuromechanical models of 
forward locomotion have demonstrated the feasibility of the first two 
hypotheses. In this work, we build a neuromechanical model to test 
the third hypothesis. In recent work, we identified a repeating subcir-
cuit in the Ventral Nerve Cord (VNC) that could intrinsically reproduce 
the neural activity associated with forward locomotion during freely-
moving behavior. In the current study, we integrate multiple VNC neu-
ral units along the length of the worm’s body (Fig. 1A), interconnected 
via the set of chemical and electrical synapses obtained from the 
connectome dataset, and we embed the nervous system in a model 
of the worm’s musculature, which in turn drives a 2D physical model 
of the body in an agar environment (Fig. 1B). We use an evolutionary 

Fig. 1 [A] Segmental model of C. elegans VNC, green boxes delimits 
neural units. Connection present in the minimal configuration of 
the selected model in black, dorsal and ventral muscles in blue and 
red respectively. [B] 2D C. elegans Mechanical model and detail of 
biomechanical segment. The green boxes represent the body area 
innervated by a neural unit. [C] Forward locomotion in the minimal 
configuration model showing dorsoventral bending waves along the 
worm body (vertical axis) and time (horizontal axis) resembling those 
observed in forward crawling worms. Worm posture is depicted at 
times T1 and T2



Page 94 of 98 BMC Neurosci 2018, 19(Suppl 2):64

optimization algorithm to set the unknown physiological parameters 
of neurons, synapses, and neuromuscular junctions so as to match 
the mean velocity observed in worms moving on agar. We performed 
160 evolutionary runs using different random seeds and consistently 
found electrophysiological configurations that reproduced realistic 
control of forward movement. The evolved solutions demonstrate for 
the first time that the VNC can not only generate intrinsic oscillations, 
but that those oscillations can propagate throughout the VNC to drive 
forward locomotion in the absence of stretch-receptor feedback. We 
filtered evolved solutions to those that matched experimental charac-
terizations of the kinematics of forward locomotion and the effect of 
neural ablations on movement. We selected one representative model 
to understand in detail its neuromechanical machinery and generate 
testable experimental hypothesis. We found that a subset of 6 of the 
15 connections in the model were necessary and sufficient to drive 
locomotion (Fig. 1A, C). Oscillations were generated independently in 
each unit in a subcircuit comprising neurons AS, DA, and DB. Muscle 
activity is driven mainly by DB and VB neurons while neurons DD and 
VA can be completely removed without compromising locomotion. 
A difference in phase between the oscillations of adjacent subunits is 
controlled by a single electrical synapse between VB and DB neurons. 
Interestingly, the difference in phase occurs through from the ante-
rior to the posterior unit, even though the exchange of information 
in the gap junction is bidirectional. Although the mechanism used 
by the selected model was representative of the majority of the solu-
tions in the ensemble, analysis of the rest of the solutions revealed a 
set of alternative hypotheses for both generating and propagating the 
oscillations.
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Respiration supplies oxygen to maintain metabolic processes while 
simultaneously removing carbon dioxide. It can be impaired due to 
several pathologies such as medullary stroke or spinal cord injury. Indi-
viduals with such impairments often rely on mechanical ventilation, 
which can lead to diaphragm atrophy and alveolar damage. An alter-
native to mechanical ventilation, respiratory pacing, utilizes electrical 
stimulation of the phrenic nerve to cause diaphragmatic contraction 
or direct stimulation of the diaphragm muscle. These systems facilitate 
ventilation and thus respiration in a more physiological manner and 
thus avoid many of the drawbacks associated with mechanical ventila-
tion. Since stimulation parameters are pre-selected and are kept fixed 
outside of a clinical setting, the systems have to be manually tuned 
and may not account for changes in respiratory conditions that can 
lead to insufficient ventilation. We aimed to develop a neuromorphic 
closed-loop adaptive controller capable of accounting for mechanical, 
muscular, and metabolic changes to maintain adequate ventilation 
on a breath-by-breath basis. The closed-loop adaptive controller has a 
pattern generator (PG)/pattern shaper (PS) architecture that produces 
a periodic set of adaptive stimulation parameters for diaphragmatic 
pacing to obtain a desired breath-by-breath ventilatory profile while 
maintaining normocapnia. The PG is a biomimetic model of the res-
piratory central pattern generator (rCPG) that responds to changes 
in arterial CO2. The output of the PG is transformed into a volume 
profile by a biomechanical chest and diaphragm model. This volume 
profile and breath duration are set as the ideal target and sent to the 
PS. The PS consists of an artificial neural network with time-shifted 
activation profiles. The instantaneous error signal between the meas-
ured breath volume and the desired breath volume profile modifies 
this network to shape the output to the stimulator. As the controller 
adapts, a stimulation profile develops that can elicit a breath volume 
profile that matches the desired breath volume profile in both shape 

and duration. A computational model of rat ventilatory biomechan-
ics paired with a three-compartment model of CO2dynamics was 
developed in LabVIEW and used to assess performance of the PG/
PS controller. Simulations compared a fixed-PG/adaptive PS system 
against a closed-loop adaptive PG controller. CO2production rate 
was varied from 2 to 30 mM/s to simulate changes in metabolic func-
tion and to assess the working range of CO2production over which 
the PG could maintain normocapnia. The closed-loop PG/PS could 
maintain normocapnia with an increased range of 4 to 26 mM/s as 
compared to a 9 to 13 mM/s seen with the fixed PG/adaptive PS con-
troller. Restrictive respiratory disease was modeled to validate the con-
troller under a pathological state. Inspiratory root mean square error 
(iRMSE) remained below 10% (iRMSE of 4.47 ± 0.41%) for all trials and 
PaCO2remained within normocapnic value of 44.9 ± 3.0 mmHg.
The adaptive capabilities of the controller enabled it to maintain nor-
mocapnia over a broad range of CO2production rates, thus demon-
strating that the system can automatically adjust ventilation to meet 
the metabolic demands of an individual. Additionally, simulations also 
suggest that the controller can adapt to changes in the physiological 
state of the user (Fig. 1).
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Canonical feedback inhibitory motifs play a key role in controlling 
and structuring the activity of principal cell ensembles. Despite the 
importance of these motifs and evidence for altered inhibition in 
chronic epilepsy, changes in the function of canonical feedback inhi-
bition in chronic epilepsy have not been investigated. On the basis 

Fig. 1 PG/PS controller performance across a range of CO2 produc‑
tion rates and physiological conditions. (A) PaCO2 response for an 
open‑loop PG/adaptive PS (blue line) and closed‑loop adaptive PG/
adaptive PS (orange line). The closed‑loop PG/PS could maintain 
normocapnia (blue shade) within the CO2 production rates tested for 
all conditions. (B) PG/PS performance for a restrictive pulmonary lung 
disease model for a CO2 production rate of 14 mM/s. CO2 produc‑
tion rate was increased to 14 mM/s after three minutes (vertical 
green dashed line). The PG responds by increasing minute ventila‑
tion (orange line) to account for the change in PaCO2v (yellow), thus 
maintaining normocapnia (blue shade). iRMSE (blue line) remained 
below 10% (red dashed line) throughout the trial showing that 
regardless of a changing PG, the PS could elicit a breath volume that 
could match the desired volume profile
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of experimental results from the hippocampal region CA1 in the 
pilocarpine model of chronic epilepsy, we use theoretical modeling 
to examine how the functional properties of the canonical feedback 
circuit motifs are changed and how this influences the filtering of sig-
nals from CA3. The experiments indicate that intrinsic excitability is 
reduced in both basket and pyramidal cells. Furthermore, the response 
of basket cells to stimuli mimicking feedback excitation exhibits 
reduced initial excitation as well as reduced synaptic depression of the 
synapse between pyramidal and basket cells. Finally, the initial feed-
back inhibition to pyramidal cells is strongly reduced. Here we show 
that simple, biologically plausible neuron and synapse models for bas-
ket cells and for the pyramidal cell-to-basket cell-synapses match the 
data on basket cell responses for suitably chosen parameters. We use 
this to quantify and interpret the experimentally observed pathologi-
cal changes. To visualize our results, we project the reproduction error 
nonlinearly onto the relevant model parameters. This shows a quali-
tative difference between the parameter sets characterizing the syn-
apses on healthy and pathological basket cells. A similar approach can 
be employed for the pyramidal cells and the basket cell-to-pyramidal 
cell synapses. We combine the obtained models for the basket and 
pyramidal cells and their synapses to models of the complete feed-
back circuit motif in CA1 for healthy and epileptic animals. Probing 
them with inputs from CA3, we find that the entirety of the changes in 
the feedback motif leads to increased activity of the pyramidal cells in 
the epileptic case especially in case of steep rises of the signal, which 
are typical for the initial phase of epileptic bursts. This suggests that 
the changes in CA1 during development of epilepsy promote the 
transmission of epileptic bursts from CA3 to other parts of the brain.
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Recent advancements in high-throughput analysis of brain connec-
tivity have been revealing. However, without knowledge of neuronal 
dynamics, the connectome alone provides insufficient understanding 
of nervous system functionality and disorders. In particular, dysfunc-
tion of neuronal ion channels can cause major central nervous system 
disorders such as epilepsy that affects about 1% of the global popu-
lation. Role of ion channels in electroshock-induced seizures can be 
investigated using the slamdance mutant fruitfly. However, develop-
mental compensation in mutants prevents relating channel activity to 
behavioral outcomes. Channel effects were successfully measured in 
isolation previously using a computational neuron model. This model 
only represented a single motoneuron without considering contribu-
tions from other neurons. The recent availability of electron micro-
graph connectivity from the fly larva allows reconstructing a more 
detailed anatomical morphology of this motoneuron, which includes 
the surrounding circuit. We propose to reconstruct this circuit on the 
computer to investigate effects of synaptic inputs on seizure activity 
via simulation.
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Animal behavior is generated by neural activity as well as sensory 
feedback and the biomechanical constraints of the body in an envi-
ronment. Locomotion of C. elegans is an ideal model to study these 
neuromechanical interactions, due to its well-described connectome 
and limited behavioral repertoire including forward crawling or swim-
ming. The motor circuit responsible for forward locomotion in C. ele-
gans consists of a chain of local modules driven by a single command 
neuron (White et al. 1976). C. elegans swims forward by undulation, 
underlain by a wave of curvature traveling down the body. There is 
substantial evidence that suggests coordination of the local neurome-
chanical modules arises via proprioceptive coupling (Wen et al. 2012). 
It is also known that C. elegans can change its curvature waveform in 
media of varying viscosities to match the loads imposed by the envi-
ronment (Berri et al. 2009; Boyle et al. 2012; Fang-Yen et al. 2010). The 
exact mechanisms generating oscillatory activity and coordinating 
these oscillations to produce appropriate locomotive behavior is a 
subject of ongoing. To examine the fundamental components neces-
sary for robust oscillations yielding forward locomotion, we construct 
a minimal model for neuromuscular control of C. elegans based on 
the model of Boyle et al., 2012. The model consists of a chain of neu-
romechanical modules connected by both mechanical coupling and 
proprioceptive feedback, a schematic of which is shown in Fig. 1. We 
characterize the parameter dependence of the activity in a single mod-
ule and therefore provide insight into the basic mechanism generating 
oscillatory behavior. We then couple two to twelve such oscillating 
modules together, and examine the relative roles of local, mechani-
cal coupling and long-range, proprioceptive coupling in producing 
coordinated behavior. We use this model to make testable predictions 

Fig. 1 Schematic of the neuromechanical model of C. elegans 
forward locomotion. The AVB command neuron drives all twelve 
neuromechanical modules, which are connected together via both 
mechanical coupling and intermod‑ ular (proprioceptive) coupling. 
Each module consists of two B‑class neurons, which exhibit ipsilateral 
excitation and contralateral inhibition of body wall muscles. The 
contralateral inhibition is relayed through the D‑class neurons. The 
viscoelastic body wall muscles are modeled as springs and dashpots 
in parallel, with an additional active tension from neural excitation. 
The local proprioception is modeled as ipsilateral inhibition of the 
B‑class neurons by the muscles, and the long‑range proprioception 
modeled as ipsilateral inhibition of the B‑class neurons by muscles 
in anterior modules (INPUT label). The muscles in each module also 
exhibit ipsilateral inhibition of B‑class neurons in posterior modules 
(OUTPUT label), and are mechanically coupled to ipsilateral muscles 
in neighboring modules
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of swimming speed of C. elegans in different environments, and ana-
lyze how the strength of neural feedback from body mechanics, the 
strength of mechanical coupling, and the role of directional, proprio-
ceptive coupling give rise to the adaptive swimming gaits.
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Reservoir computing has been proposed as a model of how the brain 
learns and generates motor output. Most learning rules used for reser-
voir computing, including the popular First Order Reduced and Con-
trolled Errors (FORCE) method, are fully supervised. These can learn 
intricate motor tasks and produce internal dynamics strikingly similar 
to those of motor cortical neurons, but rely on biologically unrealistic 
learning rules. As models of biological motor learning, such algorithms 
could only learn to “copy’’ the output generated in another area of the 
brain. Moreover, they can only be applied to tasks where the map-
ping from reservoir output to motor action and its inverse are known 
explicitly. How are novel motor outputs learned by biological neural 
networks? Biological motor learning is controlled at least in part by 
dopamine-modulated reinforcement learning in the basal ganglia. 
Other, more realistic learning rules based on reinforcement learn-
ing algorithms for reservoir computing have been proposed, but are 
often derived for simplified, discrete tasks in contrast to the intricate 
dynamics that characterize real motor responses. In addition, we find 
that they fail to converge on some relatively simple tasks. We bridge 
these two approaches to develop a biologically realistic learning rule 
for reservoir computing, Supervised Transfer of Rewarded Exploration 
(SUPERTREX), that models the interaction between reinforcement and 
supervised learning observed in mammals and songbirds. Through 
various learning tasks and simulations, we show that SUPERTREX per-
forms as well as or better than existing learning algorithms for reser-
voir computing, is more biologically realistic, and is applicable to a 
larger class of motor learning tasks. Finally, we show that SUPERTREX 
can reproduce findings that relate Parkinson’s disease and its treat-
ments to motor learning.
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Introduction: Past decades of auditory research have identified sev-
eral acoustic features that influence perceptual organization of sound, 
in particular, the frequency of tones and the rate of presentation [1–2]. 
One class of stimuli that have been intensively studied are sequences 
of tones that alternate in frequency. They are typically presented in 
patterns of repeating doublets ABAB…or repeating triplets ABA_ABA_ 
where the symbol “−” stands for a gap of silence between triplets 
repeats. The duration of each tone or silence is typically tens to hun-
dreds of milliseconds, and listeners hearing the sequence perceive 
either one auditory object (“stream integration”) or two separate audi-
tory objects (“stream segregation”). Animal studies have character-
ized single- and multi- unit neural activity and event-related local field 
potentials while systematically varying frequency separation between 
tones (DF) or the presentation rate (PR). They found that theBtone 
responses in doublets were differentially suppressed with increasing 
PR and that the B tones responses in triplets decreased with larger 
DF [1–2]. However, the neural mechanisms underlying these animal 
data have yet to be explained. In this study we built an integrate-
and-fire network model of core auditory cortex (AC) that accurately 
reproduced the experimental results from [1–2]. We then extended 
the model to account for basic spectro-temporal features of electro-
corticography (ECoG) recordings from the posteriomedial part of the 
Heschl’s gyrus (HGPM; cortical area equivalent to the AC of monkeys), 
obtained from humans listening to sequences of triplets ABA_.
Results: A large network of voltage-dependent leaky integrate-and-
fire neurons (3600 excitatory, 900 inhibitory) was constructed to simu-
late neural activity from layers 3/4 of AC during streaming of doublets 
and triplets. Parameters describing synaptic and membrane proper-
ties were based on experimental data from early studies of AC [3–4]. 
Network structure assumed spatially-dependent probability of con-
nections and tonotopical organization. Subpopulations of neurons 
were tuned to different frequencies along the tonotopic map. In-silico 
recordings were performed during the presentation of long sequences 
of triplets and/or doublets. The network’s output was derived with two 
types of measurements in mind: spiking activity of individual neurons 
and/or local populations of neurons, and local field potentials [5–6]. 
The network spiking neural activity reproduced reliably data reports 
from [1–2], including dependence of responses to the B tone in triplets 
ABA_ on stimulus parameter DF. Approximations of average evoked 
potentials (AEPs) from ECoG signals recorded at four depth contacts 
placed over human HGPM during auditory streaming of triplets were 
also obtained. The model accounted for features of HGPM activity such 
as short-latency large-amplitude responses and robust isomorphic 
representation of acoustic stimulus properties, including onsets and 
offsets of individual tones within the triplet.
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The recently introduced multi-quadratic integrate-and-fire (MQIF) [1, 
8] is an economic integrate-and-fire model that captures important 
modulation properties such as a robust transition between tonic fir-
ing and bursting or between distinct excitability types. Such neuronal 
properties are critical to retain in neuromodulation studies of network 
models such as [5] or [6] as the neuromodulation not only affects the 
connectivity but also—and sometimes, predominantly—the excit-
ability properties of the neurons. We revisit the classical method of 
equivalent potentials [4] with the goal of reducing detailed conduct-
ance-based models to the MQIF model. Our method relies on the sim-
ulation of the equivalent potentials during a representative behaviour 
of the model. To model the fast-slow dynamics, we use a least squares 
fitting to express each equivalent potential as a linear combination of 
a constant, fast, and slow membrane potential. The role of ultraslow 
variables is subsequently modelled through the modulation of the 
fast-slow MQIF parameters and the applied current. We illustrate our 
method on two different conductance-based models from the litera-
ture: the Connor-Stevens model [2, 3] andAplysiaR15 model [7]. The 
reduced integrate-and-fire models are shown to exhibit behaviours 
close to those of the original models. Most importantly, modulation 
between different excitability types in the Connor-Stevens model and 
between tonic spiking and bursting in theAplysiaR15 model is shown 
to be captured well by the key parameters of the MQIF model, which 
determine the fast and slow points of balance [8].
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The voltage clamp experiment, pioneered by Hodgkin and Huxley, is 
still a widely applied technique for the identification of detailed neu-
ronal models [1]. In system theoretic terms, the success of the volt-
age clamp experiment rests on the fact that the inverse dynamics 
of neuronal models are stable and almost linear whereas the direct 
dynamics from applied current to voltage are unstable and nonlinear. 
In any conductance based model, the inverse system, from voltage to 
total current, has an architecture reminiscent of a parallel one layer 
continuous-time artificial neural network. It is amenable to estima-
tion using standard techniques from the field of systems identification 
[2]. In this work, we explore this specific architecture by proposing a 
simple technique based on convex optimization to automatically 
identify the dynamics of a single compartment neuron model from 
membrane potential and applied current traces only. Little knowledge 
of the underlying ion channel structure and kinetics is assumed. As 
an initial model, we use a large set of simple parallel branches com-
posed of static nonlinearities and linear time-invariant filters, chosen 
so as to span a large space of dynamic behaviours. We then use L1 
regularization in our cost function to ensure that a sparse solution to 
the optimization problem is found, keeping in our model only those 
few branches which capture the excitable properties of the neuron at 
the right amplitude and frequency ranges [3]. This provides a system-
atic way of modulating the complexity of an identified neuron model, 
while preserving information about its intrinsic timescales (a compu-
tationally relevant feature of single neuron models, as argued in [4]). 
To illustrate our approach, we estimate the dynamics of conductance-
based models from the literature using voltage and applied current 
data obtained numerically. Advantages of applying this approach in 
the study of neuronal systems beyond single compartment neurons 
are also discussed.
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Neurons possess two elementary modes of firing activity: tonic spiking 
where neurons periodically elicit single action potentials, and burst-
firing, where sequences of high-frequency spikes are followed by qui-
escent periods. In addition to controlling the frequency and amplitude 
of the spiking activity, an essential modulation mechanism that can 
appear in neurons is the transition between these two firing regimes. 
This behavioral switch has been observed in subthalamic nucleus 
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neurons [1] through the phenomena of hyperpolarized-induced burst-
ing, whereby a hyperpolarizing injected current can induce a transition 
from tonic spiking activity to burst firing; this transition has important 
medical consequences with regards to the development of Parkinson’s 
disease. From a neural processing standpoint, such a switch can pro-
vide a fast mechanism for controlling the network oscillations, provid-
ing means for rapid switches in brain states [2]. Our aim is to develop 
an analysis and synthesis method for realizing neurons whose behavior 
can be precisely modulated and that are able to experience these fast 
switches in firing activity. We use a recently introduced design archi-
tecture [3] to illustrate how hyperpolarized bursting can be robustly 
implemented in a neuromorphic circuit. The architecture consists of a 
parallel interconnection of a membrane capacitor with elementary I-V 
elements in the form of first-order filters in series with sigmoidal I-V 
elements. These elements provide local positive or negative conduct-
ance acting in a well-defined timescale set by the first-order filters, 
and thus mimic the effect of the activation and inactivation of ionic 
currents in conductance-based models. The elements are easily real-
izable in hardware in sub-threshold MOSFET architecture, and lead to 
a powerful design and analysis approach by utilizing the model’s fast, 
slow and ultra-slow I-V curves that are shaped through the gains of 
the feedback elements. The modulation of the bursting and spiking 
activity is then fully captured through the synthesis of the I-V curves in 
each timescale, mimicking the effect of different neuromodulators in 
the physiological neurons. The main novelty with respect to our previ-
ous work is that hyperpolarization-induced bursting strongly relies on 

the inactivation of T-type calcium channels. The effect of these chan-
nels has a direct correspondence to a slow negative conductance ele-
ment in our model, and the inactivation effect can be easily added to 
our previous design architecture. By keeping the same feedback struc-
ture as in the physiological model, we retain the same robust switch 
in behavior that does not require parameter fine-tuning, but relies on 
the well-defined modulation through I-V curve shaping. This simple 
mechanism allows us to modulate the input–output neural behav-
ior through the hyperpolarization and depolarization of the neuron, 
opening the possibilities for novel studies of neural network behavior, 
where robust local behavioral switches can induce qualitative changes 
in the network oscillations.
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