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Optimal Adaptation Principles In Neural Systems

Abstract
Animal brains are remarkably efficient in handling complex computational tasks, which are intractable even
for state-of-the-art computers. For instance, our ability to detect visual objects in the presence of substantial
variability and clutter sur- passes any algorithm. This ability seems even more surprising given the noisiness
and biophysical constraints of neural circuits. This thesis focuses on understanding the theoretical principles
governing how neural systems, at various scales, are adapted to the structure of their environment in order to
interact with it and perform informa- tion processing tasks efficiently. Here, we study this question in three
very different and challenging scenarios: i) how a sensory neural circuit the olfactory pathway is organised to
efficiently process odour stimuli in a very high-dimensional space with complex structure; ii) how individual
neurons in the sensory periphery exploit the structure in a fast-changing environment to utilise their dynamic
range efficiently; iii) how the auditory system of whole organisms is able to efficiently exploit temporal
structure in a noisy, fast-changing environment to optimise perception of ambiguous sounds. We also study
the theoretical issues in developing principled measures of model complexity and extending classical
complexity notions to explicitly account for the scale/resolution at which we observe a system.
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ABSTRACT

OPTIMAL ADAPTATION PRINCIPLES IN NEURAL SYSTEMS

Kamesh Krishnamurthy

Vijay Balasubramanian and Joshua I. Gold

Animal brains are remarkably efficient in handling complex computational tasks,

which are intractable even for state-of-the-art computers. For instance, our ability

to detect visual objects in the presence of substantial variability and clutter sur-

passes any algorithm. This ability seems even more surprising given the noisiness

and biophysical constraints of neural circuits. This thesis focuses on understanding

the theoretical principles governing how neural systems, at various scales, are adapted

to the structure of their environment in order to interact with it and perform informa-

tion processing tasks efficiently. Here, we study this question in three very different

and challenging scenarios: i) how a sensory neural circuit the olfactory pathway is

organised to efficiently process odour stimuli in a very high-dimensional space with

complex structure; ii) how individual neurons in the sensory periphery exploit the

structure in a fast-changing environment to utilise their dynamic range efficiently; iii)

how the auditory system of whole organisms is able to efficiently exploit temporal

structure in a noisy, fast-changing environment to optimise perception of ambiguous

sounds. We also study the theoretical issues in developing principled measures of

model complexity and extending classical complexity notions to explicitly account for

the scale/resolution at which we observe a system.
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Chapter 1

Introduction

Our brains are remarkably efficient in handling complex computational tasks, which

are intractable even for state-of-the-art computer algorithms. For instance, our ability

to rapidly detect visual objects in the presence of substantial variability and clutter

surpasses any algorithm[1]. This ability seems even more surprising given the con-

straints faced by the neural circuits performing these computations; for instance, the

timescale of computation by neurons is much slower than what can be implemented

in silicon. Also, neural circuits in vivo exhibit substantial variability in their spiking

activity: both the temporal dynamics of a single neuron’s spiking and the response

of the neuron to repeated presentations of a common scenario are highly irregular

[2, 3]. This has been attributed to the activity of the neuron being driven by the

fluctuations in its inputs rather than the mean input [4]. How are neural systems

able to function robustly and efficiently in spite of these constraints?

A salient aspect of many neural systems – especially ones involved in sensory process-
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ing – is that they are designed to exploit the structure in their natural environment.

This idea has some experimental backing in simple systems such as single cells in the

sensory periphery [5]. In this thesis, I study the principles by which neural systems,

at different scales, exploit the structure in their environment to perform information

processing tasks efficiently. I look at this problem of adaptation to environmental

structure in two very different and challenging scenarios: i) how the olfactory sys-

tem is organized to efficiently process odor stimuli in a very high-dimensional space

with complex structure and ii) how the auditory system is able to efficiently exploit

temporal structure in a noisy, fast-changing environment to optimize perception of

sounds. I also develop a quantitative framework based on principled measures of

model complexity to explain the individual differences in adaptive behavior as arising

from different complexities of internal models.

1.1 Adaptation to complex, high-dimensional struc-

ture of a stimulus space

The first example I consider is the adaptation of the general-purpose olfactory path-

way to the complex structure of its stimulus space. The space of ecologically relevant

volatile molecules that an organism, like a fruit fly, encounters is typically very large;

some estimates put the dimensionality of this space on the order of 107 [6]. Un-

covering the physical dimensions of the odor space that are relevant for perception

has turned out to be very challenging; unlike vision or audition, where the physical

dimensions responsible for perception of a simple light or sound stimulus are well

characterized, it is very hard to predict how a new volatile molecule will smell just

based on its chemical structure. In spite of these challenges in uncovering structure of

the olfactory space, there is one salient aspect of natural odors which might make the
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analysis easier: they are sparse in their composition – i.e., each odor typically contains

a tiny fraction of all the possible volatile molecules. These molecules are sensed by a

family of G-protein-coupled olfactory receptors, each of which is ‘hard-coded’ in the

genome [7]. The number of types of receptors ranges from ∼ 100 to ∼ 1000 across a

range of organisms. A notable characteristic of these receptors is that each receptor

typically responds with varying intensities to a large fraction of molecules presented

to it. This sort of ‘disordered and diffuse sensitivity’ has been typically thought to

be due to biophysical limitations of making specific sensors, and the weak responses

are assumed to be uninformative. However, the large fraction of the genome devoted

to encode these receptors suggests that they might have evolved specially to have

diffuse sensitivities. Here, we show that such broad and diffuse sensitivity is optimal

to sense the space of natural odours with a sparse structure. We draw on results from

theory of random projections to show that the sensing by receptors efficiently embeds

a high-dimensional space with a sparse structure into a lower dimensional space, by

comparing experimentally measured responses to several benchmark models of sens-

ing. Our results also suggest that the weak responses are indeed informative, and

it is not the precise specificities of receptors to certain molecules that matters, but

it is the overall distribution of responses in the population. Further, we show that

the random and expansive projections which transform the representation of odors at

the receptor stage, are ideally suited to enable learning flexible associations between

stimuli and behaviors. Thus, the disorder observed in various parts of the olfactory

pathway – in the receptor responses and later on in the projections – may efficiently

enable learning flexible associations between stimuli in a complex high-dimensional

space and behaviors. This use of disorder by the olfactory system is in contrast to how

other sensory systems use structured connectivity and responses to extract stimulus

features relevant for perception.
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1.2 Adaptation to temporal structure in a noisy,

fast-changing environment

The second scenario I consider is how systems exploit the temporal structure in noisy

and fast-changing environments to perform information processing tasks efficiently. I

study this problem in two systems of very different scales with different objectives:

i) human subjects performing perceptual inference of dynamic, variable sounds and

ii) individual retinal ganglion cells encoding visual stimuli from a noisy and dynamic

environment. In the first case, human subjects construct dynamic ‘priors’ about the

environmental structure to make accurate inferences about the noisy sensory inputs,

and in the second case the cells dynamically adjust their response properties so as

to use all their dynamic ranges efficiently to represent the stimuli. Both these cases

require estimating the statistics of an ambiguous and fast-changing environment –

a difficult problem in general. In this thesis, I will mainly present the first case of

perceptual inference by human subjects and briefly mention the single cell case below.

1.2.1 Dynamic perceptual priors optimize perception of sounds

It is well known that the expectation about an ambiguous stimulus can influence

the perception of that stimulus. Several experiments have studied this phenomenon

using the framework of Bayesian inference, where the uncertainty about the observed

stimulus is encoded as the ‘likelihood’ distribution and the expectation about the

stimulus is encoded in the prior distribution. Bayes rule tells us how to combine

these sources of information in order to make an inference about the stimulus. As

an example, it is well known that humans perceive objects moving in low contrast

conditions as moving slower; this effect can be explained by our prior bias for lower
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speeds – i.e., objects in the world don’t move around too much [8]. Although the

Bayesian framework has been very successful in explain perceptual behavior, most of

these experiments are done in stationary settings and it is unclear if and how these

principles apply when the environment evolves rapidly.

Our work on dynamic auditory perception uses a combination of computational mod-

elling, psychophysics and pupil analysis to show how human subjects are able to build

and update appropriate priors encoding temporal structure in noisy, fast-changing en-

vironments, and how they use these priors efficiently to optimize perception of sounds.

Furthermore, we provide evidence for a mechanism which might mediate the dynamic

balance between prior expectations and (noisy) sensory information in guiding per-

ception. We show that the moment-to-moment fluctuations in pupil diameter (a

proxy for activity of Locus Coeruleus(LC) and related arousal areas) are predictive

of fluctuations in the relative weight given to priors beyond what can be predicted by

recent stimulus history and overall subject biases. This provides more evidence to

the hypothesis that the activity of LC-related arousal areas might act as a dynamic

gain control between external information and internal beliefs.

1.2.2 Dynamic rescaling by single sensory neurons optimize
resource utilization

This project was conceived at the Methods in Computational Neuroscience
summer school at Woods Hole and is not presented in this thesis. Details
can be found in:

K. Krishnamurthy, Wark, B., Fairhall, A. and J. Pillow,
Efficient coding with time-varying stimuli and noise. Computational and
Systems Neuroscience(CoSyNe), Salt Lake City, Utah, Feb. 2016.
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An influential hypothesis in sensory physiology, proposed by Barlow et al. [9], posits

that cells sensing their environments, with limited dynamic ranges, will organise their

response functions so as to ‘efficiently’ use their entire dynamic range. Here ‘efficient’

is often interpreted to mean uniformly – i.e. all levels of the output response are used

more or less equally. Framed in the language of Information Theory, this means that

the response entropy of the cells are maximised, subject to resource constraints. Sev-

eral experiments have confirmed this hypothesis by comparing the maximum-entropy

response function predicted by the distribution of natural signals in the environment,

to the actual response function of the cells (for e.g. [5]). However, the experiments

and the theory itself are usually discussed in a steady-state setting where the envi-

ronment does not change. This is in stark contrast to two empirical facts: i) the

natural environments encountered by these cells is usually constantly evolving over

several timescales and ii) experimentally, it is well known that the response functions

of the cells change dynamically as the environmental statistics change. We extend the

classical theory to dynamic settings by formulating a theory of dynamic efficient cod-

ing and answer the question “How should the response functions of cells optimally

evolve?”. In forthcoming work, we are comparing the predictions of the theory in

simple but common scenarios to the neural data from retinal ganglion cells.

1.3 Model complexity and individual differences

in adaptive behavior

In this section, I study the variability in adaptive behavior across individuals. Adap-

tive behavior in several sequential inference tasks is consistent with the prescriptions

of optimal models; however, individual subjects show considerable variability in their

strategies. One possibility is that this variability is due to uncontrolled factors. How-
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ever, we consider the possibility that this variability can be explained by difference

in model complexity used by different individuals. More specifically, to perform in-

formation processing tasks in noisy, fast-changing environments, the organism needs

to have an internal model of the environment. We suggest that individual subjects

might have a bias towards more or less complex models, but given that they chose a

model with a certain complexity, they do the best they can with that model. Note

that this need not be the case – one can form complex models of the environment

which pick out features that are irrelevant to predicting unseen examples. To test this

hypothesis, we first create a quantitative framework based on predictive information

[10], to measure model complexity in a principled way. We then compare this measure

of complexity to other principled notions of model complexity based on Information

Geometry from the model selection literature. Both these notions of complexity are

strictly valid for large datasets. We finally describe a notion of complexity that arises

from effective/emergent models for small datasets. This notion of complexity is re-

lated to the phenomenon of sloppiness [11], and in forthcoming work we aim to make

precise the links between the classical notions of model complexity and that which

arises from sloppiness.
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Chapter 2

Disorder and the neural
representation of complex odors:
smelling in the real world

Most of this section appears in:

K. Krishnamurthy∗, A.M. Hermundstad∗, T. Mora, A. Walczak and V.
Balasubramanian
arXiv:1707.01962

2.1 Abstract

Animals smelling in the real world use a small number of receptors to sense a vast

number of natural molecular mixtures, and proceed to learn arbitrary associations

between odors and valences. Here, we propose a new interpretation of how the ar-

chitecture of olfactory circuits is adapted to meet these immense complementary

challenges. First, the diffuse binding of receptors to many molecules compresses a
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vast odor space into a tiny receptor space, while preserving similarity. Next, lateral

interactions densify and decorrelate the response, enhancing robustness to noise. Fi-

nally, disordered projections from the periphery to the central brain reconfigure the

densely packed information into a format suitable for flexible learning of associations

and valences. We test our theory empirically using data from Drosophila. Our theory

suggests that the neural processing of olfactory information differs from the other

senses in its fundamental use of disorder.

2.2 Introduction

Animals sense and respond to volatile molecules that carry messages from and about

the world. Some kinds of olfactory behaviors require sensing of particular molecules

such as pheromones. These molecules and the receptors that bind to them have likely

co-evolved over long periods of time to ensure precise and specific binding. However,

to be useful as a general purpose tool for interaction with a diverse and changing

world, the olfactory system should be prepared to sense and process any volatile

molecule. There are a very large number of such monomolecular odorants (perhaps

billions [6]), far more than the number of receptor types available to bind these odor-

ants. Humans and mice, for instance, have just ∼ 300 and ∼ 1000 functional olfactory

receptor types, respectively. Yet, animals may be able to discriminate between orders

of magnitude more odors than the number of receptor types (a high estimate is given

in [12], but see [13] ).

At an abstract level, the early stage of the olfactory system faces the immense chal-

lenge of embedding a very high-dimensional input space (the space of odor molecules)

into a low-dimensional space of sensors (the response space of olfactory receptors).
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This embedding must preserve similarity between different odors well enough to per-

mit the judgements of sameness and difference that are crucial for behavior. Fur-

thermore, experiments [14] suggest that this odor representation is reorganized in

higher brain regions to be enormously flexible, allowing learning of nearly arbitrary

associations between valences and different groups of odors. Here, we propose a new

theoretical framework (Fig. 2.1), and provide empirical evidence, suggesting that the

olfactory system powerfully exploits physiological and structural disorder at different

stages of processing to meet these two complementary challenges: (i) compression of

a vast odor space into a tiny receptor space, and (ii) reorganization of the information

to allow flexible learning.

To perform effectively within its design constraints, a sensory system must exploit

structure in the environment. For example, the statistics of natural images dictate an

efficient decomposition into edges [15], likely explaining why simple and complex cells

in the visual cortex respond preferentially to oriented lines [16]. We noted [17] that a

salient feature of natural odors is that they typically contain only a tiny fraction of the

possible volatile molecular species. For example, food odors typically are composed

of 3-40 molecules [6]. Natural odors are thus sparse in the high-dimensional space

of odorant molecules. Surprising results from the mathematical literature on random

projections [18, 19, 20] show that there is an efficient solution for storing signals of this

nature: sparse, high-dimensional input signals can be encoded by a compact set of

sensors through diffuse and disordered measurements of the input space. For example,

this sort of compression can be achieved if each sensor response contains randomly

weighted contributions from every dimension of the input space. Importantly, this

diffuse sensing need not be tuned to the specific structure of the input signal – i.e. in

this manner, it can be non-adaptive. We propose that the olfactory system employs

10



such a diffuse sensing strategy in order to exploit the sparse structure of natural odor

space and produce compact representations of odors (Fig. 2.1).

Ultimately, these odor representations must support associations between odors and

valence, and experimental evidence suggests that animals can learn such associations

both flexibly and reversibly [14]. However, as we will show, the compact representa-

tions achieved by diffuse sensing make such learning difficult. We show that another

form of disorder—a “densification” and decorrelation of responses, followed by a dis-

ordered expansion—can reorganize odor information into a format that facilitates

flexible learning.

We provide evidence for our proposal by analyzing the olfactory system of Drosophila.

We show that the diffuse responses of olfactory receptor neurons provide a compact

representation of odor information. We then show that the nonlinear transformation

in the second stage of olfactory processing (Antennal Lobe in insects; Olfactory Bulb

in mammals), followed by the apparently disordered, expansive projection to the

third stage of olfactory processing (Mushroom Body in insects; Piriform Cortex in

mammals), facilitate flexible learning of odor categories from small and arbitrarily-

chosen groups of sparsely firing neurons. Finally, we demonstrate that the disorder

introduced by both the densification and the expansion is critical for robustness to

noise.

2.3 Olfactory receptor neurons use disorder to en-

code natural odors

Volatile molecules are sensed when they bind to olfactory receptors, each encoded

by a separate gene [7]. For example, in mice, almost 5% of the genome is devoted

11



olfactory receptors:
bind di�usely to odorants

chemotopic space:
high-dimensional

disordered projections:
distribute information for �exible learning

glomerular transformation:
densi�es and decorrelates

appetitive
aversive

natural odors:
sparse 

odorant
molecules 

mixture composition
vector

Stage 1
Olfactory Receptor

Neurons (ORNs)

Stage 2
Antennal Lobe (insects)

Olfactory Bulb (mammals)

Stage 3
Mushroom Body (insects)

Piriform Cortex (mammals)

Input Space

Figure 2.1: Proposal: The olfactory system uses two kinds of disorder to first compress
odor information into a small number of receptors, and then reconfigure this informa-
tion to enable flexible associations between odors and valences. (i) Natural odors are high
dimensional but sparse: each one contains a tiny fraction of all possible monomolecular odorants.
(ii) Olfactory receptors diffusely bind to a broad range of odorants, producing a compact represen-
tation of odor information that enables accurate decoding. (iii) The Antennal Lobe/Olfactory Bulb
“densifies” and decorrelates this representation, providing robustness to noise. (iv) Disordered pro-
jections from the Antennal Lobe/Olfactory Bulb to the Mushroom Body/Piriform Cortex, followed
by nonlinearities, create a sparse and distributed representation of odors that facilitates flexible
learning of odor categories from small and arbitrarily-chosen subsets of neurons.

to encoding about 1000 receptor types. Despite such large genomic investments, the

number of receptor types is dwarfed by the number of volatile molecules that a general

purpose olfactory system might seek to sense. This raises two related questions. First,

is it possible, even in principle, to sense the high-dimensional space of molecules using

the inevitably low-dimensional space of receptor responses? Second, can this sensing

be done by neurons so that odors with similar mixture compositions are mapped to

nearby regions in response space?

To solve this problem, there is a key simplification that the nervous system could ex-

ploit – natural odors typically contain a tiny fraction of the possible volatile molecules

[6]. Thus, the representation of a natural odor in terms of its molecular concentra-

tion vector is extremely sparse. Suppose there are N types of volatile molecules, and

any given natural odor contains no more than K � N of these types. Then, recent
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results in mathematics show that a small number of linear sensors (about K) could

store complete information about natural odors, provided that their binding affinities

were statistically random [18, 19, 20]. This fact suggests a new perspective on the

olfactory system: rather than having strong responses for a specific set of important

molecules, a general purpose receptor repertoire should be selected to have molecular

affinities that are as disordered as possible, subject to constraints imposed by bio-

physics and evolution. Likewise, the quality of olfaction as a general purpose sense

will be determined by the degree of disorder in response patterns.

Is there evidence for this view? Indeed, most Olfactory Receptor Neuron (ORN)

types respond diffusely to many odorants, and most odorants evoke diffuse responses

from diverse ORN types (insect: [21, 22]; mammal: [23]). To assess the quality of

the representation of natural odors in ORN responses, we analyzed firing rates of

24 ORN types in Drosophila responding to a panel of 110 monomolecular odorants

[21]. We used this data to model responses to mixtures of odorants that are complex

but sparse like natural odors. To do this, we constructed a firing rate “response

matrix” R whose entries specify the responses of each ORN to each monomolecular

odorant. We assumed that the ORN responses to odor mixtures are linear, which is

a reasonable approximation at low concentrations [24]. This enabled us to define a

complex mixture by a 110-dimensional composition vector ~x whose entries specify the

concentrations (measured relative to [21]) of monomolecular odorants in the mixture.

The ORN firing rates ~y can then be modeled as linear combinations of responses to

monomolecular odorants: ~y = R~x.

To construct each mixture composition vector ~x, we set a small number K of its

elements to be nonzero (where K specifies the complexity of the mixture). The values

of these nonzero entries were chosen randomly and uniformly between 0 and 2. We
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then attempted to decode composition vectors (x̂) from responses ~y using an efficient

algorithm for decoding linearly-combined sparse composition vectors [25, 19, 20]. We

deemed the result a failure if the average squared difference between components of

the decoded (x̂) versus original (~x) composition vectors exceeded 0.01, and defined

decoding error as the failure probability over an ensemble of 500 odor mixtures {~x}.

This is a stringent criterion that we are using to quantify the accuracy with which

mixture information is encoded in the ORN responses; there is no evidence to suggest

that olfactory behavior requires this level of accuracy, nor do we assume that the

brain uses this particular decoding scheme. We checked that our findings are robust

to different choices of failure threshold used to assess decoding error (Fig. 2.5).

Fig. 2.2A shows the decoding error for varying mixture complexity K and numbers of

ORN types. Performance improves with increasing number of ORNs and decreasing

mixture complexity. We compared the decoding error obtained from the measured

ORN responses to two idealized alternatives: (1) a Gaussian random model, in which

each ORN responds randomly to different odorants (with the overall mean and vari-

ance matched to data), and (2) a generalized “labeled-line” model, in which each

ORN responds (with the same strength) to only five randomly-selected odorants.

The Gaussian random model would be an optimal strategy in the limit of many re-

ceptors and a large odor space [25], while the labeled line model is often considered to

be a plausible interpretation of olfactory receptor responses. The Drosophila ORNs

significantly outperform the labeled-line model and approach the performance of the

Gaussian random model (Fig. 2.2C). Quantitatively, 67% of mixtures with 5 or fewer

components drawn from 110 odorants can be accurately decoded from the responses

of 24 receptors. There are a staggering 100 million such mixtures. Again, this is

not to say that the fly brain attempts to reconstruct all of these odors with such an
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accuracy, but it does say that the receptors contain the necessary information. Our

theory also predicts that the olfactory representation of odors does not depend on the

details of how specific receptors respond to specific odors, but rather only depends

on the broad distribution of responses across many receptors and many odors. We

tested this prediction by scrambling the Drosophila response matrix (Fig. 2.2B) with

respect to both odors and receptors and indeed found identical decoding performance

(Fig. 2.2C).

Our theory predicts that the olfactory code spreads information across all receptors,

so that even weak responses are informative. To test this comprehensively, we thresh-

olded the Drosophila response matrix to keep only a fixed fraction of the strongest

responses, and then scrambled the odor identities for each receptor to create receptor

responses with the same thresholded distribution. As predicted by our theory, as this

fraction varied from 0 to 1, decoding performance improved systematically (Fig. 2.5).

2.4 The glomerular transformation increases dis-

order in response patterns

Our theory suggests that disordered sensing — in which a single receptor binds to

many odorants, and a single odorant binds to many receptors — is a powerful strat-

egy for the olfactory system to employ. However, Drosophila ORN responses are

noticeably structured and have a more clustered distribution of firing rates than, e.g.,

the Gaussian random model (Fig. 2.2B). These correlations, perhaps arising from

similarities between odorant binding sites or between receptor proteins, induce some

order in receptor responses. These responses are modified when receptors of each

type converge to a second stage of processing in distinct glomeruli of the Antennal
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Lobe (analogously, the Olfactory Bulb in mammals). There, a network of inhibitory

interneurons reorganizes the receptor responses for transmission downstream [26]. In

the fly, the inhibitory network is well-described as effecting a divisive normalization

[27, 28] that scales the responses of each ORN type in relation to the overall activity

of all types (Appendix B). Applying this transformation to the Drosophila response

matrix, we find that glomerular responses become more widely distributed and less

correlated (Fig. 2.3A) than their ORN inputs. This densification and decorrelation

increases disorder.

Does this increased disorder improve the representation of odor information? Because

the divisive normalization is nonlinear, we cannot, strictly speaking, use the afore-

mentioned decoding algorithm to evaluate the information content of the glomerular

representation. However, we can instead create an artificial benchmark in which

mixtures ~x lead to responses ~y via ~y = R(2)~x, where R(2) represents a matrix of arti-

ficial glomerular responses obtained by transforming experimentally measured ORN

responses to an odor panel in [21] via divisive normalization (see Appendix B). Quan-

titatively, 67% of mixtures with 7 or fewer components drawn from 110 odorants can

be accurately decoded from the responses of 24 glomeruli, while similar accuracy was

achieved for mixtures with only 5 components when decoding from ORNs (Fig. 2.3B).

Because the number of possible mixtures increases combinatorially with the number

of mixture components, this is a substantial improvement. A similar analysis shows

that applying the divisive normalization to the labeled-line and Gaussian random

models yields no improvement in decoding relative to the receptor stage (Fig. 2.3B).

As with decoding from ORNs, scrambling the responses over glomeruli and odors leads

to identical decoding performance (Fig. 2.3B), again suggesting that only the broad

distribution of responses is important for the odor representation. Weak responses
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remain informative; we again find that thresholding the response matrix degrades

performance (Fig. 2.5). Finally, we confirmed that our conclusions do not depend on

details of the divisive normalization, but found, interestingly, that the experimentally-

measured parameters [27] of this transformation minimize decoding error relative to

other parameter choices (Fig. 2.6).

An alternative way of assessing the quality of a sensory representation is to ask

how well it supports flexible associations between odors and valence. To this end,

we randomly labeled mixtures “appetitive” or “aversive”, and we trained a linear

classifier to identify these labels from ORN and fully nonlinear glomerular responses

(Appendix C). Surprisingly, performance was poor (Fig. 3C), even though mixture

compositions can be accurately decoded from these responses (Fig. 2.2C & 2.3B).

We conclude that although these first stages of processing retain nearly complete

information about odor mixtures, this information is not readily usable for learning.

2.4.1 Disordered projections reorganize odor information to
facilitate flexible learning

Although early stages of olfactory processing apparently do not support flexible learn-

ing, we know empirically that the representation at the third stage in the pathway

can support such learning (fly: [29, 30]; mammal: [14]). How is odor information

reorganized to achieve this?

In both insects and mammals, the transformation from the second to third stage of

olfactory processing has two notable features: (i) expansive and disordered projections

that distribute odor information across a large number of cells [31, 32], and (ii)

nonlinearities that sparsify responses [33, 34]. As a result, an odor is represented by a
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sparse pattern of activity distributed broadly across cells in the third stage. We expect

from general theory that this transformation should facilitate flexible associations

between odor signals and valence [35, 36, 37, 38]. Here, we propose that two additional

sources of disorder – densification achieved at earlier stages, and lack of structure in

the connectivity patterns – allow such associations to be learned from small groups

of neurons drawn arbitrarily from within the population.

To test this, we simulated the responses of Kenyon cells in the Mushroom Body

of the fly to odor mixtures (Fig. 2.4A). We modeled each Kenyon cell as receiving

inputs from 8 glomeruli selected at random, reflecting empirical estimates [31, 39]

(interestingly, other choices yield worse performance; Fig. 2.7). Connection weights

were drawn uniformly between 0 and 1 (Fig. 2.4B, left). We modeled long range

inhibition by first removing the average response to an ensemble of odors, and then

thresholding to eliminate weak responses (Appendix D, [38]). This imposed a tunable

level of sparsity in the population response. We fixed this sparsity to 15% to match

experimental estimates [34, 33]. To assess learning, we generated responses to an

ensemble of 5-component odor mixtures (as described above), and trained a linear

classifier to separate responses into two arbitrarily-assigned classes (Appendix C). We

defined classification error to be the fraction of mixtures that are incorrectly labeled

by the classifier, averaged over 100 ensembles of mixtures and 100 labelings of each

ensemble into appetitive/aversive classes.

We first compared classification from Kenyon cell responses (Fig. 4C) to that from re-

sponses of ORNs or glomeruli (Fig. 2.3C). To directly compare these different stages,

we selected random subsets of n = 160 sparsely-active Kenyon cells. This ensured

that any given odor would activate an average of 24 cells (0.15 × 160), matching the

number of ORN and glomerulus types in our dataset. We found that a linear clas-
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sifier trained on Kenyon cell responses could categorize up to 300 mixtures with less

than 10% error (Fig. 2.4C), performing far better than a classifier trained on ORN or

glomerular responses (Fig. 2.3C). In fact, even a much smaller population of n = 80

Kenyon cells (with an average of 12 active cells per odor) yielded better classification

performance than the complete ORN or glomerular populations. Moreover, any ar-

bitrary subset of a given size was equivalent (histogram inset of Fig. 2.4C). When we

increased the number of cells used as a readout or decreased the average sparsity of

responses, we found no improvement in classification (Fig. 2.8).

We then examined the role of disorder on classification performance. To do this, we

separately removed each source of disorder (densification at the Antennal Lobe, and

disordered projections from the Antennal Lobe to the Mushroom Body). To examine

the role of the densification at the Antennal Lobe, we projected responses directly

from the ORNs to the Mushroom Body, rather than passing responses through the

transformation at the Antennal Lobe. To examine the role of disordered projection

patterns, we introduced local structure in the projections from the Antennal Lobe to

each subset of Kenyon cells in the Mushroom Body (Fig. 2.4B, right). Within a given

subset, we required that a fraction of Kenyon cells received preferential inputs from

a fraction of glomeruli (in both cases, the fraction was taken to be 1/3). In doing so,

we constrained the overall distribution of connection strengths to match those used

to generate disordered connectivity (Appendix E). This ensured that as a whole, each

subset of Kenyon cells sampled all glomeruli, and any differences in performace were

guaranteed to arise purely from differences in local connectivity patterns.

In the absence of neural variability, neither manipulation affected classification perfor-

mance. However, both manipulations impacted performance in the presence of noise.

To demonstrate this, we added proportional Gaussian noise of magnitude η
√
ar to
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the firing rates r of each ORN, where η was drawn from a standard Gaussian and

a = .25 controlled the coefficient of variation. As expected, noise degraded perfor-

mance (Fig. 2.4B,C). Suprisingly, the impact of noise was worse when either of the

two sources of disorder was removed, and even more when both sources were removed

(Fig. 2.4C). Taken together, these results suggest that the disorder in the connectivity

and the densification at the Antennal Lobe aids in learning flexible associations at

the Mushroom Body.

2.5 Discussion

We propose a new conceptual paradigm in sensory neuroscience: the use of disorder for

building sensory representations that are accurate, compact, and flexible. We argue

that this paradigm explains the organization and function of the olfactory system,

where disorder plays two key roles: (i) diffuse sensing by olfactory receptors serves to

compress high-dimensional odor signals into compact neural representations, and (ii)

densification followed by disordered expansion serves to reformat these representations

for flexible learning. This paradigm exploits a key feature of natural odor signals—

sparsity—to overcome a bottleneck in the limited number of olfactory receptor types.

We used a combination of data and modeling to provide evidence for this paradigm

in fly. Olfactory circuits in mammals show very similar anatomical and functional

motifs, including broad receptor tuning [23] and apparently disordered projections to

the cortex [32]. This convergence between distant species suggests that disorder could

provide a universal computational explanation for the architecture of early olfactory

circuits.
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The logic of olfactory receptors. Our theory predicts that general-purpose olfac-

tory receptors should be selected for diffuse binding to many odorants, and not for the

strong and specific binding often seen in biochemical signaling. An alternative view

suggests that receptors should be adapted to bind selectively to molecules in particular

odor environments or ecological niches [22, 40]. These alternatives can be separated

in experiments that measure the affinities of olfactory receptors to very large panels

of odorants with varying ethological relevance. We predict that the typical receptor

will have a diverse range of binding affinities across a broad array of odorants, with a

statistically similar spread across molecules that both do and do not have immediate

ethological importance. Likewise, we predict that receptors in different species, even

related ones, will typically have broadly different distributions of binding affinities,

with similarities arising from biophysical constraints of olfactory receptors and not

from properties of ecological niches. In addition, as a whole, the receptor repertoires

of different species will show similar coverage across the space of odorants. This

strategy resembles that of well-adapted immune repertoires, where different antibody

distributions achieve similar coverage of the same pathogen landscape, as predicted

theoretically [41] and observed in experiment [42, 43].

The computational role of expansive and disordered projections. While this

work provides evidence for the role of disordered sensing in the compression of odor

information, it also adds to a growing body of work on the computational role of ex-

pansion via disordered neural projections. Expansive projections are known to make

classification easier [35, 36, 38], and the computational benefits of this expansion can

be further improved by Hebbian learning [37] and by sparse connectivity [39]. We

have argued here that the primary purpose of the expansion from the second to the

third stage of olfactory processing is to reorganize a highly compressed representation
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of odors produced by disordered sensing by the receptors. By contrast, other stud-

ies have proposed that this expansion could itself implement a form of odor signal

compression [17, 44], or even a direct encoding of odor space [45, 46] (in one case

requiring unsupported assumptions about the mathematical relationship between the

expansion and ORN responses [45]). We found no evidence that expansive projections

implement a form of compression, nor do we find evidence to support the direct rep-

resentation of odor composition in Kenyon cell responses. Rather, we found evidence

that the expanded representation is organized to support flexible learning of categories

[47, 14] from modest subsets of Kenyon cells. Anatomical evidence in fly indeed sug-

gests that each olfactory readout neuron samples a only fraction of the Mushroom

Body [48] while still allowing formation of complex associations [49]. Our view is

also consistent with abstract theory showing that sparsely firing binary neurons with

“mixed selectivity” permit both discrimination between, and effective generalization

from, complex overlapping binary inputs[36, 50]. Our work can be viewed as addi-

tionally showing that receptor neurons with “mixed selectivity” effectively compress

high dimensional sensory information, while subsequent “mixed sampling” of these

responses reformats them for flexible learning by a simple readout.

Implications for behavior. Conceptually, our key idea is that disorder in the ol-

factory system is a fundamental adaptation to the intrinsic complexity of the world

of smells. We predict, distinctively, that odor information is distributed in both weak

and strong responses across the entire ensemble of olfactory receptor types, and that

this is important for complex discrimination tasks. An alternative view suggests a

“primacy” code where only the earliest or strongest responses are relevant for be-

havior [46]. We have shown (Fig. 2B and Fig. 2.6) that an encoding scheme that

retains only the strongest responses contains much less information about complex
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mixtures than does a scheme that retains both strong and weak responses. Because

of this, we expect that our view can be separated from the primacy code in behavioral

experiments that vary the complexity of discrimination tasks, e.g. by increasing the

number of odors, the number of mixture components, and the degree of overlap be-

tween mixture components. Given knowledge of responses to individual odorants, our

theory quantitatively predicts the decline of behavioral performance with task com-

plexity (e.g., Figs. 2,3,4). Likewise, our theory predicts how the relationship between

behavioral performance and task complexity will vary as a function of information

content in the olfactory pathway. This information content can be experimentally

manipulated by creating genetically-impoverished or enhanced receptor repertoires,

optogenetically blocking inhibitory neurons in the Antennal Lobe to remove densifi-

cation, or optogenetically activating Kenyon cells to simulate structured projection

patterns from the Antennal Lobe.

Looking ahead. Testing these predictions requires a movement away from simple

paradigms involving small mixtures and pairwise discrimination, towards far more

complex tasks that are reflective of life in the real world. Methodologically, this shift

has begun occurring in the study of vision. We have argued here that in olfaction,

this shift is even more critical – the functional logic of the sense of smell can only be

understand by taking into account the complexity of the real odor world.
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2.6 Supplementary Information

2.6.1 Decoding odor composition

To reconstruct ~x from measurements ~y = R~x, we used the Iteratively Reweighted

Least Squares (IRLS) algorithm [51] to find the vector that minimizes the L1 norm of

~x subject to the constraint ~y = R~x, with 500 maximum iterations and a convergence

tolerance (in norm) of 10−6.

2.6.2 Divisive normalization in the Antennal Lobe

Lateral inhibition in the Antennal Lobe is believed to implement a form of divisive

normalization [27, 28, 26]:

R
(2)
i = Rmax · (R(1)

i )1.5/

[
σ1.5 + (R

(1)
i )1.5 + (m ·

∑
i

R
(1)
i )1.5

]
(2.1)

where R
(1)
i is the response of the ith ORN type, R

(2)
i is the response of the ith

glomerulus, σ parametrizes spontaneous activity, and m controls the amount of nor-

malization. We use Rmax = 165.0, σ = 10.5, and m = 0.05 [27]. We constructed

an artificial glomerular response matrix R(2) by applying this transformation sepa-

rately to the ORNs responding to each of the 110 odorants studied in [21]. Thus R
(2)
ij

represented the response of the ith glomerulus to the jth odorant.
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2.6.3 Linear classification

To measure how well a particular odor representation (responses of ORNs, glomeruli,

or Kenyon cells) facilitates learning flexible associations between odors and valences,

we randomly split the representation of input mixtures into two classes and then

trained a linear classifier (SVM with linear kernel [52]) to classify the inputs.

2.6.4 Generating Mushroom Body responses

We took each Kenyon cell to have non-zero connection weights drawn uniformly be-

tween 0 and 1 with 8 randomly selected glomeruli (see Results). Then, following [38],

we took the input to the ith Kenyon cell, evoked by an odor with glomerular responses

~y in the Antennal Lobe, to be

hi = 〈 ~wi, (~y − 〈~µ, ~y〉 ~µ)〉 (2.2)

where 〈·, ·〉 is an inner-product, ~wi is the vector of connection strengths, and ~µ is the

average Antennal Lobe response vector over all odors, normalized to unit length. We

chose a response threshold so that a fraction f of neurons with inputs hi exceeding

threshold are considered active, and normalized the thresholded responses so that

the maximum firing rate is 5 Hz, on the order of the maximum observed Kenyon

cell responses. We averaged results over 100 random choices of connection strengths.

The global inhibition required in this model for generating the disordered responses

observed in the Mushroom Body [38] could be implemented by the APL neuron which

makes inhibitory connections to all the Kenyon cells
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2.6.5 Structured vs. random connectivity

We constructed structured connectivity matrices between glomeruli in the Antennal

Lobe and Kenyon cells in the Mushroom Body by reordering the columns of the

corresponding random connectivity matrix so that the two matrices model synapses

with the same connection strengths feeding into each Kenyon cell, but they sample

different glomeruli. The reordering of the columns was done so that the structured

connectivity matrix exhibited a block-diagonal structure as shown in Fig. 2.4B. For

analyses we chose the number of blocks to be 3. We then permuted the rows and

columns of the structured connectivity matrix so that the underlying structure was

not visible to the eye or to a casual analysis.

2.6.6 Robust decoding from ORN and glomerular responses

In the main text, we considered a simple linear model of the responses of 24 ORN types

in Drosophila responding to odor mixtures. Specifically, we extracted a firing rate

matrix R from the data in [21] (i.e. Rij is the response of receptor i to odorant j), and

we assumed that the response to a mixture could be written as a linear combination

of responses to single odorants. We defined a mixture by the composition vector

x whose elements specify the concentration of individual odorants in the mixture.

The ORN firing rates y could then be written as ~y = R~x. We then attempted to

decode composition vectors ~x from responses ~y using the optimal algorithm of [25, 51].

We regarded the reconstruction as a failure if the average squared difference between

components of the reconstructed odor vector and the original exceeded 0.01. Decoding

error was defined as the failure probability over an odorant mixture ensemble. This

criterion for successful reconstruction is equivalent to saying that the reconstruction
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shown are averages over 100 iterations over model scrambled response matrices. Decoding error is
measured as the probability of decoding failure (see text) over an ensemble of 500 randomly chosen
odor mixtures of a given complexity.
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x̂ of the odor composition vector ~x fails if the norm of the difference ‖~x− x̂‖ exceeds

a tolerance parameter of t = 1.1 (here we used the fact that the odor composition

vector ~x has 110 components). To test the robustness of our conclusions we varied

this tolerance parameter ten-fold, and found that the decoding error curves were

largely unchanged (Fig. 2.5A). Qualitatively, we observed this robustness because the

decoding of odors tends to either succeed very well, or fail very badly. As a result,

a broad range of criteria for defining a successful reconstruction will give similar

measures of decoding error.

According to our general theory, and the results of [25, 53], the quality of the ol-

factory code should not depend on the details of how specific receptors respond to

different odorants. Rather, the key determinant should be the overall distribution

of responses. To test whether this is the case, we scrambled the receptor and odor-

ant labels in the ORN response matrix (top inset in Fig. 2.5B), thus constructing

an artificial response matrix with the same overall distribution of firing rates, but

with no odor- or receptor-dependent correlations (second inset in Fig. 2.5B). We

found that decoding performance was essentially identical when using the scram-

bled and unscrambled response matrices ( Fig. 2.5B), consistent with the notion that

the olfactory system seeks to employ disordered and unstructured sensing. Interest-

ingly, separate scrambling of the receptor labels and odor labels either improved or

degraded the decoding, presumably because such scramblings removed correlations

that were either detrimental or beneficial for decoding ( Fig. 2.5B). These opposite

effects compensated each other when the sensing matrix was fully scrambled. We

repeated this analysis after implementing a divisive normalization of ORN responses

(see main text). In this case, all scramblings left the decoding performance unchanged

( Fig. 2.5C). We thus conclude that after correlations are removed by divisive nor-
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Figure 2.6: Weakly responding ORNs and glomeruli are informative about odor mixture
composition. (A) Firing rate response matrix measured from Drosophila ORNs (left, solid green),
and for increasingly diffuse model response matrices (right, dashed green; “diffuseness” = fraction of
largest responses kept). Model responses are constructed by thresholding measured responses and
then scrambling the response matrix. (B) Error in decoding from ORNs decreases systematically as
diffuseness increases – hence weak responses are informative. Results shown as a function of mixture
complexity (K = number of odor mixture components). (C) ORN responses are divisively normalized
to produce responses in the glomeruli of the Antennal Lobe (see Appendix B). Thresholding and
scrambling these responses produces sensing models with different degrees of diffuseness. Error
in decoding from glomeruli decreases systematically as diffuseness increases. Results shown are
averages over 100 iterations over model response matrices for each degree of diffuseness. Decoding
error is measured as the probability of decoding failure over an ensemble of 500 randomly chosen
odor mixtures of a given complexity.

malization, the overall distribution of responses is the sole determinant of the quality

of the olfactory information representation.

2.6.7 Weakly responding ORNs and glomeruli are informa-
tive

Our theory predicts that the olfactory code is dispersed across all the receptors, so

that even weak responses are informative. To test this, we parametrized the fraction
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of largest responses that are deemed above threshold by a “diffuseness parameter”

f . We retained a fraction f of the largest rank-ordered responses for each receptor,

and we set the remaining values to zero. A diffuseness value of f = 1.0 means we

retain all responses, whereas a diffuseness value of f = 0.5 means that we retained

the strongest 50% of all responses. We then created model response matrices for a

given diffuseness value f by randomly scrambling the thresholded receptor responses.

Fig. 2.6A shows the Drosophila ORN response matrix, along with model response ma-

trices with increasing diffuseness. Fig. 2.6B show decoding error (definition in main

text) as a function of mixture complexity K (K = number of nonzero components in

each mixture) for varying diffuseness. We see that decoding error decreases systemat-

ically as diffuseness increases, showing that weak receptor responses are informative

about odor mixture identity. The insets show decoding error as a function of the dif-

fuseness parameter for fixed values of mixture complexity (K = 3, 5, 7). The results

for the models with varying diffuseness are averaged over 100 randomly scrambled

model response matrices. Fig. 2.6C shows analogous results after applying divisive

normalization to model responses in the glomeruli of the Antennal Lobe (see Ap-

pendix B for details of this normalization). The results show that weakly responding

glomeruli are informative about mixture composition.

2.6.8 Optimal decoding from the Antennal Lobe

The inhibitory circuitry in the Antennal Lobe in Drosophila has been shown to per-

form a divisive normalization with the functional form [27, 28]

R
(2)
i =

Rmax ·
(
R

(1)
i

)a
[
σa +

(
R

(1)
i

)a
+

(
m ·
∑
i

R
(1)
i

)a]
,

(2.3)
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where R
(1)
i is the response of the ith ORN type, R

(2)
i is the response of the ith glomeru-

lus, σ parametrizes spontaneous activity, and m controls the amount of normalization.

A fit to data in [27, 28] gave the parameters Rmax = 165, σ = 10.5, m = 0.05 and

a = 1.5. In the main text, we constructed an artificial glomerular response ma-

trix R(2) by applying this transformation separately to the ORNs responding to each

of the 110 odorants studied in [21]. Thus R
(2)
ij represented the response of the ith

glomerulus to the jth odorant. In the main text, we studied odor decoding in an

artificial benchmark model in which mixtures ~x lead to responses ~y via ~y = R(2)~x.

We tested how our results for decoding error (see definition in the main text and

above) would be affected by changing the parameter m, which controls the amount

of inhibition in the Antennal Lobe, or the exponent a, which controls the shape of

the nonlinearity. In order to simplify our presentation, we study dependence on the

parameters of the normalization for two values of mixture complexity: i) K = 3, a

value where odor reconstruction from Antennal Lobe responses with experimentally-

measured parameters is near perfect (see main text), and ii) K = 7, a value where

a similar reconstruction starts to degrade. (See main text for details regarding the

construction of model odor mixtures of different complexities.) We found that in both

cases, the experimentally measured values of m and a led to the lowest decoding error

(Fig. 2.7).

2.6.9 Mushroom Body classification error for mixtures

We studied the error in a 2-way classification task for 300 5-component mixtures with

varying readout population sizes (n) and fraction of active Kenyon cells (f) in the

Mushroom Body (details of classification procedure and task in the main text). For

a given population size n, increasing the fraction of active neurons f barely changes
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Figure 2.7: The empirically determined divisive normalization in the Antennal Lobe is
optimal for the measured ORN sensing matrix. Decoding error (see main text for definition)
shown as a function of the exponent a, and the inhibition parameter m in the divisive normalization
carried out by the Antennal Lobe. Left and right plots correspond to mixtures with K = 3 and
K = 7 components drawn randomly from 110 odorants, respectively. The experimentally measured
operating point is indicated by a cross in each plot (m = 0.05 and a = 1.5). Decoding error
(definition in main text) is averaged over 500 iterations of mixture ensembles of a given complexity.

the classification performance (bottom panel of Fig. 2.8A). The classification error

with a given active fraction f decreases with the number n of neurons being read out

(left panel of Fig. 2.8A). However, there is a law of diminishing returns – excellent

performance is achieved for relatively small n, and further increasing the population

size makes little difference. The disordered projections from the Antennal Lobe to the

Mushroom Body suggest that any subset of a given size should be statistically equiv-

alent. We tested this by comparing the classification error obtained from different

subsets of Kenyon cells. The narrowness of the histogram of classification error for

10000 different populations (n = 105, f = 0.2) (lower left panel, Fig. 2.8A) shows that

any subset of a given size is indeed equally good at supporting flexible classification.

We also studied how the classification error depended on the number of glomeruli

sampled by each Kenyon cell in the Mushroom Body. Figure 2.8B shows the clas-

sification error as a function of the number of glomeruli sampled, for three different

35



.480

10

50

150

su
bs

et
 s

iz
e 

(n
)

classi�cation error

fraction active ( f )

er
ro

r

.25

200
.50 error

(n = 105,  f = .2)

.50
error

co
un

t

0

10000

.05 .1 .2 .3 .4 .5
.2

cl
as

si
�c

at
io

n 
er

ro
r

number of glomeruli sampled

.3

.2

.1

5 10 15 20

n = 150,  f = .15
n = 200,  f = .15

n = 250,  f = .15

A B

n : subset size
f  : fraction active

Figure 2.8: A) Classification error from responses of model Kenyon cells in the Mushroom Body
(MB) for arbitrarily separating 300 5-component mixtures into two classes as a function of the read-
out size (n) and the fraction (f) of active neurons. The horizontal and vertical sections correspond
to n = 105 and f = 0.2, respectively (section shown in panels below and to the left, respectively).
Bottom left panel: histogram of classification errors for 10000 different subsets of size n = 105 and
f = 0.2. The narrowness of the histogram shows that any two subsets of a given size are roughly
equivalent for odor classification purposes. B) Classification error at the Mushroom Body as a func-
tion of the number of glomeruli sampled by each Kenyon cell. Minimum error is found for sparse
sampling of glomeruli. All results shown are averages over 100 iterations over mixture ensembles,
100 labelings into appetitive/aversive classes, and 100 iterations over model connectivity matrices
between the Antennal Lobe and Mushroom Body (each using a different instantiation of noise). (See
main text for details regarding the generation of connectivity matrices and noise.)
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readout sizes. We see that the classification error initially decreases and then gradu-

ally rises as we increase the number of glomeruli sampled. This indicates that there

is an optimum for the number of sampled glomeruli. Recent work [39] has exam-

ined this question theoretically; here we show results with Drosophila data which are

consistent with [39].

2.7 Linearization of the Antennal Lobe transfor-

mation

Here we show that the nonlinearity in the transformation at the Antennal Lobe(Stage

2) is crucial in improving the embedding at the level of ORNs(Stage 1). Specifically,

we show that using a linear approximation to the Stage 2 transformation does not

yield improvements over the Stage 1 embedding. Recall, that our measure of the

quality of the Stage 1 embedding was the ability to reconstruct the mixing proportion

vector ~x from linear measurements ~y = R~x, where R is the matrix of responses in the

Drosophila dataset. At Stage 2 there is a (non-linear) divisive normalisation of the

form:

R
(2)
i =

Rmax ·
(
R

(1)
i

)1.5

σ1.5 +
(
R

(1)
i

)1.5

+

(
m ·
∑
i

R
(1)
i

)1.5 (2.4)

where R
(1)
i is the response of the ith ORN type (i.e. before Stage 2 processing) to

the presented odorant, and R
(2)
i is the responses of the ith glomerulus (i.e. after

Stage 2 processing) to the same odorant. We succinctly denote this transformation
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as R(2) = f(R(1)), where f() is the transformation function.

• m : the parameter that controls the strength of the global inhibition in the

divisive normalization model

• σ : term that is related to the level of spontaneous activity

In the main text, we measured the quality of the Stage 2 embedding by trying to

reconstruct the mixing vector ~x from modelled mixture responses at Stage 2 given

by : y = R(2)x where R(2) is the matrix of transformed responses to monomolecular

odorants described above. Here, we ask how well can we reconstruct ~x if we instead

use a linearized version of the nonlinearity f(). This will tell us how important is

the nonlinear nature of the transformation in improving the embedding at Stage 2.

Specifically, the linear approximation to the nonlinearity f around an operating point

~x0 is

f
(
R(1) ( ~x0 + δ~x)

)
≈ f

(
R(1) ~x0

)
+ [∂ifj]R

(1)δ~x (2.5)

Where [∂ifj] is the matrix with elements which are the partial derivatives elements of

f () along the various odorant dimensions. We can then ask for a given ~x0 how well

can we recover δ~x from y = [∂ifj]R
(1)δ~x. In particular, does pre-multiplying by [∂ifj]

yield any benefits?

Let us first consider a form of the transformation with a general exponent (repeated
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indices are summed over):

R
(2)
i =

Rmax ·
(
R

(1)
ij xj

)a
σa +

(
R

(1)
ij xj

)a
+

(
m ·
∑
k

R
(1)
kj xj

)a

Then the derivative w.r.t. xj is given by:

∂
[
f
(
R(1)x

)]
i

∂xj
=

aR
(1)
max

(
R

(1)
il xl

)a
(
σa +

(
R

(1)
il xl

)a
+

(
m ·
∑
i

R
(1)
il xl

)a)2 ×

[
σaR

(1)
ij +R

(1)
ij

(
m ·
∑
k

R
(1)
kj xj

)a

−

(
R

(1)
il xl

)
ma

(∑
k

R
(1)
kj

)(∑
k

R
(1)
kl xl

)a−1]

We can simplify this to

∂
[
f
(
R(1)x

)]
i

∂xj
= ci (x)

[
R

(1)
ij d (x)− Sije (x)

]

where

S =
(
R(1)x

) (
1TR(1)

)

and d (x) , e (x) are terms dependent on the overall ORN activity, given by:
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d (x) = σa +
(
m · 1TR(1)x

)a
e (x) = ma

(
1TR(1)x

)a−1

The term ci (x) is given by

ci (x) =
aRmax

(
R

(1)
il xl

)a
(
σa +

(
R

(1)
il xl

)a
+

(
m ·
∑
i

R
(1)
il xl

)a)2

Writing the derivative in this form makes it clear how the overall activity contributes

to the derivative. In matrix form, the derivative is then

∂
[
f
(
R(1)x

)]
∂x

= C (x)
[
d (x) I− e (x)R(1)x1T

]
R(1) (2.6)

where C is a diagonal matrix made up of ci (x). The terms preceding the rate matrix

R(1) on the r.h.s are nothing but the derivative [∂ifj] of f() we had mentioned earlier.

Let us now explicitly calculate the linearisation for the parameters considered by

Wilson et al. In this case, [∂ifj] is given by
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A B

Figure 2.9: Derivative [∂ifj ] at operating point y0 = Rx0 where R is the Carlson rate matrix and
x0 is (A): a (110−dimensional) sparse vector with 10 non-zero entries and (B): a 110−dimensional
with all entries set to a small (10−4) value to mimic some faint background.
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when i 6= j

We look at how the derivative looks at two ecologically relevant operating points :

i) a sparse operating point with 10 of the 110 entries of ~x0 are non-zero and each

non-zero element is a uniform random number between 1 and 2 (Fig. 2.9A) and ii)

an operating point corresponding to a weak background where all entries of ~x0 are

set to a small value of 10−4. (Fig. 2.9B). The derivatives at both these operating
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points are effectively diagonal thus the linearized Stage 2 response will not offer any

improvements compared to Stage 1 in embedding the sparse high-dimensional vectors.

2.8 Addendum: background on random projec-

tions and compressive-sensing

In this section, we summarize the key mathematical results and insights which il-

lustrate the benefits of random projections in compressing sparse high-dimensional

signals. These results were a key motivation in our thinking about the logic of sensing

by the olfactory receptor neurons. We first begin with the problem of solving an un-

derdetermined linear system of equations and examine the particular case when the

solutions have to be sparse. Then we summarize the properties of random projections

which make it possible to recover sparse high-dimensional vectors from substantially

fewer measurements, and finally we mention some results which suggest that random

(or diffuse) projections might be a universally good method to represent a variety of

signals with nonlinear structure.

2.8.1 Solving y = Ax

Consider the problem of taking linear measurements about some signal x – for e.g.,

x could be an image or a time-series signal and A could be the Fourier transform

operator, in which case, we make frequency domain measurements about our signal.

Now, suppose that our signal x resides in some high-dimensional space of dimension

N and we only take M measurements. Can we recover x from the measurements y?

In general, when M > N , and A is full-rank, we have a overdetermined system of
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equations and we can use methods like least-squares to give us a solution. What

about the case when M < N? In this case, we have an underdetermined system of

equations, and in general, we don’t have a unique solution for x. In certain scenarios,

of all the possible solutions to y = Ax , the one you care about is “small” in some

sense. One notion of small is the solution having the least “energy” or the minimum

L2 − norm. In this case we get the pseudo-inverse solution:

x̂ = arg min ‖x‖2 s.t. y = Ax

= A∗ (AA∗)−1 y

This amounts to “growing” the L2 “ball” till you satisfy the constraint as shown in

the schematic in Fig. 2.10

Ax=bL
2
 ball

 

Figure 2.10: Geometric illustration of the pseudo-inverse solution in 2D

A classic example of this scenario is finding the minimum energy reconstruction

of a signal f ∈ RN from a limited number of M < N Fourier measurements :

f̃ (ω1) , f̃ (ω2) · · · f̃ (ωM). In this case, the solution is simple : it is simply the re-
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constructed signal with the measured Fourier coefficients.

f̂ (t) =
M∑
i=1

f̃ (ωi) e
i2πωit/N

However, in many cases the minimum energy solution is way off and not what we

are looking for. For instance, consider the Logan-Shepp phantom[20] image and its

corresponding minimum L2 solution reconstructed from a limited number of (2D)

Fourier measurements (Fig. 2.11 ). The minimum energy solution has a number of

artifacts which obscure the structure in the image.

Figure 2.11: minimum L2 reconstruction (right) performs poorly when reconstructing the im-
age(left) from incomplete 2D Fourier measurements

2.8.2 Solving y = Ax for sparse signals

In many scenarios, the signal x has a sparse or “compressible” structure – i.e., only a

few (or small fraction of) elements of x are significant. A signal is called K− sparse if

it has at most K non-zero entries; the location of these non-zero entries can, however,

be arbitrary. Given such a structure for the signal, can we exploit this information

to recover the signal from incomplete measurements?
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Consider this interesting empirical observation : if you find a solution which minimizes

the L1 norm instead of the L2 norm, then in many cases you can exactly reconstruct

the signal from highly incomplete measurements, provided the signal has a sparsity

structure. Specifically, if we solve the following problem :

arg min ‖x‖1 s.t. y = Ax (2.7)

where ‖x‖1 =
N∑
i=1

|xi|

then we can exactly recover the true (sparse) x even when the number of measure-

ments y (M−dimensional) are substantially fewer than the dimension, N , of x. This

fact was well known to researchers studying seismology data, where the reflected sig-

nals naturally had a sparse structure due to discrete transitions in the earth’s crust.

Fig. 2.12 shows that the minimum L1 reconstruction of Logan-Shepp phantom from

incomplete (as little as v 1%) Fourier measurements gives back the exact image[20].

Note, that the sparsity structure exploited in this case is the sparsity in the gradient

of the image and not the pixels themselves.

Another early example of the success of L1, with more theoretical backing, is the

basis pursuit problem. Consider a measured signal f ∈ Rn which is made up of the

superposition of two signals, one which is sparse in an ortho-basis Φ1 and the other

which is sparse in another ortho-basis Φ2 – i.e. f = Φα where Φ = [Φ1Φ2] and α is

sparse. We would like to know α so that we can split the signal into its components.

A practical example comes from astronomy where telescope images often contain

elements which look “texture” like and elements that look like lines or rods. We

would like to separate the texture “background” from the more linear features. A
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theorem due to [19], showed that if the “coherence” µ between the bases defined as

µ (Φ1,Φ2) =
√
n max

16i,j6n

∣∣∣〈ϕ(1)
i , ϕ

(2)
j

〉∣∣∣ (2.8)

is small, then solving the following problem gives back the exact α :

arg min ‖α̂‖1 s.t. f = Φα̂

provided

‖α‖0 6
0.9

µ (Φ1,Φ2)

√
n

The coherence between two bases is a measure of how “different” do bases function

in one basis look compared to the other. And, for any two orthobases, µ > 1, and

for good reconstruction we want the coherence to be low. Time and frequency bases

would be examples of bases which have small coherence. We will return later to the

notion of coherence. But, note that the restriction here about the sparsity of f :

(O
√
n) is rather restrictive; it requires f to be quite sparse. There are more powerful

theorems that guarantee that L1 will do well under much more general conditions!

Let us now consider one example of a family of more general theorems[20, 54, 19]

which guarantee exact reconstruction :

• Theorem [Candes & Tao 2006]: Let A be a M × N matrix with entires Aij

drawn i.i.d from N (0, 1). Let x ∈ RN be an unknown, but fixed K−sparse

vector, and furthermore assume we have access to the M measurements y = Ax.

46



Figure 2.12: minimum L1 reconstruction (right) returns the exact original image (left) from in-
complete 2D Fourier measurements

Then we can reconstruct x exactly with overwhelming probability by solving

arg min ‖x̂‖1 s.t. y = Ax̂ (2.9)

provided M & K log

(
N

K

)

Moreover, no other method can reconstruct x with “fewer” (in order) mea-

surements – even if you use some other (even adaptive) sensing and any recon-

struction method, you cannot do better (asymptotically) than Gaussian sensing

followed by L1 reconstruction.

This remarkable theorem states that if you know that x is K−sparse you only need to

take slightly more than O (K) non-adaptive measurements to get back x by convex

optimisation, and this scheme is universally optimal in some sense. For Gaussian

matrices, something like ∼ 4K measurements will suffice. In the what follows we

will review some theory for why this works, and in particular the following important

practical questions:

• What are the requirements on the linear measurement operator A?

• For some A, how many measurements M are required to guarantee exact re-

construction of a N dimensional signal with K non-zero entries?

47



• How strict is the sparsity requirement? In particular, will the results hold for

compressible signals, where only K entries are significant, but other entries are

small and non-zero?

• What happens if we have measurement noise?

2.8.3 Why does the L1 solution work?

To understand why the L1 solution gives the exact result for the underdetermined

system, let us first consider the related question: When can we recover any K−sparse

vector x from M measurements y = Ax using any method whatsoever? It turns out

that if any of 2K columns of A are linearly independent (so necessarily M > 2K),

then there is a unique solution to y = Ax for aK−sparse vector x. To see this, assume

there are two solutions x, x̃ then x−x̃ is at most 2K−sparse, and A (x− x̃) = 0 – this

cannot be true unless x = x̃ because any 2K columns of A are linearly independent.

This argument also suggests an algorithm to find the unique solution for the case

M > 2K : choose every subset of K columns and try to solve y = AKxK where

AK is the submatrix of A with the K selected columns and xK is the vector with

non-zero entries of x. This problem can be equivalently formulated as minimising the

“L0”norm

arg min ‖x‖o s.t. y = Ax (2.10)

where ‖x‖o = no. of non-zero entries in x

Unfortunately, this problem which we call the L0 problem contains within it the

subset-sum problem which is known to be NP complete. So it’s hopeless to use this
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for even moderate size problems.

The L1 problem however admits a polynomial time solution – in fact, it is a linear

program. To see this, note that solving the problem

arg min ‖x‖1 s.t. y = Ax

where ‖x‖1 =
N∑
i=1

|xi|

can be recast as the following equivalent problem

minimise
∑

i ti

subject to − ti 6 xi 6 ti

and y = Ax

which is a well known linear program that can be solved using, for e.g., the simplex

method.

Figure 2.13: The L1 ball intersects the constraint surface at points which are sparse. In high
dimensions the L1 ball is even more “pointed” and looks a lot like the L0 ball. . Schematic adapted
from [55]

To get an intuition for why, with sufficient measurements, the L1 problem returns
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the same solution as the L0 problem[56] (which is the best you can do), it’s useful to

view the problem geometrically (Fig. [2.13] ). Sparse signals reside in union of planes

(the L0 ball); in particular 1-sparse signals are the union of the axes in RN . So when

searching for sparse solutions to y = Ax we look for places where the hyperplane

y = Ax intersects the L0 ball as shown in the schematic Fig.[2.13] . It turns out that

the L1 ball, because of its pointed vertices, also intersects the hyperplane at places

where the solutions are sparse, and with sufficient measurements the solution to the

L0 and the L1 problem are exactly identical. In very high dimensions the L0 ball looks

a lot like the L1 ball and nothing like the L2 ball. Of course, you can’t always get

back the L0 solution by solving the L1 problem, otherwise P=NP(!). But, CS theory

tells us that the two give the same solution by taking slightly more measurements for

the L1 problem than the minimal amount required.

2.8.4 Non-sparse signals : the best K−term approximation

The problem used to motivate compressive sensing assumed that the signals of inter-

est were K− sparse, however in most practical situations, the signals are not exactly

sparse, but they are “compressible” : only a few entries are significant and the re-

maining entries decay rapidly but are non-zero. How do the compressive sensing

results hold for compressible signals? What about signals with no known structure

a priori ? To understand the extension of the classical compressive sensing results

to non-sparse signals it is useful to ask the following question: what’s the best you

can hope to do if you only got to make K measurements of a non-sparse signal? As

discussed above, of course, we can’t expect to get back a general signal from incom-

plete measurements, but can we attempt to get back the “best reconstruction possible

from K measurements” or will the compressive sensing paradigm fall apart for general
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signals?

If you had access to an oracle who told you where the K most significant entries

in x were, then of course you’d want to measure those with your K measurements,

and we would end with a best K−term approximation of x. Let’s call this K−term

approximation as xK , which can also be written as

xK = arg min
y:k-sparse

‖y − x‖2

This is the benchmark we would like to compare the reconstructed vector from the L1

recovery. CS theory essentially tells you that with just a few more samples than K

for any x – not necessarily sparse or compressible, we will recover the best K−term

approximation xK . This recovered signal will be a good approximation of the original

signal only for sparse or compressible signals, but the CS theory essentially tells you

that the “best K−term approximation” results hold for any x. So, sensing in a non-

adaptive way followed by L1 reconstruction gives us a performance close to an oracle

with perfect knowledge of the largest entries in the signal!

In several of the theorems for non-sparse signals, guarantees are provided that the

accuracy of the reconstructed vector x̂ from, say K, measurements is close to xK .

These guarantees usually bound the reconstruction error (‖x̂− x‖1 and ‖x̂− x‖2 )

by the benchmark ‖xK − x‖1 and are often referred to as “oracle bounds”. If

indeed ‖xK − x‖1 is small, then these bounds say that x̂ will be close to the true

signal; otherwise, they say that you can expect to do as well as the case where an

oracle tells you the location of the K largest elements in x. It doesn’t get better than

this!
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A point to note about these theorems is that oracle bounds often compare a 2−

norm (‖x̂− x‖2 ) to a 1−norm (‖xK − x‖1 ). To know if and when these bounds are

tight/good, let us compare the behavior 1−norm and 2−norm of compressible signals.

A common model for compressible signals is a power-law decay of rank-ordered entries

in x. Let x be a rank-ordered compressible signal s.t.

|xi| > |xi+1| ∀i

and

|xi| 6
R

ip
∀i > K; p > 1 (2.11)

for some constant R. Let us consider the signal xK which is constructed from x by

retaining the K largest components

(xK)i =


xi i 6 K

0 i > K

We are interested in observing how the 1-norm and 2-norm of the residual (x− xK)

behave for compressible signals in the following limit :

N � K � 1 (2.12)

This is the relevant regime for real-life signals such as images. The norms of the

52



residuals are given by

‖x− xK‖1 =
N∑

i=K+1

|xi|

‖x− xK‖2 =

(
N∑

i=K+1

|xi|2
)1/2

(2.13)

For compressible signals we have |xi| 6 R/ip for i > K. Let us first consider the case

when xi ∼ R/ip for i > K (the case when the fall-off is faster than R/ip will turn out

to better for the CS theorems); i.e. the bound xi 6 R/ip is tight. In this case, for

the limit in (2.12) we can approximate the sums by integrals

‖x− xK‖1 ≈ R

N∫
K

1

tp
dt =

R

p− 1

[
1

Kp−1
− 1

Np−1

]

≈
(

R

p− 1

)
K1−p

‖x− xK‖2 ≈ R

 N∫
K

1

t2p
dt

1/2

= R

[
1

2p− 1

(
1

K2p−1
− 1

N2p−1

)]1/2

(2.14)

≈
(

R√
2p− 1

)
K(1/2−p)

so

‖x− xK‖1√
K

≈ constant× ‖x− xK‖2 (2.15)

Note that these relations will only hold for p > 1 otherwise we can no longer neglect

the dependence on N(which, for e.g., will enter as a logarithmic term for p = 1).
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The take away from all this is the following: if you see a bound comparing ‖x̂− x‖2 to

‖x− xK‖1 /
√
K, then this bound is appropriate for compressible signals as described

in (2.11) , but if the smaller entries in the signal fall off much slower, then this bound

is not assured to be tight. In any case, it always makes sense to compare ‖x̂− x‖1 to

‖x− xK‖1.

2.8.5 Requirements for the sensing procedure

Incoherence and random sampling

Let x ∈ RN be K−sparse, and suppose we make M linear measurements of x using

sensing vectors chosen uniformly randomly from Φ2 (for this result, we needn’t restrict

Φ2 to be an orthobasis). Then [25] has shown the following:

• If the number of measurements

M & K · µ2 (I,Φ2) logN (2.16)

then solving L1 problem (2.7) exactly recovers the sparse component of the

signal. Here I is the canonical (e.g. time) basis.

• Moreover, if M is less than O (K · µ2 (I,Φ2) logN), then no algorithm (even

combinatorially hard ones) can recover x from such measurements.

where µ (Φ1,Φ2) is the coherence between the two bases as defined in [2.8]. There are

a few points worth mentioning about this result:

1. The result holds for a random set of M measurements – i.e. any typical set of
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M measurements is equally good as long as M satisfies [2.16].

2. The coherence between the bases µ (I,Φ2) plays a critical role in deciding how

many measurements are required for recovery. So, we ideally want bases which

have very low (O(1)) coherence. An example of incoherent bases is: Φ1−time

and Φ2− Fourier. As a trivial example, if I = Φ2 then the bases are maximally

coherent
(
µ =
√
N
)

, and we need around N logN samples. So, taking time

samples of a signal which is 1−sparse in the time domain, will require us to

collect ∼ N logN before we recover the signal x(why the logN term? – hint

c.f. point above!).

3. If Φ2 is a random basis, for e.g. if each element of the vector ϕ ∈ Φ2 is sampled

i.i.d from N
(

0, 1/
√
N
)

then with very high probability it is incoherent with

any orthobasis Φ1.

This result can be extended to non-sparse signals. If the number of measurements

satisfies (2.16), then the solution to

x̂ = arg min
x

[
‖y − Ax‖2 + λ

N∑
i=1

|xi|
]

(2.17)

will satisfy (with very large probability)

‖x̂− x‖2 .
‖x− xK‖1√

K

‖x̂− x‖1 . ‖x− xK‖

So, with slightly more than K measurements we are close to the best K− term

approximation for any x. The problem (2.17) is also referred to as LASSO in the
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literature, and the problem tries to find the best (in the L2 sense) solution to a

linear system while at the same time penalising non-sparse solution. The parameter

λ controls this trade-off and can be chosen appropriately (see [25]).

Why do we need at least K · µ2 logN measurements?

To get some intuition about why we need K · µ2 (Φ1,Φ2) logN samples using our

random sampling scheme, consider the simple case when Φ1 is the Fourier domain

and Φ2 is the time domain. In this case, µ = 1 – the bases are maximally incoherent.

Further, let’s assume that the signal x ∈ RN is a “Dirac comb” which is K− sparse :

x [t] =
K−1∑
j=0

δ [t− τj]

where N = τK and the spacing between the spikes is τ . The Fourier transform of x

will be τ = N/K sparse with the spacing between the spikes K:

x̃ [f ] = K
τ−1∑
j=0

δ [f − jK]

So the Fourier transform of a Dirac comb is a Dirac comb, and the spacing between

the spikes of the combs in the time and frequency domain are inversely related. This

is the classic time-frequency duality of the Fourier transform.

Now let’s say we take ∼ K Fourier samples of x. The probability we will sample a

zero element is (1− τ/N). So the probability that all of our M random Fourier mea-

surements are zero is (1− 1/K)M . Therefore, any method would fail with probability
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at least 1/N , if

(
1− 1

K

)M
>

1

N

i.e.M 6 K logN

So we need at least K logN random non-adaptive samples for any (even combinato-

rially hard) method to work. And, it turns out that a linear program will work fine

if M satisfies (2.16)! Extensions to the case when µ > 1 are simple (see [57]).

Restricted isometries

There are two parallel theoretical frameworks of compressive sensing: i) a set of results

based on incoherence as discussed above and ii) a complimentary set of results based

on a property of the sensing matrix A called the restricted isometry property or RIP.

The theorems based on incoherence, discussed above, rely on taking measurements

with randomly selected measurement vectors from a basis which is incoherent with

the basis in which the signal is sparse or compressible. However, the theorems which

make use of RIP are deterministic and their guarantees hold as long as A has the

requisite RIP property.

Let xK be a K− sparse vector, then the M×N matrix A is said to have a restricted

isometry constant δK of order K provided that δK is the smallest scalar which

satisfies

(1− δK) ‖xK‖2
2 6 ‖AxK‖2

2 6 (1 + δK) ‖xK‖2
2

for all K−sparse vectors xK . The matrix A is said to satisfy the RIP of order K pro-
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Sparse vectors lie in a 

union of planes

Figure 2.14: A matrix A satisfying the RIP of order 2K (δ2K is sufficiently small) will approxi-
mately preserve the distance between all K−sparse vectors x1 and x2. Schematic adapted from [55]

vided that the constant δK is sufficiently small. The RIP is essentially a requirement

that all subset of K columns of A are approximately orthogonal – of course, they

can’t all be perfectly orthogonal since M < N . If this condition is satisfied, then the

lengths of the sparse vectors are preserved when they are projected on the column

space of A. A simple extension is that if A satisfies the RIP of order 2K then the

distances between K− sparse vectors are preserved by A. Another way of stating the

RIP is that any submatrix of A formed by choosing K columns is well-conditioned

(actually the condition number is (1− δK) / (1 + δK)).

A theorem by [20, 53] shows that if A satisfies δ2K <
√

2− 1 , then we essentially get

back the guarantees in the previous section with incoherent sampling. More precisely

:

• Theorem [Candes, Romber, Tao 06]: If A satisfies δ2K <
√

2 − 1 then the

solution x̂ to

arg min ‖x̃‖1 s.t. y = Ax̃
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guarantees that

‖x̂− x‖2 .
‖x− xK‖1√

K
(2.18)

‖x̂− x‖1 . ‖x− xK‖

Note that

• The theorem is valid for all x unlike the incoherent sampling theorems which

applied to a fixed x and random measurements. If x happens to be K−sparse,

then we get exact recovery otherwise we get the best K−term approximation.

• δ2K < 1 will guarantee that there is a unique K−sparse solution to y = Ax, but

you have to solve a NP-hard problem to find it! However, the above theorem

states that more stringent requirement δ2K <
√

2 − 1 will not only guarantee

that the solution is unique, but the L1 problem will find it!

The way we have stated the theorem (2.18) makes no mention of the number of

measurements or randomness! All it says is that if A satisfies the RIP of order 2K

then we get back the best K−sparse approximation by solving L1. So we are left

with the task of constructing matrices which satisfy the RIP for which M is close to

K. Calculating the restricted isometry constant of a matrix is actually a NP-hard

problem [58].

This is where randomness enters the picture: random matrices satisfy the RIP (for

δ2K) with very high probability. More precisely, let A be an M ×N random matrix

with the entries Aij sampled i.i.d from a distribution F . Then A will satisfy the RIP
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(δ2K <
√

2− 1 ) with very high probability provided

M & K log

(
N

K

)
for F ≡ N

(
0,

1√
M

)
M & K log

(
N

K

)
for F ≡ Bernoulli

(
± 1√

M

)

There are other distributions F for which the RIP holds with M being slightly more

than above [59]. So, there’s a kind of universality in sensing with random matrices.

Also, the RIP holds for structured matrices as well; for e.g., a Fourier (DFT) ma-

trix satisfies the RIP provided M & K (logN)4[20]. An incoherent sampling matrix

satisfies RIP with high probability provided M & Kµ2 (logN)4. Another remarkable

result due to [25, 56] is that no other sensing mechanism – adaptive or non-adaptive –

or any other reconstruction algorithm can do better with substantially fewer samples,

provided that the signal is sparse or compressible in a power law sense (2.11).

Random matrices also have the desirable property that they are universal sensing ma-

trices in some sense. If x is sparse in a basis B : x = Bα, and we take measurements

using a random matrix A : y = Ax = ABα, then if the matrix A satisfies the RIP,

then so will AB. Thus, we are guaranteed to recover the sparse coefficients α even

if we don’t know the sparsity basis a priori – the measurements can be completely

non-adaptive.

To see this, we can show that if [A]ij ∼ i.i.d N (0, σ2) satisfies RIP ( δ2K is small )

with high probability, then A ·B also satisfy this property for an orthonormal matrix

B. Let us look at the statistics of the element of A · B. Each entry of the matrix is
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a linear combination of Gaussians, and hence will be a Gaussian itself.

[AB]ij =
N∑
k=1

AikBkj (2.19)

〈
[AB]ij

〉
=

N∑
k=1

〈Aik〉Bkj = 0

〈
[AB]2ij

〉
=

N∑
k=1

N∑
l=1

〈AikAil〉BkjBlj

=
N∑
k=1

N∑
l=1

δklσ
2BkjBlj

= σ2

N∑
k=1

B2
kj = σ2

where (2.19) follows because rows and columns of B have unit norm. So, the elements

of the matrix AB are also Gaussians with zero mean and variance σ2. Let us see if

they are independent

〈
[AB]ij [AB]rs

〉
=

〈
N∑
k=1

N∑
l=1

AikArlBkjBls

〉

=
N∑
k=1

N∑
l=1

δirδklσ
2BkjBls

= δirσ
2

N∑
k=1

BkjBks

= δirδjsσ
2

where, the first dirac delta comes from the fact that entries of A are uncorrelated, and

the second one comes from the fact that the rows of B are orthonormal. Therefore

entries of AB have the same joint distribution as entries A and it will also satisfy

RIP with high probability!

61



2.8.6 Compressive sensing with noise

Now, let us review the theorems when there is noise in the measurements.

It turns out that we can still get good reconstruction and the performance degradation

is graceful. Let the matrix A satisfy RIP (δ2K <
√

2 − 1)– the distances between

projections of K-sparse signals will be preserved– and let the measurements be noisy

y = Ax + z where
〈
z2
i

〉
= σ2

Then [25] showed that we can get a good reconstruction by solving a different opti-

mization problem(LASSO)

x̂ = arg min
x

[
‖y − Ax‖2 + λ

N∑
i=1

|xi|
]

For properly tuned λ the theorem states that

‖x̂− x‖2 6 C1Kσ + C2
‖x− xK‖1√

K
(2.20)

The result cannot be any better. It states that the reconstruction error in the noisy

case is bounded by the reconstruction error of the noiseless case, plus a term that

scales linearly with the noise.
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2.8.7 Random projections and stable embeddings

We already saw that random M × N matrices obey the RIP for sparse signals with

high probability provided M is sufficiently large. Now we briefly discuss another

surprising property of random projections : random projections also provide “stable”

low dimensional embeddings [18] for a variety of other signals with nonlinear structure

other than sparsity. If the signals x reside in a high dimensional space of ambient

dimension N , but has some low-dimensional structure (like a manifold) of effective

dimensionality K, then a random projection of the signal to a space with dimension

M ∼ K will preserve local distance between the points in the high dimensional space.

Thus, random projections can be used for dimensionality reduction in a non-adaptive

way.

K-manifold K-planesPoint cloud

a b c

Figure 2.15: Random projections provide stable embeddings from RN → RM for a) point
clouds b) K−manifold and c) K−planes (i.e K−sparse signals) provided M is comparable to K
or log (# of points in cloud). Schematic adapted from [18]

Let us look at one particular result with this flavour: the Johnson-Lindenstrauss

lemma [60, 18]. The lemma shows that any K point set in an Euclidean space (say,

RN) can be linearly embedded in a space of dimension O (logK/ε2) without distorting

pairwise distances by more than (1± ε). Specifically, consider a set of K points in
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RN , then the lemma shows that there exists a linear map A : RN → RM which

preserves the pair-wise distances up to (1± ε) for all the points u, v for ε ∈ (0, 1/2)

and M ∼ logK/ε2

(1− ε) ‖u− v‖2
2 6 ‖Au− Av‖2

2 6 (1 + ε) ‖u− v‖2
2

This result is tight – you cannot do the embedding into a substantially lower di-

mensional space without distorting the distances a lot [60]. Moreover, the linear

map A can be constructed by populating the M × N matrix by i.i.d entries from

the same distributions F that were suitable for RIP : F ≡ N
(

0, 1/
√
M
)

and

F ≡ Bernoulli
(
±1/
√
M
)

! The proof is not complicated [60] and uses the follow-

ing ideas:

• If Aij ∼ N (0, 1), then using the Hoeffding concentration inequality[61] it’s

easy to show that the lengths of vectors are concentrated around the mean

P

(
1√
M
‖Ax‖2

2 > (1 + ε) ‖x‖2
2

)
6 exp

(
−M

4

(
ε2 − ε3

))

• From which we see that probability of one pair of distances getting distorted is

exponentially small in M

P
(
(1− ε) ‖x‖2

2 6 ‖Ax‖2
2 6 (1 + ε) ‖x‖2

2

)
> 1− 2e−M(ε2−ε3)/4

• There are O (K2) pairs, so use the union bound to show that the RHS holds for

all pairs with non-zero probability provided M ∼ O (logK/ε2).
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A similar covering argument like this can be extended to show that signals lying on

other low-dimensional structures like manifolds or union of planes (sparsity) can be

stably embedded by a random projection in a space with dimensionality M compa-

rable to the effective dimensionality of the low dimensional structure [18]. This is

illustrated in the schematic in Fig. 2.15. Thus, random projections give us a way to

do proximity-preserving dimensionality reduction in a non-adaptive way! This is very

useful for practical applications, because a lot of natural signals like images or sound

have a sparsity or smooth manifold structure, so we can first project them randomly

(and non-adaptively) to a lower dimension and then perform computational tasks

such as clustering or learning in the lower dimensional representation. This paradigm

suggests a counterintuitive strategy for the brain – represent structured stimuli: use

random receptive fields!
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Chapter 3

Arousal-related adjustments of
perceptual biases optimize
perception in dynamic
environments

Most of this section appears in:

K. Krishnamurthy∗, M.R. Nassar∗, S. Sarode and J.I. Gold
Nature Human Behaviour 1 (2017): 0107

3.1 Abstract

Prior expectations can be used to improve perceptual judgments about ambiguous

stimuli. However, little is known about if and how these improvements are maintained

in dynamic environments in which the quality of appropriate priors changes from

one stimulus to the next. Using a sound-localization task, we show that changes

66



in stimulus predictability lead to arousal-mediated adjustments in the magnitude of

prior-driven biases that optimize perceptual judgments about each stimulus. These

adjustments depend on task-dependent changes in the relevance and reliability of

prior expectations, which subjects update using both normative and idiosyncratic

principles. The resulting variations in biases across task conditions and individuals

are reflected in modulations of pupil diameter, such that larger stimulus-evoked pupil

responses correspond to smaller biases. These results suggest a critical role for the

arousal system in adjusting the strength of perceptual biases with respect to inferred

environmental dynamics to optimize perceptual judgements.

3.2 Introduction

Perception is shaped by prior expectations (priors) on the statistical structure of the

sensory world [62, 63, 64, 65, 66, 67]. When the environmental statistics are stationary

and well known, priors on those statistics can bias the perception of relevant sensory

stimuli [68, 69]. For example, the prevalence of relatively slow- versus fast-moving

objects in the world can lead to biases in the perception of object speed [8]. However,

many environmental statistics that are relevant to perception can be highly non-

stationary. For example, the locations of sources of sensory input are constantly

changing relative to a given observer. The goal of this study was to examine how

priors on such dynamic features of the environment are updated and used to shape

perception.

To achieve this goal, we developed an auditory-localization task that required human

subjects to both predict and report the perceived location of a simulated sound source

as the predictability of the location varied over time (Fig. 3.1ac). The statistical
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structure of the task is similar to ones we used previously to show that people can

make effective predictions in dynamic environments by adaptively modulating the

influence of new information on existing beliefs [70, 71]. However, here we focus

on the questions of if and how such dynamically modulated predictions affect their

influence on the perception of ambiguous stimuli. In principle, these predictions could

govern perceptual biases through a form of optimal (Bayesian) inference that takes

into account dynamic changes in the priors [70, 72, 73]. Specifically, as long as the

statistical structure of the sampled locations in our task remains stable, new sounds

can be used to develop increasingly reliable priors about the locations of subsequent

sounds. These increasingly reliable priors should, in turn, have an increasingly strong

and beneficial influence on the perception of those sounds, reducing localization errors

(Fig. 3.1d,e). However, the statistics of the sampled locations can undergo abrupt

change-points that render previously held priors irrelevant to new sounds. These

seemingly reliable but irrelevant priors should not influence the perception of sound-

source location, which under these conditions should be limited entirely by sensory

uncertainty (Fig. 3.1f).

We also measured pupil diameter, an index of arousal that can reflect the activation

of the locus coeruleus (LC)-norepinephrine (NE) system and has been implicated

in rapidly updating inference processes in response to unexpected events or errors

[74, 75, 76, 77, 78, 79]. Pupil diameter tracks the extent to which predictions are

updated in response to new information in dynamic and perceptually unambiguous

cognitive tasks [71]. Here we tested the hypothesis that such changes in arousal play

an important role in shaping perception. In particular, we examined whether the

arousal system controls the extent to which perceptual judgments about ambiguous

sensory stimuli are biased toward prior expectations in accordance with the relevance
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and reliability of those expectations.

Our results yield new insights into the relationship between perception and arousal.

We show that the subjects’ priors had a variable influence on their perceptual reports.

This variability was predicted by changes in the relevance and reliability of those

priors, across task conditions and individual subjects. These effects were encoded

in both baseline and stimulus-evoked changes in pupil diameter, such that larger

diameters corresponded to less influence of priors on the perception of that stimulus.

Taken together, these findings support a fundamental role for pupil-linked arousal

systems, including the LC-NE system, in adaptively adjusting the influence of priors

on perception in accordance with environmental dynamics.

3.3 Results

Twenty-nine subjects performed both the dynamic localization task (Fig. 3.1) and

a control task that required perceptual reports of simulated sound-source locations

that lacked predictable, sequential structure. Overall, the subjects tended to perform

both tasks in an effective manner, providing predictions on the dynamic task and

perceptual reports on both tasks that corresponded strongly to the simulated sound-

source locations (Fig. 3.2). On the control task, the Pearsons correlation between

simulated and reported location had median [interquartile range, or IQR] values of

0.926 [0.8950.944] across subjects (Fig. 3.2a,d). On the dynamic task, there were

similarly high correlations for both the predictions and perceptual reports (predictions

on non-change-point trials: r=0.907 [0.8950.921], Fig. 3.2b,e; perceptual reports on

all trials: r=0.948 [0.9410.964], Fig. 3.2c,f). However, the subjects also tended to

make errors that varied considerably from trial to trial on both tasks (Fig. 3.2gi).
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Figure 3.1: (a) Subjects listened via headphones to noise bursts with virtual source locations that
varied along the frontal, azimuthal plane. The locations were sampled (points) from a Gaussian dis-
tribution (gray) with a mean that changed abruptly on unsignaled change-points (probability=0.15
for each sound) and a STD of 10◦ in low-noise blocks, 20◦ in high-noise blocks. The subjects lis-
tened passively to the sound sequence, except for occasional probe trials. All sounds except the
probe sound were presented simultaneously with their corresponding locations on a semicircular arc
shown on the isoluminant visual display, allowing subjects to develop priors on sound-source location
based on both the auditory and visual signals and maintain a stable mapping between the two. (b)
An example trial sequence showing the mean (solid line) and sampled (points) locations over 50 tri-
als. Vertical dashed lines indicate randomly selected probe trials. (c) Probe-trial sequence. Using a
mouse to control a cursor on the visual display, the subject reported: 1) the predicted location of the
upcoming probe sound, followed by 250-ms fixation, presentation of the probe sound, then continued
fixation for 2.5 s to allow for pupil measurements; 2) the estimated location of the probe sound; and
3) a high or low confidence report that the true location was within a small window centered on their
estimate. The sound sequence then continued until the next probe. (df) Schematic illustrating the
changing reliability and relevance of priors for the probe sounds in a and b, as indicated. Given a
fixed-width likelihood function, more reliable and relevant priors have a stronger and more beneficial
influence on the percept, here represented as the posterior, which is most uncertain (widest) in e
and least uncertain in f.
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Subsequent analyses focus on how the subjects minimized their errors on the dynamic

task by exploiting the fluctuating predictability of sound-source locations on that task.

3.3.1 Dynamic, task-dependent modulation of perceptual bi-
ases

The subjects used both sensory and prior information to guide their perceptual re-

ports on the dynamic task. We measured performance in terms of the variability of the

distribution of trial-by-trial errors (quantified as the standard deviation, or STD, and

denoted as σ). This variability was lower for perceptual reports on the dynamic task

than for either: 1) predictions from that task (σprior; Fig. 3.2h), or 2) perceptual re-

ports on the control task that lacked sequential predictability and thus reflected more

purely sensory processing (σsensory; Fig. 3.2g). Moreover, for individual subjects,

these different measures of variability were related to each other, such that perceptual

errors from the dynamic task were well approximated using the optimal, reliability-

weighted combination of prior and sensory information (σ−2
sensory = σ−2

sensory + σ−2
prior;

Fig. 3.2i). This result implies that, on average, the subjects tended to not only use

these two sources of information, but also combine them according to their relative

reliabilities to optimize perceptual performance on the dynamic task.

This integration of prior and sensory information took into account the changes in

the relevance and reliability of the priors that occurred throughout the dynamic task.

These changes are illustrated in Fig. 3.3a, which shows prediction-error STDs aver-

aged across subjects as a function of the number of sounds after a clearly noticeable

change-point, or SAC (see legend for details), separately for the two noise conditions.

Figure 3.3b shows linear contrasts that captured the salient, dynamic aspects of these

changes for each subject (see inset in Fig. 3.3e illustrating the three contrasts: CP,
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Figure 3.2: Overall prediction and estimation performance. (ac) Reported versus true
(simulated) sound-source angle for an example subject for: (a) estimations from the control task;
(b) predictions from the dynamic task (light gray points indicate change-point trials, on which the
probe location was, by design, unpredictable); and (c) estimations from the dynamic task, including
all trials. (df) Population summaries, plotted as in (ac), with per-subject median values shown in
black and the median of medians shown in red (n=29 subjects). For the dynamic tasks, median values
were calculated in sliding 20◦ windows. Non-change-point trials were excluded from the predictions
in (e). Note that the subjects perceptual reports (d and f) were biased slightly towards straight
ahead at the far periphery. This bias, which likely reflected learned expectations that sounds were
only played in the frontal plane, is accounted for in later analyses (β5 and β6 in Eq. 5). (gi) STD
of the perceptual errors from the dynamic task plotted versus the STD of: (g) the perceptual errors
from the control task; (h) the prediction errors from the dynamic task; or (i) the expected STD of
the perceptual errors, computed from the optimal, reliability-weighted combination of the control
perceptual errors and the dynamic prediction errors. Points in gi represent data from individual
subjects. Prediction and perceptual errors were computed with respect to the simulated location of
the probe sound.

72



describing the effects of a noticeable change-point; Exp, describing the effects of the

number of sounds experienced following a noticeable change-point; and Noise, describ-

ing the high or low noise condition). Specifically, on change-point trials, predictions

were irrelevant and hence most variable with respect to the subsequent sound-source

location (signed-rank test for H0: the median of the distribution of per-subject CP

contrasts, which compared change-points to other trials=0, p < 10−5). After change-

points, predictions became steadily more reliable as the number of sound sources

experienced from the new distribution increased in both noise conditions (p < 10−4

for Explow and Exphigh contrasts, which identified linear trends across SAC 26 for each

of the two noise conditions). The predictions were also more reliable overall in the

low- versus high-noise condition (Noise contrast, p < 10−5). These dynamic trends

were consistent with predictions from a normative model of predictive inference that

had full knowledge of the generative statistics [70]. The model, which produced simu-

lated predictions that were analyzed in the same way as the data, had task-dependent

effects that were in the same directions and of roughly the same magnitude as the

data, although the subjects tended to produce more variable predictions than the

model (Fig. 3.3a,b diamonds).

These task-dependent changes in the subjects predictions were associated with similar

changes in the variability of their perceptual reports (Fig. 3.3c,d) and their confi-

dence in those reports, as assessed by the frequencies of high-confidence reports (Fig.

3.3e,f). Perceptual-error variability tended to be higher for change-point trials, when

predictions were irrelevant (CP contrast, p < 10−5), and for the high- versus low-noise

condition (Noise contrast, p < 10−5). Perceptual-error variability also tended to de-

crease on experiencing more samples from the new distribution, with a reliable effect

across individuals in the low-noise condition (Explow contrast, p < 0.005) but not the
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Figure 3.3: Effects of task dynamics on performance. (a) STD of the subjects prediction
errors (filled circles) as a function of the number of sounds after a change-point (SAC) in the gener-
ative mean azimuthal location, plotted separately for the two noise conditions (colors, as indicated;
generative STDs are shown as dashed lines). For comparison, prediction-error STDs are shown
for an approximately optimal predictive-inference model (open diamonds). Data from change-point
trials (SAC=1) are not shown because locations were, by design, unpredictable on those trials.

high-noise condition (Exphigh contrast, p = 0.4). These dynamics were also apparent

in the subjects’ confidence report trends (Fig. 3.3e,f), which reflected trial-by-trial

awareness of the changes in perceptual variability and included similar dependencies
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Figure 3.3: Effects of task dynamics on performance, continued (b) Contrast values from
a linear model describing individual subject (circles) and the approximately optimal model (each
diamond represents analyses based on the same sound sequence experienced by the subject connected
by a line) prediction-error STD in terms of (see inset in e): 1) the difference between change-point
and non-change-point trials (CP), 2,3) the linear trend from SAC 2-6 for low- (Explow) or high-
(Exphigh) noise trials, and 4) the difference between the two noise conditions (Noise). (c,d) Same
conventions as in a,b but for perceptual errors on the dynamic task. Diamonds represent the
theoretically predicted STD of perceptual errors computed from the optimal, precision-weighted
combination of the subject- and condition-specific STDs of prior errors (circles in a, determined
separately for each subject) and the subject-specific estimation-error STDs from the control task
(the median value is shown as a horizontal dashed line; see Fig. 3.3g). (e,f) Same conventions as in
a,b but for the frequency of high-confidence reports relative to overall frequency of high-confidence
reports per subject. Diamonds represent the frequency of high-confidence reports corresponding
to the theoretical perceptual errors in c, computed from the fraction of the theoretical posterior
distribution within the confidence window. In a,c,e, circles and error bars are mean±sem of values
measured from all 29 subjects. In b,d,f, points are data from individual subjects. Asterisks indicate
sign-rank test for H0: median value from the subject data=0, p < 0.05. In each case, paired rank-
sum test for H0: median difference between subject data and theoretical prediction, p > 0.087. In
all panels, only data from sequences following noticeable change-points (changes in mean of at least
twice the generative STD for SAC=1) were included.

on CP (p < 10−4), Noise (p = 0.032), and Explow (p = 0.03) and less reliable de-

pendencies on Exphigh (p = 0.07). Both the perceptual and confidence report effects

were qualitatively similar, in direction and magnitude, to theoretical values computed

from optimal combinations of each subjects’ changing priors (circles in Fig. 3.3a,b)

and their fixed sensory reliability estimated from the control task (Fig. 3.2g; see also

Fig. 3.1df). These theoretical values also showed strong effects of CP, Noise, and

Explow, and smaller effects of Exphigh (Fig. 3.3cf, diamonds).

These behavioral dynamics reflected changes in the degree to which the subjects

priors biased their perceptual reports. We quantified perceptual bias as the slope

of the relationship between the prediction error and the perceptual error measured

on individual trials (Fig. 3.4a-c). A slope of zero implies no relationship between

the prediction error and the perceptual error, and thus no bias towards the prior.

In contrast, slope values that increase towards unity imply increasing biases of the

perceptual reports towards the prior. This perceptual bias varied systematically as a
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function of task conditions. Specifically, perceptual bias was lower on change-points

(CP contrast, p < 10−5) and for the high- versus low-noise condition (Noise contrast,

p = 0.008). Perceptual bias also tended to increase on experiencing more samples,

although these effects were variable across individuals and not statistically reliable in

the low-noise condition (Explow contrast, p = 0.1; Exphigh contrast, p = 0.004). These

task-dependent changes in the biases were comparable in direction and magnitude to

theoretically computed values given an optimal, reliability-weighted combination of

the task-specific predictions on the dynamic task (circles in Fig. 3.3a) and fixed

sensory reliability estimated from the control task (Fig. 3.2g), computed separately

for each subject (diamonds in Fig. 3.4d,e). Despite these comparable task-dependent

trends (compare circles and diamonds in Fig. 3.4e), the subjects perceptual biases

were on average smaller than the theoretical values (compare circles and diamonds

in Fig. 3.4d). This shift was consistent with their overall worse predictions than the

model (compare circles and diamonds in Fig. 3.3a). However, overall performance,

measured as perceptual-error variability, was relatively insensitive to this overall shift,

as compared to task-dependent adjustments, in the magnitude of the perceptual biases

(compare circles and triangles in Fig. 3.3c,d).

3.3.2 Individual differences in the modulation of perceptual
biases

The above analyses demonstrated that for individual subjects, dynamic changes in

the relevance and reliability of priors within an experimental session were associated

with changes in the degree to which those priors biased perception. We identified

similar effects across subjects, implying that individual differences in perception can

reflect differences in how priors are updated and maintained in dynamic environments.
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Figure 3.4: Effects of task dynamics on perceptual bias. (a-c) Example data from a single
subject illustrating the quantification of perceptual bias as the slope of the best-fit line to a scatter
of the perceptual error versus the prediction error. Slopes close to zero reflect a low perceptual bias
(i.e., the percept is unrelated to the prediction), as on change-point trials (b). Slopes closer to unity
reflect a higher perceptual bias (i.e., the percept more closely matches the prediction), as on non-
change-point trials (c). (d) Perceptual bias as a function of the number sounds after a change-point
(SAC) in the generative mean azimuthal location, plotted separately for the two noise conditions
(colors, as indicated). Circles and error bars are mean±sem of values measured from all 29 subjects.
Diamonds indicate the theoretically predicted perceptual bias from an optimal, reliability-weighted
combination of the subject- and condition-specific predictions (Fig. 3.3a) and the subject-specific
estimates from the control task (Fig. 3.2g). (e) Contrast values from a linear model describing
individual subject (circles) and model (each diamond represents analyses based on the same sound
sequence experienced by the subject connected by a line) perceptual bias in terms of (see inset in
Fig. 3.3e): 1) the difference between change-point and non-change-point trials (CP), 2,3) the linear
trend from SAC 26 for low- (Explow) or high- (Exphigh) noise trials, and 4) the difference between
the two noise conditions (Noise). Asterisks indicate sign-rank test for H0: median value from the
subject data=0, p < 0.05. Paired rank-sum tests for H0: median difference between subject data
and theoretical prediction, p < 0.01 for CP, p = 0.16 for Explow, p = 0.78 for Exphigh, and p < 0.01
for Noise. In d and e, only data from sequences following noticeable change-points (changes in mean
of at least twice the generative STD for SAC=1) were included.
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Specifically, we compared subjects’ overall biases to the variability of their sensory

and prediction errors (linear regression of the mean perceptual biases of individual

subjects from non-change-point trials as a function of the STD of perceptual errors

from the control task and the STD of prediction errors across non-change-point trials

from the dynamic task; F statistic=7.39, p = 0.002). According to these fits and

consistent with Bayesian theory, subjects with higher overall prior-driven perceptual

biases tended to have higher sensory variability (β = 0.033, t-test for H0: β = 0, p =

0.013; Fig. 3.5a) and lower prediction variability (β = −0.030, p = 0.002; Fig 3.5b).

We also found individual differences in how perceptual biases changed as a function

of particular task conditions, and that those differences were predicted by subject-

specific changes in priors under those conditions. Subjects whose priors improved

(i.e., became less variable) the most also tended to have the largest increases in prior-

driven perceptual biases: 1) just after a change-point (Fig. 3.5e), 2) on experiencing

samples from a new distribution (in the low- but not high-noise condition; Figs. 3.5c

and d), or 3) between the high- and low-noise conditions (Fig. 3.5f). Thus, on

average, subjects tended to weigh prior and sensory information according to their

relative reliabilities, taking into account variability in the priors across task conditions

and individual subjects.

To more quantitatively account for the factors that affected perceptual biases across

task conditions and individual subjects, we used a linear model that included norma-

tive and non-normative terms that each were weighed according to their contributions

to each subjects behavior (Fig. 3.6). Data generated by a purely normative model

could capture some qualitative aspects of behaviour, but it systematically overesti-

mated perceptual biases (Fig 3.6A). A linear model that included both normative and

non-normative terms offered a better description of behaviour (Fig. 3.6B). The nor-
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Figure 3.5: Individual differences in perceptual bias. (a, b) Relationship between overall
(mean) perceptual bias and either overall localization ability (STD of perceptual errors on the control
task, a) or overall prediction ability (STD of prediction errors from non-change-point trials on the
dynamic task, b), after accounting for the other factor (hence residual) via linear regression. (c-f)
The dependence of perceptual bias on various task conditions, plotted as functions of the dependence
of prediction-error STD on the same conditions: c, d) the linear trend from SAC 26 in the low-noise
(c) and high-noise (d) condition (Exp); e) change-point versus non-change-point trials (CP); and
f) high- versus low-noise condition (Noise). In each panel, points represent data from individual
subjects. Lines are linear regressions. Only data from sequences following noticeable change-points
(changes in mean of at least twice the generative STD for SAC=1) were included.
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mative terms were extracted from a Bayesian model of perception, which generated

perceptual biases that minimized simulated perceptual errors, given each subjects’

variable predictions and sensory estimates. These terms were: 1) prior relevance,

which reflected the probability that the current sound came from the same generative

distribution as the previous sound (and thus is related to the CP effects illustrated in

Figs. 3.3 and 3.4; Fig. 3.6c); and 2) prior reliability, which reflected changes in the

total width of the predictive distribution relative to the likelihood, given new samples

(and thus is related to the Exp and Noise effects illustrated in Figs. 3.3 and 3.4; Fig.

3.6d). The non-normative terms included one describing a fixed bias as a function

of the prediction error, one to allow the strength of perceptual bias to depend on

reported confidence (i.e., whether the subject reported high confidence or not), and

spatial terms to account for the subjects overall tendency to give perceptual reports

that were biased slightly towards straight ahead (Fig. 3.2f). On average, the linear

model captured the behavioral trends well (Fig. 3.6b), based on contributions of

each of the terms described above that tended to vary in magnitude across subjects

(Fig. 3.6e). By comparison, a parameter-free normative model captured some of the

behavioral trends (Fig. 3.6a) but reported higher perceptual biases than subjects

(compare red points and bar in Fig. 3.6e), particularly on change-points (compare

green points and bars in Fig. 3.6e).

3.3.3 Modulations of perceptual biases reflected in pupil di-
ameter

A key question addressed in this work is whether arousal systems, as reflected in pupil

diameter, contribute to the dynamic modulation of perceptual biases. Using linear

regression at each time-point relative to sound onset (the average sound-evoked pupil
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Figure 3.6: Dynamic modulation of perceptual bias by normative and non-normative
factors. (a) Comparison of a parameter-free normative model (ribbons indicate mean±SEM sim-
ulated perceptual bias for the same task sequences experienced by the subjects) and the subjects’
behavior (points and errorbars are mean±SEM from 29 subjects), shown as a function of sounds
after a change-point (SAC) for the two noise conditions (colors, as indicated).
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Figure 3.6: Dynamic modulation of perceptual bias by normative and non-normative
factors, continued (b) Comparison of the linear model shown in panel e to behavior. Conventions
as in panel a. (c,d) Dependence of the normative factors used in both models on task conditions:
(c) prior relevance, which measures the probability of the current sound coming from the same
distribution as the previous sound; and (d) prior reliability, which measures the anticipated precision
of the predictive distribution relative to the likelihood distribution prior to stimulus presentation.
(e) Best-fitting parameter estimates from the linear model fit to behavioral data from each subject
(points) and to simulations of the parameter-free normative model (thick and thin bars indicate
95% confidence intervals over simulated subjective values and over simulated mean values across
subjects, respectively). PE=prediction error. Asterisks indicate coefficients with mean values that
differed from zero (t-test, p < 0.05)

response from all probe trials and subjects is shown in Fig. 3.7a), we found that pupil

diameter varied with several of the factors from the linear model that accounted for

behavioral biases (Eq. 3.6; Fig. 3.7b). Specifically, prior reliability was reflected in

the baseline diameter before presentation of the probe sound, with smaller baselines

reflecting more reliable priors (p = 0.03; Fig. 3.7c,h). However, prior reliability did

not modulate the magnitude of the stimulus-evoked pupil response, after accounting

for the baseline effect (Fig. 3.7f,i). In contrast, prior relevance was unrelated to base-

line diameter but was robustly encoded by the stimulus-evoked pupil diameter, with

larger evoked pupil responses reflecting lower prior relevance (Fig. 3.7b,e). This effect

peaked around the time of the maximum sound-evoked pupil response (permutation

test for effect duration: duration=1.0 s, p = 0.02; Fig. 3.7i). The pupil response, but

not the baseline, also reflected the subjects’ upcoming confidence report, with high

confidence corresponding to larger pupil diameters, particularly late in the fixation

interval (duration=1.8 s, p = 0.01; Fig. 3.7d,g,i; note that these duration estimates

were limited by the size of our measurement window).

If the arousal system is contributing to the dynamic regulation of the influence of

priors on perception, then pupil diameter may co-vary with adjustments in prior

influence even after accounting for all of the factors in the behavioral linear model
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(for example, if variability in internal representations of sound-source location affect

both behavior and arousal). We therefore included the residual perceptual bias from

our model of behavior (Fig. 3.6) in our model of pupil diameter. A positive/negative

value of the residual biases indicates that the subject was more/less biased by the

prior on the given trial than predicted by the linear model. There was a trend toward

positive coefficients for this term in explaining baseline pupil diameter (larger baseline

diameters corresponded to slightly stronger biases than predicted by the behavioral

model; p = 0.06; Fig. 3.7h). In addition, there was a robust reflection of the residual

bias term in sound-evoked pupil response (smaller responses near the peak of the

evoked response corresponded to stronger biases than predicted by the behavioural

model; duration=1.2 s, p = 0.02; Fig. 3.7i). This residual bias effect implies that

pupil diameter reflects not just particular factors like prior reliability and relevance

that can be used to make effective predictions in dynamic environments [71], but also

the extent to which those and other factors are actually used to bias perception from

one stimulus to the next.

In addition to these average, within-subject effects, there were also across-subject

relationships between pupil diameter and perceptual biases. In particular, stimulus-

evoked pupil responses tended to be, on average, smaller in subjects with higher

overall perceptual biases (PE term in Fig. 3.6e; Fig. 3.8c) or relevance-dependent

biases (PE*relevance term in Fig. 3.6e; Fig. 3.8d). These effects were not evident

for baseline pupil diameter (Fig. 3.8a,b). However, because the behavioral influences

of overall perceptual biases and prior relevance covaried considerably across subjects

(r = 0.77, p < 10−5), we constructed a new linear model that included two individual-

difference variables that corresponded to the shared and unique variance of the two

behavioral coefficients. The effects of the shared term were negative for most of the
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Figure 3.7: Pupil diameter reflects dynamic modulations of perceptual bias within
individual subjects. (a) Mean±sem evoked pupil response from 29 subjects, defined as the pupil
diameter relative to baseline during the measurement period. Red line indicates the time of the
peak mean response (1.38 sec after stimulus presentation).
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Figure 3.7: Pupil diameter reflects dynamic modulations of perceptual bias within
individual subjects, continued (b-d) Baseline pupil diameter for trials sorted into bins according
to relevance (b), reliability (c), and confidence (d). Relevance and reliability were binned in quintiles
per subject, then each bin was combined across subjects. Confidence was divided into all trials with
a low (0) or high (1) confidence report. Points and errorbars are mean±SEM from all values in each
bin. (e-g) Same as bd, but using the pupil diameter measured at the time of the peak response after
accounting for the linear baseline dependencies. (h,i) Regression coefficients from a linear model
accounting for modulation of baseline pupil diameter (h) or the evoked response (i) at each time-
point using as predictors: 1) prior relevance, 2) prior reliability, 3) the upcoming confidence report,
and 4) the residual perceptual bias from the linear model in Fig. 3.6d. Points and error bars in h
and lines and ribbons in i represent mean±sem of values computed per subject and thus represent
within-subject modulations. Points and lines/ribbons corresponding to relevance, reliability, and
confidence use the same colors as in (b-g). Bold symbols in h and horizontal lines in i indicate
periods for which H0: value=0, p < 0.05, after accounting for multiple comparisons.

measurement window (Fig. 3.8e; duration=2.2 s, p = 0.01). In contrast, the unique-

variance term did not show a strong relationship to average pupil traces. This result

implies that subjects who had the strongest overall perceptual biases, and modulated

them most according to prior relevance, tended also to have the smallest stimulus-

evoked pupil responses.

To further quantify these within- and across-subject relationships between pupil di-

ameter and task performance, we used pupil diameter to predict the subjects per-

ceptual biases. Specifically, we created three normalized variables to reflect within-

and across-subject variability in pupil responses at the time of peak response (1.4

s following stimulus onset) along with their multiplicative interaction. Each pupil-

derived variable was included as a modulator of prediction errors in three different

linear models of perceptual errors. In the simplest model, pupil-derived measures

alone predicted systematic differences in perceptual biases observed in the behav-

ioral data (Fig. 3.11a), such that biases were: 1) larger for trials in which pupil

responses were smaller than average (t-test, p < 10−4), 2) larger for subjects who had

smaller than average pupil responses (p < 10−3), and 3) modulated from trial to trial

more steeply for subjects with smaller overall pupil responses (p < 0.01; Fig. 3.11b).
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Consistent with these relationships, the pupil-based measures offered a substantial

improvement to the base model in terms of predicting behavior (likelihood-ratio test,

p < 10−7; Fig. 3.11c). The pupil-based measures also offered an explanatory advan-

tage when added to more complex models that accounted for direct fixed effects (one

coefficient for all subjects) or random effects (one coefficient per subject) of relevance,

reliability, and confidence reports on perceptual biases (p < 10−4 for both models;

Fig. 3.11c). Taken together, these results imply that fluctuations in pupil diameter,

particularly those mediated by stimuli and related to context relevance, can be used

to determine the extent to which perception is biased towards pre-existing priors.

3.4 Discussion

We used an auditory-localization task to show that the influence of prior expecta-

tions on perception is regulated rapidly and adaptively in changing environments.

This work combines and extends several lines of research. The first has emphasized

the role of priors on the perception of an uncertain sensory stimulus [72]. Many of

these studies have focused on priors that are related to relatively stable properties of

the environment, although several recent studies have shown that certain sensory or

sensory-motor priors can be learned relatively rapidly [8, 80, 81, 82, 83]. The second

has shown that under a variety of conditions, individual variability in decision-making

can involve differential use of priors [84]. The third has identified how predictions

are updated and used to make decisions in dynamic environments [70, 85, 86]. The

fourth has related this dynamic updating process to changes in physiological arousal

[71, 87]. We showed that many of these principles, including dynamic, arousal-related

adjustments in predictions, apply to how priors are updated and used to guide per-

ception.
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Figure 3.8: Pupil diameter reflects individual differences in perceptual biases. (a,b)
Mean baseline diameter for each subject (points) as a function of the perceptual bias (a; fits to the
PE term in Fig. 3.6e) and relevance-dependent bias (b; fits to the PE*relevance term in Fig. 3.6e).
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Figure 3.8: Pupil diameter reflects individual differences in perceptual biases, contin-
ued. (c,d) Mean evoked pupil response for each subject as a function of the perceptual bias (a)
and relevance-dependent bias (b). Pupil responses were measured at the time of peak response
(1.38 sec after stimulus presentation) and orthogonalized to subject baseline pupil measurements.
(e,f) Regression coefficients describing the relationship between shared or unique variance (colors,
as indicated) in PE and PE*relevance coefficients from the behavioral model and average baseline
(e) or stimulus evoked (f) pupil diameter. Points and error bars in d and lines and ribbons in e
represent the correlation coefficient and 95% confidence intervals of the estimate and thus represent
across-subject modulations. Horizontal lines in e indicate periods for which H0: value=0, p < 0.05
after accounting for multiple comparisons.

These principles involve ongoing assessments of the relevance and reliability of priors

that represent a form of statistical learning [88, 89]. We quantified this learning pro-

cess using two variables derived from normative theory [77, 90, 91, 92, 93]. The first,

which we termed prior relevance, is closely related to unexpected uncertainty and re-

flects the probability that a new observation is consistent with recent history [?, 77].

The second, which we termed prior reliability, is a form of reducible uncertainty that

reflects ambiguity, typically resulting from undersampling, about the current gener-

ative process [92, 93]. Previous work showed that new information exerts the least

influence on existing predictions when those predictions are the most relevant and re-

liable [70, 85]. We showed analogous effects for perception: new sensory input exerts

the least influence on perception, relative to the influence of priors (i.e., perceptual

biases are largest), when the priors are the most relevant and reliable.

Both of these normative factors, scaled according to their effects on each subjects

behavior, were reflected in modulations of arousal state as measured by pupil diam-

eter. Prior reliability corresponded to changes in baseline pupil diameter, and prior

relevance corresponded to changes in the stimulus-evoked change in pupil diameter.

These modulations were similar to those that we reported previously for a predictive-

inference task, but the different demands of our present task imply a broader relevance

to different forms of information processing [71]. Specifically, our previous findings
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implicated a role for arousal fluctuations in adjusting bottom-up effects of new sensory

input on stored cognitive representations. In contrast, our present findings implicate

a role for arousal fluctuations in adjusting top-down control exerted by stored repre-

sentations on the interpretation of new sensory input.

This result has broad implications for decision-making. For simple sensory-motor

tasks, sequential effects of choice and response times can reflect priors inferred from

recent task patterns, even when the patterns are spurious and thus the effects are

detrimental to overall performance [94, 95, 96]. Our results suggest a role for stimulus-

evoked arousal responses in minimizing such suboptimal biases, potentially by reduc-

ing the impact of the top-down signals that mediate them. Consistent with this

idea, pupil dilations have been shown to be accompanied by reduced individual and

sequential-choice biases on perceptual decision-making tasks [97, 98]. For more com-

plex tasks, top-down prior information might be used to select task-relevant feature

information and thereby reduce implicit processing biases [99, 100]. This effect might

explain why individuals with larger evoked pupil responses tend to be more suscepti-

ble to their own implicit processing biases [101, 102]. Future work should address this

possibility in paradigms that combine implicit sensory biases with stimulus history-

dependent priors such as those used in our task.

These results are also consistent with the idea that transient increases in arousal, in

response to surprising events or other factors, may generally correspond to higher

sensitivity to immediate sensory input [103, 104]. In principle, this increased sensi-

tivity could emerge from an enhancement of feed-forward processing, perhaps though

an increase in neural gain [71, 78, 101, 105]. An alternative, but not necessarily mu-

tually exclusive, possibility supported by our results is that enhanced sensitivity to

sensory input is afforded by a reduction in the effectiveness of top-down priors in reg-
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ularizing, and thereby biasing, sensory percepts. Distinguishing and understanding

the independent contributions of these alternatives to arousal-mediated information

processing will require the development of new paradigms that can separately control

the bottom-up and top-down flow of information.

We also found relationships between subjective confidence, perceptual biases, and

pupil diameter. We measured confidence using a post-decision binary confidence

report (high/low confidence), which previously has been linked to the sensory-driven

decision variable that also governs the speed and accuracy of the perceptual decision

[106, 107, 108]. We showed that confidence is also modulated according to changes

in the relevance and reliability of perceptual priors that affect perceptual errors.

This modulation was also evident in pupil diameter, which reflected high confidence-

report frequency even after accounting for the normative variables that also governed

the perceptual biases. However, this extra effect was in the opposite direction as

for the normative factors, relative to the behavioral effect: high confidence-report

frequency corresponded to larger pupil diameters but stronger prior influence. This

pupil effect is somewhat surprising given that pupil diameter can be enhanced under

uncertain, rather than certain, conditions [71, 98, 109, 110, 111, 112] (but see [87]).

One possible explanation for this discrepancy is that the post-decision confidence

report led subjects to anticipate the increased reward or risk associated with high

confidence-report trials, leading to stronger arousal responses [111, 113]. This idea

is supported by the time course of confidence-related pupil dilations, which had a

maximal dilation immediately prior to the perceptual report. This idea also highlights

the multiple, possibly interacting roles that the arousal system likely plays in even

simple sensory-motor tasks like this one.

These multiple roles undoubtedly result from multiple mechanisms by which arousal
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affects neural information processing [114]. One such mechanism likely involves cor-

tical levels of norepinephrine (NE), which is controlled via neurons in the midbrain

nucleus locus coeruleus (LC) [78]. Firing rates of LC neurons correlate with pupil

diameter over relatively short timescales, which has prompted the suggestion that

pupil diameter can be used as a proxy for LC activity [78, 79, 115, 116]. Thus, the

factors in our task that corresponded to stimulus-evoked pupil dilations, such as more

surprising stimuli with lower prior relevance, may also correspond to increased LC

activation. This activation, in turn, would increase levels of cortical NE, which have

been theorized to signal unexpected context changes and allow neural representations

to reorient rapidly to meet changing contextual demands, possibly via modulations of

the input/output gain of individual cortical neurons [74, 77, 78, 105, 117]. In contrast,

slower changes in pupil diameter, such as those related to our baseline modulations,

may be more closely related to levels of acetylcholine released from the basal fore-

brain, which has been theorized to signal expected uncertainty of task-relevant beliefs

[77, 118, 119]. More work is needed to determine how these multiple, potentially in-

teracting neuromodulatory systems help to regulate perception and decision-making

in dynamic environments.

3.5 Experimental Procedures

Human subject protocols were approved by the University of Pennsylvania Internal

Review Board. 29 subjects (16 female, 13 male) participated in the study after

providing informed consent. Thirty-one additional subjects consented to the study

but did not meet the inclusion criterion of participating in at least three experimental

sessions. Our sample size was well powered to detect effects of d’ ¿ 0.6 (statistical

power ¿ 0.88 for d’ = 0.6) providing sufficient sensitivity in the range of previously
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reported behaviour-pupil relationships.

3.5.1 Auditory-localization task

We used an auditory-localization task in which subjects heard sounds with varying

source locations that were simulated using head-related transfer functions (HRTFs)

from the IRCAM database (http://recherche.ircam.fr/equipes/salles/listen/download.html).

Each sound was a sequence of five Gaussian noise pulses bandpass filtered between

100 Hz and 15 KHz. The pulses were 50 ms each with a delay of 10 ms following

each pulse, for a total stimulus duration of 300 ms. The latency for the sound to

reach the ears following the command execution was 3 ms. For each subject, we

tested a number of HRTFs during the initial session by playing sound sequences that

circularly traversed the entire horizontal plane in 15◦ intervals. We picked the HRTF

that was reported to give the most uniformly circular percept for the sound sequence.

Each subject performed 3-6 total sessions.

Each subject completed two tasks per session. The first was a control localization

task that required the subject to indicate the perceived location of simulated sound

sources that were sampled independently and uniformly randomly along the frontal,

horizontal plane. In each of 72 trials, the subject was required to: 1) fixate for 2.5 s on

a central spot while listening to the auditory stimulus; and 2) indicate the perceived

location of the sound using a mouse, which controlled a cursor that moved along a

semi-circular arc on the computer screen that represented the range of possible sound-

source locations (Fig. 3.1). Failure to maintain fixation resulted in a warning sound

and trial break. Feedback was displayed on the screen after the subject reported the

perceived location.
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The second task was a dynamic localization task that required the subject to report

predictions, perceptions, and confidence judgments of sound-source locations that

were generated from a change-point process along the same horizontal plane. For this

task, the subject listened to extended sequences of sounds generated by the change-

point process, with an interval of 150 ms between each sound presentation. Each

sound was paired with a visual cue indicating its simulated source location on the

semi-circular arc. During the presentation of these sequences, no action was required.

Occasionally, however, the sequences stopped, indicating the start of a probe trial

with the following structure (Fig. 3.1c). First, the subject was required to predict

the angular location of the next, upcoming probe stimulus on the arc using a mouse.

Second, following the prediction, the subject was required to maintain fixation for 2.5

s on the same central spot used in the control task. The auditory probe stimulus, with

no corresponding visual cue, was presented at the beginning of this fixation period.

Fourth, after the fixation period ended, the subject indicated the perceived location

of the probe stimulus using the mouse and the visual display. Fifth, the subject then

reported confidence (high/low) on the accuracy of the perceptual report (Fig 3.1).

Each subject performed four blocks of the dynamic task per session, which included

30 probe trials each. Each session lasted 90 min, with some variability due to the self-

paced nature of the prediction, perceptual report, and confidence reporting periods

of the task (median [IQR] reaction times were: 1.72 [1.492.35] sec for the prediction,

2.02 [1.502.30] sec for the perceptual report, and 1.18 [0.941.43] sec for the confidence

report).

The sequence of simulated sound-source locations for the dynamic task was deter-

mined according to a process that included both irreducible variability (noise) and

abrupt discontinuities (change-points). Our goal was to test if and how these manipu-

93



lations, which can affect the reliability and relevance, respectively, of new information

on existing predictions, also affect perceptual reports that can, in principle, use such

predictions to improve the perception of ambiguous stimuli 10. Source locations were

sampled from a Gaussian distribution with a standard deviation (STD) that was held

constant within a block of 600 trials (10◦ or 20◦ for the low- or high-noise condition,

respectively) and a mean that underwent abrupt change-points with a fixed probabil-

ity, or hazard rate (H), of 0.15 for each sound sample. At each change-point, the mean

of the generative distribution was resampled uniformly across the sound space, such

that the newly generated source locations were independent from previous ones. The

sequence was interrupted for probe trials at random using a procedure that ensured:

1) a roughly even distribution of probes occurring 1-6 sounds after a change-point

(SAC); 2) that probes were separated by at least 8 sounds; and 3) the number of

sounds between any two probe trials was the same, on average, regardless of the na-

ture of the two probe trials (SAC 1-6). Thus, on some trials the probe sound-source

location was independent of the previous stimulus sequence (SAC=1). On other tri-

als, the probe location was generated from the same distribution that produced the

immediately preceding locations (SAC=2-6).

Subjects were motivated to make accurate perceptual reports on each probe trial

through an incentive system. They were instructed to report high confidence if they

were confident that the true location was within a 16◦ window centered on their second

(perceptual) report, and to report low confidence otherwise. A correct/incorrect

high confidence report resulted in a score of (15/-10), and a correct/incorrect low

confidence resulted in a score of (5/-3). Subjects were paid a bonus that depended

on their total score.
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3.5.2 Behavioral data analysis: contrasts

To provide an intuitive understanding of how behavior was affected by particular task

conditions, we sorted probe trials into twelve conditions according to the recency of

the previous change-point (SAC=1-6) and noise condition (high/low). To empha-

size the effects of change-points on the behavioral reports, these analyses included

data only from sequences following easily noticeable change-points, corresponding to

changes in generative mean of at least twice the generative STD for SAC=1 (note

that the linear model described below was used to analyze the full data sets, including

all change-points). Perceptual and prediction errors were computed by subtracting

reported percepts and predictions from the true (simulated) sound source location for

each trial. For each condition, the STD of prediction and estimation errors was used

as a metric of average absolute error magnitude.

To quantify how prediction errors, estimation errors, and average confidence reports

depended on specific task conditions, we performed four orthogonal linear contrasts

over our twelve task conditions. Each contrast was computed by multiplying a weight

matrix by the measured prediction errors, estimation errors, or average confidence

reports, aggregated according to the task conditions for a single subject. Weight ma-

trices were mean centered and chosen to identify: 1) differences between change-point

and non-change-point trials (CP); 2) linear increases with increases in the number

of sounds experienced (Exp) following a change-point, from SAC=2 to SAC=6, in

the high-noise condition (Exphigh); 3) comparable linear increases in the low-noise

condition (Explow); and 4) differences between the high- and low-noise conditions

(Noise). Thus, the contrasts provided a per-subject measure of how much each be-

havioral measurement was modified according to these factors. For Figs. 3.3-3.5, we

considered only sound sequences following relatively large change-points, correspond-
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ing to at least twice the generative STD. Contrasts were normalized for presentation

in Figs. 3.3 and 3.4 by dividing the contrast value for each subject by the standard

deviation of that contrast across all subjects. This procedure allowed all contrasts to

be meaningfully displayed on the same set of axes.

3.5.3 Behavioral data analysis: perceptual bias

To quantify the influence of the prior on the perceptual report, we measured the

slope of the best-fit line to the relationship between prediction errors (predictiontrue

location) and perceptual errors (percept-true location) for the given task condition.

Slopes close to one indicate a high perceptual bias, and slopes close to zero indicate

low perceptual bias. To measure how the perceptual bias evolved as a function of

the number of sounds after a change-point (SAC), we used the following linear model

and included only data from sequences following noticeable change-points (jumps of

at least twice the generative STD):

ERRpercp = β0 + β1ERR
high
pred,1 + · · ·+ β6ERR

high
pred,6 (3.1)

+ β7ERR
low
pred,1 + · · ·+ β12ERRlow

pred,6 + β13Biasspatial

where ERRpercp is the perceptual error and ERRhigh
pred,1 is the prediction error on

change-point trials (SAC=1) in the high-noise condition, and so on. The last term,

Biasspatial , captures the slight bias in the perceptual reports towards center of the

screen.
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3.5.4 Behavioral data analysis: theoretical benchmarks

The theoretically expected overall perceptual-error STD per subject (abscissa in

Fig. 3.2i) was computed from an optimal, reliability-weighted combination of prior

and sensory information: σ−2
theoretical = σ−2

predictions + σ−2
sensory. The theoretically ex-

pected perceptual-error STD per subject (diamonds in Fig. 3.3c,d), given their cor-

responding predictions for each SAC condition, was computed using
(
σSACtheoretical

)−2
=(

σSACpredictions

)−2
+ σ−2

sensory. The theoretically expected frequency of high-confidence

reports (diamonds in Fig. 3.3e,f) was computed as the probability mass contained

in a 16circ window centered at the mean of a Gaussian with a STD of the theo-

retically expected perceptual errors, σSACtheoretical . Thus, the proportion of expected

high-confidence reports increased with narrower perceptual error distributions. The

theoretically expected perceptual bias per subject (diamonds in Fig. 3.4d,e) was com-

puted as σ2
sensory/(σ

2
sensory + (σSACpredictions)

2). In all of the above, σpredictions is the STD

of prediction errors on non-change-point trials, σSACpredictions is the STD of prediction

errors for the specified number of sounds after a change-point, and σsensory is the STD

of perceptual errors on the control task, computed per subject.

3.5.5 Behavioral data analysis: normative model

Auditory localization in a dynamic environment can be posed as a perceptual inference

problem with the goal of inferring the location of the sound source on trial t (Xt)

according to a noisy internal sensory representation of that sound source (λt) and

the history of previously experienced sound sources (X1:t−1). This problem can be

simplified by exploiting the conditional independencies in the Markov change-point

process through which sound sources are selected (see Fig. ??). In particular, the
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sound sources locations on the current trial (Xt) are independent of those on previous

trials (X1:t−1) conditioned on the mean of the generative distribution on the current

trial (µt). In turn, the mean of the generative distribution on the current trial (µt)

is also independent of previous observations conditioned on: 1) the mean of the

generative distribution on the previous trial (µt−1), and 2) a latent change-point

variable that determines whether the mean is resampled on the current trial (St).

Applying Bayes rule to invert the generative graph in Fig. ?? yields the following

inference equation:

P (Xt |λt, X1:t−1 ) =

∑
µt
P (Xt |µt )

∑
st,µt−1

P (µt |µt−1, st )P (st)P (µt−1 |X1:t−1 )∑
Xt
P (Xt, λt |X1:t−1 )

×

P (λt |Xt ) (3.2)

where the likelihood P (λt |Xt ) reflects the conditional distribution of internal repre-

sentations across true sound source locations; P (Xt |µt ) reflects the conditional prob-

ability of a sound source location being generated from a particular generative mean;

P (µt |µt−1, st ) reflects the process through which means are resampled on change-

point (st=1) trials; and P (st) is the hazard rate (H), which was fixed to 0.15 for the

task and all simulations. The likelihood P (λt |Xt ) was modeled as a normal distri-

bution centered on with a variance that was fixed for each subject to the variance of

perceptual reports made by that subject on the control task σ2
sensory. P (Xt, λt |X1:t−1 )

is the distribution over possible generative means, which can be updated recursively.

Although exact Bayesian solutions to this recursive problem exist [73, 90], we use

a normal approximation to the Bayesian mixture distribution with a mean µ̂ and

variance σ̂2 that capture the key dynamics of normative inference and offers better
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descriptions of human behaviour [70]. As in previous work, predictions made using

this approximation were more accurate than subject predictions. To account for this

discrepancy, we created a subjective prediction µ̂subj by sampling a random normal

variable with mean equal to µ̂ and a variance that was incremented on each trial

according to the difference in variance of subject and normative prediction errors:

σ̂2
subj = σ̂2 + V ar (X − subject predictions)− V ar (X − µ̂) (3.3)

Perceptions and predictions from the normative model were simulated by sampling

internal representations (λt) and subjective predictions (µ̂subj) for each trial according

to the actual sequence of sound source locations experienced. Descriptive statistics

for model simulations were averaged across 100 such simulated runs.

In addition to simulating behavioral data, the normative model also allowed us to

extract latent variables that guide normative adjustments in perceptual bias. In

particular, the model adjusts bias towards prior expectations in accordance with the

relevance and reliability of those expectations. The relevance of prior expectations

(πt) is, in our generative framework, equal to the probability that a change-point did

not occur on this trial given all previous data. This probability was computed on

each trial by marginalizing Eq. 3.2 over all dimensions other than s. The impact

of normative priors also depends critically on their reliability relative to that of the

likelihood distribution capturing the noisy internal sensory representation (λt):

prior reliability: τt =
σ2
sensory

σ2
sensory + σ̂2

subj + σ2
noise

(3.4)
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where τt is prior reliability, σ2
sensory is the variance of perceptual reports made by

that subject on the control task, σ̂2
subj is the variance on subjective assessments of the

underlying mean, and σ2
noise is the expected variance of sound source locations about

that mean. The sum of the latter two terms reflects the total variance on the models

predictive distribution over possible sound locations. To ensure that these latent

variables best reflected circumstances experienced by the subject, we fixed the model

predictions (µ̂subj) to the actual subject predictions from each trial and computed

each measure as the expected value across all possible values of λt using a grid-point

approximation.

3.5.6 Behavioral data analysis: Linear model of perceptual
bias

To provide a more complete description of how behavioral data from all conditions,

including all generative change-point and non-change-point trials, depended on both

normative and non-normative factors, we fit the following linear model to data from

all trials in each session:

ERRpercp(t) = β0 + β1ERRpred(t) + β2ERRpred(t) · πt + β3ERRpred(t) · τt

β4ERRpred(t) · bet+ β5ERRpred(t)Biascenter + β6Biasspatial (3.5)

where β1 describes the overall prior bias; β2 and β3 describe the extent to which the

overall bias is dynamically modulated by the prior relevance and reliability, respec-

tively (see above); β4 describes the interaction of prior bias with confidence report (a
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p(X t |λ t , X 1: t− 1 ) =

p(λ t |X t )
µ t

p(X t |µt )
s t µ t − 1

p(µt |µt− 1 , s t )p(s t )p(µt− 1 |X 1: t− 1 )

X t

p(λ t , X t |X 1: t− 1 )

Hazard rate: [0,1]

Latent change-point variable: binary

Mean of generative distribution: [0,180]

Sound source location: [0,180]

Internal representation: [0,180]

Likelihood

Outcome generative 
distribution

Change-point 
prior

Posterior distribution 
over the mean 

Normalization
 term

H

S tS t− 1

µt
µt− 1

X t− 1 X t

λ t− 1 λ t

A   Generative graphical model for Bayesian perceptual inference

t = time step

B   Bayesian inference equation (Eq. 2 in manuscript). Note that the
        noise condition is encoded in the outcome generative distribution.

Figure 3.9: Bayesian model of perceptual inference. (a) Graphical generative model de-
scribing dynamic task structure. For each sound in the stimulus train, a binary latent change-point
variable (St) was sampled according to a hazard rate (H) that was fixed across all trials. If a change-
point was not sampled (St = 0), then the mean of the sound-source distribution (µt) remained stable
(µt = µt−1). Otherwise, in the case of a change point (St = 1), µt was drawn at random from a
uniform distribution ranging from 0-180 degrees. The sound source location (Xt) was sampled from
a normal distribution with mean equal to µt and a standard deviation equal to either 10 (low noise)
or 20 (high noise), manipulated in task blocks. The simulated sound source gives rise to an internal
subjective representation of its location λt according to a normal distribution, centered on Xt, with
a standard deviation inferred from estimation errors on the control localization task. (b) Inference
over this generative graph can be accomplished by inverting the generative process according to
Bayes’ Rule.
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binary variable); β5 describes the bias towards the center of the screen; and β6 cap-

tures the angular spatial bias (mean perceptual error at the given angle) measured in

the control task. Residuals from the model fit were signed according to the prediction

error on each trial to create a residual bias term for use in pupil analysis.

3.5.7 Pupil measurements

Pupil diameter was sampled from both eyes at 60 Hz using an infrared eye-tracker

built into the monitor (Tobii T60-XL). Pupil analyses used the mean value from the

two eyes at each time point measured during fixation. We excluded from further anal-

yses trials with blinks, which we identified using a custom blink-detection routine on

the basis of missing pupil diameter measurements and/or vertical and horizontal eye

position that deviated from fixation for at least 10 contiguous samples (median [IQR]

percentage of excluded trials across sessions = 5.54 [3.169.16]%). For the remaining

trials with ¡10 missing contiguous pupil samples, we linearly interpolate the data be-

fore low-pass filtering. Low-pass filtering was done using a Butterworth filter with

a cut-off frequency of 4 Hz. These filtered measurements were then z-scored in each

session. We also removed a linear trend in the average pupil diameter over the whole

session to account for any slow drift. The pupil baseline for each probe trial was de-

fined as the mean of the first three samples immediately preceding the measurement

period for that probe trial.
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3.5.8 Linear model relating pupil diameter to behavioral pa-
rameters

To measure how the variables driving behavior were encoded in pupil diameter, we

used the following linear model to explain the fluctuations in: 1) the baseline pupil

diameter, and 2) stimulus-evoked pupil response across the 2.5 s following the auditory

stimulus:

Pupil diameter = β1πt + β2τt + β2 ·Betn + β2 ·Biasresidual +

β5 · (Previous baseline diameter) + β6 · (Time since previous probe)

+ β7−9 · (low frequency terms) (3.6)

where τt and πt are the reliability and relevance, respectively; β1−4 capture rela-

tionships between pupil diameter and the computational and behavioral variables of

interest; β5−6 capture persisting fluctuations in pupil diameter that are attributable

to the previous trial; and β7−9 includes a set of three low-frequency cosine components

for each session that capture task-irrelevant variability due to slow modulations or

session-based differences in pupil diameter. The exact form of the cosine components

was cos (πk (2n− 1) /2N) , where k = 0, 1, 2; n is the trial number within the session;

and N is the total number of trials in the session. When this model was fit to evoked

pupil responses, an additional nuisance variable was added to the explanatory matrix

that accounted for trial-by-trial differences in baseline diameter.

Significance testing for evoked pupil coefficients was done through cluster-based per-

mutation testing to account for multiple comparisons over time. In short, t-tests were
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Figure 3.10: Pupil regression goodness of fit. (a,b) R2 values reflecting the goodness of fit
for a base model that included only task-based regressors (abscissa) and a full model that included
several nuisance parameters (ordinate) applied to pupil diameter at baseline (a) and peak response
(b). Filled points indicate subjects for whom the base model provided a significantly better fit than
a null model (F-test, p < 0.05). The full model was preferred over the null model for all subjects.
Mean AIC values (baseline measurements): 1308.9 for the null model, 1298.9 for the base model,
and 958.7 for the full model. Mean AIC values (peak responses): 1308.9 for the null model, 1288.2
for the base model, and 538.0 for full model.

performed on each set of coefficient values across subjects separately for each time

point. Cluster size was determined according to the number of contiguous time points

for which this t-test yielded p < 0.05. Cluster corrected p-values were determined by

comparing cluster sizes attained in this way to those from a permutation distribution

of maximal cluster sizes [120].

3.5.9 Pupil-predicted perceptual bias

Trial-by-trial pupil measurements were extracted for the time of peak pupil response

(1.4 seconds) from the behavioral model. Trial-by-trial measurements from each sub-

ject were regressed onto a set of nuisance variables that included explanatory variables

β5+ from Eq. 3.6 to remove variance attributable to potentially confounding factors.
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Residual pupil measurements were concatenated across subjects and then divided

into two separate variables: one variable accounted for average measurements for

each subject and one that reflected normalized deviations from the average measure-

ment within each subject. An additional term was created through the multiplica-

tive interaction of each subjects mean pupil response and pupil-response variability,

to account for the possibility that individual differences in the overall arousal re-

sponse modulate the extent to which trial-to-trial fluctuations in arousal modulate

perceptual bias. The three resulting variable arrays were z-scored and multiplied by

trial-by-trial prediction errors to create a predictor matrix. Trial-by-trial perceptual

errors were regressed onto three separate models with and without the inclusion of

the pupil predictor matrix: 1) a null model including an intercept term and a pre-

diction error term to capture fixed effects of perceptual bias across all subjects as

well as the spatial bias terms described above [NE]; 2) a fixed-effects model that also

included interaction terms accounting for modulation of perceptual bias by prior rel-

evance and reliability the subjects confidence report [FE]; and 3) a random-effects

model that included all terms in model 2 separately for each subject [RE]. Since the

random-effects model used dummy variables to account for individual differences in

perceptual bias, the pupil predictor matrix included only within-subject variability

and thus only one additional parameter rather than three. The marginal benefit

of pupil-predictor terms was evaluated through likelihood-ratio tests (evaluating the

additional explanatory power offered by pupil predictors) and quantified using AIC,

a likelihood-based measure of goodness-of-fit that applies a penalty for each model

parameter.
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Figure 3.11: Pupil diameter predicts perceptual bias. (a) Perceptual error, sorted according
to the pupil-predicted prior influence (gray scale, as indicated, corresponding to the bottom quartile,
middle 50%, and top quartile) and plotted according to prediction error. Points are mean values
computed across all subjects. (b) Mean±95% confidence intervals for pupil coefficients describing
within- and between- subject effects of pupil diameter, as well as their interaction. See text for
details. (c) Improvement in AIC achieved by adding pupil-based predictors to models that include:
1) a fixed perceptual bias across all subjects (NE), 2) a fixed perceptual bias and fixed model-based
effects of perceptual bias across all subjects (FE), and 3) a random effects model that fits all bias
and modulation terms separately for each subject (RE, which is equivalent to the normative linear
model in Fig 3.6). Asterisks indicate significant improvements (likelihood-ratio test, p < 0.05).
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Chapter 4

Model complexity, information
geometry and resolution of
observations

4.1 Introduction: principled measures of model

complexity

In behavioral tasks involving sequential inference, it is necessary to have some model

of the environmental structure which allows one to make predictions about unseen

samples or inferences about ambiguous ones. In several such tasks, human subjects

behave in a way that is consistent with normative models [121, 122]. However, there is

considerable variability between subjects in their overall behavior; for example, even

for the same level of performance, some subjects can have more variable responses

while others have more systematically biased responses. Our hypothesis is that this

individual variability, instead of arising from random or uncontrolled fluctuations, is
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a result of subjects using inferential models of varying complexity. In other words,

subjects may use models of different complexities, but they behave near-optimally

given their model complexity. If this were the case, then we would expect subjects

to lie close to the boundary of an appropriately defined performance-vs-complexity

trade-off.

A major obstacle in testing such a hypothesis is using a principled and meaningful

definition of model complexity. Heuristic measures of model complexity can introduce

biases and incorrectly label fundamentally similar models as being different [123].

On the other hand, using principled notions of complexity specifically designed for

certain model classes may themselves give misleading results if the model class is not

representative of the subject’s model. Here, we first describe principled complexity

measures which have been classically used for specific model classes and then men-

tion potential pitfalls. We then use an empirical measure of complexity – based on

the notion of predictive information – which has rigorous theoretical backing[10], and

describe how to use it to study the individual variability of subjects performing an in-

ference task. We also illustrate the tight connections between predictive information,

and other classical notions of model complexity based on the geometry of the pa-

rameter manifold[124, 125, 123]. Both these notions of complexity are consistent and

exact asymptotically, and their form is familiar from penalty terms for ‘overfitting’.

Finally, we address interesting geometric issues that arise in the limit of finite data

or by observing the model at a ‘coarse’ scale. This has natural connections to the

work of James Sethna and his collaborators on sloppy models [126, 127, 128, 11]. The

key insight from Sethna et al. is that in typical scenarios, we don’t probe all the

degrees of freedom of the model, and thus, there are many parameter combinations

that have little effect on the output behavior of the model at our scales of observation;
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moving large distances in parameter space along those directions has little effect on the

measurements. This immediately implies that one can can collapse those parameter

directions to give simpler ‘effective/emergent’ models for our scale of observation.

The classical notions of model complexity do not explicitly account for this important

behavior. How does one modify these measures of model complexity to explicitly take

into account the resolution at which you observe the system? We suggest a natural

and principled extension to the complexity measures to make connection with the

literature on sloppy models.

4.2 Model selection and classical measures of com-

plexity

Measures of model complexity have been a central aspect of selecting between differ-

ent explanations of data, going back all the way to the philosophical literature (for

e.g., Occam’s razor). In the more recent statistical era, there is a rich body of work on

quantitative measures of model complexity of parametric model families (for instance

by Akaike et al.); however, these measures were often incomplete or lacked unify-

ing principles. Later on, Rissanen, Barron and others made many of these notions

rigorous and showed that a large family of model selection schemes which penalize

complexity can be viewed as a precisely formulated tradeoff between explaining the

data (‘goodness of fit’) and model complexity, suitably defined. Rissanen’s prescrip-

tion [129] was that we should select the model which offers the greatest combined

compression of the data and the description of the model itself, as this is most likely

to uncover the regularities in the data. This is referred to as the Minimum Description

Length (MDL) principle. These family of schemes (including MDL) are collectively

referred to as Minimum Complexity Density(MCD) estimation methods by Barron
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et al.[130, 131]. Rissanen also showed that when the observed data x are generated

from within the model family P (x|α) indexed by a parameter α, in the limit of large

sample size N , the length of the shortest code encoding the data and the model is

MDL ≈ − logP (x| α̂) +
k

2
log

(
N

2π

)
+ ln

∫
dkα

√
detG (α) (4.1)

where P (x|α) defines the model and α̂ is the maximum-likelihood estimate, k is

the dimensionality of the parameter space and Gµν (α) = −E [∂2 logP (x|α) /∂µ∂ν]

is the Fisher information matrix. Intuitively, the Fisher information (FI) conveys

how much the model (P (x|α)) changes by a small change in parameters, and hence

how much ’information’ the data convey about the parameter; we will discuss FI in

more detail later. This formulation is invariant to reparametrization of α – as any

reasonable complexity measure should be. Let us now understand what the terms on

the right hand side represent. The first term is the negative log-likelihood of the data

under the best-fitting model, representing the goodness-of-fit, and the last two terms

are what Rissanen refers to as the ‘model complexity’ characteristic of the model

family. They represent the space required to the encode the model itself, and thus

penalize overly detailed models. In choosing among different model families, the one

with the lowest MDL is to be preferred and can be shown to predict unseen data

most accurately.

Rissanen’s MDL method has several favorable theoretical properties, and it is also

possible to show that the original algorithmic motivation of Rissanen’s scheme can be

cast in the language of Bayesian model selection. In particular, it is possible to show

that the model complexity terms suggested by Rissanen’s MDL naturally fall out of

performing Bayesian model selection using a special prior over models (indexed by
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parameter α)[132, 125]. This special prior – Jeffreys prior – is an uninformative prior

which weights all ‘distinguishable’ models equally. As has been noted, a uniform prior

over all distinguishable models is not the same as a uniform prior over the parame-

ters α; this is evident if you consider a reparametrization of the parameter α to some

other parameter θ – a uniform prior over α will in general not be uniform over θ. An

obvious question is when are two models distinguishable? As argued clearly in[125],

a suitable criterion for distinguishability is how easy it is to confuse N observations

from one model indexed by parameter α1 with another model indexed by parame-

ter α2; this probability falls exponentially with N and the exponent multiplying N

is DKL (α1 ‖α2 ) : the Kullback-Leibler (K-L) divergence between the distributions

parametrized by α1 and α2. The K-L divergence, which appears extensively in coding

and information theory, is a measure of difference between probability distributions;

however, DKL is not a strict distance metric – it is not symmetric in its arguments

and it does not satisfy the triangle inequality. This is however not an issue for two

models which are nearby in the parameter space, say indexed by α and α+dα. The

K-L divergence between them is given to leading order by

DKL (P (x|α) ‖P (x|α+ dα)) = dαµdανGµν (α) + · · ·

where, Gµν (α) = −E [∂2 logP (x|α) /∂µ∂ν] is the Fisher information matrix. The

Fisher Information is symmetric and satisfies the requirements for a metric on the

parameter manifold. So, with the Fisher information metric on the parameter man-

ifold,
√

detG (α) gives the density of distinguishable distributions in the neighbor-

hood of α. Thus, as clearly argued in[125], the correct uninformative prior should

give equal weight to all distinguishable distributions and therefore be proportional to

111



√
detG (α) . The normalized Jeffreys prior is thus given by

J (α) =

√
detG (α)∫

dkα
√

detG (α)

Let us now see that Bayesian model selection with the Jeffreys prior does indeed

penalize model complexity in the same way as the MDL criterion. If we have to

choose between two model families f and g to explain some observed data X, then

Bayesian model selection tells you to pick the model family with the highest posterior

probability P (f |X ) given some data X. To form the posterior of the family f we

need the likelihood of the data for that family: P (X |f ) =
∫
dαP (X |α) J (α).

Using this we get,

P (f |X ) =
P (f)

P (X)

∫
dkα

√
detG (α)∫

dkα
√

detG (α)
P (X |α)

In the absence of a priori knowledge we can assume all model families equally likely,

so we only need to care about the integral. This can be rewritten as

P (f |X ) ∝ 1∫
dkα

√
detG (α)

∫
dkα

√
detG (α) exp

[
−N ln (P (X |α))

N

]

where N is the number of independent samples in the observed data. In the limit of

large N , the exponent will be dominated by the neighborhood of the extremum, so

we can perform a saddle-point approximation [125] to get

P (f |X ) ∼ 1∫
dkα

√
detG (α)

·
√

detG (α̂)√
detGemp (α̂)

· P (X |α̂) ·
(

2π

N

)k/2
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where α̂ is the location of the extremum, and Gemp is the “empirical” Fisher infor-

mation matrix for the observed data

Gemp
µν (α) = − 1

N

N∑
i=1

∂µ∂ν logP (xi|α)

Taking logarithms:

− lnP (f |X ) ≈ − lnP (X |α̂) +
k

2
ln

(
N

2π

)
(4.2)

+ ln

∫
dkα

√
detG (α) +

1

2
ln

(
detGemp (α̂)

detG (α̂)

)
+ · · ·

Thus, the negative log-posterior probability of a model family f is the negative log-

likelihood of data under the best model in the family (goodness-of-fit) plus a series

of terms penalizing complexity. These complexity terms are essentially the same as

from the MDL principle (eq.4.1).

There is an additional lower order term not usually considered in the classical model

complexity measures: ln(detGemp (α̂) / detG (α̂)). This is a “robustness” term [125]

measuring how many ‘good’ models are in the neighborhood of the best fitting model.

As illustrated in Fig. 4.1 , the Fisher information metric imposes a local resolution on

the parameter grid for the density of distinguishable models. When we calculate the

empirical Fisher information from the observed data, there are fluctuations in this

empirical metric, thus creating a fuzziness in the grid. The determinant of the Fisher

information matrix measures the local volume element, so a ratio of the determinant

of the empirical Fisher information matrix to the determinant of the true Fisher

information matrix tells us about the relative scale of the fluctuations – smaller this

term, the more distinguishable models we have close to the best fitting model, thus
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Figure 4.1: Empirical Fisher information and robustness: The true Fisher information metric
at a parameter value α̂ gives a local resolution grid (black mesh) which describes the density of
distinguishable models in the neighborhood of α̂. The empirical Fisher information calculated from
the data gives rise to fluctuations in the metric, which introduces fuzziness in the local resolution in
parameter space (red dashed mesh). The size of these fluctuations relative to the coarseness of the
grid in the vicinity of the best-fitting model is a measure for robustness of the model family.

the model family is more robust in a sense (also c.f. [125]). As we will see below,

this robustness term which indicates the density of ‘good’ models also accounts for

the behavior of sloppiness.

It is appealing that the principled model selection criterion of the MDL principle

also follows from a Bayesian model selection procedure using an uninformative prior

which gives equal weight to all distinguishable distributions within a model family.

Moreover, the Bayesian formulation has a nice geometric interpretation in the space

of probability distributions. These principled measures of complexity of model fam-

ilies have nice theoretical properties, however, they are not always easy to use with

behavioral data to infer the complexity of an inferential or predictive model. If we

assume that all the subjects use models from the same (normative) model family, and

that their individual differences can be attributed to variability in poorly estimated

parameters, then we might be led astray in interpreting the fits to subject behavior

when the subjects use models from very different model families. What is needed is
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a less biasing measure of model complexity which can be estimated empirically from

the data alone. Below, we describe one such principled measure and show how to use

it in an inference task.

4.3 Empirical complexity from Predictive Infor-

mation

In a comprehensive paper[10], Bialek et al., introduce the notion of predictive infor-

mation as the mutual information between a chunk of a time-series and its entire

future; the asymptotic growth of this predictive information then betrays the com-

plexity of the process generating the time-series. Predictive information captures

previously considered notions of complexity from the statistical mechanics and the

dynamical systems literature under a common framework (see [133]). A salient aspect

of predictive information as a measure of complexity is that it is a function of the data

alone (provided one has sufficient data to estimate the various information-theoretic

quantities), and its calculation does not need assumptions about the model families

generating the data. However, as we illustrate below, in the cases where the model is

known, the complexity measures suggested by the divergent part of the predictive in-

formation are the same as that suggested by principled measures of model complexity

based on information geometry [124, 123, 125]. Another favorable property of the pre-

dictive information (more precisely, its divergent part) is that under some reasonable

assumptions like stationarity of the time-series and invariance to reparametrization

etc., the divergent part of the predictive information is the unique measure of com-

plexity of a dynamical process, much in the same way that the Shannon entropy is the

unique complexity measure of a random variable[134]. In this section, we first revisit

the definition and properties of predictive information [10] and then show how to use
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these notions to estimate the complexity of subjects’ internal models in a sequential

inference task.

Consider a time-series X (t), then the predictive information in a chunk of the time-

series Ipred is the mutual information (I) between the past and future of the time-series

in the limit of future extending to infinity. More specifically,

Ipred (T ) = lim
T ′→∞

I (X (−T < t < 0) ;X (0 < t < T ′))

where, I (X, Y ) = H (X)−H (X |Y ), and H() is the Shannon entropy. Here, station-

arity is assumed, so the choice of t = 0 is arbitrary. So, the predictive information in

a portion of the time-series conveys the amount of information that is useful in pre-

dicting the entire future. This information, Ipred (T ), is clearly non-decreasing with

T , and it is this rate of growth of Ipred (T ) which betrays the complexity of the pro-

cess generating the time-series. Another interesting view of predictive information,

is that Ipred (T ) is the subextensive part of the entropy – i.e. if S (T ) is the entropy

of a portion of the time-series of length T , then S (T ) can be decomposed into an

extensive part and a subextensive part as

S (T ) = S0 · T + S1 (T )

where S1 (T ) is the subextensive part of the entropy and S0 is some non-negative

constant. It is easy to show, S1 (T ) = Ipred (T ). Also, the subextensivity of S1 (T )

implies limT→∞ S1 (T ) /T = 0 : i.e., as Bialek et al. point out, most of what we

observe is useless for predicting the future.

The predictive information can display three qualitatively different behaviors in the
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limit of large T :

1. Ipred (T ) remains constant

2. Ipred (T ) can grow logarithmically as (k/2) log (T )

3. Ipred (T ) can grow as Tα with α < 1

The first case is true for deterministic or very regular sequences, the second case is ob-

served when the dynamics are generated by a model parametrized in a k−dimensional

parameter space and the last case is observed for ‘non-parametric’ models, where the

number of parameters to be learned grows with as you observe more data. The

first two growth scenarios have already been observed by Rissanen in the analysis of

stochastic complexity[129]. The fact that the predictive information framework sub-

sumes ‘non-parametric’ models – models which grow in complexity with more data

– make this measure appealing. It is also worth noting a few examples: i) for a

purely random sequence with independent samples the entropy is purely extensive,

so Ipred = 0 : there is nothing to be learned; ii) for a purely periodic sequence, Ipred

asymptotes to a constant, which is larger for larger periods – this is consistent with

our intuitive notions of complexity of a dynamical process. Let us now see how the

complexity measures suggested by predictive information relate to those suggested by

information geometric measures.

4.3.1 Predictive information-based complexity of a model
family

We noted that the predictive information is an unbiased and universal measure of

complexity of a dynamical model; the growth of the subextensive component of en-
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tropy captures the complexity class of the model family. It is useful to see how

the complexity of a model family as prescribed by the growth of the subextensive

component of the entropy compares to the complexity measures of a model family

from Information Geometry as described earlier. Following the setup in [10], let us

consider the entropy of N independent samples drawn from a parametrized family

of probability distribution and calculate the subextensive component of the entropy.

Suppose we observe N independent samples x1 . . .xN from a parametrized probabil-

ity distribution Q (x1, . . . ,xN |α), and let us also suppose that a priori we treat all

distinguishable distributions indexed by this family as equally likely; i.e. the prior on

the parameters α is the Jeffreys prior described above. Then the entropy of the total

distribution of the N samples, P (x1, . . . ,xN), is given by

S (N) = −
∫
dx1 · · · dxNP (x1, . . . ,xN) lnP (x1, . . . ,xN)

where

P (x1, . . . ,xN) =

∫
dkα

√
detG (α)

V

N∏
i=1

Q (xi|α)

V =

∫
dkα

√
detG (α)

We can also rewrite P (x1, . . . ,xN) as

P (x1, . . . ,xN) =
N∏
j=1

Q (xj| ᾱ)

∫
dkα

√
detG (α)

V
×

exp

(
−N ·

{
− 1

N

N∑
i=1

log2

[
Q (xi|α)

Q (xi| ᾱ)

]})
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This form of P (x1, . . . ,xN) lends itself to an interesting interpretation: there’s some

“true” set of parameters ᾱ which give rise to the data and the averaging over all the

parameters is weighted by a term which decreases exponentially for parameters which

are “far away” from the true parameters. In the limit of large N it is also clear that

Demp
KL (ᾱ ‖α) ≡ − 1

N

N∑
i=1

log2

[
Q (xi|α)

Q (xi| ᾱ)

]
= → DKL (ᾱ ‖α)

where DKL (ᾱ ‖α) is the true Kullback-Leibler divergence between the distributions

indexed by the two parameters, and Demp
KL (ᾱ ‖α) is the “empirical” Kullback-Leibler

divergence estimated based on the observed data. So, the exponential term decreases

with the KL divergence from the true distribution. This allows us to write the entropy

as

S (N) = S0 ·N + S1 (N)

Where the extensive term S0 ·N is given by

S0 ·N = N ·
(
−
∫
dkα

√
detG (α)

V

∫
dx ·Q (x|α) lnQ (x|α)

)

and the subextensive component of the entropy is given by

S1 (N) = −
∫
dkᾱ

√
detG (ᾱ)

V
· ln
[∫

dkα

√
detG (α)

V
exp (−N ·Demp

KL (ᾱ ‖α))

]

The term inside the logarithm is reminiscent of a partition function Z (ᾱ;N) with

the number of samples N playing the role of inverse temperature. The growth of the
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subextensive entropy (and hence model complexity) depends on how this partition

function grows with N . For sufficiently large values of N , only models with small KL

divergences will contribute to Z (ᾱ;N). We can rewrite Z (ᾱ;N) as

Z (ᾱ;N) =

∫
dερ (ε; ᾱ) exp (−N · ε)

where ρ (ε; ᾱ) , the density of models with KL divergence ε from the “true” model

(ᾱ) is given by

ρ (ε; ᾱ) =

∫
dkα

√
detG (α)

V
δ (ε−Demp

KL (ᾱ ‖α))

In the limit of small ε we can assume α and ᾱ are close, and carry out a spherical

integral in k dimensions to get

ρ (ε; ᾱ) ≈
√

detG (ᾱ)

V

(2π)k/2

Γ (k/2)
· 1√

detGemp (ᾱ)
εk/2−1

where Gemp (ᾱ) is the empirical Fisher information matrix we encountered before

Gemp
µν (ᾱ) = − 1

N

N∑
i=1

∂µ∂ν lnQ (xi| ᾱ)

This give us

Z (ᾱ;N) ∝
(

2π

N

)k/2
· 1

V
·
√

detG (ᾱ)

detGemp (ᾱ)
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and

S1 (N) = −
∫
dkᾱ

√
detG (ᾱ)

V
· ln [Z (ᾱ;N)]

≈ k

2
ln

(
N

2π

)
+ lnV +

〈
1

2
ln

[
detGemp (ᾱ)

detG (ᾱ)

]〉
ᾱ

+ · · ·

Therefore, the subextensive component of entropy not only asymptotically captures

the complexity class as shown in [10], but even the lower order terms behave in a

way exactly like the model family complexity suggested by information geometry

and MDL (see eq. 4.2). It is comforting that these different principled measures of

complexity agree with each other tightly. What then is different between them? The

key difference is that the predictive information is a function of the data, and doesn’t

depend on the assumptions about the model family. In particular, it also subsumes

‘non-parametric’ cases where the number of effective parameters grows as a function

of the amount of data observed.

4.3.2 Predictive information in an inference task

Can the asymptotic results of the predictive information framework be applied to

actual datasets of human behavior? Here we use the predictive information framework

to assess the complexity of the internal models used by subjects performing an online

inference task. Furthermore, we not only want to get a measure of the subject’s model

complexity, but also find out whether the subjects who use the more complex models

also learn better models of the environment; by ‘better’ here, we mean being able

to predict the future more accurately. It is entirely plausible that the subjects learn

irrelevant details about the sequence. To this end, we use the Information Bottleneck
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(IB) framework[135], which allows us to systematically assess what is the optimal

compression of the information from the past in order to predict the future. The

IB framework provides a principled performance-vs-complexity frontier that we need.

Subjects who learn more complicated models from the past should be better able to

predict the future, and thus lie close to the frontier.

We first describe the pertinent details of the inference task which we require to cal-

culate the information-theoretic quantities; for complete details, c.f.[122]. The task

requires the subjects to report the source of a noisy stimulus generated from one of

two overlapping Gaussian distributions. The true identity of the Gaussian generating

the stimulus flips with a Bernoulli process with a certain hazard rate; this hazard

rate itself changes with a much slower ‘meta-hazard rate’. So, there are some blocks

of observations where the true source flips frequently and some blocks where the true

source remains the same for longer.

Let us denote the stimulus at time t by Xt ∈ R, the source identity by St ∈ {0, 1} let

Ht be the hazard rate at time t and Rt ∈ {0, 1} denote the subject response at time t.

Given the complete task sequence Φt ≡ {Ht, St, Xt} and the subject responses {Rt},

how do we make an unbiased estimate of the subjects’ internal model complexity

and to what extent is the subject using a ‘good’ model? We can measure how much

information about the past observations are contained in a subject’s current responses

(Ipast), and compare this to the information these responses contain about the future

observations (Ifuture). We can compare this to a theoretical boundary for Ipast vs

Ifuture uniquely defined for the process generating the task sequence to assess whether

the subjects are using a ’good’ model. All subjects using good models – regardless

of the complexity of the models – will lie close to this boundary. We first summarize

the information bottleneck method below.

122



4.3.3 Measuring complexity using the information bottle-
neck approach

The Information Bottleneck approach proposed by Bialek et al.[135] defines a non-

parametric theoretical limit for predictive information about the future of a model

(measured in bits; Ifuture) as a function of how much information the model extracts

from the past (measured in bits; Ipast). Here we summarize the information bottle-

neck approach of Bialek et al. applied to our inference task. Let us denote all the

past observations leading up to time t as Φpast = Φt′<t and all the future observations

as Φfuture = Φt′>t. What we’ve been referring to as ‘good’ models so far, can extract

useful information from the past observations to make accurate predictions about the

future. However, we haven’t specified how much useful information to extract from

the past, or in other words, how complex the model should be? For a given model

complexity – as measured by the information extracted from the past observations

– a ‘good’ model is one which can maximize the accuracy of predictions about the

future. In the information bottleneck framework this predictive ability is again mea-

sured in terms of mutual information. Specifically, let us consider an intermediate

representation Λ which captures the useful information from the past observations

most relevant to predicting the future, then we want to maximize the mutual infor-

mation between Φfuture and Λ : I (Λ,Φfuture) while at the same time keeping the

representation Λ parsimonious by minimizing I (Λ,Φpast) . The trade-off between

these two requirements is controlled by a Lagrange multiplier β, which decides our

preference for compact intermediate representations or better future predictions. We

assume that we know the joint distribution, P (Φpast,Φfuture), and the information

bottleneck method gives us an optimal intermediate representation Λ (for a given

β) by specifying P (Λ |Φpast ). To find this optimal intermediate representation, we
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minimize the following functional of P (Λ |Φpast )

L [P (Λ |Φpast )] = I (Λ,Φpast)− βI (Λ,Φfuture)

The (locally) optimal solution can be found by iterating the following equations,

which are reminiscent of the Arimoto-Blahut algorithm in rate distortion theory:

Pn+1 (Λ |Φpast ) =
Pn (Λ)

Zn (Φpast, β)
exp [−βDKL (Pn (Φfuture |Φpast ) ‖Pn (Φfuture |Λ))]

Pn+1 (Φfuture |Λ) =
1

Pn (Λ)

∑
Φpast

Pn (Φfuture |Φpast )Pn (Λ |Φpast )Pn (Φpast)

Pn+1 (Λ) =
∑
Φpast

Pn (Λ |Φpast )Pn (Φpast)

where Z(·, ·) is a normalizing constant and n is the iteration number. As we change

β from 0 to a large value we go from a trivially compact representation (Λ is a

single point) to more and more detailed intermediate representations which capture

more details about Φpast. This behavior is reminiscent of the rate-distortion function

from information theory which specifies the boundary of the minimum allowable rate

(in bits) for compressing a source for a given amount of ’distortion’. In the case

of the information bottleneck, the KL-divergence naturally emerges as the correct

distortion measure. As we vary β, we get a information-bottleneck (IB) curve in

the two-dimensional plane of I (Λ,Φfuture) vs. I (Λ,Φpast) which specifies the allowed

region in this plane. For a given value of I (Λ,Φpast) (or model complexity), this

curve specifies the maximum predictability I (Λ,Φfuture) for the particular generative

process. No model learned from data can outperform this.

Our approach in assessing the complexity of subject behavior and whether they are
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learning good models, is to estimate these quantities for subjects and see whether they

fall close to the theoretical boundary in the I (Λ,Φfuture) vs. I (Λ,Φpast) plane. If this

is the case, then it suggests that even though subjects might use internal models of

varying complexity, they are doing as well as they can in learning the correct model,

given the complexity of the model they choose. Note, this need not necessarily be the

case; it is possible that subjects retain details from the past which are not useful to

predict the future (and hence in inference) which will lead to high values of I (Λ,Φpast)

but lower values of I (Λ,Φfuture).

In our case, the Markovian structure of the task allows the relevant information

theoretic quantities to be estimated efficiently. Particularly, mutual information be-

tween the future and the past is I (Φpast,Φfuture) = I (Φt,Φt+1) and I (Φpast,Λt) =

I (Φt−1,Λt) For simplicity, the time-varying hazard rate Ht is sampled uniformly from

a fixed set of values. This gives us the full distribution of P (Φt,Φt+1), and we can

use the IB method to determine the boundary in the I (Λ,Φfuture) vs. I (Λ,Φpast)

plane. To estimate these quantities for the subjects, we measure the mutual infor-

mation between the subject responses at t − 1, t − 2 and the observation at time

t. Specifically, we measure I ({Rt−2, Rt−1} ,Φt) and I ({Rt+2, Rt+1} ,Φt), where Rt is

the subject response at time t, which are then compared to the theoretical boundary.

In forthcoming work, we analyze the subject behavior from a variety of tasks with

similar structure and compare the complexity of behavior to the theoretical bounds

(results presented elsewhere). This approach offers a nonparametric way to study

what proportion of individual variability aries due a bias towards simple/complex

models.
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4.4 Resolution of observations, sloppy models and

complexity

The classical measures of complexity suggested by MDL, Information Geometry and

Predictive Information are principled and consistent with each other. However, all

of these measures require an assumption of sufficiently large sample sizes, and are

strictly exact only with infinite data. They assume that we are able to probe all

the degrees of freedom of a given model and do not account for limitations in the

data size or the measurement process. This is apparent by noting that the form of

the complexity penalty suggested by these measures has no term accounting for the

nature of measurements:

complexity penalty =
k

2
log

(
N

2π

)
+ ln

∫
dkα

√
detG (α)

Limitations in data size or in the nature of measurements can have interesting ge-

ometric implications in the behavior space of the model. In particular, when the

measurement scheme poorly captures certain degrees of freedom of the model, then

variations in parameter combinations along these directions have little effect on the

observations. James Sethna and his collaborators have done extensive work in char-

acterizing this phenomenon, and they refer to it as sloppiness [126, 127, 128, 11].

Conversely, along the stiff directions, small parameter changes result in large behav-

ioral changes – i.e., the measurements robustly capture those degrees of freedom. Let

us now consider an example problem of fitting exponentials which clearly illustrates

126



the issues of measurements and sloppiness [127]. Suppose we have a model given by

y (t) =
1

2

(
e−k1t + e−k2t

)
+ ηt

where y (t) are model outputs, k1 and k2 are unknown parameters and ηt is observation

noise with some standard deviation σ. Let us assume that we observe the output of

the model y (t) at two times t1 and t2. The behavior space of the model will be a two

dimensional manifold – the model manifold – in the y (t1) and y (t2) plane. Now, let

us plot the average values of y (t1) and y (t2) which are possible for all possible values

of the parameters k1 and k2 – i.e. we look for a mapping from the parameter space to

the behavior space. Fig. 4.2 shows this mapping for the two different values of t1 and

t2. As is seen for both values of t1 and t2, the model manifold is two-dimensional and

has a longer dimension (along the k1 = k2 line) and a shorter dimension. In fact, in

the second case, the shorter direction is quite small compared to the longer direction.

Therefore, moving large distances in the parameter space corresponding to the short

direction will not make much of a difference in the measurements, and we can capture

the macroscopic behavior of the model by collapsing the parameters into an effective

parameter k = k1 = k2, thus yielding an effective, simpler model of the data.

The particular behavior described above for the two-exponential model, is a much

more general phenomenon. Our measurements are typically agnostic of the micro-

scopic details of the models or processes generating the observations. Therefore, in

general scenarios the measurements do not probe all the degrees of freedom of the

system equally well. This limitation can arise due to having finite data or some

other fundamental limitations in the measurement scheme. As a consequence, the

measurements are not able to pin down models uniquely and many of the parameter
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Figure 4.2: Sloppy and stiff directions: the panels show the ‘model manifold’ for the sum of
exponentials model described in the text. The model manifold in this case is a 2-D manifold of all
possible measurements y (t1) and y (t2) at two times t1 and t2 as the parameters k1 and k2 are varied
over all permissible values (insets). It is a mapping from the parameter space to the behavior space.
For generic measurements, the model manifold exhibits a hierarchy of widths. In this case, there are
two widths and the longest direction is along the k1 = k2 curve. When we move along the shorter
direction (in the model manifold) we traverse large distances in the parameter manifold; thus this
direction is less relevant as far as the behavior of the model is concerned on the measurement scale.
Especially in the right panel, we can capture most of the model behavior by an effective simpler
model with k1 = k2

combinations are unconstrained by our observations, and we can make large variations

along these directions in the parameter space without observing noticeable changes

in our measurements. The directions in the parameter space which don’t have no-

ticeable effects on the measured model behavior are referred to as sloppy directions

and the ones which are important for the measured behavior are referred to as stiff

directions by Sethna et al. A range of models taken from many different fields display

the existence of sloppy parameter combinations[11].

The phenomenon of sloppiness immediately suggests that if our measurements are go-

ing to probe the system at a particular resolution which doesn’t capture all the degrees

of freedom, then we can reduce the detailed multi-parameter model to an ‘effective’
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lower dimensional model (along the stiff directions) which captures all the behavior

at our chosen resolution. Since the presence of sloppy directions is an ubiquitous phe-

nomenon, our notions of model complexity must take this into account. The classical

notions of model complexity discussed above do not explicitly capture this. To see

this, we graphically illustrate the difference between the scenarios assumed by classi-

cal model complexity measures and typical scenarios in which measurements exhibit

sloppiness in Fig. 4.3. Let us consider a model parametrized by K parameters; the

parameter space will be a K-dimensional manifold in general (Fig. 4.3A). If we take

M > K measurements Y1 . . . YM , then the behavior space is a M -dimensional ambient

space and if we map each model (specified by a point in the parameter space) to its

average behavior in the behavior space, then we get another K-dimensional manifold

in the ambient M -dimensional space – this is the model manifold. In typical scenar-

ios, even when M is larger than K the model manifold has a hierarchy of widths,

i.e. there are many thin directions relative to measurement noise (Fig. 4.3B). This

hyper-ribbon structure is a key insight from the work of Sethna et al., and what it

means is that whenever your measurement scheme is not precisely tuned to measure

all the degrees of freedom of the model, there will be many degrees of freedom which

will be poorly captured by the measurements (sloppy directions), and large parameter

changes along these sloppy directions will make little difference in the measured out-

put (relative to noise). However, when we start taking more and more measurements,

in the limit of infinite measurements, the parameter combinations along the sloppy

directions will eventually be captured by some measurement direction, and the model

manifold widths will increase and become large relative to the measurement noise

(Fig. 4.3C). What this means is that with infinite measurements all the degrees of

freedom of the model can be probed for any generic measurement scheme. This (Fig.

4.3C) is the regime assumed by the classical model complexity measures; however, in
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typical scenarios we are in the regime of (Fig. 4.3B) not (Fig. 4.3B).

Behaviour space (model manifold)Parameter space

A B

C

Figure 4.3: Model manifolds with finite and infinite data: (A) schematic of generic K−dimensional
parameter space. (B) the behaviour space with M > K measurements. The parameter manifold is
transformed by the model into another K dimensional manifold – the model manifold. Importantly,
for most generic measurement schemes, the model manifold exhibits a hyper-ribbon structure, i.e.,
there is a hierarchy of widths and several manifold widths are very small compared to measurement
noise. This is because our measurements don’t capture the degrees of freedom of the model corre-
sponding to these directions. (C) In the limit of infinite data all the model manifold widths become
large compared to the measurement noise. This is is the scenario considered by most classical model
complexity measures – i.e., they assume you can probe all degrees of freedom of the model.

Why should we care about the existence of sloppy directions when considering model

complexity? As indicated above, in scenarios where there are sloppy directions we can

consider a nested family of lower-dimensional ‘effective’ models which capture most of

the model behavior at the our chosen scale of observation. These nested family of ef-

fective models which provide increasingly simpler explanations of the measured data.

This is illustrated by a schematic of a toy model in Fig 4.3: the three model manifolds

correspond to effective model families of decreasing complexity, and the data is illus-
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Effective models of 
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Figure 4.4: Model selection with a sloppy model: Left-most panel shows the schematic of a model
manifold corresponding to three measurements y1, y2, y3 for a model. The model manifold for the
full model has a long direction, a thinner direction and a very thin direction. The panels to the right
show progressively simpler effective model families where certain parameter combinations have been
compressed into an effective parameter to capture the salient aspects of the model behavior for the
measurements. When selecting a model to explain observed data (black dot), in each model family
we pick the model nearest to the data (red dot). The full model provides the best fit to data but at
the cost of a more complex description, and the simpler models provide fits which are not as good,
but with simpler descriptions.

trated by the black dot. For each model family, the best fitting model corresponds to

the parameters which represent the model closest in Euclidean distance to the data.

The goodness-of-fit decreases with increasing simplicity of the models. How should

we perform model selection from these nested family of models? In other words, what

is the correct penalty for model complexity in this case? One would expect a rea-

sonable model complexity measure to favor these effective lower-dimensional models

which neglect parameter combinations along the sloppy directions. The key distinc-

tion from the classical case is that the complexity terms must explicitly account for

the resolution at which you will probe the system.

We argue that the lower order terms – especially the Robustness term – in the expan-

sion of the Bayesian posterior(eq. 4.2), which are not typically considered for model

selection capture the correct measurement-dependent trade-off between goodness-of-

fit and model complexity in the presence of sloppiness:
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complexity terms:
k

2
ln

(
N

2π

)
+ ln

∫
dkα

√
detG (α) +

1

2
ln

(
detGemp (α̂)

detG (α̂)

)

To see this, let us consider the Robustness term:

1

2
ln

(
detGemp (α̂)

detG (α̂)

)

we can rewrite this terms as

1

2
ln

(
detGemp (α̂)

detG (α̂)

)
=

1

2

K∑
i=1

ln

(
λempi

λi

)

where {λempi } and {λi} are the eigenvalues of Gemp (α̂) and G (α̂) respectively. We

now make a few observations:

• The sloppy directions correspond to the degrees of freedom which our measure-

ments are not able to capture well, and therefore the eigenvalues λi will be the

smallest corresponding to these directions.

• In the limit of large N , the empirical Fisher information matrix converges to

the true FI matrix, therefore

lim
N→∞

λempi = λi

• Importantly, the convergence of the empirical eigenvalues will be the slowest

for the sloppiest directions. This is because, it is precisely these directions our
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measurements are poor at probing.

With these considerations, under mild assumptions, and in the limit of large but not

infinite N we can capture this convergence as

λempi ≈ λi +
Ci (σ)

Nγi

where Ci (σ) is a noise dependent term and Nγi is a term which increases with N ;

moreover, the convergence will be slowest for the sloppiest directions – i.e. γi will

be smallest for these directions and for a given value of N , the Nγi term will be

smallest for the sloppiest directions. Let us now rewrite the Robustness term with

this approximation:

1

2
ln

(
detGemp (α̂)

detG (α̂)

)
≈ 1

2

K∑
i=1

ln

(
1 +

Ci (σ)

λi ·Nγi

)

For a stiff direction, the widths are large compared to measurement noise and so

λi � σ , thus Ci (σ) /λi will be small and Nγi will be large, thus

ln

(
1 +

Ci (σ)

λi ·Nγi

)
≈ 0 for stiff directions

i.e., the Robustness term adds nothing to the complexity penalty for stiff directions.

However, for the sloppy directions λi � σ and Nγi will be small therefore

Ci (σ)

λi ·Nγi
� 1 for sloppy directions

i.e. the Robustness term penalises model families with sloppiness depending the
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amount of sloppiness. Therefore, this lower-order term which is usually ignored in

model selection naturally captures the complexity penalty notions which depend on

the resolution of measurements, and it forces the nested model selection towards a

simpler effective model which captures most of the behaviour at our scale of obser-

vation. In forthcoming work, we make these ideas more precise and illustrate model

selection by means of simple examples.

The original motivation for the using the Jeffreys prior was to weight all distinguish-

able models equally. In particular, if we observed N data samples, then the con-

fusability between nearby models decreased exponentially with the K-L divergence

between them. Thus, this requirement of distinguishability effectively discretized the

parameter space with each grid element representing a distinguishable model. In the

limit N →∞, the grid became smaller and we got a density of distinguishable mod-

els which was nothing but the Jeffreys prior. We suggest that in the sloppy model

setting the correct prior to use is again the prior which weights all distinguishable

models equally. However, in this case since N need not be large, the empirical Fisher

Information: Gemp will become relevant. With this caveat, the model selection fol-

lows as before: we select the model family from a nested set which offers the best

compromise between complexity and goodness-of-fit.

Another interesting approach for model selection for models exhibiting sloppy behav-

ior has been suggested by Mattingly et al. [136], where they use a special kind of

uninformative reference prior – the Bernardo prior – to select models in these settings.

The Bernardo prior is a reference prior p∗ which maximizes the mutual information

between the parameters and the expected data:
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p∗ (α) = arg max
p(α)

I (X,α)

This prior generally does not yield a closed-form analytical solution. In situations

where the resolution of the observed data is poor, the Bernardo prior puts all its weight

on the models which reside on the boundary of the model manifold [136]. Moreover,

the prior is a collection of delta functions (atoms) on the boundaries [137, 138]. So,

once you define the resolution of the data (say, by defining the noise variance σ),

the Bernardo prior immediately gives you a model family to work with: this family

consists of a finite number of models on the boundaries of the manifold corresponding

to the atoms of the prior. As an example, Fig. 4.4A shows the Bernardo prior

for the two-exponential model described above, when the noise variance σ = 1/7

(figure adapted from Mattingly et al. [136]). We see that the Bernardo prior in this

case restricts the model family under consideration to a family with seven models

corresponding to the atoms (red points in Fig. 4.4A). As the resolution of data

improves, (as σ decreases) more atoms are placed on the interior regions.

Model selection with the Bernardo prior has notable differences with the model se-

lection using the appropriate Jeffreys prior on a nested family of increasingly simpler

models. This is illustrated in Fig. 4.4. In this schematic, the data, due to noise, falls

outside the model manifold and the likelihood function is a Gaussian centered on the

data (represented by the grey cloud). The Bernardo prior is simply the collection

of atoms and the Jeffreys prior in the nested family of models is the uniform prior

over the model manifold; note that although the Jeffreys prior will not be flat in the

parameter space it will be flat in the behavior space. So, for e.g., the Jeffreys prior
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Figure 4.5: Model selection with sloppy directions using the Bernardo and Jeffreys prior: (A) The
panels show the model manifold corresponding to the sum of two exponentials model described in
the text. A data point and its corresponding likelihood function are shown as a grey cloud. The
atoms of the Bernardo prior corresponding to a certain noise level (σ = 1/7) are shown as red points.
The posterior puts all the weight on the model corresponding to the atom shown in blue. (adapted
from Mattingly et al. [136]) (B) Same setup as in (A) except that the prior is the Jeffreys prior,
which is flat over the model manifold (red shading). The posterior is concentrated on the boundary
close to the data point, but there is also some mass inside model manifold (blue shading). (C) The
model manifold corresponding to a simpler 1-dimensional effective model (k1 = k2). The Jeffreys
prior is flat on the model manifold, and the posterior is concentrated on the region of the model
manifold corresponding to the thick blue strip. For reference, the model picked using the Bernardo
prior is also shown as a red point.

in the 2 parameter family corresponds to a flat prior over the 2-dimensional model

manifold (red shading in Fig. 4.4B) and for the 1-parameter model it is the flat prior

over the k1 = k2 line. The posteriors in the three cases is shown in blue: in the first

case, the posterior basically has all the weight on one of the atoms of the Bernardo

prior(blue point in Fig. 4.4A); in the 2-parameter family with Jeffreys prior the pos-

terior is mostly concentrated on the boundary near the data but has non-zero weight

in the interior as well (blue region in Fig. 4.4B); in the 1-parameter family with

Jeffreys prior the posterior (thick blue line in Fig. 4.4C) is localized to a section of
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the 1-dimensional model manifold. For reference, the model selected by the Bernardo

posterior is also shown (red point in Fig. 4.4C).

Our aim is not to provide an explicit numerical algorithm for model selection, but

rather we are interested in understanding the nature of the terms that penalise the

complexity of the model family when there are sloppy parameter combinations. And,

we suggest that in this case, using a prior that again weights all distinguishable models

equally will represent the balance between complexity and goodness-of-fit. Since, the

Bernardo prior does not allow a simple form, it is difficult to study the exact nature

of the complexity terms arising out of this prior. It will be very interesting to connect

this model selection procedure to the one suggested by Jeffreys prior and Information

Geometry – especially the relation between the Robustness term and the spacing

between atoms near the best model. In forthcoming work we aim to elaborate on the

links between these two methods.
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