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Preface 
 
To begin this thesis, it is seemingly appropriate to start with a quote that beautifully 

exemplifies why we should study honeybees. 

 “The bee's life is like a magic well: the more you draw from it, the more it fills 

with water.”  

This statement by Nobel laureate Karl von Frisch, a pioneer of honeybee research, is as 

true today, as it was in the 1920’s when he first theorised that honeybees could 

communicate between nest mates (v. Frisch 1927). In the many decades since von 

Frisch began his experiments we have seen an amazing escalation in mankind’s 

comprehension of animal psychology, biology, and the fundamental neuroscience of 

how the brain works. Yet, despite all this scientific knowledge, not to mention our 

technological advancements, we are still, as scientists, bewildered by how these tiny 

insects with less than a million neurons in their brains are able to accomplish the rich 

behavioural and cognitive abilities they exhibit in their daily lives. 

In this thesis, I ‘draw a few more drops from the well’, and provide novel 

insights into just part of the grander endeavour of understanding honeybee cognition. 

Using both theoretical models, and behavioural experiments with real honeybees, I 

describe how the miniature brains of these insects may efficiently utilise visual cues to 

help identify and select potentially rewarding foraging resources. These findings, 

although focused on the intricacies of honeybee behaviour, may have much wider 

implications for animal cognition, as well as intriguing future industrial applications. 
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Abstract 

In recent decades we have seen a string of remarkable discoveries detailing the 

impressive cognitive abilities of bees (social learning, concept learning and even 

counting). But should these discoveries be regarded as spectacular because bees manage 

to achieve human-like computations of visual image analysis and reasoning? Here I 

offer a radically different explanation. Using theoretical bee brain models and detailed 

flight analysis of bees undergoing behavioural experiments I counter the widespread 

view that complex visual recognition and classification requires animals to not only 

store representations of images, but also perform advanced computations on them. 

Using a bottom-up approach I created theoretical models inspired by the known 

anatomical structures and neuronal responses within the bee brain and assessed how 

much neural complexity is required to accomplish behaviourally relevant tasks. Model 

simulations of just eight large-field orientation-sensitive neurons from the optic ganglia 

and a single layer of simple neuronal connectivity within the mushroom bodies 

(learning centres) generated performances remarkably similar to the empirical result of 

real bees during both discrimination and generalisation orientation pattern experiments. 

My models also hypothesised that complex ‘above and below’ conceptual learning, 

often used to exemplify how ‘clever’ bees are, could instead be accomplished by very 

simple inspection of the target patterns. Analysis of the bees’ flight paths during 

training on this task found bees utilised an even simpler mechanism than anticipated, 

demonstrating how the insects use unique and elegant solutions to deal with complex 

visual challenges. The true impact of my research is therefore not merely showing a 

model that can solve a particular set of generalisation experiments, but in providing a 

fundamental shift in how we should perceive visual recognition problems. Across 
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animals, equally simple neuronal architectures may well underlie the cognitive 

affordances that we currently assume to be required for more complex conceptual and 

discrimination tasks. 
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Chapter 1:  Introduction 

1.1  Honeybees as a model system  

Mankind has a long-standing fascination with honeybees, their social structure, their 

proverbial work ethic, and of cause their commercial importance as crop pollinators and 

honey producers. In recent decades they have also started to play a fundamentally 

different role. The old viewpoint of ‘lower life forms’ as mindless automatons has 

slowly been replaced with a realisation that learning, memory and cognition is 

important to all animals (Dukas 2004). Here, honeybees have proved to be extremely 

useful to the study of animal cognition. Not only do they exhibit their own complex 

dance “language” (v. Frisch 1927), astounding olfactory learning abilities (Bitterman, 

Menzel et al. 1983, Laska, Galizia et al. 1999), but, more applicable to this thesis, they 

also possess remarkable visual learning capabilities. This, combined with their 

relentless appetite for collecting nectar, means that these visual cognitive abilities can 

be easily tested under laboratory conditions. 

In this thesis I primarily focus on modelling the worker honeybee (Apis mellifera) brain 

and its ability to discriminate and generalise achromatic patterns. Before describing 

some of the earlier behavioural work conducted in this area, I begin with an overview of 

the honeybee eyes and the subsequent visual processing within the bee brain. 
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1.1.1 Honeybee compound eyes, optic lobes and mushroom bodies 

Compound eyes 

The worker honeybee has two compound eyes, each composed of ~5,500 individual 

optical units (ommatidia), whose lenses are arranged in a quasi-hexagonal grid 

(Streinzer, Brockmann et al. 2013). Each ommatidium contains a biconvex cuticle lens, 

formed from two primary pigment cells and a crystalline cone formed from four Semper 

cells. The lens guides the received light to the top of a central light channel (rhabdom), 

which is subsequently surrounded by two more secondary pigment cells that prevents 

light escaping into adjoining ommatidia (Varela and Wiitanen 1970). In this way each 

ommatidium receives ~2.5˚ of the visual field, with an approximate ½˚ overlap of the 

respective visual fields of each of its six adjacent neighbours (Laughlin and Horridge 

1971, Seidl and Kaiser 1981). Each rhabdom is composed of eight long retinal cells and 

a ninth retinal cell adjoining at the base (Skrzipek and Skrzipek 1974, Ribi 1975). Each 

of the eight retinal cells has ~40,000 highly oriented microvilli that align towards the 

centre of the rhabdom. The microvilli contain 500 to 2,000 rhodopsin visual pigments 

that react maximally to photons at either the ultraviolet (~350nm), blue (~440nm), or 

green (~540nm) wavelengths (Menzel and Blakers 1976, Peitsch, Fietz et al. 1992). 

Photons, of the correct wavelengths, interacting with the rhodopsin cause a cascade of 

protein translations that induces a depolarising effect of 1-2mV per reaction (Land and 

Chittka 2012), it is the summation of these reactions that subsequently gets transmitted 

to the bee brain as electrical signals. Each ommatidium extends its nine retinal cell 

axons to the optic lobes, six of these, called short visual fibres, are maximally sensitive 

to the green wavelengths. Of the other three retinal cells, named long visual fibres, two 

are either sensitive to blue or ultraviolet (uv) wavelengths (with a higher distribution of 

the uv types in the dorsal regions of the eye (Wakakuwa, Kurasawa et al. 2005)). 
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Regrettably, there is still no conclusive evidence, although considerable debate (Menzel 

and Snyder 1974, Wakakuwa, Kurasawa et al. 2005), for the wavelength sensitivity of 

the third long visual fibre. 

 

 

 
Figure 1.1 Schematic view of the honeybee brain. Left: Representation of the optic 
lobes (La: lamina, Me: medulla, Lo: lobula) and the neuronal pathways to the 
mushroom bodies (MB) learning centres. Both the medulla (red and green lines) and 
lobula (blue lines) extend fibres to the calyxes (Ca) of both the ipsilateral and 
contralateral hemisphere mushroom bodies. Mushroom bodies also receive olfactory 
information from the ipsilateral antenna lobe (AL) and lateral horn (LH). Adapted from 
(Ehmer and Gronenberg 2002). Right: Front view of the bee head showing the 
compound eyes / retina (Re), ocelli: three small lens eyes on the top of the bees head 
(Oc), the antennae (An) and mandibles (Ma). Adapted from (Chittka and Brockmann 
2005). 
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Optic lobes 

Beneath the retina the honeybee has three optic lobes, the lamina, medulla and lobula 

(Fig 1.1). Within the first of these, the lamina, each of the nine retinal axons from an 

ommatidium is confined within a single lamina cartridge. Here, the short visual fibres 

(green channel retinal cells) connect to three distinct lamina monopolar cells present in 

each cartridge (with consistent synaptic connections between the cell types throughout 

the eye (Ribi 1975)). These short visual fibres subsequently terminate within the lamina 

substrate. In contrast, the long visual fibres, which make only occasional connections to 

the monopolar cells, extend through the lamina to the medulla (2nd optic ganglion). One 

of the monopolar cells provides excitatory synapses to, and receives synaptic input from, 

the same monopolar cell type in each of the immediately adjacent lamina cartridges. A 

fourth monopolar cell, being present in about one in every four cartridges, provides 

inhibitory synaptic connections to adjacent cartridge monopolar cells (Ribi 1975). Each 

of these three or four monopolar cells per cartridge extends an axonal like fibre, 

alongside the three long visual fibres, into the medulla. 

   The medulla maintains the highly columnar structure seen in the retina and 

lamina, however, the deeper into the eight, easily identifiable, substrate layers within 

the medulla the sparser these columnar neurons become (Ribi and Scheel 1981). Indeed, 

both the long visual fibres and lamina monopolar cells that provide the initial visual 

information to the medulla, extend no lower than the third definable layer (Ribi and 

Scheel 1981). In addition to these columnar neurons, the medulla contains a large 

number of tangential (amacrine) inter-neurons. These neurons extend dendritic fibres 

perpendicular to the columns with a large variety of morphologies. Different neuron 

types extend arborisations into specific combinations of the different medulla layers, as 

well as spanning a multitude of different regions and widths of the columnar array (Ribi 
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and Scheel 1981, Ehmer and Gronenberg 2002). Unfortunately, unlike the lamina, no 

detailed connectomics of the medulla synapses are available for honeybees. 3D 

reconstruction of a single complete medulla column surrounded by its six neighbouring 

columns in the fruit fly (Drosophila), showed that of the ~900 neurons detected, a 

remarkable ~315,500 postsynaptic sites existed, and over 2,500 presynaptic sites within 

the central column’s neurons alone (Takemura, Xu et al. 2015). Regrettably, this 

research wasn’t able to detail where the neurons’ dendritic fibres originated from, or 

extended to, once outside of the reconstruction zone. This does however suggest that a 

huge amount of neuronal processing is being done as visual information is being 

transmitted through the medulla. Electrophysiology on the bumblebee (Bombus 

impatiens) brain has shown that both the firing characteristics, and visual stimuli 

sensitivities, of the different medulla neurons change depending on their respective 

layers. Those with arborisations in the early layers responded mostly to either broad 

band colour ranges (i.e. sensitive to a large range of wavelengths) or very narrow bands, 

with the neurons typically having distinct on / off responses to stimuli (Paulk, Dacks et 

al. 2009). Neurons from later layers showed much more complex colour opponent 

responses, responding for example to green wavelengths, but being inhibited if 

ultraviolet light was also present. These neurons also exhibited much more complex 

firing rate characteristics, producing either phasic or tonic responses, or in some 

instances both, depending on the particular visual stimuli provided (Paulk, Dacks et al. 

2009). Similar, but limited, recordings of colour opponent neurons have also been made 

in honeybees (Kien and Menzel 1977). Recordings of orientation selective medulla 

neurons are unavailable to date in honeybees, although, several classes of neurons 

maximally sensitive to particular edge orientations have been found in the medulla of 

numerous other insects (McCann and Dill 1969, James and Osorio 1996, Okamura and 
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Strausfeld 2007, Spalthoff, Gerdes et al. 2012). The final class of medulla neurons, 

transmedulla neurons, extend dendritic fibres outside of the medulla substrate and 

convey information to the posterior protocerebrum (thought to be involved in 

processing motion) (Paulk, Dacks et al. 2009), the mushroom bodies (learning centres) 

(Gronenberg 2001), as well as to the lobula (the 3rd and final optic ganglion) (Witthöft 

1967). 

 The lobula is the smallest of the three optic lobes, receiving only half as many 

inputs from the medulla, as the medulla does from the lamina (Witthöft 1967). In the 

first four layers of the lobula, the columnar structure seen throughout the optic lobes is, 

for the most part, continued (Ribi and Scheel 1981). Although some large field neurons 

extending over whole eye regions have been reported in bumblebees (Paulk, Phillips-

Portillo et al. 2008). In layers 5 and 6, this structure is abandoned with a ‘spaghetti’ web 

of very wide-field and large-field neurons, each with individually branched dendritic 

fibres extending and displaying arborisations over large regions of the columnar inputs 

on the layer 4-5 border. Extracellular recordings from the lobula indicate wide-field 

neurons, responding to stimuli in particular sub-regions of the eye, characterised as 

either colour opponent neurons or non-colour opponent (i.e. broad band and narrow 

band) neurons (Kien and Menzel 1977, Yang, Lin et al. 2004), as well as the very large-

field neurons that are either direction or edge orientation sensitive; these respond to 

stimuli moving anywhere across large regions of the eye (Bishop 1970, Maddess and 

Yang 1997, Maddess, Davey et al. 1999). Recent bumblebee recordings again provide 

similar, and more detailed results (Paulk, Phillips-Portillo et al. 2008), although some 

differences may exist between the species: in bumblebees, the layer 1-4 neurons 

respond mostly to achromatic motion cues (moving bars or gratings), whereas layer 5-6 

neurons respond to colour cues. Neurons extending through all layers 1-6 are columnar 
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(only receiving input from a small region of the medulla) and respond selectively to 

combinations of colour and: motion, direction or orientation of the stimuli. Layer 1-4 

extrinsic neurons leave the lobula and extend axons to the posterior protocerebrum; 

these neurons reliably fire when stimuli are presented, but exhibit inconsistent firing 

rates or variances in firing initiation after a stimulus onset. Layer 5-6 neurons extend to 

the mushroom bodies (Fig 1.1) and the dorsal and lateral protocerebrum; these neurons 

have much higher spiking precision (consistent firing patterns and precise response 

firing times to a given stimulus) and appear highly phasic in nature (Paulk, Phillips-

Portillo et al. 2008) (see also (Hertel and Maronde 1987) for a review of the 

corresponding honeybee lobula optic tracts).  

Mushroom bodies 

In this thesis I investigated the honeybees ability to learn and identify achromatic 

patterns, as such, the theoretical models produced (Chapter 2 and Chapter 3) 

concentrated on a particular class of large-field neurons from the lobula, and their 

connections within the mushroom bodies. The mushroom bodies are thought to be the 

primary site for associative learning and memory, with supporting evidence at least for 

olfactory learning (Hammer 1993, Hammer 1997, Heisenberg 2003, Devaud, Papouin et 

al. 2015). However, visual learning has also been implicated in other brain regions in 

fruit flies (dorsal and lateral protocerebrum (Liu, Seiler et al. 2006), central complex 

(Seelig and Jayaraman 2013)). Nonetheless, here, I focus on the honeybee mushroom 

bodies. 

The mushroom bodies themselves are located in the dorsal region of the brain, 

with a mushroom body near the central line of each hemisphere (Fig 1.1). Each of these 

is composed of a pair of calyces, cup shaped structures, which receive sensory input. 

These calyxes merge at the bottom to form a stalk called the pedunculus (their name 
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indicating their resemblance to mushrooms). The calyxes are subcategorised into three 

regions based on the differing sensory modalities that they receive; these are the lip, 

collar, and basal ring. The lip receives olfactory input from the ipsilateral antennal lobe, 

the collar receives visual information from each medulla and lobula, and the basal ring 

contains a mixture of sensory modalities, also including gustatory and mechanosensory 

inputs (Mobbs 1984, Gronenberg 2001, Ehmer and Gronenberg 2002). The collar, 

which receives the majority of the visual input, can be further differentiated into six 

specific layers. Layers 1, 3 and 5 receive input from the ventral region of the medulla. 

Inputs to layers 2 and 4 come from the dorsal medulla, and the sixth layer from lobula 

outputs. Within the layers there appears to be no separation by retinotopic origin (i.e. no 

distinctions to whether the neurons originated from the left or right side of the optic 

lobe, and ergo corresponding visual field regions) or the distribution of inputs from the 

left and right eyes (Ehmer and Gronenberg 2002). The mushroom body neuropile is 

formed from ~170,000 Kenyon cells (Witthöft 1967), whose cell bodies lie in the cup of 

the calyces, the dendritic fibres of these cells actually form the core structure of the 

calyces. The Kenyon cells appear in two general forms, Class I (often referred to as 

spiny) Kenyon cells that have large dendritic trees that spread out over a fan shaped 

areas of the calyx, and Class II (clawed) Kenyon cells which appear as a single main 

dendritic fibre with a small number of 5 - 15 boutons that appear as small blobs (or 

claws) a short distance from the main fibre (Strausfeld 2002). These boutons contain a 

bundle of post-synaptic synapses that connect to the sensory input projection neurons 

and also to GABAergic inhibitory interneurons (Mobbs 1984, Ganeshina and Menzel 

2001). Within the calyx the octopaminergic VUMmx1 neuron also synapses with the 

Kenyon cells and sensory projection neurons (Hammer 1993, Hammer 1997). This 

VUMmx1 neuron generates a response when sucrose is detected at either the bees’ 
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antennae or proboscis (tongue) and is thought to provide a pivotal role in associative 

learning (Szyszka, Galkin et al. 2008). After the pedunculus, the Kenyon cell fibres take 

on a more axonal like representation and then bifurcate to form the two mushroom body 

lobes (alpha lobe and beta lobe); here they create pre-synaptic connections to the 

mushroom body extrinsic neurons (Rybak and Menzel 1993). These extrinsic neurons in 

turn connect to the ipsilateral lateral horn, and the lobes of the contralateral mushroom 

body (Mobbs 1984, Rybak and Menzel 1993, Strausfeld 2002). It is the output of these 

extrinsic neurons that is then thought to help govern the honeybees’ behaviour. 

 

1.1.2 Neuronal minimalism and response specificity  

The last section gave a brief summary of the flow of visual information through the 

neuropiles of the honeybee brain. It is important to remember that all this structure is 

confined within a volume of 1mm3, equivalent to just a tenth of a grain of rice! The 

miniature nature of the honeybee brain is in part aided by the invertebrate neurons 

themselves. Vertebrates “typically” have neurons composed of a central cell nucleus 

with a single axon that transmits an electric signal away from the cell body; in addition 

they have multiple dendrites that extend out-ward from the cell body that receive inputs 

from the axon termini of other neurons (Lodish 2000). In contrast, invertebrate brains 

are built from a number of distinct neuropiles, and as discussed above these are 

composed of dense arrangements of dendritic fibres (Ribi 1975, Ribi and Scheel 1981, 

Mobbs 1984, Galizia, McIlwrath et al. 1999). The cell bodies for these fibres are most 

often located on the surrounding edges of these structures (Witthöft 1967, Ribi 1975, 

Strausfeld 2002). The dendritic fibres themselves contain both pre- and post-synaptic 

receptors blurring the distinction between the archetypal classification of dendritic 



 

 
 

21 

inputs and axonal outputs (Ribi 1975) (Kien and Menzel 1977). This arrangement does 

however allow a large number of synaptic connections to be configured within a very 

small area, and distinct layers within the neuropiles allow the required synaptic 

connections to be more easily established (Ribi and Scheel 1981, Ehmer and 

Gronenberg 2002). In addition to this elegant form of neuronal compression, insects 

also reduce the overall number of neurons they require through neuronal minimalism 

and response specificity. An extreme example of the former, neuronal minimalism, is 

the honeybees’ reward response mechanism, here a single neuron the aforementioned 

VUMmx1 transmits a reward signal when sucrose is detected in either the honeybee’s 

proboscis (tongue) or antennae to the rest of the brain’s learning centres (mushroom 

bodies, central complex and lateral horn) (Hammer 1993). Although other neurons 

(Hammer 1997), as well as molecular and gene expression mechanisms (McNeill, 

Kapheim et al. 2016) have been implicated in the honeybee reward processing system, it 

is still remarkable that this one neuron has afferents in so many brain regions. Similarly, 

whereas the mammalian brain often uses highly imprecise responses - but from a large 

population of neurons - to transmit information around the brain (Pouget, Dayan et al. 

2000), the insect optic ganglia extend only a very small number of distinct neuronal 

fibres to the higher brain regions (Strausfeld 2002), these transmit highly specific and 

precise types of responses depending on the presented stimuli; such as the bumblebee 

(Bombus impatiens) extrinsic medulla (2nd optic ganglion) neurons that respond in a 

phasic manner to one visual stimuli and produce tonic responses to another (Paulk, 

Dacks et al. 2009). In a similar way, honeybee (Apis mellifera) lobula large-field 

orientation-sensitive neurons (LOSNs) (Maddess and Yang 1997) have very precise but 

brief phasic responses that are maximally responsive to particular oriented edges within 

their receptive fields. Humans also have similar neurons that respond maximally to a 
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particular range of orientations (Yacoub, Harel et al. 2008); these neurons are organised 

into complex cortical maps with pinwheel configurations with at least six different 

regions maximally-sensitive to distinct orientations (Blasdel and Salama 1986). They 

also exhibit adaptive tuning curves (dependent on prior stimuli exposure) which can 

sharpen the their responses to just a ~50˚ orientation range (Ringach, Hawken et al. 

1997). In contrast, the honeybee neurons present a continuous firing rate response curve 

(above baseline firing rate) for the full 180˚ range of orientations with a consistent 

broad ca. 90˚ half-width tuning curves no matter where the moving stimulus is first 

presented, across the whole width of the eye. Interestingly, and in line with neuronal 

minimalism, to date only two such LOSN types, with two specific maximal sensitivities, 

have been discovered in honeybees (Maddess and Yang 1997).  

These neuronal characteristics may allow a large breadth of sensory information 

to be compressed into a small number of neurons and subsequently passed without the 

necessity for substantial neuronal pathways throughout the rest of the insect brain.  

Indeed, one of the most striking examples of neuronal minimalism within the honeybee 

brain is the incredibly small number of neurons that extend from the optic lobes to the 

other brain regions. Considering that each of the bees’ compound eyes contains 

approximately 5,500 individual lenses (Streinzer, Brockmann et al. 2013), and the three 

optic ganglia (lamina, medulla, lobula) contain 340,000±15% neurons (Witthöft 1967), 

current estimates suggest that only ~340 and ~50 of these neurons extend from the 

medulla and lobula to the mushroom body calyces respectively (Ehmer and Gronenberg 

2002).  

Given that the whole honeybee brain contains only ~960,000 neurons and less 

than 400 of these neurons appear to extend from the optic lobes to the mushroom body 

learning centres, you might expect that the visual cognitive abilities of honeybees to be 
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only rudimentary at best, but as we will see throughout this thesis, this is most definitely 

not the case. 

 

1.2 The study of honeybee visual cognition 

As central-place foragers, worker bees may leave the nest and travel many kilometres 

on a single foraging bout, identifying and remembering useful landmarks for their 

return journeys (Chittka, Geiger et al. 1995, Chittka, Kunze et al. 1995). Once floral 

resources are found, foragers must learn the specific visual and olfactory cues of 

rewarding flowers and be able to correctly generalise those cues to the potential 

differences between conspecific flowers. Even here the bees must be adaptable, learning 

to prefer, for example, a specific flower colour in one location and a second different 

colour, in preference to the first, in another location (Collett and Kelber 1988). 

Similarly, bumblebees have been shown to rapidly transition from one rewarding colour 

cue to another in just a single foraging bout (Wolf and Chittka 2016), essential as flower 

species enter and exit bloom during the day. In addition, since not all flowers present 

themselves in the same way, with many radially symmetrical flowers facing upwards, 

whereas many others (often bilaterally symmetrical (zygomorphic) flowers) facing 

sideways, bees need to be flexible in what visual features they learn. Bees also need to 

learn to simultaneously avoid camouflaged predators, such as crab spiders (Thomisidae) 

(Morse 1981, Chittka 2001, Dukas and Morse 2005).  

In my opinion, one of the most remarkable experimental examples of honeybee 

visual recognition is their ability to discriminate photos of one human face from other 

faces (Dyer, Neumeyer et al. 2005), a task that is completely outside of their normal 

environmental needs. They can even generalise to rotated versions of these learnt faces 
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(Dyer and Vuong 2008), an ability that has so far only been reported in very few species: 

humans: (Bulthoff and Edelman 1992), other primates: (Logothetis, Pauls et al. 1995) 

and pigeons: (Spetch and Friedman 2003). But, as remarkable as this is, it tells us little 

about how the bee brain is able to make the discriminations; do their brains build and 

store a photographic image of these faces, do they use particular features (e.g. the 

amount of black or white in the images), or do they identify particular unique landmarks 

on the pictures? To answer this, and the broader question of how the honeybees 

discriminate visual stimuli, scientists have broken the problem down into simpler and 

much more understandable pattern recognition tasks. 

In the early 20th century, Karl von Frisch, as well as documenting the 

aforementioned honeybee waggle dance (v. Frisch 1927), began to conduct the first 

controlled experiments into the honeybees’ visual cognitive abilities. These began with 

simple colour experiments where the bees were trained to visit a blue card placed on a 

table top in order to receive a sucrose solution reward; he would then test them with the 

same coloured card versus either different shades of grey, or different coloured cards (v. 

Frisch 1914). The bees’ ability to consistently go to the correctly coloured blue card, 

even when no reward was presented (removing any secondary visual or odour cues), 

showed that bees had some form of colour vision. As described in the section above, we 

now know the bees in fact have three different types of photoreceptors in their 

compound eyes (maximally sensitive to blue, green and ultraviolet wavelengths) 

allowing full trichromatic vision and excellent colour acuity (see (Chittka, Faruq et al. 

2014) for review of colour vision and colour constancy in insects). After confirming this 

colour discrimination ability, von Frisch then tested the honeybees’ ability to 

discriminate different geometric shapes cut from coloured paper, again placed 

horizontally on a table. Once more the bees were able to discriminate between specific 
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types of patterns (i.e. radial spokes versus concentric circles) (v. Frisch 1914). However, 

it was only in later experiments where the patterns were presented vertically did the 

honeybees really start to show how remarkable their visual capabilities were. 

 

1.2.1 Y-Maze flight arena  

To extrapolate how honeybees can discriminate between flower species, or identify 

landmarks, experiments were designed that would expose the bees to specific types of 

visual cues. Subsequent control tests could then be performed to see how well the bees 

had learnt the particular cue types, and how adaptable they were to alterations in the 

presented stimuli. This format of experiments has shown that honeybees can be trained 

to discriminate an impressive range of vertically displayed visual cues; symmetry 

(Giurfa, Eichmann et al. 1996, Lehrer 1999, Rodriguez, Gumbert et al. 2004), 

arrangements of edges (Horridge and Zhang 1995, Horridge 2000, Horridge 2006), size 

(Srinivasan, Lehrer et al. 1989, Horridge, Zhang et al. 1992), pattern disruption 

(Horridge 1997) and edge orientation (van Hateren, Srinivasan et al. 1990, Srinivasan, 

Zhang et al. 1994, Giurfa, Hammer et al. 1999). These abilities are all the more 

impressive since the trained bees are then able to apply these same learnt cues to 

patterns which may have little or no resemblance to the original training patterns, so 

long as they fall into the same class of e.g. plane of symmetry, or edge orientation. 

To aid in these investigations a new form of apparatus was developed, the now 

ubiquitous Y-Maze flight arena (van Hateren, Srinivasan et al. 1990). Figure 1.2 shows 

a top-down schematic view of the flight arena. In summary: a bee is allowed to enter the 

Y-Maze through the central entrance hole into a decision chamber; here it is presented 

with a choice of two arms. At a certain distance (offset distance) in each arm a stimulus 



 

 
 

26 

(pattern, photo, etc.) is displayed. One of these stimuli will have the chosen visual cue 

for the experiment and a feeder containing a sucrose solution reward. The remaining 

arm will have just a blank end plate, or present a distractor stimulus without the correct 

cue. In this arm the feeder will be either empty, contain just water, or contain a quinine 

or salt solution that the bees find unpalatable – depending on the particular type of 

experiment required. The stimuli (and associated feeders) are regularly swapped 

between the two arms to prevent the bees learning a rewarding location (van Hateren, 

Srinivasan et al. 1990), as well as the feeders being cleaned and stimuli swapped out for 

new versions to prevent the bees using odour cues to identify the correct feeders. This 

setup easily allows the angle that the stimuli subtend on the bee’s eyes from the 

decision chamber to be controlled; by merely changing the stimuli offset distances. 

Correspondingly, this also allows a bee’s choice to be recorded from a known, but 

adjustable, distance from the stimuli as it crosses an ‘imaginary’ choice line entering 

one of the Y-Maze arms (Fig 1.2). In some experiments it may also be beneficial to 

record the bee’s ‘final choice’ when it either touches one of the stimuli or physically 

lands on a feeder. 

 

Figure 1.2 Top-down schematic view of the Y-Maze flight arena. One arm would 
contain the conditional stimulus (CS+) with the feeder providing a sucrose reward, and 
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the other arm housing a distractor stimulus (CS-) with the feeder providing either water 
or an unpalatable solution (quinine or salt).  
 

This simple binary-choice flight arena has allowed hundreds of experiments to 

be conducted on honeybees; here I provide a brief description of two types of honeybee 

behaviour that have been regularly explored using this setup: free flight and fixation. 

The former, free flight, experiments would typically have consisted of large (diameter 

15-20 cm) simple bar and grating patterns that were adjusted to different distances from 

the decision chamber. This allows particular visual acuities of the bees to be studied. 

For example, it allowed simple perpendicular grating patterns to be presented at 

different distances, then by recording the offset distances and the respective grating 

wavelengths where the bees were unable to discriminate the patterns the researchers 

were able to calculate that the minimum spatial frequency of gratings that the honeybee 

can discriminate is ~0.35 cycles per degree (Srinivasan and Lehrer 1988). Similarly, 

when discriminating vertical, horizontal or oblique bars made up of smaller squares, if 

the gap between the squares was greater than ~3°subtended on the eyes, the bees were 

unable to determine the overall orientation of the cue (Horridge 2003, Horridge 2003). 

These particular results also suggest the presence of small orientation edge detectors in 

the optic lobes that require a perceived edge to cover at least three adjacent ommatidia. 

Other experiments of this type have guided hypothesises that these small edge detectors 

must somehow be being combined to form larger visual feature responses in order to 

account for why the bees can discriminate certain forms of stimuli and pattern textures, 

but are prevented from discriminating others (Horridge 1997, Maddess, Davey et al. 

1999, Horridge 2000). This apparatus configuration was also used to unequivocally 

prove that honeybees are able to generalise to particular edge orientations, even if the 
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novel test patterns didn’t contain any direct photographic overlap with the training 

stimuli (van Hateren, Srinivasan et al. 1990). 

 The second category of experiments explores a phenomenon called fixation. 

This was first observed when the patterns were placed vertically during experiments, 

rather than the initial horizontal displays on a table. The bees would approach a stimulus, 

then hover a small distance (1-3 cm) in front of specific fixation points (see Fig 5.3 for 

an example of a fixation flight). Frame by frame analysis of motion pictures of bees 

approaching a feeder showed that head roll and pitch were stabilised during these 

manoeuvres, they also appeared to align their body axis into the same consistent 

positions, thereby producing a similar image on the retina on each fixation (Wehner and 

Flatt 1977). This gave rise to an early template-matching (or eidetic image memory) 

hypothesis of how bees discriminate patterns – still hotly debated (Giger and Srinivasan 

1995, Stach and Giurfa 2001, Stach, Benard et al. 2004). Later Y-Maze experiments 

where the bees were allowed to fixate in front of more complicated stimuli (patterns 

made up of multiple gratings oriented at different angles) showed some intriguing 

behavioural responses. If bees were trained on just a single pattern and then tested with 

different versions of this pattern, they could only identify similarities in the lower half 

of the stimuli. Whereas if the bees were trained on two different patterns (one rewarding, 

one not) then during tests they could match either the top, or bottom, halves of the 

trained pattern in the doctored test patterns (Giurfa, Hammer et al. 1999). In addition, 

when the bees were trained for 21 visits using these same two training patterns they 

were unable to generalise to a novel pattern that presented the correct orientations in 

each part of the pattern but had bars instead of gratings. However, bees trained for 42 

trials could make the generalisation, but peculiarly, they could no longer discriminate 

this simpler bar version from the original multiple grating pattern. These types of Y-
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Maze experiments are particularly interesting as they allow us to examine how the bees 

perceive the patterns and how they subsequently learn to identify and generalise key 

visual features within the training stimuli. Potentially more enlightening however, is 

how this process may be being modulated by either selective attention in the optic lobes, 

memory formation, or behavioural fixation differences, depending on the experimental 

conditions employed. 

 

1.2.2 PER, SER & virtual reality arenas 

Over the past decades, understanding of honeybee olfactory learning has progressed at 

pace. This is in large part due to two behavioural conditioning techniques, Proboscis 

Extension Reflex (PER) (Bitterman, Menzel et al. 1983) and Sting Extension Reflex 

(SER) (Vergoz, Roussel et al. 2007). In both cases the honeybees are harnessed within a 

small tube to prevent movement, and then briefly exposed to a particular odorant. A few 

seconds later the bee is either conditioned to expect a reward, by tapping on its antennae 

with sucrose solution, causing its proboscis (tongue) to extend (PER), or anticipate a 

negative condition by applying a mild electric shock; in this situation the bee extends its 

sting (SER). In both cases, after a few conditioning trials the bee will either extend its 

proboscis, or sting, when the odour alone is presented (Bitterman, Menzel et al. 1983, 

Vergoz, Roussel et al. 2007). Because the honeybees are immobilised it means that 

electrophysiology on their brains can be conducted throughout the entire learning 

paradigm. This has allowed intracellular recordings (Sun, Fonta et al. 1993), 

extracellular and large field potential (LFP) recordings (Denker, Finke et al. 2010), as 

well as calcium imaging (Galizia, Sachse et al. 1999) of the bee antennal lobes (which 

receive sensory input from the bees’ antennae). This combined with multi unit electrode 
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recordings (Brill, Reuter et al. 2014) and calcium imaging of the mushroom bodies 

during learning (Szyszka, Ditzen et al. 2005) has provided essential insights into how 

different concentrations and different mixes of odours are encoded in the bees’ antennal 

lobes, and subsequently learnt by the higher brain regions (Cuevas Rivera, Bitzer et al. 

2015). 

Unfortunately, similar PER and SER approaches with harnessed bees using 

visual stimuli have had limited success (Hori, Takeuchi et al. 2006, Hori, Takeuchi et al. 

2007) (Niggebrügge, Leboulle et al. 2009, Mota, Roussel et al. 2011). In these studies 

the bees are trained on simple colours, intensity differences, or moving grating 

discriminations, but results show much slower learning curves compared to those 

observed with free flying bees, and in the case of PER conditioning a very peculiar 

requirement is that of having to remove the bees’ antennae in order to effectuate 

learning – overall this would make any attempt at neuronal analysis or modelling from 

these types of experiments, speculative at best. One new development that may hold 

future potential is that of closed-loop virtual reality arenas. Here, a tethered bee walks 

on a rotating ball, which in turn controls a LED visual display, thus allowing the bee to 

walk around a simple environment. This has already demonstrated one interesting 

phenomenon; LFP recordings from the bee optic lobes have shown signs of selective 

attention in the medulla and lobula neurons. They responded to only one specific 

stimulus in their field of view, while being unresponsive to other stimuli (Paulk, Stacey 

et al. 2014). The responses would also spontaneously switch to another available visual 

cue in their field of view, inhibiting responses of the former cue; this was followed by a 

behavioural trait with bee turning on its ball to face this new ‘selected’ cue. Although 

interesting, these current virtual reality systems work only for walking bees, and are 

therefore unable to explore one of the honeybees’ most fascinating behaviours, that of 
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stimulus scanning and fixation during hovering manoeuvres. Indeed it might well be 

that experiments with tethered bees discriminating visual stimuli are unsuccessful for 

the simple reason that active scanning movements are an essential component of pattern 

recognition in the bee (Nityananda, Chittka et al. 2014).  

To date, no closed-loop system is available for tethered flying bees, but, as with 

all things, technology is improving. A recent publication using tethered honeybees in a 

wind tunnel simulator has been able to provide high-speed videography and subsequent 

analysis of how the bees’ posture changes as air speed and wind direction are 

manipulated (Taylor, Luu et al. 2013). It still remains to be seen if honeybees can be 

conditioned, either positively or negatively, to respond to particular stimuli in either of 

these environments; something that is routine using tethered flies in virtual flight 

simulators (e.g. flies learning to identify particular patterns to avoid unpleasant heat 

sources (Dill, Wolf et al. 1995)). Hopefully in the next few years, such developments 

will allow detailed electrophysiology of both the optic lobes and mushroom bodies 

during the learning of visual stimuli. 

 

1.3 Structure of the thesis 

Despite the current lack of detailed electrophysiology during visual learning, what is 

available is a vast behavioural catalogue of the visual stimuli that bees can, and cannot, 

discriminate, as well as the bees’ relative performances at discriminating, and 

generalising to, different types of stimuli. This thesis therefore takes a cognitive 

modelling approach to understanding how the miniature brain of a honeybee is able to 

discriminate between different visual stimuli, how it can generalise between patterns 

containing common visual features. In addition, I will investigate what neuronal 

architectures are required to allow it to be invariant to the size of the stimuli, or 
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indifferent to the stimuli location within the visual field. Later chapters use these same 

methodologies to investigate how seemingly conceptual spatial relationship problems 

could be solved without needing the complexities of a large vertebrate brain, 

culminating in actual behavioural experiments on real honeybees to test these 

hypothesises. 

 

Chapter 2: Theoretical models of how honeybees may discriminate and generalise 

simple bars and gratings 

In this initial chapter I explore how neuronal minimalism and response specificity may 

support complex visual processing and cognition within the miniature brain of the 

honeybee. Utilising these principles, and the known anatomical structures and neuronal 

responses of the bee brain, I developed several theoretical bee brain models. Computer 

simulations using stimuli previously used in honeybee behavioural experiments, reveal 

that honeybees’ precise grating pattern recognition and generalisation of oriented bars 

and gratings would be possible with just two types of optic lobe large-field orientation-

sensitive neurons, not three - the previously theorised minimum. These neurons would 

also allow for both discrimination and generalisation of these patterns without the need 

for a photographic or eidetic image memory of an actual pattern. 

 

Chapter 3: Theoretical models of how honeybees may discriminate and generalise 

complex patterns  

In this chapter I investigated if combining visual information from both eyes onto single 

Kenyon cells, which receive sensory information, would have any functional benefits 

for my models. Similar anatomical pathways are seen in the honeybee, where the 

learning centres in each hemisphere of the brain receive sensory input from the optic 
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lobes of both eyes. These new models demonstrate that not only would this allow for 

discrimination of complex patterns with invariance to their location across the width of 

the visual field, but would also be tolerant to partial occlusion to the stimuli. This would 

undoubtedly be useful for a flying insect. One model also replicated surprising failures 

of bees to discriminate certain seemingly highly different patterns, providing clues to 

the neuronal processes that may also limit the utilisation of visual cues in honeybees. 

 

Chapter 4: Theoretical models of how honeybees could solve the ‘above and below’ 

conceptualisation task 

In recent decades we have seen a string of remarkable discoveries detailing the 

impressive cognitive abilities of bees (social learning, concept learning and even 

counting). In this chapter I challenged the existing models from the previous chapters to 

solve one of these conceptual learning tasks. The ‘above and below’ task requires the 

identification of a pattern where a variable (and potentially novel) target shape is either 

above or below a constant referent shape. Initially, the models failed in all but the 

simplest pattern discrimination tests. However, a simple adaption to how the models 

were allowed to perceive the test patterns produced simulation results almost identical 

to that of the empirical results of honeybees performing the same experiments. This 

work provided a set of hypotheses for how honeybees could solve the problem without 

needing to understand the underlying spatial relationship of the stimuli shapes.  

 

Chapter 5: Behavioural experiments demonstrating how honeybees solve the ‘above 

and below’ conceptualisation task 

Honeybees have already been shown able to solve the ‘above and below’ task. But, as is 

often the case, we still know little about how the bees actually approach such a problem. 
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Continuing from my work in previous chapter, I used high-speed videography to record 

honeybees actually learning to solve this task, and subsequently compared their flight 

paths to those predicted in the previous chapter. I find that honeybees do indeed appear 

to be solving the problem without needing to understand the fundamental spatial 

relationships of the stimuli. Surprisingly, they solved this task not by the exact means I 

hypothesised, but in an even simpler manner. The bees’ technique was to fixate at the 

lowest available shape on a given stimulus and simply determine if this shape was the 

trained referent shape (a cross), or not. This approach allowed the bees to solve the task 

independent of whether the rewarding configuration was with the target shapes either 

above or below the referent shape. 

 

Chapter 6: General discussion and conclusions 

In the final chapter, I bring together my findings to summarise how the anatomy and 

known neuronal responses of the miniature bee brain appear to be perfectly configured 

to allow for complex visual discriminations, generalisations, and even solving 

seemingly complex conceptualisation tasks. I discuss how these models can be 

improved and how behaviour scientists can aid in capturing specific information that 

will be useful for computational modellers both now, and in the future. Finally, I 

conclude by highlighting how the study of honeybees may have very useful 

implications on how we should view animal cognition in general. 
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Chapter 2: Theoretical models of how honeybees may 

discriminate and generalise simple bars and gratings 

The excitatory and inhibitory (EAI_AB) model design presented in this chapter is 
published in the following publication. However, none of the other models, nor any 
simulation results from this chapter, appear in the publication. 

Roper, M. Fernando, C. & Chittka, L. 2017. Insect Bio-Inspired Neural Network 
Provides New Evidence on How Simple Feature Detectors Can Enable Complex Visual 
Generalization and Stimulus Location Invariance in the Miniature Brain of Honeybees. 
PLOS Computational Biology 13(2): e1005333. 
 

2.1 Abstract 

The honeybee brain contains less than one million neurons and yet, bees display 

remarkable visual recognition abilities allowing them to classify visual patterns by 

common features, use landmarks for navigation on extensive foraging routes, and they 

can even recognise particular human faces. But with such a miniature brain, does the 

honeybee use unique ways to encode visual information, thus reducing the neuron count 

and neuronal infrastructure required for complex recognition? Here, I build theoretical 

models using the known anatomical and electrophysiology of the bee brain to show that 

the neuronal responses of just two types of lobula (3rd optic ganglion) large-field 

orientation-sensitive neurons can be used for both generalisation and precise 

discrimination of achromatic bar and grating patterns. These abilities can be 

accomplished without the need for a previously assumed internal eidetic image (or 

photographic representation) of the patterns. My research highlights how having a small 

number of connections from the optic lobes to the higher brain learning centres, as seen 

in honeybees, may not hinder the insects, but facilitate cognitive abilities by allowing 

parallel processing of this information. Furthermore, bees would be able to use simple 

associative learning of these different simultaneously produced visual elements without 
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the need for unique or complex hierarchical architectures for each type of recognition 

task. I also discuss why honeybees may only need two orientation-sensitive neuron 

types whereas three types, the minimum theoretical requirement, were found in 

dragonflies.  

  

2.2 Introduction 

Behavioural experiments have shown that honeybees can be trained to discriminate and 

then generalise to a prodigious range of visual cues. Previous visual recognition 

experiments included colour (Schneirla 1951, Dyer and Neumeyer 2005), symmetry 

(Giurfa, Eichmann et al. 1996, Lehrer 1999, Rodriguez, Gumbert et al. 2004), radial, 

spokes, concentric bars and oriented gratings (van Hateren, Srinivasan et al. 1990, 

Srinivasan, Zhang et al. 1994, Horridge and Zhang 1995, Giurfa, Hammer et al. 1999, 

Horridge 2000, Horridge 2006) amongst other motifs. Honeybees also accomplish 

remarkable feats of social learning (Avargues-Weber, Dawson et al. 2013), using a 

complex communication system, the ‘dance language’ to indicate suitable foraging sites 

to nestmates (Su, Cai et al. 2008), and advanced cognitive abilities such as counting 

(Chittka and Geiger 1995) and forms of learning that could be classified as conceptual 

(Giurfa, Zhang et al. 2001, Avargues-Weber, Dyer et al. 2011).  

Here I investigate the question, how can the miniature brain of honeybees 

facilitate such diverse cognitive abilities? In this chapter I explore the two phenomena 

of neuronal minimalism and response specificity (see Chapter 1.1.2), and how these 

may support the honeybees’ visual recognition abilities. The honeybee lobula (3rd optic 

ganglia) extends an astonishingly small number of just ~50 extrinsic neurons to the 
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mushroom bodies (higher learning centres) (Witthöft 1967), these neurons are typically 

very large-field responding to particular types of stimuli in large regions, if not the 

entirety, of a bee’s eye. Among these extrinsic lobula neurons, two types of large-field 

orientation-sensitive neurons (LOSNs) have been discovered. These had maximal 

sensitivities to bars oriented at ca. 115˚ (type A) and ca. 250˚ (type B) moving anywhere 

across the width of the bee eye (Maddess and Yang 1997). Their responses were 

independent of the direction of the bar’s movement, although did produce a higher 

firing rate when the number of bars presented was doubled (Maddess and Yang 1997). 

Given that these two types of large-field neurons do not encode any detailed retinotopic 

information (i.e. subsequent processing of these responses alone would not allow the 

location of the bar in the field of view to be determined), the question is, do they still 

provide useful feature detectors that could contribute to the bees’ pattern discrimination 

abilities, and could they also be used for generalisation?  

To investigate these questions, I produced four simple theoretical bee brain 

models. These limited the numbers of neurons connecting the optic lobes to the 

mushroom bodies to just these lobula large-field orientation-sensitive neurons (LOSNs). 

I explore if the response-specificity of these neurons is sufficient alone to allow 

honeybee equivalent performances on a disparate range of achromatic pattern 

recognition tasks. In addition, I examine what secondary processing may be required in 

the higher learning centres to correctly evaluate this limited visual input. I do not 

employ any form of learning in these models; this allows us to better comprehend how 

the LOSN responses alone may affect the bees’ cognitive abilities and behavioural 

performance. As with original honeybee behaviour experiments, I begin with single bar 

and oriented grating pattern tasks. This allows us to study very simple visual inputs and 

corresponding neuronal outputs, but still scrutinise a large range of recognition tasks; 
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easy perpendicular edge discriminations, fine angle discriminations, exact template 

matching, and feature generalisation.  

Here, I explore these core types of visual recognition tasks by simulating 164 

previously conducted honeybee behavioural experiments using bar and grating patterns 

(experiments taken from four published papers (van Hateren, Srinivasan et al. 1990, 

Srinivasan, Zhang et al. 1994, Giger and Srinivasan 1995, Sathees chandra, Geetha et al. 

1998), and directly compare the empirical results to each of my models’ performances.  

 

2.3 Methods 

2.3.1 Pre-processing of patterns 

Each achromatic pattern used in this study was taken from the pdf document of the 

published behavioural papers. These images were scaled and centred to fit within a 155 

x 155 pixel PNG image. Where pattern image resolution was insufficient, I recreated the 

patterns in Microsoft PowerPoint using the stimuli instructions provided in the papers’ 

method sections. For the scaled discrimination experiments, the 155 x 155 pixel patterns 

were enlarged by 125% and 300% creating new images 194 x 194 pixels and 465 x 465 

pixels respectively.  

All images were processed in Matlab (Mathworks) in the following way: 

● Removal of excess pixel noise in the image  

● Conversion to a binary black and white image using only the green channel 

● Calculation of the orientation and gradient magnitude of each edge in the image 

using Canny edge detection and Sobel gradient analysis 
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● Removal of short edges with a gradient magnitude ≤ 1.7. Equivalent to those 

edges subtending less than 3˚ on a honeybee eye, which have been shown to be 

undistinguishable by bees (Horridge 2003, Horridge 2003) 

● Division of the image into four equal quadrants; for each quadrant I generated a 

histogram analysis of all oriented edge lengths in 1˚ increments (1˚-180˚) 

● Saving the histogram dataset for each quadrant into a unique file per image levels. 

 

 

Figure 2.1 Schematic representation of the stimuli pre-processing (a) Left: pattern is 
loaded and converted to a black and white image (if not already). Middle: image 
artefacts are removed as well as any edges too small to be detected by bees. Right: 
remaining edges are detected and then the length and orientation of each edge 
calculated. (b) Histogram showing the orientation (1-180˚) and the corresponding edge 
lengths for each quadrant (Q1 – Q4) of the pattern. 

 

2.3.2 Calculating lobula neuronal responses 

To date only two types of LOSNs have been discovered in honeybees (Maddess and 

Yang 1997). In these experiments, electrophysiological recordings were made from the 

lobula of tethered bees placed in front of CRT computer monitors; stimuli of oriented 

bars moving across one eye were presented at 30˚ angle intervals, in both the frontal and 

lateral eye regions. These neurons responded to the oriented bars moving anywhere 

across the whole width of the eye, and were maximally sensitive to orientations of 115˚ 

(LOSN type A) and 250˚ (LOSN type B) with angular half-widths of about 90°. In 
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previous electrophysiology experiments using dragonflies, three LOSN types were 

found (O'Carroll 1993). Two of these were similar to the LOSN type A and type B in 

honeybees and the third type had its maximal sensitivity offset from the other two by 

approximately 120˚. Some researchers have suggested, on theoretical grounds, that a 

third type of LOSN must also be present in the honeybee (Srinivasan, Zhang et al. 1994, 

Sathees chandra, Geetha et al. 1998); and indeed because the total number of recordings 

of LOSNs in this species is so far relatively low, the lack of recordings from a third 

LOSN type is not evidence for absence. Therefore, here I produced two sets of models, 

those using only empirical evidence of type A and type B responses in honeybees 

(Maddess and Yang 1997) (suffixed _AB) and those with a third type, where maximal 

orientation sensitivities are offset by ~120˚ (Srinivasan, Zhang et al. 1994), similar to 

that seen in dragonflies (O'Carroll 1993) (suffixed _ABC). I modelled and subsequently 

simulated a single instance of the two, or three, LOSN types from the upper and lower 

half of the visual field of each eye (behavioural (Giurfa, Hammer et al. 1999), 

neuroanatomical (Ehmer and Gronenberg 2002) and neurophysiological (Paulk and 

Gronenberg 2008) evidence shows subdivision of visual information into such regions) 

producing for any given bar or grating pattern just eight or twelve theoretical LOSN 

responses for the _AB and _ABC models respectively (see Methods: Calculating LOSN 

type A, B & C responses).  

Calculating lobula neuronal responses for the two LOSN type models  

The virtual lobula (3rd optic ganglion) large-field orientation-sensitive neurons (LOSNs) 

used in my models were derived from the Yang & Maddess (1997) study on the 

honeybee (Apis mellifera). During electrophysiological recordings the honeybees were 

presented with a moving bar, the lobula neurons produced a fast phasic response only 

during the initial bar presentation and not as it continued across the eye. Behavioural 



 

 
 

41 

studies in bumblebees (Nityananda, Chittka et al. 2014) have also shown that bees are 

able to discriminate simple oriented bars on a computer monitor when presented for just 

25ms, which would be brief enough to prevent the stimuli moving across the bee eye 

during free flight. Since the bees are able to do discriminate with just a quick ‘glance’ of 

the pattern, and to reduce the complexity of the model, here I assume that the models 

perceive just a single static ‘snapshot’ of the stimuli, and that this would be sufficient 

for the maximum LOSN firing rates to be produced for the particular edge orientations 

within each stimulus. I therefore produced best-fit curves to both the reported type A 

and type B responses so that I could provide a theoretical neuronal response to a fixed 

280-pixel edge at any orientation (Fig 2.2a). 

Bees presented with two identically oriented bars simultaneously in both the 

frontal and lateral regions of the eye generated LOSN responses that were higher than 

for a single bar in either eye region but less than the summed responses (Maddess and 

Yang 1997). A similar nonlinear response was seen in dragonflies (Hemicordulia tau) 

(O'Carroll 1993) where the response to an oriented moving bar would increase with the 

length of the presented bar. Assuming that the honeybee LOSN responses are due to a 

nonlinear summation of smaller orientation detectors in the lower lobula or medulla, I 

used this more detailed response curve recorded in the dragonfly to generate a best-fit 

scale factor curve (Fig 2.2c) for when the length of a presented edge increases. This 

allowed me to scale the LOSN responses for any oriented edge based on its length 

compared to the fixed length used for my LOSN tuning curves (Fig 2.2a, c).  
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Figure 2.2 Schematic representation of the model neuron responses. (a) Firing rate 
responses of the theoretical LOSNs used for the _AB models (type A: green, type B: 
blue) to a 280 pixel edge at all orientations between 1˚-180˚; tuning curves adapted 
from honeybee electrophysiological recordings (Maddess and Yang 1997). (b) Firing 
rate responses of the three LOSNs used for the _ABC models (type A: green, type B: 
blue, brown: type C) to a 280 pixel edge at all orientations between 1˚-180˚; tuning 
curves adapted from honeybee electrophysiological recordings for the LOSN type A 
neurons (Maddess and Yang 1997) which are offset by ±120˚ to create the three LOSNs 
that were thought to be the minimum for orientation discrimination in bees (Srinivasan, 
Zhang et al. 1994). (c) Scale factor applied to the LOSN firing rates dependent on the 
total edge length in each quadrant of the visual field, derived from dragonfly neuronal 
responses to oriented bars with differing bar lengths (O'Carroll 1993). 

 

To account for multiple edges at different orientations in any one image (see Fig 

2.1), I again use the assumption that the overall LOSN response is composed from 

smaller subunits in the medulla or early lobula and will vary with both the total length 

and abundance of all oriented edges within the receptive field that that LOSN receives 

information from. To date we do not have recordings of lamina or medulla orientation-

sensitive neurons from honeybees. However, such neurons are found in other insect 

medullas (McCann and Dill 1969, O'Carroll 1993, James and Osorio 1996, Maddess 

and Yang 1997, Okamura and Strausfeld 2007, Spalthoff, Gerdes et al. 2012). Using the 

data from these studies it would be conceivable to build and simulate an artificial neural 

network to process the pattern stimuli and produce theoretical LOSN responses. That 

said, the output of these networks would need to be tuned to produce the same neural 

response to oriented bars that were recorded from the honeybee LOSNs (Maddess and 

Yang 1997). So here, I remove this layer and directly use the known LOSN 

electrophysiological responses to particular orientations to mathematically calculate a 

theoretical response to novel stimuli.  
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I thus calculated the overall LOSN type A and type B responses for any given 

pattern using the edge length histogram datasets for all four quadrants of that pattern 

(see above). For each quadrant and each LOSN type, I summed the proportion 

(orientation edge length / total edge length) of each edge orientation (1˚-180˚) and 

multiplied it by the neural response for that orientation on my standard 280 pixel edge 

curve (Fig 2.2a). This total value was then corrected by the scaling factor derived from 

the total edge length within that quadrant (Fig 2.2c). This produced a type A and type B 

LOSN response (Equation 2.1) for each quadrant of the visual field, and therefore eight 

LOSN responses in total for a given pattern (see Fig 2.3). These image specific 

responses were saved with the pattern’s unique identification number (UID) and 

subsequently used as the sensory inputs to the Kenyon cells of my two LOSN type 

mushroom body models (suffixed _AB).  

 

𝐿𝑂𝑆𝑁_𝐴𝐵(𝑥, 𝑞) =
ℎ𝑖𝑠𝑡 𝑞, 𝑖
ℎ𝑖𝑠𝑡(𝑞)

∗ 𝑐𝑢𝑟𝑣𝑒_𝐴𝐵 𝑥, 𝑖
!"#

!!!

∗ 𝑠𝑐𝑎𝑙𝑒 ℎ𝑖𝑠𝑡(𝑞)  

(2.1) 

 

Where q: visual field quadrant 1:4; x: LOSN type a or b; hist: matrix of edge lengths for each 

orientation (1˚ increments) in each quadrant; curve_AB: response of AB model LOSN type x to a 

280 pixel edge at orientation i (Fig 2.2a); scale: scale factor for given total edge length  (Fig 

2.2c).  
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Figure 2.3 Simplified example of the lobula orientation-sensitive neuron (LOSN) type A 
and type B firing rate response calculations. (a) Here I calculate values for just the left 
dorsal eye (quadrant 1) with only horizontal (0˚ / 180˚) and vertical (90˚) edges 
presented. In the single horizontal bar example (top) 75% of the overall edge length is 
at a 0˚ orientation (600 pixels out of total edge length of 800 pixels) and 25% of the 
edges at 90˚ orientations, thus the LOSN responses are influenced more by the response 
curve values at 0˚ than 90˚. Conversely, the vertical bar is influenced more by the 
response curve values at 90˚, resulting in overall higher LOSN firing rates. The two 
horizontal bars example (bottom) has the same proportion of orientations as the single 
horizontal bar (top). Although the total edge length is doubled, the LOSN firing rates 
are not twice as high; instead they are scaled using the non-linear scaling factor 
derived from dragonflies (see Fig. 2.2c and Equation 2.1). Note that the LOSN type A 
firing rate is the same for a single vertical bar as it is for two horizontal bars (52 Hz). 
(b) LOSN type A and type B response curve values for 0˚ and 90˚ (see Fig. 2.2a). (c) 
LOSN scale factors for 800 and 1600 pixel edges (See Fig. 2.2c). Image replicated from 
my publication (Roper, Fernando et al. 2017).  
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Calculating lobula neuronal responses for the three LOSN type models 

To compare the performance of just the two LOSN types known in honeybees 

honeybees (Maddess and Yang 1997) with that of the proposed theoretical minimum of 

three types (Srinivasan, Zhang et al. 1994, Sathees chandra, Geetha et al. 1998), I 

created a second set of models (suffixed: _ABC). For these models, I took the LOSN 

type A responses and offset the values by ±120˚ to create the new type B and type C 

LOSN responses with the required maximal sensitivity values (Fig 2.2b). The 

generation of the LOSN responses for a given pattern for these models was exactly the 

same as above except that three LOSN type response curves to a 280 pixel edge were 

provided (Fig 2.2b, Equation 2.2) therefore in each visual field quadrant a LOSN type A, 

B & C response was generated providing in total twelve LOSN responses for that 

pattern. These responses were again saved and passed to the appropriate models’ 

Kenyon cells (see below). 

 

𝐿𝑂𝑆𝑁_𝐴𝐵𝐶(𝑦, 𝑞) =
ℎ𝑖𝑠𝑡 𝑞, 𝑖
ℎ𝑖𝑠𝑡(𝑞)

∗ 𝑐𝑢𝑟𝑣𝑒_𝐴𝐵𝐶 𝑦, 𝑖
!"#

!!!

∗ 𝑠𝑐𝑎𝑙𝑒 ℎ𝑖𝑠𝑡(𝑞)  (2.2) 

Where q: visual field quadrant 1:4; x: LOSN type a, b or c; hist: matrix of edge lengths for each 

orientation (1˚ increments) in each quadrant; curve_ABC: response of _ABC model LOSN type 

y to a 280 pixel edge at orientation i (Fig 2.2b); scale: scale factor for given total edge length  

(Fig 2.2c).  

 

2.3.3 Calculating mushroom body Kenyon cell responses 

The honeybee mushroom bodies contain approximately 340,000 Kenyon cells (Witthöft 

1967) that receive input from the olfactory, gustatory, mechanosensory and visual 

systems (Gronenberg 2001, Ehmer and Gronenberg 2002). Within the mushroom bodies 
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there are two classes of Kenyon cells; class I ‘spiny’ Kenyon cells each receive input 

from large numbers of sensory neurons and class II ‘clawed’ Kenyon cells that only 

synaptically connect to approximately five to fifteen input projection neurons 

(Strausfeld 2002). My model LOSNs make presynaptic connections to just these class II 

‘clawed’ Kenyon cells (hereafter simply referred to as Kenyon cells) since this allowed 

me to limit the model size to simple, yet plausible, LOSN to Kenyon cell connection 

configurations.  

For this study I produced four simple theoretical models. For the two ‘single 

excitation only’ models (SEO_AB, SEO_ABC), I assume that an individual Kenyon 

cell would exclusively receive excitatory synaptic input from LOSNs. For these very 

simple models each of the ~8,000 individual Kenyon cells in the respective models 

were configured to receive input from just one of the eight or twelve LOSNs, dependent 

on whether two (suffix _AB) or three (suffix _ABC) types of orientation detectors were 

modelled (Fig 2.4 purple neurons). The two ‘excitatory and inhibitory’ models 

(EAI_AB, EAI_ABC) were created using the same eight or twelve LOSNs as above, 

but the LOSN to Kenyon cell connection configurations were slightly more complex. 

Here each individual Kenyon cell could establish one or more excitatory synapses with 

a single LOSN type in either the dorsal or ventral region of one eye, and one or more 

inhibitory synapses from one of the other LOSN types from the same eye region (Fig 

2.4 red neurons). 
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Figure 2.4 Schematic representation of SEO and EAI models. Representation of how 
the lobula orientation-sensitive neurons (LOSN) connect to each models’ Kenyon cells. 
Here I show connections from the left-dorsal eye, distinct connections would be 
established from the other three eye regions. (a) ‘Single Excitatory Only’ SEO_AB 
model, these Kenyon cells (purple) only receive input from a single LOSN type. 
‘Excitatory And Inhibitory’ EAI_AB Kenyon cells (red) receive either excitatory input 
from the LOSN type A and inhibitory input from the LOSN type B, or vice-versa. (b) The 
SEO_ABC Kenyon cells (purple) make single excitatory connections with either a 
LOSN type A, B or C. The EAI_AB Kenyon cells (red) establish different connections 
with just two of the three LOSN types, one type always being excitatory and the other 
inhibitory. 

 

Calculating Single excitatory only (SEO) Kenyon cell responses  

In the first single excitatory only model (SEO_AB) each of the eight LOSN inputs were 

connected to 1,032 Kenyon cells, producing in total 8,256 Kenyon cells. Here, a 

Kenyon cell received input from either a type A or type B LOSN from a single quadrant 

of the visual field. The SEO_ABC used the twelve LOSNs, three LOSN type inputs per 

quadrant; each was connected to the single excitatory synapse on one of 688 Kenyon 

cells forming the same 8,256 Kenyon cell population. For a given pattern, I loaded the 

correct LOSN responses (from above) then for each Kenyon cell synapse set the 

synaptic value to the firing rate value of the LOSN connected to it, to this a small 

synaptic signal to noise distortions was applied. The latter was to account for natural 

variation in both the LOSN responses when presented with the same pattern, and in pre- 

and post- synaptic neurotransmitter signals. Matlab’s (Matworks) AWGN (Add White 
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Gaussian Noise) function was used with a signal to noise ratio value of 30. This setting 

produced approximately 2-5Hz variations on the 36Hz response of the type A LOSN at 

its maximal sensitivity and an edge length of 280 pixels. This would be similar to the 

response variation reported in the honeybee LOSNs after the deduction of the neuronal 

background firing rates (Maddess and Yang 1997) (see Chapter 6.2: for further 

discussion on applying noise to the LOSN responses). The input firing rate values of 

each synapse were rounded to the nearest integer value and stored in a single array. This 

array was again saved and cross-referenced with the presented pattern’s UID. 

Excitatory and inhibitory (EAI) Kenyon cell connections  

The first of the excitatory and inhibitory models (EAI_AB) uses just the known 

honeybee type A and type B LOSNs (Fig 2.2a). I established a set of simple excitatory 

and inhibitory synaptic configurations, with each configuration having a different 

number of type A and type B LOSNs connecting to the Kenyon cells (with that Kenyon 

cell’s LOSNs all originating from the same quadrant of the visual field, see Fig 2.4a red 

neuron), in total 86 different LOSN to Kenyon cell connection types were produced (see 

Table 2.1). I replicated 24 copies of each of these 86 types per quadrant; resulting in a 

total of 8,256 Kenyon cells. Although, it must be noted that for these EAI models it 

could have been configured that, for example, rather than a Kenyon cell receiving three 

excitatory LOSN type B inputs instead it received just one such input with a synaptic 

weight of +3, which would have produced the exact same result. However, to reinforce 

the importance that there is no learning in my models, and to focus the investigation 

into the LOSN responses, here I restrict the models to the most basic synaptic 

configuration, with all synaptic weights equal to ±1. 
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001:	
  1A+,	
  1B-­‐	
  

002:	
  1A+,	
  2B-­‐	
  

003:	
  1A+,	
  3B-­‐	
  

004:	
  1A+,	
  5B-­‐	
  

005:	
  1A+,	
  7B-­‐	
  

006:	
  1A+,	
  11B-­‐	
  

007:	
  1A+,	
  13B-­‐	
  

008:	
  2A+,	
  1B-­‐	
  

009:	
  2A+,	
  3B-­‐	
  

010:	
  2A+,	
  5B-­‐	
  

011:	
  2A+,	
  7B-­‐	
  

012:	
  2A+,	
  11B-­‐	
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  2A+,	
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  3A+,	
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  3A+,	
  2B-­‐	
  

016:	
  3A+,	
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  3A+,	
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  3A+,	
  11B-­‐	
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  3A+,	
  13B-­‐	
  

020:	
  5A+,	
  1B-­‐	
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  5A+,	
  2B-­‐	
  

022:	
  5A+,	
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023:	
  5A+,	
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024:	
  5A+,	
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025:	
  5A+,	
  13B-­‐	
  

026:	
  7A+,	
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  7A+,	
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028:	
  7A+,	
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  1B-­‐	
  

033:	
  11A+,	
  2B-­‐	
  

034:	
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  13A+,	
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040:	
  13A+,	
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041:	
  13A+,	
  5B-­‐	
  

042:	
  13A+,	
  7B-­‐	
  

043:	
  13A+,	
  11B-­‐	
  

044:	
  1A-­‐,	
  1B+	
  

045:	
  1A-­‐,	
  2B+	
  

046:	
  1A-­‐,	
  3B+	
  

047:	
  1A-­‐,	
  5B+	
  

048:	
  1A-­‐,	
  7B+	
  

049:	
  1A-­‐,	
  11B+	
  

050:	
  1A-­‐,	
  13B+	
  

051:	
  2A-­‐,	
  1B+	
  

052:	
  2A-­‐,	
  3B+	
  

053:	
  2A-­‐,	
  5B+	
  

054:	
  2A-­‐,	
  7B+	
  

055:	
  2A-­‐,	
  11B+	
  

056:	
  2A-­‐,	
  13B+	
  

057:	
  3A-­‐,	
  1B+	
  

058:	
  3A-­‐,	
  2B+	
  

059:	
  3A-­‐,	
  5B+	
  

060:	
  3A-­‐,	
  7B+	
  

061:	
  3A-­‐,	
  11B+	
  

062:	
  3A-­‐,	
  13B+	
  

063:	
  5A-­‐,	
  1B+	
  

064:	
  5A-­‐,	
  2B+	
  

065:	
  5A-­‐,	
  3B+	
  

066:	
  5A-­‐,	
  7B+	
  

067:	
  5A-­‐,	
  11B+	
  

068:	
  5A-­‐,	
  13B+	
  

069:	
  7A-­‐,	
  1B+	
  

070:	
  7A-­‐,	
  2B+	
  

071:	
  7A-­‐,	
  3B+	
  

072:	
  7A-­‐,	
  5B+	
  

073:	
  7A-­‐,	
  11B+	
  

074:	
  7A-­‐,	
  13B+	
  

075:	
  11A-­‐,	
  1B+	
  

076:	
  11A-­‐,	
  2B+	
  

077:	
  11A-­‐,	
  3B+	
  

078:	
  11A-­‐,	
  5B+	
  

079:	
  11A-­‐,	
  7B+	
  

080:	
  11A-­‐,	
  13B+	
  

081:	
  13A-­‐,	
  1B+	
  

082:	
  13A-­‐,	
  2B+	
  

083:	
  13A-­‐,	
  3B+	
  

083:	
  13A-­‐,	
  5B+	
  

085:	
  13A-­‐,	
  7B+	
  

086:	
  13A-­‐,	
  11B+	
  

Table 2.1 EAI_AB LOSN to Kenyon cell configuration types. List of all 86 lobula large-
field orientation-sensitive neurons (LOSNs) to mushroom body Kenyon cell 
configurations. Format [configuration number]: [number of LOSN type A 
synapses]A[+/- = excitatory/inhibitory synapses], [number of LOSN type B 
synapses]B[+/- = excitatory/inhibitory synapses]. The first 43 configurations each had 
one or more LOSN type A excitatory connection and one or more LOSN type B 
inhibitory connection. The second 43 configurations were the reciprocal of these with 
type A inputs being inhibitory and type B excitatory. The use of prime numbers provided 
a simple way to exclude duplicate responses i.e. 2A+, 5B- would generate the same 
Kenyon cell response as 4A, 10B-. All synaptic weights were set to 1 or -1 for the 
individual excitatory and inhibitory connections respectively. 

 

The theoretical Kenyon cells defined above will each fire for a large number of 

perceived edge orientations and edge lengths. However, the combinatorial firing code of 

these 86 types allows small ranges of orientations to be uniquely identified by my 

models, and furthermore these edge orientations can be recognised invariant of the 

presented edge lengths, since an almost identical combinatorial code of the fired 

Kenyon cells is produced if the same edge orientations are presented (see Chapter 2.4.1). 

Adding additional LOSN combinations would not increase the models ability to 

discriminate more specific angles, as the acuity is fundamentally constrained by the 
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particular LOSN response curves, which often have the same firing rate for several 

adjacent orientations (Fig 2.2a). It is most likely that within the honeybee mushroom 

bodies a large variety of random LOSN to Kenyon cell synaptic connections are initially 

established. Equally these synapses are most certainly plastic, adapting the synaptic 

strengths, and even adding and removing LOSN synapses, during a bee’s foraging life 

(Durst, Eichmüller et al. 1994). In this way these Kenyon cells could become highly 

selective and fire only for particular rewarding visual inputs. In addition, the honeybee 

brain may be capable of adapting the Kenyon cell synapses to better account for noise in 

the LOSN responses and produce more effective combinatorial codes for identifying 

particular orientations than my models (see Chapter 3.5), however, since this chapter is 

primarily concerned with the LOSNs effectiveness as feature detectors, and not on 

learning or other ‘fine-tuning’ neuronal mechanisms, this additional model complexity 

of random connectivity and weight adaption was omitted.  

The second EAI model (EAI_ABC) used the theoretical responses of three 

LOSN types (Fig 2.2b). In this case, each Kenyon cell formed synapses with a number 

of LOSNs, each connection originating from just two of the three LOSN types from a 

single quadrant of the visual field; all of the synapses of one type would be excitatory 

and the other type all inhibitory. The EAI_ABC model required 24 different LOSN to 

Kenyon cell configurations to subdivide the 360˚ of orientations into distinct regions 

(see Table 2.2). I created 86 of each Kenyon cell configuration type, per quadrant, to 

produce the same 8,256 Kenyon cells as the other models.  
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001:	
  1A+,	
  1B-­‐	
  

002:	
  2A+,	
  3B-­‐	
  

003:	
  3A+,	
  4B-­‐	
  

004:	
  4A+,	
  5B-­‐	
  

005:	
  1A+,	
  1C-­‐	
  

006:	
  2A+,	
  3C-­‐	
  

007:	
  3A+,	
  4C-­‐	
  

008:	
  4A+,	
  5C-­‐	
  

009:	
  1B+,	
  1A-­‐	
  

010:	
  2B+,	
  3A-­‐	
  

011:	
  3B+,	
  4A-­‐	
  

012:	
  4B+,	
  5A-­‐	
  

013:	
  1B+,	
  1B-­‐	
  

014:	
  2B+,	
  3B-­‐	
  

015:	
  3B+,	
  4B-­‐	
  

016:	
  4B+,	
  5B-­‐	
  

017:	
  1C+,	
  1A-­‐	
  

018:	
  2C+,	
  3A-­‐	
  

019:	
  3C+,	
  4A-­‐	
  

020:	
  4C+,	
  5A-­‐	
  

021:	
  1C+,	
  1B-­‐	
  

022:	
  2C+,	
  3B-­‐	
  

023:	
  3C+,	
  4B-­‐	
  

024:	
  4C+,	
  5B-­‐	
  

 

Table 2.2 EAI_ABC LOSN to Kenyon cell configuration types. List of all 24 lobula 
large-field orientation-sensitive neurons (LOSNs) to mushroom body Kenyon cell 
configurations. Format [configuration number]: [number of LOSN type A/B/C 
excitatory synapses][A/B/C]+, [number of LOSN type A/B/C inhibitory 
synapses][A/B/C]-. The first 8 configurations each had one or more LOSN type A 
excitatory connections and one or more LOSN type B/C inhibitory connections. The 
second 8 configurations were the reciprocal of these with type B inputs being excitatory 
and type A/C inhibitory. The final 8 configurations had the type C LOSN synapses 
excitatory and A/B inhibitory. All synaptic weights were set to 1 or -1 for the individual 
excitatory and inhibitory connections respectively. 

 

Calculating EAI Kenyon cell responses 

Each EAI models’ Kenyon cell response, to a given pattern, was calculated by first 

summating the value of all its synapses (number and type of synapses dependent on that 

Kenyon cells particular configuration type). If this total summed synaptic input was 

greater than zero the output of the Kenyon cell was set to 1 (fired). Otherwise the 

response was set to 0 (completely inhibited). The individual Kenyon cell synaptic 

values were calculated by taking the firing rate of the connected LOSN, applying the 

same small synaptic signal to noise distortion as the SEO models, and multiplying this 

by +1 for excitatory synapses and -1 for inhibitory ones. In this way the binary values of 

all 8,256 Kenyon cell responses were calculated; these values were stored in an array 

and saved cross-referenced to the pattern’s UID. 
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2.3.4 Calculating Kenyon cell similarity ratios and experiment performances 

Each experiment simulated in this study was composed of three patterns, the rewarding 

pattern used during the honeybee training (CS+) and two novel test patterns used in the 

experimental evaluation trial. The test stimuli patterns that honeybees preferred during 

their trials were designated as TSCOR patterns and the TSINC patterns were accordingly 

the patterns the bees least preferred. To simulate the experiments from published 

behavioural work, I first pre-processed the LOSN responses for all the used patterns and 

compiled them in an experiment-specific unique Matlab (Mathworks) file (hereafter 

referred to as “study file”). For each individual experiment within a study file, I defined 

the CS+, TSCOR and TSINC pattern UIDs as well as recoding the behavioural results of 

the honeybees. For each model I loaded the study file, extracted the unique pattern 

image UIDs for each experiment and the corresponding eight, or twelve, LOSN firing 

rate values and from these calculated the model’s Kenyon cell responses to all three 

patterns. This provided separate arrays of Kenyon cell responses for the CS+, TSCOR & 

TSINC patterns, which I used to calculate the Euclidian distance from the CS+ array to 

the TSCOR array and CS+ array to the TSINC array. The Euclidian distance provided a 

consistent mechanism when comparing the models that produced a binary output 

(EAI_AB, EAI_ABC) with the other models (SEO_AB, SEO_ABC) that directly used 

the Kenyon cell synaptic input firing rates. The ratio of these CS+ to TSCOR, CS+ to 

TSINC Euclidian distances provided the simulation’s Kenyon cell similarity ratio (KCSR) 

for that experiment for a single trial (Equation 2.3). Each experimental simulation was 

repeated one thousand times and the average, standard deviation, minimum and 

maximum KCSR results of each experiment were recorded. For the original honeybee 

generalisation experiments, bees were trained on multiple CS+ and CS- pattern pairs 

selected from relevant pools (Fig 2.11b) (van Hateren, Srinivasan et al. 1990). For these 
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experiments I followed the same procedure as above but created individual simulations 

for each possible pattern triplet combination. Simulations were again performed one 

thousand times for all pattern triplet combinations. The KCSR results for all 

combinations were then averaged to create an overall KCSR value for that simulated 

experiment. 

  𝐾𝐶𝑆𝑅 =   1− !(!"!,!"!"#)
!  (!"!,!"!"#)  !  !  (!"!,!"!"#)

        (2.3)  

Where KCSR: Kenyon cell similarity ratio, E(x, y): Euclidian distance between x and y, CS+, 

TSCOR, TSINC: array of Kenyon cell response values for the respective patterns.  

 

2.3.5 Evaluating honeybee and model experimental performances 

Due to the difficulties attaining electrophysiological recordings from honeybees during 

visual learning tasks (see Chapter 1.2.2) we know almost nothing about how a bee’s 

final behavioural decision is made given its Kenyon cell responses to a particular visual 

stimulus. However, we can assume that if the Kenyon cell responses to a presented test 

stimulus (TSCOR) is very similar to the previously learnt CS+ stimulus (i.e. the same 

pattern is presented) and the distractor pattern is very different to the CS+ pattern, then 

the honeybee KCSR would be almost 1.0, and we would expect the bee to almost 

always visit the TSCOR pattern, with an experimental correct choice performance close 

to 100%. Similarly, if the TSCOR and TSINC patterns are different from each other and 

also different to the CS+ pattern, but both produced Kenyon cell responses equally 

similar/dissimilar to that of the CS+ pattern (i.e. KCSR = 0.5) then we would expect the 

honeybee to visit each pattern equally likely, and therefore over multiple trials (and 

multiple bees) have an experimental ‘correct’ choice performance of ~50%. If the 

honeybees were trained on a particular CS+ pattern and then tested with a TSCOR pattern 
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similar to this CS+ stimulus and a very different TSINC pattern, and then a second test 

conducted with the same TSCOR pattern and a very similar TSINC pattern, we would 

again assume the honeybees correct choice accuracy for the first test would be far 

higher than the second test. Similarly, the KCSR of the first experiment would 

undoubtedly be much higher than that of the KCSR of the second experiment. 

Therefore, to allow me to directly compare my model simulation results against 

the empirical honeybee experimental results I make the following declaration: the 

average KCSR of all simulations for a given experiment is directly correlated to my 

virtual bees’ experimental performance. In this way if a model’s average KCSR for a 

given experiment were 0.72 then its overall experimental performance for selecting the 

correct TSCOR pattern would be 72%. It would have been possible to implement a 

probabilistic ‘Monte Carlo’ style binary response for the virtual bee to choose either the 

TSCOR or TSINC pattern per trial (based on that simulation trial’s KCSR result) and then 

average these choices, but given the large number of simulations executed per 

experiment, the added probabilistic variability, and in order to keep the calculations as 

simple as possible, this was judged an unnecessary complication. The above declaration 

does have some limitations when assuming a direct comparable mechanism within the 

honeybee brain (discussed in more detail in Chapter 3.5) but nonetheless provides an 

effective method for assessing the models’ performances over a wide range of pattern 

experiments. This mechanism also benefits from not needing to train and test an 

artificial neural network on each pattern experiment, and the inherent parameter tuning 

and subsequent performance evaluations that this approach would require.  

It would have been desirable to assess how my models correlated with the 

honeybees’ relative performances over all of the tested experiments. Each set of the 
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original honeybee experiments (van Hateren, Srinivasan et al. 1990, Srinivasan, Zhang 

et al. 1994, Giger and Srinivasan 1995, Sathees chandra, Geetha et al. 1998) only 

provided a number of mean data points for comparison. In each study, the bees were 

tested on patterns that typically varied in one particular aspect (e.g. number and 

orientation of bars in each pattern), but were similar otherwise. Moreover, the used 

publications addressed similar issues and used similar patterns. While this is a good 

approach when probing the limits of the learning abilities of bees, it also means that the 

data points are not independent. A correlation coefficient involving data from multiple 

different experiments would, therefore, be misleading. Instead, we displayed our models’ 

experimental performance results (equivalent to the KCSR averages) side-by-side with 

the empirical data, similar to that done in the original studies, so that the relative 

performance of the different simulated experiments could be assessed, and compared to 

that of the real honeybees’ relative performances on the same sets of pattern pairs. 

 

2.4 Results 

2.4.1 Experiment set 1: simple bar and grating pattern discrimination 

Honeybees are able to learn, and subsequently discriminate, simple bar and grating 

patterns when presented vertically (Wehner 1967, Srinivasan and Lehrer 1988, van 

Hateren, Srinivasan et al. 1990). In these experiments the honeybees were trained to 

associate a particular orientation of a bar or grating pattern (CS+) with a reward (a 

sucrose solution) and then tasked to discriminate this same pattern (TSCOR) from a non-

rewarding distractor pattern (TSINC); the experimenter would record a bee’s choice 
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selection as it flew into one of the Y-mazes arms 17cm from the pattern (see (Srinivasan 

and Lehrer 1988) for apparatus). 

Simple bar and grating simulations 

To see if the two or three LOSN types alone would be sufficient to underpin 

discrimination of these types of patterns, I simulated the experiments of Srinivasan et al. 

(Srinivasan, Zhang et al. 1994). Figure 2.5 displays the pattern experiments simulated 

and clearly shows that for both perpendicular pattern discriminations (Fig. 2.5a) and 

patterns with orientations offset by 45˚ (Fig. 2.5b) both the two and three LOSN type 

model simulations are able to make the discriminations using either the SEO (single 

excitatory only) or EAI (excitatory and inhibitory) LOSN-to-Kenyon-cell connection 

configurations. Remarkably, given the small number of LOSN inputs, the simulation 

discrimination performances were similar, and often better, than those of the actual 

honeybee behavioural results (Fig. 2.5). The two LOSN type EAI_AB model produced 

the worst individual experiment performance (55%) when discriminating a single 

vertical bar from that of a 45˚ bar. However, this was also the pattern pair that real 

honeybees performed worst at with a correct choice accuracy of just 60% in a dual 

choice test. The simulation results of both single excitatory-only models (SEO_AB, 

SEO_ABC) outperformed those of the excitatory and inhibitory models (EAI_AB, 

EAI_ABC) in all experiments (achieving no less than 87% during simulations). They 

also consistently outperformed the real bees that only achieved a maximum correct 

choice accuracy of 86% for the horizontal vs. vertical bar experiment. These SEO 

model simulations also substantially outperformed the actual honeybee choice accuracy 

on the more difficult 45˚ offset pattern discriminations.  
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Figure 2.5 Summary of honeybee empirical results and model performances for 
discrimination tasks of simple bars and gratings. Blue bars: honeybee performance 
(value above bar is percentage of correct rewarding pattern selections of bees after 
training, ***: P<0.001, **: P<0.005 see (Srinivasan, Zhang et al. 1994) for statistical 
tests), Model results, value above bar is average discrimination result of 1,000 
simulation trials. (a) Results for discrimination of perpendicular bars and gratings. (b) 
Results for discrimination of bars and gratings with 45˚ angle differences. 
 
Variable distances from patterns (scale simulations) 

For the above simulations I assumed that the honeybee would learn the CS+ pattern at 

the same distance (17cm) as it chose a test  (TSCOR / TSINC) pattern during trials. It is 

however possible that the bees would instead learn the pattern while much nearer to the 

pattern and closer in time to when they would receive the reward. In this situation the 

CS+ and TSCOR would appear as differently scaled versions of each other, with the 

learnt CS+ pattern being much larger than the patterns at the entrance to the apparatus 

decision chamber, this may therefore have an affect how well a bee can learn a 

particular stimuli.  

Figure 2.6 shows a replication of the above simulations but this time with zero, 

25% or 200% larger versions of the CS+ patterns compared to the TSCOR and TSINC 

patterns (i.e. CS+ scaled 100%, 125%, 300% respectively). In this new scenario, I saw 

that a slight increase of 25% in the size of the CS+ pattern resulted in both SEO models 

performing approximately 5-20% lower than with no scaling. Both EAI models showed 

almost identical performances (±1-4%) between the zero and 125% scaling simulations, 
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the only exception again being on the vertical versus 45˚ bars, with 125% scaling of the 

CS+ pattern the EAI_AB model now failed to make the discrimination. With a trebling 

in size of the CS+ pattern, there was a substantial reduction in the SEO performances. 

Only two out of the six experiments using the SEO_AB model achieved simulation 

results greater than 55% accuracy, and interestingly, for the SEO_ABC model using 

three LOSN types only one of the experiments attained this 55% simulated performance. 

Conversely EAI_AB only failed to discriminate two of the experiment pattern pairs, 

with all other results above 55% accuracy in dual choice tests. These results were 

however always lower than the no scaling and 125% scaling simulation performances. 

 

Figure 2.6 Summary of model performances for discrimination tasks of simple bars and 
gratings when scaled. (a) Repetition of simple bar and grating pattern simulations for 
each model with either no scaling: dots, 125% scaling: squares, or 300% scaling: 
triangles, of the CS+ pattern compared to TSCOR and TSINC patterns, a cross ‘x’ on x-
axis indicates an average result of ≤50%. (b) Examples of a CS+ scaled image *Images 
not displayed to actual scale. (c) Experiments simulated showing CS+/TSCOR and TSINC 
patterns.  
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Simulation analysis 

The reason for the SEO models failure to correctly identify the correct scaled pattern 

can be clearly seen in the SEO_AB example in Table 2.3. The larger CS+ pattern 

presents longer edges, and thus higher firing rates in the LOSNs compared the test 

stimuli. In this example two of the TSINC pattern quadrants have higher LOSN type A 

responses (due to their greater sensitivity to 45˚ than horizontal oriented edges) than the 

TSCOR pattern, and are therefore more similar to the responses of the larger horizontal 

bar than the smaller horizontal bar. The other two quadrants of the TSINC pattern have 

almost no edges in them; this produces minimal firing rate responses, and much lower 

responses than the TSCOR pattern. This makes the TSINC pattern to more dissimilar to 

CS+ in these quadrants. The overall effect of these two competing quadrant pairs means 

that the SEO_AB model cannot easily differentiate which test pattern is most similar to 

the CS+ pattern. The described simulation achieved a Kenyon cell similarity ratio 

(KCSR) of just 0.505.  

	
  
Pattern	
   LOSN	
  type	
  A	
   LOSN	
  type	
  B	
  

	
  

	
   	
   	
   	
   	
  

CS+	
  

(300%) 

	
  

58,	
  56,	
  56,	
  58	
   21,	
  23,	
  23,	
  22	
  

	
  

TSCOR	
  

(100%) 
	
  

21,	
  21,	
  20,	
  21	
   9,	
  9,	
  9,	
  9	
  

	
  

TSINC	
  

(100%) 
	
  

9,	
  45,	
  45,	
  9	
   2,	
  8,	
  9,	
  2	
  

	
  

	
   	
   	
   	
   	
  

Table 2.3 LOSN type A, B (using _AB model) responses in each quadrant to scaled 
single bar patterns. *Images not displayed to scale. 
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In contrast the EAI model performances are not dependent on the actual firing 

rates of the LOSNs, but the correlation of the responses between the respective type A 

and type B neurons from each quadrant. Figure 2.7 shows the EAI_AB model Kenyon 

cell responses to the same patterns as above (Table 2.3) and the difference in the 

Kenyon cell activations between the CS+ pattern and the TSCOR and TSINC patterns. 

Despite the large difference in LOSN firing rates there were only 221 inaccurate 

Kenyon cell activations (either incorrectly fired or didn’t fire when should have) 

between the CS+ and TSCOR simulations, compared to 1,233 for the CS+ / TSINC pattern 

pair. This allows the EAI_AB model to easily identify the horizontal bar independent of 

its edge length.  

 

Figure 2.7 Model Kenyon cell activation for scaled bar patterns. Blue: Kenyon cell 
activation when EAI_AB model is presented with the 300% scaled CS+ pattern. Green: 
Kenyon cell activation to the TSCOR pattern, Red: Kenyon cell activation to the TSINC 
pattern. White dots on black square: shows the Kenyon cell activation differences 
between a test stimulus (TSCOR or TSINC) and the CS+ pattern. 
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Summary of experiment set 1 

Remarkably, LOSN optic neurons appear able to facilitate performances equivalent, and 

often better, than the empirical honeybee results, even where the two LOSN type 

models (SEO_AB, EAI_AB) extend just four neuronal outputs from each eye to the 

mushroom bodies. Overall the SEO models outperformed the EAI models in all 

experiments apart from those where the TSCOR and TSINC patterns were half the size of 

the CS+ patterns.  

 

2.4.2 Experiment set 2: fine angle discrimination  

In the above simulations, I found very little performance difference between the 

respective two and three LOSN type models; the only exception being the 

discrimination of the vertical and 45˚ inclined bars where the EAI_ABC model 

simulations attained 71% outperforming EAI_AB (55%) and real honeybees correct 

choice selection of 60%.  

Srinivasan et al (Srinivasan, Zhang et al. 1994) and Chandra et al (Sathees 

chandra, Geetha et al. 1998) hypothesised that honeybees would require at least three 

orientation sensitive neuron types in order to discriminate an oriented bar independently 

of its orientation. To test if honeybees could in fact discriminate bars at any orientation, 

Chandra et al (Sathees chandra, Geetha et al. 1998) trained honeybees to one of twelve 

rewarding orientations (-90˚ to +75˚ in 15˚ increments). Subjects were then tested to see 

if they could correctly identify the learnt orientation when presented with either a single 

distractor pattern with an orientation offset between ±90˚ to ±15˚, in 15˚ increments 

(dual-choice), or with all twelve orientations presented simultaneously (multiple choice). 
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Honeybees were able to discriminate a 30˚ difference in orientations for dual-choice 

scenarios and 15˚ in the multi-choice experiments.  

Fine angle discrimination simulations 

To replicate the above procedure I simulated the fine angle discrimination experiments 

by presenting a single 100 pixel oriented edge in each image quadrant. Each experiment 

was composed of one of the twelve rewarding orientations used for both the CS+ and 

TSCOR, and then each of the twelve 15˚ increment angle differences as TSINC.  

The SEO_AB model achieved over 70% for all rewarding orientations with a 

30˚ or greater angle difference to the distractor patterns. For an angle difference of ±15˚, 

the lowest performances were for 45˚ and 60˚ (from horizontal) rewarding orientations 

both achieving 59% (Fig. 2.8a). SEO_ABC produced a minimum performance of 64% 

for an angle difference of 15˚ with similar results for all orientations (overall average 

69%); the lowest simulation result for ≥30˚ difference was 79%. EAI_ABC achieved 

≥62% for 15˚ differences and 73% or more for ≥30˚ differences. EAI_AB was the only 

model where a striking difference was seen dependent upon the rewarding orientation 

presented. Fewer than half of the orientations tested had simulation performances better 

than 60% for ±15˚ differences (average 59%(±10%)). Figure 2.8b shows a contour map 

of the EAI_AB model simulation performance against angle difference (x-axis) and 

rewarding orientation (y-axis). Even at angle differences of up to ±45˚ between the test 

patterns this model still produced simulation results of less than 60% accuracy in dual 

choice tests for specific rewarding and distractor pattern orientations. 
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Figure 2.8 Summary model performances for discrimination of fine angle differences. 
(a) Average model performance when discriminating an angle difference between ±90˚ 
and ±15˚ for twelve rewarding orientations (-90˚ to +75˚ in 15˚ increments). Blue bars: 
Honeybee result for bees trained on a horizontal bar as rewarding and then tested with 
the same rewarding pattern and patterns differing in angle between ±15˚ to ±90˚ 
(Sathees chandra, Geetha et al. 1998). Error bars show standard deviation between 
different orientation of rewarding pattern results for same ± angle difference (n=24,000 
simulations, 1,000 simulations of each 12 rewarding orientations with plus and minus 
angle difference), these were not available for the honeybee results. Only EAI_AB 
showed a large variance in simulated results dependent upon the rewarding orientation 
with performances of less than 60% accuracy for an angle variance of ±15˚. (b) 
Contour map showing EAI_AB performance for each rewarding orientation. y-axis: 
rewarding orientation, x-axis difference of the unrewarding orientation. Region 
enclosed within the dark grey lines achieved less than 60% for that orientation / angle 
difference combination. This model achieved poor discrimination performance (<60%) 
even for -45˚ angle differences at the -90˚ (horizontal) rewarding orientation. 

 

Analysis of EAI_AB model performance dependency on LOSN firing rates 

Given the large variance in results by the EAI_AB model I performed additional 

analysis on these results. Of particular interest is the markedly different firing rates 

recorded between the LOSN types (Maddess and Yang 1997). The LOSN type B 

responses were confined between 3Hz to 14Hz for all orientations, with these always 

greater than the spontaneous background firing rate of less than 1Hz (recorded between 

the stimuli presentations). In contrast the LOSN type A recordings produced higher 
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firing rates (20Hz-36Hz, background: ~10-13Hz). To first test if the very low firing 

rates of the LOSN type B might be affecting the discrimination performance I repeated 

the simulation but first doubled, then quadrupled, the edge lengths presented in each 

quadrant of the pattern. Figure 2.9a shows that increasing the length of the edges, and 

thus the firing rates of the type A and type B neurons, did indeed increase the 

performance of the EAI_AB model. This would seem to be corroborated in the 

behavioural experiments (Srinivasan, Zhang et al. 1994) (see Fig 2.5b) where the 

honeybees performed better at discriminating the 45˚ angle difference with gratings 

rather than with single bars. However, even with the quadrupled edge lengths the 

EAI_AB model was still unable to discriminate some particular rewarding orientations 

and angle differences of ≥ ±15˚ (Fig 2.9b).  

 

Figure 2.9 Performance of EAI_AB with differing edge lengths. (a) EAI_AB model 
performance at angle discrimination using a 100 pixel (blue), 200 pixel (red,) or 400 
pixels (green) length edges in each quadrant of the CS+, TSCOR and TSINC patterns. (b) 
Contour map showing EAI_AB performance with 400 pixel edges for each rewarding 
orientation. Y-axis: rewarding orientation, X-axis difference of the unrewarding 
orientation. Region enclosed within the dark grey lines achieved less than 60% for that 
orientation / angle difference combination. 
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 Summary of experiment set 2 

These very basic models have once again shown that with just two types of orientation-

sensitive neurons, honeybees would be able to use these non-retinotopic neurons for 

discriminations of at least 30˚ angle difference discriminations, directly inline with the 

dual-choice empirical honeybee results (Sathees chandra, Geetha et al. 1998). In these 

original honeybee experiments Chandra et al (Sathees chandra, Geetha et al. 1998) also 

performed tests where the honeybees were simultaneously given the option of all twelve 

possible angles (15˚ increments). Here the bees mostly ignored any patterns with an 

angle difference of ±30˚ or more from the trained pattern, but the percentage of visits to 

the -15˚, 0˚ and +15˚ angle difference stimuli did differ dependent on the originally 

trained orientation. Additional experiments would be required to see if gratings (which 

would present a longer total edge length) could affect the 15˚ angle discrimination 

ability of the honeybees, in particular at those orientations that my EAI_AB model 

consistently failed at. 

 

2.4.3 Experiment set 3: eidetic imagery and orientation discrimination 

To explore if honeybees exclusively rely on pattern features or on some form of image 

template, Giger & Srinivasan (Giger and Srinivasan 1995) performed experiments 

designed to evaluate honeybees’ ability to discriminate two slightly different horizontal 

gratings; this therefore presented the same orientation features in both patterns but 

displayed unique retinotopic images. Bees successfully trained on a rewarding 

horizontal grating (CS+) and unrewarding vertical grating (CS-) subsequently struggled 

to discriminate the learnt pattern (TSCOR) from a second different horizontal pattern 
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(TSINC), but could discriminate the rewarding pattern when initially trained with this 

second horizontal pattern being unrewarding. 

Model simulation results 

When tasked with discriminating horizontal and vertical gratings (Fig. 2.10a: Test a) all 

my model simulations achieved over 70% accuracy. In contrast, when discriminating 

the two horizontal gratings (Fig. 2.10a: Test b, Fig. 2b: Test a) or the two horizontal bar 

patterns (Fig. 2.10c: Test a), both the EAI_AB and EAI_ABC model simulations failed 

to solve the tasks with performances of ~50% accuracy. This was not unexpected; as 

seen above, these models’ Kenyon cells generate similar responses invariant to the 

length of the oriented edges presented. However, most surprisingly given the extreme 

similarity of these pairs of horizontal bar and grating test patterns, I found that the 

excitatory model simulations actually achieved performance averages of over 70%. All 

the models showed a preference for the offset horizontal grating to that of a vertical 

grating (Fig. 2.10b: Test b); which was a peculiar result during honeybee trials as the 

bees also preferred this pattern, despite it being identical to the trained CS- unrewarding 

pattern. 
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Figure 2.10 Summary of honeybee behaviour and model performance for 
discrimination of two horizontal gratings. Blue bars: honeybee performance (value 
above bar is percentage of correct rewarding pattern selections of bees after training, 
n: number of recorded choices, ***: P<0.001, **: P<0.005, p = significance level for 
percentage being different from random choice (50%) see (Giger and Srinivasan 1995) 
for statistical methodology). Model results, value above bar is average discrimination 
result for 1,000 individual simulations, star: individual KCSR of ≤ 0.5. Both excitatory 
only models can correctly discriminate the two offset horizontal gratings (a-b) and bar 
patterns (c), whereas both opponent ratio models failed. 

  

Simulation analysis 

Since my models do not utilize the CS- pattern used during the original honeybee 

experiments, from the models’ perspective, there was no difference between (Fig 2.10a: 

Test b and Fig 2.10b: Test a). The models only compare the neural responses of the CS+ 

to the TSCOR and TSINC stimuli. In contrast, the honeybee results are very different for 

these experiments showing the bees must also utilize the CS- patterns, further analysis 

of this is provided in this discussion section below (see also Chapter 3.5 on how a non-

rewarding stimuli, as in these experiments, can affect behavioural results). 

As with honeybees, all four of my models preferred the incorrect horizontal 

grating to that of vertically oriented gratings. Table 2.4 shows that the LOSN responses 
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to the TSCOR horizontal grating (Table 2.4 row: 3) pattern are more similar to the CS+ 

than TSINC responses (Table 2.4, rows 1 and 2 respectively). Similarly, all models 

showed a preference for the colour-inverted horizontal bars pattern to that of vertical 

bars (Fig. 2.10c: Test b, Table 2.4 rows: 4-6), as did the real honeybees.  

My model results therefore support the proposition that during the honeybees’ 

training phase with two horizontal bars, the highly specific LOSN firing rate responses 

provide a useful ‘feature’ that a honeybee can learn to solve these discrimination tasks. 

This is contrary to previous hypotheses which simply assumed that bees would always 

learn the orientation (i.e. my EAI model Kenyon cell activations) even when there was 

no difference in pattern orientation and it provided no useful feature for the pattern task 

(Giger and Srinivasan 1995). 
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Table 2.4 LOSN type A, B and C responses in each quadrant to grating patterns. 
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Summary of experiment set 3 

Overall the EAI models were able to discriminate the horizontal and vertical oriented 

gratings, as we saw earlier, but failed to differentiate either of the pairs of horizontal 

gratings or bars. Remarkably though, both SEO models were able to discriminate all 

patterns, achieving discrimination performances on the horizontal pattern pairs 

marginally higher than those of the empirical honeybee results. 

 

2.4.4 Experiment set 4: oriented grating generalisation 

Van Hateren et al. (van Hateren, Srinivasan et al. 1990) tested the honeybee’s ability to 

learn the correct orientation when trained on a pair of patterns randomly selected from 

ten rewarding grating patterns all at the same orientation and another set of ten 

unrewarding perpendicular ‘distractor’ grating patterns. After training, they 

subsequently tested the bees to see if they could generalise to a completely novel pattern 

with edges in the correctly oriented direction. In these experiments, the authors (van 

Hateren, Srinivasan et al. 1990) point out that it is conceivable that honeybees could 

initially learn all ten rewarding grating patterns, but if the bees are using only a pure 

template matching approach, they should then fail to generalise to the novel control 

tests.  

Discrimination of training patterns 

Initial simulations could discriminate any one of the ten rewarding gratings (CS+ / 

TSCOR) from each of the ten potential perpendicular distractor patterns (TSINC). Both 

SEO model simulations achieved performance levels of ~90% on the discrimination test 

for horizontal, vertical and 45˚ oriented gratings being rewarding, with very similar 
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results to that of the real honeybees correct choice performances. The EAI models also 

managed to discriminate the patterns, albeit with slightly lower performances in the 

range of ~70-80% (Fig. 2.11) 

 

 Figure 2.11 Summary of honeybee behaviour and model performance for 
discrimination of training grating patterns. (a) Discrimination task of identifying each 
of the ten CS+ patterns (see b) from each of the ten perpendicular distractor patterns. 
Blue bars: honeybee performance, value above bar is percentage of correct rewarding 
pattern selections of bees after training ***: P<0.001, **: P<0.005 see (van Hateren, 
Srinivasan et al. 1990) for statistical analysis. Model results, value above bar is 
average discrimination result for 10,000 individual simulations, star: individual 
simulation KCSR ≤ 0.5. (b) Vertical grating training patterns, these patterns are rotated 
through 90˚, 45˚ and 135˚ for the other pattern sets. * Indicates an additional bar 
added to training pattern 7 (see (van Hateren, Srinivasan et al. 1990) for original 
pattern). 

 

Generalisation between training patterns 

To see if the models could generalise between each of the ten rewarding gratings, I 

calculated the model simulation preferences (smallest difference in Kenyon cell 
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responses) from one of the rewarding gratings to one of the other nine rewarding 

gratings and one of the ten perpendicular gratings; repeated for all possible 

combinations (Fig. 2.12). The EAI model simulations averaged over 60% correct 

preference for each of the three rewarding oriented gratings (0˚, 90˚, 45˚). However, 

careful analysis of all the individual experiments reveals that a single grating pattern 

accounted for all the lowest performances (49% and 51% for EAI_AB, EAI_ABC 

respectively). This grating was the single example from the set of ten random gratings 

per orientation that was composed of black bars in only one half of the pattern, the 

remaining half being all white (see (van Hateren, Srinivasan et al. 1990) Fig. 1 P7). 

Replacing this pattern with a new grating consisting of bars in both halves (Fig. 2.11b 

star; all subsequent experiments reported used this pattern) increased the previously 

lowest values of EAI_AB (vertical rewarding) to 58%, and EAI_ABC (horizontal 

rewarding) to 58%.  
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Figure 2.12 Summary of honeybee behaviour and model performance for 
generalisation between training patterns. Generalisation task of identifying the correct 
orientation of each of the ten CS+ patterns in each of the other nine different TSCOR 
patterns against each of the ten possible TSINC patterns. Blue bars: honeybee 
performance, value above bar is percentage of correct rewarding pattern selections of 
bees after training ***: P<0.001, **: P<0.005 see (van Hateren, Srinivasan et al. 
1990) for statistical analysis. Model performance, value above bar is average 
discrimination result for 900,000 individual simulations, star: individual simulation 
KCSR ≤ 0.5. 

 

SEO_AB individual simulation trial KCSRs ranged from 0.23 (indicating a very 

strong similarity between the Kenyon cell responses to the TSINC and CS+ patterns) to 

0.91 (which had a greater similarity between TSCOR and CS+ responses) with 

SEO_ABC performing marginally better with a range of 29% to 81%. In these cases, 

any particular simulation trial (with a single CS+, TSCOR and TSINC grating pattern) 

produced simulation results with a large variation in the degree of preference for either 
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of the two test gratings presented. This generated performance accuracies for each 

experiment ranging from 59-70%, but overall the model showed very little trial-by-trial 

similarity to the real honeybee results.  

Generalisation between training patterns and novel stimuli 

Following the original behavioural experiment procedure, I tested the models’ abilities 

to generalise to a novel pattern with the correct orientation (Fig. 2.13). I again found 

that neither SEO model was able to correctly generalise, with performances of no more 

than 53% (individual simulation trial KCSRs ranging from 0.29 to 0.63). In contrast the 

EAI model simulations were all able to generalise to the correct novel patterns, always 

achieving performances > 62% accuracy with every individual trial simulation KCSRs 

≥ 0.58 (Fig 2.13).  
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Figure 2.13 Summary of honeybee behaviour and model performance for 
generalisation to novel stimuli tasks. Generalisation task of identifying the correct 
orientation of each of the ten CS+ patterns in each of the five novel TSCOR patterns 
against a 90˚ rotation of the novel pattern (TSINC). Blue bars: honeybee performance, 
value above bar is percentage of correct rewarding pattern selections of bees after 
training ***: P<0.001, **: P<0.005 see (van Hateren, Srinivasan et al. 1990) for 
statistical analysis. Model performance, value above bar is average discrimination 
result for 1,000 individual simulations, star: individual simulation KCSR ≤ 0.5.  

 

Simulation analysis 

The ability of the EAI models to generalise between common orientations, and equally 

the SEO models’ inability, is due to similar reasons for the scale / size invariance results 
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in experiment set 1. Figure 2.14 shows an example of the SEO_AB and EAI_AB 

models’ generalisation results for a single CS+ vertical grating pattern and a single 

TSINC horizontal grating, to each of the other nine possible TSCOR horizontal gratings. 

Each pattern produced specific LOSN type A and B responses (only dorsal LOSNs 

from each eye shown) dependent on the edge length within the particular pattern 

quadrants. The SEO_AB performances on each TSCOR pattern (average of 1,000 

simulations) range between 40-70% (i.e. occasionally preferring the TSINC pattern). 

These differences are purely down to the similarity of the edge lengths between the CS+ 

pattern and each TSCOR pattern. The EAI_AB model consistently achieved over 60% 

accuracy, once again showing that it is not the LOSN firing rates themselves that is 

important, but the correlation of the response between the respective type A and type B 

neurons in each eye region.  

Summary of experiment set 4 

The results for this final set of experiments show that the SEO models are unable to 

generalise to a common orientation ‘feature’. In contrast, the EAI models show 

extremely good generalisation ability from one oriented grating to another completely 

novel but similarly oriented pattern. 
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Figure 2.14 Analysis of SEO_AB and EAI_AB model performance for generalisation 
between vertical gratings. (Top) model generalisation performances with a fixed CS+ 
and TSINC pattern (red boxes) to the nine possible TSCOR patterns (also shown the 
CS+/TSCOR discrimination performance). Hatched area: x-axis extends to 40% (i.e. 
where incorrect pattern was chosen). (Bottom) LOSN type A and type B responses in 
the upper left (left eye – dorsal) and upper right (right eye – dorsal) image quadrants 
for each pattern. Ventral LOSN responses for CS+ / TSCOR were very similar given the 
vertical symmetry of the patterns. 

 

2.5 Discussion 

In this chapter I investigated how neuronal minimalism and response specificity could 

aid in compressing complex cognition into a miniature brain. Using simple theoretical 

models with minimal connections from the lobula (third optic ganglion) to the 

mushroom bodies (higher learning centres), I simulated a range of discrimination and 

generalisation tasks previously conducted on honeybees (van Hateren, Srinivasan et al. 

1990, Srinivasan, Zhang et al. 1994, Giger and Srinivasan 1995, Sathees chandra, 
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Geetha et al. 1998). The extraordinary finding here is that despite each model’s 

simplicity, as well as none of the model parameters being adjusted to mimic any 

behavioural capacity and the models being based only on empirical neuroscientific 

information, they nonetheless capture, with surprising precision, a variety of visual 

cognitive affordances that are typically regarded as computationally highly demanding 

or requiring complex visual representations. 

 

2.5.1 Minimising connections between neuropiles 

It may seem peculiar to us that the honeybee brain extends so few axonal like fibres 

from the optic lobes to the higher brain regions, especially given the highly complex 

and ‘accurate’ photographic representation that our own brains create in order for us to 

interact with our environment. My models, nonetheless, show that for orientation 

pattern discriminations, often used during honeybee behavioural experiments, very few 

optic neuron outputs are required. The LOSNs themselves provide a very coarse 

representation of the visual field, providing no detailed retinotopic representation but 

instead responding maximally to particular orientations anywhere across the width of 

the bee eye, maintaining a consistent ~90˚ tuning curve response to orientations 

independent to where the stimuli are presented (Maddess and Yang 1997). In previous 

theoretical models (Srinivasan, Zhang et al. 1994, Sathees chandra, Geetha et al. 1998) 

it was suggested that just two types of these orientation-sensitive neurons would be 

insufficient for discrimination of a 45˚-oriented bar from a bar at 135˚. However, in 

their models, the authors assumed that the tuning curves of the two orientation-sensitive 

neuron types would be offset by 90˚ (maximally sensitive to horizontal and vertical 

orientations) perhaps similar to that seen in the octopus (Sutherland 1957). Octopi can 
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indeed differentiate vertical from horizontal patterns but not 45˚ and 135˚ orientations 

(Sutherland 1957). In contrast, here I based my two LOSN type models (SEO_AB, 

EAI_AB) on orientation sensitive neurons maximally sensitive at ca. 115˚ and ca. 250˚ 

as recorded in the honeybee (Maddess and Yang 1997). These “non-symmetric” tuning 

curves return different firing rates for any two orientations differentiated by at least 15˚, 

resulting in fair (>60%) discrimination results for the two LOSN type SEO_AB model 

simulations. Although, as seen in experiment set 1, this model’s performances may be 

degraded if the rewarding and test patterns are perceived as different sizes (i.e. the bee 

learns the pattern closer than the distance that it must make a choice during tests). The 

EAI models are less susceptible to this effect and the EAI_AB model was able to 

discriminate 30˚ differences in presented edge orientations (similar to honeybees during 

dual-trial evaluations (Sathees chandra, Geetha et al. 1998)) in all but a few distinct 

orientations and angle differences. The worst simulation performances were most 

notable around vertical orientations and ±30˚ angle differences (Fig 2.8b). It must be 

reiterated that my models implemented just the LOSNs from the optic lobes to the 

mushroom bodies, no other sensory inputs, and although these two LOSN type models 

produced poor results at certain orientations, this does not necessarily mean three LOSN 

type are required. Dragonflies, which have all three orientation-sensitive LOSN types at 

the required ~120˚ maximal sensitivity offsets (O'Carroll 1993), display impressive 

aerobatic flight manoeuvres during flight and prey catching, and therefore their heads 

are capable of being in almost any rotation and position (Olberg, Seaman et al. 2007). 

Although the dragonfly LOSNs are not used directly in prey detection or tracking, as 

they were shown to be unresponsive to small moving stimuli (O'Carroll 1993), they may 

help in orienting the insect within its environment during capture flights. In addition, 

perching species of dragonflies (e.g. Libellulidae, Perithemis tenera) have preferred 
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perches where they wait for passing prey or potential mates (Switzer and Walters 1999, 

Olberg, Seaman et al. 2007); the combination of these three LOSN types and 

interneurons that respond to head rotation (even in the dark) (Olberg 1981) would allow 

specific perches or other landmark cues to be discriminated independent of the rotation 

of the head. In contrast, honeybee heads typically counter-rotate to the roll of the thorax 

during flight using optic flow stabilisation to keep the head in a relatively fixed position 

(Berry and Ibbotson 2010, Boeddeker, Dittmar et al. 2010, Boeddeker and Hemmi 

2010). These flight stabilising mechanisms as well as visual altitude detectors (roll, 

pitch and yaw) mediated through the ocelli (three small lens eyes on the top of the bees 

head) (Ribi, Warrant et al. 2011) may be used to augment the two LOSN types for the 

experimental discrimination experiments near vertical. If honeybees do indeed have 

three LOSN types, then from our simulated results we might expect honeybees to 

perform substantially better than the 60% accuracy displayed for vertical and 45˚ 

oriented bar discriminations (Srinivasan, Zhang et al. 1994). Only additional 

electrophysiological recordings will be able to confirm the existence of a third LOSN 

type in honeybees, but it may simply be that if this third LOSN type adds little to the 

recognition abilities of honeybees, as my models suggest, then the exclusion of this 

neuron type may allow more useful synaptic connections to occupy the same limited 

neuronal substrate. 

 

2.5.2 Neuronal response specificity 

Giger & Srinivasan (Giger and Srinivasan 1995) proposed that their behavioural results 

showing the honeybees’ ability to discriminate two horizontal grating patterns 

demonstrated that the bees must be using some form of photographic template for 
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discriminations when orientation (or other feature) cues were not a useful predictor of 

reward. Although, surprisingly, the bees still learnt the orientation of the gratings even 

though this was of no use for discrimination of the consistently horizontal training 

patterns. During their experiments, the bees were allowed to approach either pattern and 

fixate (slow scanning movements 1-3 cm in font of a target) and, if they desired, fly to 

the other pattern. The final choice selection was therefore not recorded until a bee 

physically touched one of the two stimuli. The SEO simulation results demonstrate that 

if the bees were to fixate at the height of the centrally located feeding hole (or any 

consistent height above the ground during fixation hovering), then utilizing just the 

eight (SEO_AB) or twelve (SEO_ABC) LOSN responses from the optic lobes and 

establishing excitatory-only synapses onto the mushroom body Kenyon cells these 

highly similar patterns could be easily discriminated without the need for a more 

complex retinotopic or template matching approach. This is possible due to the 

specificity of the LOSN responses. The induced firing rates of these neurons are not 

only affected by the orientation of presented pattern edges but also the total edge length 

they perceive (O'Carroll 1993, Maddess and Yang 1997). Although during the 

horizontal offset pattern simulations there were predominantly horizontal edges in both 

the dorsal and ventral regions of both patterns, the small LOSN response differences in 

all of the LOSNs caused by the slightly different edge lengths in each pattern region 

(distinct LOSNs with receptive fields confined to either the dorsal and ventral half of 

one eye) were sufficient to allow discrimination (see Table 2.4). This also provides a 

better account for why honeybees, during one of the evaluation trials, preferred a pattern 

identical to the training unrewarding CS- pattern to that of a novel vertically oriented 

one (Fig. 2.10b Test b) as here the LOSN responses to this TSCOR / CS- pattern are still 

more similar to the CS+ than the novel TSINC pattern (Table 2.4).  
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Honeybees trained on the horizontal and vertical gratings subsequently failed to 

discriminate the very similar horizontal bar pattern. This is not unusual, even with much 

simpler stimuli Stach and Giurfa found that after 42 training trials the honeybees could 

not discriminate the training patterns from novel stimuli that shared the same edge 

orientations (Stach and Giurfa 2005). Assuming that the honeybee mushroom body 

contains LOSN to Kenyon cell configurations akin to both our SEO and EAI models, 

the initial experiment (horizontal versus vertical) suggests that the honeybees are either 

learning the Kenyon cell activations associated with both models and then learning that 

the SEO responses are unnecessary, or are only learning the EAI Kenyon cell 

activations. The former is more likely, as again in the aforementioned simpler 

experiment the authors found that if the honeybees were trained for just 21 trials before 

testing, then the bees could still identify the correct pattern versus the novel patterns 

(Stach and Giurfa 2005).  

It is unclear precisely why the bees loose the ability to identify the original 

stimulus during training, but in the horizontal and vertical grating experiment, it may 

simply be that the EAI type Kenyon cells will consistently fire for the CS+ pattern 

independent of distance, or indeed height. So the association of these Kenyon cells with 

reward may eventually become sufficient for the bee to make a decision from a distance, 

thereon if the bee did not fixate at the correct position in front of the CS+ pattern then 

the SEO Kenyon cells would fire inconsistently, and thus their correlation to receiving 

reward reduced (meaning the synaptic weight of these Kenyon cells to the mushroom 

body extrinsic neurons, which are thought to mediate behavioural decisions, would be 

negatively adapted). When trained initially on the two horizontal patterns the honeybees 

are able to make the discrimination, here the EAI type Kenyon cells would fire 

consistently for both the CS+ and CS- pattern (both being horizontal), and hence be of 
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no use for the discrimination task. This would make the SEO activations the more 

reliable indicator of reward, and hence the connections of these Kenyon cells to the 

mushroom body extrinsic neurons should be positively adapted in synaptic strength, 

allowing them to have greater influence upon the honeybee’s decision during the task. 

It is easy to assume that orientation-sensitive neurons such as the LOSNs only 

encode orientation. However, here we see that these same neurons can also represent 

much finer details that may be useful for very precise discrimination tasks such as the 

bee finding the correct nest hole, to accurate landmark detection during navigation. In 

insects, limiting the number of neuronal fibres required between neuropiles has an 

evolutionary advantage in reducing the overall size of the required brain; by 

transmitting highly precise, albeit coarse, information within a single neurons firing rate 

responses allows such a reduction, but without sacrificing behavioural competence.  

2.5.3 Parallel processing 

In this study, I am aimed to investigate how the use of a few neurons as possible to 

transmit information throughout the brain, and neuronal specificity (ability to encode 

detailed information into a single neuron’s responses) may aid in the miniature nature of 

the honeybee brain, while still allowing for their diverse range of visual recognition 

abilities. The most remarkable discovery in this study, which may have a significantly 

greater influence on reducing the neural substrate requirements of the bee brain, is that 

the same high precision neuronal responses seen in honeybee LOSNs can be used 

simultaneously for both discrimination and generalisation using the very same 

mushroom body architecture. The initial SEO models, had only excitatory synaptic 

connections from the LOSNs to the Kenyon cells, to aid understanding of the Kenyon 

cell activations in these models we further reduced the complexity by only allowing one 
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connection from an LOSN to each Kenyon cell. Even with this limited connectivity, it is 

clear that the LOSNs allow for very fine discrimination (differentiation of two 

horizontal gratings) and for discrimination of oriented edges with just 15˚ differences.  

That being said, none of my models were able to replicate the empirical results in every 

experimental condition perfectly. The SEO models failed to solve any of the 

generalisation tasks and discrimination simulation performances were strongly affected 

when the relative sizes of the CS+ and TSCOR / TSINC tests patterns was altered. 

Subsequent models with more biological equivalent numbers of between 5 to 15 

synapses per Kenyon cell (Strausfeld 2002) produced equivalent discrimination 

performances, but showed no improvement in generalisation. Analysis of the individual 

LOSN and Kenyon cell activation reveals the reason for this ineffectiveness (see Fig 

2.14). The LOSNs firing rates are dependent on the orientation of the perceived edges 

but also directly affected by the length of those edges. It is therefore possible for a 

horizontal grating with only a small total edge length to generate the same LOSN type 

response as a vertical grating with a large number of edges. Therefore, with all ten 

grating pattern variations (van Hateren, Srinivasan et al. 1990) used in the 

generalisation simulations any particular CS+ pattern may have LOSN firing rates more 

similar to either of the perpendicular test grating stimuli dependent on their relative 

orientations and edge lengths, resulting in poor experiment averages but also a 

uncharacteristic variance of the individual simulation performances of each CS+, TSCOR, 

TSINC pattern triplet when compared to the honeybee performances. 

 The EAI models provided a solution to the size invariance deficiency of the SEO 

models. With these EAI models a Kenyon cell received a variety of synaptic 

connections from both (EAI_AB), or any two of the three (EAI_ABC) LOSN types in a 

particular quadrant of the visual field, all synapses were set to be either excitatory or 
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inhibitory for a particular type. During simulations the Kenyon cell firing was 

dependent on the total summation of the excitatory LOSN type connections being 

greater than the inhibitory inputs, producing a binary activation (0 / 1) output. For 

example, a short horizontal bar may produce activation of specific Kenyon cell, 

increasing the total edge length of the bar will induce an increase in the firing rates of 

both the type A and type B LOSNs or all three LOSN types in the respective _AB, 

_ABC models, thus the respective excitatory and inhibitory synaptic inputs to this 

Kenyon cell will increase in unison, causing the cell to still fire, as the excitatory input 

remains greater than the inhibitory effect (see Fig 2.7). Equally, Kenyon cells which do 

not fire for a particularly oriented bar will not fire irrespective of the edge of that bar as 

the inhibitory input from that LOSN type will always be less than the excitatory input of 

the other connected LOSN type. The establishment of different numbers of excitatory 

and inhibitory LOSN synapses to the Kenyon cells within the population allowed for 

discrimination of oriented bars and gratings at ≥30˚ angle difference albeit with some 

shortcomings in the EAI_AB two LOSN type model (described above).  

 The most remarkable finding of this study therefore lies in the mechanism 

discovered for solving generalisation tasks, an ability that is usually assumed to require 

higher computational processing and hieratical image processing, it is actually possible 

to use the very same Kenyon cell and LOSNs required for discrimination. Furthermore, 

these could be easily established within the same mushroom body structures by having 

a large variety of synaptic connections to the LOSNs with both excitatory only, and 

excitatory and inhibitory LOSN synaptic configurations. This configuration would 

allow the bees to simultaneously produce fine discrimination features and generalisation 

features, and learn which Kenyon cell responses were the best indicators of reward 

dependent on the environmental needs (similar to that described above for the two 
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horizontal bar discriminations). The mushroom bodies contain around 340,000 Kenyon 

cells (Witthöft 1967) that receive sensory input from almost all sensory modalities 

(Gronenberg 2001, Ehmer and Gronenberg 2002); although this is a large proportion of 

the total bee brain neuron count, almost 40%, having this single structure able to learn 

visual cues relevant for both discrimination and generalisation within the same neuronal 

mechanisms not only reduces the overall brain size and complexity, but as 

generalisation here is no more complex, or different, to discrimination they can both be 

learnt through simple associative learning. 
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Chapter 3: Theoretical models of how honeybees may 

discriminate and generalise multi-oriented bar and grating 

patterns 

The modelling research and data from this chapter is published, in the following 
publication. 

Roper, M. Fernando, C. & Chittka, L. 2017. Insect Bio-Inspired Neural Network 
Provides New Evidence on How Simple Feature Detectors Can Enable Complex Visual 
Generalization and Stimulus Location Invariance in the Miniature Brain of Honeybees. 
PLOS Computational Biology 13(2): e1005333. 

 

3.1 Abstract 

The ability to generalise over naturally occurring variation in cues indicating food or 

predation risk is highly useful for efficient decision-making in many animals. 

Honeybees have remarkable visual cognitive abilities, allowing them to classify visual 

patterns by common features despite having a relatively miniature brain. Here I ask the 

question of whether generalisation of more complex achromatic patterns requires more 

sophisticated visual recognition than required for the simple patterns seen in the 

previous chapter. I employed the excitatory and inhibitory model from the last chapter, 

as well as an enhanced model inspired by the known anatomical structures and neuronal 

responses within the bee brain, and subsequently compared their abilities to generalise 

achromatic patterns to the observed behavioural performance of honeybees on these 

more variable cues. Neural networks with just eight large-field orientation-sensitive 

input neurons from the optic ganglia and a single layer of simple neuronal connectivity 

within the mushroom bodies (learning centres) show performances remarkably similar 

to the empirical results without requiring any form of fine-tuning of neuronal 
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parameters to replicate these results. Indeed, the new model simply combining sensory 

input from both eyes onto single mushroom body neurons returned correct 

discriminations even with partial occlusion of the patterns and an impressive horizontal 

invariance to the location of the test patterns on the eyes. This model also replicated 

surprising failures of bees to discriminate certain seemingly highly different patterns, 

providing novel and useful insights into the inner workings facilitating and limiting the 

utilisation of visual cues in honeybees. The results reveal that reliable generalisation of 

visual information can be achieved through simple neuronal circuitry that is biologically 

plausible and can easily be accommodated in a honeybee brain. 

 

3.2 Introduction 

Behavioural experiments using simple bar and grating patterns have allowed scientists 

to explore how the physical constraints imposed by the honeybees’ compound eyes 

(Seidl and Kaiser 1981) directly correlate to the bees’ behavioural performances 

(Srinivasan and Lehrer 1988, Srinivasan, Lehrer et al. 1989, Srinivasan, Zhang et al. 

1993, Sathees chandra, Geetha et al. 1998, Horridge 2003, Horridge 2003). Similarly, in 

the previous chapter I used these same pattern types to understand how the miniature 

brain of the bees may utilise just a few large-field optic neuronal responses for 

discrimination and generalisation tasks. These initial, somewhat simple, experiments 

provided a core understanding of honeybee vision and form the foundation from which 

more complex visual capabilities can be understood. In subsequent behavioural 

experiments, researchers began to look at what features, other than edge orientation, 

bees might use to help discriminate visual targets (symmetry (Giurfa, Eichmann et al. 

1996, Lehrer 1999, Rodriguez, Gumbert et al. 2004), size (Srinivasan, Lehrer et al. 1989, 

Horridge, Zhang et al. 1992), pattern disruption (Horridge 1997)) as well as whether 
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bees are able to identify patterns composed of more complex arrangements of shapes 

and edges (Horridge and Zhang 1995, Horridge 2000, Horridge 2006). The bees, with 

only a few notable exceptions, had no difficulty discriminating these types of patterns. 

More impressive though, was the fact that these trained bees were then able to apply 

these same learnt cues to patterns that may have had little or no resemblance to the 

original training patterns. Here, I investigate if the discrimination and generalisation of 

more complicated oriented edge patterns would necessitate a larger number of optic 

neuron outputs and/or more sophisticated neuronal architectures in the higher brain 

learning centres, than previously shown to be required for the simpler bar and grating 

examples. 

  Extending upon the work in the previous chapter, using the published 

intracellular recordings of large-field optic ganglia neurons to achromatic stimuli 

(O'Carroll 1993, Maddess and Yang 1997) and the known anatomical morphologies of 

mushroom body (learning centres) class II ‘clawed’ Kenyon cells (Strausfeld 2002), I 

investigated two simple, but biologically inspired models. These models were not 

created, or indeed in any way ‘tweaked’ to replicate performances on the particular 

visual patterns, nor did they implement any form of learning within the models. Instead 

they attempt to explore how well, or poorly, the known neuronal types within the bee 

brain could solve the presented problems and how much neuronal complexity would be 

required to do so.  The models described here were again kept very basic, with limited 

neuronal pathways and very simple synaptic connections from the optic lobes to the 

mushroom bodies. Since two of the optic ganglia (medulla and lobula) of bees extend a 

variety of axonal fibres to both the ipsilateral and the contralateral mushroom bodies 

(see Fig 1.1) and, as apposed to axons from different regions of the optic lobes that are 

distinctly layered within the mushroom bodies, there is no apparent segregation within 
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these layers of the visual afferents from the individual corresponding left and right eye 

regions (Ehmer and Gronenberg 2002, Paulk and Gronenberg 2008), I tested the 

discrimination and generalisation performance difference between retaining 

independent inputs from each eye and combining the neuronal input from both eyes 

within my simulated mushroom body models. This allowed me to compare the results 

of my two distinctly different bee-brain models to the performance of actual honeybees 

in specific experiments. 

In this chapter I drew on twenty-four experiments from three published 

honeybee behaviour papers (Zhang and Horridge 1992, Stach and Giurfa 2001, Stach, 

Benard et al. 2004) providing results on both the discrimination abilities of free flying 

bees perceiving complex bar and spiral patterns from a distance, and the bees 

generalisation abilities while fixating, slow hovering scans 1-3 cm in front of presented 

patterns. These particular experiments were selected primarily because of the 

complexity of the patterns used, having variation in both the orientation and length of 

the edges within small regions of the patterns (in Chapter 2 patterns always presented a 

single predominant orientation). In addition, the chosen experiments provided a broad 

range of behavioural results, including tasks bees found difficult or impossible to solve, 

and tasks with over 80% correct pattern selections. This allowed me to additionally 

analyse model performance in respect of the bees’ relative ability during different 

experiments. 

3.3 Methods 

Sensory input for my models was generated in the same way as the previous chapter 

(see Chapter 2.3) using the known neuronal responses of lobula (3rd optic ganglion) 

large-field orientation-sensitive neurons (LOSNs) discovered in insects (O'Carroll 1993, 
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Maddess and Yang 1997). These intracellular tuning curve recordings allowed me to 

calculate the theoretical responses of eight LOSNs (a type A and a type B LOSN from 

the upper and lower region of each eye) for each of the required experiment patterns. 

The firing rate responses of these neurons to the presented patterns were subsequently 

passed as inputs to the appropriate mushroom body models’ Kenyon cells. 

 Each achromatic pattern used within this chapter was taken directly from the pdf 

document of the published behavioural papers (Zhang and Horridge 1992, Stach and 

Giurfa 2001, Stach, Benard et al. 2004), or, where necessary, reproduced in Microsoft 

PowerPoint using the stimuli instructions provided in the papers’ method sections. 

These images were scaled and centred to fit within a 150 x 150 pixel PNG image. To 

produce images for offset discrimination experiments, the 150 x 150 pixel patterns were 

placed centrally within a larger white 300 x 150 pixel image and horizontally offset left 

and right between 0 and 200 pixels in 25 pixel increments to create a set of 17 test 

images per original pattern. For offsets greater than 75 pixels the original images were 

cropped accordingly (see Fig 3.3c). All images were then pre-processed in Matlab 

(Mathworks) using the same process as described in Chapter 2.3.1. 

The first model studied in this chapter was based on the EAI_AB model 

described in Chapter 2 (for simplicity hereon referred to as the DISTINCT model). It 

assumed that each Kenyon cell would receive distinctly segregated LOSN inputs 

originating from either the left or the right eye, and from either the dorsal or ventral 

half of that visual field (Fig 3.1 red neurons). This DISTINCT model used the same 86 

different types of simple excitatory and inhibitory synaptic configurations of the LOSNs 

to Kenyon cells as the EAI_AB model (see Table 2.1 for Kenyon cell synapse 

configurations). This configuration achieves the 30˚ orientation acuity (Chapter 2.4.2) 

that was reported for honeybees during dual trial discrimination tasks (Sathees chandra, 
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Geetha et al. 1998). The model had 30 copies of each of these Kenyon cell 

configuration types per quadrant of the visual field; resulting in a total of 10,320 

Kenyon cells, which is still a small proportion of the 340,000 Kenyon cells (Witthöft 

1967) in the honeybee mushroom bodies. I set a particular Kenyon cell’s response to 1 

(fired) if its summed synaptic input total was greater than zero. Otherwise the response 

was set to 0 (inhibited). In this way the binary values of all 10,320 Kenyon cell 

responses were calculated for a particular presented pattern (see Chapter 2.3.3 for 

Kenyon cell calculation details). 

 

Figure 3.1 Schematic representation of DISTINCT and MERGED models. 
Representation of how the lobula orientation-sensitive neurons (LOSN) connect to each 
models’ Kenyon cells. The DISTINCT model’s Kenyon cells (red neurons) receive 
LOSN inputs from just one quadrant of the visual field, either the dorsal or ventral half 
of the left or right eye. In this example the dorsal Kenyon cells each have an inhibitory 
(triangle) LOSN type A synapse and three LOSN type B excitatory (circle) synapses (see 
Table 2.1 type 046). The dorsal DISTINCT Kenyon cells in this example each have one 
excitatory type A and one inhibitory type B synapse (see Table 2.2 type 001). The 
MERGED model Kenyon cells (green neurons) have the same configuration types as the 
respective dorsal and ventral DISTINCT neurons, but this model combines visual input 
originating from either the dorsal or ventral regions of both eyes; in the example the 
ventral MERGED neuron has one inhibitory connection from a type A LOSN and three 
excitatory LOSN type B synapses from the dorsal left eye and therefore must have the 
respective three excitatory type B and one inhibitory type A synapses from the ventral 
right eye. Figure replicated from my publication (Roper, Fernando et al. 2017). 
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Given the apparent non-retinotopic distribution of visual inputs from the 

corresponding left and right eye regions in the bee mushroom bodies (Ehmer and 

Gronenberg 2002) the second model “MERGED” was created to explore the effect of 

merging LOSN synaptic connections from both eyes onto the Kenyon cells. To keep my 

theoretical model simple and comparable to the DISTINCT model, I again relied on the 

86 LOSN-to-Kenyon cell configuration types. However, in this model, rather than the 

previous model’s segregation of Kenyon cells into different groups per quadrant, here 

just two distinct groups of Kenyon cells were formed; an upper group receiving LOSN 

type A and type B inputs from both of the top two visual field quadrants (i.e. dorsal 

regions of both left and right eyes), and a similar group of Kenyon cells in the lower 

ventral region receiving the bottom quadrant inputs. This created in total 5,160 Kenyon 

cells for the model. The simulation of these Kenyon cell responses was performed as 

described above, except that each Kenyon cell in a given top or bottom group would 

summate synaptic inputs derived from respective pairs of LOSN type A and type B 

inputs. This was done in such a way that, if a Kenyon cell in the upper group received 

an excitatory input from a type A LOSN from the dorsal-left eye, it would also have an 

excitatory synapse from the type A LOSN originating from the dorsal-right eye (see Fig 

3.1 green neurons), and the same duplication for all the other excitatory and inhibitory 

synapses. 

For the simulations performed in this chapter, as in Chapter 2, I again assumed 

that honeybee decision-making is correlated to the neuronal similarity of their Kenyon 

cell responses to perceived stimuli, just as olfactory learning in the mushroom bodies is 

thought to rely on the coincidence detection of Kenyon cell responses (Heisenberg 

2003). For this reason I used the simulated Kenyon cell similarity ratios (KCSR) (see 

Chapter 2.3.4) to different test patterns as a measure of my models’ performance 
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accuracy. The overall model performance for a given experiment is therefore directly 

correlated to average KCSR of 1,000 simulation trials of a presented rewarding pattern 

(CS+) and a pair of test stimuli patterns (see Chapter 2.3.4 and Equation 2.3). The test 

pattern pair consisted of a pattern that was preferred by honeybees in behavioural 

experiments (TSCOR), and therefore should be “preferred” by my model also. The other 

test stimulus (TSINC) was therefore the pattern that the bees visited least often during 

their trials. A model performance of ~50%, with individual trial KCSRs of <0.5, meant 

that there was an equal or greater similarity from the CS+ pattern to the TSINC than 

TSCOR patterns, and therefore assumed to be my models’ equivalent of the bees’ 

inability to discriminate or generalise to the test patterns.  

These simulated results were then compared with the empirical honeybee 

experimental results to assess the DISTINCT and MERGED models’ performance. In 

addition, I wished to assess how my models correlated with the honeybees’ relative 

performances over all of the tested experiments. However, as in the previous chapters, 

each set of the original honeybee generalisation experiments (Stach and Giurfa 2001, 

Stach, Benard et al. 2004) only provided a number of mean data points for comparison. 

In each study, the bees were tested on patterns that typically varied in number and 

orientation of bars in each pattern quadrant, but were similar otherwise. Moreover, the 

used publications addressed similar issues and used similar patterns. While this is a 

good approach when probing the limits of the learning abilities of bees, it also means 

that the data points are not independent. A correlation coefficient involving data from 

multiple different experiments would, therefore, be misleading. Instead, I grouped the 

experiments into five batches of related generalisation tasks, similar to that done in the 

original studies, so that the relative performance of the different simulated experiments 
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could be assessed, and compared to that of the real honeybees’ relative performances on 

the same sets of pattern pairs. 

 

3.4 Results 

3.4.1 Experiment set 1: discrimination of multi-oriented bar patterns 

The ability to discriminate between visual patterns is essential for honeybees allowing 

them to identify familiar flowers and landmarks while navigating on foraging trips and 

locating the correct hive entrance upon their return. Nonetheless even for these types of 

precisely defined visual stimuli, some form of location invariance of a stimulus on the 

retinae would undoubtedly be required as it is unlikely bees would instantaneously and 

perfectly align the stimulus against their eyes on every single flight in order to make a 

discrimination decision. Indeed it would be an undesirable necessity that they should 

have to do so. 

To test my two models (DISTINCT, MERGED) for the effect of location of the 

stimuli within the visual field, I simulated the experiments of Zhang and Horridge 

(Zhang and Horridge 1992) who explored the ability of freely flying honeybees to 

discriminate two large (24cm diameter) vertically displayed patterns composed of 

multiple oriented bars. For these experiments a bee’s pattern choice was recorded when 

it approached within 27cm of either pattern (see (Zhang and Horridge 1992) for 

apparatus description). Presuming that honeybees would learn the correct pattern 

features when feeding at, or being close to, the centre of a rewarding pattern, I first 

calculated the Kenyon cell responses to these same CS+ patterns. I next determined 

each of my models’ performance accuracies when any of the two given test stimuli 
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patterns (TSCOR identical to the CS+ pattern, TSINC a rotated or mirrored version of the 

CS+ pattern) were offset horizontally between -200 pixels and +200 pixels in 25 pixel 

increments. Here a ±200 pixel offset would almost entirely obscure the pattern and a 

zero pixel offset would align the pattern perfectly in the centre of the field of view (see 

Fig 3.3c). 

 

Zero horizontal offset simulations 

With zero offsets of the TSCOR and TSINC patterns, I found that the DISTINCT model 

was able to discriminate all of the presented pattern pairs. Indeed, despite its simplicity, 

the model outperformed real honeybees, whose best result was 67%, compared to 

DISTINCT model’s 78% accuracy for the same pattern pair (Fig 3.2 vii). The model 

also discriminated the two pattern pairs that bees failed to discriminate (Fig 3.2, i: spiral 

patterns – bee: 53.7% p>0.7 n=54 (Zhang and Horridge 1992) – DISTINCT: 67%, ii: 

octagonal patterns – bee: 56.4% p>0.2 n=140 (Zhang and Horridge 1992) – DISTINCT: 

74%). The MERGED model results were far lower than the DISTINCT model’s 

discrimination accuracies but compared better to that of the empirical results. As with 

real honeybees’ behaviour, the MERGED model did not reliably discriminate the spiral 

and octagonal pattern, achieving simulation results below 60%. Out of the seven tested 

pattern pairs the only notable difference from the behavioural results was the MERGED 

model’s inability to discriminate the two left / right reversed pattern pairs (Fig 3.2: iv, 

vi).  
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Figure 3.2 Exemplary summary of honeybee behaviour and model performance for 
discrimination of multi-oriented patterns. In the behavioural experiments (Zhang and 
Horridge 1992) different groups of honeybees were differentially trained on a 
particular pattern pair, one rewarding (CS+) and one unrewarding (CS-). Blue 
diamonds: honeybee result, percentage of correct CS+ pattern selections after training. 
Red squares: performance accuracy of the DISTINCT model when test stimuli were 
presented in the centre of the field of view. Green triangles: performance accuracy of 
the MERGED model for the centralised stimuli. Cross on x-axis: model performance < 
50%. Error bars show standard deviation (these were not available for the behaviour 
results). Figure adapted from my publication (Roper, Fernando et al. 2017). 

 

Clearly the simpler model (DISTINCT) returned more accurate discrimination 

results and outperformed both the more derived model (MERGED) and the real 

honeybees’ behavioural performance. These results raise the interesting question why 

the honeybees performed so poorly on some of the patterns, when a very simple model 

(DISTINCT) was easily able to discriminate the patterns while using just eight large-

field orientation-sensitive neuronal inputs.  
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Horizontal offset simulations 

Progressively offsetting the test patterns from the centre of the field of view revealed 

the lack of robustness of the DISTINCT model to cue variation. Here the simulation 

performances dropped much faster than that of the MERGED model. In fact with as 

little as ±75 pixel offset (where the whole pattern was still visible, see Fig 3.3c) the 

performance of the DISTINCT model fell below 52% for all pattern pairs (Fig 3.3a).  

 

Figure 3.3 Model performance for discrimination of multi-oriented patterns when 
horizontally offset. Performance accuracy of models when comparing the CS+ patterns 
with the corresponding TSCOR and TSINC pattern pairs when these patterns were 
horizontally offset between 0 and ±200 pixels in 25 pixel increments (see c) the (a) 
DISTINCT, (b) MERGED. Colour of region indicates the corresponding experiment on 
right (also in Fig. 3.2) (c) Example of the TSCOR and TSINC pattern images when 
horizontally offset by 0 pixels to +200 pixels, similar images were created for -25 pixels 
to -200 pixels. Experiment images were 300 x 150 pixels in size; patterns occupied a 
150 x 150 pixel box cropped as necessary. Number in top right of each image indicates 
number of pixels it was offset by; these were not displayed in actual images. Red dotted 
line shows the subdivision of the image into the four visual field regions. The DISTINCT 
model performs much better than the MERGED model and honeybee results when there 
is no offset in the patterns, but with only a small offset (±75 pixels) the DISTINCT 
model is unable to discriminate the patterns (a) whereas the MERGED model is able to 
discriminate most of the patterns over a large range of offsets (b). Figure adapted from 
my publication (Roper, Fernando et al. 2017). 
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Simulation analysis 

The reason why the MERGED model is unable to discriminate the spiral and cross 

patterns (Fig 3.2 i, ii), but can easily discriminate the quadrant grating patterns (Fig 3.2 

iii), can be seen from the LOSN responses to these patterns (Table 3.1). In the 

DISTINCT model each image quadrant produces very different LOSN responses for all 

pattern pairs, whereas the summation of LOSN responses from both eyes in the 

MERGED model produces very similar combined results in the dorsal and ventral 

regions on both the spiral and cross pattern pairs; these combined dorsal and ventral 

responses for the grating patterns are sufficiently different to allow discrimination.  

Pattern	
  

DISTINCT	
   	
   MERGED	
  

LOSN	
  type	
  A	
   LOSN	
  type	
  B	
  
	
  

COMBINED	
  LOSN	
  type	
  A	
   COMBINED	
  LOSN	
  type	
  B	
  

	
   	
   	
   	
   	
   	
  

	
  
51,	
  44,	
  44,	
  50	
   11,	
  21,	
  20,	
  10	
  

	
  
95,	
  94	
   32,	
  30	
  

	
  
57,	
  37,	
  37,	
  56	
   17,	
  15,	
  15,	
  16	
  

	
  
94,	
  93	
   32,	
  31	
  

	
  
56,	
  44,	
  46,	
  58	
   13,	
  19,	
  20,	
  14	
  

	
  
100,	
  104	
   32,	
  34	
  

	
  
45,	
  57,	
  56,	
  45	
   20,	
  15,	
  16,	
  18	
  

	
  
102,	
  101	
   35,	
  34	
  

	
  
57,	
  68,	
  41,	
  34	
   24,	
  13,	
  21,	
  8	
  

	
  
125,	
  75	
   37,	
  29	
  

	
  
41,	
  55,	
  40,	
  67	
   21,	
  24,	
  10,	
  13	
  

	
  
96,	
  107	
   45,	
  23	
  

	
   	
   	
   	
   	
   	
  

 

Table 3.1 LOSN type A & type B responses in each quadrant of spiral, cross and 
grating patterns. Numbers correspond to LOSN responses for image quadrants 1-4 
(top-left, top-right, bottom-left, bottom-right). Combined results are the summation of 
the quadrant 1 + quadrant 2 (dorsal), and quadrant 3 + quadrant 4 (ventral) responses 
for the type A and type B LOSNs. The DISTINCT model cannot discriminate the spiral 
and cross patterns as the respective combined LOSN responses (see red and burgundy 
text on dorsal responses) are very similar but the grating patterns’ dorsal ventral 
responses are discriminable (see green text on dorsal responses).  
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When the patterns are offset the DISTINCT model failed to discriminate the 

correct pattern with only minor horizontal offsets, whereas the MEGED model could 

still discriminate some of the patterns even with partial occlusion of the images (Fig 

3.3). This is not solely down to the similarity of the combined LOSN firing rates (see 

Table 3.2). Here the respective DISTINCT quadrant LOSN responses are all different 

between the three patterns (CS+, TSCOR, TSINC), but unlike the previous spiral and cross 

pattern examples so are the MERGED model’s respective values, preventing 

generalisation on just the LOSN responses. 

Pattern	
  

DISTINCT	
   	
   MERGED	
  

LOSN	
  type	
  A	
   LOSN	
  type	
  B	
  
	
  

COMBINED	
  LOSN	
  type	
  A	
   COMBINED	
  LOSN	
  type	
  B	
  

	
   	
   	
   	
   	
   	
  

	
  CS+	
  
57,	
  68,	
  41,	
  34	
   24,	
  13,	
  21,	
  8	
  

	
  
125,	
  75	
   37,	
  29	
  

	
  TSCOR	
  
21,	
  72,	
  15,	
  47	
   9,	
  20,	
  8,	
  19	
  

	
  
93,	
  62	
   29,	
  66	
  

	
  TSINC	
  
16,	
  55,	
  13,	
  68	
   8,	
  26,	
  4,	
  14	
  

	
  
71,	
  81	
   34,	
  18	
  

	
   	
   	
   	
   	
   	
  

Table 3.2 LOSN type A & type B responses in each image quadrant of the quadrant 
grating patterns offset horizontally. Numbers correspond to LOSN responses for image 
quadrants 1-4 (top-left, top-right, bottom-left, bottom-right). Combined results are the 
summation of the quadrant 1 + quadrant 2 (dorsal), and quadrant 3 + quadrant 4 
(ventral) responses for the type A and type B LOSNs. TSCOR and TSINC are from 
experiment 3 (Fig 3.3 iii) offset by +50 pixels. Red dotted lines shows how the images 
are subdivided into the four image quadrants. 

 

 Figure 3.4 shows the respective Kenyon cell activations (for a single simulation) 

of the CS+, TSCOR and TSINC patterns for both the DISTINCT and MERGED models. 

Similar to the generalisation experiments in Chapter 2 the pattern offset invariance is 

due to a combination of the MERGED model’s LOSN responses, and the excitatory and 

inhibitory connections established by the LOSNs onto the Kenyon cells within the 
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model’s mushroom body. Despite the MERGED model’s LOSNs having different firing 

rates when presented with the offset TSCOR pattern compared to the CS+ pattern, the 

correlation of the firing rates within the dorsal and ventral regions activate many of the 

same Kenyon cells for both patterns enabling the successful discrimination. 

 

Figure 3.4 Model Kenyon cell activation for offset grating quadrant pattern. Blue: 
Kenyon cell activation when each model is presented with the zero offset CS+ pattern. 
Green: Kenyon cell activation to the offset TSCOR pattern, Red: Kenyon cell activation 
to the offset TSINC pattern. White dots on black square: shows the Kenyon cell activation 
differences between the test stimulus (TSCOR or TSINC) and the CS+ pattern. (a) 
DISTNCT model activations. (b) MERGED model activations. MERGED model shows 
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fewer activation differences on the TSCOR pattern during offsets. Red dotted lines shows 
how the images are subdivided into the four image quadrants. 

 

Summary of experiment set 1  

My results show that by simply combining inputs from both the left and right eyes onto 

mushroom body Kenyon cells, discrimination abilities are effectively freed of requiring 

perfect horizontal cue alignment on the retinae. Although this reduces the maximal 

discrimination accuracy, it allows for a much more robust and versatile employment of 

this cognitive tool in most realistic free flight navigation and resource locating scenarios. 

 

3.4.2 Experiment set 2: generalisation of multi-oriented bar and grating patterns 

Experienced honeybee foragers may identify rewarding flowers based on those features 

that most reliably predict reward amongst the available flower species. Honeybees able 

to generalise to this limited feature set would reduce the need to learn all the exact 

features (or indeed photographic templates) of each individual flower type visited and 

subsequently having to best-match these numerous complex templates when foraging 

on novel or less frequented floral resources (van Hateren, Srinivasan et al. 1990, Giger 

and Srinivasan 1995, Stach and Giurfa 2001).  

To explore these generalisation abilities, Stach et al. (Stach and Giurfa 2001, 

Stach, Benard et al. 2004) trained honeybees on two sets of six patterns where within 

each set there were similarly oriented bars in each quadrant of the patterns (Fig 3.5a). 

They then tested the bees’ ability to generalise from these training patterns to novel 

variations of the patterns. Unlike the previous experiments, these bees were able to 
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fixate a small distance from the pattern before their final choice selection was recorded 

when they actually touched either of the two test patterns. For my simulations I 

therefore presented all the patterns in the centre of the field of view with zero horizontal, 

or vertical, offset applied, assuming this would be where a honeybee would make its 

final decision. Here I followed the approach of the original studies (Stach and Giurfa 

2001, Stach, Benard et al. 2004) and compared the model results against the 

experimental performances within smaller batches of similar generalisation type tasks. 

Batch 1: Identical orientations in each pattern quadrant 

Using data from Stach et al 2004 (Stach, Benard et al. 2004), I tested simple 

generalisation from the training sets of six patterns to three novel pattern pairs. The 

experimentally preferred test stimulus (TSCOR) patterns had bars oriented in the same 

direction as the corresponding quadrants of the CS+ patterns, versus the incorrect 

distractor (TSINC) patterns with a similar visual style to the matching TSCOR pattern but 

with bars oriented in different directions to those of the CS+ pattern in each quadrant. I 

found that simulations of both the DISTINCT and MERGED models had average 

results almost identical to the honeybee behavioural results. Both the percentage of 

honeybee choice selections for TSCOR patterns and my model performances were all 

between 67% and 72% (Fig 3.5). 
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Figure 3.5 Honeybee behaviour and model performance for simple generalisation of 
quadrant multi-oriented bar patterns. (a) The two sets of quadrant patterns (each set 
having similarly oriented bars in each quadrant of the pattern) that were used during 
the behavioural experiments (Stach and Giurfa 2001, Stach, Benard et al. 2004). 
Honeybees were trained on random pairs of a CS+ pattern and CS- pattern selected 
from the two pattern sets, different groups of bees were tested on the reversal such that 
the CS- pattern would become the CS+ and vice-versa. (b) Blue bar: honeybee result, 
percentage of correct choice selections when tested with novel patterns (here TSCOR and 
correct choice is the pattern the bees visited most often). Models results, value above 
bar is average for 12,000 simulations. 

 

Batch 2: Identical orientations in all but one CS+ pattern quadrant 

This batch of experiments again followed the pattern experiments of Stach et al (Stach, 

Benard et al. 2004), here the TSCOR patterns had three quadrants with correctly oriented 

bars and the final quadrant did not, TSINC patterns had incorrectly oriented bars in all 

four quadrants. The DISTINCT model achieved ≥58% throughout, but performed 

typically 5-10% below the honeybees (Fig 3.6). The MERGED model outperformed the 
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DISTINCT model on all test pattern pairs, with results once again extremely similar to 

that of the honeybee behavioural performances.  

 
Figure 3.6 Honeybee behaviour and model performance when generalising to a 
modified CS+ quadrant pattern. (a) Blue: honeybee result, percentage of correct choice 
selections when tested with novel patterns of varying degrees of difference from the 
training CS+ / CS- patterns (here TSCOR and correct choice is the pattern the bees 
visited most often).  Red: DISTINCT model performance when comparing each of the 
six CS+ patterns in a pattern set (b) against a novel TSCOR and TSINC pattern pair. 
Green: MERGED model results for the CS+ pattern sets compared against each TSCOR 
and TSINC pattern pair. (b) The two sets of quadrant patterns (each set having similarly 
oriented bars in each quadrant of the pattern) that were used during the behavioural 
experiments (Stach and Giurfa 2001, Stach, Benard et al. 2004). Honeybees were 
trained on random pairs of a CS+ pattern and CS- pattern selected from the two pattern 
sets, different groups of bees were tested on the reversal such that the CS- pattern 
would become the CS+ and vice-versa. 

 

Batch 3: TSINC differs from CS+ / TSCOR in just one pattern quadrant 

In the third batch of experiments utilising the same Stach et al dataset (Stach, Benard et 

al. 2004), the TSCOR and TSINC were very similar, the TSCOR patterns having correctly 

oriented bars in all four quadrants and the TSINC pattern had just one quadrant with 

incorrectly oriented bars. Simulations of the MERGED model failed to generalise to the 

correct pattern in three out of four experiments with individual simulation trials failing 

to achieve a KCSR of more than 0.5 (Fig 3.7). The DISTINCT model managed to 
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correctly generalise all of these patterns but with lower accuracy than the corresponding 

honeybee results (Fig. 3.7).  

 
Figure 3.7 Honeybee behaviour and model performance when generalising to patterns 
when there is only a single quadrant different between CS+/ TSCOR and TSINC. (a) Blue: 
honeybee result, percentage of correct choice selections when tested with novel patterns 
of varying degrees of difference from the training CS+ / CS- patterns (here TSCOR and 
correct choice is the pattern the bees visited most often).  Red: DISTINCT model 
performance when comparing each of the six CS+ patterns in a pattern set (b) against a 
novel TSCOR and TSINC pattern pair. Green: MERGED model results for the CS+ 
pattern sets compared against each TSCOR and TSINC pattern pair. (b) The two sets of 
quadrant patterns (each set having similarly oriented bars in each quadrant of the 
pattern) that were used during the behavioural experiments (Stach and Giurfa 2001, 
Stach, Benard et al. 2004). Honeybees were trained on random pairs of a CS+ pattern 
and CS- pattern selected from the two pattern sets, different groups of bees were tested 
on the reversal such that the CS- pattern would become the CS+ and vice-versa. 

 

Batch 4: Mirror image and left / right reversal generalisations 

This experiment set was compiled by taking test pattern pairs from the earlier work of 

Stach and Giurfa (2001) (Stach and Giurfa 2001). In this study, honeybees were 

presented with different combinations of either the original CS+ pattern configuration, 

or the mirror image, or the left / right reversal of this layout. The DISTINCT model was 

once again able to generalise correctly to all the experimental patterns (Fig 3.8). Each 

individual experimental result varied from between 4-20% less than that of the 



 

 
 

106 

corresponding empirical result, but, as with honeybees, the model showed lower 

generalisation performances on the mirror image versus left-right patterns compared to 

that of the original CS+ versus the mirror image patterns (Fig 3.8). The MERGED 

simulations typically resulted in higher accuracies and were more similar to the 

honeybee results than that of the DISTINCT model, correct generalisation performances 

ranged from +1% to -12% different to the empirical result. Of note, the bees achieved a 

surprising 82% correct choice accuracy on one of these test pattern pairs, almost 10% 

higher than any other task. My models achieved simulation results ≥ 60% on this 

experiment. Only two of the eight test pattern pairs (TSCOR: original configuration, 

TSINC: left / right reversal) failed to generalise correctly with a performance of just 51% 

(individual trial KCSRs ranging from 0.39 to 0.62 dependent on the particular pattern 

triplets presented) compared to the honeybee correct choice selection of 69%. During 

simulations both the DISTINCT and MERGED models showed a preference for the left 

/ right reversal configuration compared to the mirror image pattern, they also preferred 

the correct configuration to the mirror image layouts, as did real honeybees (Fig 3.8). 
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Figure 3.8 Honeybee behaviour and model performance when generalising to a mirror 
image or left right reversed quadrant patterns. (a) Blue: honeybee result, percentage of 
correct choice selections when tested with novel patterns of varying degrees of 
difference from the training CS+ / CS- patterns (here TSCOR and correct choice is the 
pattern the bees visited most often).  Red: DISTINCT model performance when 
comparing each of the six CS+ patterns in a pattern set (b) against a novel TSCOR and 
TSINC pattern pair. Green: MERGED model results for the CS+ pattern sets compared 
against each TSCOR and TSINC pattern pair. (b) The two sets of quadrant patterns (each 
set having similarly oriented bars in each quadrant of the pattern) that were used 
during the behavioural experiments (Stach and Giurfa 2001, Stach, Benard et al. 2004). 
Honeybees were trained on random pairs of a CS+ pattern and CS- pattern selected 
from the two pattern sets, different groups of bees were tested on the reversal such that 
the CS- pattern would become the CS+ and vice-versa. 

 

Batch 5: Chequerboard generalisations 

The last of my experiment sets again used patterns from Stach and Giurfa (2001) (Stach 

and Giurfa 2001). Figure 3.9 shows that both models were unable to generalise correctly 

when presented with a chequerboard distractor pattern, with individual trial KCSRs as 

low as 0.4. Conversely, honeybees always preferred left / right or mirror image versions 

of the CS+ pattern configuration to that of the chequerboard option.  
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Figure 3.9 Honeybee behaviour and model performance when generalising to a 
chequerboard pattern. Blue: honeybee result, percentage of correct choice selections 
when tested with novel patterns of either the mirror image or left / right reversal of the 
training CS+ patterns (here TSCOR and correct choice is the pattern the bees visited 
most often).  Red: DISTINCT model performance when comparing each of the six CS+ 
patterns in a pattern set (b) against a novel TSCOR and TSINC pattern pair. Green: 
MERGED model results for the CS+ pattern sets compared against each TSCOR and 
TSINC pattern pair.  

 

Simulation analysis 

The MERGED model’s failure to discriminate the left / right reversal patterns (Fig 3.8 

top-right) was no surprise as both the TSCOR and TSINC patterns presented the exact 

same orientations only in the reverse eyes, and hence produced the same summed input 

to the Kenyon cells (see Table 3.1 for similar examples).  

The inability of either model to discriminate the checkerboard pattern (TSINC) 

versus the mirror pattern (TSCOR) from the CS+ patterns was due to the Kenyon cell 

similarity to an orthogonal orientation (as is the case with two of the four mirror 

quadrants) being less than that of the orientations of the square edges. During a single 

simulation using the first CS+ pattern (Fig 3.9b) the DISTINCT model had 1168 

Kenyon cells incorrectly activate (or not activate) when viewing the mirror image 

TSCOR pattern, but just 833 differences for the checkerboard pattern (MERGED model 

TSCOR: 539, TSINC: 409). The DISTINCT model performed marginally better on the left 

/ right pattern test (58%, still low compared to honeybees’ 74% accuracy). For this 
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pattern the model at least perceived the correct orientations in each dorsal / ventral 

region (TSCOR: 70, TSINC: 424 incorrect activations); however the DISTINCT model 

still received the wrong orientation information for each quadrant, and thus only 

marginally preferred the left / right pattern (TSCOR: 544, TSINC: 841 incorrect 

activations). It is most likely that in these experiments and while observing other similar 

stimuli the honeybees could use other visual features (optic flow, symmetry, etc.) to 

identify the checkerboard as very different to the training patterns and reject it. 

The Batch 3 experiments (where the TSCOR and TSINC patterns were very similar) 

showed that the DISTINCT model consistently outperformed the MERGED model, but 

neither model achieving more than 60% accuracy. The potential reasons for this poor 

performance are discussed in length in the discussion section below.  

Apposed to those experiments mentioned above, the MERGED model always 

outperformed the DISTINCT model (see Fig 3.11), as with the pattern-offset 

experiments, by combining LOSN inputs from both eyes the MERGED model was less 

affected by minor variances in edge orientations and lengths, or indeed incorrectly 

oriented bars, in the TSCOR patterns. For example in the Batch 2 experiments the TSCOR 

patterns had the orientation in one quadrant rotated through 90˚ meaning that a large 

proportion of DISTINCT model’s Kenyon cells receiving LOSN input from that 

quadrant would activate incorrectly, whereas within the MERGED model a smaller 

subset would be incorrect for the whole dorsal or ventral region. Figure 3.10 displays 

the DISTINCT and MERGED models’ Kenyon cell activations to the CS+ and test 

stimuli, and differences in activation. 
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Figure 3.10 Model Kenyon cell activation for generalization experiments Batch 2. 
Blue: Kenyon cell activation when each model is presented with the first of the six CS+ 
patterns (Fig 3.6b). Green: Kenyon cell activation to the TSCOR pattern with the top-
right quadrant having an incorrectly oriented bar, Red: Kenyon cell activation to the 
TSINC pattern, with all quadrants incorrectly oriented. White dots on black square: 
shows the Kenyon cell activation differences between the test stimulus (TSCOR or TSINC) 
and the CS+ pattern. MERGED model produced slightly fewer activation differences 
between the CS+ and TSCOR patterns, relative to the CS+ / TSINC differences, compared 
to the DISTINCT model. Thus producing a marginally better performance (KCSR 
MERGED: 0.62, DISTINCT: 0.58). 

 

Summary of experiment set 2 

Figure 3.11 shows a summary of the experiments I simulated and the corresponding 

honeybee experimental results (Stach and Giurfa 2001, Stach, Benard et al. 2004). 
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Despite my models’ extreme simplicity, they largely predicted the honeybees’ 

generalisation performances accurately for a majority of the tested pattern pairs where 

the TSCOR and TSINC patterns had identical, or mostly similar, orientations to the 

respective CS+ and CS- training patterns, even though they were novel variants. The 

models only consistently failed when the TSCOR and TSINC were very similar, and also 

when viewing chequerboard patterns. This shows that seemingly ‘complex’ pattern 

generalisation tasks do not require advanced cognition. Instead, my DISTINCT and 

MERGED models provide evidence that visual pattern recognition and classification 

may in fact be the emergent properties of connecting just a small number of large-field 

visual inputs and require no more neuronal complexity to that of generalising simple 

bars and gratings. 

 

Figure 3.11 Summary of honeybee behaviour and model performance for 
generalisation of quadrant patterns. Blue diamonds: honeybee result, percentage of 
correct choice selections when tested with novel patterns of varying degrees of 
difference from the training CS+ / CS- patterns (here TSCOR and correct choice is the 
pattern the bees visited most often).  Red squares: DISTINCT model performance when 
comparing each of the six CS+ patterns in a pattern set (a) against a novel TSCOR and 
TSINC pattern pair. Green triangles: MERGED model results for the CS+ pattern sets 
compared against each TSCOR and TSINC pattern pair. Error bars show standard 
deviation (these were not available for the behaviour results). For simple 
generalisations (i) where the novel TSCOR patterns had the similarly oriented bars to the 
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CS+ pattern set and TSINC was similar to the CS- patterns the DISTINCT and MERGED 
model performances were almost identical to those of the real honeybee results. For the 
harder generalisations; (ii) TSCOR one quadrant incorrect – TSINC all quadrants 
incorrect, (iii) TSCOR all quadrants correct – TSINC three quadrants correct, (iv) mirror 
images and left-right reversals of CS+ layout, the DISTINCT model correctly 
generalised all pattern pairs but performed substantially worse than the real bees. The 
MERGED model failed most experiments in (iii) but did typically perform better than 
the DISTINCT model in (ii) & (iv). Both models failed to generalise correctly if the 
TSINC was a chequerboard pattern whereas real honeybees typically rejected this novel 
stimulus. Figure adapted from my publication (Roper, Fernando et al. 2017) 

  

3.5 Discussion 

Apparently sophisticated cognitive abilities are often seen as a result of an equally 

complex neuronal architecture. However, here, this view is fundamentally challenged. 

Using a modelling approach, I investigated how bees' ability to discriminate and 

generalise could be explained by simple neural networks. I have shown that for patterns 

composed of multiple arrangements of achromatic bars, regularly used in honeybee 

behavioural experiments, bees may actually require very little sophistication in the 

neuronal architecture of their brain to discriminate them.  

The honeybee LOSN responses are thought (Maddess and Yang 1997, Horridge 

2000) to be the result of the summation of smaller receptive field orientation-sensitive 

neurons in the bee lamina or medulla (1st, 2nd optic ganglia), similar to those found in 

other insect medullas (McCann and Dill 1969, O'Carroll 1993, James and Osorio 1996, 

Maddess and Yang 1997, Okamura and Strausfeld 2007, Spalthoff, Gerdes et al. 2012). 

This collation of smaller subunits allows the LOSNs to encode a simplified summary of 

the oriented edges across the whole width of the bee eye. Although this means a bee 

cannot extract the exact retinotopic location or indeed orientation of individual edges 

through these neurons, my results show that, just eight of these large-field orientation-

sensitive neurons would be sufficient for the discrimination and simple generalisation of 
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the described patterns. My models also demonstrate, even with their very simplified bee 

brain representation, that just a single layer of simple connections from the LOSNs to 

the mushroom body Kenyon cells would suffice to reproduce the empirical 

generalisation results between a given rewarding pattern (CS+) and the two test patterns 

(TSCOR, TSINC). In fact my models may have had a more difficult challenge than that of 

real bees. During training the honeybees were exposed to both the CS+ patterns with a 

sugar water reward but also a non-rewarding (water) or even aversive solution (quinine) 

on the training distractor patterns (CS-), this differential training would allow the bees 

to learn both those features consistent with reward but also those pattern features that 

were to be avoided. There is empirical evidence to show that choice accuracy as well as 

the pattern features learnt by bees are affected by the training regime (e.g. absolute 

conditioning (no distractor pattern) vs. differential conditioning (Dyer and Chittka 2004, 

Giurfa 2004), and the penalty associated with a distractor (Chittka, Dyer et al. 2003, 

Avargues-Weber, de Brito Sanchez et al. 2010, de Brito Sanchez, Serre et al. 2015)).  

Since it remains unclear how these different factors affect learning on the 

neuronal level, the theoretical models described here were restricted to an equivalent 

absolute conditioning protocol, with my virtual bees only having access to the CS+ 

pattern. Given that differential training typically yields better learning results (Giurfa, 

Hammer et al. 1999), it is all the more impressive that my simplified and experimentally 

disadvantaged virtual brains were able to facilitate largely similar results to actual bees. 

In addition, my models employed no form of learning. The Kenyon cell outputs of the 

models were achieved solely by the summation of either excitatory or inhibitory 

connections from the LOSNs (with synaptic weights of either 1 or -1 respectively). Here 

the simulated Kenyon cell outputs allowed the discrimination and generalisation of the 

tested patterns with approximately 50% activation of the Kenyon cell populations (due 
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to the reciprocal LOSN to Kenyon cell connection types, see Methods Chapter 2.3); I 

assumed, for comparison with my simple models, that some form of synaptic plasticity 

from the Kenyon cells to the mushroom body extrinsic neurons would allow the bees to 

associate the appropriate 50% active Kenyon cells to the CS+ pattern, and from these 

adjusted synaptic weights make the behavioural decisions. However, neuronal 

recordings of the mushroom body lip, which receives olfactory input, shows just ~5% 

activation of the Kenyon cells mediated by a feedback inhibitory network in the 

mushroom body calyces (Papadopoulou, Cassenaer et al. 2011). It may be that when 

honeybees visit a correct pattern synaptic plasticity in the Kenyon cells increases the 

firing rate, or reduces the response latency, of the Kenyon cells that fire, but potentially 

more importantly, it may inhibit those Kenyon cells that incorrectly fired for the CS- 

pattern (during differential training). In this case, the 5% of the Kenyon cells that are 

active (assuming the same value as for olfactory stimuli) would potentially be optimal 

to associate the CS+ pattern with reward. Additional research is required to see if this 

greater specificity would actually account for some of the bees’ higher performances 

compared to that of my current models. It should be noted that ~50% of the olfactory 

projection neurons to the mushroom bodies are highly active when a particular odour is 

presented (Rossler and Brill 2013) providing a population coding response to a given 

odour, this differs considerably to that of the optic lobe neurons that typically have 

more specific firing rate tuning curve responses to particular stimuli. Due to issues with 

harnessing bees during visual learning tasks we currently lack the ability to record 

Kenyon cell responses for anything but the simplest visual stimuli (e.g. whole eye 

exposure to a single colour (Hori, Takeuchi et al. 2006)). Unfortunately this means we 

do not yet have empirical evidence for the Kenyon cell activation level for visual 

stimuli. New research using walking bees in virtual reality rigs (Paulk, Stacey et al. 
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2014) may allow these activation levels, and Kenyon cell response changes, to be 

recorded during visual learning paradigms. These findings will undoubtedly provide 

vital information for the next generation of theoretical models, which could be used to 

understand the trial-by-trial learning process of bees.  

Despite the limitations mentioned above, my models still performed almost 

identically to the real bees when making simple generalisations (Fig 3.5, Fig 3.6) and 

only dropped in performance when the TSCOR and TSINC patterns became very similar 

(Fig 3.7). Here the difference in training procedure almost certainly contributed to the 

typical 5-10% lower results in my absolute-like simulations to those of the differentially 

trained honeybees. Again, future behavioural and electrophysiological research may 

reveal how training paradigms affect the learning on the neuronal level, which would 

allow corresponding adjustments to the new theoretical models.  

In addition, the poor concordance of the MERGED model results and the 

honeybees in the generalisation experiments may also result from the experimental 

paradigm that allowed the bees to fixate on the pattern at close range and make their 

final decision from a fixed perspective. This would, for these experiments, be very 

similar to the better-performing DISTINCT model with zero stimuli offsets. It is 

conceivable that honeybees have a combination of both DISTINCT and MERGED type 

LOSN to Kenyon cell configurations within their mushroom bodies. In this neuronally 

still simple scenario, attention-like processes could “selectively learn” the Kenyon cell 

responses that are good indicators of reward in a given experimental scenario. This 

might therefore account for some of the bees higher performance compared to that of 

my solely MERGED or DISTINCT models. Future work will investigate if there is an 

optimal distribution of distinct and merged LOSN connections to the Kenyon cells, or if 
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synaptic plasticity is able to adjust the proportion of each connection type for a 

particular task (see Chapter 6.2).   

During the offset pattern discrimination simulations (Fig 3.3) I found that simply 

combining the neuronal firing rates of LOSNs from each eye would allow for pattern 

discrimination with an impressive horizontal location invariance of the perceived 

stimuli. By merging information from both eyes, a very coarse representation of the 

whole 270˚ bee eye horizontal field of view can be produced. Surprisingly, this non-

retinotopic representation appears sufficient to discriminate quite complicated visual 

patterns, removing the need for the bees to have to store an image template or 

‘photographic’ view of the pattern. This mechanism also has the advantage that very 

similar summed Kenyon cell responses can be achieved irrespective of how much of the 

pattern each eye views, as well as a representation that is less sensitive to small 

differences during generalisation experiments. However, despite the typically good 

discrimination results over large offsets and the ability to discriminate when patterns are 

only partially visible (Fig 3.3), my results show that this mechanism may well come at 

the expense of discriminating certain types of stimuli. Certain spiral and octagonal 

patterns (Fig 3.2) were not reliably discriminated by my MERGED model or by real 

honeybees (Zhang and Horridge 1992). Surprisingly, honeybees have been shown 

unable to discriminate a very simple pair of 90˚ cross patterns (CS- pattern rotated 

through 45˚) (Srinivasan, Zhang et al. 1994) (Fig 3.12a), despite their apparent 

differences to a human observer. Simulations of these experiments once again showed 

the MERGED model’s similarity to the honeybee behavioural results, with a sub 60% 

discrimination performance on these simple cross patterns, whereas the DISTINCT 

model achieved over 70% accuracy. Interestingly both of the models, and honeybees, 

were able to discriminate a pair of 22.5˚ rotated cross patterns easily (CS- pattern 
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rotated through 90˚) (Fig 3.12b). It may well be that in allowing the neuronal 

architecture of the honeybee brain to overcome horizontal location variance for 

common stimuli, it has compromised its ability to discriminate specific, arguably less 

important cue combinations. 

 

Figure 3.12 Honeybee behaviour and model performance for the discrimination of 
simple cross patterns. In the behavioural experiments (Srinivasan, Zhang et al. 1994) 
different groups of honeybees were differentially trained on a particular cross pattern 
pair, one rewarding (CS+) and one unrewarding (CS-). Blue: honeybee result, 
percentage of correct CS+ pattern selections after training. Red: performance accuracy 
of the DISTINCT model. Green: performance accuracy of the MERGED model. Error 
bars show standard deviation. (a) Discrimination of 90˚ cross and 45˚ rotation of this 
pattern. The DISTINCT model easily discriminates the patterns but honeybees cannot, 
and the MERGED model’s performance is below 60% accuracy. (b) Discrimination of 
a 22.5˚ cross pattern and the same pattern rotated through 90˚, both models and 
honeybees can discriminate these cross patterns. 

 

In conclusion my research in this chapter shows that very simple neuronal 

connections, which would be easily accommodated within the miniature brain of a bee, 

are able to facilitate seemingly complex visual cognitive tasks. In addition the merging 

of visual information from both eyes, as seen in the mushroom bodies of bees (Ehmer 

and Gronenberg 2002), appears to be a very effective solution to partial occlusion and 

some degree of retinal location invariant pattern discrimination.  
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Chapter 4: Theoretical models of how honeybees could solve 

the ‘above and below’ conceptualisation task 

4.1 Abstract 

Honeybees exhibit remarkable visual cognitive abilities, such as the fine pattern 

discrimination and generalisation acuity discussed in the previous chapters, these 

capabilities provide obvious behavioural advantages when it comes to identifying 

rewarding floral resources in their natural environments. However, more surprising is 

honeybees’ apparent mastery of more complex cognitive tasks. Bees can be trained to 

identify a rewarding stimuli based on their ‘sameness’ or ‘difference’ to a previously 

seen pattern, they can count (up to four) and solve basic numerosity problems. Here I 

investigate another conceptual relationship task – the concept of ‘above’ and ‘below’. 

Bees are able to solve this task, identifying which of two presented stimuli contains the 

appropriate spatial organisation of a consistent referent pattern and a changing, and 

potential novel, target pattern. Simulations using my theoretical bee brain models while 

being presented with the ‘above and below’ stimuli initially showed an inability to 

choose the correct pattern in all but the simplest cases. However, a simple adaption to 

the models, allowing modelled bees to centralise their field of view directly in front of 

the referent shape drastically increased one of the model’s performances. This model 

was then able to solve the task without having to understand the underlying 

relationships between the referents and targets. It achieved average simulation 

accuracies of 80%, nearly identical to that of the empirical honeybee results. 
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4.2 Introduction 

Over the last 100 years research into honeybee visual cognition has primarily focused 

on which visual features (colour, edge, orientation, symmetry) the bees are able to 

utilise in order to associate particular stimuli with reward (or punishment). However, 

over the last two decades, in large part due to the remarkable ability of the bees to adapt 

and learn almost any task presented to them, experimentalists have begun to ask if 

honeybees could possibly exhibit ‘higher-order’ cognition. These experiments, most 

often being adapted from those conducted on primates or birds, look to see if complex 

rules can be comprehended and followed. Successful examples performed on honeybees 

or bumblebees include, but are not limited to, social learning (Leadbeater and Chittka 

2008, Leadbeater and Chittka 2009, Dawson and Chittka 2014, Smolla, Alem et al. 

2016), counting and numerosity (Chittka and Geiger 1995, Dacke and Srinivasan 2008, 

Gross, Pahl et al. 2009), and conceptual learning tasks (‘sameness’ and ‘difference’ 

(Giurfa, Zhang et al. 2001), ‘larger than’ - ‘smaller than’ (Avargues-Weber, d'Amaro et 

al. 2014)). But should these discoveries be regarded as spectacular because bees manage 

to achieve human-like computations of visual image analysis and reasoning? Given that 

the bees’ brain contains less than a million neurons, could there be radically different 

explanations for how the bees solve these tasks compared to how we envisage large 

vertebrate brains solve the same problems? 

 For conceptual learning tasks, animals are typically exposed to a set of training 

examples where the rewarding stimuli all follow some standard format or sequence, the 

subjects are then tested on novel stimuli that may have nothing in common with the 

training set, other than obeying the same rule. One such conceptual learning task that 
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honeybees have been shown to comprehend is a spatial relationship problem called 

‘above and below’ (Avargues-Weber, Dyer et al. 2011).  

During the original ‘above and below’ behaviour experiments, honeybees were 

first pre-trained (Phase 1) within a Y-Maze (see Fig 1.2) to a consistent referent, either a 

black cross or a disc (Avargues-Weber, Dyer et al. 2011). This was performed to focus 

the bees’ attention on the referent shape. The initial 15 trials were conducted using 

absolute conditioning (Giurfa, Hammer et al. 1999), such that the second distractor 

pattern was always a blank white sheet of paper. After these pre-training trials, the bees 

were tested within the Y-Maze with the choice of the learnt referent shape, and a second 

distractor pattern selected from one of five target shapes, with neither of the stimuli 

providing reward. The bee’s first choice and number of subsequent touches on each 

pattern during the first 45 seconds of the test were recorded. 

The second training stage (Phase 2) consisted of 50 training trials. One group of 

bees were trained such that target shapes (different to the selected referent shape) were 

always positioned above the referent shape on the patterns, and thus identified reward 

(sucrose solution was provided via a small feeder tube at the centre of the pattern), and 

correspondingly the target shapes below the referent led to an aversive quinine solution. 

A second group of bees was trained on the reciprocal condition, with the target shapes 

below the referent indicating reward. A different target shape was presented on the two 

patterns on each trial. After training, the bees were again tested, for 45 seconds without 

reward, with the above and below configurations using the target shape used in the 

Phase 1 discrimination test, which was unused during phase 2 training. This would 

therefore test the bees’ ability to correctly solve the ‘above and below’ relationship on 

completely novel patterns.  
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The empirical results suggest that the honeybees were able to utilise the spatial 

relationship between the referent and target shapes and thus learn to identify the 

rewarding patterns. By the end of training, the honeybees achieved ~80% correct choice 

accuracy (averaged over last 10 trials), and during the 45 second non-rewarded tests 

with novel target shapes the cumulative choices for the correctly configured patterns 

accounted for just under 70% of all choices (n=20; t19=11.2, p < 0.001) (Avargues-

Weber, Dyer et al. 2011). 

As with the previous chapters (Chapter 2 and Chapter 3) here I investigate: can 

very simple neuronal models of the honeybee brain encapsulate appropriate rules, in this 

case for ‘above and below’, and transition between the training stimuli and test patterns. 

How much additional neuronal architecture or other requirements are necessary to 

accomplish the task, and finally how well do these models perform compared to the 

empirical behavioural results stated above. 

 

4.3 Methods 

4.3.1 Stimuli  

In accordance with the honeybee behavioural experiments ((Avargues-Weber, Dyer et 

al. 2011) Experiment 2) the test stimuli for single experimental trials were composed of 

an ‘above’ and ‘below’ pair of patterns. Each achromatic pattern consisted of a white 

background (1065 x 1065 pixels) with a black ‘referent’, which in my simulations was 

always a 210 x 210 pixel cross, and a black ‘target’ that was either; concentric 

diamonds (290 x 350 pixels), a small horizontal bar (60 x 180 pixels), a vertical grating 

(290 x 290 pixels), a filled disc (180 pixels in diameter), or a radial three-sectored 
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‘trefoil’ pattern (235 x 235 pixels) (Fig 4.1a). For each pattern pair the same target was 

placed either above or below the referent cross, these shapes were aligned either with 

the crosses in the centre of the patterns, or the cross and target shapes vertical 

equidistance from the centre, with all shapes horizontally centred. In addition, for the 

phase 1 simulations, fourteen stimuli were produced with just the referent cross, 

positioned in different, non-central, locations on the pattern. A final set of stimuli 

consisted of each single shape (referent and targets) positioned centrally on the pattern, 

as well as a completely blank white pattern. All patterns were saved as 1065 x 1065 

pixel PNG images. 

 

4.3.2 Simulated experiments – phase 1 

To represent the phase 1 (pre-training) experiments, I tested my models by simulating a 

similar absolute conditioning protocol to that used in the behavioural experiments 

(Avargues-Weber, Dyer et al. 2011). These simulations used the cross shape as the 

referent, versus a blank white image. I recorded simulation discrimination accuracies for 

when the rewarding pattern (CS+) had the cross in the centre of the pattern, and the 

correct test stimulus (TSCOR) had the same cross shape either in the centre of the pattern, 

or in 14 different non-central locations. These simulations used the blank white pattern 

as an absolute conditioning distractor (TSINC). As in the original behavioural 

experiments (Avargues-Weber, Dyer et al. 2011), I subsequently tested how well the 

models could discriminate this same centred referent cross pattern, from each of five 

centrally positioned target shapes (bar, disc, diamond, grating, trefoil). 
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4.3.3 Simulated experiments – phase 2  

In these simulations, I assumed that the ‘above’ configuration was rewarding (i.e. the 

target shape was always above the referent cross shape (CS+)). Two different 

configurations of test stimuli were used, those with the crosses aligned centrally and 

those with the crosses positioned the same vertical distance from the centre as the target 

shapes (hereon referred to as equidistance, see stimuli). In both configurations all the 

correct test stimuli (TSCOR) had the target above the referent and the incorrect distractor 

patterns (TSINC) had the target below the referent. In any individual trial, the two test 

patterns always presented the same target shape. 

 To test the models’ ability to generalise between the patterns I produced a 

variety of stimuli configurations. Firstly, the CS+ pattern and TSCOR / TSINC patterns 

presented the same target shapes. These were either aligned with all the crosses 

centrally located, or at the equidistance positions, or with the CS+ and test stimuli 

presenting the crosses in the different respective positions. The second set of 

simulations repeated these previous position configurations, but here, in each simulation 

the CS+ target was a different shape to the TSCOR/TSINC targets. This was executed for 

every possible combination of CS+ and TSCOR/TSINC target shapes, resulting in a total 

of 100 different pattern configurations.  

 

4.3.4 Simulation procedure 

To investigate how honeybees may respond to particular views of the ‘above and below’ 

experimental stimuli I evaluated three of my previous theoretical models, SEO_AB 

(Chapter 2), MERGED (Chapter 3) and DISTINCT (Chapter 3). In summary, these 
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models produce theoretical optical neuronal responses to presented stimuli; these are 

based on the two types of lobula (3rd optic ganglion) large-field orientation-sensitive 

neurons (LOSNs) discovered in honeybees (Apis mellifera) (Maddess and Yang 1997) 

(see Chapter 2.3.2 for LOSN response calculations). Each model uses the same eight 

LOSN outputs but these vary in the way the excitatory and inhibitory synaptic 

connections are configured between these lobula neurons and the models’ Class II 

(clawed) Kenyon cells, which receive sensory input within the honeybee mushroom 

bodies (learning centres) (Strausfeld 2002). The MERGED model, in contrast to the 

other two models (DISTINCT, SEO_AB), combined LOSN inputs from both eyes onto 

single Kenyon cells. 

Each simulation trial was composed of three patterns (CS+, TSCOR, TSINC). The 

simulation Kenyon cell similarity ratio (KCSR) of each trial was calculated by 

comparing the particular model’s Kenyon cell responses to the presented CS+, TSCOR 

and TSINC patterns (see Chapter 2.3.4 for calculation details). Each pattern triplet 

configuration was simulated one thousand times to produce an overall experimental 

performance value (the minimum, maximum and standard deviation of all simulation 

KCSRs for that pattern triplet were also recorded). A model performance of ~50%, with 

individual trial KCSRs of <0.5, meant that there was an equal or greater similarity from 

the CS+ pattern to the TSINC than TSCOR patterns, and therefore assumed to be my 

models’ equivalent to the bees’ inability to discriminate or generalise to the test patterns. 

For generalisations across target shapes (i.e. the CS+ and TSCOR / TSINC presented 

different target shapes) the results of all pattern triplet combinations for a particular 

CS+ target shape and the four other target shapes were averaged (4,000 individual 

simulations). To identify if any particular target shape on the respective CS+ and TSCOR 
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/ TSINC patterns would effect the simulation performances I also calculated individual 

experimental performances for each possible combination of the target shapes. 

 

4.4 Results 

4.4.1 Simulation results – ‘above and below’ phase 1 

In the first set of simulations, I tested the SEO_AB, DISTINCT and MERGED models 

ability to discriminate a centrally located cross from a blank white pattern. All three 

models achieved average discrimination performances above 80% (DISTINCT: 

84%±1%, MERGED: 88%±3%, SEO_AB: 87%±7%). In the second set of Phase 1 

simulations I determined the models’ discrimination performances when presented with 

centrally positioned crosses, versus each of the five available target shapes (bar, 

diamond, dot, grating, trefoil), again aligned in the centre of the patterns. All models 

produced average discrimination performances in the range of 60-91% (DISTINCT: 59-

78%, MERGED: 55-82%, SEO_AB: 80-91%), with the DISTINCT model 

outperforming MERGED on just the diamond and dot shapes, and the SEO_AB model 

consistently outperforming the other two models (Fig 4.1a). 
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Figure 4.1 Model performance for discrimination of referent in ‘above and below’ 
phase 1 simulations. (a) Performance of models to discriminate the cross (referent) 
from a blank pattern and each target shape, all shapes positioned centrally on the 
pattern. (b) Performance of the models to discriminate a cross and blank pattern when 
crosses are in random positions on pattern, CS+ pattern had cross in centre. 

For the final batch of Phase 1 simulations, the cross of the rewarding stimulus 

(CS+) was centrally located on the pattern, with the correct test stimuli (TSCOR) crosses 

being placed in non-central locations on the test patterns, TSINC was always a blank 

white image. Here the DISTINCT model achieved average results for each of the cross 

locations ranging from just 52% to 58% (Fig 4.1b: blue diamonds). However, individual 

simulations for each location always retuned very low accuracies of between 50-55%. 

The MERGED model performed marginally better, achieving averages of 58% to 59% 

during simulation on all but two configurations (Fig 4.1b: green triangles), with no 

individual simulation achieving less than 54%. This model did however achieve 88% 

accuracy for the two instances where the TSCOR pattern crosses were at the same height 

as the centrally located CS+ cross. The SEO_AB model simulations never achieved 

more than 58% accuracy with individual simulation KCSR results ranging from 0.52 to 

0.58 (Fig 4.1b: purple squares). 
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 Overall, all models were able to discriminate the cross referent shape from both 

a blank pattern and each of the five target shapes, with performances no lower than 60% 

accuracy. These were similar to the empirical honeybee results for phase 1 tests (~70% 

cumulative touches on the referent patterns (Avargues-Weber, Dyer et al. 2011)). Only 

the DISTINCT model was able to achieve simulation results of over 60% accuracy for 

the offset cross tests, and then, only when the cross was at the same height as the CS+ 

pattern’s cross. 

 

4.4.2 Simulation results – ‘above and below’ phase 2  

In the first batch of Phase 2 simulations the models had to discriminate a centrally 

positioned cross with a target shape above it (CS+ and TSCOR) from a similarly 

positioned cross with the same target shape below it (TSINC), repeated for each target 

shape (Fig 4.2a). The MERGED model failed to discriminate three out of the five target 

shape stimuli sets (trefoil, diamond, disk) with individual simulations having KCSRs of 

less than 0.5 (i.e. incorrectly identifying the TSINC pattern as more similar to the CS+ 

pattern than TSCOR). The simulations for the remaining two target shapes averaged ≥60% 

accuracy (bar: 65%, grating: 60%). The DISTINCT model’s simulation averages for the 

different target shapes ranged from 62% to 67%. The SEO_AB markedly outperformed 

all other models with all individual simulation results in the region of 84±3%. When the 

stimuli were configured with the cross and target shapes positioned vertically 

equidistance from the pattern centre, the MERGED model again failed to discriminate 

the same three target shapes; it performed slightly better on the bar and grating patterns 

achieving simulations averages of 69% and 74% respectively (Fig 4.2b: green bars). 

The DISTINCT model failed to discriminate the dot target shapes, and only averaged 57% 
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on the diamond shape simulations (individual simulation KCSRs: 0.51 to 0.63). The 

other target shape simulations did however outperform the corresponding results on the 

centrally positioned cross simulations by 1-4% (Fig 4.2a,b). The SEO_AB model 

discriminated all the target shape simulations in this configuration, however the trefoil 

and diamond simulations performed less well using these equidistance stimuli achieving 

just 65% and 58% respectively, compared to 84% for both shapes on the centrally 

located cross patterns. 

 
Figure 4.2 Summary of model performances for ‘above and below’ phase 2 simulations 
when target shape is the same on all patterns. (a) Referent centrally located in all 
patterns. (b) Referent and target shapes equidistance from centre.  

The second set of simulation tasked the models with generalising from one 

target shape on the CS+ pattern to each of the five different target shapes on the test 

stimuli pair (Fig 4.3). The MERGED model failed to generalise between targets with 

the worst individual simulations always achieving a KCSR of 0.5 or lower, and 

averaging no more than 54% for any given target shape. The DISTINCT model 

produced similarly poor simulation results; only when the CS+ target was a diamond or 

dot, and the crosses were centrally located did the model simulations achieve an average 

performance of 60%. All other pattern combinations resulted in individual trials failing 

to achieve a KCSR of over 0.5. The SEO_AB model consistently achieved higher 
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simulation results, with the exception of the diamond shape on the CS+ pattern 

simulations. All TSCOR patterns were correctly identified on the equidistance cross 

configuration with average performances ranging from 55% to 62%. Where the target 

shape was a diamond on the CS+ patterns the simulations averaged 53%, interrogating 

the individual simulations of each target shape I found patterns that contained the bar 

target shape achieved just 49% (average of 1,000 simulations). Markedly higher 

simulation performances were achieved when the referent crosses were positioned 

centrally; here the lowest individual simulation trial for any target shape produced a 

KCSR of 0.73 with experiment performances for each of the possible CS+ targets 

ranging from 77% to 80%.  

Figure 4.3 Summary of model performances for ‘above and below’ phase 2 simulations 
when target shape is different on the CS+ stimulus to those on the TSCOR / TSINC stimuli. 
(a) Referent centrally located in all patterns. (b) Referent and target shapes 
equidistance from centre. Blue: DISTINCT, green bars: MERGED, purple bars: 
SEO_AB. 

The remaining simulations were those where the CS+ and test stimuli pattern 

pairs were presented with the crosses in the different location configurations (CS+ 

crosses centred and TSCOR/TSINC equidistance, or vice versa). When the same target 

shape was used for all patterns the MERGED model achieved simulation averages of 56% 

and 63% for the bar and grating shapes when the crosses were centrally located, and 



 

 
 

130 

similarly 57% and 63% respectively for these shapes on the equidistance patterns. 

Performance for the CS+ centrally located cross and trefoil target shape patterns was 

56%. With the above exceptions, all other simulations for the matching target shapes 

failed to consistently achieve over 50% accuracy. When the CS+ and test stimuli pairs 

presented different target shapes none of the models succeeded in consistently 

generalising to the TSCOR pattern (Fig 4.4a, Fig 4.4b). Performances ranged from 31% 

to 45% for SEO_AB, showing a consistent preference for the TSINC patterns. The 

DISTINCT and MERGED models performed 5-15% better, with simulation averages of 

49-53% (individual simulation trial KCSRs ranged from, DISTINCT: 0.41 to 0.55, 

MERGED: 0.36 to 0.56).  

Figure 4.4 Summary of model performances for ‘above and below’ phase 2 simulations 
when referents are in different locations and target shape is different on the CS+ 
stimulus to those on the TSCOR / TSINC stimuli. (a) CS+ referent centrally located, TSCOR 
/TSINC shapes in equidistance positions. (b) CS+ referent at equidistance positions and 
test stimuli referents centrally located.  Blue: DISTINCT, green bars: MERGED, purple 
bars: SEO_AB. 

In summary, for the phase 2 stimuli experiments simulated here, only SEO_AB 

was able to consistently generalise to the correct ‘above’ pattern configuration 

irrespective of the target shapes used, however, this was only when the crosses were 

centrally positioned within all the patterns. All models failed the task when the CS+ and 
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test stimuli pairs had the referent crosses in different location configurations and the 

CS+ presented a different target shape to that of the TSCOR and TSINC patterns. 

 

4.5 Discussion 

The ‘above and below’ experiments simulated in this chapter are often referred to as a 

conceptual, or spatial relationship, learning tasks. It is easy to presuppose that such a 

task would require a large vertebrate brain in order to be able to comprehend such 

advanced relationships. Indeed, the only (non-human) animals previously found to be 

able to solve the task had been birds (pigeons: (Kirkpatrick-Steger and Wasserman 

1996)) and primates (chimpanzees (Hopkins and Morris 1989), baboons (Depy, Fagot et 

al. 1999), capuchins (Spinozzi, Lubrano et al. 2004)). The authors of the original ‘above 

and below’ honeybee study (Avargues-Weber, Dyer et al. 2011) sought to confute this 

‘big brain’ assumption, and provided, for the first time, evidence of above/below spatial 

understanding in insects. 

 In this chapter I employed three theoretical bee brain models, previously 

discussed in chapter 2 (SEO_AB) and chapter 3 (DISTINCT and MERGED), and tested 

their ability to generalise over a large range of ‘above and below’ test patterns (5 target 

shapes and 2 position configurations = 100 stimuli trials). This was still a very 

simplified task compared to that conducted on real honeybees. The bees during their 

experiments were presented with 50 training pattern pairs where the referent and target 

shapes could be positioned in a large variety of different horizontal positions and 

heights on the patterns. Yet, even after the first five training trials the real honeybees 

had, on average, learnt to identify the rewarding pattern configuration above chance (t19 

= 2.8, p = 0.011) (Avargues-Weber, Dyer et al. 2011).  
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 In contrast, my models’ performances were most often unimpressive, even with 

the simplified stimuli sets. When the test patterns had different cross configurations to 

that of the CS+ pattern (centrally located versus equidistance, or vice versa), the 

majority of the tests failed to produce consistent simulation performances of over 50% 

accuracy. This was also the case when I used the same target shape on both the CS+ and 

test patterns. These initial results suggest that the simple bee brain models presented 

here are insufficient for explaining how the bees can solve this spatial relationship task. 

It is possible that the lobula large-field orientation-sensitive neurons (Maddess and 

Yang 1997) I utilised in the models do not in themselves provide sufficient visual 

fidelity to discriminate the ‘above and below’ stimuli pairs. Equally, it could be that the 

single layer of excitatory and inhibitory synapses of these neurons onto the mushroom 

body Kenyon cells in my models are simply too rudimentary to allow more complex 

object relationships to be established (see (Kleyko, Osipov et al. 2015)). However, there 

is one other factor that has thus far been excluded from my investigation. In the original 

behaviour experiments (Avargues-Weber, Dyer et al. 2011), much like the other 

honeybee generalisation experiments (Giger and Srinivasan 1995, Giurfa, Hammer et al. 

1999, Stach and Giurfa 2001, Stach, Benard et al. 2004), the authors determined an 

individual bee’s final choice selection only when it either touched one of the two 

presented stimuli, or physically landed on a feeder. In my simulations I assumed that the 

bees would be making their choice from the initial decision chamber of the Y-Maze 

flight arena, viewing both patterns, and selecting to fly to the pattern that generated 

Kenyon cell responses most similar to those learnt during previously rewarding pattern 

views. So, if we presuppose that the honeybees were to fly down each of the Y-Maze 

arms before finalising on a choice, then a much simpler process could be employed to 

solve this task. 
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In line with my current modelling results (Fig 4.4), I hereon assume that the 

honeybees would be unable to make a correct choice from the Y-Maze decision 

chamber. The bees would therefore be forced to make a random selection and traverse 

down one of the two Y-Maze arms. Once near the end of the Y-Maze arm, a bee could 

fixate (slow scanning flight manoeuvres, typically 1-3 cm in front of a stimulus) on the 

pattern. The bee would now be able to consistently centre itself directly in front of each 

shape (referent and target), and in doing so would reduce any horizontal, vertical or 

distance invariance between visits; previously shown to enhance my models’ 

performances (Fig 2.2, Fig 3.2). The bee should now be able to easily discriminate the 

referent from any of the other five target shapes; as demonstrated with all three of my 

models (Fig 4.1a), indeed the SEO_AB model achieved ≥ 80% accuracies. With the 

referent identified, and aligned directly in front of the bee, the task of identifying if this 

pattern is the rewarding stimulus becomes identical to that of my consistently centred 

cross stimuli configurations (Fig 4.3a). The only difference is that, rather than the 

crosses having to be in the centre of the pattern, the bee now simply moves till the cross 

is in the centre of its field of view (see Fig 4.5). Simulations using the SEO_AB model 

showed, in these conditions, a consistent preference for the appropriately configured 

‘above’ test stimuli, with overall averages just below 80% accuracy (>70% accuracy for 

each of the 25,000 individual simulations).  

It is important to stress, that these simulation results were possible without any 

form of object relationship, or spatial representation being built into my models. In fact 

the SEO_AB model required absolutely no adaptions, being identical to that used in 

Chapter 2, and still only utilised just the four optic neuron outputs from each eye, and 

excitatory only synapses of these neurons onto a single layer of mushroom body 

Kenyon cells. Yet, despite this models extreme simplicity, these results are strikingly 
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similar to the empirical data recorded during the honeybees’ training trials (~80% 

correct choice accuracy), as well as for the novel target unrewarded control tests (~70-

75% cumulative touches on correct patterns) (Avargues-Weber, Dyer et al. 2011). 

At this point, it is worth interjecting, and highlighting a discrepancy between the 

Chapter 2 results for the SEO_AB model simulations, and those simulation results 

reported here. In the previous chapter, I demonstrated the remarkable ability of the 

SEO_AB model to discriminate between two very similar horizontal grating patterns 

(Fig 2.4b, 2.4c), however, this same model failed to consistently generalise between 

pairs of similarly oriented gratings, even when using perpendicularly oriented grating 

patterns as the TSINC distractors (Fig 2.5b). Yet in these ‘above and below’ simulations 

the SEO_AB model produced the highest average performances, even when tasked to 

generalise between different target shapes (Fig 4.3a). So how can the same model 

enable fine discrimination for one set of stimuli, and excellent generalisation for another? 

Detailed analysis of the LOSN responses for a given stimulus (see Chapter 2.3.2 for 

LOSN calculations), and the resultant Kenyon cell similarities between stimuli, 

provided an answer. Figure 4.5 shows an example of a ‘above and below’ stimuli triplet 

(CS+, TSCOR, TSINC). I assume the bee learns the CS+ pattern while the cross is in the 

centre of its field of view, and that the bee would always identify and fly to the referent 

in the corresponding TSCOR and TSINC patterns; in this way the bee’s field of view is 

always centred on a cross (Fig 4.5, blue boxes). From this position the lower half of the 

pattern is identical on both the CS+ and TSCOR patterns (Fig 4.5 red boxes). This 

produces very similar LOSN responses, and therefore nearly identical Kenyon cell 

responses (the simulated responses include a small amount of noise, this was applied to 

account for both the slightly different LOSN responses to the same visual input 

observed during electrophysiological recordings (Maddess and Yang 1997), and 
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inevitable variability in synaptic neurotransmitter signalling). In contrast, the LOSNs 

responding to stimuli in the upper half of the patterns would not be identical, due to the 

different target shapes presented. Nonetheless, overall the similarities in this one half of 

the visual field, compared to no similarity at all between the CS+ and TSINC patterns, is 

sufficient to produce ≥70% simulation accuracies. This model is therefore once again 

doing fine discrimination, not generalisation, only here, with just one half of the 

patterns. It is conceivable that the bees could learn to associate only those Kenyon cells 

that receive input from the lower visual field with reward, but as I’ve demonstrated, this 

would not be absolutely necessary. When bees are trained on the ‘below’ configurations 

being rewarding, no change would be required to the model. In these instances the 

visual field above the crosses in the CS+ and TSCOR patterns would be identical, and 

similarly very different in the TSINC stimuli, resulting in the same effect. 

 

Figure 4.5 Schematic representation of the honeybee field of view when observing 
‘above and below’ patterns. Blue boxes: field of view when bee positioned directly in 
front of referent cross shapes. Red boxes: lower half of visual field (in simulations this 
would encompass the entire lower half of blue box, it is shrunk here to be visible).  The 
pattern portion visible within the lower half of the visual field (red boxes) of the CS+ 
and TSCOR stimuli would be virtually identical, allowing discrimination from the 
corresponding TSINC viewpoint where part, or all, of the target shape would also be 
present. 

 



 

 
 

136 

The results presented in this chapter do not disprove that honeybees are using 

some form of spatial representation to solve the ‘above and below’ task. What they do 

provide is a number of predictions of honeybee behaviour that would be required if the 

bees are indeed using the simpler technique hypothesised here. (1) We would expect 

that the bees would be unable to identify the rewarding patterns from the decision 

chamber of the Y-Maze. This would culminate in them choosing to fly down the 

rewarding arm and unrewarding arm equally upon entering the Y-Maze, with no 

significant difference to chance over the 50 training trials. (2) We would expect the bees 

to initially fixate a small distance from the referent and target shapes on a pattern, and 

not to visit the feeder in the centre of the pattern directly.  (3) If a bee were to fixate in 

front of the target shape first, it should then move to fixate in front of the current 

pattern’s referent. (4) After fixating at the rewarding pattern’s referent shape, the bees 

should choose to directly visit the current pattern’s feeder. (5) Similarly, a bee should 

traverse to the opposing arm after fixating at the referent of the unrewarding pattern. 

In the following chapter (Chapter 5) I describe my replication of the experiments 

by Avargues-Weber et al. (Avargues-Weber, Dyer et al. 2011), incorporating high-

speed videography. This allowed the tracking and subsequent analysis of the honeybees’ 

flight behaviour whilst they actually learnt the ‘above and below’ task. I was then able 

to assess how the observed honeybee behaviour correlated to my aforementioned 

hypothesises. 
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Chapter 5: High-speed videography analysis of honeybee 

flight trajectories provides new evidence on how bees solve 

the ‘above and below’ conceptualisation task 

 

5.1 Abstract 

Substantial research has been conducted to ascertain which visual features honeybees 

are able to discriminate, and how well they can generalise particular features to novel 

stimuli. However, little is known about how the bees actually manoeuvre in front of 

stimuli, which features they fixate, and how types of stimuli presented affect their flight 

paths or behaviour. Here, I explore if the physical characteristics of the honeybee flight 

trajectories could actually aid in solving a complex visual conceptualisation problem. 

Theoretical modelling of the bee brain when presented with stimuli from the ‘above and 

below’ spatial relationship task, showed it might be possible to solve the problem 

without having to ‘understand’ the underlying relationships between the pattern shapes. 

In this second stage of the study I used high-speed videography to capture the actual 

behaviour of real honeybee while learning the task. I analysed 150 flight paths of three 

bees recorded during the whole of their ‘above and below’ training regimes. By the end 

of training all three bees achieved ≥60% correct choice accuracy for the rewarding 

patterns (last 10 trials). In over 80% of these flights the bees first fixated at the lowest 

shape on the pattern at the end of the initially chosen arm, if the bees were within the 

rewarding arm they directly visited the rewarding feeder in over 90% of such trials, if 

the bee was in the unrewarding arm it would inspect the pattern and abandon this 

incorrect arm without visiting the feeder 20-50% of the time. Two out of the three 
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honeybees tested were able to generalise to novel target shapes presented in the correct 

‘above and below’ configurations during unrewarded tests. As with training trials, these 

bees fixated at the lowest shape on the patterns, and subsequently made their decisions 

based on a simple discrimination of this single observed shape, before choosing to visit 

the feeder, or not. This study shows that not all seemingly complex problems 

necessitate complex cognition, a fact that may be just as applicable for animals with big 

brains as for honeybees. 

 

5.2 Introduction 

In 1977 Wehner and Flatt published evidence of honeybees performing visual fixation 

flight manoeuvres when approaching within 1-3 cm of a vertically displayed stimulus 

(Wehner and Flatt 1977). In this situation, the bees would stabilise their head roll and 

pitch movements, and adjust their body axis to similar positions on each approach to a 

feeder. Subsequent behavioural work has shown that honeybees use optic flow in order 

to centre themselves while traversing a tunnel (Srinivasan and Zhang 1997) as well as 

stabilising their height to maintain a constant flight speed (or more specifically, constant 

speed of optic flow) (Baird, Srinivasan et al. 2006). Electrophysiology has been able to 

show how some of these behaviours are mediated, with identified neurons responding to 

neck muscle movements allowing a precise counter-rotation of the head in respect to the 

natural thorax roll during free flight (Hung, van Kleef et al. 2011), and numerous lobula 

(3rd optic ganglion) motion and direction sensitive extrinsic neurons are theorised to 

help in course correction and collision avoidance  (Goodman, Fletcher et al. 1987, 

Ibbotson 1991). However, unlike the initial Wehner and Flatt experiments these are 

typically concerned with the flight dynamics themselves, not on the possible influence 

they may have on visual cognition. In the last few years, aided by the availability of 
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high-speed videography equipment, research has begun again on how bees approach 

and scan visual targets. These experiments have shown, as with the previous study, that 

the bee head is stabilised during free flight, with very fast yaw head saccades during 

turns (Boeddeker, Dittmar et al. 2010), as well as stabilisation during sideways 

translational movements during fixation scans (Boeddeker and Hemmi 2010), both of 

which would aid in keeping a stable image on the retina. Perhaps more revealing of how 

honeybees may adapt their flight behaviour to specific problems is recent publication by 

Morawetz et al. They showed that bees are both better and faster at discriminating 

colour cues which appeared in the lower half of a flight arena (i.e. within the ventral 

region of the bees visual field) than those same cues in the top half of the arena 

(Morawetz, Chittka et al. 2015). However, when all the feeders and corresponding cues 

were positioned at the top of the flight arena the bees would change their flight 

trajectory to fly directly towards the feeders and showed an increase in their accuracy 

and choice speed during the training, thus showing a direct adaption of their innate 

behaviour dependent on the specifics of the presented task. In this chapter, I investigate 

if honeybees might make similar behavioural changes during the training of the ‘above 

and below’ spatial relationship task, and if these changes could aid in the bees learning 

to solve the problem. 

In the previous chapter (Chapter 4) I used theoretical bee brain models to 

simulate how honeybees might react to the ‘above and below’ stimuli. Due to the 

potential variability of the target and referent shapes positions on the experimental 

patterns, my models predicted that the bees would be unable to discriminate the 

correctly configured stimuli from the Y-Maze decision chamber. An alternative method 

for solving the task was consequently hypothesised; this involved a two-step process. 

First, the bee should fly down either Y-Maze arm to the displayed pattern, then fixate at 
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each of the presented shapes until it could determine which of the two shapes was the 

referent shape. In the second step, the bee should fly to, and fixate at, the identified 

referent. If the visual input while at this position was sufficiently similar enough to that 

of the learnt rewarding stimuli then it should go directly to the pattern’s feeder, if not, 

immediately fly to the other Y-Maze arm and repeat the process.  

Here, I replicate the ‘above and below’ experiments of Avargues-Webber et al. 

(Avargues-Weber, Dyer et al. 2011) with the addition of high-speed cameras to record 

the honeybee flight paths during each training trial, and determine if the honeybees’ 

behaviour did indeed match that of the above hypotheses. 

 

5.3 Methods 

5.3.1 Apparatus  

Honeybees (Apis mellifera) from two colonies were allowed to collect 20% sucrose 

solution (w/w) from a feeder located approximately 30 meters from the hives. 

Honeybees at the feeder were marked with coloured dots on the thorax and abdomen to 

uniquely identify them; those bees that regularly visited the site (every 5-10 minutes) 

were subsequently trained to visit a Y-Maze located five meters away from the main 

feeder. The Y-Maze was situated on a small table in open-air, but was sheltered from 

direct sunlight by a sunshade positioned 2 meters above the top of the apparatus.  

 The Y-Maze (see Fig 5.1) consisted of an entrance hole that led to a central 

decision chamber, from here two arms extended. Each arm measured 40 x 20 x 20 cm 

(L x H x W). Within each arm a removable back wall 20 x 20 cm was placed 15 cm 

from the decision chamber, this provided support for the stimuli and feeder tubes. 
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Unlike the original experiments no Perspex transparent cover was placed on the top of 

the Y-Maze flight arena; this was to allow for an unobstructed and undistorted view 

while taking high-speed video recordings. Two Yi (Xiaomi Inc. China) sport cameras 

were positioned side-by-side 10 cm above the entrance of the Y-Maze. Their field of 

view was adjusted such that they looked down into the arena at approximately 60˚ from 

horizontal, establishing in both cameras a wide-angle view of both arms. In the centre of 

the decision chamber, located on the Y-Maze floor, was a continuously running four-

digit millisecond digital display (Adafruit Industries, LLC. USA) that allowed both 

cameras to be synchronised. This display was controlled via a microcontroller (Ardunio 

Uno) housed outside the Y-Maze. Each Yi camera was configured to record at 120 

frames per second at a resolution of 1280 x 720 pixels. Power to each camera was 

provided via USB cables from an externally powered USB hub, this also allowed video 

footage to be downloaded from the cameras’ internal memory cards to a connected 

laptop computer (Apple MacBook Pro). 
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Figure 5.1 Y-Maze apparatus used for ‘above and below’ experiments. Main picture 
shows the view from one of the two Yi sport cameras. (1) Entrance hole that bees fly 
through to enter Y-Maze (2) Individual honeybee entering apparatus. (3) Millisecond 
timer used to synchronise the footage of both cameras. (4, 5) Feeding holes in the 
centre of patterns. (4) Example of ‘below’ configured stimulus with a cross referent 
and, in this case, a grating target shape. (5) Example of corresponding ‘above’ 
stimulus. Insert: side view schematic of the back wall at the end of Y-Maze arm. (a) 
Temporary cover plate added to hide the stimulus until the experimental trial was ready 
to be commenced. (b) Printed stimulus, discarded after each trial. (c) Removable back 
wall onto which the stimulus was attached; this had a 5mm diameter hole located in the 
centre. (d) Feeding tube pushed through printed stimulus flush into the removable back 
wall. (e) Stopper containing either 30µl of 50% sucrose solution (w/w) or saturated 
quinine solution, this was attached onto the back of the feeding tube. 

 

 Each stimulus (see below) was printed on A4 white UV-reflecting paper using a 

high-resolution laser printer. These were first cut to 20 x 24 cm (W x H) and then 

positioned in front of the 20 x 20 x 0.5 cm removable back wall (the additional height of 

the paper made it easier to align and adjust the pattern’s vertical position). The feeding 

tubes consisted of 5 mm diameter x 1 cm long flanged tubes; these were pushed flush 

through the centre position of the paper into a corresponding hole in the removable back 

wall. On the reverse of the wall a stopper containing either sucrose or quinine solution 

was attached to the feeding tube (Fig 5.1 insert). This technique was implemented to 

prevented sucrose solution being deposited on the entrance of the feeding tube during 
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refilling, thereby forcing the honeybees to crawl into the tube to determine if it 

contained a reward. A short pilot study with two honeybees demonstrated that the bees 

were able to detect the sucrose solution with their antennae if the tubes were filled from 

the front (Fig 5.2). For similar reasons, the stimuli were also disposed of after a single 

use, and the feeding tubes cleaned between trials to prevent odours being deposited by 

the bees and being subsequently used as an olfactory cue during learning. As there was 

no top cover on the apparatus, a blank brown cardboard cover-plate 20 x 20 x 0.5 cm 

was placed in front of each of the two stimuli to prevent a bee entering from the top of 

the Y-Maze and seeing the patterns or accessing the feeding tubes before a trial had 

begun.  

 

	
  	
  	
   	
  

Figure 5.2 Pictures of honeybees approaching feeder tubes during the ‘above and 
below’ pilot study. (Left) bee that quickly scanned past the protruding unrewarding 
feeder tube and flew to the other Y-Maze arm. High-speed footage showed the bee 
antennae touching the tube before it departed. (Right) bee having to land and crawl 
into a flush feeder tube in order to determine if it is rewarding or not. Inserts: zoomed 
version of the respective bee bodies. 

 

5.3.2 Stimuli 

The stimuli for a single experimental trial were composed of two pairs of patterns, 20 x 

22 cm (W x H) when printed and cut to size. Each achromatic pattern consisted of a 

white background with a black ‘referent’, which in these experiments was always a 4 x 
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4 cm cross, and a black ‘target’ that was either; concentric diamonds (5 x 6 cm), a small 

horizontal bar (1 x 3 cm), a vertical grating (5 x 5 cm), a filled circle (3 cm in diameter), 

or a radial three-sectored pattern (4 x 4 cm) (see Chapter 4, or (Avargues-Weber, Dyer 

et al. 2011) Experiment 2 for designs). For each pattern pair the same target was placed 

either above or below the referent cross, these were aligned with a variety of vertical 

and horizontal offsets from the pattern centres and with different vertical distances 

between the referents and targets. Ten variants were created per target creating in total 

fifty pattern pairs. In addition fifteen stimuli were produced with just the referent cross 

(randomly positioned), and, for both the referent and targets, one stimulus with each 

shape positioned centrally on the pattern. 

 

5.3.3 Experiment trial procedure  

Each trial consisted of the following setup. A rewarding stimulus (CS+) was placed 

onto the removable back wall and a clean feeding tube inserted with a stopper 

containing 30µl of 50% sucrose solution (w/w). The second, unrewarding, distractor 

stimulus (CS-) was fitted to its wall with another clean feeding tube leading to a stopper 

with 30µl of saturated quinine solution. The CS+ and CS- stimuli were pseudo-

randomly (never more than four consecutive trials on the same arm) placed against the 

respective Y-Maze back walls to avoid the bees learning a side preference. The cover-

plates were placed in front of these to prevent the stimuli from being seen. Both Yi 

cameras were started, such that there was an individual video file per camera, per trial. 

If the bee had already returned to the Y-Maze it was shooed away so that it had to re-

enter the apparatus through the entrance hole. The two cover-plates were removed and 

an individual bee (only one bee was trained at a time to prevent multiple bees entering 
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the setup) was allowed to enter the decision chamber. From here, if the bee chose to 

enter the rewarding pattern’s feeding tube, it crawled in, and could drink the sucrose 

solution ad libitum. If the bee chose the incorrect CS- pattern it entered the tube and 

tasted the quinine solution and was then allowed to fly to the other pattern to receive the 

reward. Typically the bees remained within the confines of the Y-Maze flying between 

the arms via the decision chamber; however it was possible for the bees to leave and re-

enter the setup from the open top. Filming of a trial continued until the honeybee 

entered the CS+ feeding tube. After feeding the bee would depart for the hive, returning 

anywhere from 5 - 10 minutes to several hours later depending on weather conditions. 

This interval allowed for the next pair of stimuli to be inserted into the Y-Maze and the 

previous video files to be downloaded from the cameras onto the laptop.  

 

5.3.4 Pre-training – ‘above and below’ phase 1 

In total eleven honeybees were trained to visit the Y-Maze. Each individual bee was 

first trained using an absolute conditioning protocol (Giurfa, Hammer et al. 1999). The 

rewarding CS+ stimulus was always a black cross (referent) randomly positioned on the 

white background, the centrally located feeding tube led to 50% sucrose solution (w/w). 

These patterns were pseudo-randomly positioned into one of the two Y-Maze arms per 

trial. The other arm contained a fresh blank white sheet of paper with the feeding tube 

only providing quinine solution. The bee’s first choice was recorded and acquisition 

curves produced by calculating the frequency of correct choices per block of 5 trials. 

After 15 training trials a discrimination test was introduced. In this test two patterns 

were used, one consisted of the normal cross shape, and the other contained one of the 

five target shapes; neither pattern was rewarding with both feeding tubes leading to 
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30µl of water. The bee entered as normal but was given 45 seconds to explore the new 

configuration. The number of visits to each feeding tube was recorded. 

 

5.3.5 Main training – ‘above and below’ phase 2 

In the second training phase, six of the initial eleven bees that completed phase 1 

training were either subjected to a relational ‘above’ or ‘below’ conditioning protocol. 

For ‘above’ two patterns were presented in each Y-Maze arm on each trial, both 

patterns contained the cross referent shape and another shape selected from the four 

available target shapes (this excluded the shape used for that bee’s phase 1 

discrimination test). In one pattern (CS+) the target would appear above the referent 

cross; this was configured so the central feeding tube lead to 50% sucrose solution 

(w/w). The other pattern (CS-) presented the target below the cross and its feeding tube 

led to saturated quinine solution. The target shape order was pseudo-randomised so that 

the same shape never appeared more than twice in a row and that there was no repeating 

order to the target presentations, all targets were shown ten times during initial training. 

Another group of individual bees were trained on the reversal of this protocol with the 

target below the referent being rewarding. After 50 training trials, the three bees that 

completed entire training regime were subjected to a 45 second non-rewarding control 

test. This maintained the above and below relationship used during training but 

presented the target shape that was used during that bee’s phase 1 discrimination test. 

After three subsequent training trials, a final non-rewarding control test was performed 

with the same cross and target shapes, but the ‘above’ and ‘below’ configurations were 

presented in the opposite arms of the Y-Maze to the first test. In each test the number of 

visits to each feeding tube were recorded. 
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5.3.6 Video analysis – annotation 

The videos for each of the 50 training trials, for each bee, were replayed on a computer 

monitor in slow motion so that the particular flight trajectories of the bee could be 

observed and annotated.  

The honeybees typically displayed three types of flight characteristics during a trial. 

1. Direct flights: in these instances the bees would enter the flight arena and fly 

directly one or other of the feeding tubes. These flights would take less than 

a second until the bee had landed on the feeding tube (Fig 5.3a) 

2. Brief inspection: here the bees would briefly fly towards one of the pattern 

shapes anywhere from 5 – 10 cm from the end of the arena arm displaying 

the pattern, before turning away. These types of flight manoeuvres would 

typically only last 1-2 seconds (Fig 5.3b). 

3. Fixation scans: these were the most common form of flight manoeuvres 

observed during the experiments. The bees would approach a pattern shape 

and hover 1 – 3 cm from the shape, with a slow horizontal scanning motion. 

The bee might also quickly leave the pattern and then return and repeat the 

scan. These could last 5 – 10 seconds (Fig 5.3c). 
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Figure 5.3 Tracking of honeybees approaching a pattern. (a) Direct flight: bees fly 
directly to the feeding tube. This flight took less than a second. (b) Brief inspection: 
bees move towards a particular pattern shape but do not spend very long at the shape, 
or view it from a distance (5-10 cm). In this instance the bee quickly approached the 
end of the bar, then flew away, flew back towards the edge of the bar and then flew to 
the feeding tube. This whole flight took less than 2.5 seconds. (c) Fixation scan: the bee 
flew towards the cross shape and made multiple flight transitions across the whole 
pattern, with additional smaller scans in front of the bottom edges of the cross. It then 
flew away from the pattern before approaching the feeding tube. This flight took ~7.5 
seconds. Each red dot is the centre of the honeybee body in one frame of the video 
recording (approximately every 8ms).  

 

The following types of behaviour were recorded during the video analysis: 

• Side preference – upon entering the Y-Maze, whether the bee initially chose the 

left or right arm of the apparatus. 

• Correct 1st arm – if the bee initially selected the arm that contained the correctly 

configured pattern (CS+ arm). 

• Direct flights – if the bee flew directly to a feeder without fixating at the patterns, 

recorded for both CS+ and CS- arms. 

• Initial fixation point – where on the pattern the bee visited first (bottom shape, 

top shape, centre (feeder)), and similarly the shape type (CS+ referent, CS+ 

target, CS+ feeder, CS- referent, CS- target, CS- feeder). This included both 

fixation scans and the less common brief inspections.  

• Flight transitions – which transitions the bee made between the possible fixation 

locations (CS+ referent, CS+ target, CS+ feeder, CS- referent, CS- target, CS- 
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feeder). Both brief inspections and fixation scans of a location were recorded as 

a transition. 

 

5.4 Results 

5.4.1 Experimental issues (sample size and video analysis) 

Due to the 2015 British summer being one of the wettest on record, as well as the long 

training protocols required for this experiment, many of the days in August and 

September allocated for this project were unsuitable for honeybee training. In total 

eleven bees, which regularly frequented the mass feeder, were selected and individually 

trained to visit the Y-Maze apparatus. Unfortunately, due to further thunderstorms 

during the training procedures, five of these eleven bees never returned to the Y-Maze 

during phase 1 pre-training, and a further two bees were lost whilst I was conducting the 

phase 2 training. One trained bee was excluded from subsequent video analysis because 

it always chose the left arm of the Y-Maze and almost always entered the left feeder 

tube, irrespective of the stimuli presented. This study therefore consists of the three bees 

that completed the full experimental protocol, including the non-rewarding control tests 

with novel target shapes. Two of these bees were conditioned with the ‘below’ pattern 

configuration being rewarding (named [Below_A] and [Below_B]), and the remaining 

bee trained on the ‘above’ condition (named [Above_A]). 

It was initially presumed that detailed flight-path reconstruction of the honeybee 

flight trajectories would be necessary to assess how the bees were observing the ‘above 

and below’ stimuli. Paradoxically, given the effort establishing multiple camera views 

and video synchronisation, this was unnecessary for both the training and test trials. In 

just 9, out of the 150, recorded phase 2 training flights did the honeybees’ stop 
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approaching a pattern whilst midway down one of the Y-Maze arms and subsequently 

fly to the other arm. In all other cases the bees flew to the end of a Y-Maze arm and 

fixated a small distance from the presented stimuli. 488 of these fixation scans were 

directly in front of one of the referent shapes, target shapes, or feeder tubes. Out of all 

150 training trials there were just 28 occasions were the bees appeared to fly towards a 

particular pattern shape but altered their flight direction without a full fixation scan. 

These simple and consistent flight behaviours allowed all 150 training trials and the six 

test trials to be analysed using just video annotations (see Methods).  

 

5.4.2 Individual performances  

During Phase 1 (pre-training) all three bees consistently achieved ≥60% correct choices 

in each consecutive set of 5 trials (due to technical issues with the cameras the first 5 

trial results for [Below_A] were not available) (Fig 5.4a). The bees were subsequently 

subjected to a differential non-rewarding control test. This consisted of a same styled 

cross pattern versus a pattern with one of the five novel target shapes. Two of the bees 

([Above_A], [Below_B]) both visited the cross pattern first, upon finding no reward in 

the feeders they re-inspected the crosses, then entered the feeders again. [Below_B] 

subsequently left the arena. [Above_A] flew to the other arm, inspected the novel bar 

shape and entered that patterns feeder, again after no reward it left the arena. In contrast, 

[Below_A] first flew to the novel grating pattern and instigated numerous fixation scans 

at the bottom centre of this shape, after 5 seconds it eventually tried the feeder 

(containing 30µl of water). It then spent an additional 10 seconds making fixation scans 

of the bottom centre and bottom left bars of the grating before visiting the other arm. It 

fixated at different points of the cross shape for over 10 seconds but never entered the 
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feeding tube. After the 45 seconds allocated for the test the bee had to be repeatedly 

shooed out of the Y-Maze as it attempted to revisit each arm. 

For phase 2, the two bees trained on the ‘below’ protocol showed a correct 

choice accuracy of 80% for the first 10 trials (Fig 5.4b). However, their performances 

did slowly drop throughout the training regime to 65±5%. The ‘above’ bee ([Above_A]) 

only achieved 60% correct choice accuracy at the very end of the training (last 10 trials), 

with preceding blocks of 10 trials averaging from 30-50%. Full flight transition details 

can be found at the end of the chapter (Section 5.6). 

 
Figure 5.4 Individual honeybee performances for the ‘above and below’ experiments. 
(a) Phase 1 (pre-training): acquisition curves during an absolute conditioning protocol 
using a rewarding cross pattern and a blank distractor (percentage of correct choices 
as a function of blocks of five trials). (b) Phase 2 (‘above and below’ training): 
acquisition curve during training (percentage of correct choices as a function of blocks 
of ten trials). Bees had to, either, select the pattern where the target shapes were always 
below the crosses ([Below_A]: blue line, [Below_B]: purple line), or in the reverse 
configuration select the pattern where the targets were always above the crosses 
([Above_A]: red line). 

 

After the 50 training trials the bees were subjected to two 45 second non-

rewarding control tests (with three refresher training trials between tests). [Above_A]’s 

first feeder tube choice was always that belonging to the correctly configured patterns. 

Accumulatively the bee chose these correct feeder tubes 71% of the time (novel target: 

bar, feeder visit sequence; 1st test: [+,+,+,+], 2nd test: [+,-,-]). [Below_A] refused to 
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enter either of the feeder tubes during the entire 45 seconds of the 1st test (novel target: 

grating). During the 2nd test it entered the incorrect ‘above’ pattern’s feeder tube just 

once. The other bee ([Below_B]) entered the feeder tubes of the correctly configured 

pattern as its first selection during both control tests. However, for this bee, 

accumulative feeder visits showed only a 50% and 60% preference for the correctly 

configured pattern after each of the two 45 second tests (novel target: diamond, 1st test: 

[+,+,-,+,-,-,-,+], 2nd test: [+,-,+,+,-]). 

In summary, the bees’ showed 64% choice accuracy for the correctly configured 

patterns. The choice accuracy remained at 63.3% for the last ten choices of training. 

Interestingly, choice accuracy during the entire training was significantly poorer for 

[Above_A], where overall more wrong choices were recorded (46% correct), while the 

other two bees ([Below_A], [Below_B]) resulted in clearly more correct than wrong 

choices (average of 73% correct choices). However, at the end of the training the bees 

performed consistently ≥ 60% accuracy across all bees. In addition, at the end of 

training [Above_A] showed an overall preference for the correctly configured patterns 

when tested with a novel target shape (71%), whereas the results for the two bees 

trained on the reciprocal ‘below’ condition were less definitive. 

 

5.4.3 Flight analysis 

Analysis of the initial flight paths showed that the bees initially went to the left arm of 

the Y-Maze 57% of the time. For the last 10 training trials of each bee the overall 

average was 53%, with [Below_B] choosing each arm equally, however, [Above_A] 

and [Below_A] showed a consistent side preference for the right and left arms 
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respectively (see Fig 5.5). These preferences did not, however, show any correlation to 

their correct choice performance. 

If a bee initially visited the Y-Maze arm containing the rewarding pattern, the 

bee subsequently chose the rewarding feeder in this arm an impressive 94±6% of the 

time. By the end of training (last 10 trials) all bees attained 100% correct choices in this 

situation. In contrast, if the bees initially chose the wrong Y-Maze arm they only 

disregarded the current feeder, traversing to the other (rewarding) arm, during 35% of 

such trials. Here there was a large disparity between the bees. The bee trained on the 

above protocol only rejected the wrong arm once in the first half of training, but in the 

last 10 trials the bee ignored the incorrect feeder and went to the rewarding Y-Maze arm 

in 43% of the initial incorrect arm visits. Whereas both ‘below’ conditioned bees 

([Below_A], [Below_B]) rejected 67% of incorrect patterns during the first 25 trials, but 

conversely this dropped to 20% and 25% respectively for the last ten trials.  
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Figure 5.5 Honeybee initial arm choice and subsequent decision. (a) Number of times 
each bee chose the left and right Y-Maze arms, also shown number of choices in the last 
10 trials. (b) Percentage of times the honeybees made a decision to stay or depart the 
initially chosen arm. If honeybees initially chose the rewarding arm they should have 
remained in that arm (blue), if they chose the unrewarding arm they should have 
departed that arm (green). Remaining in the unrewarding arm (red) or leaving the 
rewarding arm (orange) indicates the percentage of times the bees did not correctly 
solve the task. Insert shows percentages for last 10 trials. 

 

Once the bees had approached a pattern, 77% of the stimulus scans commenced 

with a fixation of the bottom shape of the pattern (target or referent depending on the 

chosen arm). This behaviour consolidated towards the end of the training with 86% of 
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the last ten choices showing a fixation to the bottom shape. While this behaviour was 

overall less prominent in the [Below_A] compared to the other two bees, no such 

differences could be found towards the end of the training where [Below_A] again 

showed a high proportion of approaches and fixations at the bottom shape on the 

patterns (Fig 5.6). 

Out of the last 30 trials (last 10 from each bee), on only two occasions did a 

bee’s initial fixation on the bottom shape of the correct pattern, not immediately precede 

the bee going to the correct feeder (Table 5.1). In these exceptions, [Below_B] went to 

fixate at the top shape in the current pattern before entering the correct feeder, whereas 

[Below_A] visited the same shape on the other arm (top shape) before returning to this 

bottom shape again and finally choosing the correct feeder. Similarly, fixations on the 

bottom shape of the incorrect pattern were only followed by a fixation on that pattern’s 

top shape, on two occasions.  

After departing from the rewarding feeder tube, the bees would most often 

simply leave the flight arena, on a rare occasion they did briefly fixate on the bottom 

shape before leaving. Conversely, where bees chose incorrectly and were presented with 

quinine solution in the feeder, they would exit the feeding tube and proceed to fixate at 

length at both the bottom and top shapes, with repeated transitions between the 

presented shapes, they would also on occasion re-enter the incorrect feeder (Table 5.1). 

Only after these fixation scans would the bees finally leave this unrewarding arm and 

visit the other Y-Maze arm. Even during the last 10 trials of each bee, only four out of 

eleven visits to the wrong feeder were followed by a direct flight to the apposing arm. 
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Figure 5.6 Honeybee initial fixation point during above and below experiments. All 
bees initially inspected the bottom shape of the pattern more often than the top shape or 
central feeding tube (right). This was independent of whether it presented the referent 
shape (cross) or one of the target shapes (left). 
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Transition [Above_A] [Below_A] [Below_B] 

Total fixation count 161 160 167 

CS+ target => CS+ referent 7 => 0 39 => 4 37 => 4 

CS+ referent => CS+ target 43 => 5 6 => 0 6 => 3 

CS+ target => CS+ feeder 7 => 4 39 => 34 37 => 31 

CS+ referent => CS+ feeder 43 => 35 6 => 5 10 => 6 

CS- target => CS- referent 45 => 1 26 => 3 21 => 0 

CS- referent => CS- target 16 => 3 25 => 10 19 => 6 

CS- referent => CS+ arm 16 => 10 25 => 2 19 => 4 

CS- target => CS+ arm 45 => 12 26 => 11 21 => 15 

CS- feeder => CS+ arm 27 => 9 19 => 9 18 => 5 

 

Table 5.1 Flight transition counts for honeybee ‘above and below’ experiments. Values 
(total number of fixations at 1st shape) => (number of transitions from 1st shape to 
fixate at 2nd shape). 

 

5.4.4 Hypotheses comparison 

The first and second hypotheses of my modelling work in Chapter 4 suggested that, the 

probability of the Y-Maze arm the bees initially chose upon entering the flight arena, 

being the correct rewarding arm, should be no more than chance. Additionally, I 

predicted that the bees would fixate at one, or more, of the different shapes on the 

patterns before making a final decision on which feeder tube to enter. In just 13% of the 

trials did the bees fly directly to a feeder, although of these, 80% were in fact the correct 
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choice. In all other trials, the bees first flew down one or other arms of the Y-Maze and 

fixated at either the referent or target shapes. Overall results showed that the bees went 

initially to the correct arm just 47% of the time, equally, during the last 10 trials of each 

bee, they also, on average, achieved only 47% correct arm choices.  

 The third hypothesis stated, “If a bee were to fixate in front of the target shape 

first, it should then move to fixate in front of the current pattern’s referent”. The flight 

transition analysis did not support this conjecture. Only 7% of all fixations in front of a 

target were followed by a flight and new fixation in front of the same pattern’s referent, 

a highly significant discrepancy to the hypothesis. Furthermore, this harsh discrepancy 

to the prediction was found across all bees, and was also independent of whether the 

target in question was on the CS+ or CS- stimuli. 

The final two hypotheses declared that after a fixation at the referent of the 

rewarding pattern (CS+ referent) the bee should choose that pattern’s feeder (CS+ 

feeder). Correspondingly, if at the referent of the unrewarding pattern the bee should fly 

to the other Y–Maze arm. The [Above_A] bee (trained using ‘above’ protocol) did 

indeed traverse from the CS+ referent to the CS+ feeder after 81% of all its CS+ 

referent fixations. The two bees trained using the ‘below’ configuration also 

transitioned as expected ≥60% of the time, however, in total they only fixated at the 

CS+ referents on 16 occasions out of all 327 fixation events (<5%). This compared 

markedly to [Above_A]’s 27% proportion of fixations on CS+ referent. A similar 

dichotomy was seen in the CS- referent fixations. In all three bees there were just 16-25 

fixations of the CS- referent (12±3% of each bees’ fixations), [Above_A] transitioned 

63% of the times to the opposing arm, whereas the other two bees ([Below_A], 

[Below_B]) transitioned just 8% and 21% of the times respectively. 
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 Overall, the behavioural data collected supported hypothesis 1 and 2, refuted 

hypothesis 3, and showed a substantial variation, compared to the consistent behaviour 

anticipated from my modelling, depending on whether the bees were trained using the 

‘above’ or ‘below’ protocols. 

 

5.5 Discussion 

There is evidence that bees are able to successfully learn to select the correctly spatially 

configured stimuli (Avargues-Weber, Dyer et al. 2011, Perry and Barron 2013). Here, I 

wished to investigate how honeybees solve the task. Despite the limited sample size (see 

Results) all of the bees analysed in the study achieved ≥60% correct choices at the end 

of the training (last 10 trials). By careful analysis of the bees’ flight behaviour for all 

150 training bouts I unveiled a new insight into the honeybees’ behaviour. Although 

confirming the core hypotheses formed in my previous modelling chapter (Chapter 4) 

that honeybees would not require the conceptualisation of ‘above’ and ‘below’ spatial 

arrangements to solve this task, the honeybees tested here found a simpler, but 

analogous, technique to that proposed by my models. This provides a sublime 

explanation of how honeybees, and potentially other animals, may approach the 

problem. Remarkably, it appears that the bees would need to employ nothing more than 

stereotypical flight trajectories, and the most simple of discrimination abilities. 

 Overall the analysis of the bees’ flight paths suggest that, other than a few 

instances, the bees could not (or chose not to) make the correct choice from the Y-Maze 

decision chamber, even though they were only a small distance (~15-20 cm) from the 

stimuli. A larger sample of examples would be required to see if there are any 

similarities in either the target shapes, or positions of the shapes on the patterns, when 
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bees choose to fly directly to a feeder. Nevertheless, this result is mostly consistent with 

my theoretical model research (Chapter 4), which suggested that the bees would need to 

approach and fixate at the patterns before making a final feeder selection. The next 

hypothesis was that after a bee approached a pattern it would identify the constant 

referent shape (in both my modelling and behaviour experiments this was always a 

cross shape) from the presented target shape. The bees showed a highly significant 

preference for first fixating at the shapes presented at the bottom of the patterns, not 

contrary to my models that had no predefined order in which order the shapes should be 

viewed. This is also not that unexpected as Morawetz et al. showed bees are better at 

discriminating cues in the ventral region of their field of view (Morawetz, Chittka et al. 

2015), so it would make sense for bees to attend to these areas first. However, when 

bees first viewed the target shape, my models suggested that the bee should then move 

to fixate in front of the referent. This turned out not to be the case, with these particular 

transitions occurring only four times across all three bees. Fortunately, this behaviour 

also demonstrated a new strategy for solving the task. My modelling predicted that bees 

would use a consistent fixation point before making a decision, I assumed this to be the 

cross shape as it would provide a consistent discriminable feature (Chapter 4.5, Fig 4.5). 

However, if, as shown by the bees, the lowest shape on the pattern should be this fixed 

initial fixation point then my models can be reconfigured to centre their field of views at 

these lowest shapes. Since this task is now simply a discrimination task between a cross 

and potentially any of the other 5 target shapes, my modelling work in Chapter 4 (Fig 

4.1a) predicts the bees should achieve anywhere between 70% to 85% during training 

dependent on the particular shapes presented and 63-77% and 80-91% during the final 

generalisation test depending on the model DISTINCT or SEO_AB respectively. The 

DISTINCT model’s performance would be more invariant to the exact distance from 
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the observed shapes and therefore likely to be a better, or at least more consistent, 

indicator of reward. These DISTINCT results are indeed very reminiscent of the 

empirical results of the original honeybee experiments (Avargues-Weber, Dyer et al. 

2011), if slightly higher than my own honeybee results (possibly due to reasons 

discussed later in this chapter).  

Supportive to this assumption, is that during the honeybee training, after 

viewing the bottom shape of the rewarding pattern all three bees would subsequently 

chose the correct feeder (in all but four cases overall, and always during the last 10 

trials). It appears that if presented with a shape at the bottom they previously found to 

be rewarding they could make an instant decision without inspecting the rest of the 

pattern. For the ‘above’ conditioned bee this is theoretically an easier assessment, as the 

bottom shape must always be a cross. For the ‘below’ conditioned bees they must 

recognise the four possible target shapes that could be displayed at the bottom of the 

rewarding pattern, or conversely learn if the shape is not a cross then it must be the 

rewarding stimulus. This may potentially explain the differences seen during the control 

tests between the two ‘below’ conditioned bees. [Below_A] when presented with the 

novel grating patterns during the first unrewarded control test refused to enter either of 

the feeding tubes, in this case neither the grating nor the cross would be associated with 

reward. This bee repeatedly returned to the decision chamber to fixate at the Y-Maze 

entrance (something not seen during training trials, as if it was unsure it was in the 

correct location), before re-inspecting each pattern. In contrast, [Below_B] exhibited a 

similar behaviour to that seen during the normal training trials. During the first test it 

entered the Y-Maze and chose the ‘below’ configured arm, fixated at the novel diamond 

shape then went to the feeder. In the second trial on numerous occasions it would 

approach the ‘above’ configured pattern (with the cross at the bottom) and then abandon 
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a feeder visit and return to the other arm, although interestingly within this correct arm 

it did fixate more at the top positioned cross shape, perhaps having already learnt that 

the diamond was not an indicator of reward. 

 When the bees initially entered the wrong Y-Maze arm and fixated at the bottom 

shape on the patterns, you would think the decision process would be the same as 

described above; is the pattern a cross, or known target shape (depending on the 

protocol), if not then fly to the other Y-Maze arm. Yet, in two thirds of such trials this 

did not occur. In these circumstances the bees most often flew and entered the incorrect 

feeder. It is possible that the bees simply choose to try this feeder since they were 

already close to it. Potentially being a more optimal strategy than expending energy 

flying to the other Y-Maze arm, only to have to return if it was incorrect. Indeed, the 

second ‘above’ bee, excluded from my analysis, in every trial went initially to the left 

arm, and almost always tried the feeder, if unrewarding it simply flew directly to the 

other feeder. However, this does not then explain why the bees would spend time 

fixating at the pattern shapes after they had already ascertained it was the wrong arm, a 

consistent behaviour seen even towards the end of the training. It may simply be that 

when observing a correct bottom shape the bees have high confidence that it is a 

rewarding stimulus, but when an incorrect shape is observed the bees would have a 

lower expectation that it was rewarding (as should be the case) but still insufficient 

certainty of an incorrect stimulus to breach some internal threshold, forcing the bee to 

try the feeder anyway. Although I used quinine solution as a punishment if the bees 

chose the wrong feeder, this may not have been a sufficient disincentive for bees to 

learn to avoid the negative patterns. The use of quinine itself was due to previous 

research (Avargues-Weber, de Brito Sanchez et al. 2010) that showed that the simple 

absence of reward reduced the effective learning rate of bees in Y-Maze binary choice 
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experiments, compared to association with a punishment (Chittka, Dyer et al. 2003). 

Previous honeybee studies have addressed this problem using a different training 

procedure (Si, Zhang et al. 2005, Stach and Giurfa 2005). In these protocols the bees 

were removed from the Y-Maze if they made a wrong choice, they would then have to 

fly outside the flight arena and return to the Y-Maze entrance to begin a new trial. In 

this way the bees not only had a further distance to fly, but could also make multiple 

wrong choices in a row. In doing so this may focus the bees’ attention onto making 

accurate initial choice selections. Unfortunately, given the videography requirements of 

my experiment, the flight arena I used did not have a top cover, thus making this 

alternative procedure unachievable as the bees could simply fly back in. Hopefully, with 

the rapid development of high-speed camera sensors and miniature rigs, designed 

primarily for virtual reality capture systems, it should soon be possible to track the bees 

in a Y-Maze even with a top cover installed. It would therefore be interesting to see if 

the bees’ performance and especially their behaviour change if they cannot simply fly to 

the other arm after incorrect choices.  

 The experiments replicated in this study were adapted from Experiment 2 of the 

original ‘above and below’ publication (Avargues-Weber, Dyer et al. 2011). Although 

no one would expect two studies to produce identical data, there were some notable 

differences between their results and my own (even accounting for my limited sample 

size). Avargues-Weber et al. found a marked improvement in performance of their bees 

towards the end of the training; with their bees reaching approximately 80% correct 

choice accuracy in the last two 5 trial blocks. Similar performances were seen in their 

Experiment 1, which used a long black bar as the referent. Perry and Barron (Perry and 

Barron 2013) who adapted this Experiment 1 also report performances of nearly 80% 

after just 30 training trials. In contrast, the three bees in this study only achieved 60-70% 
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at the end of their 50 training trials (although two bees reached 80% in the ‘below’ task 

in early training). However, there were some differences in the respective experimental 

setups. In the Perry et al. experiments the sucrose or quinine solutions were provided to 

the bees via small 5mm diameter tubes that protruded from the centre of the target 

shapes (although these were a common feature on both presented patterns so as not to 

be a useful indicator of reward). In the Avargues-Weber experiments similar protruding 

feeder tubes were used, in this case located in the centre of each pattern. Unfortunately, 

during a preliminary pilot-study using my apparatus I detected a problem with this 

arrangement. The first few bees trained in this setup would fixate very close to the 

patterns and the feeder tubes, high-speed recordings showed the bees antennae touching 

the tubes, and therefore potentially detecting the sucrose solution inside (Fig 5.2a). Bees 

would often depart the current arm even without landing at a feeder containing quinine 

solution, but most often land if the feeder contained sucrose. To prevent this I made two 

modifications. Firstly, the tubes were always centrally located in the patterns and were 

flush to the pattern face, secondly, that the tubes were always refilled via a small 

stopper attached to the feeding tubes from behind the stimuli and the respective 

removable back walls (Fig 5.1 insert). This procedure ensured that there was never any 

sucrose or quinine solution on the feeder tubes themselves, which in turn obligated the 

bees to crawl inside the tubes to get at the solutions (Fig 5.2b). Conveniently, this also 

allowed me to easily identify and record a definitive pattern choice, as well as the flush 

feeder tubes preventing the bees from being obscured during filming. It must be stressed, 

that this is not to say that the bees in the previous studies were detecting the sucrose 

before landing, or indeed that there were errors reporting feeder choices. The slightly 

lower performances I report here may simply be because the bees had to fly to a 

separate location to get reward after fixating on the pattern shapes, compared to Perry et 



 

 
 

165 

al. (Perry and Barron 2013); but beneficially, this again made determining the direct-to-

feeder choices easier. Additionally bees had to be physically inside the feeder tubes, and 

consequently could not look directly at the stimuli, when they got reward. These factors 

being taken into account, the stimuli would still look identical to the bees in both setups, 

and the bees in this study were still able to solve, an arguably, more complicated 

training task; with two out of the three bees also generalising to novel target shapes. 

Anecdotally, while I was analysing the flight videos for this chapter, I would 

determine which arm was the CS+ by identifying the cross in a pattern and then seeing 

if the target shape was above or below this cross. This appeared to be a fast and efficient 

way to solve the problem. In the same way it was assumed that, baboons (Papio papio) 

(Depy, Fagot et al. 1999) and tufted capuchins (Cebus apella) (Spinozzi, Lubrano et al. 

2004) learnt to identify presented ‘above and below’ stimuli during their experiments, 

and subsequently articulating their decisions either by moving a joystick in a 

corresponding direction (baboons), or sliding their hand into an appropriate hole on 

each side of the apparatus (capuchins), in order to attain a reward. My experiments 

show that the bees have identified an alternative, but effective, way of solving the 

‘above and below’ task. Instead of having to ‘understand’ the complexity of individual 

shapes (i.e. having to identify the constant referent shape from the different, and 

potentially novel, target shapes) and subsequently having to evaluate the spatial 

relationship between these objects, this whole problem can be paraphrased as: “if I 

approach a previously rewarding location and fixate at the lowest region of black on a 

white background, is this perceived stimulus sufficiently similar to that of a previously 

rewarding stimulus? If so, visit the feeding hole”. Although the primates in the 

mammalian studies cannot, obviously, fly to the bottom shape on the pattern, there 

seems no reason why their eyes cannot fixate on just the bottom shape of the presented 
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stimulus and, like the bees, simply determine if this shape is sufficiently similar to the 

referent (a long black bar in these experiments), or not. In the same way as the 

honeybees in my experiments, these primates may conceivably have learnt to determine 

the correct stimuli without using spatial relationships, instead utilising a much simpler 

discrimination task. In addition, since this method requires less of the patterns to be 

interrogated, it has the potential to also be faster than the solution that I used myself. 

This study indicates that not all seemingly complex problems necessitate 

complex cognition. The ‘above and below’ task is often used as an example of a 

sophisticated relationship problem, where you have to identify multiple (potential novel) 

objects and assess how they are spatially aligned with each other. However, the 

honeybees in my experiment demonstrated this to be a relatively simple discrimination 

task. By following their innate behaviour and inspecting whatever stimuli was at the 

bottom of the patterns they could solve the task without ever needing to understand, or 

even recognising, that the problem had a more complicated underlying rule. This does 

not prove that honeybees can, or cannot, solve spatial relationship problems - but 

simply that this particular task can be very easily solved, at least when an appropriate 

choice strategy is used. 

 

5.6 Individual flight transition details 

Above_A 
Trial	
   CS+	
  	
  

Side	
   Target	
   1st	
  
arm	
   Correct	
  Flight	
  Transitions	
  

1	
   left	
   diamond	
  *	
  left	
   1	
   cs-­‐	
  target,	
  cs-­‐	
  feeder	
  -­‐	
  BI,	
  cs-­‐	
  target,	
  cs+	
  feeder	
  

2	
   right	
   grating	
  right	
   1	
   cs+	
  feeder	
  	
  

3	
   left	
   disc	
   left	
   1	
   cs+	
  cross,	
  cs+	
  feeder	
  	
  

4	
   right	
   trefoil	
  left	
   0	
   cs-­‐	
  cross,	
  cs-­‐	
  feeder,	
  cs-­‐	
  target,	
  cs+	
  target,	
  cs+	
  feeder	
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5	
   left	
   grating	
  right	
   0	
   cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs-­‐	
  target,	
  cs-­‐	
  cross,	
  cs+	
  cross,	
  cs+	
  target,	
  cs+	
  feeder	
  	
  

6	
   right	
   disc	
   left	
   0	
   cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs+	
  cross,	
  cs+	
  feeder	
  	
  

7	
   left	
   diamond	
  right	
   0	
   cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs-­‐	
  cross,	
  cs+	
  cross,	
  cs+	
  feeder	
  	
  

8	
   right	
   grating	
  right	
   1	
   cs+	
  cross,	
  cs+	
  feeder	
  	
  

9	
   left	
   trefoil	
  left	
   0	
   cs+	
  cross	
  -­‐	
  BI,	
  cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs-­‐	
  cross,	
  cs+	
  cross,	
  cs+	
  feeder	
  

10	
   right	
   disc	
   left	
   1	
   cs-­‐	
  target,	
  cs-­‐	
  cross,	
  cs-­‐	
  feeder	
  -­‐	
  BI,	
  cs+	
  cross,	
  cs+	
  feeder	
  	
  

11	
   left	
   diamond	
  left	
   1	
   cs+	
  cross,	
  cs+	
  feeder	
  	
  

12	
   left	
   grating	
  left	
   1	
   cs+	
  cross,	
  cs+	
  feeder	
  	
  

13	
   left	
   disc	
   right	
   0	
   cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs-­‐	
  cross,	
  cs+	
  cross,	
  cs+	
  feeder	
  

14	
   left	
   trefoil	
  right	
   0	
   cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs+	
  cross,	
  cs+	
  feeder	
  	
  

15	
   left	
   diamond	
  right	
   0	
   cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs+	
  cross,	
  cs+	
  feeder	
  	
  

16	
   right	
   grating	
  left	
   0	
   cs-­‐	
  feeder,	
  cs-­‐	
  cross,	
  cs-­‐	
  target,	
  cs+	
  cross,	
  cs+	
  feeder	
  	
  

17	
   right	
   disc	
   right	
   1	
   cs+	
  cross,	
  cs+	
  feeder	
  	
  

18	
   left	
   diamond	
  right	
   0	
   cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs+	
  cross	
  -­‐	
  BI,	
  cs+	
  feeder	
  	
  

19	
   right	
   trefoil	
  left	
   0	
   cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs+	
  cross,	
  cs+	
  cross,	
  cs+	
  feeder	
  	
  

20	
   left	
   diamond	
  left	
   1	
   cs+	
  cross,	
  cs+	
  feeder	
  	
  

21	
   right	
   trefoil	
  left	
   0	
   cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs-­‐	
  cross,	
  cs-­‐	
  target,	
  cs+	
  cross,	
  cs+	
  feeder	
  

22	
   right	
   disc	
   right	
   1	
   cs+	
  cross,	
  cs+	
  feeder	
  	
  

23	
   left	
   grating	
  right	
   0	
   cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs-­‐	
  target,	
  cs-­‐	
  target,	
  cs+	
  cross,	
  cs+	
  feeder	
  	
  

24	
   left	
   trefoil	
  left	
   1	
   cs+	
  cross,	
  cs+	
  feeder	
  	
  

25	
   right	
   diamond	
  right	
   1	
   cs+	
  cross,	
  cs+	
  target	
  -­‐	
  BI,	
  cs+	
  feeder	
  	
  

26	
   right	
   grating	
  right	
   1	
   cs+	
  cross,	
  cs+	
  feeder	
  	
  

27	
   left	
   disc	
   right	
   0	
   cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs-­‐	
  cross,	
  cs-­‐	
  target,	
  cs+	
  cross,	
  cs+	
  feeder	
  	
  

28	
   right	
   diamond	
  left	
   0	
   cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs+	
  feeder	
  	
  

29	
   left	
   trefoil	
  
*	
  
right	
   1	
  

cs+	
  cross,	
  cs+	
  target,	
  cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs-­‐	
  target,	
  cs+	
  cross,	
  cs+	
  target,	
  
cs+	
  feeder	
  

30	
   right	
   grating	
  left	
   0	
   cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs+	
  cross,	
  cs+	
  feeder	
  

31	
   left	
   diamond	
  right	
   0	
   cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs+	
  feeder	
  

32	
   right	
   disc	
   left	
   0	
   cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs-­‐	
  target,	
  cs+	
  cross,	
  cs+	
  feeder	
  	
  

33	
   left	
   trefoil	
  right	
   0	
   cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs+	
  cross,	
  cs-­‐	
  target,	
  cs+	
  cross,	
  cs+	
  feeder	
  	
  

34	
   right	
   trefoil	
  left	
   0	
   cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs-­‐	
  cross,	
  cs+	
  feeder	
  	
  

35	
   right	
   disc	
   left	
   0	
   cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs-­‐	
  cross,	
  cs+	
  feeder	
  	
  

36	
   left	
   trefoil	
  left	
   1	
   cs+	
  feeder	
  	
  

37	
   right	
   grating	
  left	
   0	
   cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs-­‐	
  target,	
  cs+	
  cross,	
  cs+	
  feeder	
  	
  

38	
   left	
   diamond	
  left	
   1	
   cs+	
  feeder	
  	
  

39	
   right	
   diamond	
  right	
   1	
   cs+	
  cross,	
  cs+	
  feeder	
  	
  

40	
   left	
   disc	
   right	
   0	
   cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs-­‐	
  cross,	
  cs+	
  cross,	
  cs+	
  feeder	
  	
  

41	
   right	
   grating	
  left	
   0	
   cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs-­‐	
  cross,	
  cs+	
  cross,	
  cs+	
  target,	
  cs+	
  cross,	
  cs+	
  feeder	
  

42	
   right	
   trefoil	
  right	
   1	
   cs+	
  feeder	
  	
  

43	
   right	
   disc	
   right	
   1	
   cs+	
  cross,	
  cs+	
  feeder	
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44	
   left	
   disc	
   right	
   1	
   cs-­‐	
  target,	
  cs+	
  feeder	
  	
  

45	
   right	
   diamond	
  left	
   1	
   cs-­‐	
  target,	
  cs+	
  feeder	
  	
  

46	
   right	
   grating	
  left	
   0	
   cs-­‐	
  target,	
  cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs+	
  cross,	
  cs+	
  feeder	
  	
  

47	
   left	
   disc	
   right	
   0	
   cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs-­‐	
  cross,	
  cs+	
  cross,	
  cs+	
  feeder	
  	
  

48	
   left	
   trefoil	
  right	
   0	
   cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs-­‐	
  cross,	
  cs+	
  cross,	
  cs+	
  feeder	
  	
  

49	
   left	
   trefoil	
  right	
   1	
   cs-­‐	
  target,	
  cs-­‐	
  cross,	
  cs-­‐	
  feeder	
  -­‐	
  BI,	
  cs+	
  cross,	
  cs+	
  feeder	
  	
  

50	
   right	
   grating	
  right	
   1	
   cs+	
  cross,	
  cs+	
  feeder	
  	
  
 
Table 5.2 Individual flight transitions for honeybee Above_A. * left / * right – indicates 
honeybee only flew half way down an arm before turning and flying to the opposite arm. 
BI: Brief inspection. 

 
 
Below_A 
 

Trial	
   CS+	
  	
  
Side	
   Target	
   1st	
  

arm	
   Correct	
  Flight	
  Transitions	
  

1	
   left	
   bar	
   right	
   1	
   cs-­‐	
  cross,	
  cs-­‐	
  target,	
  cs+	
  target,	
  cs+	
  feeder	
  	
  

2	
   right	
   diamond	
  left	
   1	
   cs-­‐	
  cross,	
  cs-­‐	
  target,	
  cs+	
  target,	
  cs+	
  feeder	
  	
  

3	
   left	
   trefoil	
  left	
   1	
   cs+	
  cross,	
  cs+	
  feeder	
  	
  

4	
   right	
   disc	
   *	
  left	
   1	
   cs+	
  target	
  -­‐	
  BI,	
  cs+	
  feeder	
  	
  

5	
   left	
   bar	
   left	
   1	
   cs+	
  feeder	
  -­‐	
  BI,	
  cs+	
  target,	
  cs+	
  feeder	
  	
  

6	
   left	
   trefoil	
  right	
   0	
   cs-­‐	
  cross	
  -­‐	
  BI,	
  cs-­‐	
  feeder,	
  cs-­‐	
  target,	
  cs+	
  target,	
  cs+	
  feeder	
  	
  

7	
   right	
   diamond	
  right	
   1	
   cs+	
  target,	
  cs+	
  feeder	
  	
  

8	
   right	
   bar	
   left	
   1	
   cs-­‐	
  cross,	
  cs-­‐	
  feeder	
  -­‐	
  BI,	
  cs-­‐	
  target,	
  cs+	
  target,	
  cs+	
  feeder	
  	
  

9	
   left	
   trefoil	
  left	
   1	
   cs+	
  target,	
  cs+	
  feeder	
  	
  

10	
   right	
   disc	
   right	
   0	
   cs-­‐	
  cross,	
  cs-­‐	
  feeder	
  -­‐	
  BI,	
  cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs+	
  feeder	
  	
  

11	
   right	
   diamond	
  left	
   0	
   cs-­‐	
  cross,	
  cs-­‐	
  feeder,	
  cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs-­‐	
  cross,	
  cs+	
  target,	
  cs+	
  feeder	
  	
  

12	
   left	
   trefoil	
  left	
   1	
   cs+	
  target,	
  cs+	
  feeder	
  	
  

13	
   right	
   bar	
   left	
   1	
   cs-­‐	
  cross,	
  cs-­‐	
  feeder	
  -­‐	
  BI,	
  cs-­‐	
  target,	
  cs+	
  target,	
  cs+	
  feeder	
  	
  

14	
   left	
   diamond	
  left	
   1	
   cs+	
  target,	
  cs+	
  feeder	
  	
  

15	
   right	
   disc	
   right	
   1	
   cs+	
  feeder	
  	
  

16	
   left	
   trefoil	
  right	
   0	
   cs-­‐	
  cross,	
  cs-­‐	
  feeder,	
  cs-­‐	
  target,	
  cs+	
  target,	
  cs+	
  feeder	
  	
  

17	
   right	
   disc	
   right	
   1	
   cs+	
  target,	
  cs+	
  target,	
  cs+	
  feeder	
  	
  

18	
   right	
   trefoil	
  right	
   1	
   cs+	
  target,	
  cs+	
  feeder	
  	
  

19	
   left	
   bar	
   left	
   0	
   cs+	
  target,	
  cs+	
  cross,	
  cs-­‐	
  feeder,	
  cs+	
  target,	
  cs+	
  feeder	
  	
  

20	
   right	
   trefoil	
  left	
   0	
   cs-­‐	
  cross,	
  cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs-­‐	
  target,	
  cs+	
  feeder	
  	
  

21	
   left	
   disc	
   left	
   1	
   cs+	
  target,	
  cs+	
  feeder	
  	
  

22	
   right	
   bar	
   left	
   0	
   cs-­‐	
  cross,	
  cs-­‐	
  feeder,	
  cs+	
  target,	
  cs+	
  cross,	
  cs+	
  feeder	
  	
  

23	
   left	
   diamond	
  left	
   1	
   cs+	
  feeder	
  	
  

24	
   right	
   disc	
   right	
   1	
   cs+	
  feeder,	
  cs+	
  cross,	
  cs+	
  feeder	
  	
  

25	
   right	
   trefoil	
  left	
   0	
   cs-­‐	
  cross,	
  cs-­‐	
  feeder,	
  cs-­‐	
  target,	
  cs+	
  target,	
  cs+	
  feeder	
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26	
   left	
   diamond	
  left	
   1	
   cs+	
  feeder	
  	
  

27	
   left	
   bar	
   right	
   1	
   cs-­‐	
  cross,	
  cs-­‐	
  target,	
  cs-­‐	
  feeder	
  -­‐	
  BI,	
  cs+	
  feeder	
  	
  

28	
   right	
   trefoil	
  left	
   1	
   cs-­‐	
  cross,	
  cs-­‐	
  target,	
  cs+	
  target,	
  cs+	
  feeder	
  	
  

29	
   left	
   diamond	
  left	
   1	
   cs+	
  target,	
  cs+	
  feeder	
  	
  

30	
   right	
   disc	
   right	
   1	
   cs+	
  target,	
  cs+	
  cross,	
  cs+	
  feeder	
  	
  

31	
   left	
   bar	
   *	
  left	
   0	
   cs-­‐	
  cross,	
  cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs+	
  target,	
  cs+	
  feeder	
  	
  

32	
   right	
   disc	
   right	
   1	
   cs+	
  target,	
  cs+	
  feeder	
  	
  

33	
   right	
   diamond	
  left	
   0	
   cs-­‐	
  cross,	
  cs-­‐	
  feeder,	
  cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs+	
  feeder	
  	
  

34	
   left	
   trefoil	
  right	
   1	
   cs-­‐	
  cross,	
  cs-­‐	
  target,	
  cs-­‐	
  feeder	
  -­‐	
  BI,	
  cs+	
  target,	
  cs+	
  feeder	
  	
  

35	
   left	
   diamond	
  left	
   1	
   cs+	
  target,	
  cs+	
  feeder	
  	
  

36	
   right	
   bar	
   left	
   1	
   cs-­‐	
  cross,	
  cs+	
  feeder	
  	
  

37	
   left	
   disc	
   right	
   1	
   cs-­‐	
  cross,	
  cs-­‐	
  target,	
  cs+	
  target,	
  cs+	
  feeder	
  	
  

38	
   right	
   bar	
   right	
   1	
   cs+	
  target,	
  cs+	
  feeder	
  	
  

39	
   left	
   disc	
   *	
  left	
   1	
   cs-­‐	
  cross,	
  cs-­‐	
  feeder	
  -­‐	
  BI,	
  cs+	
  target,	
  cs+	
  feeder	
  	
  

40	
   right	
   trefoil	
  left	
   0	
   cs-­‐	
  cross,	
  cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs+	
  feeder	
  	
  

41	
   right	
   disc	
   *	
  left	
   1	
   cs+	
  target,	
  cs+	
  feeder	
  	
  

42	
   left	
   diamond	
  right	
   0	
   cs-­‐	
  cross,	
  cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs+	
  target,	
  cs+	
  feeder	
  	
  

43	
   right	
   bar	
   left	
   0	
   cs-­‐	
  cross,	
  cs-­‐	
  feeder,	
  cs-­‐	
  target,	
  cs+	
  target,	
  cs+	
  feeder	
  	
  

44	
   left	
   trefoil	
  left	
   1	
   cs+	
  feeder	
  	
  

45	
   right	
   diamond	
  left	
   0	
   cs-­‐	
  cross,	
  cs-­‐	
  feeder,	
  cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs+	
  target,	
  cs+	
  feeder	
  	
  

46	
   left	
   disc	
   left	
   1	
   cs+	
  feeder	
  	
  

47	
   right	
   trefoil	
  left	
   0	
   cs-­‐	
  cross,	
  cs-­‐	
  feeder,	
  cs+	
  target,	
  cs+	
  feeder	
  	
  

48	
   right	
   bar	
   right	
   1	
   cs+	
  target,	
  cs+	
  feeder	
  	
  

49	
   left	
   diamond	
  left	
   1	
   cs+	
  target,	
  cs+	
  cross,	
  cs+	
  feeder	
  	
  

50	
   left	
   trefoil	
  left	
   1	
   cs+	
  target,	
  cs+	
  feeder	
  	
  
 
Table 5.3 Individual flight transitions for honeybee Below_A. * left / * right – indicates 
honeybee only flew half way down an arm before turning and flying to the opposite arm. 
BI: Brief inspection. 

 
 
Below_B 
 

Trial	
   CS+	
  	
  
Side	
   Target	
   1st	
  

arm	
   Correct	
  Flight	
  Transitions	
  

1	
   right	
   bar	
   left	
   1	
   cs-­‐	
  target,	
  cs+	
  feeder	
  	
  

2	
   left	
   trefoil	
  right	
   1	
   cs-­‐	
  cross,	
  cs-­‐	
  target,	
  cs+	
  target,	
  cs+	
  feeder	
  	
  

3	
   right	
   disc	
   left	
   0	
   cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs+	
  feeder	
  	
  

4	
   left	
   bar	
   left	
   1	
   cs+	
  target	
  -­‐	
  BI,	
  cs+	
  feeder	
  	
  

5	
   right	
   disc	
   left	
   0	
   cs-­‐	
  target,	
  cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs+	
  cross,	
  cs+	
  feeder	
  	
  

6	
   right	
   bar	
   right	
   1	
   cs+	
  target,	
  cs+	
  feeder	
  	
  

7	
   left	
   disc	
   left	
   1	
   cs+	
  cross,	
  cs+	
  target,	
  cs+	
  feeder	
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8	
   left	
   grating	
  left	
   1	
   cs+	
  cross,	
  cs+	
  target,	
  cs+	
  feeder	
  	
  

9	
   right	
   bar	
   left	
   1	
   cs-­‐	
  target,	
  cs-­‐	
  feeder	
  -­‐	
  BI,	
  cs+	
  target	
  -­‐	
  BI,	
  cs+	
  feeder	
  	
  

10	
   left	
   trefoil	
  left	
   1	
   cs+	
  feeder	
  	
  

11	
   right	
   grating	
  right	
   1	
   cs+	
  feeder	
  	
  

12	
   right	
   disc	
   right	
   1	
   cs+	
  cross,	
  cs+	
  feeder	
  	
  

13	
   left	
   trefoil	
  right	
   0	
   cs-­‐	
  cross,	
  cs-­‐	
  feeder,	
  cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs+	
  feeder	
  	
  

14	
   left	
   grating	
  left	
   1	
   cs+	
  feeder	
  	
  

15	
   right	
   disc	
   left	
   1	
   cs-­‐	
  target,	
  cs-­‐	
  cross,	
  cs+	
  target,	
  cs+	
  feeder	
  	
  

16	
   left	
   bar	
   left	
   1	
   cs+	
  target,	
  cs-­‐	
  cross,	
  cs+	
  feeder,	
  cs+	
  target,	
  cs+	
  feeder	
  	
  

17	
   right	
   trefoil	
  right	
   1	
   cs+	
  target,	
  cs+	
  feeder	
  	
  

18	
   left	
   grating	
  right	
   0	
   cs-­‐	
  cross,	
  cs-­‐	
  feeder,	
  cs-­‐	
  target,	
  cs+	
  feeder	
  	
  

19	
   right	
   disc	
   right	
   1	
   cs+	
  target	
  -­‐	
  BI,	
  cs+	
  feeder	
  	
  

20	
   left	
   grating	
  left	
   1	
   cs+	
  target,	
  cs-­‐	
  cross,	
  cs+	
  target,	
  cs+	
  cross,	
  cs+	
  feeder	
  	
  

21	
   left	
   disc	
   left	
   1	
   cs+	
  target	
  -­‐	
  BI,	
  cs+	
  feeder	
  	
  

22	
   right	
   trefoil	
  left	
   1	
   cs-­‐	
  cross,	
  cs+	
  feeder	
  	
  

23	
   left	
   disc	
   right	
   0	
   cs-­‐	
  cross,	
  cs-­‐	
  feeder,	
  cs-­‐	
  target,	
  cs+	
  target,	
  cs+	
  feeder	
  	
  

24	
   left	
   trefoil	
  left	
   1	
   cs+	
  target,	
  cs+	
  feeder	
  	
  

25	
   right	
   bar	
   left	
   0	
   cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs-­‐	
  target,	
  cs+	
  target,	
  cs+	
  feeder	
  	
  

26	
   right	
   grating	
  left	
   1	
   cs-­‐	
  cross,	
  cs-­‐	
  target,	
  cs+	
  target,	
  cs+	
  cross,	
  cs+	
  feeder	
  	
  

27	
   left	
   disc	
   right	
   1	
   cs-­‐	
  cross,	
  cs-­‐	
  target,	
  cs+	
  cross,	
  cs+	
  feeder	
  	
  

28	
   right	
   bar	
   left	
   0	
   cs-­‐	
  cross,	
  cs-­‐	
  feeder,	
  cs-­‐	
  target,	
  cs+	
  target,	
  cs+	
  cross,	
  cs-­‐	
  feeder,	
  cs+	
  feeder	
  	
  

29	
   right	
   trefoil	
  *	
  left	
   1	
   cs+	
  target,	
  cs+	
  feeder	
  	
  

30	
   left	
   grating	
  right	
   1	
   cs-­‐	
  cross,	
  cs-­‐	
  target,	
  cs+	
  target,	
  cs+	
  feeder	
  	
  

31	
   left	
   disc	
   left	
   1	
   cs+	
  target	
  -­‐	
  BI,	
  cs+	
  feeder	
  	
  

32	
   right	
   trefoil	
  right	
   1	
   cs+	
  feeder	
  	
  

33	
   left	
   bar	
   right	
   0	
   cs-­‐	
  feeder,	
  cs-­‐	
  cross,	
  cs-­‐	
  target,	
  cs+	
  target	
  -­‐	
  BI,	
  cs+	
  feeder	
  	
  

34	
   right	
   grating	
  right	
   1	
   cs+	
  target,	
  cs+	
  feeder	
  	
  

35	
   right	
   trefoil	
  left	
   1	
   cs-­‐	
  cross,	
  cs-­‐	
  target,	
  cs+	
  target,	
  cs+	
  feeder	
  	
  

36	
   right	
   disc	
   left	
   0	
   cs-­‐	
  target,	
  cs-­‐	
  feeder,	
  cs-­‐	
  target,	
  cs-­‐	
  cross,	
  cs+	
  feeder	
  	
  

37	
   right	
   bar	
   left	
   0	
   cs-­‐	
  target,	
  cs-­‐	
  cross,	
  cs-­‐	
  feeder,	
  cs-­‐	
  target,	
  cs-­‐	
  feeder	
  	
  

38	
   left	
   grating	
  right	
   0	
   cs-­‐	
  cross,	
  cs-­‐	
  feeder,	
  cs-­‐	
  target,	
  cs+	
  target,	
  cs+	
  feeder	
  	
  

39	
   right	
   bar	
   *	
  left	
   1	
   cs+	
  feeder	
  	
  

40	
   right	
   trefoil	
  right	
   1	
   cs+	
  target,	
  cs+	
  cross,	
  cs+	
  feeder	
  	
  

41	
   left	
   grating	
  left	
   1	
   cs+	
  target	
  -­‐	
  BI,	
  cs+	
  feeder	
  	
  

42	
   left	
   trefoil	
  right	
   0	
   cs-­‐	
  feeder,	
  cs-­‐	
  target,	
  cs+	
  feeder	
  	
  

43	
   left	
   bar	
   right	
   0	
   cs-­‐	
  cross,	
  cs-­‐	
  feeder,	
  cs-­‐	
  target,	
  cs+	
  target,	
  cs+	
  feeder	
  	
  

44	
   right	
   grating	
  right	
   1	
   cs+	
  target	
  -­‐	
  BI,	
  cs+	
  feeder	
  	
  

45	
   right	
   trefoil	
  right	
   1	
   cs+	
  target,	
  cs+	
  feeder	
  	
  

46	
   left	
   bar	
   left	
   1	
   cs+	
  target,	
  cs-­‐	
  target,	
  cs+	
  target,	
  cs+	
  feeder	
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47	
   right	
   disc	
   right	
   1	
   cs+	
  target	
  -­‐	
  BI,	
  cs+	
  feeder	
  	
  

48	
   right	
   bar	
   *	
  left	
   1	
   cs+	
  cross,	
  cs+	
  target,	
  cs+	
  feeder	
  	
  

49	
   left	
   trefoil	
  left	
   1	
   cs+	
  target	
  -­‐	
  BI,	
  cs+	
  feeder	
  	
  

50	
   right	
   bar	
   left	
   0	
   cs-­‐	
  cross,	
  cs-­‐	
  feeder,	
  cs+	
  target,	
  cs+	
  feeder	
  	
  
 
Table 5.4 Individual flight transitions for honeybee Below_B. * left / * right – indicates 
honeybee only flew half way down an arm before turning and flying to the opposite arm. 
BI: Brief inspection. 
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Chapter 6: General discussions 

In what follows, I pull together the modelling and behavioural findings from the 

previous four chapters to highlight how remarkably simple mechanisms within the 

honeybee brain appear to successfully process visual information over a diverse range 

of tasks. 

 

6.1 Main findings 

Over the course of this thesis I have described a large variety of achromatic pattern 

experiments that had previously been performed on honeybees. The lobula large-field 

orientation-sensitive neurons (LOSNs) (Maddess and Yang 1997) studied here have 

proved remarkably versatile at identifying almost all of the CS+ patterns taken from 

previous honeybee experiments, but equally interesting, is that they also failed on some 

of the experiments that bees themselves failed to discriminate. Obviously, the LOSNs 

will not be the only optic neurons that a honeybee needs; future work will need to 

ascertain what neurons in addition to these LOSNs might be necessary for symmetrical 

and non-symmetrical pattern discriminations (Giurfa, Eichmann et al. 1996, Lehrer 

1999, Rodriguez, Gumbert et al. 2004), topological pattern recognition (Chen, Zhang et 

al. 2003), to name but a few. Nevertheless, despite these LOSNs providing virtually no 

useful retinotopic information, their functional capability within a miniature brain is 

astonishing; not only do they provide sufficient neuronal response specificity to 

discriminate fine angles (~30˚ angle differences) as seen in bees (Sathees chandra, 

Geetha et al. 1998), but they can also discriminate the small changes in length of the 



 

 
 

173 

edge; allowing the discrimination of pairs of almost identical horizontal bars, until now 

thought to require an eidetic image memory (Giger and Srinivasan 1995). Furthermore 

when these LOSNs are wired into the mushroom body learning centres, using only a 

single layer of connections, their cognitive flexibility is substantially enhanced. By 

combining the LOSNs with different numbers of excitatory and inhibitory synapses 

onto the Kenyon cells (which is realistic given the structured layers of the mushroom 

bodies (Ehmer and Gronenberg 2002)) the models showed that fine discrimination 

(using Chapter 2 model: SEO_AB), stimuli size invariance (Chapter 2 model: EAI_AB), 

horizontal location invariance (Chapter 3 model: MERGED), but perhaps most notable, 

generalisation to more complicated oriented patterns composed of multiple orientations 

and edge lengths (Chapter 3 model: DISTINCT) was all possible with no ‘tweaking’ of 

the model parameters for particular stimuli. The honeybee brain truly does exemplify 

both simplicity and elegance. For example, the most straightforward model solution to 

horizontal location invariance – was simply combining sensory inputs from both eyes, 

and indeed the anatomical structure of the mushroom bodies shows this is not only 

possible but almost certain (Ehmer and Gronenberg 2002). However, this summation of 

inputs would render any chance of reconstructing a visual representation of the world 

impossible. My models still show that a large majority of the stimuli could be 

discriminated, but how could this be achieved? 

 Within the human medial temporal lobe (MTL) there exist neurons that fire 

selectively to images of particular human faces (Quiroga, Reddy et al. 2005). Some of 

the volunteers tested in these experiments have neurons that only respond to pictures of 

Jennifer Aniston, invariant to the rotation or view of this face. It is therefore easy to 

assume that a honeybee may learn to identify a particular flower species invariant to 

different views, and may even have a neuron that selectively fires for only one flower 
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species. Accordingly, every time the bee sees, for example, a daisy, a particular neuron 

fires, this may have been previously associated with reward and so the bee approaches, 

lands and feeds from the flower. But, does a honeybee require even this level of 

sophistication, given its miniature brain and specific behavioural requirements? My 

models show that very simple sensory inputs would allow the bee to discriminate a 

previously learnt rewarding stimulus from a multitude of other stimuli. Does the bee 

brain need to modify synaptic weights such that a particular neuron, or indeed a specific 

set of Kenyon cell responses only correspond to the exact features of a ‘daisy’, or 

simply evaluate if a given the stimulus has a sufficient Kenyon cell neuronal similarity 

to ‘something’ that was previously rewarding? In fact, there is no reason why different 

groups of Kenyon cell activations could not correspond to the same object. Imagine a 

honeybee in a Y-Maze; it may associate reward with a set of Kenyon cell responses 

(similar to the MERGED model configuration) while in free flight in the decision 

chamber, therefore choosing which arm to visit. However, these same Kenyon cells may 

not be a good indicator of reward close to the pattern, and a second set of responses may 

now be more similar to previous rewarding response when fixating at the patterns (like 

in the SEO_AB model), allowing a final decision of whether to land or not. Indeed this 

may explain why bees generalise to common features, rather than specific constant 

visual cues, after repeated training (Stach and Giurfa 2005). If a bee identifies a 

rewarding flower for the first time, the Kenyon cell responses, similar to both my SEO 

and EAI Kenyon cells, might initially be quite selective to that specific flower’s visual 

cues, but with experience selectively prefer those responses that are inherently more 

generalised (as long as they still provided consistent indication of reward) and would 

therefore allow identification of conspecific flowers (see Chapter 2.5 discussion on 

discrimination of two horizontal bars). Once again simple mechanisms imposed by the 
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inherent structure of the miniature brain seem to produce an optimal adaption, in this 

case generalisation, without any necessity for neuronal complexity.  

 

6.2 Model limitation and future work 

LOSN responses 

In this thesis I presented six very simple models (SEO_AB, SEO_ABC, EAI_AB, 

EAI_ABC, DISTINCT (same as EAI_AB) and MERGED). I found very little 

performance differences between the respective models using the two LOSNs based 

directly on the known LOSN responses (Maddess and Yang 1997) and theoretical three 

offset LOSN tuning curves, similar to that seen in dragonflies (O'Carroll 1993). The 

only notable exception was the EAI_AB model’s worse performance during the very 

fine angle discrimination experiments (Chapter 2.4.2). Here, increasing the firing rates 

of the LOSNs, by progressively extending the length of the perceived oriented edges, 

produced ever better performance. Although some particular angles of oriented edges 

were never discriminated. This raises two questions; what effect would varying degrees 

of neuronal noise have on the models, and is there a functional advantage in having 

tuning curves with a large disparity of responses as seen between the type A (20-36Hz) 

and type B (3-14Hz) LOSN recordings?   

For the former, within my models I applied a small amount of Gaussian noise to 

the LOSN and Kenyon cell synapses to account for variance in the synaptic 

neurotransmission and minor differences in the presentation of the stimuli. 

Electrophysiology on bumblebees has shown that neurons within the final layers of the 

lobula (layers 5-6) produce very precise phasic neuronal responses when presented with 

identical stimuli (Paulk, Dacks et al. 2009). Given the ~10-15Hz range of both the 
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LOSN types this high precision would be expected in order for these neurons to provide 

useful sensory data. I am currently researching how additional Poisson noise or 

perceptual noise (artefacts added to the presented stimuli) might affect the model 

performances, especially with the longer edge lengths and corresponding higher firing 

rates. Additional electrophysiology will eventually be required to fine-tune these 

parameters; of particular interest would be simultaneous multi-electrode recordings of 

both the type A and type B LOSNs during stimuli presentation, ideally with expanding 

bar lengths and abrupt changes in the orientations during a single presentation trial. 

 For the later, the disparity between LOSN base firing rates, a different approach 

is being employed. As a new collaboration within our lab (Bee Sensory and Behavioural 

Ecology Lab, Queen Mary University of London) we are undertaking a formal 

mathematical analysis of the lobula orientation-sensitive neurons. This is similar to the 

recent Fisher Information analysis used by Alexandre Pouget (Kanitscheider, Coen-

Cagli et al. 2015, Kohn, Coen-Cagli et al. 2016). However, rather than a population 

correlation analysis, here we are interested in determining the very minimum number of 

neurons and optimal tuning curves that are able to produce ‘honeybee like’ 

discrimination and generalization abilities. These optimal models can then be directly 

compared and evaluated against the known LOSN responses. 

Learning and decision-making 

Dependent on particular experiment simulated I found that, in most cases, one or other 

of models tested performed very similar to that of the empirical results of real 

honeybees. The only exceptions were where both test stimuli were very similar to that 

of the training pattern (Chapter 3.4.2 Batch 3). In these cases all models either failed to 
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generalise to novel patterns, or performed much worse than the honeybees. These 

highlight key areas where my models need to be developed.  

Firstly, lets assume that some combination of LOSN to Kenyon cell connections 

akin to SEO_AB, EAI_AB (DISTINCT) and MERGED model connections all exist 

within the honeybee brain. Which could easily be established given they all use the 

same LOSNs and either excitatory or inhibitory synapses onto the Kenyon cells. In the 

case of scale invariance (Chapter 2.4.1), horizontal offset (Chapter 3.4.1) and indeed 

generalisation of oriented bars and gratings (Chapter 2.4.4) I found that the Kenyon cell 

responses for the EAI_AB, MERGED, EAI_AB models respectively were very similar 

for all the variations of the experimental CS+ and TSCOR stimuli, whereas the 

contrasting models (SEO_AB, DISTINCT, SEO_AB) had very different neuronal 

responses for each pattern. It is easy to envisage a theoretical model that would simply 

disregard those Kenyon cells that did not provide a consistent response to the different 

rewarding CS+ stimuli. This would allow just those that did, to be utilized when 

discriminating between the final test stimuli. This would still not require the models to 

perceive the CS- training patterns.  

In the case of discriminating two horizontal grating patterns we see a large 

discrepancy in the honeybee performance dependent on whether the honeybee was 

initially trained on a CS- vertical grating (honeybees’ failed the discrimination) or with 

an incorrect CS- horizontal grating (honeybees could discriminate the two gratings). 

Here it is obvious that honeybees are using the CS- stimuli to learn and discriminate the 

patterns. Within a new theoretical model this could be accommodated by presenting 

both the CS+ and CS- stimuli and then, positively adapting an associated weight with 

each Kenyon cell dependent on if it fires consistently for the CS+ patterns (as above), or 
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degrading this weight it if it fires for both CS+, CS- stimuli. Alternatively we envisage 

dual pathways, in one pathway Kenyon cells adapt a set of weights based on how 

consistently they activate for all CS+ stimuli, and an identical pathway with separate 

weights that are adapted for those Kenyon cells based on the firing for CS- patterns. In 

this case the model would choose the test stimuli that had the greatest reward 

expectation value (Kenyon cell activation * the CS+ weights) and least aversive value 

(Kenyon cell activation * the CS- weights). In both cases the relative importance of the 

CS+ and CS- contribution could be tailored dependent on the particular training task 

(see Chapter 3.5 discussion on the importance of training procedure and punishment 

associated with CS- stimuli). 

It is these very enhancements discussed above that my colleague Fei Peng has 

been investigating by building biologically realistic models of the honeybee mushroom 

bodies. This work, based on the olfactory system, has already shown that changing the 

mushroom body synaptic learning rates associated with the presentation of rewarding 

and unrewarding odours can replicate known behavioural phenomena (peak-shift / 

positive and negative patterning) (Peng and Chittka 2017). My next step in 

understanding bee visual cognition is to replicate this more sophisticated mushroom 

body model but exchanging the olfactory inputs for the LOSN responses from this study. 

This will allow us to test if the perception of both the CS+ and CS- stimuli will produce 

experimental performances closer to that of real bees, or if additional visual information 

or cognitive mechanisms are still required to replicate the honeybee’s abilities.   
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6.3 Thesis implications for behavioural experiments 

Changing bee research emphasis from ‘Can’ to ‘How’ 

Over the four years of my PhD I have very much enjoyed reading past behavioural 

papers, meeting and collaborating with experimentalists, and indeed conducting my 

own behavioural experiments on bees. However, one thing is very clear; a lot of 

emphasis is placed on determining what interesting, and often remarkable, things that 

bees ‘can’ do. Bees can discriminate colours (v. Frisch 1914), can communicate the 

location of flower resources to nest mates (v. Frisch 1927), can exhibit social learning 

(see review (Leadbeater and Chittka 2014)) and can teach techniques to other 

individuals (Alem, Perry et al. 2016), they can even be trained elementary tool use 

(Loukola, Perry et al. 2017). All these provide useful information on the behavioural 

ability of bees; they may also narrow down the task into ‘what’ the bees do (i.e. the 

positional dynamics of the waggle dance), but not necessarily how to understand the 

actual bee cognition.  

Since joining the Queen Mary University of London bee lab, which was then 

predominantly a behavioural lab, the cognitive modelling team has recruited both 

mathematicians and software engineers to model the bee brain. However, more 

importantly, this group now interacts with the experimentalists at every stage of a new 

project; from initial design of the stimuli, adaption of the experimental procedures, 

analysis of results, to the final modelling of the bee decision processes. What this has 

done is focus research attention very closely on understanding: what information (visual, 

social, contextual) does the bee need to solve the task, how does the behaviour change 

during learning, what factors might affect performance between individuals? This new 

emphasis on ‘how’ has meant that very simple experiments that an experimentalist 

might have previously considered trivial (i.e. the discrimination of a simple spiral and 
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cross patterns) are opening up whole new research areas; in the above example does the 

flight dynamics of fixating at the spiral differ to the cross? If so, does the shape 

therefore dictate the movement (and what visual inputs are directing this movement)? If 

this is the case, counter-intuitively, it raises the very tantalising question: does the very 

difference between flight behaviour caused by particular shapes allow discrimination 

without the bee even having to learn the visual inputs? These types of behaviour and 

theoretical research collaborations are providing a new way to investigate bee cognition. 

A similar paradigm shift was made much earlier in the field of mammalian 

vision; in 1973 David Marr joined the Massachusetts Institute of Technology (MIT), 

and in the subsequent years before his unfortunate early death in 1980 he and his 

colleagues revolutionised the world of computational neuroscience. Marr, like many 

others of his time, began his theoretical work using the (then) cutting-edge 

electrophysiological and neuroanatomical research of the 1960s, in his case 

concentrating on the mammalian cerebral cortex (Marr 1969). However, during his 

investigations he realised there was a fundamental issue with this approach, “The key 

observation is that neurophysiology or psychophysics have as their business to describe 

the behaviour of cells or of subjects but not to explain such behaviour. What are the 

visual areas of the cerebral cortex actually doing? What are the problems in doing it 

that need explaining, and at what level of description should such explanations be 

sought?” (Marr 1982). In an attempt to answer these questions Marr moved to MIT and 

changed his research field to the new emerging area of machine vision and artificial 

intelligence. What revolutionised, and in many ways established, the basis for 

computational neuroscience was the realisation that, as well as neurophysiology or 

psychophysics understanding of the problem, there was also another level of 

understanding required to encapsulate the information-processing of the task at hand 
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(Marr and Poggio 1976, Marr 1977). This analysis would be independent of the 

physical system it would run on (i.e. the neurons and connectivity within a brain, or the 

hardware of a computer) but provided a measurable efficiency at how well a given 

information-processing ‘algorithm’ could solve particular tasks. This established the 

‘Three Levels’ of cognitive analysis that will one day, hopefully, allow the full 

understanding of perceptual tasks (Level 1: Computational Theory, Level 2: 

Representation and Algorithm, Level 3: Hardware Implementation) (Marr 1982).   

This same approach may prove vital to the study of bee cognition, as well as 

other invertebrate vision research. The Vision book written by Marr before his death is a 

must read for anyone interested in visual perception and provides first-hand insights 

into how these levels were developed and explored (Marr 1982). In insect cognition we 

will need to pay very particular attention to Level 1 “what is the goal of the computation” 

(Marr 1982), we may be able to theorise what the human brain needs to solve a given 

problem, but this is not the question. We need to make sure we ask what the problem, 

and underlying information theory ‘goal’, actually is from the bees’ perspective. As we 

have seen from both eidetic image discrimination (Chapter 2) and ‘above and below’ 

conceptualisation tasks (Chapter 5) the way we, as humans, approach the problem may 

be very different from that of the bees’. This Level 1 computational analysis, done 

correctly, will provide better insights into the possible representations that could be used 

by the bees to solve a task (i.e. Level 2), and of these which best suits the physical 

resources within the limited neuronal structures of the bee brain (i.e. Level 3). These 

three levels are however very much interconnected, such that new discoveries in 

electrophysiology or behavioural evidence may further influence how we characterise 

the ‘goals’ in Level 1; therefore close cooperation between bee experimentalists and 

theorists will undoubtedly aid progress within all three levels and within each discipline. 
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For those experimental groups that do not have existing collaborations with modellers 

there is still much that can be done to help explore the question of ‘how’ bee cognition 

may work. 

 

Data availability 

Throughout this thesis I have compared my model performances to that of the honeybee 

empirical results. These results are most often from unrewarded tests performed after 

the bees have been repeatedly exposed to training stimuli; they typically take the form 

of a single average performance for all of the honeybees tested. Followed by a statistical 

analysis to show if these results were significantly different to chance, and occasionally, 

an indication of variance between the tested bees. Fortunately, for my thesis this 

information was sufficient to compare my model performances with that of real bees. 

The next stage of this research, as discussed above, is to investigate how and the 

presence of CS+ and CS- stimuli may affect the learning and performance of bees. Most 

honeybee and bumblebee visual cognition experiments conducted since the turn of the 

century have trained individual bees within an enclosed flight arena, this allows the 

experimenter to precisely control which training patterns each solitary bee is exposed to. 

Earlier experiments would routinely mass train bees on the training patterns before 

testing, this meant there was no record of how many times a particular bee might have 

viewed the training stimuli, or what effect social cues or odours would have on its 

learning. It is now standard practice within behavioural publications on bees to provide 

a learning curve (a graph providing the number of correct choices the bees made per 

block of typically five or ten choices) before describing the actual test results. Figure 

6.1a shows a typical example, displayed is the average performance of ten bumblebees 

learning a colour discrimination task, subdivided into blocks of ten choices, the error 
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bars showing the standard deviation of the results for each block. When attempting to 

model the learning of individual bees, initial interrogation of these results might suggest 

that bees’ performance slowly increases during the first 50 – 60 trials and then stabilises 

at 90% accuracy. However, Figure 6.1b shows the individual performance of each bee 

during this task. This provides a clearer indication of the variation in learning, with 

some bees learning very fast, while others take much longer to reach the 90% accuracy 

level. This difference in the representation of how bees learn could have real 

implications on how any new model employing learning is evaluated.  

 

Figure 6.1 Example graphs displaying bumblebee discrimination task learning curves. 
(a) Average learning curve of bumblebees (n=10) learning to discriminate green and 
blue coloured chips. Number of correct choices per block of ten trials (total 100 trials). 
Error bars show standard deviation. (b) Individual learning curves for the same 10 
bumblebees.  

 Publications today allow an almost unlimited amount of supplementary 

information to be uploaded and stored online. Therefore, it is strongly recommended 

that the full data sets of individual bee stimuli selections be provided. This is even more 

critical for generalisation experiments were the bees’ choices could be influenced by 

particular stimuli. As modellers it is interesting to evaluate if all bees perform better or 

worse on particular CS+ and CS- stimuli, or whether an individuals exposure to 

previous stimuli may affect its subsequent choice selection on the next presented 

patterns. There is obviously a cost in formatting and preparing these data sets for open 

access, but the availability of this data to modellers such as myself is often as important 

as the final experimental test results. These data sets will in future allow new theoretical 
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models to be exposed to the exact same stimuli, in the same sequence, as real bees. We 

can then evaluate the model and honeybee performances to determine if previous 

experience, or simply differences in synaptic connectivity, can account for the variance 

we see in the empirical results. 

Videography 

In chapter 4 I investigated how bees might solve the spatial relationship task of ‘above 

and below’. The most significant finding from this work was that the ability of the 

models to succeed at the task was dependent on how the virtual bee was allowed to 

fixate at the patterns. This finding in turn led to the replication of the original ‘above 

and below’ behavioural experiment. High-speed video recordings revealed that the bees 

were solving the task by consistently fixating at the bottom shape of the pattern in 

whichever Y-Maze arm they entered, and making a simple discrimination of this shape 

to determine if to visit that arm’s feeding tube. However, this still only answered the 

question ‘what’ bees do. 

 Within our lab we have recently purchased a custom 3D flight arena video 

capture system (Pro Capture USA); with its three high-speed cameras and included 

software it is able to provide detailed tracking information as bees both approach and 

fixate at patterns. Again very simple experiments are providing vital, and often 

surprising, results as to how bees interrogate visual patterns. Within this thesis I 

provided a range of models that were able to replicate the honeybee behaviour 

performances at particular tasks. Some of these models were useful for generalisation 

(EAI_AB), others discrimination (SEO_AB) and others still for distance and horizontal 

location invariance of the stimuli (MERGED). Current behaviour experiments (utilising 

3D tracking) are investigating which of these different models may be employed when 

the bees have a choice of features they can learn. Specific sets of stimuli have been 
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designed that provide both a discrimination feature (a shape presented on every CS+ 

pattern and a different shape on every CS- pattern) and a generalisation feature 

(different shape on each pattern but displaying the same feature type) (see Fig 6.2). The 

most interesting finding thus far, is that the bees’ initial and secondary fixations are not 

just based on whether the pattern shape is the consistent discrimination or variable 

generalisation feature, but that the fixations also change dependent on the shapes 

presented, and also their relative locations. These fixation points in each particular 

stimuli set are largely consistent between the bees, suggesting some form of ‘internal 

rules’ that determine how the bees tackle each different task. The next step of this 

project is to use the 3D tracking data to replicate the bee-eye view (see (Sturzl, 

Boeddeker et al. 2010)) to understand if particular visual inputs are directing the bees 

flight dynamics and determining which stimuli features they preferentially learn. 

 

 

Figure 6.2 Example of combined discrimination and generalisation feature patterns. 
One CS+ and one CS- pattern are selected from a respective set of patterns and 
presented during each experimental trial. Here the CS+ patterns always display the 
exact same triangle shape (discrimination feature) on the left and an inclined wavy 
grating on the right, which can be composed of 2-4 lines (generalisation feature). The 
CS- always has a circle on the left and on the right 2-4 vertical wavy lines.   
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 Due to the potential of being able to simulate the exact visual perception of bees, 

it is hoped, and strongly recommended, that all future free-flight bee experiments be 

recorded with multiple high-speed cameras, even when this isn’t necessary for the 

current question being asked. The cost of these cameras is rapidly dropping and the cost 

of online storage for academic institutions is most often free (Dropbox, GitHub, etc.). 

The camera setup for my ‘above and below’ experiments was not ideal, with issues 

synchronising off-the-shelf action cameras and reconstruction of 3D coordinates, 

especially given the fish-eye distortions on these cameras. However, with increasing 

computer processing speeds and developments in machine vision processing, 

conversion of these video recordings into full 3d tracking data sets will become ever 

easier (with the raw video footage archived this process can always be performed in the 

future). Just as simple video recordings of the original ‘above and below’ experiment 

could have guided the development of my models in chapter 4, and prevented the need 

to replicate the experiments in chapter 5, so high-speed recordings of current 

experiments may provide a huge wealth of information for future cognitive modelling 

questions. Indeed, these new questions may have little in common with the original 

behavioural investigation, but nonetheless will be an incredibly useful resource, and 

save valuable time unnecessarily replicating required experiments. 

 

6.3 Final thoughts 

A substantial motivation for this thesis, and my PhD in general, is progressing our 

understanding of how the miniature brain of a bee is able to accomplish their 

remarkable visual recognition feats seen both in nature, and under experimental 

conditions. In this thesis I have provided novel insights into how the miniature 
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honeybee brain is, by virtue of its neuronal design, able to tackle complex 

discriminations, stimuli invariance, and even generalisation tasks. However, the 

research undertaken in Chapter 4 and Chapter 5 demonstrates another vital benefit of 

studying insects. Without this extremely focused modelling and behavioural study on 

what and how bees solve the ‘above and below’ conceptualisation task, we may not 

have identified such a seemingly obvious solution to this problem. This research now 

forces us to reassess previous experimental conclusions and ask the awkward question – 

just because we (humans) solve, what we perceive to be complex problems through a 

particular process, does this necessitate that other animals cannot solve the same task in 

a completely novel, and potentially much simpler way; even when the behavioural data 

seems to support our original hypothesis? With this said, there is no reason not to study 

other conceptual, social, or even tool use abilities in bees and other invertebrates. These 

studies, such as the one presented here, may provide novel insights into how different 

problems can be approached and solved. As electrophysiological techniques improve 

over the next few years, the miniature brain of the honeybee may have an even more 

vital role in computational neuroscience and animal cognition; the ability to investigate 

how these remarkable brains work during visual recognition and even ‘higher order’ 

learning tasks may have so much more to teach us. 
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