17 research outputs found

    Formal methods for design and simulation of embedded systems

    Get PDF

    CONTREX: Design of embedded mixed-criticality CONTRol systems under consideration of EXtra-functional properties

    Get PDF
    The increasing processing power of today’s HW/SW platforms leads to the integration of more and more functions in a single device. Additional design challenges arise when these functions share computing resources and belong to different criticality levels. The paper presents the CONTREX European project and its preliminary results. CONTREX complements current activities in the area of predictable computing platforms and segregation mechanisms with techniques to consider the extra-functional properties, i.e., timing constraints, power, and temperature. CONTREX enables energy efficient and cost aware design through analysis and optimization of these properties with regard to application demands at different criticality levels

    CONTREX: Design of embedded mixed-criticality CONTRol systems under consideration of EXtra-functional properties

    Get PDF
    The increasing processing power of today’s HW/SW platforms leads to the integration of more and more functions in a single device. Additional design challenges arise when these functions share computing resources and belong to different criticality levels. CONTREX complements current activities in the area of predictable computing platforms and segregation mechanisms with techniques to consider the extra-functional properties, i.e., timing constraints, power, and temperature. CONTREX enables energy efficient and cost aware design through analysis and optimization of these properties with regard to application demands at different criticality levels. This article presents an overview of the CONTREX European project, its main innovative technology (extension of a model based design approach, functional and extra-functional analysis with executable models and run-time management) and the final results of three industrial use-cases from different domain (avionics, automotive and telecommunication).The work leading to these results has received funding from the European Community’s Seventh Framework Programme FP7/2007-2011 under grant agreement no. 611146

    Mechanizing the metatheory of rewire

    Get PDF
    The [lambda]-calculus provides a simple, well-established framework for research in functional programming languages that readily lends itself to the use offormal methods--that is, the use of mathematically sound techniques and supporting tools--to describe and verify properties of programming languages, as well. This is no coincidence. After all, the [lambda]-calculus formalizes the concept of effective computability, for all computable functions are definable in the untyped [lambda]-calculus, making it expressively equivalent torecursive functions. In software, the expressiveness of functional languages is considereda strength. Functional approaches to language design, however, needn't be limited to soft-ware. In hardware, the expressiveness of functional languages becomes a major obstacle to successful hardware synthesis, for the reason that such languages are usually capable of expressing general recursion. The presence of general recursion makes it possible to generate expressions that run forever, never producing a well-defined value. In this dissertation, we study two novel variants of the simply typed [lambda]-calculus, representing fragments of functional hardware description languages. The first variant extends the type system, using natural numbers representing time. This addition, though simple, is non-trivial. We prove that this calculus possesses bounded variants of type-safety and strong normalization. That is to say, we show that all well-typed expressions evaluate to values within a bound determined by the natural number index of their corresponding types. The second variant is a computational [lambda]-calculus that formalizes the core fragment of the hardware description language known as ReWire. We prove that the language has type-safety and is strongly normalizing -- the proof of strong normalizationis the first mechanized proof of its kind. We define an equational theory with respect to this language. This allows us to prove that the language has desirable security properties by construction. This work supports a full-edged, formal methodology for producing high assurance hardware.Includes bibliographical reference

    Domain Globalization: Using Languages to Support Technical and Social Coordination

    Get PDF
    International audienceWhen a project is realized in a globalized environment, multiple stakeholders from different organizations work on the same system. Depending on the stakeholders and their organizations, various (possibly overlapping) concerns are raised in the development of the system. In this context a Domain Specific Language (DSL) supports the work of a group of stakeholders who are responsible for addressing a specific set of concerns. This chapter identifies the open challenges arising from the coordination of globalized domain-specific languages. We identify two types of coordination: technical coordination and social coordination. After presenting an overview of the current state of the art, we discuss first the open challenges arising from the composition of multiple DSLs, and then the open challenges associated to the collaboration in a globalized environment

    Parallele und kooperative Simulation fĂĽr eingebettete Multiprozessorsysteme

    Get PDF
    Die Entwicklung von eingebetteten Systemen wird durch die stetig steigende Anzahl und Integrationsdichte neuer Funktionen in Kombination mit einem erhöhten Interaktionsgrad zunehmend zur Herausforderung. Vor diesem Hintergrund werden in dieser Arbeit Methoden zur SystemC-basierten parallelen Simulation von Multiprozessorsystemen auf Manycore Architekturen sowie zur Verbesserung der Interoperabilität zwischen heterogenen Simulationswerkzeugen entwickelt, experimentell untersucht und bewertet

    Efficient Modelling and Simulation Methodology for the Design of Heterogeneous Mixed-Signal Systems on Chip

    Get PDF
    Systems on Chip (SoCs) and Systems in Package (SiPs) are key parts of a continuously broadening range of products, from chip cards and mobile phones to cars. Besides an increasing amount of digital hardware and software for data processing and storage, they integrate more and more analogue/RF circuits, sensors, and actuators to interact with their (analogue) environment. This trend towards more complex and heterogeneous systems with more intertwined functionalities is made possible by the continuous advances in the manufacturing technologies and pushed by market demand for new products and product variants. Therefore, the reuse and retargeting of existing component designs becomes more and more important. However, all these factors make the design process increasingly complex and multidisciplinary. Nowadays, the design of the individual components is usually well understood and optimised through the usage of a diversity of CAD/EDA tools, design languages, and data formats. These are based on applying specific modelling/abstraction concepts, description formalisms (also called Models of Computation (MoCs)) and analysis/simulation methods. The designer has to bridge the gaps between tools and methodologies using manual conversion of models and proprietary tool couplings/integrations, which is error-prone and time-consuming. A common design methodology and platform to manage, exchange, and collaboratively develop models of different formats and of different levels of abstraction is missing. The verification of the overall system is a big problem, as it requires the availability of compatible models for each component at the right level of abstraction to achieve satisfying results with respect to the system functionality and test coverage, but at the same time acceptable simulation performance in terms of accuracy and speed. Thus, the big challenge is the parallel integration of these very different part design processes. Therefore, the designers need a common design and simulation platform to create and refine an executable specification of the overall system (a virtual prototype) on a high level of abstraction, which supports different MoCs. This makes possible the exploration of different architecture options, estimation of the performance, validation of re-used parts, verification of the interfaces between heterogeneous components and interoperability with other systems as well as the assessment of the impacts of the future working environment and the manufacturing technologies used to realise the system. For embedded Analogue and Mixed-Signal (AMS) systems, the C++-based SystemC with its AMS extensions, to which recent standardisation the author contributed, is currently establishing itself as such a platform. This thesis describes the author's contribution to solve the modelling and simulation challenges mentioned above in three thematic phases. In the first phase, the prototype of a web-based platform to collect models from different domains and levels of abstraction together with their associated structural and semantical meta information has been developed and is called ModelLib. This work included the implementation of a hierarchical access control mechanism, which is able to protect the Intellectual Property (IP) constituted by the model at different levels of detail. The use cases developed for this tool show how it can support the AMS SoC design process by fostering the reuse and collaborative development of models for tasks like architecture exploration, system validation, and creation of more and more elaborated models of the system. The experiences from the ModelLib development delivered insight into which aspects need to be especially addressed throughout the development of models to make them reusable: mainly flexibility, documentation, and validation. This was the starting point for the development of an efficient modelling methodology for the top-down design and bottom-up verification of RF Systems based on the systematic usage of behavioural models in the second phase. One outcome is the developed library of well documented, parameterisable, and pin-accurate VHDL-AMS models of typical analogue/digital/RF components of a transceiver. The models offer the designer two sets of parameters: one based on the performance specifications and one based on the device parameters back-annotated from the transistor-level implementation. The abstraction level used for the description of the respective analogue/digital/RF component behaviour has been chosen to achieve a good trade-off between accuracy, fidelity, and simulation performance. The pin-accurate model interfaces facilitate the integration of transistor-level models for the validation of the behavioural models or the verification of a component implementation in the system context. These properties make the models suitable for different design tasks such as architecture exploration or overall system validation. This is demonstrated on a model of a binary Frequency-Shift Keying (FSK) transmitter parameterised to meet very different target specifications. This project showed also the limits in terms of abstraction and simulation performance of the "classical" AMS Hardware Description Languages (HDLs). Therefore, the third and last phase was dedicated to further raise the abstraction level for the description of complex and heterogeneous AMS SoCs and thus enable their efficient simulation using different synchronised MoCs. This work uses the C++-based simulation framework SystemC with its AMS extensions. New modelling capabilities going beyond the standardised SystemC AMS extensions have been introduced to describe energy conserving multi-domain systems in a formal and consistent way at a high level of abstraction. To this end, all constants, variables, and parameters of the system model, which represent a physical quantity, can now declare their dimension and associated system of units as an intrinsic part of their data type. Assignments to them need to contain besides the value also the correct measurement unit. This allows a much more precise but still compact definition of the models' interfaces and equations. Thus, the C++ compiler can check the correct assembly of the components and the coherency of the equations by means of dimensional analysis. The implementation is based on the Boost.Units library, which employs template metaprogramming techniques. A dedicated filter for the measurement units data types has been implemented to simplify the compiler messages and thus facilitate the localisation of unit errors. To ensure the reusability of models despite precisely defined interfaces, their interfaces and behaviours need to be parametrisable in a well-defined manner. The enabling implementation techniques for this have been demonstrated with the developed library of generic block diagram component models for the Timed Data Flow (TDF) MoC of the SystemC AMS extensions. These techniques are also the key to integrate a new MoC based on the bond graph formalism into the SystemC AMS extensions. Bond graphs facilitate the unified description of the energy conserving parts of heterogeneous systems with the help of a small set of modelling primitives parametrisable to the physical domain. The resulting models have a simulation performance comparable to an equivalent signal flow model

    A Problem-Oriented Approach for Dynamic Verification of Heterogeneous Embedded Systems

    Get PDF
    This work presents a virtual prototyping methodology for the design and verification of industrial devices in the field level of industrial automation systems. This work demonstrates that virtual prototypes can help increase the confidence in the correctness of a design thanks to a deeper understanding of the complex interactions between hardware, software, analog and mixed-signal components of embedded systems and the physical processes they interact with
    corecore