
MECHANIZING THE METATHEORY OF REWIRE

A Thesis presented to

the Faculty of the Graduate School

at the University of Missouri

In Partial Ful�llment

of the Requirements for the Degree

Doctor of Philosophy

by

THOMAS N. REYNOLDS

Dr. William L. Harrison, Dissertation Supervisor

DECEMBER 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Missouri: MOspace

https://core.ac.uk/display/288851977?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The undersigned, appointed by the Dean of the Graduate School, have examined the

dissertation entitled:

MECHANIZING THE METATHEORY OF REWIRE

presented by Thomas Reynolds, a candidate for the degree of Doctor of Philosophy and

hereby certify that, in their opinion, it is worthy of acceptance.

Dr. William L. Harrison

Dr. Rohit Chadha

Dr. Khaza Anuarul Hoque

Dr. Gergely Bana

ACKNOWLEDGMENTS

Undoubtedly, I owe my advisor, William L. Harrison, a tremendous debt of gratitude.

Without his intervention, I’d most likely be a logician living amongst the philosophers. It

was a privilege to work in his lab and to learn from him over the years. His con�dence in

me completely changed the trajectory of not only my work, but of my life, as well.

I wish to thank Dr. Adam Procter, Dr. Ian Graves, and the rest of my colleagues

from the Center for High Assurance Computing. In addition to being great sources of

knowledge concerning ReWire, each of them provided advice and encouragement even

long after they left. In particular, Adam Procter provided a great example and his presence

in the early parts of my transition to the lab proved invaluable.

Of course, I’d like to thank the members of my dissertation committee: Professor Rohit

Chadha, Professor Khaza Anuarul Hoque, and Professor Gergei Bana. Professor Chadha

provided logical and practical insights that both amazed and inspired me over the years.

Professor Hoque and his extensive knowledge of FPGAs challenged me to improve my

own understanding of them. To this day, Professor Bana is still the only other person I’ve

known that wanted to discuss the Fitting translation of S4-modal logic.

Lastly, I wish to thank my family. My mother Helen instilled in me a great sense

of duty and a work ethic that fueled my passion to pursue what inspired me. My wife

Jenna supported me through my studies and blessed me with a daughter that challenges

us almost as much I challenged my mother. I am eternally grateful to them for everything

they have done for me.

ii

Contents

ACKNOWLEDGMENTS . ii

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABSTRACT . ix

CHAPTER . ix

1 Introduction . 1

1.1 Overview . 2

2 The Bounded Time Calculus . 3

2.1 Introduction . 3

2.2 Background . 4

2.3 BTC: The Bounded Time Calculus . 5

2.3.1 Syntax . 5

2.3.2 Type System . 9

2.3.3 Small-Step Operational Semantics 13

2.4 Metatheory . 14

2.4.1 Type Safety . 15

2.4.2 Strong Normalization . 16

2.5 Conclusions . 19

3 The ReWire Core Calculus . 20

3.1 Abstract . 20

3.2 Introduction . 20

3.3 Background: ReWire’s Programming Model 30

iii

3.3.1 Background: Monads . 31

3.3.2 Background: Monad Transformers 31

3.3.3 De�ning Devices in ReWire . 33

3.3.4 Background: Goguen-Meseguer Non-interference 34

3.3.5 Marrying E�ects & Layered State Monads 35

3.4 RWC: The ReWire Core Calculus . 36

3.4.1 Syntax . 36

3.4.2 Type System . 39

3.4.3 Small-Step Operational Semantics 43

3.5 Metatheory . 46

3.5.1 Type Safety . 47

3.5.2 Canonical Forms . 48

3.5.3 Strong Normalization . 48

3.5.4 Soundness of E�ect Labels . 52

3.6 Type-directed Equational Logic for RWC 55

3.7 Conclusions . 57

4 Summary and concluding remarks . 58

BIBLIOGRAPHY . 60

APPENDIX . 71

A BTC COQ Code . 71

A.1 Syntax . 71

A.1.1 Types . 71

A.1.2 Terms . 71

A.1.3 Values . 72

A.2 Typing Judgments . 72

iv

A.2.1 For terms . 72

A.3 Substitution . 74

A.4 Reduction . 77

A.4.1 Lambda-calculus reduction relation 77

A.4.2 Congruence Lemmmas . 81

A.4.3 Inversion Principles . 83

A.5 Reducibility . 86

B RWC COQ Code . 93

B.1 Syntax . 93

B.1.1 Monads and Types . 93

B.1.2 Terms and Con�gurations . 98

B.2 Lambda Calculus Values . 101

B.2.1 Done Con�gurations . 103

B.3 Typing Judgments . 103

B.3.1 For terms . 103

B.3.2 For con�gurations . 107

B.4 Canonical Forms . 108

B.5 Substitution . 109

B.6 Substitution . 111

B.7 Reduction . 118

B.7.1 Lambda-calculus and monadic reduction relations 118

B.7.2 Induction Principles . 127

B.8 Progress . 142

B.9 Preservation . 143

B.10 Strong Normalization . 145

v

B.11 E�ects . 158

B.12 Monad Laws . 165

B.12.1 Monad Transformer Laws . 166

B.12.2 Null Bind . 167

B.12.3 Stateful Computations . 168

VITA . 170

vi

List of Tables

Table Page

vii

List of Figures

Figure Page

2.1 BTC Types . 6

2.2 BTC Terms . 6

2.3 BTC Values . 7

2.4 BTC Type System . 10

2.5 BTC Step Relation . 14

3.1 Device d. 30

3.2 Syntax of RWC types . 36

3.3 Syntax of terms, stores, and con�gurations 38

3.4 Typing Judgments for Terms . 40

3.5 Ordering on e�ect labels (given by the diagram) and on state monads. . . . 43

3.6 Typing judgments for stores (top) and con�gurations (bottom). 43

3.7 Lambda Calculus Reduction . 45

3.8 Monadic Calculus Reduction . 45

3.9 Fixpoint De�nition of R . 52

3.10 CoInductive De�nition of along react . 52

3.11 The ‘same where no write’ relation. 53

3.12 The ‘same where read’ relation. 53

3.13 The write consistency relation. 53

3.14 Equational Rules . 56

viii

ABSTRACT

The λ-calculus provides a simple, well-established framework for research in func-

tional programming languages that readily lends itself to the use of formal methods—

that is, the use of mathematically sound techniques and supporting tools—to describe

and verify properties of programming languages, as well. This is no coincidence. Af-

ter all, the λ-calculus formalizes the concept of e�ective computability, for all computable

functions are de�nable in the untyped λ-calculus, making it expressively equivalent to

recursive functions. In software, the expressiveness of functional languages is considered

a strength. Functional approaches to language design, however, needn’t be limited to soft-

ware. In hardware, the expressiveness of functional languages becomes a major obstacle

to successful hardware synthesis, for the reason that such languages are usually capable

of expressing general recursion. The presence of general recursion makes it possible to

generate expressions that run forever, never producing a well-de�ned value.

In this dissertation, we study two novel variants of the simply typed λ-calculus, rep-

resenting fragments of functional hardware description languages. The �rst variant ex-

tends the type system, using natural numbers representing time. This addition, though

simple, is non-trivial. We prove that this calculus possesses bounded variants of type-

safety and strong normalization. That is to say, we show that all well-typed expressions

evaluate to values within a bound determined by the natural number index of their cor-

responding types. The second variant is a computational λ-calculus that formalizes the

core fragment of the hardware description language known as ReWire. We prove that the

language has type-safety and is strongly normalizing—the proof of strong normalization

is the �rst mechanized proof of its kind. We de�ne an equational theory with respect to

this language. This allows us to prove that the language has desirable security properties

by construction. This work supports a full-�edged, formal methodology for producing

high assurance hardware.

ix

Chapter 1

Introduction

This dissertation investigates the formal veri�cation of the metatheory of simply typed

λ-calculi. The simply typed λ-calculus, invented by Alonzo Church [19, 18, 20], forms the

backbone of modern functional programming languages [8], such as ML [66], OCaml [110]

and Haskell [78]. By a formal veri�cation of some target X, we mean a proof of cor-

rectness (or that some property is true) of X with respect to a formal speci�cation of X.

Because hand-written proofs have proven problematic, the reliability of any formal ver-

i�cation depends crucially on the methods and tools used in proofs.
1

This has led to the

development of a myriad of tools used in formal methods including: model checkers such

as SPIN [48], SAL [70], and SMV [61], automated theorem provers such as Prover9 [23]

and Automath [24], and interactive theorem provers such as Agda [75], Isabelle [25] and

Coq [26].
2

This work examines extensions of simply typed λ-calculi formalized in Coq. ReWire is

a subset of Haskell—from which circuits are synthesized automatically. The language, de-

sign and implementation of ReWire has been introduced in previous work [83, 43, 42, 47].

The ReWire Core Calculus (RWC) is a computational λ-calculus à la Moggi [69] that em-

bodies the “barebones” of ReWire. We formalize RWC in Coq and prove that the language

possesses some desirable metatheoretic properties such as type-safety—the property that

1
For example, although the main theorem and result in [55] are correct, several lemmas are false and

part of the proof of the main theorem is incorrect.

2
This list is not intended to be exhaustive. It merely provides a sampling of some of the more popular

tools used in formal methods.

1

all well-typed expressions are either values or they can be further evaluated to a well-

typed expression—and strongly normalizing—the property that all well-typed expressions

evaluate to values. We also de�ne an equational theory with respect to this language

that allows us to demonstrate that the language possesses certain security properties by

construction [45].

We de�ne another extension the simply typed λ-calculus that incorporates natural

numbers as indices into the type system. The addition of these indices is non-trivial. We

demonstrate this by proving that this calculus possesses bounded variants of type-safety

and strong normalization. That is to say, we show that all well-typed expressions evaluate

to values within a bound determined by the natural number index of their corresponding

types.

1.1 Overview

Chapter 2 presents the bounded time calculus. We introduce the type system and proceed

to discuss novelties thereof. This work has no comparable machine-checked formaliza-

tions in the literature.

Chapter 3 presents work previously published on the rewire core calculus. We discuss

the implementation and design of this calculus. A number of formal and novel techniques

are developed and discussed. This dissertation concludes with a discussion of future work

in Chapter 4.

2

Chapter 2

The Bounded Time Calculus

This chapter presents a variant of the simply typed λ-calculus. The type system for

this calculus has been augmented with natural numbers, intended to represent a coarse

grained approximation of computation time. The formalization contains proofs of many

standard properties of the simply typed λ-calculus such as type safety and strong normal-

ization.

2.1 Introduction

Type based approaches to termination add size parameters to type system as a means

to guarantee that recursive functions terminate. The typing rule ListFix illustrates a

(simpli�ed) type-based approach to using size variables in recursive de�nitions (adapted

from [10, 90]):

Γ, f : [T]n → U ` e : [T]n̂ → U

Γ ` fixf := e : [T]∞ → U
(ListFix)

where ˆ is the successor function, n is a size variable and [T]n denotes the type of lists

(with elements of type T) of a size no greater thann. This requires each instance of f to be

de�ned on lists smaller than e, and hence, each recursive call reduces the size parameter.

In this chapter, we present a variant of the simply typed λ-calculus inspired by sized

types. This calculus extends a standard Church-style type system of the simply typed λ-

calculus in two ways.
1

First, in this system, function types are the only types themselves

1
Here we focus on Church-style approaches to typing, as opposed to typing Curry-style [29, 30].

3

that have parameters in a manner similar to the ListFix example above. Other types,

such as products, sums and unit remain unchanged. Second, type judgments incorporate

a variable as part of the judgment.

Whereas other approaches focus on far more expressive systems such as the Calculus

of Inductive Constructions, we focus on a limited extension of the simply typed λ-calculus.

The trade o� in expressiveness facilitates the use of standard machinery to prove inter-

esting metatheoretic properties of our system. Indeed, our formalization uses a standard

approach to term construction and has been fully veri�ed in Coq.

2.2 Background

The concept of using types for termination dates as far back as [65]. The underlying

motivation for using sized types is that it aids in termination checking, as subsequent calls

may be type checked for reduced size. Hughes et al. [53] incorporate sized types into a

functional language.
2

In the system introduced in [53] each name for a datatype, i.e., List,

Stream, represents a collection of nat-indexed datatypes such as Listn where n is a size

bound. In this system, sizes are a linear function of size variables and typing rules reinforce

a requirement that each input generates an output of a smaller size. This supports a basic

check for responsiveness of program in a reactive system because programs that are well-

typed in this system will satisfy a liveness property–that every input eventually produces

an output.

Building on the system introduced in [53], Pareto [77] examines an extension of

Haskell with sized types. This extension utilizes linear sized types–including addition

and constants. It provides a type-checking algorithm, as well.

Interest in sized types is not limited to functional programming–they have been in-

corporated into dependent type theories, too. Giménez [37] considers an extension of

the Calculus of Constructions [27]. Sizes are not explicitly represented but still present

2
For more references beyond those listed here, see [1, 89].

4

nonetheless. Other type systems involve more complex size algebras. For example, a more

expressive language using linear sized types was introduced in [90] by extending the Cal-

culus of Inductive Constructions with (co-)inductive types and size annotations. Other

systems introduce sizes as upper bounds [9, 2], or add sized types in a dependently typed

framework with polymorphism and indexed types [111]. Each of these systems has more

expressive power than our own.

Whereas other approaches examine far more expressive languages, we focus on a lim-

ited extension of the simply typed λ-calculus. The trade o� in expressiveness facilitates

the use of standard machinery to prove interesting metatheoretic properties of our sys-

tem. Indeed, our formalization uses a standard approach to term construction and has

been fully veri�ed in Coq.

2.3 BTC: The Bounded Time Calculus

In this section, we present the syntax and semantics of the Bounded Time Calculus (BTC).

Along the way, we present the Coq encoding and a more readable version of each concept.

We adopt the following conventions. We use s, t, u to denote terms, v, w to denote values,

x,y, z to denote arbitrary variables, and T, U for types.

2.3.1 Syntax

We begin with BTC types. These include standard types such as products (T ×U or TProd

T U), sums (T + U or TSum T U), and unit (() or TUnit). Most importantly, there is a

variant of the standard function or arrow type (T
n→ U or TArrow n T U). This is stated in

De�nition 2.1 and encoded in Figure 2.1.

De�nition 2.1 (Types). The set Ty of BTC types is de�ned thusly:

T, U ∈ Ty ::= T
n→ U | T × U | T + U | ()

5

where n denotes an arbitrary natural number.

Inductive Ty : Type :=

| TArrow : nat → Ty→ Ty→ Ty
| TProd : Ty→ Ty→ Ty
| TSum : Ty→ Ty→ Ty
| TUnit : Ty.

Figure 2.1: Coq Syntax for BTC Types

The variable decorating the function arrow represents a restriction on the time it takes

to convert an argument to its corresponding output. We return to the signi�cance of this

below.

Terms and values are given standard de�nitions. This is stated in De�nition 2.2 and

encoded in Figure 2.3.1.

De�nition 2.2 (Terms). The set term of BTC terms is de�ned thusly:

s, t, u ∈ term ::= x | app t u | λx T t | nil | pair t u

| π1 t | π2 t | inl t T | inr t T | case s t u

De�nition 2.3 (Values). The set value of BTC values is given by the following:

v, w ∈ value ::= λx T t | nil | pair v w | inl v T | inr v T

Inductive term : Type :=

| var : id → term
| app : term→ term→ term
| λ : id → Ty→ term→ term
| nil : term
| pair : term→ term→ term
| π1 : term→ term
| π2 : term→ term
| inl : term→ Ty→ term
| inr : term→ Ty→ term
| case : term→ term→ term→ term.

Figure 2.2: Coq Syntax for BTC Terms

6

Inductive value : term→ Prop :=

| v abs : ∀ x T t,
value (λ x T t)

| v unit : value nil
| v pair : ∀ v w,

value v→ value w→ value (pair v w)

| v inl : ∀ v T,

value v→ value (inl v T)

| v inr : ∀ v T,

value v→ value (inr v T).

Figure 2.3: Coq Syntax for BTC Values

The terms and values are by and large standard. We comment only on the term constructor

case . This term, used for destructing sum types, takes three subterms: the �rst is a term

of type T + U , the second is a function t from T to S, and the third is a function u from

U to S. If the �rst subterm evaluates to inl v U (resp., inr v T), then v will be passed to t

(resp., u).

Before moving on to discuss the type system, we de�ne free variable substitution. As

this suggests, we must �rst provide a clear statement of what it means for a variable to

occur free in a term. This is provided by De�nition 2.4.

De�nition 2.4 (Free Variables). For any term t, the set of free variables in t, FV (t) is

de�ned as:

FV (x) = {x}

FV (app t u) = FV (t) ∪ FV (u)

FV (λ x T t) = FV (t) \ {x}

FV (nil) = {}

FV (pair t u) = FV (t) ∪ FV (u)

FV (π1 t) = FV (t)

FV (π2 t) = FV (t)

FV (inr t U) = FV (t)

7

FV (inl u T) = FV (u)

FV (case s t u) = FV (s) ∪ FV (t) ∪ FV (u)

When FV (t) = ∅, then t is closed.

De�nition 2.5 (Substitution). We now de�ne the substitution of v for free occurrences

of x in t, written ‘t[x := v]’, thusly:

x[x := v] = v

y[x := v] = y if y 6= x

(app t u)[x := v] = app (t[x := v]) (u[x := v])

(λxT t)[x := v] = λxT t

(λ y T t)[x := v] = λ y T (t[x := v]) if y 6= x and y /∈ FV (v)

nil[x := v] = nil

(pair t u)[x := v] = pair (t[x := v]) (u[x := v])

(π1 t)[x := v] = π1 (t[x := v])

(π2 t)[x := v] = π2 (t[x := v])

(inr t U)[x := v] = inr (t[x := v])U

(inl uT)[x := v] = inl (u[x := v])T

(case s t u)[x := v] = case (s[x := v]) (t[x := v]) (u[x := v])

In addition to the clauses for substitution into lambda abstractions, one typically also �nds

the following:

(λ y T t)[x := v] = λ z T (t[y := z])[x := v] if z /∈ FV (t) and z /∈ FV (v)

When the other clauses for abstraction apply, this clause generates α-equivalent

8

expressions—that is, expressions equivalent up to a renaming of bound variables. In our

setting, adding such a clause would only complicate matters for the reason that the other

clauses su�ce.

2.3.2 Type System

Typing rules for terms are given in De�nition 2.6. Typing judgments take the form

Γ ` t :Tn

where Γ = {x1 :T1, . . . ,xm :Tm} such that for each assumption xi : Ti, xi denotes a

term variable unique to Γ and Ti is a type (as de�ned in De�nition 2.1). The set Γ is

commonly referred to as a context or environment. In cases where Γ is empty, we write

{}. Additionally, we write Γ,x :T as shorthand for Γ ∪ {x :T}.

We say that the expression n decorates the type T in Tn
. The range of expressions

allowed as decorators is determined by the following grammar:

n,m ∈ N ::= n | n+m | max(n,m)

Though restrictive, this linear structure su�ces for our needs here. The expression that

decorates function types is more restrictive—only allowing natural numbers as decorators.

9

De�nition 2.6 (Typing Judgments). We de�ne typing judgments thusly

Γ,x :T `x :T 0
(Var)

Γ,x :T ` t :Un

Γ ` λxT t : (T
n→ U)0

(Abs)

Γ ` f : (T
n→ U)m Γ ` t :T p

Γ ` app f t :U (n+m+p+1)
(App)

Γ ` nil : ()0
(Nil)

Γ ` t :T n Γ ` u :Um

Γ ` pair t u : (T × U)n+m
(Pair)

Γ ` t : (T × U)n

Γ ` π1 t :T
(n+1)

(Pi1)

Γ ` t : (T × U)n

Γ ` π2 t :U
(n+1)

(Pi2)

Γ ` t :T n
Γ ` inl t U : (T + U)n

(Inl)

Γ ` u :Un

Γ ` inr u T : (T + U)n
(Inr)

Γ ` s : (T + U)n Γ ` t : (T
l→ S)m Γ ` u : (U

r→ S)p

Γ ` case s t u :S(n+max(l+m,r+p)+2)
(Case)

Figure 2.4 contains the Coq code de�ning the typing relation for BTC.

Inductive has type : context→ term→ Ty→ nat→ Prop :=

| Var : ∀ Γ x T,

Γ x = Some T →
Γ ` var x : T // 0

| Abs : ∀ Γ x T U t n,

extend Γ x T ` t : U // n→
Γ ` λ x T t : T

n→ U // 0
| App : ∀ T U Γ f T n m p,

Γ ` f : T
n→ U // m→

Γ ` t : T // p→
Γ ` app f t : U // (n + m + p + 1)

| Nil : ∀ Γ,

Γ ` nil : () // 0
| Pair : ∀ Γ T U t u n m,

Γ ` t : T // n→
Γ ` u : U // m→
Γ ` pair t u : T × U // (n + m)

| Pi1 : ∀ Γ T U t n,

Γ ` t : T × U // n→
Γ ` π1 t : T // (n + 1)

| Pi2 : ∀ Γ T U t n,

Γ ` t : T × U // n→
Γ ` π2 t : U // (n + 1)

| Inl : ∀ Γ T U t n,

Γ ` t : T // n→
Γ ` inl t U : T + U // n

| Inr : ∀ Γ T U t n,

Γ ` t : U // n→
Γ ` inr t T : T + U // n

| Case : ∀ Γ S T U s t u l r n m p,

Γ ` s : T + U // n→
Γ ` t : T

l→ S // m→
Γ ` u : U

r→ S // p→
Γ ` case s t u : S // (n + (max (l + m) (r + p)) + 2)

where “Γ ` t : T // n” := (has type Γ t T n).

Figure 2.4: BTC Typing Relation

The types for variables, abstractions and nil each have 0 as a decorator. Pairs inherit

the sum of the decorators for the types of their subterms, while each type for the projection

constructors adds one to the decorator of their subterm types. Sums possess the same

decorators as the types of their subterms. For the application rule, the natural number

decorating the arrow represents the time it takes to reduce a term of type T to a term

of type U . In addition to natural number indexes, function types also receive an outer

decoration. This represents the time for processing the function of that type. In line

10

with the other term constructors, the decorator for the resulting term adds 1. The rule

for case takes the max value of the decorators adorning either branch of the evaluation.

Because this requires an additional term, it adds 2 to the decorator for the type of the case

expression.

The type system possesses a property common to many simply typed λ-calculi. This

property is that every well-typed term has a unique type, as stated in Theorem 2.7.

Theorem 2.7 (Type Uniqueness). If Γ ` t : T n and Γ ` t : Um, then T = U .

In this typing system, with the addition of decorators, this property was not guaranteed.

Interestingly, the type system also possesses similar property for decorators, as stated in

Theorem 2.8.

Theorem 2.8 (Decorator Uniqueness). If Γ ` t : T n and Γ ` t : Um, then n = m.

This property enforces a uniformity of decorator assignments, so to speak. In this set-

ting, such a property represents a good guarantee that the system has (at some) desirable

properties. Additionally, we also have it that terms well-typed in the empty context, are

well-typed in any context:

Theorem 2.9. If {} ` t : T n, then Γ ` t : T n.

Theorem 2.9 provides further reassurances that the addition of decorators does not dras-

tically alter the traditional properties of the simply typed λ-calculus’s type system.

Our type system and de�nition of values (from De�nition 2.3) provide us with canon-

ical forms—that is, a property of closed, well-typed values. Many proofs of metatheoretic

properties tend to be organized around canonical forms. This greatly reduces the cases

one needs to consider. Our canonical forms are the following.

Lemma 2.10. If {} ` v : (T
n→ U)m and v is a value, then there exists xu, such that

v = λx T u.

11

Lemma 2.11. If {} ` v : (T × U)m and v is a value, then there exists t u, such that v =

pair t u.

Lemma 2.12. If {} ` v : (T+U)m and v is a value, then there existsw such that v = inl wU

or v = inr w T .

Lemma 2.13. If {} ` v : ()0, then v = nil.

Substitution (given in De�nition 2.5 above) preserves typing judgments. This requires

that if free variables occur in well-typed terms, then there must be a typing assignment

for those variables relative to the context. As stated in Lemma 2.14.

Lemma 2.14. If x ∈ FV(t) and Γ ` t :T n, then there exists a Usuch that {x : U} ∈ Γ.

From this Corollary 2.15 follows—namely, that a term is closed if it is well-typed in the

empty context.

Corollary 2.15. If {} ` t :T n, then t is closed.

Moreover, we have Lemma 2.16 as a consequence—that the context of a typing judgment

does not alter typing judgments, so long as all each context maintains assignments of

types to any free variables.

Lemma 2.16. If Γ ` t : T n and, if, for all x, x ∈ FV(t), Γ and Γ′ assign the same type to

x, then Γ′ ` t :T n.

Finally, we have Theorem 2.17—that is, the substitution operation preserves typing judg-

ments when the term being substituted is a value.

Theorem 2.17. If Γ, x :U ` t :T n, value v, and {} ` v :Um, then Γ ` (t[x := v]) :T n.

This is a more restricted version than what one typically sees. In most simply typed λ-

calculi, no additional restriction is placed on terms being substituted into expressions. Our

version adds the restrict that a value must be substituted. In theory, all that one needs is

to restrict the decorator of the type for such terms as in Corollary 2.18.

12

Corollary 2.18. If Γ, x :U ` t :T n and {} ` v :U0, then Γ ` (t[x := v]) :T n.

In practice, no proofs hinge on which version one picks. The reason for this is simple. In

BTC, all well-typed values have 0 as their decorator.

Theorem 2.19. If {} ` t :T n and value v, then n = 0.

2.3.3 Small-Step Operational Semantics

In this section, we describe a semantics for BTC in a small-step operational semantics–or,

structural operational semantics—�rst introduced in [81].
3

As the name suggests, a small-

step operational semantics de�nes computations for the terms of a language as single

execution steps. This makes it ideal for our setting.

In our semantics, we use for the single-step reduction relation. The step relation is

de�ned inductively using the rules stated in De�nition 2.20. Figure 2.5 contains the Coq

code de�ning the single step reduction relation for BTC.

De�nition 2.20 (Step Relation).

value v
app (λx T t) v [x := v]t

(ST AppAbs)

t t′

app t u app t′ u
(ST App1)

value v u u′

app v u app v u′
(ST App2)

t t′

pair t u pair t′ u
(ST Pair1)

value v u u′

pair v u pair v u′
(ST Pair2)

value v value w
π1 (pair v w) v

(ST Pi1)

value v value w
π2 (pair v w) w

(ST Pi2)

t t′

π1 t π1 t
′ (ST Pi1E)

t t′

π2 t π2 t
′ (ST Pi2E)

t t′

inl t T inl t′ T
(ST Inl)

t t′

inr t T inr t′ T
(ST Inr)

s s′

case s t u case s′ t u
(ST Case)

value v
case (inl v T) t u app t v

(ST CaseL)

value v
case (inr v T) t u app u v

(ST CaseR)

3
The semantics we present here is inspired by [79, 80]. However, our case expressions align more closely

with a functional approach to programming languages such as Haskell.

13

Inductive step : term→ term→ Prop :=

| ST AppAbs : ∀ x T t v,

value v→
(app (λ x T t) v) [x:=v]t

| ST App1 : ∀ t1 t′1 t2 ,

t1 t′1→
app t1 t2 app t′1 t2

| ST App2 : ∀ v t2 t′2 ,

value v→
t2 t′2→
app v t2 app v t′2

| ST Pair1 : ∀ t1 t′1 t2 ,

t1 t′1→
pair t1 t2 pair t′1 t2

| ST Pair2 : ∀ v t2 t′2 ,

value v→
t2 t′2→
pair v t2 pair v t′2

| ST Pi1 : ∀ v1 v2 ,

value v1→
value v2→
π1 (pair v1 v2) v1

| ST Pi2 : ∀ v1 v2 ,

value v1→
value v2→
π2 (pair v1 v2) v2

| ST Pi1E : ∀ t t’,
t t’→
π1 t π1 t’

| ST Pi2E : ∀ t t’,
t t’→
π2 t π2 t’

| ST InL : ∀ t1 T t′1 ,

t1 t′1→
inl t1 T inl t′1 T

| ST InR : ∀ t1 T t′1 ,

t1 t′1→
inr t1 T inr t′1 T

| ST Case : ∀ t1 t′1 t2 t3 ,

t1 t′1→
case t1 t2 t3 case t′1 t2 t3

| ST CaseL : ∀ v1 T t2 t3 ,

value v1→
case (inl v1 T) t2 t3 app t2 v1

| ST CaseR : ∀ v1 T t2 t3 ,

value v1→
case (inr v1 T) t2 t3 app t3 v1

where “t1 t2” := (step t1 t2).

Figure 2.5: BTC Step Relation

The step relation has a useful property that is immediately provable.

Theorem 2.21. If s t and s u, then t = u.

As stated in Theorem 2.21, this property is that the BTC step relation is deterministic. We

discuss more properties of our semantics in the next section.

2.4 Metatheory

In this section we discuss the metatheoretic properties of BTC. In particular, type safety

(Section 2.4.1) and strong normalization (Section 2.4.2) are covered. In standard approaches

to proving metatheoretic properties of simply typed λ-calculi, it is common to de�ne an

additional step relation. This is typically the re�exive-transitive closure of the single step

relation. Because the re�exive-transitive closure provides no information on the number

of steps taken, we do not take this approach. Our interests demand something di�erent. In

our setting, we use

n
 to denote a natural number indexed extension of our step relation,

stated in De�nition 2.22.

14

De�nition 2.22 (Nat Indexed Step Relation).

t
0
 t

(Refl)

s t t
n
 u

s
n+1
 u

(Step)

This relation has many useful properties. The most important of which are stated in

Lemma 2.23 and Theorem 2.24.

Lemma 2.23. For s, t, u and i, j, we have the following properties of the indexed step rela-

tion:

(Inclusion) If t u, then t 1
 u,

(Transitivity) If s i
 t and t

j
 u, then s

i+j
 u.

The �rst property is an inclusion property—it tells us that the indexed relation includes .

The second property is a transitivity property—it tells us that indexed relation is transitive

and that the indices are additive. Each of these properties and De�nition 2.22 is used to

prove Theorem 2.24.

Theorem 2.24 (Congruence). For each rule stated in De�nition 2.20, there exists a corre-

sponding version with replaced by n
 . For rules ST AppAbs, ST Pi1, ST Pi2, ST CaseL,

and ST CaseR, is replaced by 1
 .

2.4.1 Type Safety

In small-step operational semantics, type safety is the combination of two properties:

progress and preservation. Traditionally speaking, the former is the property that all well-

typed terms are either values or they step to some other term. In our setting, we incorpo-

rate decorators into the mix. In the case of progress (Theorem 2.25), decorators play no

additional role.

Theorem 2.25 (Progress). If {} ` t :T n, then either t is a value or there exists u such that

t u.

15

The same cannot be said of preservation (Theorem 2.26).

Theorem 2.26 (Preservation). If {} ` t : T n and t u, then there exists m such that

m < n and {} ` u :Tm.

When well-typed terms step, the decorator for the type of the term stepped-to must be

strictly smaller than that of the decorator for the term stepped-from. That is, preservation

guarantees a reduction in decorators.

When we replace the with its indexed counterpart, we gain a variant of preservation

(stated in Corollary 2.27) that relates decorators to the natural number indexes for the

indexed step relation.

Corollary 2.27. If {} ` t : T n and t m
 u, then there exists l such that l ≤ n − m and

{} ` u :T l.

This tells us that as a term reduces, the resulting decorator for its type has an upper bound

determined by its initial decorator minus the number of steps taken.

Progress and preservation guarantee that well-typed terms never “get stuck,” so to

speak. That is to say, take any term t if t cannot step (by some application of rules from

De�nition 2.20), and t is not a value, then something has gone wrong in the process of

computing t — t is stuck in a stage where nothing can be done with it. Theorem 3.9 and

Theorem 3.8 provide us with a guarantee that this situation will not happen with well-

typed terms.

Corollary 2.28 (Soundness). If {} ` t : T n and t u, then u is either a value or there

exists v such that u v.

2.4.2 Strong Normalization

Normalization is a property of the step relation—often stated in terms of possible se-

quences of steps in the reduction of terms. A step (or reduction) relation is weakly normal-

izing if there exists a �nite sequence steps ending in a normal-form—an irreducible term.

16

If every such sequence ends in a normal-form, we say that the step relation is strongly nor-

malizing. In BTC, all values are normal-forms, so we use “value” in place of “normal-form”

without any issues.
4

Strong normalization has a special signi�cance in hardware applications. The reason

for this is simple. Functions realized in hardware cannot be allowed to “loop forever”

between clock ticks. There must be a static, �nite upper bound on the computation time

between clock ticks.
5

Though not every λ-calculus is strongly normalizing, BTC is.
6

We

show this by establishing that all well-typed BTC terms terminate (in the sense stated in

De�nition 2.29).

De�nition 2.29 (Termination). For any term t, t terminates i� there exists v, n such that

t
n
 v and v is a value.

Our step and indexed step relations preserve termination (as stated in Lemma 2.30).

Lemma 2.30. For all terms t, u,

1. If t u, then t terminates i� u terminates.

2. If t n
 u, then t terminates i� u terminates.

De�nition 2.31 (Reducibility Sets). For any term t, such that {} ` t :T n and t terminates,

t ∈ RT is determined by T :

(T is U
m→ V) t ∈ R

(U
m→V)

i� ∀w, if w ∈ RU , then (app t w) ∈ RV

(T is U × V) t ∈ R(U×V) i� ∃mw, value w, t
m
 w, π1(w) ∈ RU & π2(w) ∈ RV

(T is U + V) t ∈ R(U+V) i� ∃mw, value w, t
m
 inl w U & w ∈ RV ∨ t

m
 inr w V & w ∈ RU

(T is ()) t ∈ R() i� ∃mw, value w & t
m
 w

The �nal clause for unit types is included only for completeness. Because only nil has

unit as its type, and nil is a value, nil terminates since we have nil
0
 nil. In fact, for

4
We discuss these topics again in Chapter 3, § 3.5.3.

5
This issue is discussed in detail in [82, 83].

6
Our proof follows methods introduced in [38, 99].

17

BTC if we had base, or atomic types, we would add the following clause to De�nition 2.31:

(T is atomic) t ∈ RT i� t terminates

This clause for atomic types and the clause for unit types are equivalent.

We have some facts about reducibility sets—R sets for short—that follow from De�-

nition 2.31.

Lemma 2.32. For all terms t, u arbitrary n,m, and T ,

1. If t ∈ RT , then t terminates,

2. If t ∈ RT , then there exists l such that {} ` t :T l,

3. If t u and t ∈ RT , then u ∈ RT ,

4. If t n
 u and t ∈ RT , then u ∈ RT ,

5. If {} ` t :Tm, t u and u ∈ RT , then t ∈ RT ,

6. If {} ` t :Tm, t n
 u and u ∈ RT , then t ∈ RT .

In [38], the properties enumerated in Lemma 2.32 are labeled as conditions on reducibility

sets—named ‘CR’ properties. Ours di�er slightly, but remain close in spirit.

From Lemma 2.33—the R-Substitution Lemma— it follows that the BTC is strongly

normalizing. This lemma is more commonly referred to as the “Substitution Lemma.”

Lemma 2.33 (R-Substitution). Let v1, . . . , vn be values such that for each i = {1, . . . , n},

vi ∈ RVi . If {x1 :V1, . . . , xn :Vn} ` t :T j , then (t[x1 := v1] . . . [xn := vn]) ∈ RT .

By property 2 of Lemma 2.32, the assumption in Lemma 2.33 entails that for each vi there

exists an l such that

{} ` vi :V l
i

18

because for each vi, we have vi ∈ RVi (by assumption). The R-Substitution property

(from Lemma 2.33) entails the Strong Normalization Theorem (stated in Theorem 2.34) by

using the empty context for the typing judgment.

Theorem 2.34 (Strong Normalization). If {} ` t :T n, then t terminates.

2.5 Conclusions

The interesting insight, now, comes from the combination of Corollary 2.27 and Theo-

rem 2.34. To see this, �rst recall that Theorem 2.19 tells us that all values well-typed in

the empty context have 0 as a decorator. This gives us a more speci�c version of our

bounded version of preservation (Corollary 2.27), stated in Corollary 2.35.

Corollary 2.35. If {} ` t :T n, t m
 u and value u, then 0 ≤ n−m and {} ` u :T 0.

This tells us something special about termination in our Strong Normalization Theorem.

To see why, note that if {} ` t : T n, then there exists v,m such that t
m
 v and v is a

value. Corollary 2.35 tells us exactly how to �nd a good choice for m because m must be

less than or equal to n.

19

Chapter 3

The ReWire Core Calculus

This chapter is from a conference paper [85] and a published paper [86] on the mecha-

nization of a subset of ReWire’s core language.

3.1 Abstract

Constructing high assurance, secure hardware remains a challenge, because to do so relies

on both a veri�able means of hardware description and implementation. However, pro-

duction hardware description languages (HDL) lack the formal underpinnings required by

formal methods in security. Still, there is no such thing as high assurance systems without

high assurance hardware. We present a core calculus of secure hardware description with

its formal semantics, security type system and mechanization in Coq. This calculus is the

core of the functional HDL, ReWire, shown in previous work to have useful applications

in recon�gurable computing. This work supports a full-�edged, formal methodology for

producing high assurance hardware.

3.2 Introduction

It is generally recognized that recon�gurable technology has a “programmability” prob-

lem [7, 3] and high-level synthesis (HLS) from functional languages is a commonly pro-

posed remedy for this problem [33, 95, 13, 5, 14, 6, 34, 113]. Pure functional languages—i.e.,

those without side e�ects—support equational reasoning as a basis for program veri�ca-

20

tion. Combining the two—i.e., HLS from a pure functional language—provides a method-

ology for high assurance hardware as demonstrated in previous work by the authors [83,

43, 42, 47]. The current article addresses the formalization of this methodology by mecha-

nizing the semantics for a pure HLS language—namely, ReWire—in the Coq theorem prov-

ing system [26], with the goal of combining the programmability advantages of functional

hardware description with formalized reasoning. All of the de�nitions and theorems in

this paper have been checked with the Coq proof checker; the Coq v8.5 scripts are down-

loadable [64].

ReWire is a functional hardware description language (HDL): it is a functional

language—a subset of Haskell—from which circuits are synthesized automatically. Pre-

vious work has introduced ReWire’s language design and implementation as well as its

application to the construction of high assurance hardware [83, 43, 42, 47]. This article

describes the Coq formalization of ReWire intended to support the veri�cation of hard-

ware designs and, in particular, the information �ow properties described in our previous

work [45, 43, 83].

The ReWire development �ow is intended to approach that of functional programming

to the greatest extent possible. First, device speci�cations are “roughed out” in Haskell,

allowing testing and debugging in a familiar mode (e.g., using QuickCheck [21] as we

did in Graves et al. [43]). Formal speci�cation and veri�cation typically starts at this

point in the process. Refactoring into ReWire generally involves choosing base types

(i.e., replacing Haskell’s Data.Word with ReWire’s built-in types). The ReWire compiler

produces VHDL and vendor tools are used to synthesize, etc., to an FPGA. Making a formal

methodology out of this requires a mechanized semantics for ReWire as a foundation for

veri�cation of designs and of the ReWire compiler. This article provides that foundation.

The aforementioned previous work, in panoramic view, used “by-construction” prop-

erties of layered monads to verify properties by hand. For the moment, we rely on the

reader’s intuition to explain the contributions of the present work at a high level (Sec-

21

tion 3.3 presents an overview of these concepts in more detail). Assume, for example, that

ReWire devices h and l are written respectively in terms of state monad layers, StT Hi and

StT Lo. Then, device h (resp., l) only accesses internal storage of type Hi (resp., Lo). In a

composite device written in terms of monad M = StT Hi (StT Lo Id), it is guaranteed by

semantic properties of the layers StT Hi and StT Lo to disallow covert channels between

the Hi and Lo storage.

The challenge is, then, the formalization of ReWire and, in particular, ReWire’s un-

derlying layered monad language and its semantic properties within an automated proof

system. The contributions of this work are as follows. (1) A static e�ect-type system

(extending and mechanizing Wadler’s “marriage” of e�ects and monads [109]) that dis-

allows covert storage channels in ReWire. This type system extends state layers with

e�ect labels, so that, continuing the example above, h (resp., l) is written in monad

StT RW Hi (StT 〈〉 Lo Id) (resp., StT 〈〉 Hi (StT RW Lo Id)). The e�ect label “RW” means h can

both read and write on the Hi layer and while “〈〉” means it can do neither on the Lo

layer (and, vice versa, for l). The soundness of our type system (Theorems 3.19 and 3.21)

guarantees freedom from covert storage channels. (2) A small-step semantics for ReWire

formalized in Coq that justi�es (3) a typed equational logic (Figure 3.14) capturing the

semantic properties of monads and state layers used in by-hand proofs in our previous

work. Finally, (4) a number of related metatheorems (e.g., progress, preservation, strong

normalization, etc.) have been proved in Coq.

The direct approach to formalizing ReWire in Coq would be the transliteration of

monad transformer declarations from Haskell into Coq, but this quickly runs afoul of

Coq’s strict positivity requirement. ReWire relies on reactive resumption monad trans-

formers (see Section 3.3) for synchronous parallelism and this transformer is a coinductive

construction, which can be tricky to formalize, even with Coq’s coinduction library. An-

other approach considers formalizing ReWire’s denotational semantics [82], building on

existing work by Hu�man [49] or Schröder and Mossakowski [94] in Isabelle/HOLCF. In-

22

stead, we chose to formalize a small-step, operational semantics for ReWire in Coq, in part,

because the authors have more experience with Coq than with HOLCF, but also because

developing and formalizing a small-step operational semantics seemed more straightfor-

ward than mechanizing denotational semantics. The semantic properties of ReWire’s un-

derlying monads on which the by-hand veri�cations of our previous work rely are then

captured as an typed equational logic whose rules are derived from the formalized oper-

ational semantics.

The remainder of this section discusses related work. Section 3.3 presents an overview

of ReWire to motivate the formal calculus, RWC. Section 3.4 de�nes the syntax and small-

step operational semantics of RWC. Section 3.5 describes RWC’s metatheory and a num-

ber of related metatheorems (e.g., progress, preservation, strong normalization, etc.) are

demonstrated. A type-directed equational logic for RWC is de�ned in Section 3.6. Sec-

tion ?? discusses conclusions and future work.

Related Work

Andrews [3] argues that a paradigm shift for recon�gurable computing is a necessary

precondition for wider adoption of recon�gurable technology. Rather than focusing ex-

clusively on performance metrics, the new paradigm must focus as well on what, for lack

of a better term, might be called software engineering virtues—abstraction, modularity,

program comprehensibility, productivity, rapid modi�ability, reuse, and scalability, etc.

What is required are programming models/languages for recon�gurable computing that

embrace the software engineering virtues.

One proposed remedy to the programmability issue is high-level synthesis from func-

tional languages [33], because, as originally observed by Sheeran [95], combinational logic

has a functional �avor. More to the point, functional languages support the software engi-

neering virtues through higher-order abstractions and type systems. ReWire provides the

usual functional programming model of combinational logic—i.e., pure functions—but it

23

also provides a formal model of synchronous logic in the form of the reactive resumption

monad discussed in Section 3.3.

There are a number of e�orts to apply ideas and techniques from functional program-

ming to hardware design and synthesis. Chisel [6] is a Scala-embedded domain-speci�c

language developed as an implementation language for the RISC-V open source instruc-

tion set architecture
1
. Within the Haskell community, perhaps the most well known sys-

tem for hardware synthesis is Lava [13]. Lava is a domain-speci�c language for hardware

speci�cation embedded in Haskell. Primitives in Lava are essentially structural and spec-

ify circuits at the level of signals. ReWire, by contrast, compiles a subset of Haskell itself to

hardware circuits, and relies on an abstract set of behavioral primitives. The primary mo-

tivation for developing ReWire is as a vehicle for the design, implementation, and formal

veri�cation of high assurance hardware. There are some constructs of VHDL that have

not been implemented in ReWire (e.g., tri-state bu�ers, multiple clock domains, etc.). We

believe such constructs can be readily modeled in ReWire, but they have not been neces-

sary for previous case studies [84, 83, 43, 42, 47, 46].

ForSyDe (Formal System Design)
2

is a formal design methodology that targets het-

erogeneous embedded systems [92, 91]. The ForSyDe toolset includes a system modeling

language implemented as an embedded domain-speci�c language in Haskell that con-

tains elements similar to those in ReWire, albeit not in resumption-monadic form. The

ForSyDe methodology is based on re�nement: high-level models are transformed semi-

automatically into heterogeneous (i.e., mixed hardware and software) embedded systems.

The ReWire methodology di�ers from that of ForSyDe in a number of respects. The

ReWire language has type constructors for devices (described below in Section 3.3) that

are compiled automatically into VHDL by the ReWire compiler, so hardware is gener-

ated directly from ReWire source code rather than produced by semi-automatic re�ne-

ment. ForSyde targets heterogeneous hardware and software systems whereas ReWire

1https://riscv.org.

2https://forsyde.ict.kth.se/trac.

24

https://riscv.org
https://forsyde.ict.kth.se/trac

focuses on hardware exclusively. Finally, the formal methodology supported by ReWire,

illustrated in previous publications [43, 84, 46, 83], is precisely that of pure functional

languages; this is sometimes referred to as “Bird-Wadler” style program derivation (so-

named after an in�uential textbook [12]). A Bird-Wadler derivation starts from a reference

speci�cation for an algorithm in a functional language and, through a series of semantics-

preserving program transformations, produces a more e�cient implementation. Desired

properties of the implementation (e.g., correctness, security, etc.) are speci�ed equation-

ally and veri�ed in terms of the reference semantics. The current work represents the

formalization of the ReWire methodology in Coq.

Zhai et al. [113] consider high-level synthesis from recursive functional languages.

Similarly, Cλash [5], is a compiler for a subset of Haskell to VHDL. Like ReWire, Cλash

uses Haskell itself as a source language. Cλash requires some limits be placed on the

kinds of algebraic data types used as well as the basic operating types. Both di�er fun-

damentally from ReWire in that they require that a stack be constructed in hardware as

part of the circuits they produce. It was an early design decision in the ReWire project

to limit recursive functions to co-recursion (tail recursion) so as to obviate the need for a

run-time stack or other unbounded data structures. Given hardware’s �xed memory foot-

print, it seemed more natural to us to not require support for potentially unbounded data.

Great care was taken in the design of ReWire so that it possesses a rigorous denotational

semantics to support formal veri�cation while maintaining synthesizability for all of its

programs [82].

The Delite DSL compiler framework [56] seeks to address the “three P’s” with respect

to implementing software on parallel, heterogeneous systems. Delite addresses portabil-

ity (i.e., retargetability of DSL compilers to a broad range of parallel hardware) through

language virtualization. ReWire is also a virtualized DSL in that it has a separate compiler

backend for producing FPGA-based implementations while reusing large parts of its host

language’s infrastructure—including Haskell’s type system, front end, etc. In George, et

25

al., [34], the Delite framework is adapted to the generation of hardware from DSLs, specif-

ically the hardware acceleration of kernels in a heterogeneous setting.

There is a vast literature on hardware security from an architectural or physical per-

spective, considering issues ranging from side channel attacks, hardware trojan detection,

and the like. For an overview of this literature, please consult the references [51, 100, 105].

The architectural perspective of hardware security considers hardware structures or de-

signs supporting security policies. To take one example from among many, GLIFT [101]

is a gate-level information �ow tracking method that inserts special “shadow circuits” to

dynamically monitor all information �ows within a circuit. The references include other

examples of this architectural perspective [96, 52, 50, 11, 112, 104, 102, 103]. There is an

orthogonal line of research in hardware security that considers the design, implemen-

tation and formal veri�cation of hardware from a languages-based approach which we

overview below; ReWire �ts squarely within this research thrust.

Formal methods for secure hardware are generally spread across two categories: (1)

type-based approaches [58, 59, 114]; and (2) logic-based approaches (including theorem-

proving [63], and BDDs and model-checking [16]), in which a hardware design and desired

properties are formulated in a logic and scrutinized in a (semi-)automatic manner. Types-

based approaches have support for security concerns integrated into a domain-speci�c

language for hardware description. With any security type system, the question of its

expressiveness arises—i.e., does it reject secure designs? The types-based approach o�ers

no recourse to the rejection of a secure design—you simply cannot argue with a type

checker. A logic-based approach avoids this pitfall, but comes with overhead—e.g., your

own theory of security—and neither is it connected directly to any implementation path.

Bluespec [74, 14] refers to a language and associated tools for hardware system de-

sign, speci�cation, synthesis, modeling, and veri�cation. There have been a number of

incarnations of the Bluespec language since its inception in 2000, the �rst of which was

as a Haskell subset extended with domain-speci�c operations for hardware design. The

26

Bluespec language seems to have evolved into its current form which is BSV (Bluespec

SystemVerilog), which is no longer a functional language. There have been some formal

methods tools developed for BSV [76, 87].

Braibant and Chlipala [15] apply ideas from CompCert [57] to hardware synthesis and

is the most closely related to our own. Their work presents a certi�ed compiler translating

a monadic-functional HDL (called “Fe-Si”) into RTL. Fe-Si is a small, idealized core of the

BSV hardware description language [14]. Fe-Si’s syntax is based on state monads, albeit

not structured with monad transformers like ReWire’s. Timing in Fe-Si is explicit, rather

in the manner of VHDL, using an explicit clock tick parameter, whereas ReWire makes use

of reactive resumptions as a basis for timing (see Section 3.3.2 below). One of the primary

motivations behind the current work is to build a foundation for a veri�ed compilation

process for ReWire. Choi et al. [17] follow Braibant and Chlipala’s work, starting from an

idealized, BlueSpec-like language.

One language-based approach to hardware security is to extend an existing HDL with

security types. Caisson [58], Sapper [59], and SecVerilog [114] each extend a subset of

Verilog with security types and annotations. The type systems of Caisson and SecVerilog

reject programs that violate information �ow policies, while Sapper uses static analysis

to automatically insert dynamic checks to enforce information �ow policies at runtime.

SecVerilog has an operational semantics, albeit not one formalized in a theorem prover

with a proof system [71]. ReWire (or, RWC, rather) di�ers fundamentally from these

language- and type-based approaches in three respects: (1) it is a pure functional language;

(2) it possesses a formal semantics mechanized in Coq; and (3) its type system is based on

e�ect types. We discuss the signi�cance of item (3) in Section ??.

The SAFE project focuses on the clean slate design of a provably secure computer

system stack (e.g., hardware, operating system, etc.). In a recent publication [4], the SAFE

team describes an operational semantics of the SAFE hardware’s instruction set and its

role in the end-to-end veri�cation in Coq of a non-interference security property. The

27

ReWire project has complimentary, but orthogonal, goals to SAFE: developing a veri�able

toolchain for producing high assurance, secure hardware. Interesting follow-on research

would explore implementations of the SAFE hardware in the ReWire language.

One traditional approach to hardware veri�cation starts from a design expressed in

a production HDL, creates an abstract speci�cation “by hand” as it were, encodes this

speci�cation in the logic of an automated theorem prover, and proceeds towards formal

veri�cation [63]. This approach relies heavily on the faithfulness of the abstraction step.

One reason that this approach must be accomplished “by hand” is that production HDLs

do not possess rigorous semantics. Although attempts have been made in the past to

de�ne them semantically, none of these projects were evidently completed [41, 54]. By

contrast with production HDLs like Verilog or VHDL, ReWire possesses a rigorous seman-

tics for which the present work provides a Coq mechanization. ReWire becomes a vehicle

for expressing and implementing hardware designs and for verifying them as well. In

previous work [43, 83], we presented several case studies in hardware veri�cation based

in ReWire, but there the veri�cations were not machine-checked.

Goncharov and Schröder [40] extend Moggi’s computational λ-calculus with con-

structs for concurrency and shared state; RWC’s design is inspired, in part, by their treat-

ment of corecursion. Crary et al. [28] consider a logical characterization of information

�ow security that incorporates Moggi’s computational λ-calculus at its core. With their

approach, monads are, in e�ect, logical modalities signifying the potential presence of

e�ects at a security level. In contrast, Harrison and Hook’s treatment of information

�ow security [45] is more semantic and model-theoretic than Crary’s logical and type-

theoretic approach, relying on structural properties of monads and monad transformers

to construct secure systems. Security veri�cations of ReWire designs [83] are based on

Harrison and Hook’s approach, and the present work formally supports that approach in

Coq.

Ghica and Jung [35] provide a categorical semantics for a class of digital circuits in

28

terms of monoidal categories and are motivated by the need for supporting syntactic,

equational reasoning. ReWire speci�cations may be reasoned about equationally in the

usual manner of functional languages; this was the approach taken in our previous ReWire

veri�cation work [43, 83]. By contrast with Ghica and Jung’s work, ReWire speci�cations

are, more or less, ordinary functional programs that are compiled into circuits. Another

categorical presentation of digital circuits is found in Megacz [62], who uses generalized

arrows as a basis for hardware description.

E�ect systems are a static semantics of e�ects while monads [69] are a dynamic seman-

tics of e�ects. E�ect systems [73] were initially associated with impure, strongly-typed

functional languages in which the e�ect annotations make explicit the side e�ects already

present implicitly in the language itself. Monads are used to mimic side-e�ecting com-

putations within pure, strongly-typed functional languages (e.g., Haskell) in which there

are no implicit side e�ects.

Layered monads—i.e., monads constructed by monad transformers [60]—provide mod-

ularity to the semantics of computational e�ects and functional programs alike by inte-

grating multiple e�ects within a single monad. This modularity-via-integration, however,

has consequences for formal veri�cation: because its e�ects are all encapsulated within

the single monad, they are not distinguished syntactically within the type system of a

speci�cation language itself. Wadler [109] “married” e�ect types to monads, and previ-

ous work by the authors [108] seems to be the �rst marriage of e�ect types to layered

monads. This latter marriage seems to be important for exploiting monadic semantics

in formal methods: layered monads provide a modular semantics of e�ects including

by-construction properties and e�ect types allow the expression of these properties in

a formal proof system like Coq (e.g., Figure 3.14).

As a concept for formal (i.e., machine-checked) veri�cation, monads are less common,

although not unheard of [22, 72, 97, 94] and the use of both e�ect types and layered mon-

ads distinguishes the current work from these. Furthermore, ReWire’s monad language

29

includes the reactive resumption monad transformer, which does not appear to have been

formalized previously.

3.3 Background: ReWire’s Programming Model

The purpose of this section is twofold: (1) to make this article as self-contained as possible

by providing su�cient background on ReWire and (2) to motivate RWC’s type system

and operational semantics. Throughout this section, we explicitly link this background

material to subsequent sections on RWC. ReWire is a subset of Haskell and uses ideas from

monadic semantics as an organizing principle of the language. It is, therefore, assumed

of necessity that the reader is, at least, somewhat familiar with functional programming

and monads.

ReWire is a subset of the Haskell functional programming language [78]—i.e., ReWire

programs are Haskell programs, but not necessarily vice versa. All ReWire programs can

be compiled to synthesizable VHDL with the ReWire compiler. The principal di�erence

between Haskell and ReWire is that recursion in ReWire is restricted to tail recursion so

that every ReWire program requires only a �nite, bounded memory footprint. Unbounded

recursion requires a stack or heap for compilation and such unbounded structures are

anathema to hardware’s �xed storage.

ReWire has type constructors for devices where a device represents a clocked computa-

tion that,

Figure 3.1:

Device d.

for each clock cycle, takes an input of type i, produces an output of type

o, and may possess internal storage of type s (see Fig. 3.1). The type of d

as shown would be d :: ReT i o (StT s Id) (), where ReT and StT are the

reactive resumption and state monad transformers and Id is the identity

monad (about all of which we say more below in the next sections). Device

d is clocked, as illustrated in the inset �gure, although the clock is repre-

sented by the underlying structure of reactive resumptions rather than as

30

an explicit parameter. A device is created in ReWire by either iterating a

function or through composition of existing devices. Previous work [47] introduced op-

erators for constructing devices and composing them into larger, interconnected devices;

Section 3.3.3 presents a simple device speci�cation template in ReWire.

3.3.1 Background: Monads

A monad is a triple 〈M, return, >>=〉 consisting of a type constructor M and two operations:

return : a→ M a — “unit”

(>>=) : M a→ (a→ M b)→ M b — “bind”

These operations must obey the well-known monad laws [69, 60] (these are (Left-Unit),

(Right-Unit), and (associativity) in Figure 3.14). The return operator is the monadic ana-

logue of the identity function, injecting a value into the monad. The >>= operator is a

form of sequential application. The “null bind” operator, >> : M a→ M b→ M b, is de�ned

as: x >> k = x >>= λ .k. The binding (i.e., “λ ”) acts as a dummy variable, ignoring the

value produced by x.

3.3.2 Background: Monad Transformers

The organizing principle underlying ReWire are reactive resumptionmonads with state [44]

(RRMS), which encapsulate a notion of computation appropriate to hardware—namely,

synchronous parallelism. RRMS support the expression of structural hardware designs in

a functional style [47]. RWC is a computational λ-calculus whose syntax and semantics

formalizes RRMS in Coq. In particular, RWC’s type system includes constructors that

correspond to the state and reactive resumption monad transformers. For the sake of

being self-contained, we provide the reader with Haskell de�nitions of the StT and ReT

monad transformers. This code is meant only to aid the reader in comprehending the

31

intended semantics of RWC. If more background is required on RRMS, please consult the

references [44, 83].

State Monad Transformer

The state monad transformer is a well-documented structure in functional programming

and semantics [60]. The Haskell code for the state monad transformer, StT, along with

its lifting functions is below:

data StT s m a = StT (s -> m (a,s))

liftStT :: m a -> StT s m a

liftStT m = StT (\ s -> m >>=m \ v -> returnm (v,s))

get :: StT s m s

get = StT (\ s -> returnm (s,s))

put :: s -> StT s m ()

put s = StT (\ _ -> returnm ((),s))

The lift converts an m a computation into an StT s m a computation. The get operation

returns the current value of the s-store while the put s operation replaces the current

store with store s. In the de�nitions above, the binds and returns for the m monad are

a�xed with a subscript to disambiguate them from the operations being de�ned.

Reactive Resumption Monad Transformer

Computations in ReT i o m a may be viewed intuitively as (potentially in�nite) sequences

of m computations. If that sequence terminates, it produces an a-value, otherwise it pro-

duces an o-output value and a continuation. Both lift operations convert an m com-

putation into respective enriched computations. Computations in ReT over layered state

monads correspond closely to synchronous hardware as discussed in previous work [83].

The Haskell code for the reactive resumption monad transformer, ReT, along with its as-

sociated functions is below:

data ReT i o m a = Pause (m (Either a (o,i -> ReT i o m a)))

32

liftReT :: m a -> ReT i o m a

liftReT m = Pause (m >>=m returnm . Left)

signal :: o -> ReT i o m i

signal o = Pause (returnm (Right (o,returnm . returnReT)))

data Either a b = Left a | Right b

Recall that function composition (i.e., “.”) and sum types (i.e., Either) are built-in to

Haskell. In terms of the device d example above, the operation signal o represents the

end of a clock cycle and sets the output signal of d to o. RWC includes a pause primitive

in the term syntax (Fig. 3.3) as a means of representing signal.

By-construction Properties of Layered Monads

Layered state monads have multiple StT applications—e.g., M = StT s1 (StT s2 Id) is a

two-layer state monad. They have a number of useful properties by construction [45],

including:

put s′ >> put s = put s

put s >> liftStT ϕ = liftStT ϕ >> put s

The �rst rule is an intra-layer property (a.k.a., “clobber”) while the second is an inter-layer

property (a.k.a., “atomic non-interference”). Clobber states that the put s cancels earlier

e�ects on the same layer. By convention for a �xed state s0, we de�ne mask = put s0; the

mask included in the term syntax of RWC generalizes this idea. Atomic non-interference

states that e�ects from di�erent state layers commute. The equational logic derived in

Coq for RWC presented in Section 3.6 gives generalizations of both properties.

3.3.3 De�ning Devices in ReWire

Simple ReWire devices are generally de�ned as tail recursive functions whose codomain

is written in terms of the ReT layer. Assume functions, internal :: i → StT s Id v and

external :: i → v → o, are de�ned which specify the internal and external behaviors

33

of device d. Function internal takes the input i, performs some computation with the

current internal storage s, and produces an intermediate result v. Function external

takes the input i and the result v and produces the next output signal for d.

Given an initial input i0, d = dev i0 where corecursive function dev is de�ned as:

dev :: i -> ReT i o (StT s Id) ()

dev i = liftReT (internal i) >>= \ v ->

signal (external i v) >>= \ i’ ->

dev i’

At the beginning of a clock cycle, dev �rst consumes input, i, performs internal i com-

putation on the internal storage s, and then outputs the external i v signal at the end

of the cycle.

Device de�nitions are expressed with an explicit corecursion operator, unfold; for

example, the device dev above would be written:

unfold i0 (\ i -> internal i >>= \ v -> return (Right (

external i v, id)))

For this reason, Figure 3.3 includes syntax for an unfold primitive and its semantics are

de�ned in subsequent sections.

3.3.4 Background: Goguen-Meseguer Non-interference

The essence of the Goguen-Meseguer noninterference information �ow model [39] and

its many descendants is that systems, broadly construed, are state machines whose in-

puts and outputs are partitioned by security level. The de�nition of information �ow is

formulated in terms of sequences of stateful operations of mixed security levels and stip-

ulates that high-level operations must not a�ect low-level outputs. More concretely, for

any mixed-level sequence, s = (l1 ; h1 ; . . . ; ln ; hn), the low-level outputs of s must

be identical to those produced by (l1 ; . . . ; ln), which is the result of �ltering out from

s all high-level operations.

34

3.3.5 Marrying E�ects & Layered State Monads

“By construction” properties of layered state monads [45] tell us that high- and low-

security operations commute (a.k.a., atomic non-interference) and that maskH cancels

high-level operations (i.e., ϕH >>maskH = maskH). This cancelling property is known

as the “clobber rule” [45]. The atomic non-interference and clobber rules are helpful in

demonstrating that monadic noninterference equations (like that of the previous section)

hold for particular software and hardware applications [45, 83].

The Goguen-Meseguer model was recast in monadic terms previously [45], so that

high-level e�ects must be cancellable without a�ecting the low-level e�ects. Here, the

utility of the RWC e�ect type system becomes evident, because it can statically distinguish

computations occurring on distinct layers. For the sake of concreteness, consider the

case of a monad, M, with a high- and low-security stores types, H and L. High and low

operations may be distinguished by the RWC e�ect type system by annotating the layers

with e�ect labels:

ϕH : StTRWH (StT 〈〉L Id)() ϕL : StT 〈〉H (StT RWL Id)()

Note that ϕH (resp., ϕL) only has read-write e�ects (RW) on the outer (resp., inner) state

layer ofM. Furthermore, we assume the existence of an operation, maskH which initializes

theH state layer. The maskH operation can be assumed to be put s0 on theH-layer, where

s0 is an arbitrary, �xed value in H . Then, the monadic formulation of non-interference

boils down to demonstrating that equations like the following hold: ϕH >>ϕL >>maskH =

ϕL >>maskH . This means that reinitializing theH layer cancels the e�ects of high-security

operations like ϕH . This is the monadic analogy of Goguen and Meseguer’s �ltering out

of high-security operations.

35

` ∈ EffectLabel ::= 〈〉 | R |W | RW
S ∈ StateMonad ::= Id | StT ` τ S

M ∈ Monad ::= S | ReT τ τ ′ S
τ, τ ′ ∈ Type ::= τ → τ ′ | τ × τ ′ | τ + τ ′ | () |M τ

Figure 3.2: Syntax of RWC types

3.4 RWC: The ReWire Core Calculus

This section introduces the syntax (Section 3.4.1), type system (Section 3.4.2) and opera-

tional semantics (Section 3.4.3) of the ReWire Calculus (RWC). RWC is a computational

λ-calculus that extends the functional features of a typed lambda calculus with support

for stateful e�ects and reactive parallelism. These e�ects are encapsulated through the

use of monads [69], enabling us to provide a useful equational theory in the presence of

e�ects. The addition of e�ects to a computational λ-calculus was examined in [109].

3.4.1 Syntax

This section introduces the syntax of RWC, which is a variety of computational λ-calculus

extended with operations for synchronous, stateful parallelism. Here, the stateful compo-

nent is organized as layered state monads—i.e., monads created by multiple applications of

the state monad transformer. Layered state monads have by-construction properties that

support information �ow security veri�cation [45, 83]; we defer presenting the general

formalization of these by-construction properties until Section 3.6. Section 3.3 provides

the reader with some background on monad transformers, although readers requiring

more should consult the references.

Types

Figure 3.2 shows the syntax of types. As a computational λ-calculus, RWC extends the

36

simply-typed λ-calculus with unit, sum, and product types along with a notion of com-

putational types: if M is a monad and τ is a type, then M τ is the type of computations

in the monad M with a result value of type τ . Exactly which monad stands in for M

will determine what sort of computational e�ects are possible. RWC permits the use of

monads built in terms of the Id (identity) monad and the ReT (reactive resumption), and

StT (state) monad transformers, where ReT must be the outermost monad transformer

application (if it is present). RWC’s monads encompass the combination of resumption

and layered state monads found in [44] with the addition of e�ect labels attached to each

StT. The presence of an e�ect label ` at a given layer certi�es that the computation has

at most the e�ects ` at that layer. For example, the e�ect label W re�ects the possibility

that a computation will write, not the necessity, and certi�es that the computation will

not read.

We note in passing that the denotational semantics of these monads corresponds ex-

actly to the semantics of their Haskell equivalents, up to the erasure of the e�ect labels

and with the considerable simpli�cation that lifted domains are not necessary due to the

absence of general recursion; see [82] for further details.

Terms

Figure 3.3 shows the syntax of terms. Note the widespread use of type and monad sub-

scripts. These are necessary to ensure that every term has a unique type, and to handle

overloading of monadic operations. We will sometimes omit these subscripts, as long as

doing so does not introduce ambiguity.

We will not remark on the standard λ-calculus machinery, other than to note that the

constructs used for destructing pairs and elements of sum type are slightly nonstandard.

The term constructor proj, used for destructing pairs, takes two subterms: the �rst cor-

responding to the pair being deconstructed—suppose it has type τ × τ ′—and the second

corresponding to a function of type τ → τ ′ → τ ′′ that produces a value from the pair’s

37

Identifier ::= x | y | z | w | etc.
t ∈ Term ::= x | t t′ | λx : τ.t | () | 〈t, t′〉 | proj t t′ |

| inlτ t | inrτ t | case t t′ t′′ | returnM t | t >>= t′

| liftM t | elevateS t | getS | put t | pauseM,τ t
| runSt t t′ | runId t | unfoldM,τ,τ ′ t t

′ | runReτ t
v, v′ ∈ Value ::= λx : τ .t | () | 〈v, v′〉 | inlτ v | inrτ v | returnM v

| v >>= v′ | liftM v | elevateM v | getS | put v
| pauseM,τ v | runSt v v′ | runReτ v
| unfoldM,τ,τ ′ v v

′

Σ ∈ Store ::= nil | s :: Σ

c ∈ Config ::= 〈t,Σ〉
D ∈ DoneConfig ::= 〈 returnM v,Σ〉 | 〈 pauseM,τ v,Σ〉

Figure 3.3: Syntax of terms, stores, and con�gurations

elements. (Note that the conventional left- and right-projection operators can be con-

structed in terms of the proj operator.) The term constructor case, used for destructing

elements of sum type, takes three subterms: the �rst is the scrutinee of type τ + τ ′, the

second to a function f1 of type τ → τ ′′, and the third to a function f2 of type τ ′ → τ ′′. If

the scrutinee evaluates to inl v (resp., inr v), then v will be passed to f1 (resp., f2).

Computations are de�ned in terms of certain primitives. The (overloaded) term con-

structors return and >>= correspond respectively to the unit and bind operations of the

monads, and lift to the lift operation of each monad transformer. Terms typed in a state

monad may read and write to the store using the get and put operations. The term con-

structor elevate adds e�ect labels—e.g., W or R— to the e�ect labels, if any, on a state

monad computation; thereby, converting state monad computations with a less permis-

sive types to a more permissive type (where “permissiveness” is understood as in Fig-

ure 3.5). For example, a term t of type StT R τ Id τ ′ can be typecast into the more per-

missive type StT RW τ Id τ ′ via elevate, essentially de-certifying that t does not write.

(A cast in the “other direction”, to StT 〈〉 τ Id τ ′, is not permitted by the type system.)

38

Reactive computations are de�ned in terms of the primitives pause and unfold. The term

pause t is essentially a suspended computation that is waiting for an input value, and

unfold can be used to produce “looping” computations; we postpone a discussion of their

exact semantics until we have discussed the type system in greater detail. Finally, the term

constructors runRe, runSt, and runIdallow the e�ects of a given monad transformer to be

re�ected into the base monad. It may be helpful to view runRe as executing a single step

of a resumption-monadic computation, runSt as supplying the initial state for the upper-

most state layer, and runIdas moving from the e�ect-free Id monad into the universe of

non-monadic terms.

Stores and Con�gurations.

Figure 3.3 (bottom) shows the syntax of stores and con�gurations, which will be used to

specify the semantics of computations. A store is a list of terms, each of which corresponds

semantically to a state monad transformer, and a con�guration 〈t,Σ〉 pairs a term t with

a state Σ. Generally, we use the metavariables s, s′, s′′ to refer store values.

3.4.2 Type System

Typing rules for terms are given in Figure 3.4. Typing judgments take the form Γ ` t : τ ,

where Γ is a set of assumptions (i.e., a mapping of variables to types). For the empty

context, we write {}. Many of the rules are standard, re�ecting the rules of computational

λ-calculus. The rules for get, put, and elevate require special attention, as they directly

involve e�ect labels. Rule T-Get restricts the e�ect label on the top monad transformer to

include a read label, and T-Put restricts it to include a write label. These restrictions are

expressed in terms of an ordering on e�ect labels (which is really nothing more than the

subset relation) given in Figure 3.5 at left. For T-Elevate, we require that the target monad

S ′ has (non-strictly) more e�ect labels than the source monad S; its precise meaning

is expressed in Figure 3.5 at right. The elevate operation permits us to decertify that a

39

Γ, x : τ `x : τ
(Var)

Γ, x : τ ` t : τ ′

Γ ` λx : τ .t : τ → τ ′
(Abs)

Γ ` t′ : τ → τ ′ Γ ` t : τ
Γ ` t′ t : τ ′

(App)

Γ ` t : τ
Γ ` inlτ ′ t : τ+τ ′

(Inl)

Γ ` t : τ
Γ ` inrτ ′ t : τ

′+τ
(Inr)

Γ ` t : τ Γ ` t′ : τ ′
Γ ` 〈t, t′〉 : τ×τ ′

(Pair)

τ ′

Γ ` () : ()
(Unit)

Γ ` t : τ × τ ′ Γ ` t′ : τ → τ ′ → τ ′′

Γ ` proj t t′ : τ ′′
(Proj)

Γ ` t : τ ′ + τ ′′ Γ ` t′ : τ ′ → τ Γ ` t′′ : τ ′′ → τ

Γ ` case t t′ t′′ : τ
(Case)

Γ ` t : τ
Γ ` returnM t : M τ

(Return)

Γ ` t : M τ Γ ` t′ : τ → M τ ′

Γ ` t >>= t′ : M τ ′
(Bind)

Γ ` t : S τ
Γ ` lift(StT`τ ′S) t : StT ` τ ′ S τ

(LiftSt)

Γ ` t : S τ
Γ ` lift(ReTτ ′τ ′′S) t : ReT τ

′ τ ′′ S τ
(LiftRe)

R ≤ `
Γ ` get(StT`τS) : StT ` τ S τ

(get)

Γ ` t : τ W ≤ `
Γ ` put t : StT ` τ S ()

(put)

Γ ` t : StT ` τ ′ S τ Γ ` t′ : τ ′
Γ ` runSt t t′ : S (τ×τ ′)

(RunSt)
Γ ` t : Id τ

Γ ` runId t : τ
(RunId)

Γ ` t : S (τ ′ × (τ → ReT τ τ ′ S τ ′′))

Γ ` pause(ReTττ ′S,τ ′′) t : ReT τ τ ′ S τ ′′
(pause)

Γ ` t : τ ′′′ Γ ` t′ : τ ′′′ → S (τ ′′+(τ ′×(τ → τ ′′′)))

Γ ` unfold(ReT τ τ ′ S,τ ′′,τ ′′′) t t
′ : ReT τ τ ′ S τ ′′

(unfold)

Γ ` t : ReT τ τ ′ S τ ′′

Γ ` runReτ t : S (τ ′′+(τ ′×(τ → ReT τ τ ′ S τ ′′)))
(RunRe)

Γ ` t : S τ S ≤ S′

Γ ` elevateS′ t : S′ τ
(Elevate)

Figure 3.4: Typing judgments for terms.

40

computation does not read or write at any given state layers, but not to remove existing

e�ect labels.

Stores and con�gurations also have a notion of type, de�ned by the rules of Figure 3.6.

A store Σ is said to match a monad M if the types of its elements correspond, in order,

to the state types of the state monad transformers in M . For this, we simply write that Σ

matches M . A con�guration 〈t,Σ〉, then, has type M τ if and only if Σ matches M and

{} ` t : M τ . We write this 〈t,Σ〉.M τ . A simple, yet useful property of our type system

is that every term (resp. con�guration) has a unique type, as stated in Theorem 3.1.

Theorem 3.1 (Uniqueness of Types). If Γ ` t : τ and Γ ` t : τ ′, then τ = τ ′. Also, if

〈t,Σ〉 . τ and 〈t,Σ〉 . τ ′, then τ = τ ′.

Furthermore, substitutions preserve typing judgments. To see this, we need to de�ne

substitution and collect some facts about free variables, substitutions and types. For any

term t, the set of free variables in t, FV (t), is de�ned as follows:

FV (x) = {x}

FV (t u) = FV (t)
⋃

FV (u)

FV (λx : τ .t) = FV (t) \ {x}

FV (c0) = {} , for any nullary term c0

FV (cn t1, . . . , tn) =
⋃n
i=1 FV (ti), for an n-ary term cn

In the last clause above, the c in ‘c t1, . . . , tn’ stands for term constructors such as

case, returnM , etc. If FV (t) = ∅, then t is said to be closed. We now de�ne the substitution

41

of v for free occurrences of x in t, written ‘t[x := v]’, thusly:

x[x := v] = v

y[x := v] = y if y 6= x

(t u)[x := v] = (t[x := v])(u[x := v])

(λx : τ .t)[x := v] = (λx : τ .t)

(λy : τ .t)[x := v] = λy : τ .(t[x := v]) if y 6= x and y /∈ FV (v)

(c t1, . . . , tn)[x := v] = (c (t1[x := v]), . . . , (tn[x := v]))

This de�nition of substitution preserves typing judgments. This requires that if free

variables occur in well-typed terms, then there must be a typing assignment for those

variables relative to the context. As stated in Lemma 3.2.

Lemma 3.2. If x ∈ FV (t) and Γ ` t : τ , then there exists τ ′ such that x : τ ′ ∈ Γ.

From this Corollary 3.3 follows—namely, that a term is closed if it it is well-typed in the

empty context.

Corollary 3.3. If {} ` t : τ , then t is closed.

Moreover, we have Lemma 3.4 as a consequence—that the context of a typing judgment

does not alter typing judgments, so long as all each context maintains assignments of types

to any free variables.

Lemma 3.4. If Γ ` t : τ and, if, for all x such that x ∈ FV(t),Γ, x = Γ′, x, then Γ′ ` t : τ .

Finally, we have Theorem 3.5—that is, it follows that substitution preserves typing

judgments.

Theorem 3.5. If x : τ ′,Γ ` t : τ and {} ` v : τ ′, then Γ ` (t[x := v]) : τ .

42

RW

R W

〈〉

Id ≤ Id
(L-Id)

` ≤ `′ S ≤ S′
StT ` τ S ≤ StT `′ τ S′

(L-StT)

Figure 3.5: Ordering on e�ect labels (given by the diagram) and on state monads.

Σ matches S
Σ matches ReT τ τ ′ S

(M-ReT)

{} ` s : τ Σ matches S

(s :: Σ) matches StT ` τ S
(M-StT)

{} ` t : M τ Σ matches M

〈t,Σ〉 .M τ
(T-Config)

Figure 3.6: Typing judgments for stores (top) and con�gurations (bottom).

3.4.3 Small-Step Operational Semantics

In this section we describe the semantics of RWC in a small-step operational style. As a

computational λ-calculus, RWC contains both functional features (functional abstraction

and application) as well as e�ectful ones (mutable state and reactive parallelism). The

operational semantics is structured around this dichotomy, with two interde�ned notions

of reduction: pure and e�ectful reduction. Pure reduction re�ects the notion of e�ect-

free evaluation. A pure reduction judgment takes the form t ; t′; note that this makes

no mention of any store. E�ectful reduction provides semantics to computational terms

which may have e�ects. Thus an e�ectful reduction judgment takes the form 〈t,Σ〉 ;

〈t′,Σ′〉.

The rules for pure and e�ectful reduction are given in Figures 3.7 and 3.8, respectively.

We adopt a call-by-value evaluation strategy, as this is (we feel) simpler to work with

metatheoretically than call-by-name or -need. This may seem strange in light of ReWire’s

antecedents in Haskell (which is a non-strict language), but since ReWire is a strongly

normalizing subset of Haskell, it does not matter whether we choose an eager or lazy

evaluation strategy from a “backwards compatibility” point of view: since there is no

“bottom” value, strictness is not a concern.As stated in Theorem 3.6, the reduction relation

de�ned by the rules for pure and e�ectful reduction is deterministic.

43

Theorem 3.6. If t ; t′ and t ; t′′, then t′ = t′′. Also, if 〈t,Σ〉 ; 〈t′,Σ′〉 and 〈t,Σ〉 ;

〈t′′,Σ′′〉, then 〈t′,Σ′〉 = 〈t′′,Σ′′〉.

A few of the rules require close inspection. To begin with, we note that pure and ef-

fectful reduction are interde�ned. Rule STM-ST of Figure 3.8 allows pure reduction to be

“lifted” into the universe of e�ectful reduction: if the term component t of a con�gura-

tion 〈t,Σ〉 still has not been evaluated to a value, we will continue to evaluate it without

changing the store. Dually, if less obviously, the rule ST-RunIdMo in Figure 3.7 allows

monadic evaluation in the identity monad (and only in the identity monad) to be rei�ed

in a pure setting. If we wish to run a computation in a more complex monad, we may

use runRe and runSt to “peel o�” one monad transformer at a time, until we reach the Id

monad at the core. In the runSt case, we must supply an initial value for the corresponding

state layer, producing a computation in the base monad which will return the post-value

for that layer. The runRe operator will produce a computation in the base monad that

either returns a �nal result value, or an output value paired with a continuation waiting

on more input.

Note also the interaction between the rule STM-LiftSt, STM-Get, and STM-Put. The

get and put operations always operate on the ‘head’ (leftmost) item in the store. Apply-

ing liftStT to these operations allows us to access items deeper in the store, by executing

the underlying computation against the “tail” of the store and leaving the “head” item

unchanged.

The rule STM-Unfold may be justi�ed directly by the Haskell de�nition of unfold.

Rule STM-Pause is more subtle. The basic idea, however, is that if a pause arises to the

left of a >>=, we should “absorb” what comes to the right of the >>= into the pause’s con-

tinuation, guaranteeing that we make progress towards a “done” con�guration.

44

(λx : τ.t)v ; t[x := v]
(ST-AppAbs) t; t′′

t t′ ; t′′ t′
(ST-App1)

t; t′

v t; v t′
(ST-App2)

t; t′′

〈t, t′〉; 〈t′′, t′〉
(ST-Pair1)

t; t′

〈v, t〉; 〈v, t′〉
(ST-Pair2)

t; t′

proj t t′′ ; proj t′ t′′
(ST-Proj1)

t; t′

proj v t; proj v t′
(ST-Proj2)

proj 〈v, v′〉 v′′ ; (v′′ v) v′
(ST-Proj) t; t′

inlT t; inlT t′
(ST-Inl)

t; t′

inrT t; inrT t′
(ST-Inr)

t; t′′′

case t t′ t′′ ; case t′′′ t′ t′′
(ST-Case1)

t; t′′

case v t t′ ; case v t′′ t′
(ST-Case2)

t; t′

case v v′ t; case v v′ t′
(ST-Case3)

case (inlT v) v′ v′′ ; v′ v
(ST-CaseL)

case (inrT v) v′ v′′ ; v′′ v
(ST-CaseR) 〈v, nil〉; 〈t, nil〉

runId v ; runId t
(ST-RunIdMo)

Figure 3.7: Reduction Rules for Lambda Calculus Reduction. These rules specify a call-

by-value evaluation strategy on RWC.

t ; t′

〈t,Σ〉; 〈t′,Σ〉
(STM-ST)

〈v,Σ〉; 〈t,Σ′〉

〈v >>= v′,Σ〉; 〈t >>= v′,Σ′〉
(STM-Bind)

〈 returnM v >>= v′,Σ〉; 〈v′ v,Σ〉
(STM-BindRet)

〈v,Σ〉; 〈t,Σ′〉

〈lift(StT ` τ S) v, s :: Σ〉; 〈lift(StT ` τ S) t, s :: Σ′〉
(STM-LiftSt)

〈v,Σ〉; 〈t,Σ′〉

〈lift
(ReT τ τ′ S) v,Σ〉; 〈lift(ReT τ τ′ S) t,Σ

′〉
(STM-LiftRe)

〈liftM (returnM′ v),Σ〉; 〈returnM v,Σ〉
(STM-LiftRet)

〈getS, s :: Σ〉; 〈returnS s, s :: Σ〉
(STM-Get)

〈put v, s :: Σ〉; 〈returnS (), v :: Σ〉
(STM-Put)

〈t,Σ〉; 〈t′,Σ′〉

〈elevateS t,Σ〉; 〈elevateS t′,Σ′〉
(STM-Elevate)

〈elevate
S′ (returnS v),Σ〉; 〈returnS′ v,Σ〉

(STM-ElevateRet)

〈v, s :: Σ〉; 〈t, s′ :: Σ′〉

〈runSt v s,Σ〉; 〈runSt t s′,Σ′〉
(STM-RunSt)

〈runSt (return(StT ` τ S) v) v′,Σ〉; 〈returnS 〈v, v′〉,Σ〉
(STM-RunStRet)

〈v,Σ〉; 〈t,Σ′〉

〈runReτ v,Σ〉; 〈runReτ t,Σ′〉
(STM-RunRe)

〈runRe
τ′′ (pause(ReT τ τ′ S) v),Σ〉; 〈v >>= λx.return (inr

τ′′ x),Σ〉
(STM-RunRePause)

〈runRe
τ′′ (return(ReT τ τ′ S) v),Σ〉; 〈returnS (inl

(τ→(τ′×(ReT τ τ′ S τ′′))) v),Σ〉
(STM-RunReRet)

〈unfold v v′,Σ〉;
〈
lift (v′ v) >>= λu.

(
caseu (λw. return w)

(λw.projw (λx.λy. pause(return〈x, λz. unfold (y z) v′〉))

)
,Σ

〉 (STM-Unfold)

〈(pause v)>>= v′,Σ〉; 〈
pause

(
v >>= λw.

(
proj w (λx.λy. return〈x, λz.(y z) >>= v′)〉

))
,Σ
〉 (STM-PauseBind)

Figure 3.8: Evaluation rules for monadic reduction. For the sake of readability, type an-

notations in STM-Unfold and STM-PauseBind are elided.

45

3.5 Metatheory

In this section we discuss the metatheory of RWC, in particular type safety (Section 3.5.1),

strong normalization (Section 3.5.3), and soundness of e�ect labels (Section 3.5.4).

Type systems-based approaches to language-based security (which seem to have orig-

inated with Volpano et al. [106]) usually apply type-soundness arguments to demonstrate

the correctness of the type system. This soundness argument follows along these lines:

well-typed programs (i.e., programs judged secure by the type system) do not misbehave

according to a security model (frequently noninterference-based [39]) de�ned in terms

of the language’s semantics. The e�ect system presented in Section 3.4 can make �ne-

grained distinctions about memory accesses and, therefore, the soundness of the e�ect

system is highly relevant to multi-level security. For example, “no write down” may be

expressed as the type, StTRWH (StT RL Id)(), because any computation with this type

may read or write to the high H state, but may only read from the low L state. Simi-

larly, “no read up” is expressed by ϕH : StTRWH (StT RL Id)(). The type soundness

demonstrated in Section 3.5.4 demonstrates the �delity of RWC types to its operational

semantics.

We shall use ;∗ to denote the re�exive, transitive closure of ; . Thus, we have the

following properties of ;∗:

Lemma 3.7. For all terms t, u, v, and stores Σ,Σ
′
,Σ
′′
,

1. if u; v, then u;∗ v. Also, if 〈u,Σ〉; 〈v,Σ′〉, then 〈u,Σ〉;∗ 〈v,Σ′〉.

2. u;∗ u. Also, 〈u,Σ〉;∗ 〈u,Σ〉.

3. if t;∗ u and u;∗ v, then t;∗ v. Also, if 〈t,Σ〉;∗ 〈u,Σ′〉 and 〈u,Σ′〉;∗ 〈v,Σ′′〉,

then 〈t,Σ〉;∗ 〈v,Σ′′〉.

Moreover, for each single-step reduction rule de�ned in Figures 3.7 and 3.8 from Sec-

tion 3.4.3, there exists a corresponding version with ;∗ in place of ;.

46

3.5.1 Type Safety

As is standard in operational semantics, we take type safety to be the conjunction of

progress, meaning that any well-typed term (resp. con�guration) that is not a value (resp.

is not “done”) always reduces to something (Theorem 3.8), and preservation, meaning that

reduction preserves the types of terms (and con�gurations) (Theorem 3.9).

Theorem 3.8 (Progress). If {} ` t : τ , then either t is a value or there exists t′ such that

t ; t′. Also, if 〈t,Σ〉 . M τ , then either 〈t,Σ〉 is done, or there exist t′ and Σ′ such that

〈t,Σ〉; 〈t′,Σ′〉.

Theorem 3.9 (Preservation). If {} ` t : τ and t; t′, then {} ` t′ : τ . Also, if 〈t,Σ〉.M τ

and 〈t,Σ〉; 〈t′,Σ′〉, then 〈t′,Σ′〉 . M τ .

Together, then, these properties imply that well-typed programs cannot go wrong—

i.e., evaluation of well-typed programs never “gets stuck”— as speci�ed in De�nition 3.10.

De�nition 3.10 (Stuck). A term (resp. con�guration) is stuck if it is neither a value (resp.

done con�guration) nor reducible to some other term (resp. con�guration).

That is, reduction of well-typed terms (and con�gurations) will not generate something

that is neither a value (resp. done con�guration), nor reducible (Corollary 3.11).
3

Corollary 3.11 (Soundness). If {} ` t : τ and t;∗ t′, then it is not the case that t′ is stuck.

Also, if 〈t,Σ〉 . M τ and 〈t,Σ〉;∗ 〈t′,Σ′〉, then it is not the case that 〈t′,Σ′〉 is stuck.

Perhaps surprisingly, the addition of computational features does not substantially com-

plicate the proof of type safety when compared to similar proofs for pure λ-calculi.

3
Soundness follows by induction over the reduction steps taken. Then, apply Theorem 3.9 to show that

reduced term is well-typed, followed by an application of Theorem 3.8 to show that the term is either a

value or further reducible.

47

3.5.2 Canonical Forms

Proofs of metatheoretic theorems about operational semantics (e.g., the proofs of Theo-

rems 3.8, 3.9 and 3.11) are frequently organized in terms of canonical forms—that is, closed,

well-typed values. The reason for doing so is simply that it drastically reduces the number

of cases to be considered in the proof thereby reducing the veri�cation e�ort. Our canon-

ical forms come in two varieties—the canonical forms of lambda values and canonical

forms for monadic expressions stated in Lemmas 3.12 and 3.13, respectively.

Lemma 3.12. If {} ` v : τ and v is a value, then

1. if τ is τ1 → τ2, there exists xu, such that v = λx : τ1.u,

2. if τ is τ1 × τ2, there exists t1t2, v = 〈t1, t2〉,

3. if τ is τ1 + τ2, there exists t′, v = inlτ2 t
′ or v = inrτ1 t

′,

4. if τ is (), v = (),

Lemma 3.13. If 〈v,Σ〉 .M τ and 〈v,Σ〉 is a done con�guration, then

1. ifM is S, there exists t′, v = returnS t
′,

2. ifM is ReT τ ′ τ ′′ S, there exists t′, v = return(ReTτ ′τ ′′S τ) t
′ or v = pause(ReTτ ′τ ′′S τ) t

′.

The canonical forms for done con�gurations—and canonical forms in general—greatly

reduce the range of potential cases to consider in proofs. In the case of reactive re-

sumptions, the canonical forms for done con�gurations re�ect a fundamental feature of

resumptions—namely, that resumptions consume inputs, producing outputs paired with

another resumption.

3.5.3 Strong Normalization

Normalization, generally speaking, is a claim about the set of possible reduction sequences

of terms. A reduction relation for a language is weakly normalizing if, and only if, for

48

each term t in the language, there is at least one reduction sequence of terms, t0 t1

· · · tn−1 tn, such that t = t0 and tn is irreducible. A reduction relation is

strongly normalizing if, and only if, every reduction sequence from term t is a pre�x of a

reduction sequence ending in an irreducible term. Note that strong normalization implies

weak normalization, but not vice versa. Note further that these notions of normalization

extend in an obvious way from terms to con�gurations. The Haskell functional language—

or, rather, its notion of reduction—is weakly normalizing, but not strongly normalizing,

due to Haskell’s default lazy evaluation.

Unlike Haskell, RWC enjoys the property of strong normalization. This property is

especially important in hardware applications for the reason that hardware cannot be

allowed to “loop forever” between clock ticks. The computation time between clock

ticks must have a static, �nite upper bound—this issue is discussed in detail in the ref-

erences [82, 83]. Strong normalization also makes de�ned equality easier to work with,

as it eliminates the need to account for equality of diverging computations.

The proof of strong normalization (Theorem 3.17) uses an adaptation of the standard

logical relations technique [67]. A standard proof using logical relations has two steps.

First, de�ne a type-indexed collection of relations over terms. The construction of each

relation proceeds inductively by utilizing de�nitions at “smaller types”. The construction

of these relations use either one of two approaches—saturated sets [99, 98], or reducibility

candidates [38]
4
. Second, establishing that relative to their respective type, every well-

typed term respects the relation. In short, given a property P, a logical relation, R{T∈T }

(with respect to P), is a collection of type-indexed relations such that for every RT ∈

R{T∈T }, every element t ∈ RT, either has, or preserves P.

We say that a term t halts if and only if there exists a value v (not necessarily distinct

from t), such that t ;∗ v . In a similar fashion, a con�guration 〈t,Σ〉 halts if, and only

if, there exists a done con�guration D such that 〈t,Σ〉 ;∗ D. The interaction between

4
Though similar, saturated sets and reducibility candidates are not the same. See [32] for a detailed

comparison.

49

halting and reduction is characterized by the properties collected in Lemma 3.14, while

Lemma 3.15 summarizes properties pertaining to reducibility candidates that were used

in the course of proving Theorem 3.17. In the case of strong normalization, halting is the

property of interest.

Lemma 3.14. For all terms u, v and stores Σ,Σ
′ ,

1. If u; v, then u halts if and only if v halts.

2. If u;∗ v, then u halts if and only if v halts.

3. If 〈u,Σ〉; 〈v,Σ′〉, then 〈u,Σ〉 halts if and only if 〈v,Σ′〉 halts.

4. If 〈u,Σ〉;∗ 〈v,Σ′〉, then 〈u,Σ〉 halts if and only if 〈v,Σ′〉 halts.

Lemma 3.15. For all terms u, v and types τ ,

1. If u; v and Rτ (u), thenRτ (v)

2. If u;∗ v andRτ (u), thenRτ (v)

3. If {} ` u : τ , u; v and Rτ (v), thenRτ (u)

4. If {} ` u : τ , u;∗ v and Rτ (v), then Rτ (u),

5. IfRτ (u), then u halts.

We discuss the details of de�ning reducibility candidates below.

Lemma 3.16. Let v1, . . . , vn be values of type τ1, . . . , τn, such that Rτi(vi) for each i =

{1, . . . , n}. Then, if x1 : τ1, . . . , xn : τn ` t : τ , thenRτ (t[x1 := v1] . . . [xn := vn]).

Theorem 3.17 follows from Lemma 3.16 using the empty context—keeping in mind that

Rτ (t), implies that t halts:

Theorem 3.17 (Strong Normalization). If {} ` t : τ , then t halts. Also, if 〈t,Σ〉 . M τ ,

then 〈t,Σ〉 halts.

50

Mechanization

Because resumptions are coinductive, and as such, proving that strong normalization

holds for con�gurations requires the use of coinductive proof principles. This is captured

by the de�nition in Figure 3.10. This allows the R property to be appropriately applied

over reactive resumption computations in a manner that ensures productivity. The use

of coinduction and coinductive proof principles has been attributed to David Park [93].

Coquand [27] provided a formalization of coinductive types in type theory using a syn-

tactic guardedness condition. This was implemented in Coq by Giménez [36]. To our

knowledge, no other mechanized proofs of strong normalization for computational λ-

calculi exist in Coq. There is a proof of strong normalization for Moggi’s computational

metalanguage in Isabelle/HOL using the nominal package [31].

We formalizeR in Coq using a Fixpoint de�nition in Figure 3.9. The straightforward

Inductive de�nition violates Coq’s strict positivity requirement—that Inductive de�nitions

cannot have constructors occurring to the left of an arrow [80]. The core of the de�ni-

tion for ordinary lambda terms is standard. However, the monadic components require

explanation.

Note that state-layer monadic con�gurations must reduce to a returnM in their respec-

tive layers. This amounts to requiring that monadic terms have normal forms. That is to

say, this re�ects a natural requirement of termination—namely, that monadic-reduction

performed with regards to a stateful computation results in a value.

Stores feature prominently in the monadic part of our development. It is only natural,

then, that we require that stores satisfy two reducibility conditions relative to their corre-

sponding monadic types. We require that terms contained in stores must be values, and

that those terms must be in the reducibility sets of their underlying types. These require-

ments correspond to store all values and the �xpoint de�nition Rsto in Figure 3.9.

As the name suggests, Rsto is simply a reducibility requirement for stores.

We embed the coinductive predicate along react inside the �xpoint de�nition of

51

Fixpoint R (τ:Ty) (t:tm) {struct τ} : Prop := ∅ ` t ∈ τ ∧ halts t ∧
match τ with
| τ1 → τ2 => ∀ t’, R τ1 t’ → R τ2 (t,t’)
| τ1 × τ2 => ∃ t1 t2, t ;∗ 〈t1, t2〉 ∧ value t1 ∧ value t2 ∧ R τ1 t1 ∧ R τ2 t2
| τ1 + τ2 => ∃ t’, value t’ ∧ ((t ;∗ inlτ2 t’ ∧ R τ1 t’) ∨ (t ;∗ inrτ1 t’ ∧ R τ2 t’))

| () => True

| SM τ ′ => ∀ Σ, Rsto SM Σ → ∃ t’ Σ′, (t,Σ) ;∗ (returnSM t’,Σ′) ∧ value t’ ∧ R τ ′ t’ ∧ Rsto

SM Σ′

| ReT τi τo SM τ ′ => ∀ Σ, Rsto SM Σ → ∃ t’ Σ′, (t,Σ) ;∗ (t’,Σ′) ∧ value t’ ∧ Rsto SM Σ′ ∧
along_react (Rsto SM) (R τi) (R τo) (R τ ′) (t’,Σ′)
end
with Rsto SM (Σ:store) {struct SM} : Prop := store_all_values Σ ∧ store_matches_mo Σ SM ∧
match SM with
| Id => True

| StT ` τ SM’ => ∃ t Σ′, R τ t ∧ Rsto SM’ Σ′ ∧ Σ = t::Σ′

end.

Inductive store_all_values : store → Prop :=
| sav_empty : store_all_values ()
| sav_cons : ∀ s Σ, value s → store_all_values Σ → store_all_values (s::Σ).

Inductive store_matches_mo : store → Mo → Prop :=
| matches_mo_id : store_matches_mo () Id
| matches_mo_stt : ∀ SM E τ t Σ, ∅ ` t ∈ τ → store_matches_mo Σ SM → store_matches_mo (t::Σ) (StT E τ

SM)
| matches_mo_ret : ∀ SM τi τo Σ, store_matches_mo Σ SM → store_matches_mo Σ (ReT τi τo SM).

Figure 3.9: The �xpoint de�nition of logical relationR. The store matches mo formalizes

the matches relation from Fig. 3.6 in Coq.

CoInductive along_react : (store → Prop) → (tm → Prop) → (tm → Prop) → (tm → Prop) → configuration
→ Prop :=

| along_return : ∀ (PS:store → Prop) (PI PO PR:tm → Prop) τi τo SM t Σ t’ Σ′,
(t,Σ) ;∗ (return(ReT τi τo SM) t’,Σ′) → value t’ → PR t’ → PS Σ′ → along_react PS PI PO PR (t,Σ)

| along_pause : ∀ (PS : store → Prop) (PI PO PR : tm → Prop) τi τo SM τ t Σ t1 Σ′ vl vr Σ′′,
(t,Σ) ;∗ (pause(ReT τi τo SM τ) t1,Σ

′) →
(t1,Σ

′) ;∗ (returnSM 〈vl,vr〉,Σ
′′) →

value t1 ∧ value vl ∧ value vr →
PS Σ′ ∧ PS Σ′′ ∧ PO vl →
(∀ t1, PI t2 → halts (vr t2)) →
(∀ t2 Σ′′, PI t2 → PS Σ′′ → along_react PS PI PO PR ((vr t2),Σ

′′)) →
along_react PS PI PO PR (t,Σ).

Figure 3.10: The Coinductive Predicate along react

R as a condition on terms typed in the reactive layer. An added di�culty is that

along react needs to be de�ned lexically prior to the de�nition of R. As such,

along react mentions neither R, nor Rsto. Instead, we must use partial application—

i.e., (R τ). These technicalities notwithstanding, the structure of the constructors for

along react is fairly straightforward – involving routine reasoning for coinduction.

3.5.4 Soundness of E�ect Labels

Since e�ect labels are meant to track e�ects and their potential propagation, soundness of

e�ect labels (roughly) corresponds to preservation of security levels indicated by the label,

and that stores track such features accordingly. Thus, given well-typed con�gurations,

52

nil
Id(W)

= nil
(swnw-id)

Σ
S(W)

= Σ′

Σ
ReT τ τ′ S(W)

= Σ′
(swmw-re)

Σ
S(W)

= Σ′

(s : : Σ)
StT τ〈〉S(W)

= (s : : Σ′)
(swnw-n)

Σ
S(W)

= Σ′

(s : : Σ)
StT τ〈R〉S(W)

= (s : : Σ′)
(swnw-r)

Σ
S(W)

= Σ′

(s : : Σ)
StT τ〈W〉S(W)

= (s′ : : Σ′)
(swnw-w)

Σ
S(W)

= Σ′

(s : : Σ)
StT τ〈RW〉S(W)

= (s′ : : Σ′)
(swnw-rw)

Figure 3.11: The ‘same where no write’ relation.

nil
Id(R)
= nil

(swr-id)

Σ
S(R)
= Σ′

Σ
ReT τ τ′ S(R)

= Σ′
(swr-re)

Σ
S(R)
= Σ′

(s : : Σ)
StT τ〈〉S(R)

= (s′ : : Σ′)
(swr-n)

Σ
S(R)
= Σ′

(s : : Σ)
StT τ〈R〉S(R)

= (s : : Σ′)
(swr-r)

Σ
S(R)
= Σ′

(s : : Σ)
StT τ〈W〉S(R)

= (s′ : : Σ′)
(swr-w)

Σ
S(R)
= Σ′

(s : : Σ)
StT τ〈RW〉S(R)

= (s : : Σ′)
(swr-rw)

Figure 3.12: The ‘same where read’ relation.

establishing soundness of e�ect labels amounts to verifying that monadic-reduction does

not alter stores where no writes are allowed (Theorem 3.19); and moreover, that monadic-

reduction does not reveal any changes to stores relative to monads with e�ect labels where

only reads are allowed (Theorem 3.21). To that end, we make use of three relations: “same

where no writes”, “same where read”, and “write consistency”, written
M(W)

= ,
M(R)

= , and wc—

and de�ned in Figure 3.11, Figure 3.12, and Figure 3.13—respectively.

Stores (semantically) correspond to state monad transformers. Given a well-typed

con�guration, the associated store will contain appropriate elements relative to each layer

in the state monad transformer stack. In order to update a store, its state monad must

〈nil, nil〉 wc 〈nil, nil〉
(wc-id)

〈Σ1,Σ2〉 wc 〈Σ′1,Σ′2〉
〈s1 :: Σ1, s2 :: Σ2〉wc 〈s1 :: Σ′1, s2 :: Σ′2〉

(wc-unchanged)

〈Σ1,Σ2〉 wc 〈Σ′1,Σ′2〉
〈s1 :: Σ1, s2 :: Σ2〉wc 〈s :: Σ′1, s :: Σ′2〉

(wc-changed)

Figure 3.13: The write consistency relation.

53

contain a write label. Lemma 3.18 contains properties used to prove Theorem 3.19.

Lemma 3.18. For all stores Σ,Σ
′
,Σ
′′ , and monads M,M′

1. If Σ matches M, then Σ M(W)
= Σ.

2. if Σ M(W)
= Σ

′ and Σ
′ M(W)

= Σ
′′ , then Σ M(W)

= Σ
′′ .

3. IfM is less permissive thanM
′ and Σ M(W)

= Σ
′ , then Σ M

′
(W)
= Σ

′ .

Theorem 3.19 (No Forbidden Updates). If 〈t,Σ〉 . M τ , then 〈t,Σ〉 ; 〈t′,Σ′〉 implies

Σ M(W)
= Σ′.

Similarly, reading from a store takes place only relative to state monads that have a read

label. This is re�ected in the type judgments for put (resp., get) that require a write (resp.,

read) label in order to be well-typed. Lemma 3.20 contains properties used to prove The-

orem 3.21.

Lemma 3.20. For all stores Σ,Σ
′
,Σ
′′ , and monads M,M′

1. If Σ is the same length as Σ
′ , then 〈Σ,Σ′〉 wc 〈Σ,Σ′〉.

2. If Σ M(R)
= Σ

′ , then Σ is the same length as Σ
′ .

3. If 〈s : : Σ〉 StT τ` S(R)
= 〈s′ : : Σ′〉, then 〈s : : Σ〉 S(R)

= 〈s′ : : Σ′〉.

4. If ` ≤ R and 〈s : : Σ〉 StT τ` S(R)
= 〈s′ : : Σ′〉, then s = s′.

5. IfM is less permissive thanM
′ and Σ M

′
(R)

= Σ
′ , then Σ M(R)

= Σ
′ .

Theorem 3.21 (Write Consistency). Suppose Σ1
M(R)

= Σ2 and that 〈t,Σ1〉 . M τ and

〈t,Σ2〉 . M τ . Then if 〈t,Σ1〉 ; 〈t′1,Σ′1〉 and 〈t,Σ2〉 ; 〈t′2,Σ′2〉, it follows that t′1 = t′2

and 〈Σ1,Σ2〉 is write consistent with 〈Σ′1,Σ′2〉.

The intuition underlying write consistency is that when considering a pair of stores Σ1

and Σ2, prior to a reduction and a pair of matching stores Σ′1 and Σ′2, after a reduction

54

it is either the case that the pre-reduction stores do not di�er from their corresponding

post-reduction stores (i.e. because no write takes place) or are equal to each other (i.e.,

because the same value was written to both Σ1 and Σ2).

The pre-stores, as stated in Theorem 3.21, must satisfy the ‘same where read’ relation.

The type system, because of its e�ect labels and their ordering, restricts admissible alter-

ations to terms and when such changes can be read from stores. This is particularly useful

for equational reasoning involving security properties such as noninterference as shown

in Figure 3.14. Theorem 3.21 “says”: if Σ1 and Σ2 are in the ‘same where read’ relation,

then executing term t in Σ1 and Σ2 produces both equal resulting terms, t1 and t2, resp.,

as well as write-consistent pre- and post-stores.

3.6 Type-directed Equational Logic for RWC

The rules provided in Figure 3.14 represent the properties of monads present in RWC.

Rules (Left-Unit), (Right-Unit), and (associativity) are the well-known “monad laws” and

Rules (Lift-Return) and (Lift->>=) are the “lifting laws” of Liang [60]. Rules (Put-Put),

(Put-Get), and (Get-Get), specify the interaction of stateful operations and are drawn from

previous work [45]. The ≤ relation on state monads is de�ned in Figure 3.5.

The equational logic of RWC has both atomic noninterference and clobber formalized

as consequences of the RWC semantics in Coq; here, we refer to the last three rules of

Figure 3.14. These are particular instances for a two layer state monad of the more gen-

eral rules found in the Coq script repository. Note that, in its Coq formalization, mask

computes the appropriate de�nition from a monad type term taken as an argument. The

exact details of this de�nition need not concern us here, and the interested reader may

consult the repository.

55

https://harrisonwl.github.io/assets/code/memocode17.tar.gz

t = t ′ : τ ∈ Γ
Γ ` t = t ′ : τ

(Axiom)

Γ ` t = t ′ : τ
γ,Γ ` t = t ′ : τ

(Weakening)

Γ `M : τ
Γ ` t = t : τ

(Refl)

Γ ` t ′ = t : τ
Γ ` t = t ′ : τ

(Sym)

Γ ` t = t ′ : τ Γ ` t ′ = t ′′ : τ
Γ ` t = t ′′ : τ

(Trans)

y /∈ fv(t)

Γ ` λx : τ.t = λy : τ.t [x := y] : τ → τ ′
(α) Γ ` λx : τ.t : τ → τ ′ Γ ` t ′ : τ

Γ ` (λx : τ.t)t ′ = t [t ′ := x] : τ ′
(β)

Γ ` t ′ : τ Γ ` t : τ → M τ ′

Γ ` (returnM t ′) >>= t = t t ′ : M τ ′
(Left-Unit) Γ ` t : M τ

Γ ` t >>= λx : τ.(returnM x) = t : M τ
(Right-Unit)

Γ ` t : M τ Γ ` t ′ : τ → M τ ′ Γ ` t ′′ : τ ′ → M τ ′′ x 6∈ FV (t′)

Γ ` (t >>= t ′) >>= t ′′ = t >>= (λx : τ.t ′x >>= t ′′) : M τ ′′
(associativity->>=)

Γ ` returnM t : M τ

Γ ` liftM′(returnM t) = returnM′ t : M′ τ
(Lift-Return)

Γ ` t : M τ Γ ` t ′ : τ → M τ ′ x 6∈ FV (t′)

Γ ` liftM′(t >>= t ′) = (liftM′t) >>= (λ(x : τ). liftM′(t
′ x))

(Lift->>=)

Γ ` put t : StT ` τ S () Γ ` put t ′ : StT ` τ S ()

Γ ` (put t >> put t ′) = put t ′ : StT ` τ S ()
(Put-Put)

Γ ` t : τ
Γ ` (put t >> get(StT RW τ S)) = put t >> return(StT RW τ S) t : StTRW τ S τ

(Put-Get)

〈R〉 ≤ `, such that M = StT ` τ S

Γ ` getM >>=λx : τ. getM >>=λy : τ. returnM〈x, y〉 = getM >>=λz : τ. returnM〈z, z〉 : M (τ×τ)
(Get-Get)

Γ ` t : S τ S is StTRW τ (StT〈〉 τ ′ Id)

Γ ` t >> (mask S) = mask S : S ()
(Clobber-Lo)

Γ ` liftS t : S () S is StT 〈〉 τ (StTRW τ ′ Id)

Γ ` liftS t >> (mask S) = (mask S) >> liftS t : S ()
(Atomic Noninterference)

Figure 3.14: Type-directed Equational Logic for RWC

56

3.7 Conclusions

This chapter presented a mechanized formal semantics for the functional hardware de-

scription language ReWire and, as such, provides a foundation for high assurance hard-

ware design and implementation. The semantics presented here is of the small-step oper-

ational variety, which is, at �rst blush, somewhat surprising. ReWire is a computational

λ-calculus in the sense of Moggi [69], and, therefore, possesses a “built-in” denotational

semantics based in categorical language semantics [68] which has been discussed else-

where [82]. But, generally speaking, small-step operational semantics are more readily

mechanized in a theorem prover like Coq and this was a primary motivation for pursuing

an operational approach.

Synchronous hardware is generally assumed to be non-terminating and that mo-

tivates the use of ReWire’s core abstraction—potentially in�nite resumption-monadic

computations—for modeling hardware [83]. Formalizing resumptions in Coq involved

technical challenges that required some ingenuity to overcome; these challenges and our

approach to overcoming them were discussed in detail in Section 3.5. To the authors’

best knowledge, the coinductive style of de�ning logical relations in Coq is apparently

an innovation that may be of use to other researchers in formal methods and interactive

theorem proving.

ReWire inherits its purity (i.e., freedom from side e�ects) from Haskell, and purity,

in turn, made the task of formally specifying ReWire relatively straightforward. Were

ReWire embedded in an impure functional language (e.g., OCaml or Scala
5
), its result-

ing semantic speci�cation would have necessarily been more complicated in order to ac-

count for the host language’s side e�ects. Any model of synchronous hardware will be

complex—but, that being said, the purity of ReWire contributed to simplifying its formal-

ized semantics.

5
Homepages: https://ocaml.org and https://www.scala-lang.org, respectively.

57

https://ocaml.org
https://www.scala-lang.org

Chapter 4

Summary and concluding remarks

The ReWire methodology di�ers fundamentally from the type-based approach to secure

hardware (e.g., that of Caisson [58], Sapper [59], and SecVerilog [114]) in three impor-

tant respects. Firstly, ReWire is a functional language (a subset of Haskell) and has the

bene�t, we would argue, of the expressiveness of functional languages. Secondly, ReWire

possesses a formal semantics and equational theory mechanized in the Coq theorem prov-

ing system, allowing security veri�cation to be automatically checked with the attendant

increased assurance. Thirdly, and most importantly, ReWire’s type system is not a se-

curity type system in the usual sense [88]. Security veri�cation in ReWire is not fully

automatic via a security type system, but, rather, the equational style of security veri�-

cation of our previous work [45, 83] is supported by an e�ects type system based on the

marriage of e�ects and monads [109]. However, we believe that ReWire’s being a pure

functional language will support the adaptation of ideas from language-based security to

the construction of high assurance, secure hardware via extensions to the ReWire type

system.

The ReWire methodology, therefore, occupies a middle ground between the security

via typechecking approach of Caisson and SecVerilog and traditional hardware veri�ca-

tion with theorem provers [63]. It combines the advantages of both—static checking on

the one hand and deductive reasoning on the other—with the expressive power of func-

tional languages. Delite—a compiler framework for parallel embedded domain-speci�c

58

languages (EDSLs) targeted to produce hardware—exhibits what its creators call “the

three P’s” [56]: productivity, performance and portability. Our previous work [43, 42,

83] demonstrates that ReWire possesses what “the three P’s” [56] and the current work

shows ReWire also possesses a fourth “P”: provability. Follow-on articles will present the

formalizations of previously published veri�cations of ReWire devices [43, 83].

The CompCert [57] project mechanizes both a source language’s semantics and com-

piler in Coq, thereby providing the foundation for (1) verifying properties of C source

programs and (2) compiling those programs to e�cient implementations in a veri�ably

property-preserving manner. One particular strength of the CompCert approach is that

other tools may be mechanized in Coq as well (e.g., static analysis tools, etc., from the Ver-

i�ed Software Toolchain [107]) to provide increased automation and trust to the whole

work�ow. The current work is motivated by the goal of producing trusted hardware in

the same manner as CompCert supports trusted C implementations. This is, admittedly, a

very ambitious goal, but the current work is an early, yet important, step in this program.

The current work also provides an important �rst step towards the formal veri�cation of

the ReWire compiler.

59

BIBLIOGRAPHY

[1] A. Abel. “A polymorphic lambda-calculus with sized higher-order types”. PhD the-

sis. Ludwig-Maximilians-Universität München, 2006.

[2] A. Abel. “Semi-continuous Sized Types and Termination”. In: Logical Methods in

Computer Science Volume 4, Issue 2 (Apr. 2008).

[3] D. Andrews. Will the Future Success of Recon�gurable Com-

puting Require a Paradigm Shift in Our Research Community’s

Thinking? Keynote address, Applied Recon�gurable Computing.

http://hthreads.csce.uark.edu/mediawiki/images/d/d8/Arc-presentation.pdf.

2015.

[4] A. Azevedo de Amorim et al. “A Veri�ed Information-�ow Architecture”. In: POPL.

2014, pp. 165–178.

[5] C. Baaij and J. Kuper. “Using Rewriting to Synthesize Functional Languages to

Digital Circuits”. In: Trends in Fun. Prog. Vol. 8322. LNCS. 2014, pp. 17–33.

[6] J. Bachrach et al. “Chisel: constructing hardware in a Scala embedded language”.

In: DAC. 2012, pp. 1216–1225.

[7] D. Bacon, R. Rabbah, and S. Shukla. “FPGA Programming for the Masses”. In:

Queue 11.2 (Feb. 2013), 40:40–40:52.

[8] H. Barendregt. “Functional Programming and Lambda Calculus”. In: FormalModels

and Semantics. Ed. by J. V. Leeuwen. Vol. B. Handbook of Theoretical Computer

Science. Amsterdam: Elsevier, 1990. Chap. 7, pp. 321–363.

60

[9] Barthe, G. et al. “Type-based termination of recursive de�nitions”. In: Mathemat-

ical Structures in Computer Science 14.1 (2004), pp. 97–141.

[10] G. Barthe, B. Grégoire, and C. Riba. “Type-Based Termination with Sized Prod-

ucts”. In: Computer Science Logic. Ed. by M. Kaminski and S. Martini. Vol. 5213.

Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidel-

berg, 2008, pp. 493–507.

[11] L. Baugh, N. Neelakantam, and C. Zilles. “Using Hardware Memory Protection to

Build a High-Performance, Strongly-Atomic Hybrid Transactional Memory”. In:

Proceedings of the 35th Annual International Symposium on Computer Architecture.

ISCA ’08. 2008, pp. 115–126.

[12] R. Bird and P. Wadler. Introduction to Functional Programming. Prentice Hall, 1988.

[13] P. Bjesse et al. “Lava: Hardware design in Haskell”. In: 3rd ICFP. 1998, pp. 174–184.

[14] B. Homepage. http://bluespec.com. July 2017.

[15] T. Braibant and A. Chlipala. “Formal Veri�cation of Hardware Synthesis”. In: CAV.

2013, pp. 213–228.

[16] G. Cabodi and M. Murciano. “BDD-Based Hardware Veri�cation”. In: 6th Inter.

Conf. on Formal Methods for the Design of Computer, Communication, and Software

Systems. SFM’06. 2006, pp. 78–107.

[17] J. Choi et al. “Kami: A Platform for High-level Parametric Hardware Speci�cation

and Its Modular Veri�cation”. In: Proc. ACM Program. Lang. 1.ICFP (Aug. 2017),

24:1–24:30.

[18] A. Church. “A Formulation of the Simple Theory of Types”. In: Journal of Symbolic

Logic 5 (1940), pp. 56–68.

[19] A. Church. “A Note on the Entscheidungsproblem”. In: Journal of Symbolic Logic

1 (1936), pp. 40–41.

61

http://bluespec.com

[20] A. Church. The Calculi of Lambda-Conversion. Annals of Mathematics Studies.

Princeton University Press, 1941.

[21] K. Claessen and J. Hughes. “QuickCheck: A Lightweight Tool for Random Testing

of Haskell Programs”. In: SIGPLAN Not. 35.9 (Sept. 2000), pp. 268–279.

[22] D. Cock, G. Klein, and T. Sewell. “Secure Microkernels, State Monads and Scalable

Re�nement”. In: TPHOLs. 2008, pp. 167–182.

[23] Prover9 and Mace4. https://www.cs.unm.edu/~mccune/mace4/.

[24] Automath. http://www.cs.ru.nl/~freek/aut/.

[25] Isabelle. https://isabelle.in.tum.de/.

[26] The Coq Proof Assistant. https://coq.inria.fr.

[27] T. Coquand. “In�nite objects in type theory”. In: Types for Proofs and Programs:

International Workshop TYPES’93 Nijmegen, The Netherlands, May 24–28, 1993 Se-

lected Papers. Ed. by H. Barendregt and T. Nipkow. Berlin, Heidelberg: Springer

Berlin Heidelberg, 1994, pp. 62–78.

[28] K. Crary, A. Kliger, and F. Pfenning. “A monadic analysis of information �ow se-

curity with mutable state”. In: JFP 15.2 (Mar. 2005), pp. 249–291.

[29] Curry, Haskell B. and Feys, R. Combinatory Logic. Vol. I. Studies in Logic and the

Foundations of Mathematics. North-Holland Publishing Company, 1958.

[30] Curry, Haskell B., Hindley, J. R., and Seldin, J. P. Combinatory Logic. Vol. II. Studies

in Logic and the Foundations of Mathematics. North-Holland Publishing Com-

pany, 1972.

[31] C. Doczkal and J. Schwinghammer. “Formalizing a Strong Normalization Proof for

Moggi’s Computational Metalanguage: A Case Study in Isabelle/HOL-nominal”.

In: Proceedings of the Fourth International Workshop on Logical Frameworks and

62

https://www.cs.unm.edu/~mccune/mace4/
http://www.cs.ru.nl/~freek/aut/
https://isabelle.in.tum.de/
https://coq.inria.fr

Meta-Languages: Theory and Practice. LFMTP ’09. Montreal, Quebec, Canada:

ACM, 2009, pp. 57–63.

[32] J. H. Gallier. “On Girard’s “Candidates de Reducibilite””. In: Logic and Computer

Science. Academic Press, 1990, pp. 123–204.

[33] P. Gammie. “Synchronous Digital Circuits As Functional Programs”. In:ACMCom-

put. Surv. 46.2 (Nov. 2013), 21:1–21:27.

[34] N. George et al. “Hardware system synthesis from Domain-Speci�c Languages”.

In: 2014 24th International Conference on Field Programmable Logic and Applications

(FPL). Sept. 2014, pp. 1–8.

[35] D. Ghica and A. Jung. “Categorical semantics of digital circuits”. In: FMCAD. 2016.

[36] E. Giménez. “Codifying guarded de�nitions with recursive schemes”. In: Types

for Proofs and Programs: International Workshop TYPES ’94 Båstad, Sweden, June

6–10, 1994 Selected Papers. Ed. by P. Dybjer, B. Nordström, and J. Smith. Berlin,

Heidelberg: Springer Berlin Heidelberg, 1995, pp. 39–59.

[37] E. Giménez. “Structural recursive de�nitions in type theory”. In: Automata, Lan-

guages and Programming. Ed. by K. G. Larsen, S. Skyum, and G. Winskel. Berlin,

Heidelberg: Springer Berlin Heidelberg, 1998, pp. 397–408.

[38] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and types. Vol. 7. Cambridge University

Press Cambridge, 1989.

[39] J. Goguen and J. Meseguer. “Unwinding and Inference Control”. In: IEEE Symp. on

Security and Privacy. 1984, pp. 75–86.

[40] S. Goncharov and L. Schröder. “A coinductive calculus for asynchronous side-

e�ecting processes”. In: Proc. of the 18th International Conf. on Fundamentals of

Computation Theory. 2011, pp. 276–287.

63

[41] M. Gordon. “The semantic challenge of Verilog HDL”. In: Logic in Computer Sci-

ence, 1995. LICS ’95. Proceedings., Tenth Annual IEEE Symposium on. June 1995,

pp. 136–145.

[42] I. Graves et al. “Hardware Synthesis from Functional Embedded Domain-Speci�c

Languages: A Case Study in Regular Expression Compilation”. In: Applied Recon-

�gurable Computing. Vol. 9040. LNCS. 2015, pp. 41–52.

[43] I. Graves et al. “Provably Correct Development of Recon�gurable Hardware De-

signs via Equational Reasoning”. In: IEEE Inter. Conf. on Field-Programmable Tech-

nology (ICFPT). 2015, pp. 160–171.

[44] W. Harrison. “The Essence of Multitasking”. In: Algebraic Methodology and Soft-

ware Technology. 2006, pp. 158–172.

[45] W. Harrison and J. Hook. “Achieving information �ow security through monadic

control of e�ects”. In: JCS 17 (5 Oct. 2009), pp. 599–653.

[46] W. Harrison, A. Procter, and G. Allwein. “Model-driven Design & Synthesis of

the SHA-256 Cryptographic Hash Function in ReWire”. In: Proceedings of the 27th

International Symposium on Rapid System Prototyping (RSP). 2016, pp. 1–7.

[47] W. Harrison et al. “A Programming Model for Recon�gurable Computing Based in

Functional Concurrency”. In: 11th Inter. Symp. on Recon�gurable Communication-

centric Systems-on-Chip. 2016.

[48] G. J. Holzmann. “The Model Checker SPIN”. In: IEEE Transactions on Software En-

gineering 23.5 (May 1997), pp. 279–295.

[49] B. Hu�man. “HOLCF ’11: A De�nitional Domain Theory for Verifying Functional

Programs”. PhD thesis. Portland State University, 2012.

[50] T. Hu�mire et al. “Enforcing memory policy speci�cations in recon�gurable hard-

ware”. In: Computers & Security 27.5–6 (2008), pp. 197–215.

64

[51] T. Hu�mire et al. Handbook of FPGA Design Security. Springer, 2010.

[52] T. Hu�mire et al. “Policy-Driven Memory Protection for Recon�gurable Hard-

ware”. In: ESORICS. Vol. 4189. LNCS. 2006, pp. 461–478.

[53] J. Hughes, L. Pareto, and A. Sabry. “Proving the Correctness of Reactive Systems

Using Sized Types”. In: Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages. POPL ’96. St. Petersburg Beach, Florida,

USA: ACM, 1996, pp. 410–423.

[54] C. Kloos and P. Breuer, eds. Formal Semantics for VHDL. Kluwer Academic Pub-

lishers, 1995.

[55] L. Lamport and P. M. Melliar-Smith. “Synchronizing Clocks in the Presence of

Faults”. In: Journal of the Association of Computing Machinery 32.1 (Jan. 1985),

pp. 52–78.

[56] H. Lee et al. “Implementing Domain-Speci�c Languages for Heterogeneous Paral-

lel Computing”. In: IEEE Micro 31.5 (Sept. 2011), pp. 42–53.

[57] X. Leroy. “Formal Veri�cation of a Realistic Compiler”. In: Commun. ACM 52.7

(July 2009), pp. 107–115.

[58] X. Li et al. “Caisson: a hardware description language for secure information �ow”.

In: PLDI. 2011, pp. 109–120.

[59] X. Li et al. “Sapper: A Language for Hardware-level Security Policy Enforcement”.

In: ASPLOS. 2014.

[60] S. Liang, P. Hudak, and M. Jones. “Monad Transformers and Modular Interpreters”.

In: POPL. 1995, pp. 333–343.

[61] K. L. McMillan. “The SMV System”. In: Symbolic Model Checking. Boston, MA:

Springer US, 1993. Chap. 4, pp. 61–85.

65

[62] A. Megacz. “Hardware Design with Generalized Arrows”. In: Proceedings of the

23rd International Conference on Implementation and Application of Functional Lan-

guages. IFL’11. Lawrence, KS: Springer-Verlag, 2012, pp. 164–180.

[63] T. Melham. Higher Order Logic and Hardware Veri�cation. Vol. 31. Cambridge

Tracts in Theoretical Computer Science. Cambridge University Press, 1993.

[64] C. repository for MEMOCODE. https://goo.gl/FYf6xU. July 2017.

[65] N. P. Mendler. “Inductive types and type constraints in the second-order lambda

calculus”. In: Annals of pure and Applied logic 51.1-2 (1991), pp. 159–172.

[66] R. Milner. “A theory of type polymorphism in programming”. In: Journal of Com-

puter and System Sciences 17.3 (1978), pp. 348–375.

[67] J. Mitchell. Foundations for Programming Languages. MIT Press Cambridge, 1996.

[68] E. Moggi. An Abstract View of Programming Languages. Tech. rep. ECS-LFCS-90-

113. Department of Computer Science, Edinburgh University, 1990.

[69] E. Moggi. “Notions of computation and monads”. In: Information and Computation

93.1 (July 1991), pp. 55–92.

[70] L. de Moura et al. “SAL 2”. In: Computer Aided Veri�cation. Ed. by R. Alur and D. A.

Peled. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 496–500.

[71] A. Myers. Personal communication. Mar. 7, 2017.

[72] A. Nanevski et al. “Ynot: Dependent Types for Imperative Programs”. In: ICFP.

2008, pp. 229–240.

[73] F. Nielson, H. Nielson, and C. Hankin. Principles of Program Analysis. 1999.

[74] R. S. Nikhil and Arvind. “What is Bluespec?” In: SIGDA Newsl. 39.1 (Jan. 2009),

pp. 1–1.

[75] U. Norell. “Towards a practical programming language based on dependent type

theory”. PhD thesis. Chalmers University of Technology, 2007.

66

https://goo.gl/FYf6xU

[76] S. Ouchani, O. A. Mohamed, and M. Debbabi. “A formal veri�cation framework

for Bluespec System Verilog”. In: Proceedings of the 2013 Forum on speci�cation

and Design Languages (FDL). Sept. 2013, pp. 1–7.

[77] L. Pareto. “Types for Crash Prevention”. PhD thesis. Chalmers University of Tech-

nology, 2000.

[78] S. Peyton Jones, ed. Haskell 98 Language and Libraries, the Revised Report. Cam-

bridge University Press, 2003, p. 272.

[79] Pierce, Benjamin C. Types and Programming Languages. MIT Press, 2002.

[80] Pierce, Benjamin C. et al. Software Foundations. 2010.

[81] Plotkin, Gordon D. A structural approach to operational semantics. Tech. rep.

Aarhus University, 1981.

[82] A. Procter. “Semantics-Driven Design and Implementation of High-Assurance

Hardware”. PhD thesis. University of Missouri, 2014. Department of Computer

Science., 2014.

[83] A. Procter et al. “A Principled Approach to Secure Multi-core Processor Design

with ReWire”. In: ACM TECS 16.2 (Feb. 2017), 33:1–33:25.

[84] A. Procter et al. “Semantics Driven Hardware Design, Implementation, and Veri-

�cation with ReWire”. In: ACM SIGPLAN/SIGBED Conf. on Languages, Compilers,

Tools and Theory for Embedded Systems (LCTES). 2015.

[85] T. N. Reynolds et al. “A Core Calculus for Secure Hardware: Its Formal Semantics

and Proof System”. In: Proceedings of the 15th ACM-IEEE International Conference

on Formal Methods and Models for System Design (MEMOCODE17). 2017.

[86] T. N. Reynolds et al. “The Mechanized Marriage of E�ects and Monads with Ap-

plications to High-assurance Hardware”. In: ACM Transactions on Embedded Com-

puting Systems (TECS) 18.1 (Jan. 2019), 6:1–6:26.

67

[87] D. Richards and D. Lester. “A monadic approach to automated reasoning for Blue-

spec SystemVerilog”. In: Innovations in Systems and Software Engineering 7.2 (Mar.

2011), p. 85.

[88] A. Sabelfeld and A. Myers. “Language-based Information-�ow Security”. In: IEEE

Journ. on Sel. Areas in Commun. 21.1 (Jan. 2003).

[89] J. Sacchini. “On type-based termination and dependent pattern matching in the

calculus of inductive constructions”. PhD thesis. École Nationale Supérieure des

Mines de Paris, 2011.

[90] J. L. Sacchini. “Linear Sized Types in the Calculus of Constructions”. In: Functional

and Logic Programming. Ed. by M. Codish and E. Sumii. Cham: Springer Interna-

tional Publishing, 2014, pp. 169–185.

[91] I. Sander and A. Jantsch. “Modelling Adaptive Systems in ForSyDe”. In: Electronic

Notes in Theoretical Computer Science 200.2 (2008), pp. 39–54.

[92] I. Sander and A. Jantsch. “System modeling and transformational design re�ne-

ment in ForSyDe”. In: IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems 23.1 (2004), pp. 17–32.

[93] D. Sangiorgi. “On the Origins of Bisimulation and Coinduction”. In: ACM Trans.

Program. Lang. Syst. 31.4 (May 2009), 15:1–15:41.

[94] L. Schröder and T. Mossakowski. “HasCasl: Integrated higher-order speci�ca-

tion and program development”. In: Theoretical Computer Science 410.12 (2009),

pp. 1217–1260.

[95] M. Sheeran. “muFP, a Language for VLSI Design”. In: Proceedings of the 1984 ACM

Symposium on LISP and Functional Programming. LFP ’84. Austin, Texas, USA:

ACM, 1984, pp. 104–112.

68

[96] G. E. Suh et al. “Secure Program Execution via Dynamic Information Flow Track-

ing”. In: Proceedings of the 11th International Conference on Architectural Support

for Programming Languages and Operating Systems. ASPLOS XI. Boston, MA, USA:

ACM, 2004, pp. 85–96.

[97] W. Swierstra. “A Hoare Logic for the State Monad”. In: TPHOLs. 2009, pp. 440–451.

[98] W. W. Tait. “A Realizability Interpretation of the Theory of Species”. In: Logic

Colloquium. Ed. by R. Parikh. Vol. 453. Lectures Notes in Mathematics. Boston:

Springer-Verlag, 1975, pp. 240–251.

[99] W. W. Tait. “Intensional interpretations of functionals of �nite type I”. In: The

journal of symbolic logic 32.2 (1967), pp. 198–212.

[100] M. Tehranipoor and C. Wang. Introduction to Hardware Security and Trust. Springer

Publishing Company, Incorporated, 2011.

[101] M. Tiwari et al. “Complete Information Flow Tracking from the Gates Up”. In:

Proceedings of the 14th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems. ASPLOS XIV. Washington, DC, USA:

ACM, 2009, pp. 109–120.

[102] M. Tiwari et al. “Complete Information Flow Tracking from the Gates Up”. In:

Proceedings of the 14th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems. ASPLOS XIV. Washington, DC, USA:

ACM, 2009, pp. 109–120.

[103] M. Tiwari et al. “Crafting a Usable Microkernel, Processor, and I/O System with

Strict and Provable Information Flow Security”. In: Proceedings of the 38th Annual

ISCA. 2011, pp. 189–200.

[104] M. Tiwari et al. “Execution leases: A hardware-supported mechanism for enforc-

ing strong non-interference”. In: Microarchitecture, 2009. MICRO-42. 42nd Annual

IEEE/ACM International Symposium on. Dec. 2009, pp. 493–504.

69

[105] S. M. Trimberger and J. J. Moore. “FPGA Security: Motivations, Features, and Ap-

plications”. In: Proceedings of the IEEE 102.8 (Aug. 2014), pp. 1248–1265.

[106] D. Volpano, C. Irvine, and G. Smith. “A Sound Type System for Secure Flow Anal-

ysis”. In: J. Comput. Secur. 4.2-3 (Jan. 1996), pp. 167–187.

[107] Veri�ed Software Toolchain. http://vst.cs.princeton.edu.

[108] A. P. W. Harrison and G. Allwein. “The Con�nement Problem in the Presence of

Faults”. In: ICFEM. 2012, pp. 182–197.

[109] P. Wadler. “The Marriage of E�ects and Monads”. In: ICFP. 1998, pp. 63–74.

[110] P. Weis and X. Leroy. Le langage Caml. 2nd ed. Dunod, 1999. 370 pp.

[111] H. Xi. “Dependent Types for Program Termination Veri�cation”. In: Higher Order

Symbolic Computation 15.1 (Mar. 2002), pp. 91–131.

[112] N. Zeldovich et al. “Hardware Enforcement of Application Security Policies Us-

ing Tagged Memory”. In: Proceedings of the 8th USENIX Conference on Operating

Systems Design and Implementation. OSDI’08. San Diego, California: USENIX As-

sociation, 2008, pp. 225–240.

[113] K. Zhai et al. “Hardware Synthesis from a Recursive Functional Language”. In:

Proceedings of the 10th International Conference on Hardware/Software Codesign

and System Synthesis. CODES ’15. Amsterdam, The Netherlands: IEEE Press, 2015,

pp. 83–93.

[114] D. Zhang et al. A Hardware Design Language for E�cient Control of Timing Chan-

nels. Tech. rep. 2014-04-10. Extended version of the authors’ ASPLOS15 paper.

Dept. of Computer Science, Cornell University, 2014.

70

http://vst.cs.princeton.edu

Appendix A

BTC COQ Code

A.1 Syntax

A.1.1 Types

Inductive Ty : Type :=

| TArrow : nat → Ty→ Ty→ Ty

| TProd : Ty→ Ty→ Ty

| TSum : Ty→ Ty→ Ty

| () : Ty.

A.1.2 Terms

Inductive term : Type :=

| var :> id → term

| tapp : term→ term→ term

| λ : id → Ty→ term→ term

| nil : term

| tpair : term→ term→ term

| π1 : term→ term

| π2 : term→ term

| inl : term→ Ty→ term

71

| inr : term→ Ty→ term

| case : term→ term→ term→ term .

A.1.3 Values

Inductive value : term→ Prop :=

| v abs : ∀ x T t,

value (λ x T t)

| v unit : value nil

| v pair : ∀ t1 t2,

value t1→ value t2→ value (tpair t1 t2)

| v inl : ∀ t T,

value t → value (inl t T)

| v inr : ∀ t T,

value t → value (inr t T).

A.2 Typing Judgments

A.2.1 For terms

Definition context := partial map Ty.

Inductive has type : context→ term→ Ty→ nat → Prop :=

| T Var : ∀ Γ x T,

Γ x = Some T →

has type Γ (var x) T O

| T Abs : ∀ Γ x T1 T2 t n,

has type (extend Γ x T1) t T2 n→

has type Γ (λ x T1 t) (TArrow n T1 T2) O

| T App : ∀ T1 T2 Γ f t1 n m p,

72

has type Γ f (TArrow n T1 T2) m→

has type Γ t1 T1 p→

has type Γ (tapp f t1) T2 (n + m + p + 1)

| T Nil : ∀ Γ,

has type Γ nil () O

| T Pair : ∀ Γ T1 T2 t1 t2 n m,

has type Γ t1 T1 n→

has type Γ t2 T2 m→

has type Γ (tpair t1 t2) (TProd T1 T2) (n + m)

| T Pi1 : ∀ Γ T1 T2 t n,

has type Γ t (TProd T1 T2) n→

has type Γ (π1 t) T1 (n + 1)

| T Pi2 : ∀ Γ T1 T2 t n,

has type Γ t (TProd T1 T2) n→

has type Γ (π2 t) T2 (n + 1)

| T Inl : ∀ Γ T1 T2 t n,

has type Γ t T1 n→

has type Γ (inl t T2) (TSum T1 T2) n

| T Inr : ∀ Γ T1 T2 t n,

has type Γ t T2 n→

has type Γ (inr t T1) (TSum T1 T2) n

| T Case : ∀ Γ Tl Tr Tres ts tl tr nl nr n m p,

has type Γ ts (TSum Tl Tr) n→

has type Γ tl (TArrow nl Tl Tres) m→

has type Γ tr (TArrow nr Tr Tres) p→

has type Γ (case ts tl tr) Tres (n + (max (nl + m) (nr + p)) + 2).

73

A.3 Substitution

Reserved Notation "’[’ x ’:=’ s ’]’ t" (at level 20).

Fixpoint subst (x:id) (s:term) (t:term) : term :=

match t with

| var x’⇒

if eq id dec x x’ then s else t

| tapp t1 t2⇒

tapp ([x:=s] t1) ([x:=s] t2)

| λ x’ T t1⇒

λ x’ T (if eq id dec x x’ then t1 else ([x:=s] t1))

| nil⇒

nil

| tpair t1 t2⇒

tpair ([x:=s] t1) ([x:=s] t2)

| π1 t1⇒

π1 ([x:=s] t1)

| π2 t1⇒

π2 ([x:=s] t1)

| inl t1 T ⇒

inl ([x:=s] t1) T

| inr t1 T ⇒

inr ([x:=s] t1) T

| case t1 t2 t3⇒

case ([x:=s] t1) ([x:=s] t2) ([x:=s] t3)

end

where "’[’ x ’:=’ s ’]’ t" := (subst x s t).

74

A variable x appears free in a term t .

Inductive appears free in : id → term→ Prop :=

| a� var : ∀ x,

appears free in x (var x)

| a� app1 : ∀ x t1 t2,

appears free in x t1→

appears free in x (tapp t1 t2)

| a� app2 : ∀ x t1 t2,

appears free in x t2→

appears free in x (tapp t1 t2)

| a� abs : ∀ x y T11 t12,

y 6= x →

appears free in x t12→

appears free in x (λ y T11 t12)

| a� pair1 : ∀ x t1 t2,

appears free in x t1→

appears free in x (tpair t1 t2)

| a� pair2 : ∀ x t1 t2,

appears free in x t2→

appears free in x (tpair t1 t2)

| a� pi1 : ∀ x t,

appears free in x t →

appears free in x (π1 t)

| a� pi2 : ∀ x t,

appears free in x t →

appears free in x (π2 t)

| a� tinl : ∀ x t TR,

75

appears free in x t →

appears free in x (inl t TR)

| a� tinr : ∀ x t TL,

appears free in x t →

appears free in x (inr t TL)

| a� tcase1 : ∀ x t1 t2 t3,

appears free in x t1→

appears free in x (case t1 t2 t3)

| a� tcase2 : ∀ x t1 t2 t3,

appears free in x t2→

appears free in x (case t1 t2 t3)

| a� tcase3 : ∀ x t1 t2 t3,

appears free in x t3→

appears free in x (case t1 t2 t3).

Definition closed (t:term) := ∀ x, ¬ appears free in x t.

Lemma context invariance : ∀ Γ Gamma’ t S n,

has type Γ t S n→

(∀ x, appears free in x t → Γ x = Gamma’ x)→

has type Gamma’ t S n.

Lemma free in context : ∀ x t T Γ n,

appears free in x t →

has type Γ t T n→

(∃ T’, Γ x = Some T’).

76

A.4 Reduction

A.4.1 Lambda-calculus reduction relation

Inductive step : term→ term→ Prop :=

| ST AppAbs : ∀ x T t v,

value v→

(tapp (λ x T t) v) [x:=v]t

| ST App1 : ∀ t1 t′1 t2,

t1 t′1→

tapp t1 t2 tapp t′1 t2

| ST App2 : ∀ v t2 t′2,

value v→

t2 t′2→

tapp v t2 tapp v t′2

| ST Pair1 : ∀ t1 t′1 t2,

t1 t′1→

tpair t1 t2 tpair t′1 t2

| ST Pair2 : ∀ v t2 t′2,

value v→

t2 t′2→

tpair v t2 tpair v t′2

| ST Pi1 : ∀ v1 v2,

value v1→

value v2→

π1 (tpair v1 v2) v1

| ST Pi2 : ∀ v1 v2,

value v1→

77

value v2→

π2 (tpair v1 v2) v2

| ST Pi1E : ∀ t t’,

t t’→

π1 t π1 t’

| ST Pi2E : ∀ t t’,

t t’→

π2 t π2 t’

| ST InL : ∀ t1 T t′1,

t1 t′1→

inl t1 T inl t′1 T

| ST InR : ∀ t1 T t′1,

t1 t′1→

inr t1 T inr t′1 T

| ST Case : ∀ t1 t′1 t2 t3,

t1 t′1→

case t1 t2 t3 case t′1 t2 t3

| ST CaseL : ∀ v1 T t2 t3,

value v1→

case (inl v1 T) t2 t3 tapp t2 v1

| ST CaseR : ∀ v1 T t2 t3,

value v1→

case (inr v1 T) t2 t3 tapp t3 v1

where "t1 ’˜>’ t2" := (step t1 t2).

Inductive nstep : term→ term→ nat → Prop :=

| nstep re� : ∀ (t : term),

t ? t // O

78

| nstep step : ∀ (n : nat) (t u v: term),

t u→

u ? v // n→

t ? v // (S n)

where "t1 ’˜»’ t2 ’//’ n" := (nstep t1 t2 n).

Theorem type unique : ∀ t Γ T1 T2 n m,

has type Γ t T1 n→

has type Γ t T2 m→ (T1 = T2 ∧ n = m).

Theorem typable empty everywhere:

∀ Γ T t n,

has type empty t T n→ has type Γ t T n.

Lemma values irreducible : ∀ v, value v→ ∀ t, ˜(v t).

Theorem complexity of well typed values :

∀ t T n,

has type empty t T n→ value t → n = O.

Lemma values subst preserves typing : ∀ Γ x U v t T n m,

has type (extend Γ x U) t T n→

has type empty v U m→

value v→

has type Γ ([x:=v] t) T n.

Corollary typable empty closed : ∀ t T n,

has type empty t T n→

closed t.

Lemma canonical forms pair : ∀ t T1 T2 n,

has type empty t (TProd T1 T2) n→

value t →

∃ t1 t2, t = tpair t1 t2.

79

Lemma canonical forms sum : ∀ t T1 T2 n,

has type empty t (TSum T1 T2) n→

value t →

(∃ t’, t = inl t’ T2) ∨ (∃ t’, t = inr t’ T1).

Lemma canonical forms tunit : ∀ t n,

has type empty t () n→

value t →

t = nil ∧ n = O.

Progress

Theorem progress : ∀ t T n,

has type empty t T n→ value t ∨ ∃ t’, t t’.

Corollary not value step : ∀ t T n,

has type empty t T n→¬ value t → ∃ t’, t t’.

Preservation

Theorem preservation :

∀ t t’ T n,

has type empty t T n→

t t’→

∃ m, m < n ∧ has type empty t’ T m.

Corollary preservation nstep :

∀ n m t t’ T,

has type empty t T n→

t ? t’ // m→

∃ o, o ≤ (n − m) ∧

has type empty t’ T o.

80

Determinism

Theorem step deterministic : ∀ t u v,

t u→

t v→

u = v.

A.4.2 Congruence Lemmmas

Lemma Congruence AppAbs : ∀ (x : id) (T : Ty) (t v : term),

value v→

(\(x:T) t) $ v ?
[x := v] t // 1.

Lemma Congruence App1 : ∀ t1 t′1 t2 n,

(t1 ? t′1 // n)→

(tapp t1 t2) ?
(tapp t′1 t2) // n.

Lemma Congruence App2 : ∀ v t t’ n,

value v→

(t ? t’ // n)→

(tapp v t) ?
(tapp v t’) // n.

Lemma Congruence Pair1 : ∀ t1 t′1 t2 n,

(t1 ? t′1 // n)→

(tpair t1 t2) ?
(tpair t′1 t2) // n.

Lemma Congruence Pair2 : ∀ v1 t2 t′2 n,

value v1→

t2 ? t′2 // n→

(tpair v1 t2) ?
(tpair v1 t′2) // n.

Lemma Congruence Pi1 : ∀ v1 v2,

value v1→

value v2→

81

π1 (tpair v1 v2) ? v1 // 1.

Lemma Congruence Pi2 : ∀ v1 v2,

value v1→

value v2→

π2 (tpair v1 v2) ? v2 // 1.

Lemma Congruence Pi1E: ∀ t t’ n,

t ? t’ // n→

(π1 t ? π1 t’ // n).

Lemma Congruence Pi2E: ∀ t t’ n,

t ? t’ // n→

(π2 t ? π2 t’ // n).

Lemma Congruence Tinl : ∀ T t1 t2 n,

t1 ? t2 // n→ (inl t1 T) ?
(inl t2 T) // n.

Lemma Congruence Tinr : ∀ T t1 t2 n,

t1 ? t2 // n→ (inr t1 T) ?
(inr t2 T) // n.

Lemma Congruence Tcase : ∀ t1 t′1 t2 t3 n,

t1 ? t′1 // n→ case t1 t2 t3 ? case t′1 t2 t3 // n.

Lemma Congruence ST CaseL : ∀ T v1 t2 t3,

value v1→

case (inl v1 T) t2 t3 ? tapp t2 v1 // 1.

Lemma Congruence ST CaseR : ∀ T v1 t2 t3,

value v1→

case (inr v1 T) t2 t3 ? tapp t3 v1 // 1.

Theorem id not step : ∀ i (u :term),

¬ (var i u).

Corollary id not nstep’ : ∀ i (u :term),

¬ (var i ? u // 1).

82

Corollary id not nstep : ∀ i (u :term) n,

var i 6= u→

¬ (var i ? u // n).

A.4.3 Inversion Principles

Lemma var inv1 : ∀ (i : id) u,

i u→ u = i.

Lemma var inv2 : ∀ (i : id) u,

¬ (i u).

Lemma pair inv1 : ∀ l r l’ r’,

tpair l r tpair l’ r’→

¬ value l→

(l l’).

Lemma pair inv2 : ∀ l r l’ r’,

tpair l r tpair l’ r’→

value l→

(r r’).

Lemma pair inv l : ∀ l r p,

tpair l r p→

¬ value l→

∃ l’, l l’.

Lemma pair inv l’ : ∀ l r l’ r’,

tpair l r tpair l’ r’→

¬ value l→

l l’.

Lemma pair inv r : ∀ l r p,

tpair l r p→

83

value l→

∃ r’, r r’.

Lemma pair step pair : ∀ l r p,

tpair l r p→

∃ l’ r’, p = (tpair l’ r’).

Lemma app inv1 : ∀ m n p,

m $ n p→

¬ value m→

(∃ n’, n n’) ∨ (∃ m’, m m’).

Lemma app inv2 : ∀ m n p,

m $ n p→

¬ value n→

(∃ n’, n n’) ∨ (∃ m’, m m’).

Lemma app inv3 : ∀ m n p,

m $ n p→

value m→

¬ value n→

(∃ n’, n n’).

Lemma app inv4 : ∀ m n p,

m $ n p→

¬ value m→

¬ value n→

(∃ m’, m m’).

Lemma app abs inv : ∀ m n p,

m $ n p→

value m→

value n→

84

¬ (∃ m’, m m’).

Lemma val inv : ∀ v u n,

value v→

v ? u // n→ v = u.

Lemma step value second : ∀ t t’ v n,

value v→

t t’→

t ? v // n→

t’ ? v // (n − 1).

Lemma step value unique : ∀ t v v’ n m,

value v→

value v’→

t ? v // n→

t ? v’ // m→

v = v’.

Lemma step same value : ∀ t t’ v n m,

value v→

t ? t’ // n→

t ? v // m→

t’ ? v // (m − n).

Lemma step values same : ∀ t v n m,

value v→

t ? v // n→

t ? v // m→

(m = n).

Lemma step values same’ : ∀ t v v’ n m,

value v→

85

value v’→

t ? v // n→

t ? v’ // m→

(m = n).

.

Definition normal form (t : term) : Prop :=

¬ ∃ t’, t t’.

Lemma value normal form : ∀ (v : term),

value v→ normal form v.

Inductive terminates : term→ Prop :=

| terminates intro : ∀ t n v, t ? v // n→ value v→ terminates t.

Definition terminates’ (t : term) :=

∃ v n, t ? v // n ∧ value v.

Theorem teqt : ∀ t, terminates t ↔ terminates’ t.

Lemma values terminate : ∀ v,

value v→ terminates v.

A.5 Reducibility

Fixpoint R (T :Ty) (t:term) {struct T } : Prop :=

(∃ n, has type empty t T n) ∧ (terminates t) ∧

(match T with

| TArrow m T1 T2⇒ ∀ s,

R T1 s→ R T2 (tapp t s)

| TProd T1 T2⇒ ∃ t1 t2 o,

86

t ?
(tpair t1 t2) // o ∧

value t1 ∧

value t2 ∧

R T1 t1 ∧

R T2 t2

| TSum T1 T2⇒ ∃ t’ o,

value t’ ∧

((t ? inl t’ T2 // o ∧ R T1 t’) ∨

(t ? inr t’ T1 // o ∧ R T2 t’))

| TNil⇒ True

end).

Theorem R terminates : ∀ T t,

R T t → terminates t.

Theorem R typable empty : ∀ T t,

R T t → ∃ n, has type empty t T n.

Lemma step preserves termination : ∀ t t’,

(t t’)→ (terminates t ↔ terminates t’).

Lemma nstep preserves termination : ∀ t t’ n,

(t ? t’ // n)→ (terminates t ↔ terminates t’).

Lemma step preserves R : ∀ T t t’,

t t’→

R T t →

R T t’.

Lemma nstep preserves R : ∀ T t t’ n,

t ? t’ // n→

R T t →

87

R T t’.

Lemma step preserves R’ : ∀ T t t’ n,

has type empty t T n→

t t’→

R T t’→

R T t.

Lemma nstep preserves R’ : ∀ T t t’ n m,

has type empty t T n→

t ? t’ // m→

R T t’→

R T t.

Definition env := list (id × term).

Fixpoint closed env (env:env) {struct env} :=

match env with

| nil⇒ True

| (x,t)::env’⇒ closed t ∧ closed env env’

end.

Fixpoint msubst (ss:env) (t:term) {struct ss} : term :=

match ss with

| nil⇒ t

| ((x,s)::ss’)⇒ msubst ss’ ([x:=s]t)

end.

Definition tass := list (id × Ty).

Fixpoint mextend (Γ : context) (xts : tass) :=

match xts with

| nil⇒ Γ

88

| ((x,v)::xts’)⇒ extend (mextend Γ xts’) x v

end.

Fixpoint lookup {X :Set} (k : id) (l : list (id × X)) {struct l} : option X :=

match l with

| nil⇒ None

| (j,x) :: l’⇒ if eq id dec j k then Some x else lookup k l’

end.

Fixpoint drop {X :Set} (n:id) (nxs:list (id × X)) {struct nxs} : list (id × X) :=

match nxs with

| nil⇒ nil

| ((n’,x)::nxs’)⇒ if eq id dec n’ n then drop n nxs’ else (n’,x)::(drop n nxs’)

end.

Inductive instantiation : tass→ env→ Prop :=

| V nil : instantiation nil nil

| V cons : ∀ x T v c e,

value v→

R T v→

instantiation c e→

instantiation ((x,T)::c) ((x,v)::e).

Lemma mextend lookup : ∀ (c:tass) (x:id),

lookup x c = (mextend empty c) x.

Lemma mextend drop : ∀ (c:tass) Γ x x’,

mextend Γ (drop x c) x’ = if eq id dec x x’ then Γ x’ else mextend Γ c x’.

Properties of Instantiations

Lemma instantiation domains match: ∀ {c} {e},

89

instantiation c e→

∀ {x} {T }, lookup x c = Some T → ∃ t, lookup x e = Some t.

Lemma instantiation env closed : ∀ c e,

instantiation c e→ closed env e.

Lemma instantiation R : ∀ c e,

instantiation c e→

∀ x t T,

lookup x c = Some T →

lookup x e = Some t →

R T t.

Lemma instantiation drop : ∀ c env,

instantiation c env→ ∀ x, instantiation (drop x c) (drop x env).

Lemma mextend empty lookup : ∀ c x, (mextend empty c) x = lookup x c.

Lemma msubst closed: ∀ t,

closed t →

∀ ss,

msubst ss t = t.

Lemma msubst preserves typing : ∀ c e,

instantiation c e→

∀ Γ t S n, has type (mextend Γ c) t S n→

has type Γ (msubst e t) S n.

Lemma subst msubst: ∀ env x v t,

closed v→

closed env env→

msubst env ([x:=v]t) = [x:=v](msubst (drop x env) t).

Lemma msubst var : ∀ ss x, closed env ss→

90

msubst ss (var x) =

match lookup x ss with

| Some t ⇒ t

| None⇒ var x

end.

Lemma msubst abs: ∀ ss x T t,

msubst ss (λ x T t) = λ x T (msubst (drop x ss) t).

Lemma msubst app : ∀ ss t1 t2,

msubst ss (tapp t1 t2) = tapp (msubst ss t1) (msubst ss t2).

Lemma msubst pair : ∀ ss t1 t2,

msubst ss (tpair t1 t2) = tpair (msubst ss t1) (msubst ss t2).

Lemma msubst pi1 : ∀ ss t1,

msubst ss (π1 t1) = π1 (msubst ss t1).

Lemma msubst pi2 : ∀ ss t1,

msubst ss (π2 t1) = π2 (msubst ss t1).

Lemma msubst tinl : ∀ ss T t,

msubst ss (inl t T) = inl (msubst ss t) T.

Lemma msubst tinr : ∀ ss T t,

msubst ss (inr t T) = inr (msubst ss t) T.

Lemma msubst tcase : ∀ ss t1 t2 t3,

msubst ss (case t1 t2 t3) = case (msubst ss t1) (msubst ss t2) (msubst ss t3).

Lemma msubst tunit : ∀ ss,

msubst ss nil = nil.

Lemma msubst R : ∀ c env t T n,

has type (mextend empty c) t T n→

91

instantiation c env→

R T (msubst env t).

Theorem normalization : ∀ (T :Ty) (t:term) (n:nat),

has type empty t T n→ terminates t.

Theorem normalization’ : ∀ (T :Ty) (t:term) (n:nat),

has type empty t T n→ terminates’ t.

92

Appendix B

RWC COQ Code

B.1 Syntax

Here is the syntax for ReWire.

B.1.1 Monads and Types

Here is the syntax for layered state monads.

Inductive E� : Type :=

| E�None : E�

| E�R : E�

| E�W : E�

| E�RW : E�.

Inductive SMo : Type :=

| MIdentity : SMo

| MStateT : Ty→ E� → SMo→ SMo

with Mo : Type :=

| MReactT : Ty→ Ty→ SMo→ Mo

| MNonReact : SMo→ Mo

Here is the syntax for “ordinary” types.

93

with Ty : Type :=

| TArrow : Ty→ Ty→ Ty

| TProd : Ty→ Ty→ Ty

| TSum : Ty→ Ty→ Ty

| TNil : Ty

| TMonadic : Mo→ Ty→ Ty.

Equality of E�, Ty, Mo, SMo is deciable:

Lemma E� eq dec : ∀ e e’ : E�, {e = e’} + {e 6= e’}.

Lemma Ty eq dec : ∀ x y : Ty, {x = y} + {x 6= y}

with Mo eq dec : ∀ m n : Mo, {m = n} + {m 6= n}

with SMo eq dec : ∀ s r : SMo, {s = r} + {s 6= r}.

Mutual induction schemes for types and monads will be useful.

Scheme Ty Mo SMo ind := Induction for Ty Sort Prop

with Mo Ty SMo ind := Induction for Mo Sort Prop

with SMo Ty Mo ind := Induction for SMo Sort Prop.

Definition on io (P :Ty→ Prop) (M:Mo) : Prop :=

match M with

| MNonReact SM ⇒ True

| MReactT TI TO SM ⇒ P TI ∧ P TO

end.

Theorem Ty Mo SMo mutind better’

: ∀ (P : Ty→ Prop) (P0 : Mo→ Prop) (P1 : SMo→ Prop),

(∀ T1 : Ty, P T1→ ∀ T2 : Ty, P T2→ P (TArrow T1 T2))→

(∀ T1 : Ty, P T1→ ∀ T2 : Ty, P T2→ P (TProd T1 T2))→

(∀ T1 : Ty, P T1→ ∀ T2 : Ty, P T2→ P (TSum T1 T2))→

P TNil→

94

(∀ M : Mo, (P0 M ∧ on io P M)→

∀ T : Ty, P T →

P (TMonadic M T))→

(∀ TI : Ty,

P TI →

∀ TO : Ty, P TO→ ∀ SM : SMo, P1 SM → P0 (MReactT TI TO SM))→

(∀ SM : SMo, P1 SM → P0 (MNonReact SM))→

P1 MIdentity→

(∀ T : Ty,

P T → ∀ (E : E�) (SM : SMo), P1 SM → P1 (MStateT T E SM))→

(∀ T : Ty, P T) ∧ (∀ M : Mo, P0 M ∧ on io P M) ∧ (∀ SM : SMo, P1 SM).

Theorem Ty Mo SMo mutind better

: ∀ (P : Ty→ Prop) (P0 : Mo→ Prop) (P1 : SMo→ Prop),

(∀ T1 : Ty, P T1→ ∀ T2 : Ty, P T2→ P (TArrow T1 T2))→

(∀ T1 : Ty, P T1→ ∀ T2 : Ty, P T2→ P (TProd T1 T2))→

(∀ T1 : Ty, P T1→ ∀ T2 : Ty, P T2→ P (TSum T1 T2))→

P TNil→

(∀ M : Mo, (P0 M ∧ on io P M)→

∀ T : Ty, P T →

P (TMonadic M T))→

(∀ TI : Ty,

P TI →

∀ TO : Ty, P TO→ ∀ SM : SMo, P1 SM → P0 (MReactT TI TO SM))→

(∀ SM : SMo, P1 SM → P0 (MNonReact SM))→

P1 MIdentity→

(∀ T : Ty,

P T → ∀ (E : E�) (SM : SMo), P1 SM → P1 (MStateT T E SM))→

95

(∀ T : Ty, P T) ∧ (∀ M : Mo, P0 M) ∧ (∀ SM : SMo, P1 SM).

Relating state monads by permissiveness

Inductive E� lt : E� → E� → Prop :=

| E� lt None None : E� lt E�None E�None

| E� lt None R : E� lt E�None E�R

| E� lt None W : E� lt E�None E�W

| E� lt None RW : E� lt E�None E�RW

| E� lt R R : E� lt E�R E�R

| E� lt R RW : E� lt E�R E�RW

| E� lt W W : E� lt E�W E�W

| E� lt W RW : E� lt E�W E�RW

| E� lt RW RW : E� lt E�RW E�RW.

Theorem E� lt re� : ∀ E, E� lt E E.

Theorem E� lt antisymm : ∀ E1 E2,

E� lt E1 E2→

E� lt E2 E1→

E1 = E2.

Theorem E� lt trans : ∀ E1 E2 E3,

E� lt E1 E2→

E� lt E2 E3→

E� lt E1 E3.

Partial order on state monads. M1 less permissive than M2 means that M1 has an

identical store shape but fewer or the same permissions.

Inductive smo less permissive : SMo→ SMo→ Prop :=

96

| LP StateT : ∀ T E1 E2 M1 M2,

E� lt E1 E2→

smo less permissive M1 M2→

smo less permissive (MStateT T E1 M1)

(MStateT T E2 M2)

| LP Identity : smo less permissive MIdentity MIdentity.

Theorem less permissive re� : ∀ M, smo less permissive M M.

Theorem less permissive antisymm : ∀ M1 M2, smo less permissive M1 M2→

smo less permissive M2 M1

→

M1 = M2.

Theorem less permissive trans: ∀ M1 M2 M3, smo less permissive M1 M2→

smo less permissive M2 M3

→

smo less permissive M1 M3.

Inductive E� disjoint : E� → E� → Prop :=

| E� disjoint None None : E� disjoint E�None E�None

| E� disjoint None R : E� disjoint E�None E�R

| E� disjoint None W : E� disjoint E�None E�W

| E� disjoint None RW : E� disjoint E�None E�RW

| E� disjoint R None : E� disjoint E�R E�None

| E� disjoint R W : E� disjoint E�R E�W

| E� disjoint W None : E� disjoint E�W E�None

| E� disjoint W R : E� disjoint E�W E�R

| E� disjoint RW None : E� disjoint E�RW E�None.

Theorem E� disjoint symm : ∀ E1 E2,

97

E� disjoint E1 E2→

E� disjoint E2 E1.

Inductive smo disjoint : SMo→ SMo→ Prop :=

| Disjoint StateT : ∀ T E1 E2 M1 M2,

smo disjoint M1 M2→

E� disjoint E1 E2→

smo disjoint (MStateT T E1 M1)

(MStateT T E2 M2)

| Disjoint Identity : smo disjoint MIdentity MIdentity.

Theorem smo disjoint symm : ∀ M1 M2, smo disjoint M1 M2→

smo disjoint M2 M1.

B.1.2 Terms and Con�gurations

Inductive tm : Type :=

| tvar : id → tm

| tapp : tm→ tm→ tm

| tabs : id → Ty→ tm→ tm

| tunit : tm

| tpair : tm→ tm→ tm

| tproj : tm→ tm→ tm

| tinl : Ty→ tm→ tm

| tinr : Ty→ tm→ tm

| tcase : tm→ tm→ tm→ tm

| treturn : Mo→ tm→ tm

98

| tbind : Ty→ tm→ tm→ tm

| tlift : Mo→ tm→ tm

| televate : SMo→ tm→ tm

| tget : SMo→ tm

| tput : SMo→ tm→ tm

| trunst : tm→ tm→ tm

| trunid : tm→ tm

| tpause : Mo→ Ty→ tm→ tm

| tunfold : Mo→ Ty→ Ty→ tm→ tm→ tm

| trunre : Ty→ tm→ tm.

The next lemma aims to address the naming conventions and subcases of the destruct

tactic, to wit, they suck.

Infix "$" := tapp (at level 40).

Notation "f »=[T] g" := (tbind T f g)

(at level 40, T at level 99, format "’[hv ’ f »=[T

] g ’]’").

Notation "\(x ’:’ T) t" := (tabs x T t)

(at level 40, x at level 99, format "’[hv ’ \(x ’:’ T

) t ’]’").

Lemma term cases : ∀ P : tm→ Prop,

(∀ i : id, P (tvar i))→

(∀ t1 t2 : tm, P (tapp t1 t2))→

(∀ (i : id) (T : Ty) (t : tm), P (tabs i T t))→

P tunit →

99

(∀ t1 t2 : tm,

P (tpair t1 t2))→

(∀ t1 t2 : tm,

P (tproj t1 t2))→

(∀ (T : Ty) (t : tm),

P (tinl T t))→

(∀ (T : Ty) (t : tm),

P (tinr T t))→

(∀ t1 t2 t3 : tm,

P (tcase t1 t2 t3))→

(∀ (M : Mo) (t : tm),

P (treturn M t))→

(∀ (T : Ty) (t1 t2 : tm),

P (tbind T t1 t2))→

(∀ (M : Mo) (t : tm),

P (tlift M t))→

(∀ (S : SMo) (t : tm),

P (televate S t))→

(∀ S : SMo,

P (tget S))→

(∀ (S : SMo) (t : tm),

P (tput S t))→

(∀ t1 t2 : tm,

P (trunst t1 t2))→

(∀ t : tm,

P (trunid t))→

(∀ (M : Mo) (T : Ty) (t : tm),

100

P (tpause M T t))→

(∀ (M : Mo) (TA TB : Ty) (t1 t2 : tm),

P (tunfold M TA TB t1 t2))→

(∀ (T : Ty) (t : tm),

P (trunre T t))→

∀ (t : tm), P t.

Tactic Notation "term cases" tactic(first) ident(c) :=

first;

[Case aux c "tvar" | Case aux c "tapp" | Case aux c "tabs"

| Case aux c "tunit" | Case aux c "tpair" | Case aux c "tproj"

| Case aux c "tinl" | Case aux c "tinr" | Case aux c "tcase"

| Case aux c "treturn" | Case aux c "tbind" | Case aux c "tlift"

| Case aux c "televate" | Case aux c "tget" | Case aux c "tput"

| Case aux c "trunst" | Case aux c "trunid" | Case aux c "tpause"

| Case aux c "tunfold" | Case aux c "trunre"].

Definition store := list tm.

Definition con�guration := (tm×store)%type.

B.2 Lambda Calculus Values

Inductive value : tm→ Prop :=

| v abs : ∀ x T t,

value (tabs x T t)

| v unit : value tunit

| v pair : ∀ t1 t2,

value t1→

value t2→

101

value (tpair t1 t2)

| v inl : ∀ T t,

value t →

value (tinl T t)

| v inr : ∀ T t,

value t →

value (tinr T t)

| v return : ∀ M t,

value t →

value (treturn M t)

| v bind : ∀ T t1 t2,

value t1→

value t2→

value (tbind T t1 t2)

| v lift : ∀ M t,

value t →

value (tlift M t)

| v elevate : ∀ SM t,

value t →

value (televate SM t)

| v get : ∀ SM,

value (tget SM)

| v put : ∀ SM t,

value t →

value (tput SM t)

| v runst : ∀ t1 t2,

value t1→

102

value t2→

value (trunst t1 t2)

| v pause : ∀ M T t,

value t →

value (tpause M T t)

| v unfold : ∀ M TA TB t1 t2,

value t1→

value t2→

value (tunfold M TA TB t1 t2)

| v runre : ∀ T t1,

value t1→

value (trunre T t1).

Theorem value dec : ∀ (t:tm), value t ∨ ¬ (value t).

B.2.1 Done Con�gurations

Inductive done mo : con�guration→ Prop :=

| done return : ∀ M v Sto, value v→ done mo (treturn M v,Sto)

| done pause : ∀ M T v Sto, value v→ done mo (tpause M T v,Sto).

Theorem done mo dec (co:con�guration) : done mo co ∨ ¬ (done mo co).

B.3 Typing Judgments

B.3.1 For terms

Definition context := partial map Ty.

Reserved Notation "Gamma ’`’ t ’\in’ T" (at level 40).

Inductive has type : context→ tm→ Ty→ Prop :=

103

| T Var : ∀ Γ x T,

Γ x = Some T → Γ ` tvar x : T

| T Abs : ∀ Γ x T T’ t,

extend Γ x T ` t : T’→

Γ ` tabs x T t : TArrow T T’

| T App : ∀ T T’ Γ t1 t2,

Γ ` t1 : TArrow T T’→

Γ ` t2 : T →

Γ ` tapp t1 t2 : T’

| T Unit : ∀ Gamma,

Γ ` tunit : TNil

| T Pair : ∀ Γ T1 T2 t1 t2,

Γ ` t1 : T1→

Γ ` t2 : T2→

Γ ` tpair t1 t2 : TProd T1 T2

| T Proj : ∀ Γ T1 T2 T3 t t’,

Γ ` t : (TProd T1 T2)→

Γ ` t’ : TArrow T1 (TArrow T2 T3)→

Γ ` tproj t t’ : T3

| T Inl : ∀ Γ T1 T2 t,

Γ ` t : T1→

Γ ` tinl T2 t : TSum T1 T2

| T Inr : ∀ Γ T1 T2 t,

Γ ` t : T2→

Γ ` tinr T1 t : TSum T1 T2

| T Case : ∀ Γ Tl Tr Tres ts tl tr,

Γ ` ts : TSum Tl Tr →

104

Γ ` tl : TArrow Tl Tres→

Γ ` tr : TArrow Tr Tres→

Γ ` tcase ts tl tr : Tres

| T Return : ∀ Γ T M t,

Γ ` t : T →

Γ ` treturn M t : TMonadic M T

| T Bind : ∀ Γ t M T1 t’ T2,

Γ ` t : TMonadic M T1→

Γ ` t’ : TArrow T1 (TMonadic M T2)→

Γ ` tbind T2 t t’ : TMonadic M T2

| T LiftSt : ∀ Γ t SM E T T’,

Γ ` t : TMonadic (MNonReact SM) T’→

Γ ` tlift (MNonReact (MStateT T E SM)) t : TMonadic (MNonReact

(MStateT T E SM)) T’

| T LiftRe : ∀ Γ t SM T TI TO,

Γ ` t : TMonadic (MNonReact SM) T →

Γ ` tlift (MReactT TI TO SM) t : TMonadic (MReactT TI TO SM)

T

| T Elevate : ∀ Γ SM SM’ t T,

smo less permissive SM SM’→

Γ ` t : TMonadic (MNonReact SM) T →

Γ ` televate SM’ t : TMonadic (MNonReact SM’) T

| T Get : ∀ Γ SM E T,

E� lt E�R E→

Γ ` tget (MStateT T E SM) : TMonadic (MNonReact (MStateT T E

SM)) T

| T Put : ∀ Γ SM E t T,

105

E� lt E�W E→

Γ ` t : T →

Γ ` tput (MStateT T E SM) t : TMonadic (MNonReact (MStateT T

E SM)) TNil

| T RunSt : ∀ Γ SM E t1 t2 TS T,

Γ ` t1 : TMonadic (MNonReact (MStateT TS E SM)) T →

Γ ` t2 : TS→

Γ ` trunst t1 t2 : TMonadic (MNonReact SM) (TProd T TS)

| T RunId : ∀ Γ t T,

Γ ` t : TMonadic (MNonReact MIdentity) T →

Γ ` trunid t : T

| T Pause : ∀ Γ SM TI TO T t,

Γ ` t : TMonadic (MNonReact SM) (TProd TO (TArrow TI (TMonadic

(MReactT TI TO SM) T)))→

Γ ` tpause (MReactT TI TO SM) T t : TMonadic (MReactT TI TO

SM) T

| T Unfold : ∀ Γ SM TI TO TA TB t1 t2,

Γ ` t1 : TB→

Γ ` t2 : TArrow TB (TMonadic (MNonReact SM) (TSum TA (TProd

TO (TArrow TI TB))))→

Γ` tunfold (MReactT TI TO SM) TA TB t1 t2 : TMonadic (MReactT

TI TO SM) TA

| T RunRe : ∀ Γ SM TI TO T t,

Γ ` t : TMonadic (MReactT TI TO SM) T →

Γ ` trunre T t : TMonadic (MNonReact SM) (TSum T (TProd TO

(TArrow TI (TMonadic (MReactT TI TO SM) T))))

106

where "Gamma ’`’ t ’:’ T" := (has type Γ t T).

Lemma type unique : ∀ t Γ T1 T2,

Γ ` t : T1→

Γ ` t : T2→ T1 = T2.

B.3.2 For con�gurations

Inductive store matches mo : store→ Mo→ Prop :=

| matches mo id : store matches mo nil (MNonReact MIdentity)

| matches mo statet : ∀ SM E T t Sto,

{} ` t : T →

store matches mo Sto (MNonReact SM)→

store matches mo (t::Sto) (MNonReact (MStateT T E

SM))

| matches mo reactt : ∀ SM TI TO Sto,

store matches mo Sto (MNonReact SM)→

store matches mo Sto (MReactT TI TO SM).

Reserved Notation "co ’|>’ T" (at level 40).

Inductive store all values : store→ Prop :=

| sav empty : store all values nil

| sav cons : ∀ s Sto, value s→ store all values Sto→ store all values (s::Sto).

Inductive con�guration has type : con�guration→ Ty→ Prop :=

| con�guration has type intro : ∀ t T M Sto,

{} ` t : TMonadic M T →

store all values Sto→

store matches mo Sto M →

(t,Sto) |> TMonadic M T

107

where "co |> T" := (con�guration has type co T).

Lemma less permissive store matches : ∀ SM1 SM2 Sto,

smo less permissive SM1 SM2→

store matches mo Sto (MNonReact

SM1)→

store matches mo Sto (MNonReact

SM2).

Lemma more permissive store matches : ∀ SM1 SM2 Sto,

smo less permissive SM2 SM1→

store matches mo Sto (MNonReact SM1)

→

store matches mo Sto (MNonReact

SM2).

Theorem typable empty everywhere:

∀ Γ T t,

{} ` t : T →

Γ ` t : T.

B.4 Canonical Forms

Lemma canonical forms fun : ∀ t T1 T2,

{} ` t : (TArrow T1 T2)→

value t →

∃ x u, t = tabs x T1 u.

Lemma canonical forms pair : ∀ t T1 T2,

{} ` t : (TProd T1 T2)→

108

value t →

∃ t1 t2, t = tpair t1 t2.

Lemma canonical forms copair : ∀ t T1 T2,

{} ` t : (TSum T1 T2)→

value t →

(∃ t’, t = tinl T2 t’) ∨ (∃ t’, t = tinr T1 t’).

Lemma canonical forms tunit : ∀ t,

{} ` t : TNil→

value t →

t = tunit.

B.5 Substitution

Instance IdDec : @EqDec id eq eq equivalence.

Now we de�ne a function FVs that returns any variables that occur free in a term .

Function FVs (t : tm) {struct t} : list id :=

match t with

| (tvar x)⇒ (x :: nil)

| tapp t1 t2⇒ (FVs t1) ++ (FVs t2)

| tabs x T t’⇒ (FVs t’)/{x}

| tunit ⇒ (@nil id)

| tpair t1 t2⇒ (FVs t1) ++ (FVs t2)

| tproj t1 t2⇒ (FVs t1) ++ (FVs t2)

| tinl T t1⇒ (FVs t1)

| tinr T t1⇒ (FVs t1)

| tcase t1 t2 t3⇒ (FVs t1) ++ (FVs t2) ++ (FVs t3)

| treturn M t1⇒ (FVs t1)

109

| tbind T t1 t2⇒ (FVs t1) ++ (FVs t2)

| tlift M t1⇒ (FVs t1)

| televate SM t1⇒ (FVs t1)

| tget SM ⇒ (@nil id)

| tput SM t1⇒ (FVs t1)

| trunst t1 t2⇒ (FVs t1) ++ (FVs t2)

| trunid t1⇒ (FVs t1)

| tpause M T t1⇒ (FVs t1)

| tunfold M TA TB t1 t2⇒ (FVs t1) ++ (FVs t2)

| trunre T t1⇒ (FVs t1)

end.

Theorem fv dec : ∀ x t, {In x (FVs t)} + {˜ In x (FVs t)}.

Theorem eq tm dec : ∀ t1 t2 : tm, {t1 = t2} + {t1 6= t2}.

Function convert (n : id) : nat :=

match n with

| (Id m)⇒ m

end.

Lemma convert unique aux :

∀ n : id,

∃ x : nat,

convert n = x ∧

(∀ x’ : nat, convert n = x’→ x = x’).

Lemma convert unique : ∀ n : id,

∃ ! (m : nat), convert n = m.

Definition convert list := fun l⇒ map (convert) l.

Definition �nd new id (l : list id) : nat :=

110

let l := convert list l in

(1 + (fold right (fun n x ⇒ max n x) 0 l)).

Lemma �nd new nonzero : ∀ l, �nd new id l 6= 0.

Definition �nd max id (l : list id) : nat :=

let l := convert list l in

fold right (fun n x ⇒ max n x) 0 l.

Lemma �nd new max : ∀ l x,

In x l→ (convert x ≤ �nd max id l).

Lemma �nd new id new : ∀ l,

let k := (Id (�nd new id l)) in ¬ In k l.

B.6 Substitution

Reserved Notation "’[’ x ’:=’ s ’]’ t" (at level 20).

Fixpoint subst (x:id) (s:tm) (t:tm) : tm :=

match t with

| tvar x’⇒

if eq id dec x x’ then s else t

| tapp t1 t2⇒

tapp ([x:=s] t1) ([x:=s] t2)

| tabs x’ T t1⇒

tabs x’ T (if eq id dec x x’ then t1 else ([x:=s] t1))

| tunit ⇒

tunit

| tpair t1 t2⇒

tpair ([x:=s] t1) ([x:=s] t2)

| tproj t1 t2⇒

111

tproj ([x:=s] t1) ([x:=s] t2)

| tinl T t1⇒

tinl T ([x:=s] t1)

| tinr T t1⇒

tinr T ([x:=s] t1)

| tcase t1 t2 t3⇒

tcase ([x:=s] t1) ([x:=s] t2) ([x:=s] t3)

| treturn M t1⇒

treturn M ([x:=s] t1)

| tbind T t1 t2⇒

tbind T ([x:=s] t1) ([x:=s] t2)

| tlift M t1⇒

tlift M ([x:=s] t1)

| televate SM t1⇒

televate SM ([x:=s] t1)

| tget SM ⇒

tget SM

| tput SM t1⇒

tput SM ([x:=s] t1)

| trunst t1 t2⇒

trunst ([x:=s] t1) ([x:=s] t2)

| trunid t1⇒

trunid ([x:=s] t1)

| tpause M T t1⇒

tpause M T ([x:=s] t1)

| tunfold M TA TB t1 t2⇒

tunfold M TA TB ([x:=s] t1) ([x:=s] t2)

112

| trunre T t1⇒

trunre T ([x:=s] t1)

end

where "’[’ x ’:=’ s ’]’ t" := (subst x s t).

A variable x appears free in a term t .

Inductive appears free in : id → tm→ Prop :=

| a� var : ∀ x,

appears free in x (tvar x)

| a� app1 : ∀ x t1 t2,

appears free in x t1→

appears free in x (tapp t1 t2)

| a� app2 : ∀ x t1 t2,

appears free in x t2→

appears free in x (tapp t1 t2)

| a� abs : ∀ x y T11 t12,

y 6= x →

appears free in x t12→

appears free in x (tabs y T11 t12)

| a� pair1 : ∀ x t1 t2,

appears free in x t1→

appears free in x (tpair t1 t2)

| a� pair2 : ∀ x t1 t2,

appears free in x t2→

appears free in x (tpair t1 t2)

| a� proj1 : ∀ x t1 t2,

113

appears free in x t1→

appears free in x (tproj t1 t2)

| a� proj2 : ∀ x t1 t2,

appears free in x t2→

appears free in x (tproj t1 t2)

| a� tinl : ∀ x t T,

appears free in x t →

appears free in x (tinl T t)

| a� tinr : ∀ x t T,

appears free in x t →

appears free in x (tinr T t)

| a� tcase1 : ∀ x t1 t2 t3,

appears free in x t1→

appears free in x (tcase t1 t2 t3)

| a� tcase2 : ∀ x t1 t2 t3,

appears free in x t2→

appears free in x (tcase t1 t2 t3)

| a� tcase3 : ∀ x t1 t2 t3,

appears free in x t3→

appears free in x (tcase t1 t2 t3)

| a� treturn : ∀ x t M,

appears free in x t →

appears free in x (treturn M t)

| a� tbind1 : ∀ x T t1 t2,

appears free in x t1→

114

appears free in x (tbind T t1 t2)

| a� tbind2 : ∀ x T t1 t2,

appears free in x t2→

appears free in x (tbind T t1 t2)

| a� tlift : ∀ x t M,

appears free in x t →

appears free in x (tlift M t)

| a� televate : ∀ x t M,

appears free in x t →

appears free in x (televate M t)

| a� tput : ∀ x t M,

appears free in x t →

appears free in x (tput M t)

| a� trunst1 : ∀ x t1 t2,

appears free in x t1→

appears free in x (trunst t1 t2)

| a� trunst2 : ∀ x t1 t2,

appears free in x t2→

appears free in x (trunst t1 t2)

| a� trunid : ∀ x t,

appears free in x t →

appears free in x (trunid t)

| a� tpause : ∀ x M T t,

appears free in x t →

appears free in x (tpause M T t)

115

| a� tunfold1 : ∀ x M TA TB t1 t2,

appears free in x t1→

appears free in x (tunfold M TA TB t1 t2)

| a� tunfold2 : ∀ x M TA TB t1 t2,

appears free in x t2→

appears free in x (tunfold M TA TB t1 t2)

| a� trunre : ∀ x T t,

appears free in x t →

appears free in x (trunre T t)

.

Lemma a� dec : ∀ x t, appears free in x t ∨ ¬ appears free in x t.

Lemma FVs AFI eq : ∀ (x:id) (t:tm), In x (FVs t)↔ appears free in x t.

Definition closed (t:tm) := ∀ x, ¬ appears free in x t.

Lemma context invariance : ∀ Gamma Gamma’ t S,

Gamma |– t \in S→

(∀ x, appears free in x t → Gamma x = Gamma’ x)→

Gamma’ |– t \in S.

Lemma free in context : ∀ x t T Gamma,

appears free in x t →

Gamma |– t \in T →

(∃ T’, Gamma x = Some T’).

Lemma subst preserves typing : ∀ Gamma x U v t T,

(extend Gamma x U) |– t \in T →

\empty |– v \in U →

Gamma |– ([x:=v] t) \in T.

Corollary typable empty closed : ∀ t T,

116

\empty |– t \in T →

closed t.

Lemma vacuous substitution : ∀ t x,

¬ appears free in x t →

∀ t’, [x:=t’]t = t.

Lemma subst closed: ∀ t,

closed t →

∀ x t’, [x:=t’]t = t.

Lemma subst not a� : ∀ t x v,

closed v→

¬ appears free in x ([x:=v]t).

Lemma duplicate subst : ∀ t’ x t v,

closed v→ [x:=t]([x:=v]t’) = [x:=v]t’.

Lemma swap subst : ∀ t x x1 v v1,

x 6= x1→

closed v→

closed v1→

[x1:=v1]([x:=v]t) = [x:=v]([x1:=v1]t).

Lemma subst rewrite : ∀ (x : id) (t t’ : tm) (T : Ty),

\empty |– t \in T →

([x:=t’]t = t).

Lemma typable empty con�g : ∀ t Sto T,

(t,Sto) |> T → \empty |– t \in T.

117

B.7 Reduction

B.7.1 Lambda-calculus and monadic reduction relations

Reserved Notation "t1 ’˜˜>’ t2" (at level 40).

Reserved Notation "t1 ’˜˜˜>’ t2" (at level 40).

Inductive step : tm→ tm→ Prop :=

| ST AppAbs : ∀ x T t12 v2,

value v2→

(tapp (tabs x T t12) v2) ˜˜> [x:=v2]t12

| ST App1 : ∀ t1 t1’ t2,

t1 ˜˜> t1’→

tapp t1 t2 ˜˜> tapp t1’ t2

| ST App2 : ∀ v1 t2 t2’,

value v1→

t2 ˜˜> t2’→

tapp v1 t2 ˜˜> tapp v1 t2’

| ST Pair1 : ∀ t1 t1’ t2,

t1 ˜˜> t1’→

tpair t1 t2 ˜˜> tpair t1’ t2

| ST Pair2 : ∀ v1 t2 t2’,

value v1→

t2 ˜˜> t2’→

tpair v1 t2 ˜˜> tpair v1 t2’

| ST Proj1 : ∀ t1 t1’ t2,

t1 ˜˜> t1’→

tproj t1 t2 ˜˜> tproj t1’ t2

| ST Proj2 : ∀ v1 t2 t2’,

118

value v1→

t2 ˜˜> t2’→

tproj v1 t2 ˜˜> tproj v1 t2’

| ST Proj : ∀ v1 v2 v3,

value v1→

value v2→

value v3→

tproj (tpair v1 v2) v3 ˜˜> tapp (tapp v3 v1) v2

| ST InL : ∀ T t1 t1’,

t1 ˜˜> t1’→

tinl T t1 ˜˜> tinl T t1’

| ST InR : ∀ T t1 t1’,

t1 ˜˜> t1’→

tinr T t1 ˜˜> tinr T t1’

| ST Case : ∀ t1 t1’ t2 t3,

t1 ˜˜> t1’→

tcase t1 t2 t3 ˜˜> tcase t1’ t2 t3

| ST CaseL : ∀ v1 T t2 t3,

value v1→

tcase (tinl T v1) t2 t3 ˜˜> tapp t2 v1

| ST CaseR : ∀ v1 T t2 t3,

value v1→

tcase (tinr T v1) t2 t3 ˜˜> tapp t3 v1

| ST Return : ∀ M t1 t1’,

t1 ˜˜> t1’→

treturn M t1 ˜˜> treturn M t1’

| ST Bind1 : ∀ T t1 t1’ t2,

119

t1 ˜˜> t1’→

tbind T t1 t2 ˜˜> tbind T t1’ t2

| ST Bind2 : ∀ T t1 t2 t2’,

value t1→

t2 ˜˜> t2’→

tbind T t1 t2 ˜˜> tbind T t1 t2’

| ST Lift : ∀ M t1 t1’,

t1 ˜˜> t1’→

tlift M t1 ˜˜> tlift M t1’

| ST Elevate : ∀ SM t1 t1’,

t1 ˜˜> t1’→

televate SM t1 ˜˜> televate SM t1’

| ST Put : ∀ SM t1 t1’,

t1 ˜˜> t1’→

tput SM t1 ˜˜> tput SM t1’

| ST RunSt1 : ∀ t1 t1’ t2,

t1 ˜˜> t1’→

trunst t1 t2 ˜˜> trunst t1’ t2

| ST RunSt2 : ∀ t1 t2 t2’,

value t1→

t2 ˜˜> t2’→

trunst t1 t2 ˜˜> trunst t1 t2’

| ST RunId : ∀ t1 t1’,

t1 ˜˜> t1’→

trunid t1 ˜˜> trunid t1’

| ST RunIdMo : ∀ t1 t1’,

value t1→

120

(t1,nil) ˜˜˜> (t1’,nil)→

trunid t1 ˜˜> trunid t1’

| ST RunIdRet : ∀ M v,

value v→

trunid (treturn M v) ˜˜> v

| ST Pause : ∀ M T t1 t1’,

t1 ˜˜> t1’→

tpause M T t1 ˜˜> tpause M T t1’

| ST Unfold1 : ∀ M TA TB t1 t1’ t2,

t1 ˜˜> t1’→

tunfold M TA TB t1 t2 ˜˜> tunfold M TA TB t1’ t2

| ST Unfold2 : ∀ M TA TB t1 t2 t2’,

value t1→

t2 ˜˜> t2’→

tunfold M TA TB t1 t2 ˜˜> tunfold M TA TB t1 t2’

| ST RunRe : ∀ T t1 t1’,

t1 ˜˜> t1’→

trunre T t1 ˜˜> trunre T t1’

with step mo : con�guration→ con�guration→ Prop :=

| STM LC : ∀ t t’ Sto,

t ˜˜> t’→

(t,Sto) ˜˜˜> (t’,Sto)

| STM Bind1 : ∀ T t1 t1’ t2 Sto Sto’,

value t1→

value t2→

(t1,Sto) ˜˜˜> (t1’,Sto’)→

121

(tbind T t1 t2,Sto) ˜˜˜> (tbind T t1’ t2,Sto’)

| STM BindRet : ∀ v1 v2 T M Sto,

value v1→

value v2→

(tbind T (treturn M v1) v2,Sto) ˜˜˜> (tapp v2 v1,Sto)

| STM LiftSt : ∀ t t’ Sto Sto’ s TS b SM,

value t →

(t,Sto) ˜˜˜> (t’,Sto’)→

(tlift (MNonReact (MStateT TS b SM)) t,s::Sto) ˜˜˜>

(tlift (MNonReact (MStateT TS b SM)) t’,s::Sto’)

| STM LiftRe : ∀ t t’ Sto Sto’ TI TO SM,

value t →

(t,Sto) ˜˜˜> (t’,Sto’)→

(tlift (MReactT TI TO SM) t,Sto) ˜˜˜>

(tlift (MReactT TI TO SM) t’,Sto’)

| STM LiftRetSt : ∀ v TS b SM Sto,

value v→

(tlift (MNonReact (MStateT TS b SM)) (treturn (MNonReact SM)

v),Sto)

˜˜˜> (treturn (MNonReact (MStateT TS b SM)) v,Sto)

| STM LiftRetRe : ∀ v TI TO SM Sto,

value v→

(tlift (MReactT TI TO SM) (treturn (MNonReact SM) v),Sto)

˜˜˜> (treturn (MReactT TI TO SM) v,Sto)

| STM Get : ∀ SM Sto s,

(tget SM,s::Sto)

˜˜˜> (treturn (MNonReact SM) s,s::Sto)

122

| STM Put : ∀ v SM Sto s,

value v→

(tput SM v,s::Sto)

˜˜˜> (treturn (MNonReact SM) tunit,v::Sto)

| STM Elevate : ∀ SM t1 t1’ Sto Sto’,

value t1→

(t1,Sto) ˜˜˜> (t1’,Sto’)→

(televate SM t1,Sto)

˜˜˜> (televate SM t1’,Sto’)

| STM ElevateRet : ∀ SM SM’ v Sto,

value v→

(televate SM’ (treturn (MNonReact SM) v),Sto)

˜˜˜> (treturn (MNonReact SM’) v,Sto)

| STM RunSt : ∀ t1 t1’ s s’ Sto Sto’,

value t1→

value s→

(t1,s::Sto) ˜˜˜> (t1’,s’::Sto’)→

(trunst t1 s,Sto) ˜˜˜> (trunst t1’ s’,Sto’)

| STM RunStRet : ∀ t1 s Sto TS b SM,

value t1→

value s→

(trunst (treturn (MNonReact (MStateT TS b SM)) t1) s,Sto)

˜˜˜> (treturn (MNonReact SM) (tpair t1 s),Sto)

| STM Unfold : ∀ t1 t2 Sto TI TO SM TA TB,

value t1→

value t2→

(tunfold (MReactT TI TO SM) TA TB t1 t2,Sto) ˜˜˜>

123

(tbind TA

(tlift (MReactT TI TO SM) (tapp t2 t1))

(tabs 0 (TSum TA (TProd TO (TArrow TI TB)))

(tcase (tvar 0)

(tabs 1 TA (treturn (MReactT TI TO SM) (tvar

1)))

(tabs 1 (TProd TO (TArrow TI TB))

(tproj

(tvar 1)

(tabs 2 TO

(tabs 3 (TArrow TI TB)

(tpause (MReactT TI TO SM) TA

(treturn (MNonReact SM)

(tpair (tvar 2)

(tabs 4 TI

(tunfold

(MReactT TI TO SM) TA TB

(tapp (tvar

3) (tvar 4))

t2))))))))))),Sto)

| STM PauseBind : ∀ t1 t2 Sto TI TO SM T1 T2,

value t1→

value t2→

(tbind

T2

(tpause

(MReactT TI TO SM)

124

T1

t1)

t2,Sto) ˜˜˜>

(tpause

(MReactT TI TO SM)

T2

(tbind

(TProd TO (TArrow TI (TMonadic (MReactT TI TO

SM) T2)))

t1

(tabs 0 (TProd TO (TArrow TI (TMonadic (MReactT

TI TO SM) T1)))

(tproj

(tvar 0)

(tabs 1 TO

(tabs 2 (TArrow TI (TMonadic (MReactT TI

TO SM) T1))

(treturn (MNonReact SM)

(tpair

(tvar 1)

(tabs 3 TI

(tbind

T2

(tapp (tvar 2) (tvar 3))

t2))))))))),Sto)

| STM RunRe : ∀ T t1 t1’ Sto Sto’,

value t1→

125

(t1,Sto) ˜˜˜> (t1’,Sto’)→

(trunre T t1,Sto) ˜˜˜> (trunre T t1’,Sto’)

| STM RunReRet : ∀ v TI TO SM TA Sto,

value v→

(trunre TA (treturn (MReactT TI TO SM) v),Sto) ˜˜˜>

(treturn

(MNonReact SM)

(tinl (TProd TO (TArrow TI (TMonadic (MReactT TI TO

SM) TA))) v),Sto)

| STM RunRePause : ∀ v TI TO SM TA Sto,

value v→

(trunre TA (tpause (MReactT TI TO SM) TA v),Sto) ˜˜˜>

(tbind (TSum TA (TProd TO (TArrow TI (TMonadic (MRe-

actT TI TO SM) TA))))

v

(tabs 0 (TProd TO (TArrow TI (TMonadic (MRe-

actT TI TO SM) TA)))

(treturn (MNonReact SM) (tinr TA (tvar

0)))),Sto)

where "k1 ’˜˜>’ k2" := (step k1 k2)

and "k1 ’˜˜˜>’ k2" := (step mo k1 k2).

Section Re�exive Transitive Closure.

Variables (X : Type) (R : relation X).

Inductive rt closure : relation X :=

| rtc re� : ∀ (x : X),

rt closure x x

| rtc step : ∀ (x y z : X),

126

R x y→

rt closure y z→

rt closure x z.

Theorem rtc R’ : ∀ (x y : X),

R x y→ rt closure x y.

Theorem rtc Trans’ :∀ (x y z : X),

rt closure x y→

rt closure y z→

rt closure x z.

Lemma rtc Last : ∀ (x y z : X),

rt closure x y→ R y z→ rt closure x z.

B.7.2 Induction Principles

Lemma rtc ind with trans : ∀ (P : X → X → Prop),

(∀ x : X, P x x)→

(∀ x y : X, R x y→ P x y)→

(∀ y x z : X, rt closure x y→ P x y→ rt closure y z→ P y z→ P x z)→

∀ x y : X, rt closure x y→ P x y.

Lemma rtc ind steps last : ∀ (P : X → X → Prop),

(∀ x : X, P x x)→

(∀ y x z : X, rt closure x y→ P x y→ R y z→ P x z)→

∀ x y : X, rt closure x y→ P x y.

End Re�exive Transitive Closure.

Add Parametric Relation T R : T (@rt closure T R)

reflexivity proved by (@rtc re�)

transitivity proved by (@rtc Trans’)

127

as RTC Rel.

Notation multistep := (rt closure tm step).

Notation "t1 ’˜˜>*’ t2" := (multistep t1 t2) (at level 40).

Notation multimostep := (rt closure con�guration step mo).

Notation "t ’˜˜˜>*’ t’" := (multimostep t t’) (at level 40).

Tactic Notation "RTClosure Ind 1" constr(name) := Case aux RTClosure Ind 1

name.

Tactic Notation "RTClosure Ind 2" constr(name) := Case aux RTClosure Ind 2

name.

Tactic Notation "RTClosure Ind 3" constr(name) := Case aux RTClosure Ind 3

name.

Two tactics for using rtc ind with trans and rtc ind steps last

Tactic Notation "R*" "induction" hyp(H) "using" "trans" :=

(induction H using rtc ind with trans; [Case aux RTClosure Ind 1

"Base"

|Case aux RTClosure Ind 2

"Step"

|Case aux RTClosure Ind 3

"Transitivity"]).

Tactic Notation "R*" "induction" hyp(H) "using" "steps" :=

(induction H using rtc ind steps last; [Case aux RTClosure Ind 1 "Base"

|Case aux RTClosure Ind 2

"Step"]).

Theorem rtc mstep re� : ∀ (t:tm),

t ˜˜>* t.

128

Theorem rtc mstep re� mo : ∀ (co:con�guration),

co ˜˜˜>* co.

Theorem rtc R : ∀ (t:tm) (t’:tm),

t ˜˜> t’→

t ˜˜>* t’.

Theorem rtc R mo : ∀ co co’,

co ˜˜˜> co’→

co ˜˜˜>* co’.

Theorem rtc Trans : ∀ (t:tm) (t’:tm) (t’’:tm),

t ˜˜>* t’→

t’ ˜˜>* t’’→

t ˜˜>* t’’.

Theorem rtc Trans mo : ∀ co co’ co’’,

co ˜˜˜>* co’→

co’ ˜˜˜>* co’’→

co ˜˜˜>* co’’.

Inductive same length {A:Type} : list A→ list A→ Prop :=

| same length nil : same length nil nil

| same length cons : ∀ x y l1 l2,

same length l1 l2→ same length (x::l1) (y::l2).

Lemma same length re� : ∀ {A:Type} (l:list A), same length l l.

Lemma same length trans : ∀ {A:Type} (l1 l2 l3:list A), same length l1 l2 → same length

l2 l3→ same length l1 l3.

Lemma step mo same length : ∀ t t’ Sto Sto’,

(t,Sto) ˜˜˜> (t’,Sto’)→

129

same length Sto Sto’.

Lemma step mo same length star : ∀ t t’ Sto Sto’,

(t,Sto) ˜˜˜>* (t’,Sto’)→

same length Sto Sto’.

Some lemmas about values and done con�gurations. Lemma value not step : ∀ v,

value v→ ∀ t, ˜(v ˜˜> t).

Lemma step not value : ∀ t, (∃ t’, t ˜˜> t’)→¬ value t.

Theorem done not step : ∀ co, done mo co→ ∀ co’, ¬co ˜˜˜> co’.

Determinism

Theorem step deterministic’ : ∀ t u v,

((t ˜˜> u→ t ˜˜> v→ u = v)

∧ ∀ Sto Sto’ Sto’’,

((t,Sto) ˜˜˜> (u,Sto’)→

(t,Sto) ˜˜˜> (v,Sto’’)→

(u = v ∧ Sto’ = Sto’’))).

Theorem step deterministic : ∀ t u v, t ˜˜> u→ t ˜˜> v→ u = v.

Theorem step deterministic mo : ∀ co1 co2 co3, co1 ˜˜˜> co2→ co1 ˜˜˜> co3→ co2 = co3.

Lemmas concerning how values/done cong�gurations

interact with the step and multistep reduction relations.

Lemma step monad second : ∀ t t’ t’’ Sto Sto’,

t ˜˜> t’→

value t’’→

(t,Sto) ˜˜˜>* (t’’,Sto’)→

(t’,Sto) ˜˜˜>* (t’’,Sto’).

130

Lemma step value second : ∀ t t’ v,

value v→

t ˜˜> t’→

t ˜˜>* v→

t’ ˜˜>* v.

Lemma value unique : ∀ t v v’,

value v→

value v’→

t ˜˜>* v→

t ˜˜>* v’→

v = v’.

Lemma step same value : ∀ t t’ v,

value v→

t ˜˜>* t’→

t ˜˜>* v→

t’ ˜˜>* v.

Lemma step done second : ∀ co co’ co’’,

done mo co’’→

co ˜˜˜> co’→

co ˜˜˜>* co’’→

co’ ˜˜˜>* co’’.

Lemma step same done : ∀ co co’ co’’,

done mo co’’→

co ˜˜˜>* co’→

co ˜˜˜>* co’’→

co’ ˜˜˜>* co’’.

131

Lemma done unique : ∀ co co’ co’’,

done mo co’→

done mo co’’→

co ˜˜˜>* co’→

co ˜˜˜>* co’’→

co’ = co’’.

Lemma done multistep only self : ∀ co, done mo co→ ∀ co’, co ˜˜˜>* co’→ co = co’.

Lemma nonval step step mo : ∀ t t’ Sto Sto’,

¬ value t →

(t,Sto) ˜˜˜> (t’,Sto’)→

(t ˜˜> t’ ∧ Sto = Sto’).

Lemma step mo not value step : ∀ t t’ Sto Sto’,

(t,Sto) ˜˜˜> (t’,Sto’)→

¬ value t →

t ˜˜> t’.

Lemma step mo value not step : ∀ t t’ Sto Sto’,

(t,Sto) ˜˜˜> (t’,Sto’)→

value t →

¬ (t ˜˜> t’).

Lemma done val : ∀ t Sto,

done mo (t,Sto)→ value t.

Lemma step mo pure : ∀ t t’ Sto t’’ Sto’,

t ˜˜> t’→

(t,Sto) ˜˜˜> (t’’,Sto’)→

(t’ = t’’ ∧ Sto = Sto’).

132

Congruence lemmas on multistep

Lemma Congruence App1 : ∀ t1 t1’ t2,

(t1 ˜˜>* t1’)→

(tapp t1 t2) ˜˜>* (tapp t1’ t2).

Lemma Congruence App2 : ∀ v t t’,

value v→

(t ˜˜>* t’)→

(tapp v t) ˜˜>* (tapp v t’).

Lemma Congruence Pair1 : ∀ t1 t1’ t2,

(t1 ˜˜>* t1’)→

(tpair t1 t2) ˜˜>* (tpair t1’ t2).

Lemma Congruence Pair2 : ∀ v1 t2 t2’,

value v1→ t2 ˜˜>* t2’→ (tpair v1 t2) ˜˜>* (tpair v1 t2’).

Lemma Congruence Proj1 : ∀ t1 t1’ t2,

(t1 ˜˜>* t1’)→

(tproj t1 t2) ˜˜>* (tproj t1’ t2).

Lemma Congruence Proj2 : ∀ v1 t2 t2’,

value v1→ t2 ˜˜>* t2’→ (tproj v1 t2) ˜˜>* (tproj v1 t2’).

Lemma Congruence Tinl : ∀ T t1 t2,

t1 ˜˜>* t2→ (tinl T t1) ˜˜>* (tinl T t2).

Lemma Congruence Tinr : ∀ T t1 t2,

t1 ˜˜>* t2→ (tinr T t1) ˜˜>* (tinr T t2).

Lemma Congruence Tcase : ∀ t1 t1’ t2 t3,

t1 ˜˜>* t1’→ tcase t1 t2 t3 ˜˜>* tcase t1’ t2 t3.

Lemma Congruence ST CaseL : ∀ T v1 t2 t3,

133

value v1→

tcase (tinl T v1) t2 t3 ˜˜>* tapp t2 v1.

Lemma Congruence ST CaseR : ∀ T v1 t2 t3,

value v1→

tcase (tinr T v1) t2 t3 ˜˜>* tapp t3 v1.

Lemma Congruence LC : ∀ t1 t1’ Sto,

t1 ˜˜>* t1’→ (t1,Sto) ˜˜˜>* (t1’,Sto).

Lemma step val done : ∀ t vt Sto t’ Sto’,

t ˜˜>* vt →

value vt →

(t,Sto) ˜˜˜>* (t’,Sto’)→

done mo (t’,Sto’)→

(vt,Sto) ˜˜˜>* (t’,Sto’).

Lemma Congruence LC Ret : ∀ M t1 t1’,

t1 ˜˜>* t1’→ treturn M t1 ˜˜>* treturn M t1’.

Lemma Congruence Treturn : ∀ t1 t1’ M Sto,

t1 ˜˜>* t1’→ (treturn M t1,Sto) ˜˜˜>* (treturn M t1’,Sto).

Lemma Congruence Tbind1 : ∀ T t1 t1’ t2,

t1 ˜˜>* t1’→

tbind T t1 t2 ˜˜>* tbind T t1’ t2.

Lemma Congruence Tbind2 : ∀ T t1 t2 t2’,

value t1→

t2 ˜˜>* t2’→

tbind T t1 t2 ˜˜>* tbind T t1 t2’.

Lemma Congruence Mo Bind1 : ∀ T t1 Sto t1’ Sto’ t2,

value t2→

134

(t1,Sto) ˜˜˜>* (t1’,Sto’)→

(tbind T t1 t2,Sto) ˜˜˜>* (tbind T t1’ t2,Sto’).

Lemma Congruence BindRet : ∀ T (v1 v2 : tm) (M : Mo) (Sto : store),

value v1→

value v2→

(tbind T (treturn M v1) v2, Sto) ˜˜˜>* (tapp v2 v1, Sto).

Lemma Congruence LiftRetSt : ∀ T b M v Sto,

value v→

(tlift (MNonReact (MStateT T b M)) (treturn (MNonReact M) v),Sto) ˜˜˜>* (treturn

(MNonReact (MStateT T b M)) v,Sto).

Lemma Congruence LiftRetRe : ∀ v TI TO SM Sto,

value v→

(tlift (MReactT TI TO SM) (treturn (MNonReact SM) v),Sto)

˜˜˜>* (treturn (MReactT TI TO SM) v,Sto).

Lemma Congruence LiftSt :

∀ (t t’ : tm) (Sto Sto’ : store) (s : tm) (TS : Ty) b (SM : SMo),

value t →

(t, Sto) ˜˜˜>* (t’, Sto’)→

(tlift (MNonReact (MStateT TS b SM)) t, s :: Sto) ˜˜˜>*

(tlift (MNonReact (MStateT TS b SM)) t’, s :: Sto’).

Lemma Congruence LiftRe : ∀ t t’ Sto Sto’ TI TO SM,

value t →

(t,Sto) ˜˜˜>* (t’,Sto’)→

(tlift (MReactT TI TO SM) t,Sto) ˜˜˜>*

(tlift (MReactT TI TO SM) t’,Sto’).

Lemma Congruence Lift : ∀ M t1 t1’,

135

t1 ˜˜>* t1’→

tlift M t1 ˜˜>* tlift M t1’.

Lemma Congruence STM Elevate : ∀ (SM : SMo) (t t’ : tm) (Sto Sto’ : store),

value t →

(t, Sto) ˜˜˜>* (t’, Sto’)→

(televate SM t, Sto) ˜˜˜>* (televate SM t’, Sto’).

Lemma Congruence STM ElevateRet : ∀ (SM SM’ : SMo) (v : tm) (Sto : store),

value v→

(televate SM’ (treturn (MNonReact SM) v), Sto) ˜˜˜>*

(treturn (MNonReact SM’) v, Sto).

Lemma Congruence ST Elevate : ∀ (SM : SMo) (t1 t1’ : tm),

t1 ˜˜>* t1’→

televate SM t1 ˜˜>* televate SM t1’.

Lemma Congruence ST Put : ∀ (SM : SMo) (t1 t1’ : tm),

t1 ˜˜>* t1’→

tput SM t1 ˜˜>* tput SM t1’.

Lemma Congruence PutE : ∀ SM t Sto t’,

t ˜˜>* t’→

(tput SM t,Sto) ˜˜˜>* (tput SM t’,Sto).

Lemma Congruence RunId : ∀ t t’,

t ˜˜>* t’→

trunid t ˜˜>* trunid t’.

Lemma Congruence RunIdMo : ∀ t t’,

(t,nil) ˜˜˜>* (t’,nil)→

trunid t ˜˜>* trunid t’.

Lemma Congruence RunSt1 : ∀ t1 t1’ t2,

136

t1 ˜˜>* t1’→

trunst t1 t2 ˜˜>* trunst t1’ t2.

Lemma Congruence RunSt2 : ∀ t1 t2 t2’,

value t1→

t2 ˜˜>* t2’→

trunst t1 t2 ˜˜>* trunst t1 t2’.

Lemma step mo still values : ∀ t t’ Sto Sto’,

store all values Sto→

(t,Sto) ˜˜˜> (t’,Sto’)→

store all values Sto’.

Lemma Congruence STM RunSt : ∀ (t t’ s s’ : tm) (Sto Sto’ : store),

value s→

store all values Sto→

(t,(s :: Sto)) ˜˜˜>* (t’,(s’:: Sto’))→

(trunst t s, Sto) ˜˜˜>* (trunst t’ s’, Sto’).

Lemma Congruence STM RunStRet : ∀ (t1 s : tm) (Sto : store) (TS : Ty) b

(SM : SMo),

value t1→

value s→

(trunst (treturn (MNonReact (MStateT TS b SM)) t1) s, Sto) ˜˜˜>*

(treturn (MNonReact SM) (tpair t1 s), Sto).

Lemma Congruence ST Pause : ∀ M T t1 t1’,

t1 ˜˜>* t1’→

tpause M T t1 ˜˜>* tpause M T t1’.

Lemma Congruence ST RunRe : ∀ (T : Ty) (t1 t1’ : tm),

t1 ˜˜>* t1’→ trunre T t1 ˜˜>* trunre T t1’.

137

Lemma Congruence ST Unfold1 : ∀ M TA TB t1 t1’ t2,

t1 ˜˜>* t1’→

tunfold M TA TB t1 t2 ˜˜>* tunfold M TA TB t1’ t2.

Lemma Congruence ST Unfold2 : ∀ M TA TB t1 t2 t2’,

value t1→

t2 ˜˜>* t2’→

tunfold M TA TB t1 t2 ˜˜>* tunfold M TA TB t1 t2’.

Lemma Congruence STM Unfold : ∀ t1 t2 Sto TI TO SM TA TB,

value t1→

value t2→

(tunfold (MReactT TI TO SM) TA TB t1 t2,Sto) ˜˜˜>*

(tbind TA

(tlift (MReactT TI TO SM) (tapp t2 t1))

(tabs 0 (TSum TA (TProd TO (TArrow TI TB)))

(tcase (tvar 0)

(tabs 1 TA (treturn (MReactT TI TO SM) (tvar

1)))

(tabs 1 (TProd TO (TArrow TI TB))

(tproj

(tvar 1)

(tabs 2 TO

(tabs 3 (TArrow TI TB)

(tpause (MReactT TI TO SM) TA

(treturn (MNonReact SM)

(tpair (tvar 2)

(tabs 4 TI

(tunfold

138

(MReactT TI TO SM) TA TB

(tapp (tvar

3) (tvar 4))

t2))))))))))),Sto).

Lemma Congruence STM PauseBind : ∀ t1 t2 Sto TI TO SM T1 T2,

value t1→

value t2→

(tbind T2 (tpause (MReactT TI TO SM) T1 t1) t2,Sto) ˜˜˜>*

(tpause

(MReactT TI TO SM)

T2

(tbind

(TProd TO (TArrow TI (TMonadic (MReactT TI TO

SM) T2)))

t1

(tabs 0 (TProd TO (TArrow TI (TMonadic (MReactT

TI TO SM) T1)))

(tproj

(tvar 0)

(tabs 1 TO

(tabs 2 (TArrow TI (TMonadic (MReactT TI

TO SM) T1))

(treturn (MNonReact SM)

(tpair

(tvar 1)

(tabs 3 TI

(tbind

139

T2

(tapp (tvar 2) (tvar 3))

t2))))))))),Sto).

Lemma Congruence AppAbs Mo : ∀ x T t v Sto,

value v→

((tapp (tabs x T t) v),Sto) ˜˜˜>* ([x:=v]t,Sto).

Lemma Congruence Unfold1 : ∀ TI TO SM TA TB t1 t1’ t2,

t1 ˜˜>* t1’→

tunfold (MReactT TI TO SM) TA TB t1 t2 ˜˜>*

tunfold (MReactT TI TO SM) TA TB t1’ t2.

Lemma Congruence Unfold2 : ∀ TI TO SM TA TB t1 t2 t2’,

value t1→

t2 ˜˜>* t2’→

tunfold (MReactT TI TO SM) TA TB t1 t2 ˜˜>*

tunfold (MReactT TI TO SM) TA TB t1 t2’.

Lemma Congruence STM RunRe : ∀ T t1 t1’ Sto Sto’,

value t1→

(t1,Sto) ˜˜˜>* (t1’,Sto’)→

(trunre T t1,Sto) ˜˜˜>* (trunre T t1’,Sto’).

Lemma Congruence STM RunReRet : ∀ v TI TO SM TA Sto,

value v→

(trunre TA (treturn (MReactT TI TO SM) v),Sto) ˜˜˜>*

(treturn (MNonReact SM) (tinl (TProd TO (TArrow TI

(TMonadic (MReactT TI TO SM) TA))) v),Sto).

Lemma Congruence STM RunRePause : ∀ v TI TO SM TA Sto,

value v→

140

(trunre TA (tpause (MReactT TI TO SM) TA v),Sto) ˜˜˜>*

(tbind (TSum TA (TProd TO (TArrow TI (TMonadic (MRe-

actT TI TO SM) TA))))

v

(tabs 0 (TProd TO (TArrow TI (TMonadic (MRe-

actT TI TO SM) TA)))

(treturn (MNonReact SM) (tinr TA (tvar

0)))),Sto).

Injectivity Lemmas for some of the term constructors.

Theorem tinl stays tinl : ∀ t T t’,

tinl T t ˜˜>* t’→

∃ t’’, t’ = tinl T t’’.

Theorem tinr stays tinr : ∀ t T t’,

tinr T t ˜˜>* t’→

∃ t’’, t’ = tinr T t’’.

Lemma treturn step inj : ∀ Mo t1 t2 Sto1 Sto2,

(treturn Mo t1,Sto1) ˜˜˜> (treturn Mo t2,Sto2)→

t1 ˜˜> t2 ∧ Sto1 = Sto2.

Lemma treturn step inj star : ∀ Mo t1 t2 Sto1 Sto2,

(treturn Mo t1,Sto1) ˜˜˜>* (treturn Mo t2,Sto2)→

t1 ˜˜>* t2 ∧ Sto1 = Sto2.

Lemma step return no change store : ∀ t t’ Mo Sto Sto’,

(treturn Mo t,Sto) ˜˜˜>* (t’,Sto’)→ Sto = Sto’.

Theorem pair step inj l : ∀ t1 t2 v1 u2,

value v1→

141

tpair t1 t2 ˜˜>* tpair v1 u2→

t1 ˜˜>* v1.

Theorem pair step inj r : ∀ t1 t2 u1 v2,

value v2→

tpair t1 t2 ˜˜>* tpair u1 v2→

t2 ˜˜>* v2.

Theorem tinl step inj : ∀ t T v,

value v→

tinl T t ˜˜>* tinl T v→

t ˜˜>* v.

Theorem tinr step inj : ∀ t T v,

value v→

tinr T t ˜˜>* tinr T v→

t ˜˜>* v.

Lemma step value eq : ∀ v v’,

value v→

value v’→

v ˜˜>* v’→ v = v’.

B.8 Progress

Theorem progress’ : ∀ t T,

\empty |– t \in T →

(value t ∨ ∃ t’, t ˜˜> t’) ∧

(∀ M Tret,

T = TMonadic M Tret →

∀ Sto,

142

store matches mo Sto M →

(done mo (t,Sto) ∨ ∃ t’ Sto’, ((t,Sto) ˜˜˜> (t’,Sto’) ∧

same length Sto Sto’))).

Corollary progress : ∀ t T,

\empty |– t \in T →

(value t ∨ ∃ t’, t ˜˜> t’).

Corollary progress mo : ∀ co T,

co |> T →

(done mo co ∨ ∃ co’, co ˜˜˜> co’).

Corollary not value step : ∀ t T,

\empty |– t \in T →

¬ value t →

∃ t’, t ˜˜> t’.

Corollary not value step mo : ∀ t T Sto,

\empty |– t \in T →

¬ value t →

∃ co’, (t,Sto) ˜˜˜> co’.

Corollary not done step mo : ∀ co T,

co |> T →

¬ done mo co→

∃ co’, co ˜˜˜> co’.

B.9 Preservation

Theorem preservation’ : ∀ t T,

\empty |– t \in T →

((∀ t’, t ˜˜> t’→ \empty |– t’ \in T)

143

∧ (∀ M Tret,

T = TMonadic M Tret →

∀ t’ Sto Sto’,

store all values Sto→

store matches mo Sto M →

(t,Sto) ˜˜˜> (t’,Sto’)→

(\empty |– t’ \in T ∧ store all values Sto’ ∧

store matches mo Sto’ M))).

Corollary preservation : ∀ T t,

\empty |– t \in T →

∀ t’, t ˜˜> t’→ \empty |– t’ \in T.

Corollary preservation mo : ∀ T co,

co |> T →

∀ co’,

co ˜˜˜> co’→ co’ |> T.

Corollary preservation star : ∀ T t t’,

t ˜˜>* t’→

\empty |– t \in T →

\empty |– t’ \in T.

Corollary preservation mo star : ∀ T t Sto t’ Sto’,

(t,Sto) ˜˜˜>* (t’,Sto’)→

(t,Sto) |> T →

(t’,Sto’) |> T.

Corollary preservation mo star co : ∀ T co co’,

co ˜˜˜>* co’→

co |> T →

144

co’ |> T.

B.10 Strong Normalization

Lambda calculus normal forms reduce no further.

Definition normal form (t:tm) : Prop :=

¬ ∃ t’, t ˜˜> t’.

Because lambda calculus values do not single step reduce, it follows that if t is a value,

then t is a normal form.

Lemma value norm form : ∀ (t : tm),

value t → normal form t.

For any term t, t halts i� there exists a value t’, such that t ˜˜>* t’.

Definition halts (t:tm) : Prop :=

∃ t’, t ˜˜>* t’ ∧ value t’.

For any con�guration c, c halts i� there exists a done con�guration c’, such that c ˜˜˜>*

c’.

Definition halts mo (co:con�guration) : Prop :=

∃ co’, co ˜˜˜>* co’ ∧ done mo co’.

Lemma values halt : ∀ t,

value t → halts t.

Lemma done halts : ∀ co,

done mo co→ halts mo co.

CoInductive along react : (store → Prop)→ (tm→ Prop)→ (tm→ Prop)→ (tm→

Prop)→ con�guration→ Prop :=

| along return : ∀ (PS:store→ Prop) (PI PO PR:tm→ Prop) TI TO SM t Sto t’ Sto’,

(t,Sto) ˜˜˜>* (treturn (MReactT TI TO SM) t’,Sto’)→

145

value t’→

PR t’→

PS Sto’→

along react PS PI PO PR (t,Sto)

| along pause : ∀ (PS:store→ Prop) (PI PO PR:tm→ Prop) TI TO SM T t Sto t’ Sto’ vl

vr Sto’’,

(t,Sto) ˜˜˜>* (tpause (MReactT TI TO SM) T t’,Sto’)→

value t’→

value vl→

value vr →

PS Sto’→

PS Sto’’→

(t’,Sto’) ˜˜˜>* (treturn (MNonReact SM) (tpair vl vr),Sto’’)→

PO vl→

(∀ t’’, PI t’’→ halts (tapp vr t’’))→

(∀ t’’ Sto’’,

PI t’’→

PS Sto’’→

along react PS PI PO PR ((tapp vr t’’),Sto’’))→

along react PS PI PO PR (t,Sto).

Fixpoint R (T :Ty) (t:tm) {struct T } : Prop :=

{} ` t : T ∧ halts t ∧

match T with

| TArrow T1 T2⇒ ∀ s, R T1 s→ R T2 (tapp t s)

| TProd T1 T2⇒ ∃ t1 t2,

t ˜˜>* (tpair t1 t2) ∧

value t1 ∧

146

value t2 ∧

R T1 t1 ∧

R T2 t2

| TSum T1 T2⇒ ∃ t’,

value t’ ∧

((t ˜˜>* tinl T2 t’ ∧ R T1 t’) ∨

(t ˜˜>* tinr T1 t’ ∧ R T2 t’))

| TNil⇒ True

| TMonadic (MNonReact SM) T’⇒ ∀ Sto,

Rsto SM Sto→

∃ t’ Sto’,

(t,Sto) ˜˜˜>* (treturn (MNonReact SM)

t’,Sto’) ∧

value t’ ∧

R T’ t’ ∧

Rsto SM Sto’

| TMonadic (MReactT TI TO SM) T’⇒ ∀ Sto,

Rsto SM Sto→

∃ t’ Sto’,

(t,Sto) ˜˜˜>* (t’,Sto’) ∧

value t’ ∧

Rsto SM Sto’ ∧

along react (Rsto SM) (R TI) (R TO)

(R T’) (t’,Sto’)

end

with Rsto (SM:SMo) (Sto:store) {struct SM} : Prop :=

store all values Sto ∧

147

store matches mo Sto (MNonReact SM) ∧

match SM with

| MIdentity⇒ True

| MStateT T b SM’⇒ ∃ t Sto’,

R T t ∧

Rsto SM’ Sto’ ∧

Sto = t::Sto’

end.

Lemma Rsto all values : ∀ {SM} {Sto},

Rsto SM Sto→ store all values Sto.

Lemma R halts : ∀ {T } {t},

R T t → halts t.

Lemma R halts nonreact : ∀ T SM t Sto,

R (TMonadic (MNonReact SM) T) t →

Rsto SM Sto→

halts mo (t, Sto).

Lemma R halts react : ∀ TI TO SM T t Sto,

R (TMonadic (MReactT TI TO SM) T) t →

Rsto SM Sto→

halts mo (t,Sto).

Lemma R typable empty : ∀ {T } {t},

R T t →

{} ` t : T.

Facts conerning Rsto and the permissiveness ordering on state monads.

Lemma Rsto matches : ∀ Sto SM,

148

Rsto SM Sto→

store matches mo Sto (MNonReact SM).

Lemma Rsto less permissive : ∀ SM SM’ Sto,

smo less permissive SM SM’→

Rsto SM Sto→

Rsto SM’ Sto.

Lemma Rsto more permissive : ∀ SM SM’ Sto,

smo less permissive SM’ SM →

Rsto SM Sto→

Rsto SM’ Sto.

Lemma step preserves halting : ∀ t t’,

(t ˜˜> t’)→ (halts t ↔ halts t’).

Lemma multistep preserves halting : ∀ t t’,

(t ˜˜>* t’)→ (halts t ↔ halts t’).

Lemma step preserves along :

∀ t Sto t’ Sto’ (PS:store→ Prop) PI PO PR,

(t,Sto) ˜˜˜> (t’,Sto’)→

along react PS PI PO PR (t’,Sto’)→

along react PS PI PO PR (t, Sto).

Lemma step preserves along’ :

∀ t Sto t’ Sto’ TI TO TP M,

(t,Sto) ˜˜˜> (t’,Sto’)→

along react (Rsto M) (R TI) (R TO) (R TP) (t,Sto)→

along react (Rsto M) (R TI) (R TO) (R TP) (t’,Sto’).

Lemma step preserves along star :

∀ t Sto t’ Sto’ (PS:store→ Prop) PI PO PR,

149

(t,Sto) ˜˜˜>* (t’,Sto’)→

along react PS PI PO PR (t’,Sto’)→

along react PS PI PO PR (t, Sto).

Lemma step preserves along star’ :

∀ t Sto t’ Sto’ TI TO TP M,

(t,Sto) ˜˜˜>* (t’,Sto’)→

along react (Rsto M) (R TI) (R TO) (R TP) (t, Sto)→

along react (Rsto M) (R TI) (R TO) (R TP) (t’,Sto’).

Lemma step along react :

∀ t Sto t’ Sto’ TI TO TP M,

(t,Sto) ˜˜˜> (t’,Sto’)→

(along react (Rsto M) (R TI) (R TO) (R TP) (t, Sto)↔

along react (Rsto M) (R TI) (R TO) (R TP) (t’,Sto’)).

Lemma step along react star :

∀ t Sto t’ Sto’ TI TO TP M,

(t,Sto) ˜˜˜>* (t’,Sto’)→

(along react (Rsto M) (R TI) (R TO) (R TP) (t, Sto)↔

along react (Rsto M) (R TI) (R TO) (R TP) (t’,Sto’)).

Lemma step preserves R : ∀ T t t’,

(t ˜˜> t’)→

R T t →

R T t’.

Lemma multistep preserves R : ∀ T t t’,

(t ˜˜>* t’)→

R T t →

R T t’.

150

Lemma step preserves R’ : ∀ T t t’,

{} ` t : T →

t ˜˜> t’→

R T t’→

R T t.

Lemma multistep preserves R’ : ∀ T t t’,

{} ` t : T →

(t ˜˜>* t’)→

R T t’→

R T t.

Definition env := list (id × tm).

Fixpoint closed env (env:env) {struct env} :=

match env with

| nil⇒ True

| (x,t)::env’⇒ closed t ∧ closed env env’

end.

Fixpoint msubst (ss:env) (t:tm) {struct ss} : tm :=

match ss with

| nil⇒ t

| ((x,s)::ss’)⇒ msubst ss’ ([x:=s]t)

end.

Definition tass := list (id × Ty).

Fixpoint mextend (Gamma : context) (xts : tass) :=

match xts with

| nil⇒ Gamma

| ((x,v)::xts’)⇒ extend (mextend Gamma xts’) x v

151

end.

Fixpoint lookup {X :Set} (k : id) (l : list (id × X)) {struct l} : option X :=

match l with

| nil⇒ None

| (j,x) :: l’⇒ if eq id dec j k then Some x else lookup k l’

end.

Fixpoint drop {X :Set} (n:id) (nxs:list (id × X)) {struct nxs} : list (id × X) :=

match nxs with

| nil⇒ nil

| ((n’,x)::nxs’)⇒ if eq id dec n’ n then drop n nxs’ else (n’,x)::(drop n nxs’)

end.

Inductive instantiation : tass→ env→ Prop :=

| V nil : instantiation nil nil

| V cons : ∀ x T v c e,

value v→

R T v→

instantiation c e→

instantiation ((x,T)::c) ((x,v)::e).

Lemma mextend lookup : ∀ (c:tass) (x:id),

lookup x c = (mextend empty c) x.

Lemma mextend drop : ∀ (c:tass) Gamma x x’,

mextend Gamma (drop x c) x’ = if eq id dec x x’ then Gamma x’ else mextend

Gamma c x’.

Lemma instantiation domains match: ∀ {c} {e},

instantiation c e→

∀ {x} {T }, lookup x c = Some T → ∃ t, lookup x e = Some t.

152

Lemma instantiation env closed : ∀ c e,

instantiation c e→ closed env e.

Lemma instantiation R : ∀ c e,

instantiation c e→

∀ x t T,

lookup x c = Some T →

lookup x e = Some t →

R T t.

Lemma instantiation drop : ∀ c env,

instantiation c env→ ∀ x, instantiation (drop x c) (drop x env).

Lemma mextend empty lookup : ∀ c x, (mextend empty c) x = lookup x c.

Lemma msubst closed: ∀ t,

closed t →

∀ ss,

msubst ss t = t.

Lemma msubst preserves typing : ∀ c e,

instantiation c e→

∀ Gamma t S, (mextend Gamma c) ` t : S→

Gamma ` (msubst e t) : S.

Lemma subst msubst: ∀ env x v t,

closed v→

closed env env→

msubst env ([x:=v]t) = [x:=v](msubst (drop x env) t).

Lemma msubst var : ∀ ss x, closed env ss→

msubst ss (tvar x) =

match lookup x ss with

153

| Some t ⇒ t

| None⇒ tvar x

end.

Lemma msubst abs: ∀ ss x T t,

msubst ss (tabs x T t) = tabs x T (msubst (drop x ss) t).

Lemma msubst app : ∀ ss t1 t2,

msubst ss (tapp t1 t2) = tapp (msubst ss t1) (msubst ss t2).

Lemma msubst pair : ∀ ss t1 t2,

msubst ss (tpair t1 t2) = tpair (msubst ss t1) (msubst ss t2).

Lemma msubst proj : ∀ ss t1 t2,

msubst ss (tproj t1 t2) = tproj (msubst ss t1) (msubst ss t2).

Lemma msubst tinl : ∀ ss T t,

msubst ss (tinl T t) = tinl T (msubst ss t).

Lemma msubst tinr : ∀ ss T t,

msubst ss (tinr T t) = tinr T (msubst ss t).

Lemma msubst tcase : ∀ ss t1 t2 t3,

msubst ss (tcase t1 t2 t3) = tcase (msubst ss t1) (msubst ss t2) (msubst ss t3).

Lemma msubst return : ∀ ss M t,

msubst ss (treturn M t) = treturn M (msubst ss t).

Lemma msubst bind : ∀ ss T t1 t2,

msubst ss (tbind T t1 t2) = tbind T (msubst ss t1) (msubst ss t2).

Lemma msubst lift : ∀ ss M t,

msubst ss (tlift M t) = tlift M (msubst ss t).

Lemma msubst elevate : ∀ ss M t,

msubst ss (televate M t) = televate M (msubst ss t).

154

Lemma msubst tunit : ∀ ss,

msubst ss tunit = tunit.

Lemma msubst get : ∀ ss M,

msubst ss (tget M) = tget M.

Lemma msubst tput : ∀ ss t M,

msubst ss (tput M t) = tput M (msubst ss t).

Lemma msubst trunst : ∀ ss t1 t2,

msubst ss (trunst t1 t2) = trunst (msubst ss t1) (msubst ss t2).

Lemma msubst trunid : ∀ ss t,

msubst ss (trunid t) = trunid (msubst ss t).

Lemma msubst tpause : ∀ ss t M T,

msubst ss (tpause M T t) = tpause M T (msubst ss t).

Lemma msubst tunfold : ∀ ss t1 t2 TA TB M,

msubst ss (tunfold M TA TB t1 t2) = tunfold M TA TB

(msubst ss t1) (msubst ss t2).

Lemma msubst trunre : ∀ ss t T,

msubst ss (trunre T t) = trunre T (msubst ss t).

Lemma msubst rewrite : ∀ ss t,

msubst ss t = (match t with

| (tabs x T t’)⇒ tabs x T (msubst (drop x ss) t’)

| (tapp t1 t2)⇒ tapp (msubst ss t1) (msubst ss t2)

| (tpair t1 t2)⇒ tpair (msubst ss t1) (msubst ss t2)

| (tproj t1 t2)⇒ tproj (msubst ss t1) (msubst ss t2)

| (tinl T t’)⇒ tinl T (msubst ss t’)

| (tinr T t’)⇒ tinr T (msubst ss t’)

| (tcase t1 t2 t3)⇒ tcase (msubst ss t1) (msubst ss t2) (msubst ss

155

t3)

| (treturn M t’)⇒ treturn M (msubst ss t’)

| (tbind T t1 t2)⇒ tbind T (msubst ss t1) (msubst ss t2)

| (tlift M t’)⇒ tlift M (msubst ss t’)

| (televate M t’)⇒ televate M (msubst ss t’)

| tunit ⇒ tunit

| (tget M)⇒ tget M

| (tput M t’)⇒ tput M (msubst ss t’)

| (trunst t1 t2)⇒ trunst (msubst ss t1) (msubst ss t2)

| (trunid t’)⇒ trunid (msubst ss t’)

| (tpause M T t’)⇒ tpause M T (msubst ss t’)

| (tunfold M TA TB t1 t2) ⇒ tunfold M TA TB (msubst ss t1)

(msubst ss t2)

| (trunre T t’)⇒ trunre T (msubst ss t’)

| ⇒ msubst ss t

end).

Lemma step mo still values star : ∀ t t’ Sto Sto’,

store all values Sto→

(t,Sto) ˜˜˜>* (t’,Sto’)→

store all values Sto’.

Lemma tbind along : ∀ t Sto SM TI TO T1 T2 t1 t2 Sto’ Sto’’,

{} ` t : TMonadic (MReactT TI TO SM) T2→

store all values Sto→

store matches mo Sto (MReactT TI TO SM)→

(t,Sto) ˜˜˜>* (tbind T2 t1 t2,Sto’)→

{} ` t1 : TMonadic (MReactT TI TO SM) T1→

store all values Sto’→

156

store matches mo Sto’ (MReactT TI TO SM)→

{} ` t2 : TArrow T1 (TMonadic (MReactT TI TO SM) T2)→

value t1→

value t2→

Rsto SM Sto’’→

along react (Rsto SM) (R TI) (R TO) (R T1) (t1,Sto’)→

(∀ t’ Sto’’,

R T1 t’→

Rsto SM Sto’’→

along react (Rsto SM) (R TI) (R TO) (R T2) ((tapp t2 t’),

Sto’’))→

along react (Rsto SM) (R TI) (R TO) (R T2) (t,Sto).

Lemma tunfold along : ∀ t Sto TA TB TI TO SM t1 t2 Sto’,

((t,Sto) ˜˜˜>* (tunfold (MReactT TI TO SM) TA TB t1 t2,Sto’))

→

R TB t1→

R (TArrow TB (TMonadic (MNonReact SM) (TSum TA (TProd

TO (TArrow TI TB))))) t2→

Rsto SM Sto’→

along react (Rsto SM) (R TI) (R TO) (R TA) (t,Sto).

Lemma tbind R : ∀ M T1 T2 t t’,

R (TMonadic M T1) t →

R (TArrow T1 (TMonadic M T2)) t’→

R (TMonadic M T2) (tbind T2 t t’).

Lemma msubst R : ∀ c env t T,

(mextend empty c) ` t : T →

instantiation c env→

157

R T (msubst env t).

Theorem normalization : ∀ (t:tm) (T :Ty),

{} ` t : T → halts t.

LemmaWT Con�gs RSto react : ∀ (t:tm) (Sto:store) (TI TO T :Ty) (SM:SMo),

(t, Sto) |> TMonadic (MReactT TI TO SM) T →

Rsto SM Sto.

LemmaWT Con�gs RSto nonreact : ∀ (t:tm) (Sto:store) (T : Ty) (SM:SMo),

(t, Sto) |> TMonadic (MNonReact SM) T →

Rsto SM Sto.

Theorem normalization mo : ∀ (t:tm) (Sto:store) (T :Ty) (M:Mo),

(t, Sto) |> TMonadic M T →

halts mo (t, Sto).

Theorem non reactive done mo : ∀ t Sto T SM,

(t,Sto) |> TMonadic (MNonReact SM) T →

∀ v Sto’,

done mo (v,Sto’)→

(t,Sto) ˜˜˜>* (v,Sto’)→

∃ v’,

v = treturn (MNonReact SM) v’.

B.11 E�ects

Inductive same where no write : Mo→ store→ store→ Prop :=

| SWNW Identity : same where no write (MNonReact MIdentity) nil nil

| SWNW ReactT :

∀ Sto Sto’ SM T T’,

same where no write (MNonReact SM) Sto Sto’→

158

same where no write (MReactT T T’ SM) Sto Sto’

| SWNW StateT None :

∀ Sto Sto’ SM s T,

same where no write (MNonReact SM) Sto Sto’→

same where no write (MNonReact (MStateT T E�None SM)) (s::Sto) (s::Sto’)

| SWNW StateT R :

∀ Sto Sto’ SM s T,

same where no write (MNonReact SM) Sto Sto’→

same where no write (MNonReact (MStateT T E�R SM)) (s::Sto) (s::Sto’)

| SWNW StateT W :

∀ Sto Sto’ SM s s’ T,

same where no write (MNonReact SM) Sto Sto’→

same where no write (MNonReact (MStateT T E�W SM)) (s::Sto) (s’::Sto’)

| SWNW StateT RW :

∀ Sto Sto’ SM s s’ T,

same where no write (MNonReact SM) Sto Sto’→

same where no write (MNonReact (MStateT T E�RW SM)) (s::Sto) (s’::Sto’).

Lemma same where no write re� : ∀ M Sto,

store matches mo Sto M →

same where no write M Sto Sto

with same where no write re� sm : ∀ SM Sto,

store matches mo Sto (MNonReact SM)→

same where no write (MNonReact SM)

Sto Sto.

Lemma same where no write trans : ∀ M Sto1 Sto2 Sto3,

same where no write M Sto1 Sto2→

same where no write M Sto2 Sto3→

159

same where no write M Sto1 Sto3

with same where no write trans sm : ∀ SM Sto1 Sto2 Sto3,

same where no write (MNonReact SM)

Sto1 Sto2→

same where no write (MNonReact SM)

Sto2 Sto3→

same where no write (MNonReact SM)

Sto1 Sto3.

Lemma same where no write less permissive :

∀ SM1 SM2 Sto Sto’,

smo less permissive SM1 SM2→

same where no write (MNonReact SM1) Sto Sto’→

same where no write (MNonReact SM2) Sto Sto’.

Theorem no forbidden updates :

∀ t Sto M T,

(t,Sto) |> TMonadic M T →

∀ t’ Sto’,

(t,Sto) ˜˜˜> (t’,Sto’)→

same where no write M Sto Sto’.

Theorem no forbidden updates star :

∀ t Sto M T,

(t,Sto) |> TMonadic M T →

∀ t’ Sto’,

(t,Sto) ˜˜˜>* (t’,Sto’)→

same where no write M Sto Sto’.

Inductive same where read : Mo→ store→ store→ Prop :=

| SWR Identity : same where read (MNonReact MIdentity) nil nil

160

| SWR ReactT :

∀ Sto Sto’ SM T T’,

same where read (MNonReact SM) Sto Sto’→

same where read (MReactT T T’ SM) Sto Sto’

| SWR StateT None :

∀ Sto Sto’ SM s s’ T,

same where read (MNonReact SM) Sto Sto’→

same where read (MNonReact (MStateT T E�None SM)) (s::Sto) (s’::Sto’)

| SWR StateT R :

∀ Sto Sto’ SM s T,

same where read (MNonReact SM) Sto Sto’→

same where read (MNonReact (MStateT T E�R SM)) (s::Sto) (s::Sto’)

| SWR StateT W :

∀ Sto Sto’ SM s s’ T,

same where read (MNonReact SM) Sto Sto’→

same where read (MNonReact (MStateT T E�W SM)) (s::Sto) (s’::Sto’)

| SWR StateT RW :

∀ Sto Sto’ SM s T,

same where read (MNonReact SM) Sto Sto’→

same where read (MNonReact (MStateT T E�RW SM)) (s::Sto) (s::Sto’).

Inductive write consistent : (store×store)→ (store×store)→ Prop :=

|WC Identity : write consistent (nil,nil) (nil,nil)

|WC Unchanged : ∀ Sto1 Sto2 Sto1’ Sto2’ s1 s2,

write consistent (Sto1,Sto2) (Sto1’,Sto2’)→

write consistent (s1::Sto1,s2::Sto2) (s1::Sto1’,s2::Sto2’)

|WC Changed : ∀ Sto1 Sto2 Sto1’ Sto2’ s1 s2 s,

write consistent (Sto1,Sto2) (Sto1’,Sto2’)→

161

write consistent (s1::Sto1,s2::Sto2) (s::Sto1’,s::Sto2’).

Lemma write consistent same length re� :

∀ Sto1 Sto2,

same length Sto1 Sto2→

write consistent (Sto1,Sto2) (Sto1,Sto2).

Lemma same monad same length :

∀ M Sto1 Sto2,

store matches mo Sto1 M →

store matches mo Sto2 M →

same length Sto1 Sto2

with same monad same length sm :

∀ SM Sto1 Sto2,

store matches mo Sto1 (MNonReact SM)→

store matches mo Sto2 (MNonReact SM)→

same length Sto1 Sto2.

Lemma same where read same length :

∀ M Sto1 Sto2,

same where read M Sto1 Sto2→

same length Sto1 Sto2

with same where read same length sm :

∀ SM Sto1 Sto2,

same where read (MNonReact SM) Sto1 Sto2→

same length Sto1 Sto2.

Lemma same where read tail :

∀ T E SM s1 Sto1 s2 Sto2,

same where read (MNonReact (MStateT T E SM)) (s1::Sto1) (s2::Sto2)→

162

same where read (MNonReact SM) Sto1 Sto2.

Lemma same where read head :

∀ T E SM s1 Sto1 s2 Sto2,

E� lt E�R E→

same where read (MNonReact (MStateT T E SM)) (s1::Sto1) (s2::Sto2)→

s1 = s2.

Lemma same where read less permissive :

∀ SM1 SM2,

smo less permissive SM1 SM2→

∀ Sto1 Sto2,

same where read (MNonReact SM2) Sto1 Sto2→

same where read (MNonReact SM1) Sto1 Sto2.

Theorem no forbidden reads : ∀ t Sto1 Sto2 T M,

(t,Sto1) |> TMonadic M T →

(t,Sto2) |> TMonadic M T →

same where read M Sto1 Sto2→

∀ t1’ t2’ Sto1’ Sto2’,

(t,Sto1) ˜˜˜> (t1’,Sto1’)→

(t,Sto2) ˜˜˜> (t2’,Sto2’)→

t1’ = t2’ ∧ write consistent (Sto1,Sto2) (Sto1’,Sto2’).

Read Only Predicate:

Inductive read only : SMo→ Prop :=

| Ronly ST : ∀ T E SM,

E� lt E E�R→

read only SM →

read only (MStateT T E SM)

163

| Ronly Id : read only MIdentity.

Theorem read only e�’ : ∀ T E SM,

read only (MStateT T E SM)→

E� lt E E�R.

Theorem read only smo : ∀ T E SM,

read only (MStateT T E SM)→

read only SM.

Theorem read only smo lp’ : ∀ SM1 SM2,

smo less permissive SM1 SM2→

read only SM2→

read only SM1.

Theorem read only smo lp ST : ∀ T E SM1 SM2,

smo less permissive SM1 SM2→

read only (MStateT T E SM2)→

read only (MStateT T E SM1).

Theorem read only elim w : ∀ T SM, read only (MStateT T E�W SM)→ False.

Theorem read only elim rw : ∀ T SM, read only (MStateT T E�RW SM)→ False.

Theorem read only elim base:

∀ SM T E,

¬ read only SM →

¬ read only (MStateT T E SM).

Theorem read only st dec : ∀ T E SM,

read only (MStateT T E SM) ∨ ¬ read only (MStateT T E SM).

Theorem read only dec : ∀ SM, read only SM ∨ ¬ read only SM.

Lemma same where no write read only eq :

164

∀ SM,

read only SM →

∀ Sto Sto’,

same where no write (MNonReact SM) Sto Sto’→ Sto = Sto’.

Theorem step read only no change : ∀ SM,

read only SM →

∀ t Sto t’ Sto’ T,

(t,Sto) ˜˜˜> (t’,Sto’)→

(t,Sto) |> TMonadic (MNonReact SM) T →

Sto = Sto’.

Theorem step read only no change star : ∀ SM,

read only SM →

∀ t Sto t’ Sto’ T,

(t,Sto) ˜˜˜>* (t’,Sto’)→

(t,Sto) |> TMonadic (MNonReact SM) T →

Sto = Sto’.

B.12 Monad Laws

Theorem left unit : ∀ (M : Mo) (T1 T2 : Ty) (t1 t2 : tm),

\empty |– t1 \in T1→

\empty |– t2 \in TArrow T1 (TMonadic M T2)→

(tapp t2 t1) =[TMonadic M T2]= (treturn M t1 »=[T2] t2).

Lemma right unit : ∀ (t : tm) (SM : SMo) (T : Ty) (x : id),

\empty |– t \in TMonadic (MNonReact SM) T →

t =[(TMonadic (MNonReact SM) T)]= (t »=[T] \(x:T)(treturn (MNonReact SM) (tvar

x))).

165

Lemma associativity of bind : ∀ (SM : SMo) (T1 T2 T3 : Ty) (f g h : tm) (x : id),

\empty |– f \in TMonadic (MNonReact SM) T1→

\empty |– g \in TArrow T1 (TMonadic (MNonReact SM) T2)→

\empty |– h \in TArrow T2 (TMonadic (MNonReact SM) T3)→

((f »=[T2] g) »=[T3] h) =[TMonadic (MNonReact SM) T3]= (f »=[T3] (\(x:T1) (tapp g

(tvar x) »=[T3] h))).

Reactive Monad Axioms

Axiom RE right unit : ∀ (t : tm) (SM : SMo) (TI TO T : Ty) (x : id),

\empty |– t \in TMonadic (MReactT TI TO SM) T →

t =[(TMonadic (MReactT TI TO SM) T)]= (t »=[T] \(x:T)(treturn (MReactT TI TO

SM) (tvar x))).

Axiom RE associativity of bind : ∀ (SM : SMo) (TI TO T1 T2 T3 : Ty) (f g h : tm) (x : id),

\empty |– f \in TMonadic (MReactT TI TO SM) T1→

\empty |– g \in TArrow T1 (TMonadic (MReactT TI TO SM) T2)→

\empty |– h \in TArrow T2 (TMonadic (MReactT TI TO SM) T3)→

((f »=[T2] g) »=[T3] h) =[TMonadic (MReactT TI TO SM) T3]= (f »=[T3] (\(x:T1) (tapp

g (tvar x) »=[T3] h))).

B.12.1 Monad Transformer Laws

Lemma lift return nonreact : ∀ t T TS E SM,

\empty |– t \in T →

(tlift (MNonReact (MStateT TS E SM)) (treturn (MNonReact SM) t))

=[TMonadic (MNonReact (MStateT TS E SM)) T]=

(treturn (MNonReact (MStateT TS E SM)) t).

Lemma lift return react : ∀ t SM T TI TO,

\empty |– t \in T →

166

(tlift (MReactT TI TO SM) (treturn (MNonReact SM) t)) =[TMonadic (MReactT TI TO

SM) T]= (treturn (MReactT TI TO SM) t).

Lemma lift bind nonreact : ∀ x t1 t2 T1 T2 TS E SM,

\empty |– t1 \in TMonadic (MNonReact SM) T1→

\empty |– t2 \in TArrow T1 (TMonadic (MNonReact SM) T2)→

(tlift (MNonReact (MStateT TS E SM)) (t1 »=[T2] t2))

=[TMonadic (MNonReact (MStateT TS E SM)) T2]=

((tlift (MNonReact (MStateT TS E SM)) t1) »=[T2] \(x:T1) (tlift (MNonReact

(MStateT TS E SM)) (tapp t2 (tvar x)))).

Lemma lift bind react : ∀ x t1 t2 T1 T2 TI TO SM,

\empty |– t1 \in TMonadic (MNonReact SM) T1→

\empty |– t2 \in TArrow T1 (TMonadic (MNonReact SM) T2)→

(tlift (MReactT TI TO SM) (t1 »=[T2] t2))

=[TMonadic (MReactT TI TO SM) T2]=

((tlift (MReactT TI TO SM) t1) »=[T2] \(x:T1) (tlift (MReactT TI TO SM) (tapp t2

(tvar x)))).

B.12.2 Null Bind

Notation "t1 »[T1 , T2] t2" := (t1 »=[T2] \(6:T1) t2)

(at level 40, T at level 99, T’ at level 99, format

"’[hv ’ t1 »[T1 , T2] t2 ’]’").

Theorem generic null bind : ∀ t t’ M T T’,

\empty |– t \in TMonadic M T →

\empty |– t’ \in TMonadic M T’→

∀ b : id,

(t »=[T’] (\(b:T) t’)) =[TMonadic M T’]= (t »[T,T’] t’).

167

B.12.3 Stateful Computations

Theorem ST put put : ∀ s s’ E SM T,

E� lt E�W E→

\empty |– s \in T →

\empty |– s’ \in T →

((tput (MStateT T E SM) s) »[TNil,TNil] (tput (MStateT T E

SM) s’))

=[TMonadic (MNonReact (MStateT T E SM)) TNil]= tput

(MStateT T E SM) s’.

Theorem ST put get : ∀ s T SM,

\empty |– s \in T →

(tput (MStateT T E�RW SM) s) »[TNil,T] (tget (MStateT T

E�RW SM))

=[TMonadic (MNonReact (MStateT T E�RW SM)) T]=

(tput (MStateT T E�RW SM) s) »[TNil,T] (treturn (MNon-

React (MStateT T E�RW SM)) s).

Theorem ST get get : ∀ T E SM x y z,

E� lt E�R E→

tget (MStateT T E SM) »=[TProd T T] (\(x:T) (tget (MStateT T E SM) »=[TProd

T T] (\(y:T) (treturn (MNonReact (MStateT T E SM)) (tpair (tvar x) (tvar y))))))

=[TMonadic (MNonReact (MStateT T E SM)) (TProd T T)]=

tget (MStateT T E SM) »=[TProd T T] (\(z:T) (treturn (MNonReact (MStateT T E

SM)) (tpair (tvar z) (tvar z)))).

Theorem elevate absorb : ∀ t t’ SM SM’ T T’,

smo less permissive SM SM’→

\empty |– t \in TMonadic (MNonReact SM) T →

168

\empty |– t’ \in TMonadic (MNonReact SM’) T’→

read only SM’→

((televate SM’ t »[T,T’] t’) =[TMonadic (MNonReact SM’) T’]= t’).

169

VITA

Thomas Reynolds was born in Baton Rouge, Louisiana on October 16
th

, 1982. He

received his B.S. in Political Science from Illinois State University in May of 2007, an M.A.

in Philosophy from Texas Tech University in May of 2010 and an M.A. in Philosophy

from the University of Missouri in December of 2013. He completed his PhD in Computer

Science at the University of Missouri in December of 2019.

In September of 2011, Thomas married Jenna Marie Quick. Their daughter, Elliette

Quinn Reynolds, was born July 15
th

, 2017. They are expecting a second child, Everett

Boone Reynolds, to be born in January of 2020. Thomas and his family currently reside

in Mount Vernon, Illinois.

170

	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	CHAPTER
	Introduction
	Overview

	The Bounded Time Calculus
	Introduction
	Background
	BTC: The Bounded Time Calculus
	Syntax
	Type System
	Small-Step Operational Semantics

	Metatheory
	Type Safety
	Strong Normalization

	Conclusions

	The ReWire Core Calculus
	Abstract
	Introduction
	Background: ReWire's Programming Model
	Background: Monads
	Background: Monad Transformers
	Defining Devices in ReWire
	Background: Goguen-Meseguer Non-interference
	Marrying Effects & Layered State Monads

	RWC: The ReWire Core Calculus
	Syntax
	Type System
	Small-Step Operational Semantics

	Metatheory
	Type Safety
	Canonical Forms
	Strong Normalization
	Soundness of Effect Labels

	Type-directed Equational Logic for RWC
	Conclusions

	Summary and concluding remarks
	BIBLIOGRAPHY
	APPENDIX
	BTC COQ Code
	Syntax
	Types
	Terms
	Values

	Typing Judgments
	For terms

	Substitution
	Reduction
	Lambda-calculus reduction relation
	Congruence Lemmmas
	Inversion Principles

	Reducibility

	RWC COQ Code
	Syntax
	Monads and Types
	Terms and Configurations

	Lambda Calculus Values
	Done Configurations

	Typing Judgments
	For terms
	For configurations

	Canonical Forms
	Substitution
	Substitution
	Reduction
	Lambda-calculus and monadic reduction relations
	Induction Principles

	Progress
	Preservation
	Strong Normalization
	Effects
	Monad Laws
	Monad Transformer Laws
	Null Bind
	Stateful Computations

	VITA

