Downloaded from orbit.dtu.dk on: Dec 20, 2017

Technical University of Denmark

=
—
—

i

Formal methods for design and simulation of embedded systems

Jakobsen, Mikkel Koefoed; Madsen, Jan; Hansen, Michael Reichhardt

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Jakobsen, M. K., Madsen, J., & Hansen, M. R. (2013). Formal methods for design and simulation of embedded
systems. Kgs. Lyngby: Technical University of Denmark (DTU). (PHD-2013; No. 289).

DTU Library
Technical Information Center of Denmark

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

http://orbit.dtu.dk/en/publications/formal-methods-for-design-and-simulation-of-embedded-systems(b040ae62-7f01-4a06-8804-ca881a0e2d5c).html

Formal methods for design and
simulation of embedded systems

Mikkel Koefoed Jakobsen

Kongens Lyngby 2012
IMM-PHD-2012-289

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax 445 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-PHD: ISSN 0909-3192

Summary

Cyper physical systems (CPSs) are present in many variants in our daily life.
The complexity of developing a CPS is quickly increasing and the interaction
between different CPSs is increasingly important. The interaction of the systems
is becomming more and more fluent and seamless.

This thesis presents the development of a formal systems modelling (ForSyDe)
framework for modelling CPSs. The formalism of the framework makes com-
puter aided design (CAD) a possibility for developing CPSs. The framework
consists of four models of computation (MoCs): synchronous (SY), synchronous
data flow (SDF), discrete event (DE), and continuous time (CT).

Usage of the framework is demonstrated with two use cases. A company use
case featuring a hearing aid calibration device and the distributed energy har-
vesting aware routing (DEHAR) algorithm for wireless sensor networks (WSNs).
These two use cases illustrate different design challenges. With the ForSyDe
framework, the use cases are expressed as homogeneous and heterogeneous mod-
els.

The company use case illustrates that the ForSyDe framework handles sys-
tems with well defined interactions very well. The WSN use case illustrates
that networked systems with complex interaction are more challenging to ex-
press naturally, yet the ForSyDe framework is able to express such systems.

Resumé

Cyper fysiske systemer (CPS’er) er til stede i mange former i vores daglige
liv. Kompleksiteten i udviklingen af et CPS er hurtigt stigende, og samspillet
mellem forskellige CPS’er bliver stadig vigtigere. Interaktionen af systemerne
bliver mere og mere flydende og usynlig.

Denne athandling praesenterer udviklingen af et formelt modelleringsvaerktgj
af systemer (ForSyDe) til modellering af CPS’er. De formelle aspekter af veerktgjet
gor Computer Aided Design (CAD) lettere at udnytte til udvikling af CPS’er.
Veerktgjet bestar af fire beregningsmodeller (MoC’er): synkron (SY), synkron
datastrgm (SDF), diskret begivenhed (DE), og kontinuert tid (CT).

Brug af vaerktgjet eftervises med to eksempler. Et eksempel fra en virk-
somhed byder pa en hgreapparat kalibreringsenhed og den distribuerede algo-
ritme til rutning af beskeder ved hensyntagen til energiopsampling (DEHAR)
til tradlgse sensor netveerk (WSN’er). Disse to eksempler illustrerer forskellige
design udfordringer. Med ForSyDe veerktgjet, er de eksempler udtrykt som
homogene og heterogene modeller.

Eksemplet fra virksomheden illustrerer, at ForSyDe veaerktgjet handterer sys-
temer med veldefinerede interaktioner meget godt. WSN eksemplet illustrerer,
at netveerkssystemer med komplekse samspil er mere udfordrende at udtrykke
pa en naturlig made, men at ForSyDe veerktgjet trods alt er i stand til at
udtrykke sadanne systemer.

Preface

This thesis was prepared at Informatics Mathematical Modelling, the Technical
University of Denmark in partial fulfillment of the requirements for acquiring
the Ph.D. degree in engineering.

The thesis deals with different aspects of mathematical modelling of systems.
These aspects cover formal modelling, static analysis, and models of computa-
tion.

The thesis consists of a report on monograph form. During the period 2009—
2012 a collection of 5 research papers were written on this subject, and elsewhere
published.

Lyngby, December 2012

Mikkel Koefoed Jakobsen

Papers included in the
thesis

Seyed Hosein Attarzadeh Niaki, Mikkel Koefoed Jakobsen, Tero Sulonen,
and Ingo Sander. Formal Heterogeneous System Modeling with SystemC
Forum on specification € Design Languages (FDL 2012), 2012

Mikkel Koefoed Jakobsen, Jan Madsen, Seyed Hosein Attarzadeh Niaki,
Ingo Sander, Jan Hansen. System level modelling with open source tools
Embedded World Conference, 2012

Michael R. Hansen, Mikkel Koefoed Jakobsen, Jan Madsen. Modelling of
Energy Harvesting Aware Wireless Sensor Networks Sustainable Energy
Harvesting Technologies - Past, Present and Future, 2011

Mikkel Koefoed Jakobsen, Jan Madsen, and Michael R. Hansen. DEHAR:
A distributed energy harvesting aware routing algorithm for ad-hoc multi-
hop wireless sensor networks. In World of Wireless Mobile and Multimedia
Networks (WoWMoM), 2010

Mikkel Koefoed Jakobsen, Jan Madsen, Michael R. Hansen Formal Ver-
ification of an energy aware routing algorithm 21st Nordic Workshop on
Programming Theory (NWPT09), 2009

Acknowledgements

I would like to begin by thaniking my supervisors associate professor Michael
Reichhardt Hansen and professor Jan Madsen for their professional supervi-
sion. They have provided me with more points of view on my research which
broadened my research and results. I would also like to thank associate professor
Ingo Sander for his invaluable help on visiting the Royal Institute of Technology
(KTH) as part of my research.

I thank all my colleges at the embedded systems engineering section at DTU
for their moral support and creating an inspiring workplace.

I would also like to thank the SYSMODEL project (ARTEMIS JU 100035)
and the IDEA4CPS project (granted by the Danish Research Foundation for
Basic Research) for partially funding my Ph.D. study.

Finally, I would like to thank my family and especially my wife and son for
their understanding and support during my last and intensive monts of writing
this thesis.

Glossary

ADC analogue to digital converter. 76, 97

AMS analogue and mixed signal. 37-39

CAD computer aided design. i, 2, 139
CPS cyper physical system. i, 1, 139

CT continuous time. i, 4, 31, 39, 41, 42, 45, 49, 51, 70, 75-77, 90-92, 94-97,
140

CTL computation tree logic. 59

DAC digital to analogue converter. 76, 97
DAE differential algebraic equation. 38
DD directed diffusion. 11, 19, 21-25, 27-29, 114, 125, 131-138

DE discrete event. i, 4, 31, 41, 42, 45, 51, 70, 75, 77, 85, 89-92, 94, 95, 97, 140,
142

DEHAR distributed energy harvesting aware routing. i, 19, 21-28, 53, 54, 56,
62, 63, 114, 125, 128, 129, 131-138, 140

FFT fast Fourier transformation. 104, 105

ForSyDe formal system design. i, 4, 31, 42-47, 49-51, 65, 68, 70-72, 75, 77-82,
84, 89, 97-99, 101, 102, 109, 111, 139-142

xii

MoC model of computation. i, 2—4, 31, 33, 34, 39-42, 44-47, 49, 51, 6568,
70, 72-79, 82-87, 90-98, 104, 106, 111, 140-142

REM real ear measurement. 102

SDF synchronous data flow. i, 2, 4, 31, 34, 36-38, 41, 42, 45, 47, 51, 70, 75,
77, 82-84, 87, 92-94, 97, 104, 106, 107, 140

SFF system functionality framework. 100, 101, 106

SME small and medium enterprise. 99, 100

SoC system-on-chip. 37

SY synchronous. i, 31, 45-47, 51, 68, 70, 74-79, 82-85, 87, 92-95, 97, 140, 142

SYSMODEL system level modelling environment for SMEs. ix, 31, 47, 51,
77, 100, 141

T-SDF timed synchronous data flow. 38, 39

WSN wireless sensor network. i, 2-9, 12, 31, 51, 53-55, 60, 63, 65-67, 111-115,
139-141

Contents

Summary

Resumé

Preface

Papers included in the thesis

Acknowledgements

1

2

Introduction

1.1 The goal of the thesis
1.2 Contributions of the thesis
1.3 Structure of the thesis

Energy harvesting wireless sensor network

2.1 Imtroduction

2.2 Related work L

2.3 Wireless sensor network model
2.3.1 Environment oL
2.3.2 Networko
2.3.3 Energymodel oo

2.4 Energy harvesting aware routing algorithm
2.4.1 Shortest path L
2.4.2 Energy information encoding
2.4.3 Algorithmo

2.5 Results. o
2.5.1 Comparing DEHAR with DD

iii

vii

ix

xiv CONTENTS
2.6 SUMIMATY . . .« v v et e e e e 28
3 Related frameworks 31
3.1 SystemC 31
3.1.1 Transaction level modelling 32
3.1.2 Heterogeneous SystemC 33
3.1.3 ARTS 34
3.1.4 SystemC kernel extensions 36
3.1.5 SystemC-AMS 37
3.1.6 OSSSand OSSSH+R 39

3.2 SystemVerilog L o 39
3.3 Ptolemy 40
3.4 Generic Modeling Environment 42
3.5 UML/Marte o v vt i 43
3.6 Modelica. e 43
3.7 MATLAB/Simulink 44
3.8 The ForSyDe framework 44
3.8.1 Systemmodel oL 45
3.8.2 Process constructorso 46
3.8.3 Implementation of the ForSyDe library 47

3.9 The UPPAAL framework 47
310 Summary . o.o. oL e e e 49
4 Formal analysis of DEHAR in UPPAAL 53
4.1 Introduction 53
4.1.1 DEHAR algorithm 54
4.1.2 Verification goals 54

4.2 Network model oo 95
4.2.1 Node template oL 56
4.2.2 Base station template o000 58
4.2.3 Environment template o000 L 58

4.3 Verification 59
4.3.1 Network structure 60
4.3.2 Battery charge and routing performance 61
4.3.3 Alternateroutes L. 62
4.3.4 Energy change leads to optimal route 62

4.4 SUmMmMAary . . .o ..o e e e 63

CONTENTS XV
5 Theory of systems modelling 65
5.1 Basicconcepts 66
5.2 Modelling with ForSyDe 68
5.2.1 The original ForSyDe 68

5.2.2 Generic definition of models of computation 70

5.2.3 Domains. Lo 74

5.2.4 Domain interfaces 75

5.3 Models of computation L. 7
5.3.1 Synchronous MoC 7

5.3.2 Synchronous data flow MoC 82

5.3.3 Discrete event MoC L. 85

5.3.4 Continuous time MoC 90

5.4 Structured domain interfaces L. 92
5.4.1 Domain interfaces for the untimed MoCs 92

5.4.2 Domain interfaces for the timed MoCs 94

5.5 Summary ... oL ... e 97

6 Static systems 99
6.1 Introduction. o 99
6.2 Industrycase 102
6.2.1 Functional specification 102

6.2.2 Non-functional specification 104

6.3 Application model oL 104
6.3.1 ForSyDemodel L. 104

6.3.2 Simulation 105

6.3.3 Verification oo 105

6.4 Platform modelo o 106
6.5 Integrated system model L. 107
6.5.1 Simulation 109

6.6 Summaryo e 109

7 Dynamic systems 111
7.1 Imtroduction. 111
7.2 A generic modelling frameworko 115
7.2.1 The components of anode 116

7.2.2 Theidentity of anode 116

7.2.3 Thestateofanode 116

7.2.4 The computation costs 118

7.2.5 Inputeventsofanode 119

XVi CONTENTS

7.2.6 Input messages 120

7.2.7 Output messages and communication 121

7.2.8 The cost of sending messages 121

7.2.9 An operational model of anode 121

7.3 Instantiating the modelling framework 125
7.3.1 A definition of the states 125

7.3.2 Directed diffusion — another instantiation 131

7.4 Results from simulation of the model 132
7.4.1 Energy awareness makes a difference 133

7.4.2 Energy awareness consumes and stores more energy . . . 134

7.4.3 Increasing the rate of observations costs 135

7.5 Summary 137

8 Conclusion and perspectives 139
81 Summary 139
8.2 Perspectives L 141

A ForSyDe-Haskell implementation 143
A.1 Synchronous model of computation 143
A.2 Synchronous data flow model of computation 149
A.3 Discrete event model of computation 154
A.4 Continuous time model of computation 160

A5 UPPAAL modelcode 166

Chapter 1

Introduction

CPSs are systems which integrate computational and physical elements. They
are used in many places and products today. Many of these CPSs are also in
the category of embedded systems. Designing CPSs is often not an easy task.

A CPS often has relatively strict non-functional requirements. Amongst
others it can be a need for: reliability, safety, security, real time, power con-
sumption, communication bandwidth, etc. The design space of a system may
be more or less constrained by the individual non-functional requirements.

Seemingly simple systems in the design phase can quickly become complex
systems when implemented. A simple functionality of the system can be made
complex by e.g. real time requirements and energy limitations. As an example;
a platform with a single core processor might not be able to deliver the com-
putational power within the power budget, forcing the design of a multi core
system.

An example of a simple system with well known and limited interaction
with other systems is a hearing aid calibration device. This example will be
used to demonstrate how a simple functionality is complex to implement due to
conflicting non-functional requirements of low power and real time response. A
change of the design process to a formal modelling approach has the potential
to: increase the change of success, shorten the time to market, reduce price, etc.
for companies. Such a system is categorised as a static system because of its
simple, self-contained functionality. A static system can change its state over
time, but the number of possible states is constant.

The design task only becomes more difficult when multiple systems depend
on each other to perform a task. An example of a network of systems is a system

2 Introduction

which consists of a varying number of sub-systems (in this case the sub-systems
are static systems). Adding a sub-system will increase the state-space of the
network of systems. Hence such networks of systems are categorised as dynamic
systems.

The sub-systems of dynamic systems can for example be specialised static
systems responsible for a subset of the functionality. Each of such static sys-
tems are often autonomous and can work in many different networks, which
makes up similar dynamic systems. The static systems may be specialised to
e.g. monitor certain parameters of the environment. Such parameters could:
monitor structural integrity of buildings, monitor the indoor environment (light,
heating, etc.), detect forest fires, and many other things.

An example of a network of systems is a WSN. WSNs are autonomous net-
works of cheap, self-sustained nodes that can collect information about the
environment (i.e. the physical world). The common features of WSNs are;
they must be able to collect, process, and communicate information. Often it is
also required that they are cheap and service free in their lifetime (due to e.g.
inaccessibility or shear numbers). The service free requirement implies that bat-
teries cannot be replaced, size, price, environmental, and other constrains may
also limit the energy capacity of batteries. Therefore it can be advantageous for
nodes to harvest their own energy from the environment.

Data may need to travel through several nodes in a WSN in order to reach
its destination. This requires a stable network, which implies that the energy
reserves of nodes should not be depleted by such communication. Therefore in-
telligent routing data is necessary. Here intelligent routing represents a balance
between the power consumed by the intelligent and the amount and distribution
of power harvested and stored.

To make CAD choices possible, the design must be modelled in such a way
that a computer can reason (calculate) about the model. Formal modelling can
provide such means. Formal modelling is based on MoCs.

A MoC is a formal language definition for describing computation. Some
MoCs also support various forms of formal analysis of models described herein.
Another important parameter of a MoC is how expressive it is, i.e. the variety
of models that can be described with it. MoCs that support formal analysis
tend to be less expressive, as is the case for e.g. the SDF MoC. It can only
support streaming models and no explicit timing. A model expressed in only
one MoC is called a homogeneous model.

Heterogeneous models can make it possible to combine different MoCs that
provide the best expressiveness for different parts of the system that is modelled.
Thus the best expressiveness and analysability is obtained for each part of the

1.1 The goal of the thesis 3

system, and the entire system can be simulated. To formalise the heterogeneous
models, domains and domain interfaces must be defined. A domain can contain
exactly one MoC and a domain interface provide a formal translation of com-
munication between two domains. It is worth to note that two domains are not
restricted to contain different MoCs.

1.1 The goal of the thesis

The goal of this thesis is to build a framework that supports modelling and
analysis of dynamic systems. A use case of a WSN is used to illustrate modelling
and analysis of a dynamic system. In this use case the WSN is a multi-hop mesh
network of nodes. The nodes are to measure the environment and relay the
relevant data to a base station. For various reasons (e.g. size, price, and zero
maintenance) the nodes are required to harvest the energy needed for operation
from the environment. The nodes also have a limited storage for energy.

In such a WSN it is necessary to know when and where to consume power.
FEach node can only do little on its own to change its power consumption if data
transmissions should not be lost. On the other hand, if the nodes cooperate,
they may be able to route data to the base station such that energy consumption
is distributed to nodes that have enough energy.

Such a routing algorithm can be validated by simulation. But validation
does not guarantee correct functionality, it can only make it likely to be correct.
A verification of correctness can be able to guarantee the functionality. How-
ever, verification of functionality is a challenge for dynamic systems under the
constraints of the non-functional requirements.

To make it easier to perform analysis of dynamic systems, a dynamic sys-
tem is divided into static systems. Each unique static system is then analysed
separately. In the case of the WSN there are two static systems, the base sta-
tion and the nodes. These static systems are, however, highly dependent on
communication with the network to define their operation.

To illustrate how a static system can be modelled and analysed a use case of
a hearing aid calibration device is presented. This use case has a self contained
behaviour, as opposed to the nodes of a WSN where their behaviour depends
greatly on network interaction. In order to analyse a static system (or parts of
it), it must be modelled in a MoC which supports the required type of analysis.

4 Introduction

1.2 Contributions of the thesis

Contributions of this thesis includes the following. A dynamic energy harvesting
aware routing algorithm for multi-hop WSN. Integration of three of the four
MoCs SDF, DE, and CT in the Haskell [2] version of the framework ForSyDe.
Optimisations of the DE MoC. Illustrating how to enable early design analysis
of systems. Generic framework for modelling energy harvesting aware WSN.

1.3 Structure of the thesis

Chapter 2 Energy harvesting wireless sensor network. This chapter introduces
WSN, energy harvesting, and routing in multi-hop networks. A routing
algorithm for a multi-hop WSN is designed to take advantage of energy
harvesting. The algorithm is validated by simulation.

Chapter 3 Related frameworks. This chapter describes related modelling frame-
works.

Chapter 4 Analysis in UPPAALL. Presents the WSN use case modelled in the
UPPAAL framework. Describes formal verification of the routing algo-
rithm for multi-hop WSN.

Chapter 5 Theory of systems modelling. This chapter describes the theory of
the ForSyDe framework, the individual MoCs and modelling techniques
of homogeneous and heterogeneous systems.

Chapter 6 Static systems. Through the description of a company use case,
modelling and analysis of static systems in ForSyDe is shown. The di-
vision of the system into application model and platform model and the
integration of these two models is highlighted. The seemingly simple sys-
tem of the use case did present challenges for the company that could have
been avoided with early design models.

Chapter 7 Dynamic systems. Revisit the WSN use case and present a frame-
work to better express the dynamic behaviour of the system.

Chapter 8 Perspectives and conclusion.

Chapter 2

Energy harvesting wireless
sensor network

One of the key design goals in wireless sensor networks (WSNs) is long lasting
or even continuous operation. Continuous operation is made possible through
energy harvesting. Keeping the network operational imposes a demand to pre-
vent network segmentation and power loss in nodes. It is therefore important
that the best energy-wise route is found for each data transfer from a source node
to the sink node. A new adaptive and distributed routing algorithm for finding
energy optimised routes in a wireless sensor network with energy harvesting is
presented in this chapter. The algorithm finds an energy efficient route from
each source node to a single sink node, taking into account the current energy
status of the network. By simulation, the algorithm is shown to be able to adapt
to changes in harvested and stored energy. Simulations show that continuous
operation s possible.

2.1 Introduction

Energy efficiency is a major concern in WSNs. As sensor nodes are typically
battery powered, the energy usages has to be carefully managed in order to
prolong the lifetime of the system. A sensor node in a WSN has two major
functions 1) to collect and produce data from its physical environment and 2)
to route data from it self and neighbouring nodes towards a base station which
collects all data produced by the WSN for further processing. We assume an

6 Energy harvesting wireless sensor network

ad-hoc, multi-hop network which is the common approach for large network
deployments, where we cannot afford the energy required to transmit data di-
rectly from the node to the base station. In this chapter we are interested in
energy-aware routing in such networks.

Energy efficient and energy-aware routing algorithms have been extensively
studied. A common characteristic of most of these is the assumption of a battery
which is gradually drained. Hence, the challenge is to find statistical or dynamic
routing strategies which can assure the longest lifetime of the battery in any node
of the network. By applying low-power hardware and software techniques for
the design of the nodes, we can lower the rate at which the battery is depleted,
and by reducing the duty-cycle, i.e., the time intervals at which the node is
active, we can stretch the lifetime of the battery. As nodes close to the base
station will be involved in more routing than those far away, a straightforward
routing approach will quickly drain the battery of these nodes, effectively cutting
of the rest of the network from the base station. Hence, energy-aware routing
algorithms need to take the energy level of the nodes into account, i.e., finding
energy optimised routes, where nodes with too little energy are avoided.

In order to further improve the lifetime and performance of WSN, there
has been an increasing interest in energy harvesting, i.e., having each node to
harvest energy from the environment. The environmental energy is a continu-
ous and sustainable supply which, if appropriately used, can provide WSNs to
last forever. Although attractive, energy harvesting is a very unreliable energy
source which makes it challenging to use. A major challenge is to find where
(and when) there is available energy to be harvested, and this should be done
in an energy efficient manner. We suggest to supply the battery of the node
with a solar panel as the energy harvester. This will allow each node to regain
energy (i.e., charge the battery) while the node is inactive, and to use ”free”
energy when it is active.

In this chapter, we present an adaptive routing algorithm which is able to find
and maintain energy optimised routes from any source node to a base station
(called the sink or destination node in the following). By energy optimised routes
we mean routes that avoid nodes with too little energy, effectively allowing these
nodes to regain their energy level through energy harvesting. The proposed al-
gorithm is adaptable and distributed, i.e., each node runs autonomously, taking
routing decisions based solely on available energy on its neighbouring nodes. As
each node makes local routing decisions, a route may change while the data is
being routed. To assure a net energy gain, it is important to also account for
the energy used by the routing algorithm itself.

In our setup we simulate the uncertainties of energy harvesting through

2.2 Related work 7

global parameters, such as time of day, and local parameters, such as amount of
shadow for a given node position. This emulation of the environment is observed
by the proposed routing algorithm and used to direct network traffic such that
nodes in areas with lower energy are kept alive.

The chapter is organised as follows:

Section 2.2 The related work is presented.

Section 2.3 Presents the WSN and energy models used to develop and simu-
late the proposed routing algorithm.

Section 2.4 Describes the algorithm in detail.
Section 2.5 The setup and results of simulations are presented and discussed.

Section 2.6 Finally the conclusion is presented.

2.2 Related work

Many different kinds of energy aware algorithms exist today. They can be
divided into three classes: energy efficient, residual energy aware, and energy
harvesting aware algorithms.

Energy efficient algorithms [16,22,71] aim at increasing the lifetime of the
network as a whole without measuring residual energy in the battery. They will
for example distribute the routed packages to several neighbours to minimise
the energy consumption of the nodes on the shortest path.

The energy aware algorithms [22, 24,45 51,66,67,74,76] are measuring the
residual battery energy and are extending the energy efficient algorithms to take
into account the actual available energy in the routing. These algorithms make
the assumption that the residual battery energy is monotonically decreasing,
and can therefore not accommodate for energy harvesting.

The energy harvesting aware algorithms [28,38,44,72,73,75] do not make the
assumption of monotonically decreasing residual battery energy. Furthermore,
they may estimate the future harvested energy to improve performance.

Surveys of routing algorithms [10, 11,50] do not yet cover energy harvest-
ing routing algorithms. Existing techniques for managing harvested energy are
mostly dealing with energy management at the node level [9, 18, 34,35, 55,68].
Typically these techniques can not make network wide decisions and the energy
use of routing is not managed.

8 Energy harvesting wireless sensor network

Harvested energy can be managed by local techniques [9, 18,34, 35,55, 68]
(e.g. scheduling), these techniques can, however, typically not make network
wide decisions and the impact of routing is not managed.

Most research into energy harvesting aware routing algorithms seems to be
in clustering algorithms, these are however not in the same family as multi-hop
algorithms.

An energy harvesting aware multi-hop routing algorithm is the REAR algo-
rithm [24]. It is based on finding two routes from a source to a sink, a primary
and a backup route. The primary route reserves an amount of energy in each
node along the path and the backup route is selected to be as disjunct from the
primary route as possible. The backup route does not reserve energy along its
path. If the primary route is broken (e.g. due to power loss at some node) the
backup route is used until a new primary and backup route has been build from
scratch by the algorithm.

Another algorithm uses measurements of harvested energy more directly in
its routing [73]. It does this in a simple way, by detecting whether a node is
harvesting or not. It does not take stored energy or the amount of harvested
energy into account.

A mathematical framework for energy aware routing for multi-hop WSNs,
which can cope with renewable energy sources routing, is established in [11]. An
algorithm based on this framework is presented, which is shown to be asymptot-
ically optimal. The advantage of this framework is that WSNs can be analysed
analytically, but the algorithm relies on a rather ideal assumption that changes
in nodal energy levels are broadcasted instantaneously to all other nodes. This
is, in many applications, neither realistic due to limitations in radios’ ranges nor
desirable as it would cause a large overhead and use of energy. In our work we
present a distributed solution where changes of energy levels are communicated
to neighbour nodes only.

An approach which is more related to ours is [75], where geographical routing
is considered in connection with energy harvesting. In this work global geograph-
ical information, such as information about the position of the destination and
the node, is combined with local node information, such as energy information
of neighbour nodes, in order to find an energy efficient route to the destination.
We are not exploiting geographical information. Instead we capture the global
information in a so-called energy-faithful distance for every node. This energy-
faithful distance for a node approximates the cost (energy-wise) of routing from
that node to the destination. This adjustment is dynamically recomputed on
the basis of changed energy levels in neighbour nodes, and simulations have
shown that these computations can be performed efficiently.

2.3 Wireless sensor network model 9

2.3 Wireless sensor network model

The model of the WSN must capture the energy consumption and distribution
in the network. The model of a node (i.e. modelling processing and communica-
tion) is related to energy consumption and storage and the environment model
is related to the energy production.

2.3.1 Environment

The environmental model describes sensor input and the energy source for har-
vesting. The important features of the sensors are measurement capability and
rate. The energy harvesting model describes the energy production for every
node.

The energy model of the environment consists of two parts, a uniform energy
source and a non-uniform attenuation. The uniform energy source P;(¢) is the
same for all nodes. The attenuation fg n(t) of node N models obstacles in har-
vesting capability. Such obstacles could be clouds, trees, etc when considering
solar energy harvesting.

The power production Pg n(t) of the energy source S in node N is modelled
as:

Ps.n(t) = Pr(t) fs,n (1) (2.1)

We have experimented with functions Py (t) generated from concrete streams
of real-life observations of insolation of a solar panel and with ideal values of
insolation which models a full day with clear sky.

2.3.2 Network

The network consists of an arbitrary number of nodes, with one sink. The nodes
can be identical in both hardware and software, or configured individually. All
nodes produce measurements of the environment at a specified rate.

The nodes are placed in a 2D plane where the unit length is equal to the
shortest radio range possible for the nodes. The nodes can be placed freely in
the 2D plane. The radio range of nodes can be varied freely and is specified in
the same unit length as the resolution. The nodes have perfectly circular radio
coverage.

To facilitate the energy investigation, some energy consuming tasks must be
deployed on the nodes. To this purpose an application outlined in Figure 2.1
is deployed in the network. It is triggered regularly by an interrupt (x). The
interrupt can be either periodic or stochastic.

10 Energy harvesting wireless sensor network

* —»(Processing)—»(Rout

Figure 2.1: An outline of the application running on the nodes. It is initiated by
an interrupt (x). It is measuring some data, processing it, compiling a package
and routing it towards sink.

Source Capacitor Devices
Pg(t) Pp ()
S o C D
0> Ec(t) >0 Processor, Radio,

Solar panel Battery
Sensor, Memory

Figure 2.2: Overview of the energy model. To the left is an energy harvesting
device (e.g. a solar panel) recharging the battery/capacitor in the middle. The
devices to the right are consuming energy from the battery/capacitor.

The application takes some measurements from the environment, processes
it and finally lets the routing algorithm find the best neighbour for routing
and sends the package. The different parts of Figure 2.1 have different energy
profiles, e.g. the radio used for sending consumes most energy.

2.3.3 Energy model

For each node in the network, the energy stored and power produced and con-
sumed are recorded. All three parts can be configured to match a given platform.
Only one source and capacitor is present in each node, while several consuming
devices are present as shown on Figure 2.2.

The devices consists of a processor, a radio, a memory and a sensor. The
tasks running on the node activate the devices when needed.

There are different kinds of energy storages, such as an ideal super capacitor
(large lossless capacitor) or a battery. There is an upper bound C of the capacity
of the energy storage, i.e.

0< Ec(t)<C (2.2)

where C is the capacity and Ex(t) is the energy stored at time ¢. For the ideal

2.4 Energy harvesting aware routing algorithm 11

super capacitor the power model is

Es(tl,tg) = / 2P5(t)5t (2.3)
Ep(tr,ts) = / " P (1)t (2.4)
Eo(ts) < Bo(ty) + Es(t1, ta) — Ep(tr, t2) (2.5)

for t; < tq, where Pg(t) is the power harvested and Pp(t) the power consumed
at time ¢.

The power harvested Ps(t) depends on the insolation, the shadow and the
size and efficiency of the solar panel. All these parameters are customisable.
Likewise Pp(t) depends on the configuration of the devices and which state the
devices are currently in.

2.4 Energy harvesting aware routing algorithm

This algorithm aims at dynamically finding sustainable routes in a multi-hop
wireless sensor network with energy harvesting. A route is sustainable if the
energy of nodes along the route is not exhausted. It is assumed that the stored
energy in a node is measurable and through the changes of stored energy it is
possible to calculate the consumption and production of energy.

To calculate a sustainable route to sink, information about both the available
energy and the shortest distance from any node to sink is needed. The routing
algorithm has two parts where one finds all shortest paths/distances to sink and
the other applies distance penalties on paths to compensate for lower energy
availability.

2.4.1 Shortest path

The calculation of the shortest path can be performed with several different
existing algorithms, such as directed diffusion (DD) [27] and distance vector
routing in general. Such an algorithm manages the structural information of the
network. Furthermore it takes care of nodes being introduced into or removed
from the network. The simple distance ds is defined as the distance of the
shortest path.

An example network is shown on Figure 2.3, where the network structure is
shown in (b) and the simple distance is shown in (a).

—
N

Energy harvesting wireless sensor network

S

8

g Ne Ne
© / \

Ny Ny
\ / imple dist
> N, N simple distance:
Nz No Ny Ne Ng Ne Ny Ng N Node a\Nx/ g L] ds

(a) (b)

Figure 2.3: An example network displaying the shortest distance to sink (N,).
(a) graph shows each node’s distance to sink while (b) shows the placement of
each node.

2.4.2 Energy information encoding

The shortest path to sink is implicitly also the least energy consuming path to
sink. This path does, however, not consider how much energy is available along
this path or any other path.

To add energy awareness the available energy e : E in a node must be
measured, where E £ [0;1] (normalised with respect to the energy storage
capacity C). Then it is converted into a distance with the function f : E — D
where D £ R>¢. This distance reflects the energy deficit (the capacity of the
energy storage minus the energy e) of the node. The distance is used as a
distance penalty (d,) to route through the node.

To be meaningful, f should be monotonically decreasing. The ideal situation
is that f approaches zero when there is plenty of energy, i.e. f(e) — 0 when
e — 1 and f approaches infinity when there is lack of energy, i.e. f(e) — oo,
when e — 0. In a concrete WSN these ideal situations must be approximated.

The example network is shown in Figure 2.4 where some nodes have an
energy deficit (b) and how it is translated into a distance (a) for those nodes.

An example of a function for transforming the measured energy availability
e : E to the distance penalty f,(e) : D is shown in (2.6). This is further
exemplified with Figure 2.5.

2.4 Energy harvesting aware routing algorithm 13

distance d

energy deficit:
o dy 8y

simple distance:
5"

Nz No Ny Ne Ng Ne Ny Ng Ny Node ds

(a)

Figure 2.4: The example network in Figure 2.3 now displays an area with low
energy availability (shaded area) in the layout (b). This results in local distance
penalties in the graph (a).

qs JeiE=D a= 025
g3 b= 0.75
iz c= 0.90
R > a=50

g o0 a b €1

energy (F) B=5

Figure 2.5: Example of relation between energy availability and local distance
penalty.

0 ,1>e>c
/BE—C

B = ,c>e>b
Jole) = (a—B)=2+8 b>e>a
« ,a>e>0

(2.6)

The values a, b and ¢ are different thresholds of energy availability. ¢ deter-
mines the upper bound for sensitivity. a is the lower bound for energy availabil-
ity. b describes the point of change between different sensitivities of variations
in energy availability together with the penalty amplitude 8. « describes the
maximum penalty.

A limited energy availability is now applied to the example network (the
shaded area) in Figure 2.4. This results in local distance penalties to the nodes
Ny and Ny. In this particular example there is a local minimum distance to
sink at node N.. This is an undesirable situation as N, has no neighbour to

p—
H

Energy harvesting wireless sensor network

energy-faithful
adjustment: dg

distance d

22 ____ energy deficit:

simple distance:
Ny Nu Ny No Ng No Ny Ny N, Node]

(a)

Figure 2.6: The example network from Figure 2.3 and Figure 2.4 is now com-
pleted with the energy-faithful distances. Now all nodes have a sustainable route
to sink.

whom it would be (on the basis of the simple distance and distance penalty)
natural to send packages to.

The energy-faithful adjustment (dy) is designed to solve the problem with
local minima which the distance penalties can create. Every node communicates
changes in their energy information to its immediate neighbours. Each time a
node receives an update from a neighbour, it checks if it is in a local minimum.
If so, it increase its energy-faithful adjustment to solve the problem and reports
this to its neighbours through an update.

This process also works the other way around, where a node checks whether
its energy-faithful adjustment is unreasonable high and lowers it appropriately.
In the example network, the energy-faithful adjustment is now added (see Fig-
ure 2.6). For convenience, the sum of the distance penalty (d,) and the energy-
faithful adjustment (df) is called the abstract distance (d,). We shall now
present an algorithm which is based on these ideas.

2.4.3 Algorithm

Each node runs the same set of algorithms to manage the distance penalties
and the energy-faithful distances. These algorithms manage a set of variables
which constitutes the state of a node. It also manages a copy of the state of all
neighbouring nodes. Furthermore it is assumed that each node uses the same
function f, : E — D to calculate the distance penalty from the energy stored
in the node.

Consider a node N (see Figure 2.7) having k,, neighbours N' = {Ny, Na, ..., N }.

2.4 Energy harvesting aware routing algorithm 15

Figure 2.7: An example of a node and its neighbourhood. The node N has
a set of neighbours N/ = {Njy, Na, N3, Ny, N5}. The dashed circle shows the
neighbourhood area of N.

The node N has four state variables

ds:D Simple distance.
dp:D Distance penalty.
dy:D Energy-faithful adjustment.

r:{l,...,k,} Index of neighbour to route to.
Furthermore, for each neighbour N; of N, there are two state variables:

ds;: D The simple distance of N;.
da; : D The abstract distance of ;.

Based on that information the neighbour N,., with the shortest energy-aware
distance to sink, is found.

Note that the distance penalties and energy-faithful distances are merged
into one abstract distance before it is distributed, hence only the abstract dis-
tance of a neighbour is known to a node. The states ds and d, are managed by
an algorithm for finding the shortest path and is therefore not changed by this
algorithm.

The algorithm is divided into three parts, a main part A;, and two sub
parts Ay (distance penalty and route update), and Az (energy-faithful distance
update and broadcast) described in the next three paragraphs. The main A; is
displayed in Algorithm 1. It reacts on an input event x. This event can either
be an abstract distance update coming from one of the neighbours of N or a
local energy update.

16 Energy harvesting wireless sensor network

If the event is an energy update (line 1), the measured energy is converted
to a distance penalty through f, and passed to As. If the event is an abstract
distance update (line 3), the event is passed to As and Az is called with the
current distance penalty.

Algorithm 1 The algorithm A; performs the state update of the routing algo-
rithm.

Require: =
if z is a local energy update then
As(fp(z)) {Energy availability, distance penalty update and broadcast}
else if = is an abstract distance update from a neighbour then
As(z) {Penalty (from neighbour) and route update}
As(dp) {energy-faithful distance update and broadcast}
end if

As / Distance penalty and route update

This algorithm is activated when an update p is received from a neighbour.
It is carrying the id piq € {1,...,k,} of the neighbour and the new abstract
distance p, : D. It determines the shortest energy-aware distance to sink from
the known state of the neighbours and updates the route index r if necessary
(see Algorithm 2). This algorithm has no output but updates the state r and
the penalties d,, of the concerned neighbour.

If the update originates from the node that packages are currently routed to
(N,) and this has increased its distance to sink, then a search of the neighbour
table must be performed to find the neighbour with the shortest energy-aware
distance to sink. If the update originates from any other node than N, and
node N; has acquired a shorter energy-aware distance to sink than N,., then N;
is now the neighbour with shortest energy-aware distance to sink. In any other
case, the route r is unchanged.

As / Calculate energy-faithful adjustment and broadcast

Aj takes as argument an update to the distance penalty, calculates the energy-
faithful adjustment, updates the states d, and dy and determines whether to
apply and broadcast the update (see Algorithm 3).

Four constants are used: ¢4, Cmin, Clowers aNd Crgise- Cq € Rsg is the
minimum difference in distance to sink between node N and the neighbour

2.4 Energy harvesting aware routing algorithm 17

Algorithm 2 The algorithm As takes as input a package p containing an ab-
stract distance update p, and the id piq of the neighbour. Based on the update,
it updates the states r and dp, .

Require: p: P

1: % < Did

2: d; dsi + Da

3 d. +ds, +dp,

4: dpi < Da

5. if r =i Ad; > d, then

6: d<4 0

7. for all n € {1,...,k,} do {Find neighbour with shortest energy-aware
distance to sink}

8: if d > ds, +d,, then
9: r<n

10: d < ds, +dp,

11: end if

12: end for

13: else if r # i Ad; < d, then
14: 1741

15: end if

18 Energy harvesting wireless sensor network

chosen for routing NN, when altering the energy-faithful distance of node N.
Cmin € R>¢ is the minimum difference between N and N, before an update
of energy-faithful distance of N is forced. cipwer € Rsg and crqise € Rsg are
thresholds for avoiding communication of small changes to distance penalties
and/or energy-faithful distances.

The distance difference (Ad;) between the neighbour with shortest energy-
aware distance to sink (N,.) and it self (V) is found. If this difference is positive
then the energy-faithful distance must be increased and may have to be lowered
if the difference is negative. To determine this, a new energy-faithful distance
d!, is calculated. If the difference Ads between the current and new energy-
faithful distance exceeds the bounds Ads < ¢jpwer O Ado > Crgise, Or if node
N has shorter distance to sink than any neighbour, then an update must be
performed. The lower and upper bounds of Ady are to prevent insignificant
updates to conserve energy.

Algorithm 3 The algorithm A3 takes as input an update to the distance penalty
d;. It calculates the energy-faithful distance and updates the states d, and d,.
Any update to the states are also broadcasted to the neighbours.

Require: d), : D
1 Ady < ds, +dp, — (ds + d;, + dd) {energy distance diff. between N, and
N}

Ady + dj, — dj, + dy, — d,, {local distance to sink change}

if —Ad; < emin V Ads < Clower V Ada > Craise then {Determine whether
to update state and broadcast the update}

9: dp — d;)

10: d, + d,

11: broadcast (dp + da)

12: end if

2: if (d, + ¢q) > —Ad; then {Ensure it always hold that d, > 0}
3 d <« d,+c,+ Ady

4: else

5: d; —0

6: end if

7

8:

A change in the network structure

A change in network structure is defined as a change to d, and consequently ds,
in the neighbours of the node in question. Such a change can affect the energy-

2.5 Results 19

faithful distance in the network, but not the distance penalties. Therefore the
energy-faithful distance must be updated for all nodes that are affected by the
structural change.

A search for the neighbour with the shortest energy-aware distance to sink
will always work correctly. Depending on the algorithm used for finding the
shortest path to sink, it might be possible to optimise this calculation like the
approach in Algorithm 3. The cost of distributing the new energy-faithful dis-
tance is not large, since they will mostly follow the same pattern as the structural
updates and they can be merged into one transmission carrying both distance
penalty and simple distance update.

2.5 Results

A simulator based on the above models and algorithms has been constructed to
investigate the behaviour of the proposed distributed energy harvesting aware
routing (DEHAR) algorithm. With this simulator several of network setups are
investigated and the most interesting are discussed in this section. Note that the
grid deployment of the shown figures are solely for simplifying the presentation,
the DEHAR algorithm is, however, not depending on grid deployment.

Apart from the proposed routing algorithm a simplified version of the DD
algorithm has also been implemented. This simplified version of DD implements
only the ability of finding the shortest path to sink for every node in the network.
This is used both as the foundation of the proposed algorithm and to show the
difference between DD and the DEHAR.

Two distinct network layouts have been chosen to be displayed. One that
shows the algorithms ability to find large “detours” in order to find sustainable
routes (see Figure 2.8) and another which shows that the algorithm is dynamic
(see Figure 2.9). The first network layout is used in Simulation Sy and Sy while
the second is used for Simulation S3. Simulations of both networks will be using
the function f, in (2.6) for calculating the distance penalties.

The solar insolation pattern in the presented simulations is a 12 hour full
daylight followed by 12 hour full night scenario. The total solar insolation per
day is calculated from the daily average solar insolation of a full month from real
sensor nodes with solar panels. The reason not to use the real solar insolation
data directly is that it makes it hard to see the effects of the energy harvesting
aware algorithm.

The three simulations are used to explore features of the DEHAR, algorithm
and differ slightly in setup, apart from the network layout (see Table 2.1). The

20 Energy harvesting wireless sensor network

Yy
7
6
¢ Node
5
X Sink
4
‘ Strong shadow
3 . . .
Light shadow
2
1

1 2 3 4 5 6 7

Figure 2.8: Network structure of Simulation S; and S;. Radio range of nodes
is set to 1.

* Node ><Sink Shadow set A OShadow set B

T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 2.9: Network structure of Simulation S3. Radio range of nodes is set to
V2. The shadow pattern is switched every 360 hour (15 days).

2.5 Results 21

Table 2.1: Differences between simulations. The average package rate is the
rate at which each source node produces packages that are routed to sink.

‘ S1 So Ss
Radio range 1 1 V2
Average package rate ﬁ per sec. 6—10 per sec. & per sec.

change in package production rate is used to test the robustness of the algorithm
towards changing energy consumptions.

2.5.1 Comparing DEHAR with DD

To evaluate the energy consumption of the DEHAR algorithm, it is compared
against routing along the shortest route to sink using DD only. The DEHAR
algorithm can be disabled in the simulator leaving the simulator in DD mode.
Note that all penalties are initially zero, and the battery fully charged.

The results of the first 10 days (240 hours) of Simulation S; is shown in
Figure 2.10. The first 108 hours of simulation show no difference as the energy
aware algorithm has not yet detected any battery depletion. The power sensing
part of the algorithm uses too little power to show on this scale.

To begin with DD uses less battery power than DEHAR, but only for a
short time. This is due to the weak node positioned at the coordinates (1,3) (see
Figure 2.8) using extra energy to inform the neighbours of its increased distance
penalty and the extra energy used to route packages along an alternative path.

During the rest of the simulation the DEHAR continues to have an advan-
tage during day and opposite during night, but overall having an advantage,
since batteries contain more power. In this comparison the DD simulation will
continue to deplete its weak nodes until they die. This is the case since the
simulation is constructed to require re-routing of data (relative to DD) for all
nodes to survive.

The quick rise of energy in both simulations is due to the outer nodes quickly
recharging in the beginning of the day (far away from the sink). The nodes near
the sink are charging more slowly or in some cases still discharging (on average)
during day.

Results for Simulation S; for a total of 30 days (720 hours) are presented in
the next section, i.e. the first 10 days (240 hours) are identical. After this, the
two other simulations S, and Ss are shown.

22 Energy harvesting wireless sensor network

Average battery energy

100
99.95
99.9
99.85
99.8 -
99.75 : . : : ' ' ' ' '

0 24 48 72 96 120 144 168 192 216 240
time (h)

Battery energy difference between DEHAR and DD

0.03 T T T T T T T T T
0.025
0.02
0.015
0.01
0.005

% of full charge

% of full charge

_0005 | | | | | | | | |
0 24 48 72 96 120 144 168 192 216 240

time (h)

Figure 2.10: Simulation S; - 10 days (240 hours) simulation time. Starting
with 12 hours daylight and 12 hours night. Data gathering interrupt every
15 minutes. Top figure shows the average energy of the individual simulation.
Bottom figure shows the difference between the two simulations.

Low data rate simulation (S;) The Simulation S; displays a routing
trend as shown in Figure 2.11. This trend is constructed from the end of the
simulation where the routes have settled. In Simulation S7, during the first 30
days (720 hours), the DEHAR algorithm consumes 1.72% more energy than DD
and is able to harvest 1.02% of the energy available (the energy not harvested is
lost because the energy storage is full). The DD simulation show no difference
and the weak nodes continue to deplete their batteries.

2.5 Results 23

Y,
7
6
* Node
5 . . .
>< Sink
4 Lt
. Strong shadow
3 o
. Light shadow
2 . .
l — Routing trend
1 >< . .
T
1 2 3 4 5 6 7

Figure 2.11: Routing trend of the DEHAR algorithm for both Simulation Sy
and Ss.

The simulation results are shown on Figure 2.10 and Figure 2.12. The varia-
tions in battery levels reflect the sum of power harvest, power consumption and
battery capacity limit. The difference in power consumption of DEHAR and
DD is shown on Figure 2.12 (top). It shows an identical power consumption
until the routing algorithm kicks in after which the power consumption rises for
the DEHAR. The bottom figure shows that the node with lowest battery energy
is stabilising. The reason for the still fluctuating power consumption on the top
figure is because some of the other nodes are still not stabilised completely. The
DD continues to loose battery power on some nodes (see Figure 2.12).

The large fluctuations in energy consumption are mostly due to extra trans-
missions of data packages due to longer routes. The smaller fluctuations are
partly due to status updates and the smoothing filter. The updates and data
transmissions come in bursts when all the nodes are interrupted and does oth-
erwise not use much energy.

High data rate simulation (S2) Running the low data rate simula-
tion again with data sensing interrupt changed to once every minute results
in increased energy usage. Now the DEHAR results in a surplus energy us-

24 Energy harvesting wireless sensor network

Surplus power usage by DEHAR compared to DD
0.8 T T T T T T T T T T T
0.7 -
0.6
05
0.4

03

02 | J _

01 | -
0 1 A ||l|| || 1 1 1 1 1 1 1 1 1 1 1

0 48 96 144 192 240 288 336 384 432 480 528 576 624 672 720

time (h)
Minimum battery energy

Power (uW)

% of full charge
O
»
|
|

93 - ——— DEHAR minimum 1

92 ——----- DD minimum e
| | | | | | | | | | | | | o

0 48 96 144 192 240 288 336 384 432 480 528 576 624 672 720
time (h)

Figure 2.12: Simulation S; - Top: Plots of difference in energy consumption
of DEHAR and DD. Bottom: Plot of lowest battery level in any node in both
DEHAR and DD simulation.

age of 21.5% over DD and uses around 9.5% of the harvest-able energy (see
Figure 2.13). The DD uses less than 8% of the harvest-able energy.

Comparing Figure 2.10 and Figure 2.13 it is seen that the DEHAR does not
show much difference in average battery levels during day. During the night
the batteries are depleted faster due to the increased energy usage where the
DEHAR simulation have a slightly steeper descent in average battery level. This
results in a faster convergence to the same routing pattern as for S;. The DD
protocol simulation will have node deaths earlier due to the increased energy

2.5 Results 25

Average battery energy

100
98
96 . \
94 | o
92 | —— DEHAR .

90 | | | | | | | | |
0 24 48 72 96 120 144 168 192 216 240

time (h)
Surplus power usage by DEHAR compared to DD

% of full charge

Power (UW)

0 | | | | | | |
0 24 48 72 96 120 144 168 192 216 240

time (h)

Figure 2.13: Simulation S5 - Simulation results show an increased energy usage
in both simulations. The DEHAR keeps a high average battery level.

consumption otherwise there are no notable differences between the two DD
simulations.

Slalom simulation (S5) The network layout for testing the dynamic as-
pects is shown on Figure 2.9. Simulation S35 contains 45 nodes, some of which
are under a shadow (e.g. have limited harvesting capability). The routing trend
for the DEHAR is shown with arrows. The radio range has been set to V2 node
distances so the nodes can reach up to eight neighbours. An interrupt frequency
of once a minute has been used to initiate the data gathering and the simula-

26 Energy harvesting wireless sensor network

+ Node X Sink Shadow Routing trend
y
5 . . o . . o . . o o
4 .
3 .
2 .
1 .
T
1
y
5 .
4 .
3 .
2 .
1 .

Figure 2.14: Routing trend of the DEHAR algorithm for Simulation Ss.

tion is run for 30 days (720 hours). After 15 days (360 hours) the shadows are
moved to force the algorithm to re-route data again. The two trends are shown
in Figure 2.14, where the upper layout shows the routing trend during the first
15 days and the other after the change of the shadow set.

The results of the simulation show that the data routes in the network are
changed when the shadows move. When the shadows are moved it is clearly
seen on Figure 2.15 that the batteries are recharged in those nodes that were
previously under shadow. The extra energy usage by DEHAR is reduced. This
can be due to the fewer hops needed to transport the data to sink.

As can be seen at the bottom picture of Figure 2.15 at least one node in DD
has depleted its battery, thus it is not operational any more. This has happened

2.5 Results 27

Average battery energy
100 T T T T T T T T T T T
98 ' Y\\n _
96 TN .
94 YA AVa VN
92 L \‘J/“\‘(\\\m / \J'\‘,»\ _
9 N]
88 |- R

86 R R T T T TR S T N
0 48 96 144 192 240 288 336 384 432 480 528 576 624 672 720

time (h)
Surplus power usage by DEHAR compared to DD

60 T T T T T T T T T T T T T
50 |
40 |
30 |
20 | |
10 | |

0 | 1 | | | | | | | | |

0 48 96 144 192 240 288 336 384 432 480 528 576 624 672 720

time (h)
Minimum battery energy

% of full charge

Power (UW)

% of full charge
(o]
o

——DEHAR minimum-|
! ! ! ! ! | ! | L1 DID mlinim|um_

0 48 96 144 192 240 288 336 384 432 480 528 576 624 672 720
time (h)

a1
o
T T T T T 1T T 7

Figure 2.15: Simulation S3 - Top: average battery levels. Middle: Power usage
comparison. Bottom: Lowest battery energy levels for DEHAR and DD.

28 Energy harvesting wireless sensor network

at the 13th day (approximately the 310th hour) of 30 days simulation. On the
other hand with DEHAR no node has depleted its battery more than 70% during
whole simulation period - 30 days.

In the slalom simulation the DEHAR uses 8.5% more energy than DD. The
DEHAR uses around 13.4% of harvest-able energy while DD uses less than
12.3%.

Some nodes die in the DD simulation as seen on Figure 2.15 (bottom). At
least one of those does not get powered up again when the shadows move.

2.6 Summary

The proposed algorithm is shown to find sustainable paths from any source to
a sink. These paths are found dynamically by the distributed algorithm and
without any node failing due to loss of power. This is in contrast to most energy
(harvesting) aware algorithms which rely on finding the best known route and
keep using it until some node fails along the path.

As long as the network continually has at least one sustainable path from
each source to a sink, then the simulations show that the algorithm can find these
paths — the algorithm can keep the network running indefinitely. This relies on
nodes having sufficiently large energy storage and harvesting capability for the
given environment and network.

Although not shown, the DEHAR algorithm is capable of handling multi-
ple sinks. This does, however, require that the algorithm for finding shortest
distance to sink is also capable of handling multiple sinks.

Though the results are encouraging, there are many possible improvements
and extensions. Two of which are history dependent calculation of distance
penalties and higher granularity of shortest distance to sink.

History dependent calculation aims at handling the drawbacks of the current
distance penalty f,, calculation, i.e. periodical (nights) or permanent low stored
energy. A node which does not have full energy production is forced to first use
some battery power before the distance penalty is high enough to force the use
of alternative routes. It is desirable to let such nodes regain their energy after
this has happened without increasing the amount of packages routed through
these nodes. At night each node measures a consumption of battery power,
and thus may increase the distance penalty. A history dependent calculation
can let the stored energy increase without decreasing the distance penalty and
thus obtain a higher amount of stored energy for nodes with low production.
By estimating future energy production (introducing learning), energy usage

2.6 Summary 29

during nights can be handled more intelligently.

A history dependent calculation is, however, not without drawbacks. To
maintain a energy history, the history must be stored in memory and more
energy must be used to take the history into account when calculating the
distance penalty.

The presented algorithm is using a distance measure based on the radio link
(i.e. hops). This is basically due to the use of the DD algorithm, however,
algorithms that provide finer granularity do exist and could substitute DD in
order to obtain more accuracy in the distance measure.

30

Energy harvesting wireless sensor network

Chapter 3

Related frameworks

Several frameworks exist, that support modelling of systems. The aim is to find
frameworks that are able to express models of dynamic systems like the wireless
sensor network (WSN) and the routing algorithm described in Chapter 2. The
presented frameworks are compared and two frameworks are chosen. The two
chosen frameworks will be used to model the WSN use case presented in Chap-
ter 2. The SYSMODEL project, which funds the work of this thesis, requires
ForSyDe to be one of these frameworks. The project partners of the SYSMODEL
project require the four models of computation (MoCs) synchronous (SY), syn-
chronous data flow (SDF), discrete event (DE), and continuous time (CT) and
the ability to simulate models.

3.1 SystemC

C/C++ is probably the most widely used language in programming. There
exist many commercial and high quality open-source compilers for it and a
bulk of applications are also already implemented in C/C++. These have been
the motivations for the EDA community to investigate C-based approaches for
system design with the following advantages:

e to be familiar and easy to learn for the designers,

e do not need the exhaustive effort (and probably research) to implement
new compilers,

32 Related frameworks

e already existing algorithms and designs could be ported to the new lan-
guage with smallest amount of re-engineering.

SystemC [0] is a language which takes such an approach. It is mainly a class
library built on top of the C++ language which adds to the base language the
features needed to model hardware—such as concurrency and a way to model
time. While the syntactical aspects of the base language are mostly preserved,
the semantics of SystemC is completely different [64].

The designer models systems in SystemC as a network of communicating
processes. Computational processes are encapsulated in modules, while the
communication among them is performed through channels. This clear sep-
aration between computation and communication has several advantages such
as re-usability of the designed modules and allowing the designers to refine them
independently. Figure 3.1 depicts the base components of a SystemC model.

Module Module
O Interface Interface Q
Q 5 Channel O

Processes Processes

Tt

(0]

Port

Figure 3.1: A SystemC model is composed of processes which are encapsulated
in modules. Modules are connected to the outside world by means of their ports
and communicate with each other via channels. Interfaces define the interaction
with channels independent of channel implementation.

3.1.1 Transaction level modelling

Unlike what the name implies, TLM does not correspond to a specific level of
abstraction, but to a set of abstraction levels above RTL. The precise definition
of TLM has been for a long time a subject of debate. Cai and Gajski [17] have
suggested 6 models in a two-dimensional abstraction space. The axis of their
defined space are computation and communication abstraction levels. In addi-
tion, they have tried to describe how these models could fit in different design
domains, namely modelling, validation, refinement, exploration, and synthesis.
Donlin [19] has also defined a set of abstraction levels for TLM in a slightly dif-

3.1 SystemC 33

ferent manner. He has tried to propose a set of use-models and describe which
abstractions levels can be used in each use-model.

Rose et al. have proposed TLM SystemC as an extension in the form of
a class library [61]. They have pointed out the main motivational points for
enabling SystemC users with TLM as:

e providing an early platform for software development
e system level design exploration and verification
e the need to use system level models in block level verification.

The most important feature of the TLM library is a set of interface classes,
each with their associated function calls to access channels (instead of directly
dealing with pin level details). Blocking vs non-blocking, and bidirectional vs
uni-directional access to the channels are the main semantic clarifying points
for communication which are introduced by different interfaces. Recently, TLM
2.0 is introduced which promotes the previous version with the ability to model
memory mapped buses which are register accurate and also provides more de-
bugging facilities [54].

3.1.2 Heterogeneous SystemC

Today’s electronic systems are becoming more and more complex. They in-
clude analogue and digital blocks, software and hardware in one place. The
designer needs to capture the behaviour of such systems in different levels of
abstraction using appropriate tools. MoCs [32] provide a framework by which
a heterogeneous model could be captured. Unfortunately, SystemC, with its
discrete-event simulation kernel, does not provide a direct way to model ab-
stract MoCs. HetSC [25] tries to address this problem by introducing a set of
rules and guidelines for modelling each MoC. In addition, it enables a smooth in-
tegration of different MoCs in the same specification. These are done by means
of a methodology specific library on top of the standard SystemC. HetSC can
work together with other extensions to SystemC such as SystemC-AMS [70],
etc. Figure 3.2 shows the HetSC framework graphically.

HetSC claims that it makes heterogeneity in system design available in two
directions: wvertical heterogeneity and horizontal heterogeneity (see Figure 3.3).
Horizontal heterogeneity enables the integration of several MoCs in a design at
the same time. On the other hand, vertical heterogeneity is the ability of the
modelling tool to support the evolution of each MoC during design refinement.

34 Related frameworks

Other
SystemC-
based
Methodologies

HeterogeneousI Specification Methodology

General Spe&ﬁcation Methodology .

SystemC Standard kernel

DE Strict-Time Simulation Kernel I

C++ Language Standard

i Abstraction
i Methodology-Specific Layered
E Libraries Libraries

Figure 3.2: Framework for heterogeneous specification in HetSC [25].

At the highest level of abstraction—which is the specification level—a specific
part of the system is modelled using a Kahn Process Network (KPN) MoC.
During refinement, this part is first converted to a SDF model, from which a
software code is generated later, and finally it is run on a DSP (vertical hetero-
geneity). Note that in the base specification model and also in the intermediate
models obtained during each refinement step, the system is modelled using dif-
ferent MoCs (horizontal heterogeneity).

3.1.3 ARTS

ARTS is a SystemC based abstract system-level modelling and simulation frame-
work [17-19], which allows the designer to model and analyse the different lay-
ers, i.e. application software, middle-ware and platform architecture, and their
interaction prior to implementation. In particular, ARTS captures cross-layer
properties, such as the impact of OS scheduling policies on memory and com-
munication performance, or of communication topology and protocol [16] on
deadline misses. Hence, ARTS can be used to explore and trade-off different
design choices.

An ARTS system model (Figure 3.4c) of an embedded computing system is
formed by mapping components of an ARTS application model onto computing

3.1 SystemC 35

Vertical
_Heterogeneity _

\ ~

Specification

9}

2]

o~}

1 wn

=
_V'""I

Refined

Specification Horizontal

Heterogeneity

?___l

[P [

SW/HW
[mplementation

Implementation r
Platform |DSP | |DSP | |FPGA| | ’“LP;|J

Figure 3.3: Horizontal and vertical heterogeneity [25].

components of an ARTS platform model. The application model is represented
as a set of task graphs (Figure 3.4a), where each task represents a sub-element
of the application and is considered as an atomic unit during mapping. The
platform model is composed of computing components interconnected through
communication components (Figure 3.4b), where each computing component
takes care of executing the tasks mapped to it. Hence a computing component
may be a programmable processor, a dedicated hardware accelerator or an op-
erating system on a processor. All components interact through an event driven

model.

The ARTS framework is implemented in SystemC which has several ad-
vantages. Besides being an industry standard for transaction-level modelling
and system-level design, SystemC offers the possibility to co-simulate hardware
and software, hence bridging the different layers, and to co-simulate systems
at different levels of abstraction, i.e. simulating transaction-level components
together with cycle-true components. This allows critical components to be
refined to lower and more accurate levels of abstraction, while the rest of the
system is still kept at an abstract level.

Figure 3.5 shows a design flow using the ART'S framework. A user has to pro-
vide the application model described as a set of task graphs (each representing
a specific application), and the platform model which consists of platform com-

36 Related frameworks

®l [m
9 B 6 = el

RTOS, RTOS;, RM RM
@ PE, PE, PE a PE b.
a1 2 a3 ‘ bus ‘ ‘ bus ‘
a) b) c)

Figure 3.4: ARTS model example, a) application model, b) platform model,
¢) system model.

ponents, i.e. processing elements (PE) and communication networks, described
in one file and a platform instance described in another file. These descriptions
are expressed in a simple language called the ARTS scripting language. The
user then has to provide a mapping of the application onto the platform, also
in terms of an ARTS script. Prior to the mapping, a characterization of each
task mapped onto each processing element has to be done. This characteriza-
tion tells whether a task can execute on a processing element, and if so, how
many cycles it will take to execute, how much memory is required, etc.. When
loaded into the ARTS framework, a SystemC model of the complete system is
created and simulated. The output from the simulation is a set of files providing
runtime profiles and system characteristics, such as task execution profiles, bus
contentions, memory and energy profiles, etc.. This allows the user to investi-
gate the merits of the solution and to explore alternative solutions by applying
different mappings or by changing the platform and/or the application.

3.1.4 SystemC kernel extensions

In the SDF [43] model of computation, a set of concurrent processes commu-
nicate via communication channels with unbounded FIFOs. Each process con-
sumes data tokens from the input-side FIFOs, operates on them, and outputs
the resulting data tokens to the output-side FIFOs. In each firing, the num-
ber of input/output data tokens for each process are fixed, and the scheduling
of SDF models can be done at compile-time. Although SDF models can be
modelled in SystemC using the existing modules and FIFO primitive channels,

37

3.1 SystemC
application model platform model
——@—— PE PE comm| «..
/ ARTS i
/ |
P I
! QQ&\Q map = mapping instance Ny
(S N
% i ; LS
S ! e
& \ Lo performance Q
\ (‘&Q analysis Qéf |
\ A 7\ s

V)
/
/ \ :
/
N \ ’
N ’
N . / 4 \ .
N N .
s ~. xecutior memory power comm. --7
~ profile profile profile ontention

performance metrics

Figure 3.5: Using the ARTS framework.

the SystemC kernel uses a dynamic scheduling, which can lead to significant
simulation overhead caused by excessive context switching.

In [58], the authors propose a new modelling style based on the extensions
to the SystemC kernel, i.e. SDF modules communicate with each other through
queue data structure, instead of the regular signal ports and channels in Sys-
temC. Thus, the designers are required to follow some guideline rules to write
simulation models. A simulation speed improvement up to 75% has been re-
ported. However, since their method is based on the modification of the Sys-
temC simulation kernel, new patches are needed when the SystemC kernel is

updated.

3.1.5 SystemC-AMS

To capture the heterogeneity in today’s systems-on-chip (SoCs) consisting of
digital, analogue and mixed signal (AMS) hardware and software components,
SystemC-AMS [70] has been proposed as an extension of SystemC to enhance
the modelling capabilities on continuous-time components, besides the digital
components and software parts within SystemC. Instead of the approach taken

38 Related frameworks

in [58] to modify the SystemC simulation kernel, it is a single modelling and
simulation environment built on top of SystemC discrete-event simulation kernel
in a layered approach, as illustrated in Figure 3.6. The AMS related extensions
are the following.

Userviewlayer = View1 View 2 View N

SystemC
layers

Solver layer Solver 1 Solver N

Synchronization

layer AMS synchronization

SystemC layer SystemC kernel

Figure 3.6: SystemC-AMS layered structure [70].

e The synchronization layer is based on a statically scheduled, multi-rate
timed synchronous data flow (T-SDF) simulator. Based on this layer, dif-
ferent continuous-time solvers can be built and different models of com-
putation can be integrated.

e The solver layer consists of specialized implementations to simulate the
AMS components. Usually, their continuous behaviours are modelled as
differential algebraic equation (DAE) to be solved in simulation.

e The user view layer defines the way to write executable continuous-time
models for designers.

The SDF ports, signals, and modules are inherited from existing SystemC
modules. Thus, it does not require any changes to the SystemC simulation
kernel. Meanwhile, different models of computation are executed on top of
the T-SDF simulator, which allows compile-time scheduling to speed-up the
simulation.

For T-SDF blocks, timing information is denoted as the sampling-time of
data tokens. The scheduling order is statically scheduled in a cluster of data
flow modules, each data flow cluster is wrapped by a separate discrete-event
cluster process managed by a coordinator, which handles the synchronization

3.2 SystemVerilog 39

with the event-driven SystemC kernel. For AMS modules, the continuous-time
behaviours are encapsulated in data flow blocks.

However, the current SystemC-AMS is only a step towards a framework
with seamless support on continuous-time MoCs. For instance, the numerical
stability of the existing solvers still needs to be further investigated, to avoid
simulation inaccuracy and invalid system behaviours. Furthermore, the CT
solvers, which can be currently plugged-in, are limited to those with fixed sam-
pling time period, caused by the fixed timing intervals between consecutive data
samples in the T-SDF models.

3.1.6 OSSS and OSSS+R

With the emergence of run-time reconfigurable logic, FPGA systems tend to
be more flexible and more cost efficient. However, traditional languages (e.g.,
VHDL, Verilog, SystemVerilog, SystemC) lack the ability to express the re-
configurations at run-time. Based on this, OSSS+R [(65] has been proposed
as a SystemC based software framework for high-level modelling of reconfig-
urable digital hardware systems. OSSS+R is designed with synthesis semantics
in mind to support the synthesis of partially run-time reconfigurable (RTR)
systems. It is based on OSSS [36], which is a synthesizable extension to the
SystemC hardware description language, and uses the high-level synthesis tool
FOSSY.

Based on the simulation of OSSS+R models, the designer can estimate the
resource requirement on RTR components, while making sure that the system
performance and functionality are not violated. Furthermore, the automated
synthesis from a single SystemC design language can ease the RTR implemen-
tation and narrow the increasing design productivity gap.

Recently, OSSS+R has been integrated with other SystemC modelling frame-
works HetSC [25] and SystemC-AMS [70] as part of the ANDRES project [26].
A design flow for adaptive heterogeneous embedded systems(AHES) has been
developed, with a methodology and tools for automatic hardware and software
synthesis for adaptive architectures.

3.2 SystemVerilog
SystemVerilog is an extension to the widely used Hardware Description Lan-

guage Verilog, plus additional features used in hardware verification. Figure 3.7
shows the key components of SystemVerilog. This Hardware Description and

40 Related frameworks

Verification Language (HDVL) was first developed by Accellera and later be-
came an [EEE standard (IEEE 1800-2005).

Verification
. Comprehensive
Testbench Assertions APls
Design

Communication || Enhanced || Concise design Datatypes
interfaces Verilog features (©)

Verilog 1364-2001

Verilog 1364-1995

Figure 3.7: Key components of SystemVerilog [60].

System Verilog keeps the hardware description semantics of traditional HDLs
untouched. It exploits some advanced software concepts, but they are only used
for static verification and static elaboration [57]. SystemVerilog does not provide
a means for modelling abstract models of computation or analogue blocks. Thus,
it is not a language of choice for heterogeneous system specification.

3.3 Ptolemy

Ptolemy [20] is a widely used modelling, simulation, and design framework for
heterogeneous embedded systems, in which the interactions between different
components are described by various well-defined MoCs. Currently, Ptolemy is
written in the object-oriented language Java. Using a visual design environment,
the abstract semantics of the system in different MoC domains are constructed in
a component-based manner and combined hierarchically in the same framework.
Also, it covers software synthesis [15], code generation [14], co-design of mixed
software-hardware system, and verification of some models.

Hierarchical abstract syntax

In Ptolemy, models are represented as clustered graphs of actors and their con-
nections via communication channels. The abstract syntax for a hierarchical

3.3 Ptolemy 41

model is illustrated by the example in Figure 3.8. There are two kinds of ac-
tors: composite actors and component actors. Composite actors are actors that
can contain a hierarchy of component actors and their relations. Component
actors are at the bottom of the current hierarchy and a composite actor may
contain other composite actors, so the hierarchy can be arbitrarily nested. Also,
a director defines the execution semantics in the current composite actor. For
instance, in the graph, a top level composite actor contains component actor Al
and A2, which is realized in domain D1. Actors have ports, which are their com-
munication interfaces. A port can be an input port (denoted as filled arrows), an
output port (denoted as non-filled arrows), or both. There are communication
channels between each pair of connected actors to establish their connections.
The causality and concurrency in the system are explicitly expressed by the
communication and data dependencies between components.

This abstract syntax can be represented in other ways, besides the graphic
way in Figure 3.8, e.g., in XML files or abstract syntax tree (AST).

Director D1 7 Director D2

A1 2 — A3 A4
P2

3y

Figure 3.8: A hierarchical model in Ptolemy [20].

Model of computation domains

In Ptolemy, the domain director defines semantics to the top composite actor
in the current diagram. It defines the communication mechanisms and how
the diagram is to be executed. Each domain in the system implements a MoC,
which is suitable to model some individual systems or sub-systems. For instance,
the CT domain is good for modelling systems with continuous dynamics, the
DE domain for digital system, the SDF for signal processing applications, the
synchronous reactive (SR) domain for concurrent and complex control logic. In
Ptolemy models, a director placed in a domain manages the execution of the
model of computation. For example, a director D1 defines the flow of control
and the communication semantics.

42 Related frameworks

Given a synchronous language as the coordination language, the designers
can get systems with DE semantics by adding discrete time information into
them, get CT semantics by adding continuous dynamics, or get SDF semantics
by removing the global order in signals in systems. The hierarchical composition
of heterogeneous MoCs is based on a common abstract semantics [12] of them,
which is the intersection of the semantics of different domains.

The Ptolemy framework can perform verification of some models expressed
in the SR or DE MoCs, by automatic transformation from the Ptolemy model
description to the mathematical models used in verification.

3.4 Generic Modeling Environment

The Generic Modeling Environment [7] (GME) is a configurable modelling GUI
environment based on UML class diagrams. The configuration process itself is
also a form of modelling, i.e., the modelling of a modelling process, which is also
called meta-modelling. The configuration of GME is the first step that must
be taken before anything meaningful can be done with it. The output of the
meta-modelling process is a compiled set of rules, which configure GME for a
specific application domain. In this sense, GME uses a single platform for both
meta-model and domain-specific design.

In [52], it has been used to build a heterogeneous modelling framework EWD,
which is based on the ForSyDe semantics.

Meta-model

The meta-model syntax defines what types of objects can be used during the
modelling process, what attributes will be associated with those objects, and
how relationships between those objects will be represented. It also contains a
description of any constraints that the modelling environment must enforce at
model creation time. The UML class diagrams are used to specify modelling
entities and relationships.

The static semantics in GME models are specified with constraints using the
standard predicate logic semantics, called object constraint language (OCL) [3].

Model refactoring

The Constraint-Specification Aspect Weaver (C-SAW) framework is a model
refactoring plug-in engine for GME. It is emerging as a desirable means to im-

3.5 UML/Marte 43

prove design models using behaviour-preserving transformations. The refactor-
ing aspects and strategies provide several operators to support model aggregates
(e.g., models, atoms, attributes), connections and transformations. It is inte-
grated with GME, and can thus provide access to modelling concepts that are
within the domain-specific design, e.g., design transformations defined in the
ForSyDe meta-modelling environment.

3.5 UML/Marte

Marte [5,33] is a model-driven development platform for Real Time and Em-
bedded Systems with models written in UML. Marte depends on a Real Time
Operating System (RTOS) for modelling. This dependency also influences the
models of software in Marte. The generic software model API depends on and
exposes the RTOS API to the actual software model. Hence the software models
modelled in Marte depend on the chosen RTOS.

The hardware model API is designed to be separate from the software model
API and is independent of the RTOS. The design flow in Marte is to construct
the software and hardware models separately using the analysis, verification
and validation API in Marte. The hardware and software models can be co-
evaluated by connecting them through an interface. The main focus of Marte
for analysing models are performance and schedulability analysis, but through
a general framework it is possible to introduce other quantitative analysis tech-
niques.

The dependency that Marte has to the chosen RTOS presents some draw-
backs, such as needing knowledge on the RTOS, making compromises on the
design based on the chosen RTOS and the fact that many RTOS has complex
modelling patterns to express simple models. Furthermore the documentation
of Marte is sparse. There are few or no tutorials on how to get started, and the
basic modules of Marte are only documented individually.

3.6 Modelica

Modelica [4] is a modelling environment mainly targeting physical systems. The
models are constructed in the Modelica programming language. Modelica in
itself is only a library and does not provide any interface for usage. There exist
however several interfaces for MATLAB/Simulink, Maple, Scilab, Dymola, LMS
Imagine.Lab AMESim, JModelica, etc. In particular the MATLAB interface of

44 Related frameworks

Modelica works similarly to MATLAB/Simulink.

Building models in the Modelica language is much like programming. The
model is in most cases compiled into a binary (much like the SystemC approach)
which also contains the complete simulator.

The models in Modelica can consist of several domains (mechanical, electri-
cal, logical, etc.) as long as proper interfaces between the domains are defined.
The behaviour of the models are described by differential, algebraic and discrete
equations which are solved by the Modelica simulator.

3.7 MATLAB/Simulink

MATLAB [3] is a high-level programming language with graphical visualization,
numeric computation and many software packages. These software packages are
build on the programming and numeric calculation capabilities of MATLAB.

Simulink [3] is a software package for MATLAB which provides modelling
and simulation capabilities of physical systems such as electric circuits to MAT-
LAB. The Simulink package provides a graphical interface to build systems of
blocks and subsystems. A subsystem is represented as a special block.

Simulink provides many configurable blocks with predefined features, such
as different kinds of signal sources (e.g. noise), sinks (e.g. scopes), filters, ad-
dition, integration, etc. Special blocks also exist for interfacing with MATLAB
functions.

The connections between the blocks can carry any type supported by MAT-
LAB, e.g. scalars, vectors, matrices. The predefined blocks support most of the
types directly.

Simulink is targeted at continuous and discrete signal processing, control de-
sign, model-based design, physical modelling, verification and modelling. MAT-
LAB provides functionality to construct graphical interfaces for a custom MAT-
LAB application.

3.8 The ForSyDe framework

ForSyDe (formal system design) [23,63] is a formal design methodology that tar-
gets heterogeneous embedded systems. ForSyDe uses the theory of MoCs [11] as
its underlying formal foundation, which gives access to powerful analysis tech-
niques during system design. ForSyDe designers do not need to have expertise in
the underlying formal foundation, but will have access to the ForSyDe library,

3.8 The ForSyDe framework 45

which encapsulates the mathematical base of ForSyDe. ForSyDe provides li-
braries for several MoCs, which allows the development of executable system
models from which an analysable mathematical model can be extracted. This
analysable model can then serve as a base for different tools in the following
phases of the design flow, such as design space exploration and synthesis.

3.8.1 System model

Domain Interface

A - -
B Ps

MoC B

MoC A

Process

Y Wrapper

| Foreign Model

Figure 3.9: A ForSyDe System Model

Figure 3.9 illustrates the ForSyDe system model. A system is modelled as a
concurrent process network, where processes belonging to the same MoC com-
municate via signals. ForSyDe system models do not have a global state, only
local states are allowed. Rules for individual processes and mechanisms for con-
currency and composition are defined within each MoC. At present ForSyDe
provides libraries for four different MoCs, which allow to model heterogeneous
embedded systems containing not only software but also digital and analogue
hardware at an abstract level: SDF MoC, SY MoC, DE MoC, and CT MoC. Pro-
cesses belonging to different MoCs communicate via domain interfaces, which
define how signals from one MoC are interpreted in another MoC. A typical ex-
ample for a domain interface is an abstract analogue-to-digital converter, which
connects the CT MoC to the SY or the DE MoC.

Every novel design methodology has to cope with the existence of exist-
ing models or legacy code. Since these foreign models are not based on the
ForSyDe formalism they cannot be treated as ForSyDe processes. However,

46 Related frameworks

using ForSyDe wrappers, foreign models can be integrated into an existing
ForSyDe model and co-simulated with the 'pure’ ForSyDe processes.

3.8.2 Process constructors

A key concept in ForSyDe is the concept of process constructors. Process con-
structors lead to well-structured system models, which can then easily be con-
verted to mathematical descriptions for which powerful analysis and synthesis
methods exist.

Process Constructor Functions Values Process

mooreSY

Figure 3.10: Process Constructor mooreSY

Each process is created by a process constructor. The process constructor
defines the MoC, its interface to the environment, and a number of arguments
that have to be supplied to the process constructor. Figure 3.10 illustrates this
concept by means of the process constructor mooreSY, which is used to model a
finite state machine and belongs to the SY MoC. mooreSY takes two functions
and a value as arguments. The function next returns the next state of the state
machine based on the present state and the current input values, the function
out returns the output value based on the present statue, and the value init
gives the initial state.

The ForSyDe methodology obliges the designer to create processes using pro-
cess constructors. This gives several important benefits: (1) A system model is
well-structured and well-defined, because each process constructor has a mathe-
matical formulation, (2) process constructors separate communication (process
constructor) from computation (function), (3) process constructors can have an
implementation pattern (the process mooreSY can be efficiently implemented
in software or hardware using a well-known design pattern).

3.9 The UPPAAL framework 47

3.8.3 Implementation of the ForSyDe library

ForSyDe has originally been implemented in the functional language Haskell.
Haskell fits perfectly with the formal foundation of ForSyDe, since it enforces
side-effect free processes, provides lazy evaluation, and allows to express the
process constructors with higher-order functions. The Haskell implementation
supports four MoCs, and provides a hardware synthesis back-end, which allows
to generate synthesizable VHDL from a SY MoC ForSyDe model [23].

After demonstrating the potential of ForSyDe with Haskell, a SystemC ver-
sion of ForSyDe has been developed within the European Artemis project SYS-
MODELSYSMODELWWW to increase industrial usability. SystemC is an in-
dustrial standard and widely used in industry for system modelling. However,
SystemC lacks a clear formal semantics, which makes it very difficult to use it
in its plain form for other purposes than modelling and simulation. Inside the
SYSMODEL project we have created SystemC libraries based on ForSyDe for
four MoCs, which ensures that ForSyDe SystemC models have a formal base and
that abstract analysable models, such as SDF-graphs, can be easily extracted
from an executable ForSyDe SystemC model. Although, compared to Haskell,
SystemC suffers from some drawbacks, in particular SystemC does not enforce
side-effect-free processes, there is in addition to industrial acceptance another
very important advantage: SystemC is a C++ class library and all functions are
written in C/C++4, which allows to directly implement the function arguments
to the process constructors as C-code on the target processors.

The ForSyDe SystemC libraries implement process constructors as abstract
classes, where arguments to the process constructors are implemented as pure
virtual functions and initial values as arguments to the class constructor. For
each process, the designer derives from the abstract class implementing the de-
sired process constructor and writes the required virtual functions and then
provides the class constructor arguments during instantiation. Then the pro-
cesses are connected via ForSyDe SystemC channels. Simple SystemC channels
implement ForSyDe signals, while more complex channels can implement do-
main interfaces.

3.9 The UPPAAL framework

UPPAAL [13,37] is a framework that provides modelling, simulation and verifi-
cation. The framework models collections of non-deterministic processes with fi-
nite control structures. Real-valued clocks, communication channels, and shared

48 Related frameworks

A Config
© y>=3, at, ¥i=Q o~ v>=4 =5 o
A\ A\ 2 clock x, y;i
t ;
?&:6) Al A2 A3 int oW

system A, B;

B o n:=8
x>=2, a?, =8 n:=n+l _ -
@ Nt TR -
BO c:B1 B2 B3
(x<=4)

Figure 3.11: Example of a UPPAAL model [37].

variables are available to use in the models. It is designed to check invariant
and reachability properties. This is done by exploring the state-space of the
models.

With on-the-fly searching techniques and symbolic techniques UPPAAL re-
duces verification problems to manipulation and finding solutions of simple con-
straints. UPPAAL can provide traces to exemplify why a property is satisfied
or not.

UPPAAL models consist of one or more models expressed in finite automata
as shown in Figure 3.11 (A) and (B). The models can interact with variables and
communicate through channels specified in the config. Each model specifies an
initial state (A0 and B0) and a number of other states connected by transitions.
A state can have restrictions of how long the automata may stay in this state
before taking a transition. A transition can also have restrictions on when it
may be traversed. A model will deadlock if it can neither stay in a state or
traverse any of the transitions away from the state.

UPPAAL implements timed automata, and the notion of staying in a state
is in UPPAAL terms to take a delay transition. In Figure 3.12 an example
model showing synchronisation between three models is shown. In this example
it is required that all three models synchronise atomically. To ensure that the
sending model (S) does not take a delay transition in state (S2) it is marked as
committed (the c: prefix to the state name). This guarantees that the state is
left immediately after entering it.

The UPPAAL models can be simulated through manually taking a transition
in one model at a time. UPPAAL provides a list of possible transitions to

3.10 Summary 49

S R1 R2
S1 R11Q) rR21 O
ml!
C:SZ ml? mZ?
m2 !
Y Y
S3 ri2 O r22 O

Figure 3.12: Example of communication between sub-models in a UPPAAL
model [37].

take. Another possibility is to let UPPAAL explore all such simulations, i.e. to
perform a static analysis/verification of the models. This can be expressed with
queries of the form: ¢ ::= VOB|30L where S ::= a|B; V fa2| . a is an atomic
formula. This formula can be an atomic clock, constraint, or data.

3.10 Summary

An overview of all the modelling frameworks is shown in Table 3.1. It compares
the following features of the frameworks: Heterogeneous models, dynamic mod-
els, domain specific models, generic models, simulation support, and support
for formal analysis.

Some of the abilities of the frameworks are put in parentheses. SystemC
does not officially provide either a CT MoC or the possibility to model dynamic
systems. However, an extension named SystemC-AMS provides the CT MoC
and by careful programming it is possible to change the structure of a model at
runtime. Furthermore, ForSyDe is also implemented as an extension to SystemC
[56]-

In the Generic Modeling Environment (GME) framework, there are no prede-

50 Related frameworks
& 2
3 s 2,
5] g o =
q?o = 2 Q 2 :
g = 2| E| =
5| E : 5| 2| E
® & S eS| 2| 5
T A A @} n =
SystemC v | (v)| SYLTLM, b
DE, (CT)
SystemVerilog X X HDL X v v
Ptolemy v | x SR, SDF, x | v | v
DE, CT
Generic Modeling Environment | v X (V) v X v
UML/Marte v | ox Software, x | x| v
hardware
Mechanical,
Modelica v X electrical, X |V X
logical
MATLAB/Simulink X X CT v v v
Finite non-
UPPAAL > « deterministic « v v
timed
automata
ForSyDe v | (v)| SY,SDF, vl
DE, CT, ...

Table 3.1: Overview of abilities of modelling frameworks.

3.10 Summary 51

fined definitions of modelling, it only defines a meta modelling language. There-
fore, one must first to define the MoCs required for modelling.

ForSyDe as presented in this thesis does not support dynamic models or
formal analysis directly. However, it is possible to describe dynamic systems
through for example a non-finite state machine. The formal analysis of ForSyDe
models is made possible through external tools by extracting the structure of
the ForSyDe models.

The first choice of framework is the ForSyDe framework (requested by the
SYSMODEL project). The SYSMODEL project also requests that ForSyDe is
extended from the original version (only with the SY MoC) presented in [62]
with the SDF, DE, and CT MoCs. Since the SystemC framework has a well
establish usage in industry, the ForSyDe framework is to be implemented in
SystemC in the SYSMODEL project. However, a reference implementation will
be made in the language Haskell.

Three other frameworks are interesting to look at: Ptolemy, GME, UPPAAL.
They each provide some form of formal analysis of models.

Ptolemy and UPPAAL can perform similar types of verification, however,
Ptolemy does not provide verification of all models expressed in the MoCs of
Ptolemy. UPPAAL provides a dedicated modelling language which supports
verification of all models expressed in UPPAAL. GME use another approach to
formal analysis. GME can check a set of constraints on a model.

The ability of checking invariant and reachability properties of UPPAAL are
interesting with respect to the WSN use case. So it is an interesting alternative
framework to ForSyDe.

52

Related frameworks

Chapter 4

Formal analysis of DEHAR
in UPPAAL

Tests of the performance of wireless sensor network (WSN) applications and
algorithms are mostly performed by simulation or real world tests. This only
provides validation of certain execution traces. Verification is a stronger tool
but it is not always feasible for large applications and networks. Verification
of a small model of a WSN is demonstrated for a specific routing algorithm
distributed energy harvesting aware routing (DEHAR) presented in Chapter 2.
UPPAAL is used to verify the functionality of the algorithm for specific network
structures and specific power production patterns.

4.1 Introduction

A WSN is an autonomous low energy system, which is not easily reachable (i.e.
to perform service). It consists of many independent nodes (denoted by IV;)
which communicate with each other using radios. In this particular WSN it is
assumed that each node is capable of recharging by harvesting limited amounts
of energy from the environment. Furthermore it is assumed that each node
can only reach a limited number of other nodes (neighbours) in the network (a
multi-hop ad-hoc network).

The main task of a WSN is to collect data from the environment (here
produced by an Application) and transfer it to a computer for processing. This
is done by routing these data messages to a base station (denoted by X), which

54 Formal analysis of DEHAR in UPPAAL

is able to reach f.ex. the internet. When this data message reaches the base
station it is considered to be routed successfully.

4.1.1 DEHAR algorithm

This routing of data messages must be ordered in order not to waste energy.
The network is constructed with the knowledge of the shortest path to sink
(simplification for this project). Since the nodes have limited energy resources,
some nodes might run low on energy. Therefore an algorithm to modify the
routes to take available energy into account is added. This algorithm is known
as DEHAR.

The aim of the DEHAR is to find the optimal path based on the two param-
eters energy and distance. It is assumed that the nodes must run this algorithm
with only the knowledge of their neighbours in a distributed manner.

All these assumptions and tasks add up to five distinct tasks for each node:
An application, receiving and sending messages, updating a nodes available
energy and updating information about neighbours. Furthermore a node must
be initialised at start and can potentially run out of power at a later point.

The energy production is modelled together with the environment and not
the individual node. The base station is assumed to have infinite energy and
does only need to collect the data messages produced in the network.

4.1.2 Verification goals

The WSN is modelled in UPPAAL [69] to verify the ability of a given network
design to maintain network structure and function. Maintaining the structure
and function implies that the network must not split into multiple sub networks,
data messages must not be lost or delayed too much and the network should
provide a certain spatial density (number of nodes in a region to collect data
from the environment). It is also interesting to verify whether the DEHAR
performs as expected and changes routes when the network is stressed.

The model presented, does have some pitfalls. One of the larger ones is the
discretisation of the power production. In the model the power production is
performed every 60 clock ticks which is somewhat too large. The reason not to
increase sampling of power production is to keep down the verification time.

4.2 Network model 55

4.2 Network model

The network model is constructed in the tool UPPAAL. Models used for ver-
ification need to be simple. To achieve this, the WSN is analysed as follows:
A WSN consists of several nodes and a base station. These nodes and the
base station interact with each other via radio and are influenced by the envi-
ronment. In the particular subset of WSNs it is assumed that the nodes are
capable of recharging by harvesting energy from the environment. The nodes
are in this assignment assumed to have only one processor which controls all
other hardware, e.g. that they can be modelled with a single model.

To keep the system simple the number of models must be kept to a minimum,;
Each node must have its own model (can be from the same template) since
they are by nature parallel and synchronised by radio communication only.
Furthermore both the base station and the environment must each have a model
since they have unique tasks to perform in parallel.

The model of the environment models the energy harvested from the envi-
ronment, which consists of modelling a global sun strength and a local shadow.
This results in each node having a unique energy production.

The base station model is responsible for collecting all data packages pro-
duced in the WSN. Otherwise the base station does nothing.

The node model, on the other hand, has many different tasks which must
be modelled. First the main goal of any WSN is to collect data, which the
application is responsible for doing. Secondly the routing of data towards the
base station must be maintained dynamically.

Global declarations contain the structural information about the network
in several constants. There are three groups of the most important constants:
network structure, environmental energy and node design.

The network structure constants consist of: The number of Nodes (in this
example one base station 4+ four nodes), The maximum number of Neighbours
per node, the actual number of neighbours (numNeighbours[i]) per node, the
neighbours neighbours[i][n] and the distance to base station (hops|i]).

The node design constants are: fixed point precision for energy calculation
(Decimals), BatteryCapacity and the energy usage of tasks (ApplicationUsage,
RouteUsage, UpdateEnergyUsage and UpdateNeighbourUsage).

The environmental energy is based on a global insolation and a local shadow.
Both are constructed with four constants each: number of distinct items/events,
and index in the item list, a value and a time of how long each value applies.

56 Formal analysis of DEHAR in UPPAAL

The list of constants is: insolation_value[s], insolation_time[s], insolation_index,
insolation_items, shadow_value[d], shadow_time[d], shadow_index and shadow_items.

There are also some global functions, where the most important one is
getDepletion(batteryCharge). This function implements the algorithm of DE-
HAR. Other functions can charge(i, energy) a node and consume(i, energy) power.
Most of the other functions are convenience functions to simplify the model lay-
out and increase readability.

4.2.1 Node template

The node template is the most complex of them all. It is shown in Figure 4.1.
It is initialised when leaving the state Init. The node is allowed to stay a fixed
amount of time in Idle until either the Application or the UpdateEnergy task
is activated, or if there are data messages to transmit the RouteSend. The
UpdateEnergy (and UpdateNeighbour) will (can) invoke the UpdateNeigbour
in all of the neighbours of a node. The RouteSend will invoke RouteReceive
in a specific neighbour decided by the local variable route.

Each of the above mentioned states (except Init and Idle) will consume energy
on the edge leading to them. If the node should run out of power, it enters
the state OutOfPower and stays there until it has harvested enough power to
restart.

The routing of data messages is done only by synchronisation with data[i]
and counting the number of packages stored temporarily. The sender chooses
the destination channel and receiver listens on its own channel.

The synchronisation of energy updates works the other way around by letting
the sender broadcast on its update[i] channel and the neighbours listen on its
neighbours channels. Whenever the sender synchronises on updatel[i] it updates
height_update with its current energy information. This broadcast synchronisa-
tion will spread through the network like rings in the water until terminated
by the guard hasValidRoute() in the edge from UpdateNeighbour to Idle. This
guard is normally true.

The nodes starting time (leaving state Init) are interleaved to minimise con-
current actions which will increase the state space.

Declarations for the node template contains local data structures and
functions. The most important is the route variable which points to the neigh-
bour which is best to route data messages to. It also has a variable used to
maintain this route named augmentation and a table of the neighbours status in

57

4.2 Network model

000T => uoled|dde

‘0 = |09030.d|

‘0 = uoneldde]
‘as|e} = 1amodjomo
0 = Aejap amnol
‘--safeyoed passyng
‘pI = 82IN0S” ElEP

abreyplianeguiy => [pi]lianeq
0 = uoneoydde
‘anJ) = Jamodjoino

i[emnoJlerep

uasalnoy
(abesnainoy ‘pr)awinsuod
0 =i sebexoed palayng %
Kejagainoy =< Aejsp anol

ABiaugarepdn

01wb1aHab = arepdn 1ybay

0 = uoneoydde (eBesninoqyBieNarepdn ‘pi)aLnsuod ‘(uonejuswbnyarepdn

000T == uoneydde ! ‘()anoyerepdn i[pi]orepdn
Breunk i ‘OhyBraH1eb = srepdn 1ybiay
8bIeud _m:mm:m__m M@T%yﬂm ‘(Juoireuawbnyarepdn

i[piJerepdn ()ainoypieAsey jou

(JaInogarepdn (JaINOHPIEASEY (o6 5 dn o)
abesnunoqyblanalepdn ‘pr)awnsuod
inoqybranaepdn ‘arepdnTyybiay = [shybiay
¢lIslipilsinoqybiaulerepdn
[pi]sinoqubiaNwnu > s

(ebesninoqubiaNaiepdn ‘pr)awnsuod q
B 1 sinoqybiau : s

‘arepdniybay = [shybiay
¢lIslipilsinoqubraularepdn
[pilsinoqybraNwinu > s

1 sinoqybiau : s

0 = |020304d
‘(abesnABiaugarepdn ‘pr)awinsuod
1dnusiuierepdnAbiaug == |020304d

abesnanoy 'pIjawnNsuod g[pierep

0 = uoneo|dde

‘(abesnuonearddy ‘pr)awnsuod

1dnusujuonesddy == uoneoydde
uones|ddy

pI = 821n0S™ elep

0 = Aejap amnol

CIVERENEN o] ‘++sabeyoed pasaynqg

(
0 = |020j0ud Aejpgainoy => Aejap a1nol ||
< uoneoydde 0 == sabeyoed paiayng
epdn) ®%

1dnuisiuierepdnAbiaug => j0o0j04d %
1dnuisujuoneslddy => uoneordde ajp|

uolreredas 4 pl =>awli [eqo|
nuj

The node model

Figure 4.1

58 Formal analysis of DEHAR in UPPAAL

Init
global_time <=id * Separation
global_time == id * Separation

Idle
Collect datalid]?

Figure 4.2: The base station model

height[n]. For the specific implementation of counting the number of packages
stored temporarily before routing is kept in buffered_packages.

The five local functions consist of one for initialising the node (initialise()),
calculating the status of this node (getHeight()), updating the route (updateRoute()),
updating the local routing parameter with updateAugmentation(), and checking
whether an optimal route has been reached (hasValidRoute()).

4.2.2 Base station template

The base station is built of three states shown in Figure 4.2. The initial state
Init which leads to the Idle state. Whenever the base station is to receive a data
package it enters the Collect state on synchronisation with the data[id] channel.

The reason for the state Init is to control the sequence of initialisation of
all models (all models but the base station needs initialisation in this particular
system). Control of the sequence of initialisation is performed to limit the state
space.

4.2.3 Environment template

The environment model needs to perform three tasks, update the global in-
solation, the local shadow and update the battery status of the nodes. The
model is shown in Figure 4.3. The model used in the verification, however
is a bit more complex because of a runtime error in the composed functions
chargeAll(getSunStep()). There is no mathematical difference between the two
models, the difference should only be that the one used performs all calculations
directly in the updates in the edges instead of using functions.

The functions updateShadow() and updateSun() each cycle through a range.
The value then represents an index in an array of shadows and insolation val-

4.3 Verification 59

SwitchSun (€
chargeAll(getSunStep()), sun == getSunStep()
updateSun() sun=0
Initialise
global_time <= Nodes * Separation Idle
@ global time == Nodes * Separation) sun <= getSunStep() &&
step = 0, shadow <= getShadowStep()
sun =0,
shadow =0
shadow == getShadowStep()
updateShadow() && sun < getSunStep()
shadow =0

SwitchShadows (C

Figure 4.3: The environment model

ues. E.g. if day and night are modelled as either 1 or 0 the insolation array
insolation_value is [0, 1] or the reverse depending on if the model starts in day
or night. The insolation array has an associated array for the duration of each
insolation state, which could be [12-60-60,12-60-60] for 12 hour duration of
each state modelled in seconds. The function getSunStep() queries the duration
of the current insolation state and likewise with getShadowStep().

4.3 Verification

The computation tree logic (CTL) queries are available in the “circle.q” file in
the same sequence as described in this section. This query file together with
the model can be found in Appendix A.5. The last queries which fail due to
a bug in UPPAAL are put in the comments only. The queries are expected to
be satisfied if not noted otherwise. Those queries where the node number is
denoted by ¢ are expanded into a query for each node in the query file.

60 Formal analysis of DEHAR in UPPAAL

X N1

N

Ny No

N3

Figure 4.4: A node layout of 4 nodes and a base station arranged in a circle. X’
marks the base station while the nodes are represented with N; for i € [1,2,3,4].

4.3.1 Network structure

The equations (4.1)-(4.4) are constructed to verify the routing of data in the
WSN. Where (4.1) and (4.4) proves that nodes N7 and N4 always transmit
packages to the base station. Nodes N, and N3 are not neighbours of the base
station and can potentially have two different routes to it. This is proven with
(4.2) and (4.3).

The variable data_source is a global variable set to the source of radio trans-
mission in the edge going from NFouteSend o Nldle and from N/ PPIton o
N JouteReceive The yeason to use this variable is; since NjeUteSend will always
be reached at a later point (due to N,**"“*“°") for any node i, it must be en-
sured that the right receiver is matched in the verification. It is guaranteed
that data_source is not updated until after the neighbouring node has reached
RouteReceive because the edge updating data_source is synchronised with the
edge entering RouteReceive.

N{‘PP“CH“"" s (X':""ect A data_source = 1) (4.1)
[V wplication

((NfouteRecei"e V. N§°”‘9Recei"e) A data_source = 2) (4.2)
[V hwplication

((NRouteReceive Nf°"‘eRe°ei"e) A data_source = 5) (4.3)

Njpplication (XC""eCt A data_source = 4) (4.4)

4.3 Verification 61

The X represents the base station and N; represents the nodes in the net-
work. The superscript for the nodes and base stations describe a state of them.

The main use of this set of verification queries is to verify the network struc-
ture. The data structure which stores the network structure is an adjacency
list neighbours[i|[j] with 0 < ¢ < number of nodes and 0 < j < number of
neighbours. If this adjacency list does not have bidirectional connections for all
neighbours the network does not behave as expected. This set of verification
queries is of course network structure specific.

An alternative approach to verifying the network structure is to check that
the route of a node always corresponds to the subset of nodes which are neigh-
bours of it. It is required, however, that the test is not applied when in Init
since there the route is 0 (not initialised yet). The query is shown in (4.5).

VO (N[°"* € neighbours[i] v N;"*) (4.5)

This query, however, does not verify that the neighbour reacts on the transmis-
sion, it only verifies the intent to send. neighbours[i] is the set of neighbours of
N;. This query has to be expanded into verifying the disjunct equality for each
member in the set before implementing in UPPAAL.

4.3.2 Battery charge and routing performance

If it can be verified that no node in the network will run out of power at any time,
then there will be no routing performance degradation. This can be performed
with the query (4.6).

YO-outOfPower (4.6)

where outOfPower is a global boolean variable which is true as long as any node
is in the state OutOfPower. (The use of the clock application <= 1000 in
OutOfPower is to avoid zeno behaviour and limit the number of state transi-
tions.)

This query might impose too hard constraints (if required to be true) on the
network. The designer could allow that some nodes can run out of power with
the requirement that the network is not segmented. This can be achieved by a
query for deadlocks (or the absence of these).

VO-deadlock (4.7)

62 Formal analysis of DEHAR in UPPAAL

The reason that this query implies the above statement is that only the Idle
state of a node accepts a data transmission (synchronisation on data[i] Vi). If
a node is in OutOfPower then no other node may try to synchronise with this
nodes data channel. For the broadcast channels it must not be the case that
all neighbours of a node is in OutOfPower. This, however, does not impose
any extra restrictions on the network than the data channels with respect to
deadlocks. (Restrictions are e.q. battery size, minimal power production and
other design parameters in order for the network to perform as intended by the
designer. Le pass the required queries.)

The query (4.7) must be satisfied but (4.6) needs not to be satisfied. If (4.6)
is not satisfied then the the query (4.8) can be used to verify which node(s)
enters the state OutOfPower.

3¢ N OutOfPower (4.8)

Whenever this query is satisfied for ¢ then NN; is at some point out of power.

4.3.3 Alternate routes

The main objective of the routing algorithm (DEHAR) is to find the optimal
route with two parameters, energy and distance. Therefore it is interesting to
see whether the routes do change in the network. Queries to check for the use
of alternative routes are 4.9 and 4.10.

3<> (N2route # 1A NQROuteSend) (49)
30 (NéOUte 7& 4 A N?I)?outeSend) (410)

By inspection of the network structure, it can be verified that N, has the
shortest route to the base station through N;. Likewise N3 prefers Ns. The
query asks for the possibility that a data package is transmitted when the current
best route is not along the shortest path. These queries will give a negative result
if the particular node does not change the route during its life (forever).

4.3.4 Energy change leads to optimal route

The DEHAR is to find the optimal route from the given towards the base station.
This is achieved by radio broadcasts between the nodes (i.e. synchronisation on
update[i]). In the model it has the side effect that several nodes can be active

4.4 Summary 63

at the same time, therefore UpdateNeighbour must be input enabled on the
broadcast channel.

To check that this system works amongst all the nodes, the query (4.11) can
be used.

3

(NiUpdateEnergy Vi NiUpdateNeighbour) ~ Nhas\/alidRoute() (411)

Sadly this query is not stable in UPPAAL, and can result in any of three out-
comes: satisfied, not satisfied or a crash of the verification engine.

4.4 Summary

It is shown that the model of the WSN, with a given structure and node design,
can potentially always route data from any node to the base station. The routing
can not be verified completely due to a bug when verifying that any node will
always converge at an optimal route. If however the nodes always converge at
an optimal route the other queries can prove that the given network will be
able to perform the required routing. I.e. no routes go through dead nodes
(the deadlock query). It is also verified that the DEHAR algorithm does use
alternative routes when stressed with low energy availability.

There are, however, as stated some discretisation problems that must be
improved before this verification can be assumed to hold for a real WSN im-
plementation. There are also other differences which are not included in the
presented model, such as: task scheduling, power consumption in idle, radio
transmission time, processing time, etc.

The verification of the model becomes very time consuming when lowering
the power production (globally and locally) of the nodes, making it difficult to
verify larger models.

64

Formal analysis of DEHAR in UPPAAL

Chapter 5

Theory of systems
modelling

There exists many different approaches to modelling systems. Some are generic
while others are domain specific. The challenge is to find the best matching
domain specific approach for the purpose. The domain specific UPPAAL frame-
work used to model the wireless sensor network (WSN) in Chapter 4 captures
static systems well, but not dynamic systems.

The more generic a modelling approach is the more different kinds of systems
it can express and the harder it gets to express/extract domain specific knowledge
of a system (because of lack of the right structure). In contrast, a domain specific
modelling approach is designed to express certain types of models and may be
inappropriate to use to express other types of models.

A model of computation (MoC) defines a formal method of performing cal-
culations. This definition of a MoC' is very broad and a MoC can be made to
fit each unique generic or domain specific modelling approach. The MoC makes
it possible to perform calculation (simulation) of a model and the structure of
domain specific MoCs makes is possible to analyse the structure of the model.

An analysis of the structure of a model can provide various information.
Examples are: extracting a static schedule of a set of tasks when mapped onto
a set of processing devices, analysing reachability of states in a state machine,
estimating power consumption, estimating memory usage, etc.

In this chapter, the theory of ForSyDe is presented.

66 Theory of systems modelling

) -

Figure 5.1: Example of functional model.

[[)

%

Figure 5.2: Example of functional model (p; and ps) connected to a platform
(ps and py).

5.1 Basic concepts

A set of concepts, used throughout the rest of the thesis, are defined here. These
concepts are homogeneous and heterogeneous models and static and dynamic
models.

A model of a system expressed in one MoC is a homogeneous model. An
example is shown in Figure 5.1 and is discussed in detail through the functional
model of the SIB use case in Chapter 6.

It may not always be practical to express a system in one specific domain.
Instead of just using a generic MoC to express the system, it can be beneficial to
divide the system into multiple sub-systems expressed in different MoCs. Such
a model is a heterogeneous model. An example of a heterogeneous model is
to add a platform model described in another MoC to the functional model of
Figure 5.1 as shown in Figure 5.2.

The examples (both functional model and the combined functional and plat-
form model) are examples of static models. A static model is a model where
the state space of the model is static. None of the possible inputs to the model
can increase the state space of the model. In contrast, a dynamic model can
change its state space through input. This is the case in the WSN use case (see
Chapter 2) where nodes (each having a constant state space) may be added or
removed throughout the lifetime of the network. Thus the state space of the
network model is changing, i.e. it is dynamic.

When placing homogeneity /heterogeneity on the x-axis and static/dynamic
on the y-axis we have four types of models (see Figure 5.3). The use cases

5.1 Basic concepts 67

Dynamic WSN
i
Static SIB —> SIB +
platform

Homogeneous Heterogeneous

Figure 5.3: The model space of static/dynamic models versus homoge-
neous/heterogeneous models. The models of the use cases in this thesis are
placed in the grid.

can then be plotted in this graph. The SIB use case (see Chapter 6) and the
WSN use case (see Chapter 2 and Chapter 7). The SIB use case is modelled
in two ways: the core functionality only and combined with a platform. The
core functionality is modelled as a static and homogeneous model as seen in
Figure 5.3, while adding the platform makes it a heterogeneous model.

The WSN use case is a set of nodes. A node has a core functionality and a
platform like the SIB use case. The network of nodes is dynamic, hence the WSN
model is dynamic and heterogeneous. The analysis of WSN using UPPAAL (see
Chapter 4) is an attempt to express a dynamic system as a homogeneous model.
The actual model expressed in UPPAAL is, however, a static model. It is not
impossible to express a model of a WSN in only one MoC, but it does have some
challenges and drawbacks.

The model in UPPAAL expresses a static homogeneous model, since only
a static number of nodes are present. Even if one models nodes entering the
network as turning on a node from a pool of offline nodes (and vice versa for
removing), it is still a pool of a static size. Thus, if UPPAAL is able to calculate
the truth value of a query, it reasons about all nodes regardless if it is in the
offline pool or active. Hence, the model is static, as the analysis covers all states
of node activity and connectivity.

68 Theory of systems modelling

P e @
joyc : \

DT ;
5

%
3

@

. J

Figure 5.4: Structure of ForSyDe models. ps and p7 are hierarchical processes,
the rest are leaf processes. Left: Hierarchy of processes. Siblings are part of
the same process network. Right: The process network.

5.2 Modelling with ForSyDe

ForSyDe is one of many heterogeneous modelling frameworks (see Chapter 3).
The key features of the ForSyDe framework are simulation of models and extrac-
tion of model structure.The extracted structure can be used for formal analysis
and for translation into other languages, such as synthesis of synchronous (SY)
MoC into VHDL. ForSyDe also provides domains and domain interfaces to
structure heterogeneous models. ForSyDe existed before the work of this the-
sis was done, as described in the following section. Hereafter, the additions to
ForSyDe are described.

5.2.1 The original ForSyDe

ForSyDe [62] originally defines the concepts: leaf process, hierarchical process,
process network, and process constructor. The SY MoC in ForSyDe defines a
set of processes which, connected by signals, constitutes a process network. A
process can be of two types, a leaf process (the functionality is specified by a
function) or a hierarchical process (containing a process network). Processes
are concurrent and communicate only via signals. In Figure 5.4 the processes
1, P2, P4, P5, and pg are leaf processes and p3 and p7 are hierarchical processes.
The process py7 is only present in the hierarchical view (left) and represents the
entire process network in the model (right).

Signals are sequences of values with a global ordering s1 = (v1,v9,...,vy).
The ordering is defined by the index of the value in the signal (sequence). Le.
values with the same index occurs at the same time in all signals as in sy =
(w1, wa, ..., w,) where v; and w; occurs at the same time.

5.2 Modelling with ForSyDe 69

_ @ 4,6,81)
s1=1(1,2,3,4,5) — s= .
(3,2,3,0,2) — (+) Delay with 0}— s, = (0,4,4,6,4,7)
32 =) 9 ?)

2
b1 b

Figure 5.5: Example of a process network in the original ForSyDe.

To illustrate the above, a signal is written as a number of tokens enclosed in
angular brackets, e.g.: s = (s1, 82, s3). The signal sequence is constructed by a
catenation operator (:), and the notation relates to the other signal notation in
the following way:

8 =51:52:83:() = 81:82:(83) = $1:(52,83) = (81, 82, S3) (5.1)

The empty signal (()) is itself considered a special token of signal termination.
A small example of a process network, and a simulation of it, is shown in
Figure 5.5. It displays the input signals s; and ss to the process p; which adds
its inputs, the intermediate signal s and the output signal s, where the last
signal has been delayed by the process ps. The initial value of s, is 0 in ps.

A process is constructed using a process constructor. A process constructor
defines the number of inputs a process has. A leaf process always has one out-
put. A process constructor has other arguments like function(s) and/or initial
value(s). There exists infinitely many process constructors, one per unique num-
ber of inputs. Each of these process constructors must be defined before they
can be instantiated as processes. This is explained in detail in the next section
and illustrated for the one-, two-, and three-input processes in Figure 5.6.

Definition of processes, process networks, and process construc-
tors

e A process constructor is a template for leaf processes.
e A leaf process is an instantiation of a process constructor.
e A hierarchical process is a process containing a process network.

e A process network is a set of processes connected by signals.

70 Theory of systems modelling

5.2.2 Generic definition of models of computation

ForSyDe originally only provided an implementation of the SY MoC. It has now
been extended to contain the four MoCs: SY, synchronous data flow (SDF), dis-
crete event (DE), and continuous time (CT). The concepts of process construc-
tors, leaf processes, hierarchical processes, and process networks of the original
ForSyDe are kept. The definition of signals is changed slightly to be sequences
of tokens instead of values. (Values are then a specific type of tokens.) The
concept of a process atom is added to the new ForSyDe.

The reason why the concept of process atoms is added is: A process con-
structor was originally made from scratch every time an extra input where
required in the final process. The implementation of these process constructors
contains much redundancy and becomes more complex the more inputs a pro-
cess requires. The challenge is that there does not exist a proper set of process
constructors which can express any other process constructor. For some MoCs
it can be trivial to express a 3-input process constructor as the combination of
two 2-input process constructors. However, for some MoCs this is not possible.

Process atoms are closely related to process constructors. (In some MoCs
they are actually the same as process constructors.) There is a finite set of
process atoms for each MoC. The process atoms can be combined to any other
process constructor. This solves the challenge of infinitely many different process
constructors in the original ForSyDe and helps to avoid implementation errors
when building new process constructors. An example of how process atoms are
combined to process constructors with varying number of inputs is shown in the
right column of Figure 5.6.

Figure 5.7 illustrates how the process atoms are used in models, compared
to the original ForSyDe way shown in Figure 5.4. This also illustrates that the
concepts of leaf/hierarchical processes becomes a bit vague. The process atoms
in Figure 5.7 could be interpreted as processes and all of p; could be interpreted
as hierarchical processes. This is an unintended side effect of drawing the process
atoms in the model. The intention is that the collection of process atoms that
replaces the process from the original ForSyDe together represents a process.

The four MoCs currently defined in ForSyDe have three process atoms in
common. The map atom (®), the zip atom (@) and the delay atom (A).

5.2 Modelling with ForSyDe 71

Original New
Hf10
)
R @
I o
N
Y
;
g f3 > > fast
N

Figure 5.6: Comparing the original ForSyDe with the contributions of this thesis.
The left column represents process constructors in the original ForSyDe and the
right column the equivalent by using the process atoms. Examples are shown
for one, two and three input process constructors and the sequences continue
for more inputs. The original ForSyDe must define a new process constructor
for each added input, while the new structure just adds an extra process atom.

—QO
Ps

Figure 5.7: Structure of ForSyDe models using process atoms. ps and p; are
hierarchical processes, the rest are leaf processes. Left: Hierarchy of processes.
Right: The process network. (See also Figure 5.4.)

72 Theory of systems modelling

A,7)
s1=(1,2,3,4,5) Hﬁ oL TR
(A0)— s, = (0,4,4,6,4,7)
52 = (3.2,3,0,2) — . .

P1

Figure 5.8: Example of a process network in the new ForSyDe. This example is
the same as in Figure 5.5 replacing process p; with process atoms.

Definition of process atoms
® Maps the provided function f onto values of the input signal.

@ Applies the functions of the first signal with the values of the second
signal. The ordering of the tokens is defined by the MoC.

A The delay process atom implements explicit or implicit timing of the
MoC.

The operators are all left associative with the same precedence. Il.e.
fOadbAzy=(((f®a)®b)A z).

Signals are sequences of tokens defined by the MoC. The ordering of tokens
in signals is defined by the MoC. Examples of possible ordering of tokens are:
global order and partial order. With global ordering, any token in any signal
happens strictly before, after or at the same time as some arbitrary other token.
With partial ordering, tokens are ordered in each signal but has no order when
comparing two different signals.

The example in Figure 5.5 in the original definition of ForSyDe the plus-
process is replaced by a map and a zip process atom as shown in the sec-
ond row of Figure 5.6. The resulting figure of the transformation is shown
in Figure 5.8. The intermediate signal (s3) from the map to the zip pro-
cess atom would contain a sequence of partially applied plus operators s3 =
((14), (24), (34), (4+), (5+)). The values of the signal s3 represents func-
tions, e.g. the first value (41) is a function which adds one to its input. Le.
S3 = <Add1, Addg7 Addg, Add4, Add5> where Addl =\r =i+

The map atom (see Figure 5.9) works like a generalised function application.

5.2 Modelling with ForSyDe 73

Si So

Figure 5.9: The map process atom. For all tokens in s; carrying a value, the
function f is used to calculate the replacement value for the output s,. All
other tokens are not changed.

S1 s
S2 > °

Figure 5.10: The zip process atom. The output s, is produced by applying
values from ss to functions in s;. The tokens of s; and s, are ordered according
to the MoC. The input s; is typically an output from another map or zip process
atom.

It takes a function f as the first argument, the number of arguments the function
f can take defines the maximum of inputs the final process can take. The second
argument of the map atom is the first input signal of the final process the map
atom is part of. Each token in the input signal, which carries a value, the value
is applied to the first argument of the function f. The resulting value is placed
in a value carrying token. All other tokens (not carrying values) are copied from
input to output. If the function f takes more than one argument, the output
signal will carry a sequence of functions taking one less argument than f.

The zip atom is a variant of the map atom. Instead of taking one function,
it takes a signal of functions as the first argument. The second argument is
carrying the values to be applied to the functions in the same way as for the
map atom. Since the zip atom has two input signals it defines the ordering of
tokens, e.g. global or partial order.

In order to allow for feedback loops, a delay atom is required. In other
words, any loop must contain at least one delay atom. The delay atom must be
present in loops for the model to make sense. In other words, a loop must have
a finite positive delay, for example described through a synchronisation delay or
a time delay. The delay atom (see Figure 5.11) takes an input signal and some
notion of delay. The notion of delay depends on the MoC, e.g. timed MoCs use
time (and initial value) as delay notion opposed to untimed MoCs which use a
number of tokens as delay notion.

74 Theory of systems modelling

Figure 5.11: The delay process atom. To produce s,, an initial token is intro-
duced and all tokens in s; are delayed according to the MoC. The delay notion
x may directly specify the initial token, a time delay or something else which
best expresses a delay in the given MoC.

,,,,,,

: b3 d3

Figure 5.12: Example of domains and domain interfaces.

5.2.3 Domains

In order to combine several MoCs in one model in a formal way, domains are
defined. A domain contains a process network implemented in one MoC. In
other words, it contains a homogeneous model. A signal from one domain to
another is translated using a domain interface. Three domains (d;, ds and d3)
marked by dashed boxes are shown in Figure 5.12.

In Figure 5.12, if domain d; and ds are implemented in different MoCs, they
cannot be merged into one domain. However, if they are expressed in the same
MoC, they may be merged into one domain as long as the merged domain still
follows the semantics of the MoC. In other words, a merged domain imposes
extra restrictions than the two separate domains. In the case of the SY MoC
these restrictions are, that the otherwise independent models (p; and ps in the
example) must be fully synchronous if part of the same domain. If p; and py are
not always intended to be synchronous, they can not be in the same domain.
Similarly restrictions apply to other MoCs.

5.2 Modelling with ForSyDe 75

SY
8 — — S

SDF

Figure 5.13: Example of a domain interface. The input domain contains the SY
MoC and the output domain contains the SDF MoC.

5.2.4 Domain interfaces

A domain interface is a translation of a signal from one domain to another.
Each MoC has its own signal type. The four MoCs defined in ForSyDe has the
following notation:

8 The synchronous (SY) signals are denoted by a bar.

S8 The synchronous data flow (SDF) signals are denoted by a dot.
5 The discrete event (DE) signals are denoted by a hat.

S The continuous time (CT) signals are denoted by a tilde.

The bold face of the notation signifies a sequence of tokens, while the figure
above the signal name signifies the MoC it belongs to. The two timed MoCs
are not shown in bold, this will be explained in detail later in the individual
description of the MoCs.

The generic domain interface is drawn as a rectangle with one diagonal. In
the triangles, the source and sink MoC are denoted (see Figure 5.13).

A domain interface must implement the semantics of the two domains it
connects. This makes it a challenge to predefine domain interfaces between
all MoCs, since adding a new MoC to the framework requires the addition of
domain interfaces to all existing MoCs. Another challenge is to describe all
possible translations between two MoCs.

A domain interface can only translate one signal. However, some MoCs
require extra information (input signals) for the translation. For example ex-
plicitly timed MoCs, such as a CT MoC. A domain interface which translates
from an untimed MoC to the CT MoC require a time information in addition
to the sequence of untimed tokens from the untimed MoC. A domain interface

76 Theory of systems modelling

Figure 5.14: Example of a hierarchical domain interface.

which translates in the opposite direction (i.e. from the CT MoC) may require
extra time information to sample the continuous signal.

The implementation of a domain interface can be anything from an abstract
ideal conversion of signal types to a detailed model. In other words, a domain
interface can also be hierarchical of nature. Implemented by more basic domain
interfaces and logic connecting them into a network. A hierarchical domain
interface is drawn as a rectangle (see the example in Figure 5.14). In essence
the difference between a domain interface and a process is: a domain interface
has inputs and outputs connected to different domains, where all inputs and
outputs of a process are connected to one domain. A reason not to put too much
of a model inside domain interfaces, is that it implements multiple domains and
their semantics thus may loose the benefit of the formal structure of a single
MoC.

An example model with domain interfaces is shown in Figure 5.15. The
model specifies a process in the CT MoC which produces a sine signal (5;). The
signal is sampled by the analogue to digital converter (ADC) (implemented as
a CT/SY domain interface). The time points at which the sampling is done, is
specified by s; which is a chronological sequence of time stamps. This can be
implemented by different MoCs. A simple SY model (just a delay) processes
the sampled voltage and it is transformed back to the CT MoC with a digital to
analogue converter (DAC) (SY/CT domain interface). The DAC combines the
values of the samples with the time stamps of s;. The input (§;) and output
(8,) CT signals are plotted in the graph.

The example shows how the two domain interfaces implement the same
semantics for each of the domains they are connected to. The surrounding
domain with the CT MoC is synchronised with the inner domain with the SY
MoC on every time point in s;. In other words, every time a synchronisation of

5.3 Models of computation 77

Figure 5.15: Example model with domain interfaces. An input signal §; is
sampled (ADC), processed, and converted back (DAC) to the output signal 5,
in the CT MoC. The two analogue signals are plotted in the graph, the blue
smooth curve is the input signal (5;) and red step curve is the output signal

(50)-

the SY MoC occurs, a value is sampled at the same time as a value is converted
to the CT MoC.

5.3 Models of computation

Any MoC can be part of the ForSyDe framework. If domain interfaces can
be constructed to other MoCs then a heterogeneous model can be built out of
these MoCs. The SYSMODEL project and the company partners believe the
four MoCs SY, SDF, DE, and CT to be sufficient for modelling the company
use cases. These four MoCs are described and defined as part of the ForSyDe
framework in the following sections.

5.3.1 Synchronous MoC

The SY MoC is the simplest to define of the four MoCs in ForSyDe. The SY
MoC presented here is derived from the original implementation of ForSyDe [62]

78 Theory of systems modelling

K@“\N Km*b(m
@%a@ \m\ .5 Km) ’ &Oﬁ)@a\)
B KO'X" (—\ kf \KbX\ 5
a S fO g
& 7)
_ (b1, b2,b3) (2
b g ® z
- (c1,c2,¢3)

Figure 5.16: Example: How to combine process atoms into models. The
mathematical representation of the model is fOGa®b@e. The function f
in this example takes precisely three arguments, hence the output signal
8. = (z1,22,23) = (f(a1)(b1)(c1), f(az)(b2)(ca), f(as)(bs)(cs)) is the sequence
of the fully evaluated functions.

which only contains this single MoC. The main changes from the presentation
in [62] are: process atoms have been added, process constructors are derived
from process atoms, and the syntax of the MoC is adapted to fit the other
MoCs now present in ForSyDe. The Haskell implementation of the SY MoC
presented here, is available in Appendix A.1.

The signals in the SY MoC are sequences of tokens with global ordering
8§ = (v1,v2,...,Vp,...). The ordering is defined by the index of the token in the
signal (sequence). I.e. tokens with the same index occurs at the same time in
all signals. There exists two token types in the SY MoC: the value token (v;)
and the termination token (()).

Since there is a global order of tokens, the processes can synchronise globally
by using the index of the tokens of their input signals. Therefore the processes
does not need to perform actual synchronisation globally, i.e. there is no com-
munication between processes except the explicit signals. This is illustrated in
Figure 5.16, where values with the same index occur at the same time. The first
value of each input signal is applied to the function exactly once to produce the
output value, after which the second value of each input signal are processed,
etc.

The SY MoC provides precisely the three process atoms described in the
generic MoC section. The definition of the map atom, shown in (5.2), maps

5.3 Models of computation 79

the function f to each value of the input signal. The definition is divided into
two cases, the first (applying value to function and recursing) is chosen if the
input signal has at least one value token. The output signal terminates when
the input signal terminates. This definition of the map process atom is the same
as the one input process constructor of the original ForSyDe.

The definition of the zip atom, shown in (5.3), uses the same principle as the
map atom to divide the definition into two cases. A recursing and a termination
case. The output terminates when either input signal terminates, only if both
signals have at least one value token they are combined into an output value.
The zip process atom expects the first signal s¢ to contain functions as values
and the second signal s, to contain values matching the type of the functions.
This definition of the zip process atom is the same as the two input process
constructor of the original ForSyDe fused with the function apply(f,z) = f(x).

8, ®s ,s5,=f:8. Ns,=x:58
s.—s; @8, = @8O8, 8 =8 NS, =18,
0 =0 Vs =(

The last process atom needed to fully implement the SY MoC in ForSyDe
is the delay atom. A delay in the SY MoC is to delay all tokens in a signal
by one synchronisation by adding an initial value as the first token. This is
simply defined as prefixing the initial token with the input signal, as shown in
(5.4). This definition of the delay process atom is the same as the delay process
constructor of the original ForSyDe.

(5.3)

S, =8, Azy = 2zp:8, (5.4)

Examples of process constructors constructed by process atoms. Four
examples are used to illustrate the usage of the process atoms to create other
process constructors. The examples are: a simple ALU (plus only), a two input
multiplexer, and a Moore and a Mealy state machine.

The ALU is composed of a function (+) and two input signals, put together
with one map atom and one zip atom. The composition is graphically repre-
sented in Figure 5.17 and as an equation in (5.5). The equation represents a

80 Theory of systems modelling

84 (+H)o @_ .
Sy >

Figure 5.17: Example process constructor. An ALU with a plus operation only.

~§b

Figure 5.18: A multiplexer process constructor. The function “if-then-else” is
defined as: Ap — Aa — Ab — ifpthenaelseb. It selects values from signal s,
and 3 based on the boolean values of s,,.

process constructor because the input signals have not been connected/applied
yet.

P (84, gy) =(+)©8: & Sy (5.5)

The second example implements a multiplexer. It is graphically represented
in Figure 5.18 and as an equation in (5.6). The function “if-then-else” is defined
as if-then-else = Ap — Aa — \b — if pthenaelseb. A process instantiated from
this process constructor selects values from signal s, and s; based on the boolean
values of 5.

Pt then-else (8p, 84, 8p) = (if-then-else) ©® 5, ® s, @ & (5.6)

The first two examples showed no feedback loops or delay process atoms. A
Moore state machine (5,3, T, So, fnext, fout) 1S used in the next example. The
symbols of the Moore state machine are defined as follows: 3, : [3], s : [9],

0 S, fuext : S XX =S, four 1 S — I'. The Moore state machine is illustrated
in Flgure 5.19 and written in ForSyDe notation in (5.7)) and makes use of the
delay process atom.

PMoore (fnext7 fouta S0, gz) = fout ©®3 where 5= fnext ©sds; Aso (57)

5.3 Models of computation 81

S

Figure 5.19: A Moore state machine. Arguments of the process constructor are:
a next state function fhex, an initial state sg, an output function fou:, and the
input signal s,.

L 5
e @RI

Figure 5.20: A Mealy state machine. Arguments of the process constructor are:
a next state function fhext, an initial state sg, an output function fou:, and the
input signal 5,.

It is trivial to extend the Moore state machine to a Mealy state machine in
the ForSyDe notation (see Figure 5.20 and (5.8)).

PMealy (fnext7 fout; S0, '§a:) = fout ©OsD s, where 5 = fnext ©8s®DSs;Aso
(5.8)

An alternative implementation would be to extend the Moore process con-
structor with a zip atom at the output (see Figure 5.21). The equation of this
state machine is: PMealy (fnexta fou‘m S0, gw) = Phoore (fnext7 fouta 50, gz) ®35,;. Of
course the definition of the Mealy state machine based on the Moore state ma-
chine requires one to instantiate the Mealy with an output function which takes
at least two arguments. Thus the output of the Moore state machine will be a
signal of functions.

Example of a simulation of a Moore state machine. The Moore state ma-
chine process constructor shown in Figure 5.19 and (5.7) is instantiated with
the functions fhexs and fous and the initial value sg as shown below. The state
machine instantiation implements a gate, where you have to pay (Coin) to pass

82 Theory of systems modelling

Sz T’[PMoore (fuexts fouts So)j—t o 5,

Figure 5.21: Alternate definition of the Mealy state machine.

Push
Coin
start Coin

Push

Figure 5.22: A Moore state machine of a gate, where you have to pay (Coin) to
pass through (Push).

the gate (Push).

. Locked , i = Push
Frexs (s, 0) = { Unlocked , i = Coin (5.9)
Enter , s = Unlocked
Four(5) = { Pay , s = Locked (5.10)
so =Locked (5.11)

The state diagram is shown in Figure 5.22 and an example simulation is shown
below, with both input, state and output signals.

8 = (Push, Coin, Push, Coin, Coin, Push, Push)
s = (Locked, Locked, Unlocked, Locked, Unlocked, Unlocked, Locked)
5. = (Pay, Pay, Enter, Pay, Enter, Enter, Pay)

5.3.2 Synchronous data flow MoC

The SDF MoC [39] is the other untimed MoC present in ForSyDe. It is closely
related to the SY MoC. The difference between the two MoCs are the number

5.3 Models of computation 83

m

Figure 5.23: Annotation of token consumption rates of process atoms. The map
process atom consumes n tokens per execution. The zip process atom consumes
1 token on the first input and m tokens on the second input per execution. The
delay process atom consumes 1 token per execution. All three process atoms
produce 1 token per execution.

Sz

s
y
Ny

Figure 5.24: A generic two input process constructor.

of tokens consumed and produced per execution of a process, the SDF MoC
does not require all processes to fire simultaneously thus there is only a partial
order of tokens between signals. The Haskell implementation of the SDF MoC
presented here, is available in Appendix A.2.

Both the MoCs consume/produce a static number of tokens per process
execution, but the SY MoC requires this to be one for all inputs and outputs.
The SDF MoC allows for any positive number. The Figure 5.23 shows the
typical annotation of consumption and production of tokens per execution of
a process. The map and zip atoms specifies the number of tokens consumed
per input, but the number of outputs are not specified with these three process
atoms. The delay atom is hard-wired to consume and produce one token per
execution.

To be able to specify the number of output tokens produced per execution
of a process, a new process atom must be defined for the SDF MoC. It is called
expand. An example of its use is shown in Figure 5.24 and (5.12) together with
all the other process atoms. The example process constructor will only accept
functions (f) of precisely two arguments. It is required that a SDF process
contains exactly one map atom n — 1 zip atoms and one expand atom, where n
is the number of inputs of the process. Furthermore the function f must have

precisely n arguments. This is a restriction of expressiveness compared to the
SY MoC.

84 Theory of systems modelling

P (f,ng,ny,m,3;,8,) =expand (f © (ng, 85) & (ny, 8y)) Am (5.12)

The number of produced tokens (n.) is defined not by the expand atom
itself, but by the result of the function f. The challenge is that the map and
zip atoms can only produce one token per execution, and thus the resulting set
of tokens that are produced per execution of the final process is packed in one
token in the internal signals. The job of the expand atom is to expand these
packed tokens into the output signal. This implies that all SDF processes must
always have an expand atom after its map and zip atoms.

Comparing the implementation of the map atom of SY and SDF, the map
atom takes an extra argument (the number of consumed tokens n,) in SDF. This
argument is used to split the input signal into two chunks. A set of consumed
tokens and the rest of the input signal, if there where enough tokens to meet
the required amount n, the process fires (and recurses). If the input signal
terminates and it is not possible to acquire enough tokens to fire, the output
signal terminates. Thus some input tokens may be discarded when the output
signal terminates.

f@):fo (nw, s;) , (z,8)) = split (ng, 8;)
s, =f0ng, 8;) = A length (z) = n, (5.13)
9 , otherwise

The zip process atom has, like the map process atom, an extra argument
(nz) to describe the number of consumed tokens per execution on the second
input signal. Since any zip process atom is part of the same process as the
process atom connected to its first input, the zip process atom must fire once
per token in the first input signal. The zip process atom terminates when either
of the input signals terminate, otherwise it processes the required number tokens
of the input signals and repeats.

f(x):8 ®(ng,8,) , 55 =f:5)
A (z, 8),) = split (ng, 8,)
A length () = n,

() , otherwise

5.=5; B8, = (5.14)

The expand process atom is unique to the SDF MoC (of the MoCs currently
in ForSyDe). It takes, per execution, one token containing multiple values and

5.3 Models of computation 85

outputs multiple tokens containing one value each. It terminates when the input
signal terminates.

5, = expand (8,) = { Ec;ldr ((:), expand (8,) ,z) : Zj z 3 8 (5.15)

The delay process atom is extended to take a set of initial values, all prefixed
to the input signal. Otherwise it is the same as the delay process atom in the
SY MoC.

8§, =8, Az =foldr ((:), 84, 20) (5.16)

5.3.3 Discrete event MoC

The DE MoC is an explicitly timed MoC. Firstly the signals of the DE MoC dif-
fers from the two previous MoCs. All tokens in a signal carries a time including
when the signal terminates. Furthermore, a signal also carries an initial value,
since two different signals may not be defined from the same starting time. A
signal in the DE MoC is constructed as a tuple of an initial value and a sequence
of tokens carrying timed events and the time of termination of the signal. Each
timed event is a tuple of time and value.

§ = (x9,8) where s={((t1,v1), (t2,v2),..., (tn,0n),...) (5.17)

ttermination

A signal must contain a sequence of events with strictly increasing time
tags. The termination time tiermination Must be greater than the time of the
last event in the sequence. If the signal is infinite it does not terminate, thus
the termination time is infinite. The Haskell implementation of the DE MoC
presented here, is available in Appendix A.3.

The map process atom of the DE MoC looks almost like the map process
atom of the SY MoC. However, since the signal is a tuple of an initial value
and the sequence of tokens, the initial value is handled separately first in (5.18).
The second part in (5.19) resembles the SY MoC and works in the same way.
If the token of the input signal is an event with value, the value is applied to
the function to produce the output value. All other tokens are copied to the
output. Time is not changed in this process atom.

86 Theory of systems modelling

5. =fO8: = fO(z0,8:) = (f (20),lift (f,52)) (5.18)
lift (£, 5,) = { (t, f(z)):Mift (f,) , sz =x: 8, (5.19)

>t y Sz = <>t

The equation for the zip process atom looks somewhat more complex than
the two previous MoCs, but it still follows the principle that if either of the input
signal terminates, so does the output signal. Again the zip process atom first
treats the initial value of the signal in (5.20) and then the sequence of tokens in
(5.21).

The handling of the tokens is divided into eight cases, covering alignment
of the incoming tokens by time and token type. The three first cases are like
the the recursion case of the other MoCs in the sense that both signals have
an event as the next token. The three cases represents the timed ordering of
these events, either the event of the first signal happens first, they happen at
the same time, or the event of the second signal happens first.

The first three cases do not cover all cases of recursion. The other two cases
of recursion (case 4 and 5) represents cases where one signal terminates later
than the event of the other signal. Hence the event is handled and the process
recurses.

The last three cases cover the termination. The first two termination cases
(case 6 and 7) are in essence the opposite of the last two recursion cases. Here
the termination of one signal happens before or at the same time as the event
of the other signal. Thus the process terminates. The last case is when both
signal terminates, and the process terminates at the earliest time of the two
terminating signals.

5, =385® 5, = (fo,5¢) B (20, 52) = (fo (x0),bind (fo,sf, 0, 5z2)) (5.20)

5.3 Models of computation 87

bind (fo, 55, %0, Sz)

(tg, f (o)) : bind (f, s’f,xo,sx) sty <ty ANsp=(ty, f):s}

A Sy = (tg,2): 8,
(tf, f(x)):bind (f, s},x,sfr) sty =tu Nsp=(ty, f):s}

A Sy = (tg,x): 8.,
(tz, fo (x)) : bind (f075f7x78/m) sty >ty Nsyp= (tfvf)zs}

A Sy = (tg,): 8.,
(tg, f (o)) : bind (f, s'f,xo,sx> sty <ty ANsp=(ty, f):s}

= A sz = (), (5.21)

(tz; fo (x)) :bind (fo, s, 2,8,) tr >ta Asp= (),

A Sy = (tg,x): 8,
<>tf ,tfgty/\Sf:Otf

A Sy = (tg,2): 8,
(¢, ctp =t Nsp=(ty, f):s}

A 8; = <>t1
<>min(tf,tz)) Sf= <>tf

A sz = ()

The delay process atom is a bit different from the SY and SDF versions. It
takes a tuple of an initial value and a time delay. The initial value of the delay
process atom overrides the initial value of the input signal.

The initial value of the delay process atom is the initial value of the output
signal, furthermore it is used as the value of an initial event at time zero (see
(5.22)). The tokens of the input token sequence are all processed by adding the
time delay to the token time (see (5.23)). All tokens are delayed, not only the
tokens carrying a value. This is of course also the case for the delay process in
the SY and SDF MoCs, but here it is done explicitly.

Sz =8 A20,T) = (0, $2) A(20,T) = (20, (0, 20) : delay (s, T)) (5.22)

(t+T,x), s, = (t,x): 5,
<>t+T y S = <>t (523)

Example simulations of models. First a model of a logic inverter where the
output of the inverter is feed back to its input. The inverter is modelled as a
not-process and a delay. The model is depicted in Figure 5.25. The model has

88 Theory of systems modelling

Lot gEm L

Figure 5.25: Unstable one-inverter loop. The equation of the model is: §; =
S9 A(F, 3) where §5 = (") ® 81.

Figure 5.26: Stable two-inverter loop. The equation of the model is: § =
§3 A(F,S) where §2 = (") ®.§1 and §3 = (") ®§2

no inputs, so the result of a simulation is governed by the initial state of the
inverter (the delay process) and its delay. Using an initial value of False (F)
and a delay of 3 time units, the following simulation result is obtained:

The termination (right angular bracket with termination time as index) of the
signal sequences is not written, as it never occur.

The second model shows a stable two inverter loop shown in Figure 5.26.
The only difference between the first and the second model is an extra not-
process in the loop. Only one delay process is present, and defines the total
delay of the two inverters. If one delay process was put after each not-process,
the model would not exhibit a stable state if the two delay processes had the
same initial value.

As in the first model, the resulting simulation trace is determined by the
initial value and delay of the delay process. Even though the system is stable,
a simulation produces an infinite sequence of events as shown below:

51 = (F,{(0,F), (2,F), (4,F), (6,F),)

52 = (Ta <(07 T)? (Qa T)v (47 T)a (63 T)7 .-)
s =(F(0.F), (F, &F), (6F), ..

5.3 Models of computation 89

A more optimal simulation result would only contain one event in each
signal and a termination at infinity to illustrate a signal which never changes.

§1= (F’ <(07F)>OO)
$2= (T,((0,T))s)
83 = (F.((0,F))c)

There exists several different theories for optimising DE simulations as ex-
emplified above. One way is to use one big event queue, in which all processes
commits produced events to. With such an event queue, it is possible to remove
redundant events without any further problems. If the event queue at any point
is empty, the simulation will never change the state of any signals again. Such
simulators are, however, inherently single threaded. Processing multiple events
in parallel, when using one event queue, is one possibility to overcome the single
threaded nature of event queues. However, this approach relies on automatic
detection of event that can be processed in parallel and corrections if processed
events were not yet ready for execution.

In the case of ForSyDe, the processes are defined to only communicate
through signals. I.e. they do not synchronise by any other means than signals.
Therefore redundant events cannot always be removed without challenges.

There exists two methods of optimising DE simulations with processes de-
fined like in ForSyDe. A conservative and an opportunistic approach [29]. The
opportunistic approach tries to perform calculations before a process may have
all required inputs ready. If the missing inputs never arrive (i.e. they were
removed due to redundancy) the calculation is correct. However, if the missing
input arrives later, the calculation must be rolled back (annihilated) and the
correct calculation performed instead.

The conservative approach tries to detect when it is safe to remove redundant
events. The challenge is that if all events in a feed back loop of the model are
removed, the simulations stops (deadlocks). The conservative approach tries to
avoid these deadlocks by allowing some redundancy or producing alternative
tokens to signify absent events.

The advantage of the conservative and the opportunistic approaches are that
it is possible to exploit the concurrency of the model itself for parallel execution
of the simulation. L.e. the processes of a model can be arbitrarily chosen to run
in parallel, without changing the behaviour /simulation result of the model. The
definition of ForSyDe presented in this chapter does, however, not support the
opportunistic approach because two consecutive events in a signal can never be
processed at the same time in any process.

90 Theory of systems modelling

The research performed as part of this thesis includes conservative opti-
misations of the DE MoC. These optimisations can produce the same optimal
simulation results as presented above of the example model shown in Figure 5.26
and a few other models. The implementation has not been proven to work for
all DE models. The implementation of these optimisations can be found on the
enclosed disc.

5.3.4 Continuous time MoC

The CT MoC is an explicitly timed MoC like the DE MoC. The definition of
the CT MoC presented here is not derived from any other work. The Haskell
implementation of the CT MoC presented here, is available in Appendix A.4.

The basic idea of a CT simulator is: a signal is defined as a sequence of time
intervals. In each time interval a continuous function describe the analogue
signal. The time intervals of signal make up a continuous time sequence from
signal start to termination. Thus the time intervals start at the simulation time
t; of the event token (¢;, f;) and ends just before the simulation time ¢;1 of the
next event (t;+1, fi+1). l.e. the time interval of event i is [t;,t;+1[. The time
interval of the last event in the signal will end at the time of the termination
instead.

The processes operate on the functions and produce new functions. The
processes may change the time intervals, for example by dividing a time interval
into two.

This idea can be expressed directly in the DE MoC. However, it requires
the definition of functions that can handle functions as values of the events.
For example, the simple plus process (+) ® §; @ § would become (Az — Ay —
Au — x(u)+y(u)) © 83 @ 4. The signals §3 and §4 would then contain functions
of time as values, e.g. A\u — sin(u).

The time variable u represents modelled real time, as opposed to the simu-
lation time ¢. The difference is that the simulation time ¢ must have an integral
type, where u could be a real type. An example could be that a simulated time
unit is equivalent to one millisecond of modelled real time.

Instead of explicitly handling the time, the modifications of the plus operator
shown above can be embedded into the map and zip process atoms, thus creating
a dedicated CT MoC. The function which is embedded into the map process
atom is Af — Au — f(u). The resulting definitions are shown in (5.24) and
(5.25).

5.3 Models of computation 91

5. =f08%: =fO(x0,5:) = (Mu— f (1‘0 (u)) ift (f, 51)) (5'24)

lift (f, 5,) = { gxu = f (@ () < 1ift (f,) 5 50 = @3 8]

The zip process atom is adapted similarly from the DE MoC, by embedding
the function \f — Az — Au — f(u)(xz(u)). The resulting definitions are shown
in (5.26) and (5.27). No other change has been made to the zip process atom
equations of the DE MoC than to embed the above mentioned function. This
implies that recursion and termination of the CT zip process is the same as the
DE zip process.

(5.25)

t s 8o = ()

gz = gf @ gm = (vaSf) @ (x075m)
= (Au — fo (zo (w)), bind (fo, s, To, 8)) (5.26)

bind(fo,sf,xo,sm)
(ty, Au — f (u, 20 (u))):bind (f, s’f,:co,sm) Sty <ty
sp=(tr,)8 N sy =(tz,7):8,
(ty, Au = f (u,z (u))) : bind (f, s'f,m,s’z) Sty =t
sp=(tr,)8 N sy =(tz,7):5,
(tz, AMu — fo (u,z (w))) :bind (fo, sf,x,8,) ,tf >ts
sp=(tr,)8 N sy =(tz,7):5,
(ty, Au — f(u, 20 (u))):bind (f, s’f,:co,sx) Sty <ty
= sp=(tr,)8 Nse=1),, (5.27)
(tz, AMu — fo (u,z (w))) :bind (fo,sf,x,8,) ,tr >ts
sp =14, N So= (e, 2):5,

<>tf sty St
sf =1 N So=(tz,x): 5,
<>tm) tf >ty
Sf:(tfvf)zs} N 8g = <>tr
<>min(tf,tm) » Sf = Eitf
N Sy = b

The delay process atom of the DE MoC can be used without any change in
the CT MoC. The equations are repeated (with CT signal notation) in (5.28)
and (5.29).

92 Theory of systems modelling

5, =5, A(Z()v T) = (1’0, SI) A(Z()v T) = (207 (Oa ZO) :delay (Sata T)) (528)

] t+T,x), sp = (t,x): 8,
delay (s, T) —{ Orer 250 = 01 (5.29)

Since the CT MoC is based on the semantics of the DE MoC, it is obvious
to assume that the same optimisation techniques also apply. However, there is
one challenge with this definition of the CT MoC. The challenge is to determine
redundancy when comparing two functions. There exist no natural method to
compare two arbitrary functions, to check if they are equal for the time interval
where they are to be equal.

5.4 Structured domain interfaces

The domain interfaces have been described in generic terms without any example
of implementation. The implementation of domain interfaces depends on how
the two domains are meant to interact. It may not be possible to describe all
possible domain interfaces, like it is for the processes of each of the presented
MoC, that are built from a small set of process atoms. However, in this section
a set of generic domain interface atoms are defined, which cover at least the
trivial domain interfaces. These domain interface atoms can be combined with
the previously described MoCs to form more complex domain interfaces.

The domain interface atoms are formed by taking the domain interface (not
the hierarchical domain interface) and splitting it at the diagonal (see Fig-
ure 5.27). The idea is that the two halves can be matched with the counterparts
of the other MoCs to form a basic domain interface between two different mod-
els expressed in different MoCs. The signals o and ¢ have the same semantics
as the SY signals in between the two domain interface atoms. Connecting the
signals o and % completes the basic domain interface.

5.4.1 Domain interfaces for the untimed MoCs

The domain interface atoms of the SY (see Figure 5.28) and SDF MoCs (see
Figure 5.29) have the same semantics but with different signal types. The
definition of these atoms is merely a change of the type of the signal. The left
atom in each figure is an interface from the domain and the right is an interface
to the domain.

5.4 Structured domain interfaces 93

SY

SDF

Figure 5.27: Splitting a basic domain interface in two halves.

SY

S > > 0 i —— 3,
E SY

Figure 5.28: Domain interface atoms of the SY MoC.

SDF

SDF

Figure 5.29: Domain interface atoms of the SDF MoC.

94 Theory of systems modelling

——————————————————————————

S A “ e e mm e N :) |
i SY 5 1 SDF i
O]
| SDF SY 1
. |cruy o o CPUy| |
| SY 9 1 SDF |
B eyt = I
| SDF SY }
o — . T T Interface L —
CPU1 CPU2

Figure 5.30: Example of two communicating CPUs where CPU; runs at double
the frequency of CPUs.

An example of the use of domain interface atoms with SY and SDF MoCs is
shown in Figure 5.30. The example illustrates two processor cores (CPUs) that
can communicate through an interface. The interface describes a 2:1 relation in
clock frequency, i.e. CPU; runs twice as fast as CPUs,.

5.4.2 Domain interfaces for the timed MoCs

The domain interface atoms of the DE (see Figure 5.31) and CT MoC (see
Figure 5.32) are a bit more complex than the untimed counterparts. Multiple
domain interfaces between the same two domains must be synchronised by an-
other means than the token index as is the case for the untimed versions. The
timed domain interface atoms must be synchronised by time.

The domain interface atoms for the DE MoC have extra time input (¢;) and
output (t,) signals. There are two definitions of the domain interface atoms from
the DE domain. The one that has no time input (the leftmost of Figure 5.31)
takes all tokens with a value and split the time-value tuple in two and puts
the time in the output time signal (¢,) and the value in o. Furthermore the
time signal also carries the information of when the input signal (§;) terminates.
Such splitting can be expressed with a SY model where time is just one value
element of each tuple as shown in (5.30).

5.4 Structured domain interfaces 95

DE DE

DE

t;

Figure 5.31: Domain interface atoms of the DE MoC.

Popiit (8) = (A(t,v) = 1) ©8, (A(t,v) = v)©3) (5.30)

The domain interface atom to the DE domain (the rightmost) has the oppo-
site operation of the previously described domain interface atom. It takes one
time token and one value token from each input (¢; and ¢) and outputs an event
with these in §,. The merging can also be expressed with a SY model as shown
in (5.31).

Panerge (3¢,50) = (At — v — (£,0)) @ 5; @ 5, (5.31)

The last domain interface atom (the middle one in Figure 5.31) is an exten-
sion of the leftmost domain interface atom. It allows sampling of the DE input
signal (8;) at time points specified by the input time sequence (t;). The output
time sequence (t,) is identical to the input time sequence and the output value
sequence (o) contains the sampled values.

The CT domain interface atoms (shown in Figure 5.32) are the same as for
DE, but with one extra domain interface atom drawn as a parallelogram. The
extra domain interface atom allows for sampling the CT functions such that the
values of the functions at the specified time points are obtained. The difference
between this domain interface atom unique to the CT MoC and the bottom
left one in Figure 5.32 is that the latter returns the functions as values and the
former applies time to the function to evaluate it at that time. The behaviour
of the sampling domain interface atom can be expressed by the following SY
model:

Piample(3¢, 34, f) = (At = Av = v(f(t))) © 5. B 5, (5.32)

The purpose of the function f is to transform the simulation time ¢ to the
modelled real time u, i.e. f:t— u.

96 Theory of systems modelling

CT

CT

Figure 5.32: Domain interface atoms of the CT MoC.

| AN

| S|

|) |

| W‘ |

| g

I [} |

| ?i‘ |

| \d

| :’1 o Cd dy
| CT SY |
| [sin(t) sample @ — 5,
l SY DE !

Figure 5.33: Example of both timed and untimed MoCs in the same heteroge-
neous model.

5.5 Summary 97

An example model, which combines both timed and untimed MoCs is shown
in Figure 5.33. The model is divided into three domains. The first domain (d;)
contains a model expressed in the CT MoC with a source process that produces
a sinusoidal signal. This signal is sampled at time points specified by the clock
signal process.

The domain interface from CT to SY represents an ADC. The sampled values
are processed by the model in domain dy expressed in the SY MoC. Hereafter,
a simple model of a DAC is used to convert the signal to the third domain (d3)
which contains a model expressed in the DE MoC. This example is the same
as in Figure 5.15 except that the DAC converts to a DE MoC instead of a CT
MoC.

5.5 Summary

Two classes of systems are defined, static and dynamic systems. The terms static
and dynamic refer to the state space of the system, i.e. whether the system has a
static (finite) or dynamic (non-finite) state space. Models of static and dynamic
systems are then divided into two classes: homogeneous and heterogeneous,
depending on the number of MoCs used to express a system.

The mathematical definition of ForSyDe is presented in generic terms and
in details for the four MoCs (SY, SDF, DE, and CT) currently implemented in
ForSyDe. The CT MoC is not based on classic CT simulators, whether this is
efficient or practical is unknown. It is included to have an implementation of
the CT MoC in Haskell-ForSyDe and to illustrate that it is possible to embed
other MoCs in the ones presented here.

The idea of embedding MoCs in other MoCs is not limited to the example
of the CT MoC. An entire model can be embedded into processes also. In other
words, the function of a process can implement a model, e.g. a SY state machine.
In real world models, the functions of processes are usually implemented in
some programming language (e.g. Haskell, C, C++, etc.). The programming
language is itself a MoC which is used to express the model/function.

The concept of formal modelling requires one to express the important as-
pects of models using the formal structure of MoCs. Embedding a model as the
function in a process breaks this formalism.

To help avoiding the use of embedding models inside processes, domain
interfaces are defined to formally combine models expressed in different MoCs.
A set of structured domain interfaces are presented, to define a formal method
to construct domain interfaces. However, these structured domain interfaces

98 Theory of systems modelling

may not be able to express all possible domain interfaces.

ForSyDe as presented in this chapter, does not yet express dynamic systems
well with the provided MoCs. However, other MoCs can be added to ForSyDe.
Such MoCs does not need to adhere to any special semantics. However, they
must provide domain interfaces to the other MoCs, if they are to express het-
erogeneous models. They must also support simulation of the models.

Chapter 6

Static systems

In this chapter, a system level design methodology is presented, which allows
designers to model and analyse their systems from the early stages of the design
process until final implementation. The design methodology targets heteroge-
neous embedded systems and is based on the ForSyDe framework presented in
Chapter 5. ForSyDe is available under the open source approach, which allows
small and medium enterprise (SME) to get easy access to advanced modelling
capabilities and tools. This chapter gives an introduction to the design method-
ology through the system level modelling of a simple industrial use case.

6.1 Introduction

Industry is facing a crisis in the design of complex hardware/software systems.
Due to the increasing complexity, the gap between the generation of a product
idea and the realization of a working system is expanding rapidly. To manage
complexity and to shorten design cycles, industry is forced to look at system level
languages towards specification and design. Such languages allow the designer to
capture the system functionality from the very early stages in the design process
and to use this system model as a basis for evaluating design decisions and for
a stepwise refinement of the system specification into a final implementation.
Figure 6.1 shows the classical design flow. The initial requirement specifi-
cation, which captures both the functional and non-functional properties of the
system, is partitioned into a software and a hardware specification. This par-
tition is usually based on the experience of the designers and on availability of

100 Static systems

Requirement

specification \
Hardware
specification

Y A
Software Hardware

Software
specification

Validation

Y

System

Figure 6.1: Current design methodology.

existing hardware platforms. Although this may be a good starting point, the
lack of being able to explore different design alternatives in a systematic way,
seriously impacts the quality and competitiveness of the resulting solution.

In this chapter, a system level modelling approach is presented, aimed at cap-
turing the early stages of the design, allowing the designer to explore trade-offs
and support design decisions. The proposed modelling approach is captured in
a system design framework (system functionality framework (SFF)), which has
been developed as part of the SYSMODEL' project. The aim of this project has
been to support the competitiveness of small and medium enterprises (SMEs).
The general availability of the design framework is facilitated by the open source
approach, where all tools are made available free of charge. Figure 6.2 shows
how the proposed modelling approach extends the classical design flow with
system level modelling. The initial requirement specification is partitioned into
a functional specification and a non-functional specification. The functional
specification is first translated into a suitable model of the application. Rel-
evant non-functional properties, such as latency and power consumption, are
used to guide this translation. Likewise, the non-functional properties are used
to guide the selection of an appropriate execution platform, expressed as a plat-
form model. Finally, the application model is mapped onto the platform model
in order to form a model of the integrated system. As there are many ways to

1Funded by ARTEMIS JU

6.1 Introduction 101

Requirement

specification \'

Functional Non-functional
specification specification
T T T T T ——— - _ e =]

Y e ¥
Application // Platform
model /) model
1
\/—Y\/
Exploration
Integrated
K system model \'
Software g Hardware
specification b= specification
&
Y / \ v
Software Hardware
Y

System

Figure 6.2: Design methodology using system modelling. The green area sym-
bolises the modelling part of the design process. The red area is the design
exploration part.

achieve this mapping, there is a need for being able to perform an exploration
of the design space.

The proposed SFF is based on ForSyDe (formal system design) [23], a formal
design methodology which allows several models of computation to be integrated
in a single heterogeneous model, in order to capture and model different types of
components, such as analogue, digital and software components, and to describe
a system at different stages in the design process. A formal modelling approach
with clear semantics, makes it possible to formally reason about properties of
the design, such as risks, price, power, and timing, already in the early stages
of the design process.

We illustrate the design methodology outlined in Figure 6.2 through a sys-
tem level design of a simple use case, a hearing aid calibration device. As the

102 Static systems

calibration device is a medical device, it has to apply to medical safety regu-
lations [12,21], which is always a challenge. One of the major advantages of
the device as compared to competitors, is its small size and ease of use, which
adds to the challenges. In order to work correctly according to safety regula-
tions and medical specifications for hearing aid calibration devices, strict timing
requirements are given. Now one of the key challenges in the early stage of the
design process, where the complete system is being designed, is to ensure that
a given application design when executed on the selected platform will always
meet these timing requirements.

In the following, we first describe the use case and how the initial requirement
specification may be transformed into an application model, and how this model
may be bound to a platform model, in order to form an integrated system model.
We explain how the models may be validated through simulation. After the use
case, we turn to the modelling framework and outline the basics of the ForSyDe
model. Finally, we give a summary and some concluding remarks.

6.2 Industry case

Throughout this chapter, a hearing aid calibration device is used as a use case
for our proposed design methodology. The use case is provided by the Danish
company Auditdata. Figure 6.3 shows the calibration device in context, i.e., the
physical setup, where the calibration device controls sound generation and sam-
ples the sound in the ear through two microphones, one in front of the hearing
aid device and one inside the ear right behind the hearing aid. This is called
the real ear measurement (REM). The sampled sound signals are processed in
the calibration device and send to the doctors PC via an USB interface for
display. Figure 6.3 only shows the setup for one ear, however, the calibration
device is able to handle both ears at the same time, with a total of sampling
four microphones (using the same speaker for both ears).

6.2.1 Functional specification

The desired functionality of the product is to produce sound streams that are
played in a loud speaker and record by up to four sound streams simultaneously
that are then displayed on a computer screen as histograms in real time.

6.2 Industry case 103

-

Y

REM

Inner Ear

Y

Product

PC

Figure 6.3: The problem that needs to be solved. A patient (the ear) needs to
have a new hearing aid adjusted. The doctor places two microphones on the
patient, one inside the ear canal and one just outside. In the room there is a
loudspeaker. This setup is called a Real Ear Measurement (REM).

104 Static systems

6.2.2 Non-functional specification

As the calibration process involves the patient to be able to relate visual and
audio input, the calibration device has certain timing requirements. Further-
more, medical safety regulations require the signal processing to be done under
real-time requirements and to deliver a certain accuracy. These timing and
accuracy requirements challenges the design of the calibration device together
with a wish to produce a low cost and low power device that is connected to
the PC through a USB interface.

6.3 Application model

The functional part of the requirement specification can be expressed as an
application model (block Application model in Figure 6.2). The benefits of
such a model are that it can be used to validate the application behaviour,
for instance by simulation of the model. Depending on the formalism used
to describe the model, formal verification of system properties may also be a
possibility.

6.3.1 ForSyDe model

An application model of the use case is shown in Figure 6.4. This particular
model implements the behaviour of producing one continuous sound stream for a
speaker while continuously sampling two sound streams. Each of these sampled
sound streams are transformed into histograms by a fast Fourier transformation
(FFT)2. This represents one scenario/configuration of the product.

In order to simulate this model, a standard FFT implementation can be used
for each of the FFT blocks. This will produce the same functional behaviour as
a version which has been optimised with respect to a given platform and non
functional requirements.

We use a synchronous data flow (SDF) [10] as the underlining model of
computation (MoC). SDF models the data flow between processes and is hence,
well suited for modelling streaming applications. Each process consumes a static
number of tokens on each input and produces a static number of tokens on each
output. A process will execute when sufficient tokens are ready on all inputs.
The MoC is without any notion of time. SDF can relatively easy be analysed

2A fast Fourier transformation is an efficient algorithm to compute the discrete Fourier
transformation.

6.3 Application model 105

(Application h
1 1(\\1 4096 1 1
. . Sample FEFT))
Gen REM USB —>
S 1
1 Toample f e Ly 1
N\ J

Figure 6.4: Simplified behavioural model of the product. This is a setup where
two channels are actively being used.

for required buffer sizes between processes. In the use case in Figure 6.4 the
calculation of buffer sizes is not complex (maximum 4096 tokens before each
FFT), but in more complex situations, e.g., where interaction would happen
between the two streams of sampling followed by FFT, the analysis could quickly
become much more complex.

6.3.2 Simulation

The application model can be simulated with very simple definitions of each
process. This particular application model is simple enough that the behaviour
is obvious. However, in more complex applications, only the behaviour of sub
parts may be obvious while the global behaviour might not. Simulation can
then be used to validate the behaviour.

An example of a simulation for this use case is to feed the application model
with sine waves in the “Gen” process and verify that one frequency is dominating
the output. Due to the discrete calculation of the Fourier transformation, the
tone might not always be transformed into only one frequency, but will cover
a small band. A result from a simulation of the application model is shown in
Figure 6.5.

The “REM” process can be used to model different changes to the sound as
it travels through the air and ear channel.

6.3.3 Verification

In broad terms the application model can be used to estimate non-functional
properties, verify that non-functional requirements are met, and explore be-

106 Static systems

AN
VAYRVAY.

Figure 6.5: Example of simulation input and result.

amplitude
amplitude

frequency

haviour to achieve certain non-functional properties. Such properties could be
buffer sizes needed for communication between processes or a static schedule
of the processes. The verification techniques used to determine the properties
depends on the MoCs used to model the application. It is possible to combine
multiple MoCs in an application model, but some verification techniques will
then only apply to certain parts of the application model.

Since the application model of the use case is modelled using only one MoC,
specifically the untimed MoC SDF, it is possible to perform verification on the
entire structure of the model. One such verification is a buffer analysis, i.e. how
much memory is (at most) required to contain all the data which is streamed
through the device while operating. As an example, the difference between
a 16MB and a 64MB memory solution is approximately a factor 4 in energy
consumption (respectively 0.125W and 0.5W). The power used by the memory
can therefore be a significant amount of the total power budget of the 2.5W
provided by a USB port at maximum.

6.4 Platform model

The SFF can be used to represent details of all components and interconnections
of the platform, i.e. a detailed representation of the hardware circuits. However,
at the early stages of the design process, we are more interested in having a
high level system model, which captures how the application interacts with the
platform. In other words, the platform model provides the execution details,
such as schedule and duration of the various application processes. In this
context, the platform model defines the execution of the application model.
This may be done by connecting the application model to the platform through
control signals. Control signals from the platform model to the application

6.5 Integrated system model 107

model releases a process in the application model, and the opposite returns the
control to the platform.

A platform model may start at a relative high level of abstraction with very
few details. During the design process, it may be gradually refined with more
and more details. In the case of a platform containing a single processor core,
the application model may be refined to a sequence of function calls. This can be
emulated with the abstract application model by sequencing the control output
from the application model to the next control input to the application model.
A more complex platform model which includes some model of an operating
system, may make more elaborate decisions on which application process to re-
lease, effectively modelling the behaviour of a dynamic execution sequence, such
as a fixed priority based real-time operation system. The execution semantics
of SDF, ensures that the application processes will not execute until both data
and control input are ready. Since the application model is without any notion
of time and the timing of the execution of application processes are platform
dependent, the platform is annotated with execution time of each application
process.

In our use case, the platform is given and based on a single processor core.
This core executes all digital signal processing and controls the A/D and D/A
converters. The interface to the PC is done through a USB chip, which only
has a single packet buffer for receiving data. The platform may also have to
capture the behaviour of an operating system which in our use case is described
as round robin cooperative multitasking. In our case it simplifies into a static
series of function calls to each application process.

As the application is presented as four streams (the pairs of sample and FFT
processes), it may benefit from a platform supporting multiple cores. Hence, it
would be interesting to explore alternative platforms, such as a platform with
two processor cores or even four processor cores, each servicing a single stream.
Although this may seem obvious, a challenge is that the operating system or
the USB process system may be more complex, since synchronisation between
the processor cores has to take place when collecting data for transport to the
PC. Only a careful exploration of the design space will reveal the best trade-off.

6.5 Integrated system model
The integrated system model is the combination of the application model and

the platform model. The integration of the application model is performed
by adding extra control dependencies to each process, such that the platform

108 Static systems

(Application h
1 4096 ——1
FFT
1 1 1 1
Gen / 1 USB >~
«
1 (FFT)
4096 y———1 1
1T 1)
1 1
N\ J
A Y Y
s B\
Platform
N\ J

Figure 6.6: Integrated system model, the combination of the application model
and the platform model.

activates the process at the appropriate point in time. The estimated execution
time of each application process is modelled through these control dependencies.
These control dependencies are shown in Figure 6.6 as red arrows.

The platform controls the execution of each process in the application model
by sending a release for execution through the input control dependencies. The
output control dependencies to an application returns the control to the plat-
form.

An important property of this modelling approach is that the application
model with annotated control input/output dependencies, is independent of
the actual platform. This means that the application model and the platform
model are kept separate in the integrated system model, effectively applying a
separation of concerns.

Furthermore, this allows us to perform what-if analysis of possible design
choices. We may explore possible changes in the mapping, the platform or even
in the application itself. Such explorations could be based on simulation or
on an analytical approach which would allow for fast automated design space
exploration. Hence, the aim of the exploration is to find the best solution which
fulfils all non functional requirements. However, It is also possible to evaluate
other relevant parameters of the design. Parameters which are not strictly
being expressed as requirements, but are secondary optimization goals, such as
the sensitivity of the proposed design. I.e. evaluating the amount of slack in the
design which can be used to adjust the final solution in order to compensate for

6.6 Summary 109

inaccurate estimates made in the early stages. This may lead to better solutions
than those obtained from applying very conservative rules, which often leads to
over designed systems.

6.5.1 Simulation

Simulating the integrated system model, can provide important insight into the
design. We may be able to decide if the platform supports the application with
the given requirements on execution time, power consumption, etc. Another
important aspect of simulating a model of the system, is that we can easily
get access to information, such as signals, components, variables and software
blocks, which may be inaccessible in the final implementation. Further, we may
use this information to easily infer start and end times of application processes
as well as the pre-emption of these.

6.6 Summary

We have presented a system level design methodology based on the ForSyDe
formal modelling framework, which allows designers to model and analyse both
functional and non-functional properties of their system at the very early stages
of the design process. The methodology has been illustrated through the mod-
elling and analysis of a rather simple industry case of a hearing aid calibration
device. Early decision support is a very critical factor in handling the design
of complex hardware/software systems and to achieve high quality products in
short design cycles. We have illustrated how the separation of application and
platform in the integrated system model may provide easy explorations of dif-
ferent platforms or mappings. Finally, having a complete and formal system
model, may lead to an easier handling of outsourcing sub-parts of the system,
as the requirements of the sub-parts may be extracted directly from the system
model.

110 Static systems

Chapter 7

Dynamic systems

Formal modelling dynamic systems has not been successful so far. Simulations
of dynamic systems have been illustrated in Chapter 2 through the routing al-
gorithm for wireless sensor networks (WSNs). To address the challenges of
expressing a dynamic system in the UPPAAL framework as presented in Chap-
ter 4, a formal framework for modelling WSNs is presented in this chapter. The
indwidual node of the WSN is modelled as static subsystems similar to the one
presented in Chapter 6. The WSN framework is not directly using the theory of
ForSyDe as presented in Chapter 5 for defining the dynamic modelling frame-
work, however, this framework can be implemented in ForSyDe as a separate
model of computation (MoC).

7.1 Introduction

A WSN is a distributed network, where a large number of computational com-
ponents (also referred to as ”sensor nodes” or simply "nodes”) are deployed in
a physical environment. Each component collects information about and offers
services to its environment, e.g. environmental monitoring and control, health-
care monitoring and traffic control, to name a few. The collected information
is processed either at the component, in the network or at a remote location
(e.g. the base station), or in any combination of these. WSNs are typically
required to run unattended for very long periods of time, often several years,
only powered by standard batteries. This makes energy-awareness a particular
important issue when designing WSNs.

112 Dynamic systems

8
=1

5 N Ne

/ \

Np Ny
\ /
. Ng Ng
Nz No Ny Ne Ng Ne Ny Ng N Node \Nx - [] simple distance

(a) (b)

Figure 7.1: An example network displaying the shortest distance to the base
station. (a) shows each node’s distance to the base station while (b) shows the
placement of each node.

In a WSN there are two major sources of energy usage:

e Operation of a node, which includes sampling, storing and possibly pro-
cessing of sensor data.

e Routing data in the network, which includes sending data sampled by the
node or receiving and resending data from other nodes in the network.

Traditionally, WSN nodes have been designed as ultra low-power devices, i.e.,
low-power design techniques have been applied in order to achieve nodes that
use very little power when operated and even less when being inactive or idle.
By adjusting the duty-cycle of nodes, it is possible to ensure long periods of idle
time, effectively reducing the required energy.

At the network-level nodes are equipped with low-power, low-range radios in
order to use little energy, resulting in multi-hop networks in which data has to be
carefully routed. A classical technique has been to find the shortest path from
any node in the network to the base station and hence, ensuring a minimum
amount of energy to route data. The shortest path is illustrated in Figure 7.1.
Figure 7.1b shows the circular network layout, where the base station is labelled
N,. Figure 7.1a is a bar-chart showing the distance (y-axis) from a node to the
base station, the x-axis is an unfolding of the circular network, placing the base
station, with a distance of zero, at both ends.

The routing pattern of a node in this network is based upon the distance from
a node (e.g. N.) and its neighbours (N, and Ny) to the base station. The node
N, will route to the neighbour with the shortest distance to the base station (in
this case V). In practice, nodes close to the base station (e.g. N, and Ng) will

7.1 Introduction 113

be activated much more frequently than those far away from the base station,
resulting in a relative short lifetime of the network. To address this, energy
efficient algorithms, such as [16,22,71], have been proposed. The aim of these
approaches is to increase the lifetime of the network by distributing the data
to several neighbours in order to minimize the energy consumption of nodes
on the shortest path. However, these approaches do not consider the residual
energy in the batteries. The energy-aware algorithms, such as [22,24,45 51,

,74,76], are all measuring the residual battery energy and are extending the
routing algorithms to take into account the actual available energy, under the
assumption that the battery energy is monotonically decreasing.

With the advances in energy harvesting technologies, energy harvesting is
an attractive new source of energy to power the individual nodes of a WSN. Not
only is it possible to extend the lifetime of the WSN, it may eventually be pos-
sible to run them without batteries. However, this will require that the WSN
system is carefully designed to effectively use adaptive energy management,
and hence, adds to the complexity of the problem. One of the key challenges
is that the amount of energy being harvested over a period of time is highly
unpredictable. Consider an energy harvester based on solar cells, the amount
of energy being harvested, not only depends on the efficiency of the solar cell
technology, but also on the time of day, local weather conditions (e.g., clouds),
shadows from buildings, trees, etc.. For these conditions, the energy-aware algo-
rithms presented above, cannot be used as they assume residual battery energy
to be monotonically decreasing. A few energy harvesting aware algorithms have
been proposed to address these issues, such as [28,38,44,72,73,75]. They do not
make the assumption of monotonically decreasing residual battery energy, and
hence, can account for both discharging and charging the battery. Furthermore,
they may estimate the future harvested energy in order to improve performance.
However, these routing algorithms make certain assumptions that are not valid
for multi-hop networks.

The clustering routing approach used in [28,72] assumes that all nodes are
able to reach the base station directly. A partial energy harvesting ability is
used in [73], where excess harvested energy can not be stored and the nodes are
only battery powered during night. The algorithm in [38] is an offline algorithm,
it assumes that the amount of harvest-able energy can be predicted before de-
ployment, which is not a realistic assumption for most networks. The algorithm
in [75] requires that each node has knowledge of its geographic position. Global
knowledge is assumed in [44].

Techniques for managing harvested energy in WSNs have been proposed,
such as [9,18,34,35,55,68]. These are focussing on local energy management. In

114 Dynamic systems

[35] they also propose a method to synchronise this power management between
nodes in the network to reduce latency on routing messages to the base station.
They do, however, not consider dynamic routes as such. An interesting energy
harvesting aware multi-hop routing algorithm is the REAR algorithm by [24].
It is based on finding two routes from a source to a sink (i.e. the base station), a
primary and a backup route. The primary route reserves an amount of energy in
each node along the path and the backup route is selected to be as disjunct from
the primary route as possible. The backup route does not reserve energy along
its path. If the primary route is broken (e.g. due to power loss at some node) the
backup route is used until a new primary and backup route has been built from
scratch by the algorithm. An attempt to define a mathematical framework for
energy aware routing in multi-hop WSNs is proposed by [44]. The framework
can handle renewable energy sources of nodes. The advantage of this framework
is that WSNs can be analysed analytically, however the algorithm relies on the
ideal, but highly unrealistic assumption, that changes in nodal energy levels are
broadcasted instantaneously to all other nodes. The problem with this approach
is that it assumes global knowledge of the network.

The aim of this chapter is to propose a modelling framework which can be
used to study energy harvesting aware routing in WSNs. The capabilities and
efficiency of the modelling framework will be illustrated through the modelling
and simulation of a distributed energy harvesting aware routing protocol, dis-
tributed energy harvesting aware routing (DEHAR) by [31]. In Section 2 a
generic modelling framework which can be used to model and analyse a broad
range of energy harvesting aware WSNs, is developed. In particular, a con-
ceptual basis as well as an operational basis for such networks are developed.
Section 3 shows the adequacy of the modelling framework by giving very nat-
ural descriptions and explanations of two energy harvesting based networks:
DEHAR [31] and directed diffusion (DD) [27]. The main ideas behind routing
in these networks are explained in terms of the simple network in Figure 7.1.
Properties of energy harvesting aware networks are analysed in Section 4 using
simulation results for DEHAR and DD. These results validate that energy har-
vesting awareness increases the energy level in nodes, and hence, keeps nodes
(which otherwise would die) alive, in the sense that a complete drain of energy
in critical nodes can be prevented, or at least postponed. Finally, Section 5
contains a brief summary and concluding remarks.

7.2 A generic modelling framework 115

7.2 A generic modelling framework

The purpose of this section is to present a generic modelling framework which
can be used to study energy-aware routing in a WSN, where the nodes of the
network have an energy harvesting capability. In the next section instantia-
tions of this generic model will be presented and experimental results through
simulations are presented in Section 7.4.

The main idea of establishing a generic framework is to have a conceptual
as well as a tool-based foundation for studying a broad range of wireless sensor
networks with similar characteristics. In the following we will assume that

e sensor nodes have an energy-harvesting device,

e sensor nodes are using radio-based communication, consisting of a trans-
mitter and a receiver,

e sensor nodes are inexpensive devices with limited computational power,
and

e the routing in the network adapts to dynamic changes of the available
energy in the individual nodes, i.e. the routing is energy aware.

On the other hand, we will not make any particular assumptions about the
kind of sensors which are used to monitor the environment.

These assumptions have consequences concerning the concepts which should
be reflected in the modelling framework, in particular, concerning the compo-
nents of a node. Some consequences are:

e A node may only be able to have a direct communication with a small
subset of the other nodes, called its neighbours, due to the range of the
radio communication.

e A node needs information about neighbour nodes reflecting their current
energy levels in order to support energy-aware routing.

e A node can make immediate changes to its own state; but it can only
affect the state of other nodes by use of radio communication.

e The processing in the computational units as well as the sensing, receiving
and transmitting of data are energy consuming processes.

These assumptions and consequences fit a broad range of WSNs.

116 Dynamic systems

7.2.1 The components of a node
A node consists of five physical components:

e An energy harvester which can collect energy from the environment. It
could be by the use of a solar panel — but the concrete energy source and
harvesting device are not important in the generic setting.

e A sensor which is used to monitor the environment. There may be sev-
eral sensors in a physical node; but we will not be concerned about con-
crete kinds in the generic setting and will (for simplicity) assume that one
generic sensor can capture the main characteristics of a broad range of
physical sensors.

e A receiver which is used to get messages from the network.
e A transmitter which is used to send messages to the network.

e A computational unit which is used to treat sensor data, to implement the
energy-aware routing algorithm, and to manage the receiving and sending
of messages in the network.

The model should capture that use of the sensor, receiver, transmitter and
computational unit consume energy and that the only supply of energy comes
from the nodes’ energy harvesters. It is therefore a delicate matter to design
an energy-aware routing algorithm because a risk is that the energy required by
executing the algorithm may exceed the gain by using it.

A consequence of this is that exact energy information cannot be maintained
between nodes because it requires too much communication in the network as
that would imply that too much energy is spent on this administrative issue
compared to the harvested energy and the energy used for transmitting sensor-
observations from the nodes to the base station.

7.2.2 The identity of a node

We shall assume that each node has a unique identification which is taken from
a set Id of identifiers.

7.2.3 The state of a node

The state of a node is partitioned into a computational state and a physical state.
The physical state contains a model of the real energy level in the node as well

7.2 A generic modelling framework 117

as a model of the dynamics of energy devices, like, for example, a capacitor. The
computational state contains an approximation of the physical energy model,
including at least an approximation of the energy level. The computational
state also contains routing information and an abstract view of the energy level
in neighbour nodes. Furthermore, the computational state could contain infor-
mation needed in the processing of observations, but we will not go into details
about that part of the computational state here, as we will focus on energy
harvesting and energy-aware routing.
We shall assume the existence of the following sets (or types):

e PhysicalState — which models the real physical states of the node,
e Energy — which models energy levels,

e ComputationalState — which models the state in the computational unit
in a node, including a model of the view of the environment (especially the
neighbours) and information about the energy model and the processing
of observations, and

o AbstractState — which models the abstract view of a computational state.
An abstract state is intended to give a condensed version of a compu-
tational state and it can be communicated to neighbour nodes and used
for energy-aware routing. It is introduced since it is too energy consum-
ing to communicate complete state information to neighbours when radio
communication is used.

The state parts of a node may change during operation. The concrete
changes will not be described in the generic framework, where it is just as-
sumed that they can be achieved using the functions specified in Figure 7.2.
Notice that a node can change its own state only.

The intuition behind each function is given below. A concrete definition
(or implementation) of the functions must be given in an instantiation of the
generic model.

e consistent?(cs) is a predicate which is true if the computational state cs
is comsistent. Since neighbour and energy information, which are used
to guide the routing, are changing dynamically, a node may end up in a
situation where no neighbour seems feasible as the next destination on the
route to the base station. Such a situation is called inconsistent, and the
predicate consistent?(cs) can test for the occurrences of such situations.

118 Dynamic systems

Sets: PhysicalState, ComputationalState, AbstractState, and Energy

Operations:
consistent? : ComputationalState — {true, false}
abstractView : ComputationalState — AbstractState
updateEnergyState : ComputationalState x Energy — ComputationalState

updateNeighbourView : ComputationalState x Id x AbstractState — ComputationalState
updateRoutingState : ComputationalState — ComputationalState

transmitChange? : ComputationalState x ComputationalState — {true, false}

next : ComputationalState — Id

Figure 7.2: A signature for operations on the computational state

e abstractView(cs) gives the abstract view of the computational state cs.
This abstract view constitutes the part of the state which is communicated
to neighbours.

e updateEnergyState(cs, €) gives the computational state obtained from cs
by incorporation of the actual energy level e. The resulting computational
state may be inconsistent.

e updateNeighbourView(cs, id, as) gives the computational state obtained
from cs by updating the neighbour knowledge so that as becomes the
abstract state of the neighbour node N,;. The resulting computational
state may be inconsistent.

e updateRoutingState(cs) gives the computational state obtained from cs
by updating the routing information on the basis of the energy and neigh-
bour knowledge in cs so that the resulting state is consistent.

o transmitChange?(cs, ¢s’) is a predicate which is true if the difference be-
tween the two computational states are so significant that the abstract
view of the "new state” should be communicated to the neighbours.

e next(cs) gives, on the basis of the computational state cs, the identifier
of the ”"best” neighbour to which observations should be transmitted.
7.2.4 The computation costs

Each of the above seven functions in Figure 7.2 are executed on the compu-
tational unit of a node. Such an execution will consume energy and cause a

7.2 A generic modelling framework 119

change of the physical state. For simplicity, we will assume that the cost of
executing the predicates consistent? and transmitChange? can be neglected or
rather included in other functions, since they always incur the same energy cost
in these functions. These functions are specified in Figure 7.3.

costAbstractView : PhysicalState — PhysicalState
costUpdateEnergyState : PhysicalState — PhysicalState
costUpdateNeighbourView : PhysicalState — PhysicalState
costUpdateRoutingState : PhysicalState — PhysicalState
costNext : PhysicalState — PhysicalState

The costs of the predicates consistent? and transmitChange? are assumed
negligible.

Figure 7.3: A signature for cost operations on the computational state

For simplicity it is assumed that execution of each of the five functions has a
constant energy consumption, so that all functions have the type PhysicalState —
PhysicalState. It is easy to make this model more fine grained. For example,
if the cost of executing abstractView depends on the computational state to
which it is applied, then the corresponding cost function should have the type:
PhysicalState x ComputationalState — PhysicalState. This level of detail is,
however, not necessary to demonstrate the main principles of the framework.

7.2.5 Input events of a node

The computational unit in a node can react to events originating from the energy
observations on the physical state, e.g. due to the harvesting device, the sensor
and the receiver. There are two energy related events, where one is concerned
with the change of the physical state while the other is concerned with reading
the energy level in the node. The rationale for having two events rather than
a ”combined” one is that the change of the physical state is a cheap operation
which does not involve a reading nor any other kind of computation, whereas a
reading of the energy level consumes some energy.

A sensor recording results in an observation o belonging to a set Observation
of observations. An observation could be temperature measurement, a traffic

120 Dynamic systems

observation or an observation of a bird — but the concrete kind is of no impor-
tance in this generic part of the framework.
The events are described as follows:

e readEnergyEvent(e, ps), where e € Energy and ps € PhysicalState, which
is an event signalling a reading e of the energy level in the node and a
resulting physical state ps, which incorporates that the reading actually
consumes some energy.

e physicalStateEvent(ps), where ps € PhysicalState is a new physical state.
This event occurs when a change in the physical state is recorded. This
change may, for example, be due to energy harvesting, due to a drop in
energy level, or due to some other change which could be the elapse of
time.

e observationEvent(o, ps), where o € Observation is a recorded sensor ob-
servation and ps € PhysicalState is a physical state which incorporates
the energy consumption due to the activation of the sensor.

e receiveEvent(m, ps), where ps € PhysicalState and m € Message, which
could be an observation to be transmitted to the base station or a message
describing the state of a neighbour node. Further details are given below.
The receiver maintains a queue of messages. When it records a new mes-
sage, that message is put into the queue. The event receiveEvent(m, ps)
is offered when m is the front element in the queue. Reacting to this event
will remove m from the queue and a new receive event will be offered as
long as there are messages in the queue. It is unspecified in the generic
setting whether there is a bound on the size of the queue.

7.2.6 Input messages

A node has a queue of messages received from the network. There are two kinds
of messages:

e Observation Messages of the form obsMsg(dst, 0), where dst is the identity
of the next destination of the observation o € Observation on the route to
the base station.

e Neighbour Messages of the form neighbourMsg(sre, as), where src is the
identity of the source, i.e. the node which has sent this message, and as €
AbstractState is the contents of the message in the form of an abstract
state.

7.2 A generic modelling framework 121

Let Message denote the set of all messages, i.e. observation and neighbour
messages.

7.2.7 Output messages and communication

A node N,y can use the transmitter to broadcast a message m € Message to the
network using the command send;q(m). Intuitively, nodes which are within the
range of the transmitter will receive this message and this may depend on the
strength of the signal, it may depend on geographical positions, or on a variety
of other parameters.

A model for sending and receiving messages could include a global trace of
the messages send by nodes, a local trace of messages received by the individual
nodes, and a description of a medium, that determines which nodes can receive
messages sent by a node N;; on the basis of the current state of the network
and on the basis of the various parameters, for example, concerning geographical
positions of the nodes. In instances of the generic model, such a medium must be
described. In this chapter we will not be formal about network communication.
A formal model of communication along the lines sketched above can be found

in [53,59].

7.2.8 The cost of sending messages

Sending a message consumes energy which is reflected in a change of the physical
state of a node. To capture this a function

costSend : PhysicalState x Message — PhysicalState

can compute a new physical state on the basis of the current one and a broad-
casted message.

7.2.9 An operational model of a node

During its lifetime, a node can change between two main phases: idle and treat
message.

e The node is basically inactive in the idle phase waiting for some event to
happen. It processes an incoming event and makes a phase transition.

e The node treats a single message in the treat message phase and after that
it makes a transition to the idle phase.

122 Dynamic systems

Idleiq(cs, ps) =
wait
physicalStateEvent(ps’) — Idle(cs, ps’)

readEnergyEvent (e, ps’) —
let cs’ = updateRoutingState(updateEnergyState(cs, e))
let ps” = costUpdateEnergyState(costUpdateRoutingState(ps’))
if transmitChange?(cs, cs’)
then let m = neighbourMsg(id, abstractView(cs’))
send;q(m); Idle;q(cs’, costSend(cost Abstract View(ps”), m))
else Idle;q(cs, ps”)

observationEvent (o, ps’) —
let dst = next(cs)
let m = obsMsg(dst, o)
send;q(m); Idle;q(cs, costSend(costNext(ps'), m))

receiveEvent(m, ps’) — TreatMsg,,(m, cs, ps’)

Figure 7.4: The Idle Phase

Each phase is parametrised by the computational state cs and the physical
state ps. The state changes and phase transitions for the idle phase are given
in Figure 7.4. The node stays inactive in the idle phase until an event occurs.

e A physical-state event leads to a change of physical state while staying in
the idle phase.

e A read-energy event leads to an update of the energy and routing parts of
the computational state, and the physical state is updated by incorpora-
tion of the corresponding costs. If the changes of the computational state
are insignificant then these changes are ignored (so that the nodes have a
consistent knowledge of each other) and just the physical state is changed.
Otherwise, the abstract view of the new computational state is computed
and send to the neighbours, and both the computational and the physical
states are changed.

e An observation event leads to a computation of the next node (destination)
to which the observation should be transmitted on the route to the base
station, and a corresponding observation message is sent. The physical

7.2 A generic modelling framework 123

state is changed with the cost of computing the destinations and the cost
of sending a message while staying in the idle phase.

e A receive event indicates a pending message in the queue. That message
is treated by a transition to the treat message phase.

Notice that all phase transitions from the idle phase preserve the consistency
of the computational state. The only non-trivial transition to check is that from
Idle;q(cs, ps) to Idle;q(cs’, costSend(costAbstractView(ps”),m). The consis-
tency of c¢s’ follows since ¢s’ = updateRoutingState(updateEnergyState(cs, e))
and updateRoutingState is expected to return a consistent computational state,
at least under the assumption that cs is consistent.

TreatMsg,,(m, cs, ps) =

case m of
obsMsg(dst,0) —
if id = dst

then let dst’ = next(cs)

let m’' = obsMsg(dst’, 0)

send,q(m’); Idle;q(cs, costSend(costNext(ps), m)
else Idle;q(cs, ps))

neighbourMsg(src, as) —
let cs’ = updateNeighbourView(cs, src, as)
let cs’’ = updateRoutingState(cs’)
let ps’ = costUpdateNeighbourView(costUpdateRoutingState(ps))
if transmitChange?(cs, c¢s”) V —consistent?(cs’)
then let as’ = abstractView(cs')
let m = neighbourMsg(id, as’)
send;q(m); Idle;q(cs”, costSend(costAbstractView(ps’), m))
else Idle;q(cs’, ps’)

Figure 7.5: The Treat-Message Phase

The state changes and phase transitions for the treat message phase are
given in Figure 7.5. In this phase the node treats a single message. After the
message is treated a transition to the idle phase is performed, where it can
react to further events including the receiving of another message. A message
is treated as follows:

124 Dynamic systems

e An observation message is treated by first checking whether this node is
the destination for the message. If this is not the case, a direct transition to
the idle phase is performed. Otherwise, the next destination is computed,
the observation is forwarded to that destination and the physical state is
updated taking the computation costs into account. The energy consumed
by the test whether to discard or process a message is included in the
energy consumption for receiving a message.

e A neighbour message must cause an update of the neighbour view part of
the computational state giving a new state cs’. A new routing state cs”
must be computed. If the changes to the computational state is insignifi-
cant (in the sense transmitChange?(cs, ¢s”) is false and ¢s’ is consistent),
then a transition to the idle phase is performed with a computational state
that is just updated with the new neighbour knowledge, and the physical
which is updated by the computation cost. Otherwise, an abstract view
of the computational state must be communicated to the neighbours, and
the computational and the physical states are updated accordingly.

Notice that all phase transitions from the treat-message phase preserve
the consistency of the computational state. The consistency preservation due
to observation messages is trivial. The transition from TreatMsg,;(m, cs, ps)
to Idle;q(cs”, costSend(costAbstractView(ps’), m)) preserves consistency since
cs” is constructed by application of updateRoutingState, and this function
is expected to return a consistent computational state. The transition from
TreatMsg, ;(m, cs, ps) to Idle;q(cs’, ps’) also preserves consistency since that
transition can only occur when the if-condition transmitChange?(cs, cs”) V
—consistent?(cs’) is false.

Some of the main features of the operational descriptions in Figure 7.4 and
Figure 7.5 are:

e A broad variety of instances of the operational descriptions can be achieved
by providing different models for the sets and operations in Figure 7.2 and
Figure 7.3. This emphasizes the generic nature of the model.

e The energy and neighbour parts of the model appear explicitly through
the occurrence of the associated operations. Hence it is clear that the
model reflects energy-aware routing using neighbour knowledge, and it is
postponed to instantiations of the model to describe how it works.

e The energy cost model appears explicit in the form of the cost functions
including the cost of events.

7.3 Instantiating the modelling framework 125

e A node will send a local view of its state to the neighbours only in the case
when a significant change of the computational state has happened, which
is determined by the transmitChange? predicate. The adequate definition
of this predicate is a prerequisite for achieving a proper routing, as it is
not difficult to imagine how it could load the network and drain the energy
resources, if minimal changes to the states uncritically are broadcasted.

e The model is not biased towards a particular energy harvester and it is
not biased towards and particular kind of sensor observation.

The generic model is based on the existence of a description of the medium
through which the nodes communicates. This medium should at least determine
which nodes can receive a message send by a given node in a given state. It may
depend on the available energy, the geographical position, the distance from the
sender, and a variety of other parameters. Furthermore, the medium may be
unreliable so that messages may be lost.

The model describes the operational behaviour (including the dynamics of
the energy levels in the nodes) for the normal operation of a network. It would be
natural to extend the model with an initialization phase where a node through
repeated communications with the neighbours are building up the knowledge
of the environment needed to start normal operations, i.e. making observations
and routing them to the base station. We leave out this initialization part in
order to focus on energy harvesting and energy-aware routing.

7.3 Instantiating the modelling framework

In this section it will be demonstrated that the energy-aware routing protocol
DEHAR [31] can be considered as an instance of the generic modelling frame-
work presented in the previous section. In order to do so, meaning must be
given to the sets and operations collected in Figure 7.2 and Figure 7.3. This
will provide a succinct presentation of the main ideas behind DEHAR. Further-
more, we will show that the DD protocol [27] can be considered a special case
of DEHAR. Concrete experiments, based on a simulation framework, depends
on descriptions of the medium. This will be considered in Section 7.4.

7.3.1 A definition of the states

The abstract state comprises:

126 Dynamic systems

o A simple distance d € R>(to the base station. This is described by a
non-negative real number, where larger number means longer distance.

e An energy-aware adjustment a € R>(of the distance for the route to the
base station, where a larger distance means less energy is available.

Hence an abstract state is a pair (d,a) € AbstractState, where

AbstractState = R>0 X R>0

For an abstract state (d,a), we call dist(d,a) = d + a the energy-adjusted
distance.
The computational state comprises:

o A simple distance d € R>o to the base station, like the simple distance of
an abstract state.

e An energy level e € Energy.

o An energy-faithful adjustment f € R>o capturing energy deficiencies along
the route to the base station.

e A table nt containing entries for the abstract state of neighbours. This is
modelled by the type: Id — AbstractState.

Hence a computational state is a 4-tuple (d, e, f, nt) € ComputationalState,
where

ComputationalState = R>¢ x Energy x R>¢ x (Id — AbstractState)

We shall assume that there is a function energyToDist : Energy — Rx>¢ that
converts energy to a distance so that less energy means longer distance.

The value energyToDist(e) provides a local adjustment of the distance to
the base station by just taking the energy level in the node into account. The
intention with the energy-faithful adjustment is that the energy deficiencies
along the route to the base station is taken into account, and the energy-faithful
part is maintained by the use of the neighbour messages.

The energy adjustment of a computational state is the sum of the converted
energy and the energy-faithful adjustment:

adjust(d, e, f, nt) = energyToDist(e) + f

7.3 Instantiating the modelling framework 127

and the energy-adjusted distance of a computational state is:
dist(d, e, f, nt) = d + adjust(d, e, f, nt) = d + energyToDist(e) + f

where we overload the dist function to be applied to both abstract and compu-
tational states. Furthermore, dist(id), id € Id, is the distance of the abstract
state of the neighbour node N;4.

The function next : ComputationalState — Id should give the neighbour with
the shortest energy-adjusted distance to the base station, i.e. the "best” neigh-
bour to forward an observation. Hence, next(d, e, f, nt) is the identity id of the
entry (id, as) € nt with the smallest energy-adjusted distance to the base sta-
tion, i.e. the smallest dist(as). If several neighbours have the smallest distance
an arbitrary one is chosen.

A computational state cs is consistent if next(cs) has a smaller energy-
adjusted distance than cs, i.e. dist(cs) > dist(next(cs)), hence

consistent?(cs) = dist(es) > dist(next(cs))

A node with a consistent computational state has a neighbour to which it can
forward an observation. But if the state is inconsistent, then all neighbours have
longer energy-adjusted distances to the base station and it does not make sense
to forward an observation to any of these neighbours.

We illustrate the intuition behind the adjusted distance using the example
network example from Figure 7.1. If the energy level in node N, of this network
is decreased, then the distance of N, to the base station is increased accord-
ingly (by the amount energyToDist(e)) as shown in Figure 7.6. All nodes are

0
. NN
Nb< }v cnerey defet,
Nz No Ny Ne Ng Ne Ny Ny N, " Node Na N, “Neo Zimple distance:
(a) (b)

Figure 7.6: The example from Figure 7.1 with an energy adjustment for N, due
to shaded region shown to the right.

still consistent; but in contrast to the situation in Figure 7.1, the node Ny (in

128 Dynamic systems

Figure 7.6) has just one neighbour (N.) with a shorter energy-adjusted distance
to the base station.

Consider now the situation shown in Figure 7.7 with energy adjustments
for the nodes Ny and ;. These adjustments make the node N, inconsistent,
since its neighbours Ng and Ny both have energy-adjusted distances which are
longer than that of N.. In the shown situation it would make no sense for N,
to forward observations to its ”"best” neighbour, which is Ny, since Ny would
immediately return that observation to N, since N, is the "best” neighbour of

energy deficit:

energyToDist(e)

] simple distance:

Ny No Ny Ne Ng Ne Ny Ng No Node d

(a)

Figure 7.7: Revised example with an inconsistent node: N..

Energy-faithful adjustments can be used to cope with inconsistent nodes.
By adding such adjustments to the ”problematic nodes” inconsistencies may
be avoided. This is shown in Figure 7.8, where energy-faithful adjustments (f)
have been added to IV, and N;. Every node is consistent, and there is a natural
route from every node to the base station. From Ny there are actually two
possible routes.

The physical state comprises:

The stored energy e € Energy.

e A model of the energy harvester. In the DEHAR case it is a solar panel,
which is modelled by a function P(t) describing the effect of the solar
insolation at time t.

A model of the energy store. In the DEHAR case it is an ideal capacitor
with a given capacity. It is ideal in the sense that it does not loose energy.

A model of the computational unit. This model must define the costs of the
computational operations by providing definitions for the cost functions in

7.3 Instantiating the modelling framework 129

w
© .
= N energy-faithful
% N.” 4~ N Baas adjustment: f
/ \ ener: it:
A2 gy deficit:
Nli Nf energyToDist(e)

] simple distance:

Nz No Ny Ne Ng Ne Ny Ng Ny Node d

(a)

Figure 7.8: A with consistent nodes using energy-faithful adjustments

Figure 7.3. A simple way of doing this is to count the instructions needed
for executing the individual functions, and multiply it with the energy
needed per instruction. The model can be more fine grained by taking
different modes of the processing unit into account.

e A model of the transmitter. This model must give a definition of the cost
function: costSend : PhysicalState x Message — PhysicalState. In the
DEHAR case the cost of sending is a simple linear function in the size of
the message.

e A model of the receiver. This model must explain the cost of a receive
event receiveEvent(m, ps). This involves the cost of receiving the message
m and it must also take the intervals into account when the receiver is
idle listening, i.e. it actively listens for incoming messages. Thus ps should
reflect the full energy consumption of the receiver since the last receive
event.

e A model of the sensor. This model must explain the cost of an observation
event observationEvent(o, ps). This involves the cost of sensing o and ps
should reflect this energy consumption.

The model should also describe two transitions of the physical state which
relate to the two events physicalStateEvent(ps) and readEnergyEvent(e, ps).

The transition related to a physicalStateEvent must take into account at
least the dynamics of the energy harvester, the dynamics of the energy store,
the time the computational unit spent in the idle phase, and the time elapsed
since the last physical state event. For example the new stored energy e’ in the

130 Dynamic systems

physical state at time ¢’ is given by:

t/
e'ze—i—/ P(t)dt
t

where t is the time where the old energy e was stored.
The transition related to a readEnergyEvent(e, ps) must take into account
at least the cost of reading the energy.

Definition of operations

The function for extracting the abstract view is defined by:
abstractView(d, e, f, nt) = (d, adjust(d, e, f, nt))

Notice that the distance to the base station is preserved by the conversion from
a computational state to an abstract one:

dist(d, e, f, nt) = dist(abstractView(d, e, f, nt))

The definitions of the functions for updating the energy state and the neigh-
bour view are simple:

updateEnergyState((d, e, f, nt),e’) = (d,€, f,nt)
updateNeighbourView((d, e, f, nt), id,as) = (d,e, f,update(nt, id, as))

where update(nt, id, as) gives the neighbour table obtained from nt by mapping
id to the abstract state as. These two operations may transform a consistent
state into an inconsistent one.

The function updateRoutingState(d, e, f, nt) must update the energy adjust-
ment of a computational state in order to arrive at a consistent one. If the state
is consistent even when f = 0 then no adjustment is necessary. Otherwise, an
adjustment is made so that the distance of the computational state becomes K
larger than the distance of its "best” neighbour (given by the next function):

updateRoutingState(d, e, f, nt) =
if consistent?(d, e, 0, nt)
then (d, e, 0,nt)
else let distNext = dist(next(d, e, f, nt))
(d, e, K + distNext — (d + energyToDist(e)), nt)

where K > 0 is a constant used to enforce a consistent computational state.

7.3 Instantiating the modelling framework 131

The energy adjustment in the else-branch of this function has the effect
that the node becomes less attractive to forward messages to in the case of an
energy drop in the node or in the best neighbour.

The function transmitChange?(cs, cs’) is a predicate which is true when
a change of the computational state from cs to cs’ is significant enough to
be communicated to the neighbours. This is the case if the change reflects
a significant change in distance to base station, where significant in this case
means larger than some constant Kchange € R>0-

Hence, the function can be defined as follows:

transmitChange?(cs, ¢s') = |dist(cs) — dist(cs’)| > Kehange

A simple check of the operational descriptions in Figure 7.4 and Figure 7.5
shows that the new computational state used as argument to transmitChange?
(s’ in Figure 7.4 and ¢s” in Figure 7.5) must be consistent as it is created using
updateRoutingState. Hence it is just necessary to define transmitChange? for
consistent computational states.

7.3.2 Directed diffusion — another instantiation of the generic
framework

It should be noticed that the routing algorithm DD [27] is a simple instance
of the generic framework, which can be achieved by simplifying the DEHAR
instance so that

e the simple distance is the number of hops to the based station (as for
DEHAR) and

e the energy is assumed perfect and hence the adjustments have no effect
(are 0).

Hence DD do not support any kind of energy-aware routing.

Actually, it is the algorithm behind DD which is used to initialize the simple
distances of nodes in the DEHAR algorithm.

The DD algorithm provides a good model of reference for comparison with
energy harvesting aware routing algorithms like DEHAR, since DD incorpo-
rates nodes with an energy harvesting capability, but the routing is static in
the sense that an observation is always transmitted along the path with the
smallest number of hops to the base station. Energy harvesting aware rout-
ing algorithms will not necessarily choose this shortest path, since problematic

132 Dynamic systems

low-energy nodes should be avoided in order to keep all nodes “alive” as long
as possible. Therefore, the total energy consumption in a DD based network
should be smaller than the total energy consumption of any energy harvesting
aware network (due to longer paths in the latter). On the other hand, energy
harvesting awareness can spare low-energy nodes, and there are two important
consequences of this:

e A drain of low-energy nodes can be avoided or at least postponed. With
regard to this aspect DD should perform worse since these nodes are not
spared at all in the routing.

e The total energy stored in a network should exceed that of a corresponding
DD based network, since messages are transmitted through nodes with
good energy harvesting capability. The reason for this is that low-energy
nodes get a chance to recover and that transmissions through high-energy
nodes, with a full energy storage, are close to be “free of charge” since
there would be almost no storage available for harvested energy in these
high-energy nodes.

7.4 Results from simulation of the model

In this section we will study the properties of the energy harvesting aware rout-
ing algorithm DEHAR by analysing results [31] of a simulator implementing the
DEHAR and DD algorithms. The simulator is a custom-made simulator [30)]
implemented in the language Java. It can be configured through a compre-
hensive xml configuration file which includes the network layout, environmental
properties (insolation, shadows, etc.) and properties of nodes (such as proces-
sor states, radio model, and frequency of observations). The simulator features
a classic event driven engine. The simulator produces a trace of observations
of the nodes, including energy levels, activity of devices, and environmental
properties

The considered network is given in Figure 7.9. The network has one very
problematic node, due to a strong shadow, at coordinate (1,3), and five nodes
with potential problems due to light shadows. We will analyse the ability of the
routing algorithms to cope with these problematic nodes using simulations.

The medium and the physical setting must be defined for the experiments.
It is assumed that a node can communicate with its immediate horizontal and
vertical neighbour, i.e. the radio range is 1. Two experiments S1 and S2 are

7.4 Results from simulation of the model 133

y
7
6
* Node

5

>< Base station
4

. Strong shadow
3 . . .

Light shadow

2
1

T

1 2 3 4 5 6 7

Figure 7.9: A network structure with illustrating problematic nodes

conducted, one with a low and another with a high rate of conducted observa-
tions. Table 7.1 shows the parameters that are used in the presented simulations.
Only the observation rate is changed between the two simulations.

The energy model is based on real insolation data for a two-weeks period.
The data is repeated in simulations over longer periods. To emphasize the effect
of the DEHAR algorithm, the insolation pattern have been idealised to either
full noon or midnight, i.e. 12 hours of light and 12 hours of darkness. The
insolation data is suitably scaled for individual nodes to achieve the shadow
effect shown in Figure 7.9.

7.4.1 Energy awareness makes a difference

A 30 day view of the simulations S7 with the low observation rate is shown
in Figure 7.10. The figure shows the energy available in the worst node with
minimum energy in the network. The two algorithms cannot be distinguished
the first five days. Thereafter, the energy aware routing starts and DEHAR
stabilises at a high level where no node is in any danger of being drained for
energy. In the DD case, the energy of worst node is steadily drained at a (rather)
constant rate and in an foreseeable future it will stop working.

134 Dynamic systems

S So unit
Range 1 1
Radio Transmit power 50 50 mW
Idle listening power | 5.5 5.5 | mW
Bandwidth 45 45 kb/s
Sleep | Power 1 1 W
Processor . Frequenc, 1 1 MHz
Active | pooee 10 10 LW
Battery Capacity 4 4 kJ
Solar panel Efficiency 6.25 6.25 %
Area 12.5 12,5 | cm?
Application parameters | Observation rate 9—(1)0 & sec™ !
Routing parameters Sense rate =5 e | sec

Table 7.1: Parameters used in simulations.

7.4.2 Energy awareness consumes and stores more energy

The total power consumed and the average energy stored per node in the net-
work are monitored for the same simulations as in Figure 7.10. These results
are shown for the first 10 days of simulated time in Figure 7.11.

The day cycle is clearly visible in Figure 7.11a where the nodes recharge
during day and discharge during night. The first five days of simulation do not
show any significant difference between DEHAR and DD. During the last five
days the DEHAR algorithm makes the network able to harvest and store more
energy.

The next graph (Figure 7.11b) shows the difference of the two curves from the
previous. It shows (in the blow-up) that just before day five ends, the DEHAR
algorithm starts to consume significantly more energy than the DD algorithm.
By looking at the third graph (Figure 7.11c) which shows the difference in
total network energy consumption, it can be confirmed. This extra energy
consumption arises from observation packages that travel along longer routes
in the network, because the DEHAR algorithm has detected a lower amount of
stored energy in some nodes.

Even though the DEHAR consumes more energy due to the longer routes,
it can store more energy on average in the nodes. The reason for this is that
the extra energy consumption of DEHAR is taken from nodes that are able to

7.4 Results from simulation of the model 135

I T T T T T T T T T T T T T 100

- T3 A — 98 gﬁ
- S 197

<
= Tl —96°
- T - 952
L —94%

RN <

| | | | | | | | | | | | | [91

0 48 96 144 192 240 288 336 384 432 480 528 576 624 672720
Time (h)

Figure 7.10: Results of simulations S7 for a 30 day simulation. This graph shows
the minimum energy in any node in the network.

recharge fully during daytime. This can be seen in Figure 7.11b (in the blow-up)
at the beginning of day 5 (120h), where the graph shows a sudden rise.

After a short while, the network with the DD algorithm is able to harvest
energy at a greater rate than DEHAR. This is due to the fact that the majority
of the nodes in the DEHAR network are fully charged. The key point at this
time is that the DD algorithm does not allow the network to harvest as much
energy as the DEHAR algorithm. This can also be seen through the rest of the
daylight during day 5, where the DEHAR network is able to harvest energy at
a higher rate than the DD network.

Finally, during night, the DEHAR network again shows a higher energy
consumption than the DD network. Hence the graph shows a slow decline.

7.4.3 Increasing the rate of observations costs

The next simulations (S2) have an increased rate of observations and thus an
increased radio traffic in the network. The effect of the increased data rate is
primarily that the network consumes more power. This extra power consump-
tion speeds up the time from the start of the simulation until the network finds
the alternate routing pattern compared to the S; simulations.

Figure 7.12 shows that the minimum energy in any of the nodes in the
network stabilises with the DEHAR algorithm. The level at which it stabilises
is lower than in the S; simulations, which is expectable. The faster observation
rate hurts the DD network and a node will already be drained of energy in about

136 Dynamic systems
100.00

99.95

99.90

99.85

% of full charge

99.80

| 1 1 | | | | | | 99.75
0 24 48 72 96 120 144 168 192 216 240

Time (h)

(a) Average energy in nodes for each simulation of Si.
I I I I | | | | | 0.030

0.025
0.020
0.015

o
o
=
S)

0.005
| ;
-

1 1 1 1 1 1 1 1 1 -0.005

0 24 48 72 96 120 144 168 192 216 240
Time (h)

% of full charge

3x zoom ‘

(b) Difference in the average energy in nodes for simulations in S1. Given that the two curves
in Figure 7.11a are characterised by the functions fprmar(t) and fpp(t), then the curve
in this figure is characterised by fppmar(t) — fop(t).

T T T T T T 0.30
0.25
0.20

0.15

Power (uW)

0.10
0.05

| | | —h o | | | | |

0
0 24 48 72 96 120 144 168 192 216 240
Time (h)

(c) Surplus energy consumption by DEHAR compared with DD for simulations in Sy.
Figure 7.11: Results of simulations S; showing the first 10 days. The blow-up
in (b) emphasises the first important difference between the DEHAR and DD
algorithms.

7.5 Summary 137

——| T T T T T T T T 100

0 24 48 72 96 120 144 168 192 216 240
Time (h)

Figure 7.12: Minimum energy in any node of the simulations in Ss. The day
cycle is barely visible due to the compressed y-scale, compared to the simulations
Si.

10 days.

The routing trend of the DEHAR algorithm is the same in the simulations Sy
and So. The only difference is that the DEHAR algorithm finds this alternative
routing pattern faster in S5 than in S.

The energy statistics of the node covered by the strongest shadow (at co-
ordinate (1,3)) can be analysed. A graph of the energy level of this node will
look similar to Figure 7.12 and (in this simulation) it stabilises at precisely the
same energy level. This shows that the energy it can harvest closely matches
the energy it needs to perform routing updates and performing observations (i.e.
refraining from routing other nodes observations).

7.5 Summary

We have presented a new modelling framework aimed at describing and analysing
wireless sensor networks with energy harvesting capabilities. The framework is
comprised of a conceptual basis and an operational basis, which were used to
describe and explain two wireless sensor networks with energy harvesting capa-
bilities. One of these network models is based on DD, i.e. it supports energy
harvesting; but the routing is not energy aware, as it just forwards observations
to the base station along statically defined shortest paths. The other network
model is based on the energy harvesting aware routing protocol DEHAR. Both

138 Dynamic systems

of these networks were given natural explanations using the concepts of the
modelling framework, and this gives a first weak validation of the adequacy of
the framework. More experiments are, of course, needed for a thorough valida-
tion. Simulation results show that energy awareness of DEHAR-based networks
can significantly extend the lifetime of nodes and it significantly improves the
energy stored in the network, compared with a network like DD, with no energy
aware routing.

There are several natural extensions of this work.

First of all, the modelling framework should be validated by establishing its
applicability in a broad collection of energy harvesting aware networks. The
framework should be extended to include the deployment phase, where the
nodes communicate in order to initialize their states. We do not expect principle
difficulties in these extensions, but they are, of course, technical.

The generic framework may be instantiated in ways which will not be ben-
eficial for the energy situation in the network. It is desirable and challenging
to establish conditions which instantiations should satisfy in order to define an
adequate energy harvesting aware network.

Another natural development would be to implement a platform for the mod-
elling framework. The formalized parts of the framework provide good bases
for such an implementation; but further formalization concerning the network
communication and the medium should be considered prior to an implementa-
tion.

Chapter 8

Conclusion and perspectives

Cyper physical systems (CPSs) are becoming more and more complex. The
increased complexity makes it necessary to use computer aided design (CAD)
methods. However, it is challenging to express dynamic CPSs (e.g. the wireless
sensor network (WSN) routing algorithm presented in Chapter 2) in today’s
formal frameworks such that they are analysable.

The hearing aid calibration device presented in Chapter 6, is an example
of a static CPS which is independent of the platform and the environment as
such. It has a static communication protocol with its environment (the PC
and the audio measurements). In other words all possible state changes of the
system are known, and all possible inputs causing state changes are known.
Such systems can be analysed without a complete model of its environment,
i.e. how the environment behaves, only a model of the possible inputs from the
environment.

8.1 Summary

The goal of this thesis has been to model and analyse the dynamic CPSs. In
the process of reaching this goal, the following milestones have been reached.

e The work of the thesis is illustrated by two use cases: A company use case
and a WSN use case.

— The company (www.auditdata.com) use case illustrates static sys-
tems expressed in ForSyDe.

www.auditdata.com

140

Conclusion and perspectives

— The WSN use case illustrates a dynamic system.

The distributed energy harvesting aware routing (DEHAR) algorithm for
WSNs has been designed.

The DEHAR algorithm has been analysed in UPPAAL.

— For small networks the UPPAAL analysis indicates that the DEHAR
algorithm works correctly.

To formally express dynamic WSN systems, a framework is defined.

The ForSyDe framework has been developed to cope with heterogeneous
models.

— Four models of computation (MoCs) are mathematically defined and
implemented in Haskell-ForSyDe: synchronous (SY), synchronous
data flow (SDF), discrete event (DE), and continuous time (CT).

— Domain interfaces for combining MoCs are defined in general.

— Structured domain interfaces are developed for a formal definition of
domain interfaces.

The overall goal has been reached. However, the ForSyDe framework, with
the current MoCs, has a static structure which makes it difficult to naturally
express dynamic systems. In Chapter 7 a framework for expressing dynamic
WSNs is defined. This WSN framework is a challenging case study for mod-
elling and analysing dynamic systems, it could guide future development around
ForSyDe.

The work of this thesis has inspired the following projects:

e The UPPAAL team are working on implementing the WSN framework

presented in Chapter 7 in the UPPAAL framework.

The WSN framework is also implemented in the programming language
F-Sharp by the Ph.D. student Phan Anh Dung. The focus of this im-
plementation is to model and simulate various routing protocols, one of
which is the DEHAR algorithm. This work focuses on studying the net-
work behaviour of the routing algorithms.

A master student, Nan Wu, has worked on expressing the WSN routing
algorithm (described in Chapter 2) in a probabilistic model. The aim is

8.2 Perspectives 141

to perform stochastic verification. The work is promising, as rather than
having a static structure where all possible structures must be described,
they are described in stochastic terms.

8.2 Perspectives

The work of this thesis is part of the SYSMODEL project in which other
work has been created in close cooperation. It has also inspired several cur-
rent projects and some future work.

e The SYSMODEL project partners have defined wrappers for co-simulating
foreign models with ForSyDe [56]. This article also presents a ForSyDe
implementation in SystemC. This has been done to increase the availability
of this work to the industry.

e A graphical user interface for creating ForSyDe models, called ForSyDe
graphical editor (FGE), has been created [1]. It provides a graphical mod-
elling environment and the ability to provide implementations of the leaf-
processes. The models created with FGE can be translated into Haskell
code, which uses the Haskell-ForSyDe implementation. The perspectives
of the FGE are that it can combine the ForSyDe framework with exter-
nal analysis tools and combine the results from the external tools in the
graphical model. The results of the external tools and simulations can be
used as constraints, which can be checked for consistency.

Future work that the work of this thesis could inspire is:

e The UPPAAL framework and other static analysis frameworks proved
not to be able to express the dynamic WSN system. Maybe the Generic
Modeling Environment (GME) could be an interesting framework to test.
The models are described through constraints. If the GME framework
is able to express dynamic systems, it is possible to statically check the
constraints, however, it will not be possible to simulate the model as GME
does not facilitate this.

e A dedicated MoC could be defined in ForSyDe to express UPPAAL mod-
els. This would give the benefit of simulating heterogeneous systems in
ForSyDe, the static analysis from UPPAAL of the sub-model expressed in
the UPPAAL-MoC, and the possibility of automatic translation of models
between the two frameworks.

142 Conclusion and perspectives

e The Ptolemy framework implements a static analysis of a subset of models
expressed in the SR and the DE MoCs, this work can be exploited to make
static analysis of similar SY and DE MoCs expressed in ForSyDe.

e The four MoCs present in ForSyDe can express both hardware, software
and systems in general, however, especially for software and systems, sys-
tems are practically limited to streaming applications and synchronous
control applications. Other MoCs, e.g. the concurrent sequential pro-
cesses (CSP) MoC, could be interesting to include in ForSyDe to express
more general application and system behaviour. The challenge here is
especially to define formal domain interfaces to the existing MoCs.

Appendix A

ForSyDe-Haskell
implementation

A.1 Synchronous model of computation

Signal definition

—— Module : ForSyDe. Shallow.SY. Signal. Internal
— Copyright

— License : AllRightsReserved

— Maintainer : mkoe@imm. dtu.dk

— Stability : Ezperimental

— Portability

module ForSyDe.Shallow.SY. Signal.Internal (
Signal (..),

) where

import Control.DeepSeq (NFData(rnf))

data Signal a = a :— Signal a | Null

infixr 4 :—

instance (Show a) => Show (Signal a) where
showsPrec p = showParen (p>1) . showSignal

144 ForSyDe-Haskell implementation

N}
=

28 showSignal :: (Show a) => Signal a —> ShowS

20 showSignal (x :— xs) = showChar ’{’ . showEvent x . showSignal’ xs
30 showSignal (Null) = shows 7 {}”

31

32 showSignal’ :: (Show a) => Signal a —> ShowS

33 showSignal’ (x :— xs) = showChar ’,’ showEvent x . showSignal’ xs
34 showSignal’ (Null) = showChar '}’

36 —— Show an event token

37 showEvent :: (Show a) => a —> ShowS

38 showEvent x = shows x

10 instance (Read a) => Read (Signal a) where
11 readsPrec d = readParen (d>1) readSignalStart

13 readSignalStart :: (Read a) => ReadS (Signal a)

14 readSignalStart = (\ a —> [(xs,c) | ("{”,b) <— lex a , (xs,c) <—
readSignal (’,” : b) 4+ readNull b])

15

16 readSignal :: (Read a) => ReadS (Signal a)

A7 readSignal r = readEvent r 4+ readNull r

48

19 —— | Read an event token

50 readEvent :: (Read a) => ReadS (Signal a)

51 readEvent a = [(x :— xs,d) | (7,”,b) <— lex a , (x,c) <— reads b ,

(xs,d) <— readSignal c]
53 —— | Read a null token
54 readNull :: (Read a) => ReadS (Signal a)
55 readNull a = [(Null,b) | (7}”.,b) <— lex a]

57 instance (NFData a) => NFData (Signal a) where

58 rnf (x :— xs) = rnf x ‘seq‘ rnf xs
59 rnf Null = ()
Process atoms
1
:_s —— Module : ForSyDe. Shallow.SY. Signal
4 —— Copyright
5 —— License : AllRightsReserved
6 —
7 —— Maintainer : mkoe@imm. dtu.dk
g —— Stability : Ezperimental
9 —— Portability

1 —

15 module ForSyDe.Shallow.SY. Signal (
16 Signal ,

17 signal |

18 fromSignal ,

19 map,

62

A.1 Synchronous model of computation

145

zip ,
delay ,§
(>),8
(>>),
(+>),0
()@
(0),.A
0>

) where

import Prelude ()

import ForSyDe. Shallow.SY. Signal.Internal

i

infixl 5 ‘map‘ , ‘zip

)

‘delay ¢, & , &> , +>

)

©

)

&}

— O Unicode U+2A00 , UTF-8 Hex E2 A8 800
() :+ (a —> b) —> Signal a —> Signal bO
() = map

— @ : Unicode U+2A01 ,

UTF-8 Hex E2 A8 81&®

) Signal (a —> b) —> Signal a —> Signal b®
() = zip
— A : Unicode U+2206 , UTF-8 Hex E2 88 86A
() :: Signal a —> a —> Signal aA
() = delay
I
3
(>) :: (a —> b) —> Signal a —> Signal b§
(>) = map§
(>>) Signal (a —> b) —> Signal a —> Signal b§
(>>) = zip
(+>) :: Signal a —> a —> Signal a
(+>) = delay
map (a —> b) —> Signal a —> Signal b
map f (x :— xs) =f x :— f § xs
map - Null = Null
zip :: Signal (a —> b) —> Signal a —> Signal b
zip (f :— fs) (x :— xs) = f x :— fs §> xs
zip - Null = Null
zip Null _ = Null
delay Signal a —> a —> Signal a
delay xs x = x :— xs
signal [a] —> Signal a

signal (x Xs) = x i—

signal xs

A W

16

1

=R
S © ® =

NN N
[

N
B

W W W N NNN NN
N o= O © WO

146

ForSyDe-Haskell implementation

signal [] = Null
fromSignal :: Signal a —> [a]
fromSignal (x :— xs) = x : fromSignal xs

fromSignal Null

(]

Process constructors

— Module
— Copyright
— License

— Maintainer

— Stability
— Portability

ForSyDe. Shallow.SY. Processes
AllRightsReserved

mkoe@imm. dtu . dk
Ezperimental

module ForSyDe.Shallow.SY.Processes (

map,
zipWith ,
zipWith3 ,
zipWith4 |
delay ,
delayn ,
scanl |
scanl2 ,
scanl3 |
scanld ,
scanld?2 ,
scanld3 ,
moore ,
moore2 ,
moore3 ,
mealy ,
mealy?2 ,
mealy3 ,
source ,
zip ,
zip3 ,
zip4 ,
unzip ,
unzip3 ,
unzip4 ,
) where

import Prelude (otherwise, flip ,Ord,Num(<=),(—),fst ,snd)
import ForSyDe. Shallow .SY. Signal (Signal®,()®,()A,() ,map)

zipWith :: (a —> b —> ¢) —> Signal a —> Signal b —> Signal ¢

zipWith f xs ys =

f ®© xs & ys

A.1 Synchronous model of computation 147

19 zipWith3 :: (a —> b —> ¢ —> d) —> Signal a —> Signal b —> Signal ¢ —>
Signal d
50 zipWith3 f xs ys zs = f © xs @ ys @ zs

1

52 zipWith4 :: (a —> b —> ¢ —> d —> e) —> Signal a —> Signal b —> Signal ¢
—> Signal d —> Signal e

zipWithd f ws xs ys zs = f ® ws & xs @ ys @ zs

55 delay :: a —> Signal a —> Signal a

56 delay = flip A()

58 delayn :: (Ord n,Num n) => a —> n —> Signal a —> Signal a
50 delayn x n xs

60 | n<=0 = Xxs

61 | otherwise = delayn x (n—1) xs A x

62

63 scanl :: (a —> b —> a) —> a —> Signal b —> Signal a

64 scanl f mem xs = s

65 where

66 s =f ® (s A mem) @ xs

67

68 scanl2 :: (a —> b —> ¢ —> a) —> a —> Signal b —> Signal ¢ —> Signal a
60 scanl2 f mem xs ys = s

70 where

71 s =f ©® (s A mem) & xs @ ys

73 scanl3 :: (a —> b —> c —>d —> a) —> a —> Signal b —> Signal ¢ —>

Signal d —> Signal a

74 scanl3 f mem xs ys zs = s

75 where

76 s =f © (s A mem) & xs @& ys @ zs

7 scanld :: (a —> b —> a) —> a —> Signal b —> Signal a

79 scanld f mem xs = s

80 where

81 s =f ® s & xs A mem

83 scanld2 :: (a —> b —> ¢ —> a) —> a —> Signal b —> Signal ¢ —> Signal a

84 scanld2 f mem xs ys = s

85 where

86 s =f ® s & xs & ys A mem

s scanld3 :: (a—> b —> ¢ —>d —> a) —> a —> Signal b —> Signal ¢ —>
Signal d —> Signal a

80 scanld3 f mem xs ys zs = s

90 where

91 s =f ® s ® xs ® ys & zs A mem

92

93 moore :: (a —> b —> a) —> (a —> ¢) —> a —> Signal b —> Signal ¢

94 moore nextState output mem xs = output © s

95 where

96 s = nextState ® s @ xs A mem

97

o8 moore2 :: (a —>b —>c¢c —>a) —> (a —>d) —> a —> Signal b —> Signal ¢
—> Signal d

99 moore2 nextState output mem xs ys = output © s

100 where

101 s = nextState ® s @ xs & ys A mem

148 ForSyDe-Haskell implementation

102

103 moored :: (a—>b -—>c—>d->a) —> (a—>e) —> a —> Signal b —>
Signal ¢ —> Signal d —> Signal e

104 moore3 nextState output mem xs ys zs = output O s

105 where

106 s = nextState ©® s ® xs @ ys & zs A mem

108 mealy :: (a —> b —> a) —> (a —> b —> c¢) —> a —> Signal b —> Signal ¢
109 mealy nextState output mem xs = output ® s @ xs

110 where

111 s = nextState ® s @ xs A mem

112

113 mealy2 :: (a =>b —>c¢c —>a) > (a—>b —>c —>d) —> a —> Signal b —>

Signal ¢ —> Signal d
114 mealy2 nextState output mem xs ys = output ® s @ xs @ ys

115 where

116 s = nextState © s ® xs B ys A mem

117

118 mealy3 :: (a—>b -—>c¢c-—>d->a) > (a-—>b->c-—>d->¢e)-—>a—>

Signal b —> Signal ¢ —> Signal d —> Signal e
119 mealy3 nextState output mem xs ys zs = output © s @© xs @ ys D zs
120 where
s = nextState ©® s @ xs ® ys H zs A mem

1

1 source :: (a —> a) —> a —> Signal a

124 source f mem = o

125 where

126 o = s A mem

127 s =f ® o

128

120 zip :: Signal a —> Signal b —> Signal (a,b)

130 zip xs ys = (,) ® xs @ ys

131

132 zip3 :: Signal a —> Signal b —> Signal ¢ —> Signal (a,b,c)

133 zip3 xs ys zs = (,,) © xs & ys d zs

134

135 zip4 :: Signal a —> Signal b —> Signal ¢ —> Signal d —> Signal (a,b,c,d)

136 zip4d ws xs ys zs = (,,,) © ws @ xs @ ys @ zs

137

138 unzip :: Signal (a,b) —> (Signal a,Signal b)

130 unzip xs = (fst © xs,snd ©® xs)

140

141 unzip3 :: Signal (a,b,c) —> (Signal a,Signal b, Signal c¢)

2 unzipd xs = ((\ (X,000) => %) © x8,(\ (-1x,-) > x) © x8,(\ (ro,x) —>
x) ® xs)

143

144 unzip4 :: Signal (a,b,c,d) —> (Signal a,Signal b, Signal c,Signal d)

o unzipd xs = ((\ (x,00000) = %) @ x5, (\ (-ix,-,2) —> x) @ x84\
(<o, 2) 2> %) @ %85 (\ (=rmrmsx) => %) @ x3)

Domain interface tools

— Module : ForSyDe. Shallow.SY. Interface
Copyright :
—— License : AllRightsReserved

NI
|
|

aoA W N

A.2 Synchronous data flow model of computation

149

— Maintainer
— Stability
— Portability

mkoe@imm. dtu . dk
Ezperimental

module ForSyDe.
head,
tail |
take,
drop,
length ,

) where

import Prelude
import ForSyDe.

Shallow .SY.Interface (

hiding (head, tail ,take,drop,length)
Shallow .SY. Signal.Internal

head :: Signal a —> Maybe a
head Null = Nothing
head (x :— _) = Just x
tail :: Signal a —> Maybe (Signal a)
tail Null = Nothing
tail (- :— xs) = Just xs
take :: Int —> Signal a —> Signal a
take n (x :— xs)

| n<=0 = Null

| otherwise = x :— take (pred n) xs
take _ Null = Null

drop :: Int —>
drop n (x :— xs
| n<=0
| otherwise
drop - Null

length (. :— xs

Signal a —> Signal a
)

= X !— XS
rop (pred n) xs
Null

)

length :: Signal a —> Int

length Null

1 + length xs
0

A.2 Synchronous data flow model of computa-

tion

Signal definition

— Module
— Copyright
— License

ForSyDe. Shallow.SDF. Signal. Internal

AllRightsReserved

150 ForSyDe-Haskell implementation

7 —— Maintainer : mkoe@imm. dtu.dk
8 —— Stability : Ezperimental
9 —— Portability

15 module ForSyDe.Shallow.SDF. Signal.Internal (
16 Signal (..),
17) where

data Signal a = a :— Signal a | Null

infixr 4 :—

NN NN
w N =

instance (Show a) => Show (Signal a) where

N}

2 showsPrec p = showParen (p>1) . showSignal

26 showSignal :: (Show a) => Signal a —> ShowS

27 showSignal (x :— xs) = showChar ’{’ . showEvent x . showSignal’ xs
2 =

8 showSignal Null showString 7 {}”

30 showSignal’ :: (Show a) => Signal a —> ShowS

31 showSignal’ (x :— xs) showChar ’,’ . showEvent x . showSignal’ xs
32 showSignal’ Null showChar '}’

31 —— | Show an event token
35 showEvent :: (Show a) => a —> ShowS
36 showEvent x = shows x

38 instance (Read a) => Read (Signal a) where
39 readsPrec d = readParen (d>1) readSignalStart

11 readSignalStart :: (Read a) => ReadS (Signal a)

12 readSignalStart = (\ a —> [(xs,c) | ("{”,b) <— lex a , (xs,c) <—
readSignal (’,” : b) 4+ readNull b])

13

14 readSignal :: (Read a) => ReadS (Signal a)

45 readSignal r = readEvent r 4+ readNull r

46

47— | Read an event token

iz readEvent :: (Read a) => ReadS (Signal a)

19 readEvent a = [(x :— xs,d) | (”,”,b) <— lex a , (x,c) <— reads b ,

(xs,d) <— readSignal c]
—— | Read a null token

1
52 readNull :: (Read a) => ReadS (Signal a)
3 readNull a = [(Null,b) | ("}”,b) <— lex a]

Process atoms

3 —— Module : ForSyDe. Shallow.SDF. Signal
i+ —— Copyright :

© 0 ~

0 = O

NN N W

W oW W W W WwN N NN N
Qb W R RO © XN oA W

37

c
60
61

A.2 Synchronous data flow model of computation

151

License : AllRightsReserved
Maintainer mkoe@imm. dtu . dk
Stability : Ezperimental
Portability

module ForSyDe.Shallow .SDF. Signal (

import

Signal ,
Packed ,
signal ,
fromSignal ,
splitAt ,

import ForSyDe.Shallow .SDF. Signal.Internal
import qualified Prelude as P

infixl 5§ , &> , & , 4+ , 0 ,® , ® , A

Prelude (Int,(==),(<=),otherwise,(—),($),flip,foldr)

— ©® : Unicode U+2A00 , UTF-8 Hex E2 A8 800
([a] => b) —> (Int,Signal a) —> Packed (Signal b)0®

= map

@ : Unicode U+2A01 , UTF-8 Hex E2 A8 81®

Packed (Signal ([a] —> b)) —> (Int,Signal a) —> Packed

b)®

= zip

® : Unicude U+2A02 , UTF-8 Hex 9?9 292 29Q
Packed (Signal [a]) —> () —> Signal a®
= expand

Unicode U+2206 , UTF-8 Hex E2 88 86A
Signal a —> [a] —> Signal aA
= delay

- D

(Signal

wn

ForSyDe-Haskell implementation

(>) ([a] => b) —> (Int,Signal a) —> Packed (Signal b)§
(>) = map§
(>>) :: Packed (Signal ([a] —> b)) —> (Int,Signal a) —> Packed (Signal
b)§
(>>) = zip§
(>) Packed (Signal [a]) —> () —> Signal a§
(>) = expand
(+>) Signal a —> [a] —> Signal a
(+>) = delay
map ([a] —=> b) —> (Int,Signal a) —> Packed (Signal b)
map f (nx,xs) = let (x,xs’) = splitAt’ nx xs in
if P.length x == nx then
Packed $ (f x) :— fromPacked (f ‘map‘ (nx,xs’))
else
Packed Null
zip Packed (Signal ([a] —> b)) —> (Int,Signal a) —> Packed (Signal b)
zip (Packed Null) - = Packed Null
zip - (-,Null) = Packed Null
zip (Packed (f :— fs)) (nx,xs) = let (x,xs’) = splitAt’ nx xs in
if P.length x == nx then
Packed $ (f x) :— fromPacked (Packed fs ‘zip‘ (nx,xs’))
else
Packed Null
expand Packed (Signal [a]) —> () —> Signal a
expand (Packed Null) () = Null
expand (Packed (x :— xs)) () = flip (foldr (:—)) x $ flip expand () $
Packed xs
delay Signal a —> [a] —> Signal a
delay = foldr (:—)
signal [a] —> Signal a
signal (x xs) = x :— signal xs
signal [] = Null
fromSignal Signal a —> [a]
fromSignal (x :— xs) = x : fromSignal xs
fromSignal Null =[]

splitAt Int —> Signal a —> (
splitAt n xs@Q(x :— xs’)

| n<=0 = (Null, xs)

| otherwise = let (as,bs) =
splitAt Null = (Null,Null)
splitAt’ Int —> Signal a —>

Signal a,Signal a)

splitAt (n—1) xs’ in (x :— as,bs)

([a],Signal a)

A.2 Synchronous data flow model of computation 153

11g splitAt’ n xsQ(x :— xs’)

119 | n<=0 = ([],xs)

120 | otherwise = let (as,bs) = splitAt’ (n—1) xs’ in (x : as,bs)
splitAt’ _ Null = ([],Null)

1
2

23 newtype Packed a = Packed a
4

25 fromPacked :: Packed a —> a
26 fromPacked (Packed x) = x

Process constructors

1
3 —— Module : ForSyDe. Shallow.SDF. Processes
1 —— Copyright
5 —— License : AllRightsReserved
6 —_—

7 —— Maintainer : mkoe@imm. dtu.dk
8 —— Stability : Ezperimental
9 —— Portability :

10 —

1 —— |

12—

13

14

15 module ForSyDe.Shallow .SDF. Processes (

16

17) where

18

19 import Prelude ()

20 import ForSyDe.Shallow.SDF. Signal (Signal,(+>)8§,(>)§,(>>))
Domain interface tools

1

3 —— Module : ForSyDe. Shallow.SDF. Interface

1 —— Copyright

5 —— License : AllRightsReserved

6 —_

7 —— Maintainer : mkoe@imm. dtu.dk

g8 —— Stability : Ezperimental

9 —— Portability

10—

11— |

12—

13

14

15 module ForSyDe.Shallow .SDF.Interface (

16 head,

17 tail ,

18 take,

19 drop,

20 length ,

21) where

16

154 ForSyDe-Haskell implementation

import Prelude (pred,(+) ,Int,(<=),otherwise ,Maybe (..))
import ForSyDe.Shallow .SDF. Signal.Internal

head :: Signal a —> Maybe a
head Null = Nothing
head (x :— _) = Just x

tail :: Signal a —> Maybe (Signal a)
tail Null = Nothing
tail (- :— xs) = Just xs
take :: Int —> Signal a —> Signal a
take n (x :— xs)

| n<=0 = Null

| otherwise = x :— take (pred n) xs
take _ Null = Null

drop :: Int —> Signal a —> Signal a
drop n (x :— xs)

| n<=0 = X :— XS

| otherwise = drop (pred n) xs
drop - Null = Null

length :: Signal a —> Int
length (. :— xs) = 1 + length xs
length Null =

A.3 Discrete event model of computation

Signal definition

—— Module : ForSyDe. Shallow .DE. Signal. Internal
— Copyright

— License : AllRightsReserved

— Maintainer : mkoe@imm. dtu. dk

— Stability : Ezperimental

— Portability

module ForSyDe.Shallow .DE. Signal.Internal (
Signal (..),
SubSignal (..),

) where

import Control.DeepSeq (NFData(rnf))

newtype Signal t a = Signal (a,SubSignal t a)
data SubSignal t a = (t,a) :— SubSignal t a | Null t

16

A.3 Discrete event model of computation 155

infixr 4 :—

instance (Show t,Show a) => Show (Signal t a) where
showsPrec p = showParen (p>1) . showSignal

showSignal :: (Show t,Show a) => Signal t a —> ShowS

showSignal (Signal (x0,xs)) = showChar ’(’ . shows x0 . showChar ’,’
showSubSignal xs . showChar)’

showSubSignal :: (Show t,Show a) => SubSignal t a —> ShowS

showSubSignal (x :— xs) = showChar ’'{’ . showEvent x . showSubSignal’ xs

showSubSignal (Null t) = showString ”"{}” . shows t

showSubSignal’ :: (Show t,Show a) => SubSignal t a —> ShowS

showSubSignal’ (x :— xs) = showChar ’,’ showEvent x . showSubSignal’
xs

showSubSignal’ (Null t) = showChar '}’ . shows t

—— Show an event token

showEvent :: (Show t,Show a) => (t,a) —> ShowS

showEvent (t,x) = showChar ’'(’ . shows t . showChar ’,’ . shows x

showChar)~

instance (Read t,Read a) => Read (Signal t a) where
readsPrec d = readParen (d>1) readSignal

readSignal :: (Read t,Read a) => ReadS (Signal t a)
readSignal = (\ a —> [(Signal (x0,xs),f) |

(”(”,b) <— lex a,

(x0,c) <— reads b,

(7,7,d) <— lex c,

(xs,e) <— readSubSignalStart d,

(7)”,f) <— lex e

D

readSubSignalStart :: (Read t,Read a) => ReadS (SubSignal t a)
readSubSignalStart = (\ a —> [(xs,c) |
("{”,b) <= lex a,

(xs,c) <— readSubSignal (’,” : b) 4++ readNull b
D)
readSubSignal :: (Read t,Read a) => ReadS (SubSignal t a)

readSubSignal r = readEvent r 4++ readNull r

—— | Read an event token

readEvent :: (Read t,Read a) => ReadS (SubSignal t a)

readEvent a = [(x :— xs,e) | (7 ,(”,b) <— lex a , (x,c) <— reads b
(7)7,d) <— lex ¢, (xs,e) <— readSubSignal d]

— | Read a null token
readNull :: (Read t,Read a) => ReadS (SubSignal t a)
readNull a = [(Null t,c) | (”}”,b) <— lex a, (t,c) <— reads b]

instance (NFData t,NFData a) => NFData (Signal t a) where
rnf (Signal (x0,xs)) = rnf x0 ‘seq‘ rnf xs

instance (NFData t,NFData a) => NFData (SubSignal t a) where

)

~

~

S © W ~

NN N
[

NN NN

N
RN

w NN

156 ForSyDe-Haskell implementation

rnf (x :— xs) = rnf x ‘seq‘ rnf xs
rnf (Null t) = rnf t
Process atoms
— Module : ForSyDe. Shallow .DE. Signal
— Copyright :
— License : AllRightsReserved
— Maintainer : mkoe@imm. dtu.dk
— Stability : Ezperimental
— Portability :

module ForSyDe.Shallow .DE. Signal (
Signal ,
signal ,
fromSignal ,
map,
zip ,
delay ,§
(>),8
(>>),
(+>).,0
O
(),A
0,

) where

import Prelude ((<),(<=),(==),(+) ,min,otherwise,Ord,Num)
import ForSyDe.Shallow .DE. Signal.Internal

¢ ¢ ¢

infixl 5 ‘map‘ , ‘zip , ‘delay < , & , &> , & , 0 , & , A

— ©® : Unicode U+2A00 , UTF-8 Hex E2 A8 800
(a —> b) —> Signal t a —> Signal t b®
= map

f\
o
|

® : Unicode U+2A01 , UTF-8 Hex E2 A8 81®
(Ord t) => Signal t (a —> b) —> Signal t a —> Signal t b®
zip

~— |
|
Il

— A : Unicode U+2206 , UTF-8 Hex E2 88 86A
) (Num t) => Signal t a —> (a,t) —> Signal t aA
() = delay

wn

(a —> b) —> Signal t a —> Signal t b§
map§

85

A.3 Discrete event model of computation

(>>) :: (Ord t) => Signal t (a —> b) —> Signal t a —> Signal t b§
(>>) = zip
(+>) :: (Num t) => Signal t a —> (a,t) —> Signal t a

(+>) = delay

map :: (a —> b) —> Signal t a —> Signal t b
map f (Signal (x0,xs)) = Signal (f x0,map’ f xs)
map’ :: (a —> b) —> SubSignal t a —> SubSignal t b
map’ f ((t,x) :— xs) = (t,f x) :— map’ f xs
map’ - (Null t) = Null ¢
zip :: (Ord t) => Signal t (a —> b) —> Signal t a —> Signal t b
zip (Signal (f0,fs)) (Signal (x0,xs)) = Signal (f0 x0,zip’ f0 fs x0 xs)
zip’ :: (Ord t) => (a —> b) —> SubSignal t (a —> b) —> a —> SubSignal ¢t
a —> SubSignal t b
zip ' f0 fs@((tf,f) :— fs’) x0 xs@((tx,x) :— xs’)
| tf < tx = (tf,f x0) :— zip’> f fs’ x0 xs
| tf = tx = (tf,f x) :— zip’” f fs’ x xs’
| otherwise = (tx,f0 x) :— zip’ f0 fs x xs’
zip ' _ ((tf,f) :— fs’) x0 xs@(Null tx)
| tf < tx = (tf,f x0) :— zip’ f fs’ x0 xs
| otherwise = Null tx
zip ' f0 fs@(Null tf) - ((tx,x) :— xs)
| tf <= tx = Null tf
| otherwise = (tx,f0 x) :— zip’ f0 fs x xs’
zip 7 - (Null tf) . (Null tx)
= Null (min tf tx)
delay :: (Num t) => Signal t a —> (a,t) —> Signal t a
delay (Signal (-,xs)) (x0,t) = Signal (x0,(0,x0) :— delay’ xs t)
delay’ :: (Num t) => SubSignal t a —> t —> SubSignal t a
delay’ ((t,x) :— xs) dt = (t+dt,x) :— delay’ xs t
delay ’ (Null t) dt = Null (t+dt)
signal :: (Ord t) => a —> t —> [(t,a)] —> Signal t a
signal x0 te xs = Signal (x0,signal’ te xs)
signal’ :: (Ord t) = t —> [(t,a)] —> SubSignal t a
signal’ te ((t,x) : xs)
| t < te = (t,x) :— signal’ te xs
| otherwise = Null te
signal ’ te [] = Null te
fromSignal :: Signal t a —> (a,[(t,a)],t)
fromSignal (Signal (x0,xs)) = (x0,xs’,te)
where
(xs’,te) = fromSignal’ xs

fromSignal’ :: SubSignal t a —> ([(t,a)],t)

110
111

S © ®

NN N
s QN R

WNNNNN NN
© N o U w

10

158 ForSyDe-Haskell implementation

fromSignal’ (x :— xs) = let (xs’,te) = fromSignal’ xs in (x : xs’,te)
fromSignal’ (Null t) = ([],t)

Process constructors

— Module : ForSyDe. Shallow.DE. Processes
— Copyright :

— License : AllRightsReserved

— Maintainer : mkoe@imm. dtu.dk

— Stability : Ezperimental

— Portability :

module ForSyDe.Shallow .DE. Processes (

— map,
zipWith ,
zipWith3 |
zipWith4 |
delay ,
zip ,
zip3 ,
zip4 ,
unzip ,
unzip3 ,
unzip4 ,

) where

import Prelude (flip ,Ord,Num, fst ,snd)
import ForSyDe.Shallow .DE. Signal (Signal®,()®,()A,())

zipWith :: (Ord t) => (a —> b —> ¢) —> Signal t a —> Signal t b —>
Signal t ¢
zipWith f xs ys = f ©® xs @ ys

zipWith3 :: (Ord t) = (a —> b —> ¢ —> d) —> Signal t a —> Signal t b
—> Signal t ¢ —> Signal t d
zipWith3 f xs ys zs = f ©® xs & ys @ zs

zipWith4 :: (Ord t) = (a —> b —> ¢ —> d —> e) —> Signal t a —> Signal
t b —> Signal t ¢ —> Signal t d —> Signal t e
zipWith4d f ws xs ys zs = f © ws ® xs & ys @ zs

delay :: (Num t) => (a,t) —> Signal t a —> Signal t a

delay = flip A()

zip :: (Ord t) => Signal t a —> Signal t b —> Signal t (a,b)

zip xs ys = (,) ©® xs @ ys

zip3 :: (Ord t) => Signal t a —> Signal t b —> Signal t ¢ —> Signal ¢
(a,b,c)

zip3 xs ys zs = (,,) © xs @ ys @ zs

60

A.3 Discrete event model of computation 159

zip4 :: (Ord t) => Signal t a —> Signal t b —> Signal t ¢ —> Signal t d
—> Signal t (a,b,c,d)
zip4d ws xs ys zs = (,,,) © ws @ xs @ ys @® zs

unzip :: Signal t (a,b) —> (Signal t a,Signal t b)

unzip xs = (fst ® xs,snd ® xs)

unzip3 :: Signal t (a,b,c) —> (Signal t a,Signal t b, Signal t ¢)

unzipd x5 = ((\ (x,-52) => %) @ x5,(\ ()%, =) => %) ® x8,(\ (,-,%) —>
x) ® xs)

unzip4 :: Signal t (a,b,c,d) —> (Signal t a,Signal t b,Signal t
c,Signal t d)

unzipd xs = ((\ (x,-,-,-) => %) ® x5,(\ (=,%,-,-) => x) @ x5,(\
(oo, 2) 2> %) @ %55 (\ (=mrmsx) =>) @ x5)

Domain interface tools

— Module : ForSyDe. Shallow .DE. Interface
— Copyright

—— License : AllRightsReserved

— Maintainer : mkoe@imm. dtu.dk

— Stability : Ezperimental

— Portability :

module ForSyDe.Shallow .DE. Interface (
head,
tail ,
take,
drop,
length ,
) where

import Prelude hiding (head, tail ,take,,drop,length)
import ForSyDe.Shallow .DE. Signal.Internal

head :: Signal t a —> Maybe (t,a)

head (Signal (_-,xs)) = head’ xs

head’ :: SubSignal t a —> Maybe (t,a)
head’ (Null _) = Nothing

head’ (x :— _) = Just x

tail :: Signal t a —> Maybe (Signal t a)
tail (Signal (x0,xs)) = case tail’ xs of

Just xs’ —> Just $ Signal (x0,xs’)
Nothing —> Nothing

tail’ :: SubSignal t a —> Maybe (SubSignal t a)

160 ForSyDe-Haskell implementation

tail’ (Null _) = Nothing
tail’ (. :— xs) = Just xs
take :: Int —> Signal t a —> Signal t a
take n (Signal (x0,xs)) = Signal (x0,take’ n xs)
take’ :: Int —> SubSignal t a —> SubSignal t a
take’ n (x@Q(t,.) :— xs)
| n<=0 = Null ¢t
| otherwise = x :— take’ (pred n) xs
take’ _ (Null t) = Null ¢
drop :: Int —> Signal t a —> Signal t a
drop n (Signal (x0,xs)) = Signal (x0,drop’ n xs)
drop’ :: Int —> SubSignal t a —> SubSignal t a
drop’ n (x :— xs)
| n<=0 = X :— XS
| otherwise = drop’ (pred n) xs
drop’ _ (Null t) = Null t
length :: Signal t a —> Int
length (Signal (-,xs)) = length’ xs
length’ :: SubSignal t a —> Int
length’ (. :— xs) 1 + length’ xs

length’ (Null _) 0
A.4 Continuous time model of computation

Signal definition

—— Module : ForSyDe. Shallow.CT. Signal. Internal
— Copyright

— License : AllRightsReserved

— Maintainer : mkoe@imm. dtu. dk

— Stability : Ezperimental

— Portability

module ForSyDe.Shallow .CT. Signal.Internal (
Signal (..),
SubSignal (..),

) where

—import Control.DeepSeq (NFData(rnf))

newtype Signal t u a = Signal (u —> a,SubSignal t u a)
data SubSignal t u a = (t,u —> a) :— SubSignal t u a | Null t

A.4 Continuous time model of computation 161

infixr 4 :—

{_
instance (Show t,Show a) => Show (Signal t a) where
showsPrec p = showParen (p>1) . showSignal

showSignal :: (Show t,Show a) => Signal t a —> ShowS

showSignal (Signal (z0,zs)) = showChar ’(’ . shows z0 . showChar ’,’
showSubSignal zs . showChar)’

showSubSignal :: (Show t,Show a) => SubSignal t a —> ShowsS

showSubSignal (z :— zs) = showChar ’{’ . showEvent z . showSubSignal’ zs

showSubSignal (Null t) = showString 7{}” . shows t

showSubSignal’ :: (Show t,Show a) => SubSignal t a —> ShowS

showSubSignal ’ (x :— zs) = showChar ’,’ . showEvent z . showSubSignal’
zs

showSubSignal’ (Null t) = showChar '}’ . shows t

—— Show an event token

showEvent :: (Show t,Show a) => (t,a) —> ShowS

showEvent (t,z) = showChar ’(’ . shows t . showChar ’,’ . shows z
showChar)’

-}

instance (Read t,Read a) => Read (Signal t a) where
readsPrec d = readParen (d>1) readSignal

readSignal :: (Read t,Read a) => ReadS (Signal t a)
readSignal = (\ a —> [(Signal (z0,zs),f) |

(7(7,b) <— lex a,

(z0,c) <— reads b,

(7,7,d) <— lex c,

(zs,e) <— readSubSignalStart d,

(7)7,f) <= lex e

)

readSubSignalStart :: (Read t,Read a) => ReadS (SubSignal t a)
readSubSignalStart = (\ a —> [(zs,c) |

(7{”7,b) <— lez a,

(zs,c) <— readSubSignal (’,” : b) ++ readNull b

readSubSignal :: (Read t,Read a) => ReadS (SubSignal t a)
readSubSignal r = readEvent r ++ readNull r

—— | Read an event token

readEvent :: (Read t,Read a) => ReadS (SubSignal t a)

readEvent a = [(z :(— zs,e) | (7,(7,b) <— lex a , (z,c) <— reads b ,
(7)7,d) <— lex ¢, (zs,e) <— readSubSignal d]

—— | Read a null token
readNull :: (Read t,Read a) => ReadS (SubSignal t a)
readNull a = [(Null t,c) | (7}7,b) <— lezx a, (t,c) <— reads b]

-}

~
0

~

® o 0 0

ISV

NN NN
QLR W N =

W oW NN NN
AN CENERC RSN =Y

34

162

ForSyDe-Haskell implementation

instance
rnf (Signal (z0,zs))
instance
rnf (z
rnf (Null

t) = rnf

-}

Process atoms

(NFData t,NFData a) => NFData (Signal

(NFData t,NFData a) => NFData (SubSignal
:— zs) = rnf =z

t a) where

= rnf z0 ‘seq‘ rnf zs

t a) where
‘seq ¢ rnf xs
t

Module
Copyright
License

Maintainer

Stability
Portability

ForSyDe. Shallow .CT. Signal
AllRightsReserved

mkoe@imm. dtu . dk
Ezperimental

module ForSyDe. Shallow .CT. Signal (

Signal ,
signal ,
fromSignal ,
map,

zip ,

delay ,§

import Prelude ((<),(<=)

,(==),(+) ,min, otherwise ,Ord,Num)

import ForSyDe.Shallow .CT. Signal.Internal

infixl 5 ‘map‘ , ¢ ¢

zip s

‘delay ¢ , & |, &> , > , © , & , A

— 0 Unicode U+2A00 ,
() :: (a—> b) —> Signal
() = map

— & : Unicode U+2A01 ,
() :+ (Ord t) => Signal
() = zip

— A Unicode U+2206 |,

() ::+ (Num t) => Signal

UTF-8 Hex E2 A8 800
t u a —> Signal t u bE

UTF-8 Hex E2 A8 81&®

t u (a —> b) —> Signal t u a —> Signal

UTF-8 Hex E2 88 86A

t ua-—-—> (u—>a,t) —> Signal t u al

t u b®d

A.4 Continuous time model of computation 163

17 () = delay

18

19 §
50

51 (>) :: (a —> b) —> Signal t u a —> Signal t u b§

52 (>) = map§

53

54 (>>) :: (Ord t) => Signal t u (a —> b) —> Signal t u a —> Signal t u b§
55 (>>) = zip

56

57 (+>) :: (Num t) => Signal t u a —> (u —> a,t) —> Signal t u a

58 (+>) = delay

62 map :: (a —> b) —> Signal t u a —> Signal t u b

63 map f (Signal (x0,xs)) = Signal (\u —> f (x0 u),map’ f xs)

64

65 map’ :: (a —> b) —> SubSignal t u a —> SubSignal t u b

66 map’ f ((t,x) :— xs) = (t,\u—> f (x u)) :— map’ f xs

67 map’ - (Null t) = Null ¢

68

60 zip :: (Ord t) => Signal t u (a —> b) —> Signal t u a —> Signal t u b

70 zip (Signal (f0,fs)) (Signal (x0,xs)) = Signal (\u —> f0 u (x0 u),zip’
fo fs x0 xs)

1
72 zip’ :: (Ord t) => (u —> a —> b) —> SubSignal t u (a —> b) —> (u —> a)

—> SubSignal t u a —> SubSignal t u b
73 zip’ f0 fs@Q((tf,f) :— fs’) x0 xs@Q((tx,x) :— xs’)
74 | tf < tx = (tf,\u—>f u (x0 u)) :— zip’ f fs’ x0 xs
75 | tf = tx = (tf,\u—>f u (x wu)) :— zip’ f fs’ x xs’
76 | otherwise = (tx,\u —> f0 u (x u)) :— zip’ f0 fs x xs’
77 zip’ - ((tf,f) :— fs’) x0 xs@Q(Null tx)
78 | tf < tx = (tf,\u—>f u (x0 u)) :— zip’ f fs’ x0 xs
79 | otherwise = Null tx
g0 zip’' f0 fs@(Null tf) - ((tx,x) :— xs7)
81 | tf <= tx = Null tf
82 | otherwise = (tx,\u —> f0 u (x u)) :— zip’ f0O fs x xs’
83 zip’ - (Null tf) - (Null tx)
84 = Null (min tf tx)
86 delay :: (Num t) => Signal t u a —> (u —> a,t) —> Signal t u a
g7 delay (Signal (-,xs)) (x0,t) = Signal (x0,(0,x0) :— delay’ xs t)
88
g0 delay’ :: (Num t) => SubSignal t u a —> t —> SubSignal t u a
00 delay’ ((t,x) :— xs) dt = (t+dt,x) :— delay’ xs t
o1 delay’ (Null t) dt = Null (t+dt)
92
93
94
95 sigmal :: (Ord t) = (u —> a) —> t —> [(t,u —> a)] —> Signal t u a
o6 signal x0 te xs = Signal (x0,signal’ te xs)
97
o8 signal’ :: (Ord t) = t —> [(t,u —> a)] —> SubSignal t u a
o0 signal’ te ((t,x) xs)
100 |t < te = (t,x) :— signal’ te xs
101 | otherwise = Null te
102 signal’ te [] = Null te

103
104
105
106
107
108
109
110

GUR W N

164 ForSyDe-Haskell implementation

fromSignal :: Signal t u a —> (u —> a,[(t,u —> a)],t)
fromSignal (Signal (x0,xs)) = (x0,xs’,te)
where
(xs’,te) = fromSignal’ xs
fromSignal’ :: SubSignal t u a —> ([(t,u —> a)],t)
fromSignal’ (x :— xs) = let (xs’,te) = fromSignal’ xs in (x : xs’,te)
fromSignal’ (Null t) = ([],t)
Process constructors
—— Module : ForSyDe. Shallow.CT. Processes
— Copyright
—— License : AllRightsReserved
— Maintainer : mkoe@imm. dtu . dk
— Stability : Ezperimental
— Portability

module ForSyDe.Shallow.CT.Processes (

- map,
zipWith ,
zipWith3 ,
zipWith4
delay ,
zip ,
zip3 ,
zip4 ,
unzip ,
unzip3,
unzip4 ,

) where

import Prelude (flip ,Ord,Num, fst ,snd)
import ForSyDe. Shallow .CT. Signal (Signal®,()®,()A,())

zipWith :: (Ord t) => (a —> b —> ¢) —> Signal t u a —> Signal t u b —>
Signal t u c
zipWith f xs ys = f ® xs @ ys

zipWith3 :: (Ord t) = (a —> b —> ¢ —> d) —> Signal t u a —> Signal t u

b —> Signal t u ¢ —> Signal t u d
zipWith3 f xs ys zs = f ©® xs & ys & zs
zipWith4 :: (Ord t) = (a —> b —> ¢ —> d —> e) —> Signal t u a —>

Signal t u b —> Signal t u ¢ —> Signal t u d —> Signal t u e
zipWith4d f ws xs ys zs = f © ws @ xs @ ys @ zs

delay :: (Num t) => (u —> a,t) —> Signal t u a —> Signal t u a
delay = flip A()

A.4 Continuous time model of computation 165

13
14 zip :: (Ord t) => Signal t u a —> Signal t u b —> Signal t u (a,b)
15 zip xs ys = (,) ® xs @ ys

47 zip3 :: (Ord t) => Signal t u a —> Signal t u b —> Signal t u ¢ —>
Signal t u (a,b,c)
18 zip3 xs ys zs = (,,) © xs @ ys ® zs

50 zip4 :: (Ord t) => Signal t u a —> Signal t u b —> Signal t u ¢ —>
Signal t u d —> Signal t u (a,b,c,d)
51 zip4d ws xs ys zs = (,,,) © ws @ xs @& ys ® zs

5 unzip :: Signal t u (a,b) —> (Signal t u a,Signal t u b)

54 unzip xs = (fst ® xs,snd O xs)

56 unzip3 :: Signal t u (a,b,c) —> (Signal t u a,Signal t u b,Signal t u c)

57 unzip3 xs = ((\ (x,-,-) —> x) © xs,(\ (-,x,-) —=> x) © xs,(\ (-,-,x) —>
x) ® xs)

58

50 unzip4 :: Signal t u (a,b,c,d) —> (Signal t u a,Signal t u b,Signal t u
c,Signal t u d)

60 unzip4 xs = ((\ (x,-,-,-) = x) © xs,(\ (-,x,-,-) —> x) O xs,(\
(Croxs) 2> 1) @ %85 (V (rr o) =>) @ x8)

Domain interface tools

1
PR
3 —— Module : ForSyDe. Shallow.CT. Interface
1+ —— Copyright
5 —— License : AllRightsReserved
6 —
7 —— Maintainer : mkoe@imm. dtu.dk
8 —— Stability : FEzperimental
9 —— Portability :
10 —
1 =
12—
13
14
15 module ForSyDe.Shallow.CT.Interface (
16 head,
17 tail ,
18 take,
19 drop,
20 length |
2) where

1
3 import Prelude hiding (head, tail ,take,drop,length)
1+ import ForSyDe.Shallow .CT. Signal.Internal

6 head :: Signal t u a —> Maybe (t,u —> a)
27 head (Signal (-,xs)) = head’ xs

20 head’ :: SubSignal t u a —> Maybe (t,u —> a)
30 head’ (Null _) = Nothing
31 head’ (x :— _) Just x

166 ForSyDe-Haskell implementation

33 tail :: Signal t u a —> Maybe (Signal t u a)

34 tail (Signal (x0,xs)) = case tail’ xs of

35 Just xs’ —> Just $ Signal (x0,xs’)

36 Nothing —> Nothing

38 tail’ :: SubSignal t u a —> Maybe (SubSignal t u a)
30 tail’ (Null _) = Nothing

10 tail’ (- :— xs) = Just xs

11

12 take :: Int —> Signal t u a —> Signal t u a

13 take n (Signal (x0,xs)) = Signal (x0,take’ n xs)

45 take’ :: Imt —> SubSignal t u a —> SubSignal t u a
16 take’ n (x@Q(t,-) :— xs)

17 | n<=0 = Null t

18 | otherwise = x :— take’ (pred n) xs

129 take’ _ (Null t) = Null t

50

5 drop :: Int —> Signal t u a —> Signal t u a

1
52 drop n (Signal (x0,xs)) = Signal (x0,drop’ n xs)

54 drop’ Int —> SubSignal t u a —> SubSignal t u a
55 drop’ n (x :— xs)

56 | n<=0 = X :— Xs

57 | otherwise = drop’ (pred n) xs
58 drop’ (Null t) = Null t

59

60 length :: Signal t u a —> Int

61 length (Signal (-,xs)) = length’ xs
62

63 length’ :: SubSignal t u a —> Int
64 length’ (. :— xs) = 1 4+ length’ xs
65 length’ (Null _) =0

A.5 UPPAAL model code

Circle of four nodes

I <?xml version="1.0" encoding="utf—-8"?7><!DOCITYPE nta PUBLIC ’—//Uppaal.
Team//DID_Flat_System_1.1//EN’
"http://www. it .uu.se/research/group/darts/uppaal/flat —1_1.dtd "><nta><declaration>
Place global declarations here.

w v

clock global_time;
const int Separation = 2;
5 const int ApplicationStartDelay = 5;

7 const int Nodes = 5;

8 const int Sinks = 1;

9 const int Neighbours = 4;

10 const int Decimals = 10;

1 const int MINAUGMENTATION = 1 % Decimals;
2 const int BatteryCapacity = 42 % Decimals;
3 const int MinBatteryCharge = 10;

N = O ©

WOW NN NN NN NN NN
= O © W0 oA WN

e

A.5 UPPAAL model code

const
const
const

const
const
const

int MaxDepletion = 50 % Decimals;
int UpdateThreshold = Decimals / 10;

int MaxAugmentation = MaxDepletion + Nodes * Decimals;

int ApplicationInterrupt = 60;
int EnergyUpdatelnterrupt = 60;
int RouteDelay = 1;

typedef int[0,Nodes—1] id_t;

typedef int[0,Sinks —1] sinks_t;

typedef int[Sinks,Nodes—1] nodes_t;
typedef int [0,Neighbours—1] neighbours_t;
typedef int[0,Nodes] height_t;

typedef int[0,BatteryCapacity] energy-t;

typedef int

i 0,MaxDepletion] depletion_t;

[
typedef int [0,MaxAugmentation] augmentation_t;
[

typedef int

0,Nodes*Decimals+MaxDepletion+MaxAugmentation]

energy-t battery [nodes_t];
meta bool outOfPower = false;

meta int [0,Nodes] initialiseNode = 0;

chan data[Nodes];
broadcast chan update [Nodes];

meta total_t height_update;

meta

const
const
const
const
const
const

};

const

const
s
const

const
const

id_-t data_source;

energy-t ApplicationUsage = 1;
energy-t RouteUsage = 1;

energy-t UpdateEnergyUsage = 1;
energy-t UpdateNeighbourUsage = 1;
energy-t UpdateUsage = 1;

int numNeighbours[Nodes] = {
2,2,2,2,2

id-t neighbours[Nodes][Neighbours] = {

{1,4,0,0},
{0,2,0,0},
{1,3,0,0},
{2,4,0,0},
{3,0,0,0}

int hops[Nodes] = {
0,1,2,2,1

int Chargelnterval = 1;

int insolation_items = 2;

energy.-t insolation_value[insolation_items] = {
1,
0

total_t;

168 ForSyDe-Haskell implementation

72 const int insolation_time [insolation_items] = {
3 12 % 60/% * 60x/,
4 12 % 60/ x 60%/

}s

7
76 int [0,insolation_items] insolation_index;
7

78 const int shadow_items = 1;

79 const int[0,100] shadow_value[Nodes][shadow_items] = {
80 {100},

81 {100},

82 {100},

83 {100},

84 {100}

86 const int shadow_time[shadow_items] = {
87 60 x 60

88 ;

80 int [0,shadow_items] shadow_index;

91 void consume(const nodes_t id, const energy-t energy) {

92 if (battery[id] < energy) {
93 battery [id] = 0;

94 } else {

95 battery [id] —= energy;

96 }

o7}

98

90 int getSunStep () {

100 return insolation_time [insolation_index];

101}

102

103 void chargeAll() {

104 for (id : nodes_t) {

105 const int energy = insolation_value[insolation_index] =
shadow_value [id |[shadow_index] * Chargelnterval /
100 + battery[id];

106 if (energy > BatteryCapacity) {

107 battery [id] = BatteryCapacity;

108 } else {

109 battery [id] = energy;

110 }
1
s}

i int getShadowStep () {
5 return shadow_time [shadow_index];

S

shadow_index++;
27 if (shadow_index == shadow_items) {

11

11

11

11

116}

117

118 void updateSun() {

119 insolation_index++;

120 if (insolation_index == insolation_items) {
121 insolation_index = 0;
122 }

123}

124

125 void updateShadow () {

1

1

A.5 UPPAAL model code 169

128 shadow_index = 0;

129 }

130}

131

132 depletion_-t getDepletion(const energy_-t energy) {

133 if (energy >= (9 * BatteryCapacity) / 10) {

134 return O0;

135 } else if (energy >= (3 * BatteryCapacity) / 4) {

136 return MaxDepletion/10 % (energy — (9 =
BatteryCapacity) / 10) / ((3 % BatteryCapacity) /
4 — (9 % BatteryCapacity) / 10);

137 } else if (energy >= (1 * BatteryCapacity) / 4) {

138 return (9% MaxDepletion) /10 % (energy — (3 =
BatteryCapacity) / 4) / ((1 = BatteryCapacity) / 4
— (3 x BatteryCapacity) / 4);

139 } else {

140 return MaxDepletion;

141 }

142}

143

144 const int QMAX = Nodes;

145 const int infinity = 500;

146 [k

147 Calculate the global optimal route (neighbour) for the given
node &1t ;id> ;.

148 Based on battery power of all nodes and shortest path only.

149 Disregard any local node parameters such as augmentation.

150 Currently assuming that id=0 is the base station.

151 *x/

152 id_-t globalOptimalRoute(const id_t id) {

153 /#% Optimal height (energy+distance to sink) x/

154 int H[Nodes];

155 /#% Queue of nodes (values: id_t or NA) to search, with
pointers for insertion and extraction x/

156 int Q[QMAX], Qput, Qget;

157 /#% Copy of batteries, adding one for each base station x/

158 energy-t E[id_t];

159 /#% Initialise x/

160 Qput = 0;

161 Qget = 0;

162 for (sink : sinks_t) {

163 if (id == sink) {

164 return sink;

165

166 E[sink] = BatteryCapacity;

167 }

168 for (n : nodes_t) {

169 E[n] = battery[n];

170 }

171 for (n : id-t) {

172 /#% Initialise all nodes to have a height of ”infinity”

*
/

173 H[n] = infinity;

174 }

175

(f; /#% Starting parameters */
176 for (sink : sinks_t) {

177 H[sink] = 0;

178 Q[Qput] = sink;

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

170

ForSyDe-Haskell implementation

Qput+-+;

/**% Algorithm =/

while (Qput != Qget) {
int n;
/*% Get next node
const id_-t node =
Qget++;
if (Qget == QMAX)

Qget = 0;

}
/#*% Add neighbours

in queue */

Q[Qsget];

to queue x/

for (n = 0; n < numNeighbours[node]; 4+4n) {
const id_-t nid = neighbours[node][n];
const int hO = H[node];
const int hl = H[nid];
const int h2 = hops[nid] * Decimals +
getDepletion (E[nid]) ;
if (hO + MIN.AUGMENTATION &1t ; hl && hl
= h2) {
/#% Add neighbour to queue */
Q[Qput] = nid;
Qput++;
it (Qput = QMAX) {
Qput = 03
}
/#% Calculate new height of added
neighbour */
if (h2 <= h0) {
H[nid] = h0 4+ MIN.AUGMENTATION;
} else {
H[nid] = h2;
}
}
}
/*% Find lovest neighbour of given node */
{ o
int 1;
/*% ID of current candidate */
meta id_t 1 = neighbours[id][0];
/**% Height of current candidate x*/

meta total_t h = H[I];

/#% Find best neighbour

of given node x/

for (i = 1; i < numNeighbours[id]; ++i) {
const id_-t nid = neighbours[id][i];
if (H[nid] < h) {
1 = nid;
h = H[nid];
}
}
return 1;
}
}
id-t shortestPathNeighbour(const nodes_t id) {

meta id_t x = neighbours[i
meta int h = hops[x];

d][o];

A.5 UPPAAL model code 171

for (n : neighbours_t) if (n < numNeighbours[id]) {
const id_-t nid = neighbours[id][n];
if (hops[nid] < h) {
x = nid;
h = hops[nid];
}
}
return x;

}

</declaration><template><name x="5" y="5">Node</name><parameter>const
id_t id</parameter><declaration>// Place local declarations here.
clock application, protocol, route_delay;

id_-t route;

meta augmentation_-t augmentation;
meta total_t height[Neighbours];
meta int buffered_packages;

/#% Last Distributed Heightx/
meta total_-t ldh;

void initialise () {
for (i : int[0,numNeighbours[id]—1]) {
height [i] = hops[neighbours[id][i]] * Decimals;
battery [id] = BatteryCapacity;
buffered_packages = 0;

}

total_-t getHeight ()
return (hops[id] * Decimals + augmentation +
getDepletion (battery [id]));

}

id-t getOptimalRoute () {
meta int[1,numNeighbours[id]] 1i;
/#*x ID of current candidate x*/
meta id_-t 1 = neighbours[id][0];
/#% Find lowest neighbour x*/
meta total_-t h = height [0];
/#% Find lowest neighbour x/
for (i = 1; i < numNeighbours[id]; ++i) {
if (height[i] < h) {
1 = neighbours[id][i];
h = height[i];
}

return 1;

}

void updateRoute () {
meta int [1,numNeighbours[id]] i;
/#% Height of current candidate =/
meta total_t h = height [0];
/#% ID of current candidate x*/
meta id-t 1 = neighbours[id][0];
/#% Find lowest neighbour x/
for (i = 1; i < numNeighbours[id]; 4++i) {

172

ForSyDe-Haskell implementation

if (height[i] < h) {
1 neighbours [id][i];
height [i];

h

augmentation_-t getNeededAugmentation() {

}

meta int temp;
meta int[1,numNeighbours[id]] 1i;
/**% Height of current candidate x*/
meta total_t h = height [0];
/*% Find lowest neighbour x/
for (i = 1; i < numNeighbours[id]; ++i) {
if (height[i] < h) {
h = height[i];
}
}

temp = MIN.AUGMENTATION + h — ((hops[id] * Decimals +
augmentation + getDepletion(battery[id])) — augmentation);
if (temp < 0) {
return O0;
} else {

}

return temp;

void updateAugmentation () {

}

bool

meta int temp;
meta int[1,numNeighbours[id]] 1i;
/*x Height of current candidate x*/
meta total_t h = height [0];
///*+ ID of current candidate =/
//meta id-t 1 = neighbours[id][0];
/**% Find lowest neighbour x/
for (i = 1; i < numNeighbours[id]; ++i) {
if (height[i] < h) {
//1 = neighbours[id][i];
h = height[i];
}

/*% Calculate augmentation x/
//temp = MIN.AUGMENTATION + h — (getHeight() — augmentation);
temp = MIN.AUGMENTATION + h — ((hops[id] * Decimals +
augmentation + getDepletion(battery[id])) — augmentation);
if (temp < 0) {
augmentation = 0;
} else {

}

augmentation = temp;

hasValidRoute () {

//for (i : int[0,numNeighbours[id]—1]) {
int 1i;

for (i = 0; i < numNeighbours[id]; ++i) {
//if (height[i] < getHeight()) {

A.5 UPPAAL model code 173

if (height[i] < (hops[id] % Decimals + augmentation
+ getDepletion (battery[id])))
return true;

}

return false;

}

bool hasOptimalRoute () {
meta total_t h = height [0];

meta id_-t node = neighbours[id][0];
for (n : neighbours_t) if (n < numNeighbours[id] &&
n != 0) {
if (height[n] < h) {
node = neighbours[id][n];
h = height[n];
}
return (route == node);

}

bool thresholdPassed ()
return (ldh — getHeight ()) > UpdateThreshold or (getHeight ()
— 1dh) > UpdateThreshold;
}

bool isUpdateNeeded ()
return (not hasValidRoute()) or (not hasOptimalRoute() and
thresholdPassed ());

</declaration><location id="id0” x="272" y="-200"><name x="184"
y="—216">RouteSend</name><committed /></location><location id="id1”
x="2727 y="192"><name x="176" y="176">0utOfPower</name><label
kind="invariant” x="40" y="192">battery [id] <=
MinBatteryCharge</label></location><location id="id2” x="-360"
y="24"><name x="-360"
y="—16">UpdateNeighbour</name><committed /></location><location
id="1id3” x="—-640" y="40"><name x="-624"
y="24">UpdateEnergy</name><committed /></location><location
id="1id4” x="248" y="-168"><name x="144"
y="—168">RouteReceive</name><committed /></location><location
id="1d5” x="224" y="—-120"><name x="144"
y="—-104">Application</name><committed /></location><location
id="i1d6” x="—-80" y="—64"><name x="-—1127 y="-144">Idle</name><label
kind="invariant” x=”-352” y="-200">application <=
ApplicationInterrupt

&& protocol <= EnergyUpdatelnterrupt

&& (

buffered_-packages == 0
|| route_delay <= RouteDelay

)</label><label kind="comments”>Node is
idle</label></location><location id="id7” x="-640" y="—200"><name
x="—-616" y="—-216">Init</name><label kind="invariant” x="-592”
y="—-216">global_time <= id * Separation</label></location><init
ref="i1d7” /><transition><source ref="1d3” /><target
ref="id6” /><label kind="guard” x="-640" y="128">not
isUpdateNeeded ()</label><label kind="comments”>No broadcast of
energy update needed, energy has not changed enough since last

378
379
380
381
382
383

386

389
390
391

392

174 ForSyDe-Haskell implementation

broadcast</label><nail x=”-640" y="200"/><nail x="-80"
y="200" /></transition><transition><source ref="idl” /><target
ref="id6” /><label kind="guard” x="48" y="56">battery[id] >
MinBatteryCharge</label><label kind="synchronisation” x=748”
y="72">update [id]!</label><label kind="assignment” x="48"
y="88">updateAugmentation () ,

ldh = getHeight (),

height_update = ldh,

outOfPower = false ,

application = 0,

protocol = 0,

route_delay = 0</label><label kind="comments”>The node is recharged
enough to reboot</label><nail x="40" y="192” /><nail x="407
y="—-48” /><nail x="-56" y="-48"/></transition><transition><source
ref="id2” /><target ref="id2” /><label kind="select” x="-624"
y="-53">s : neighbours_t</label><label kind="guard” x="—-624"
y="-38">s < numNeighbours[id]</label><label

kind="synchronisation” x="-624"
y="—23">update [neighbours[id][s]]?</label><label kind="assignment”
x="—624" y="—8">height[s] = height_update,

consume (id , UpdateNeighbourUsage)</label><label kind="comments”>Receive
an energy update from a neighbour</label><nail x="-632"
y="24" /><nail x="-632" y="-56" /><nail x="-368" y="-56"/><nail
x="—368" y="—-8"/></transition><transition><source
ref="id5” /><target ref="id4” /><label kind="assignment” x="112"
y="-—152">data_source = id</label>label kind="comments”’>Send the
data to sink which the application
produces</label></transition><transition><source
ref="id0” /><target ref="id6” /><label kind="synchronisation”
x="—-56" y="—-216">data[route]!</label><label kind="assignment”
x="24" y="-216">data_source = id,

buffered_packages ——,

route_delay = 0</label><label kind="comments”>Send data to the current
best neighbour towards sink</label><nail x="-72" y="-200” /><nail
x="—-72" y="—-96” /></transition><transition><source
ref="id6” /><target ref="id0” /><label kind="guard” x="72"
y="—64">route_delay >= RouteDelay

&& buffered_packages != 0</label><label kind="assignment”
x="72" y="-32">consume (id, RouteUsage)</label><label
kind="comments”>Send waiting data towards sink</label><nail
x="2727 y="—-64" /></transition><transition><source
ref="id2” /><target ref="id6” /><label kind="guard” x="-3127
y="16">isUpdateNeeded ()</label><label kind="synchronisation”
x="—176” y="16">update[id]!</label><label kind="assignment”
x="—312" y="32">updateAugmentation (),

ldh = getHeight (),

height_update = ldh,

route = getOptimalRoute (),

consume (id , UpdateUsage)</label><label kind="comments”>Broadcast an
energy update of this node</label><nail x="-328" y="16" /><nail
x="—-96" y="16" /><nail x="-96"
y="—-40” /></transition><transition><source ref="id6” /><target
ref="id1” /><label kind="guard” x="48" y="0">battery[id] <=
MinBatteryCharge</label><label kind="assignment” x="136"
y="16">outOfPower = true,

application = 0</label><label kind="comments”>The node runs out of
power</label><nail x="-48" y="-56” /><nail x="48" y="-56"/><nail
x="48" y="0” /><nail x="272"

A.5 UPPAAL model code 175

y="0”/></transition><transition><source ref="id2” /><target
ref="id6” /><label kind="guard” x="-312" y="0">not

isUpdateNeeded ()</label><label kind="comments”>Accept current best
route as optimal</label><nail x="-344" y="0”/><nail x="-104”
y="0"/><nail x="-104" y="-48" /></transition><transition><source
ref="1d6” /><target ref="i1d2” /><label kind="select” x="-360”
y="-96">s : mneighbours_t</label><label kind="guard” x="-360"
y="—-80">s < numNeighbours[id]</label><label

kind="synchronisation” x="-360"
y="—64">update [neighbours[id][s]]?</label><label kind="assignment”
x="—360” y="—-48">height[s] = height_update,

303 consume (id , UpdateNeighbourUsage)</label><label kind="comments”>Receive
an energy update from a neighbour</label><nail x="-96”
y="—-88" /><nail x="-104" y="-96" /><nail x="-360"
y="—-96" /></transition><transition><source ref="id3” /><target
ref="id6” /><label kind="guard” x="—-576"
y="40">isUpdateNeeded ()</label><label kind="synchronisation”
x="—448" y="40">update [id]!</label><label kind="assignment”
x="—576” y="56">updateAugmentation (),

304 ldh = getHeight (),

305 height_update = ldh,

306 consume (id , UpdateUsage)</label><label kind="comments”>Broadcast an
energy update of this node</label><nail x="-368" y="40” /><nail
x="—368" y="192" /><nail x="-88" y="192” /><nail x="-88”
y="-32" /></transition><transition><source ref="id6” /><target
ref="i1d3” /><label kind="guard” x="-632" y="—-104">protocol ==
EnergyUpdatelnterrupt</label><label kind="assignment” x="-632”
y="—88">consume (id , UpdateEnergyUsage) ,

307 protocol = 0</label><label kind="comments”>Run protocol energy update
on interrupt</label><nail x="-88" y="—-96” /><nail x="-96”
y="—-104" /><nail x="—-640"
y="—-104" /></transition><transition><source ref="id4” /><target
ref="id6” /><label kind="assignment” x="-56"
y="—-168">buffered_packages++,

308 route_delay = 0</label><label kind="comments”>Register the received
data for routing towards sink</label><nail x="—-64" y="-168” /><nail
x="—64" y="-88"/></transition><transition><source
ref="id6” /><target ref="id4” /><label kind="synchronisation”
x="144" y="-88">data[id]?</label><label kind="assignment” x="-40"
y="—88”>consume (id , RouteUsage)</label><label
kind="comments”>Receive data from a neighbour</label><nail x="-48”
y="—72" /><nail x="248" y="-72"/></transition><transition><source
ref="id6” /><target ref="1d5” /><label kind="guard” x="-56"
y="—136">application == ApplicationInterrupt</label><label
kind=" assignment” x="—-56" y="-—120">consume(id, ApplicationUsage),

300 application = 0</label><label kind="comments”>Run the application on
interrupt</label><nail x="-56" y="—-80"/><nail x="-48"
y="—-88" /><nail x="224" y="-88”/></transition><transition><source
ref="id7” /><target ref="1d6” /><label kind="guard” x="-616"
y="—200">global_time == id * Separation

100 && initialiseNode == id</label><label kind="assignment”
x="—648”" y="—176">initialise (),

101 updateRoute (),

102 application = ApplicationStartDelay ,

103 protocol = 0,

104 initialiseNode+4</label><label kind="comments”>Initialise the node
status (route and battery energy)</label><nail x="-80"
y="—200" /></transition></template><template><name>BaseStation</name><parameter>const

176 ForSyDe-Haskell implementation

id_-t id</parameter><location id="1d8” x="-264" y="40"><name
x="—272” y="8">Collect</name><committed/></location><location
id="1d9” x="-64" y="40"><name x="-104"
y="0">Idle</name></location><location id="id10” x="-64”
y="—80"><name x="-—296" y="—-104">Init</name><label kind="invariant”
x="—-296" y="—-88">global_time <= id =
Separation</label></location><init ref="id10” /><transition><source
ref="id8” /><target ref="id9” /><nail x="-224" y="48” /><nail
x="—104" y="48" /></transition><transition><source

ref="id9” /><target ref="id8” /><label kind="synchronisation”
x="—200" y="16">data[id]?</label><nail x="-104" y="32"/><nail
x="—224" y="32" /></transition><transition><source

ref="id10” /><target ref="id9” /><label kind="guard” x="-296"

y="—-T72">global_time == id % Separation
105 && initialiseNode == id</label><label kind="assignment”
X=" 296"

y="—40">initialiseNode+4</label></transition></template><template><name>Environme
sun, shadow, step;

106 </declaration><location id="id11” x="376”7 y="-120"><name x="4007
y="—128">ChargeNodes</name><committed /></location><location
id="id12” x="—-360" y="—120"><name x="—376"
y="—104">1Initialise</name><label kind="invariant” x="-376"
y="—-88">global_time &Ilt;= Nodes =
Separation</label></location><location id="id13” x="-72”
y="80"><name x="-—56"
y="72">SwitchShadows</name><committed /></location><location
id="id14” x="—72" y="—352"><name x="—56"
y="—360">SwitchSun</name><committed /></location><location
id="i1d15” x="-72" y="—-120"><name x="-—64"
y="—152">Idle</name><label kind="invariant” x="-32" y="-200">sun
&1t;= getSunStep () &&

107 shadow <= getShadowStep ()

108 && (step <= Chargelnterval ||

109 insolation_value[insolation_index] == 0)</label></location><init
ref="id12” /><transition><source ref="id11” /><target
ref="id15” /><label kind="assignment” x="-8"
y="—104">chargeAll ()</label><nail x="344" y="—-104” /><nail x="—40"
y="—-104” /></transition><transition><source ref="id15” /><target
ref="id11” /><label kind="guard” x="-8" y="-136">step ==
Chargelnterval &&

110 insolation_value[insolation_index] != 0</label><label kind="assignment”
x="200" y="-136">step = 0</label></transition><transition><source
ref="id14” /><target ref="id15” /><label kind="assignment” x="-176"
y="—248">updateSun ()</label><nail x="-88" y="-320"/><nail x="-88"
y="—152” /></transition><transition><source ref="id12” /><target
ref="id15” /><label kind="guard” x="-344”" y="-136">global_time =—
Nodes * Separation

111 && initialiseNode == Nodes</label><label kind="assignment”
x="—-256" y="—-176">step = 0,

112 sun = 0,

113 shadow = 0</label></transition><transition><source ref="id13” /><target
ref="id15” /><label kind="assignment” x="-200"
y="—24">updateShadow ()</label><nail x="-88" y="48"/><nail x="-88"
y="—88" /></transition><transition><source ref="idl15” /><target
ref="id13” /><label kind="guard” x="—-64" y="—-64">shadow =—
getShadowStep ()

114 && sun < getSunStep () &&

115 (step < Chargelnterval ||

A.5 UPPAAL model code 177

116 insolation_value [insolation_.index] == 0)</label><label
kind="assignment” x="-64"” y="-8">shadow = 0, step =
0</label></transition><transition><source ref="id15” /><target
ref="id14” /><label kind="guard” x="-64" y="—-272">sun =—
getSunStep () &&

117 (step < Chargelnterval ||

118 insolation_value[insolation_index] == 0)</label><label
kind="assignment” x="-64" y="-232">sun = 0, step =
0</label></transition></template><system>// Place template
instantiations here.

119

120 basestation = BaseStation (0);
121 nodes(const int[1l,Nodes—1] id) = Node(id);
422 environment = Environment () ;

123

124 // List one or more processes to be composed into a system.
125 system basestation , nodes, environment;

426

427 </system></nta>

Queries for the model of four nodes in a circle

1 //This file was generated from (Academic) UPPAAL 4.0.8 (rev. 4276),
March 2009

3 /%
4 When node 1 run the Application, then at a later point base station
will run Collect with data_source =1

*
6 mnodes(1l).Application —> (basestation.Collect and data_source == 1)

8 /*

9 When node 2 run the Application, then at a later point either node 1 or
node 2 will run RouteReceive with data_source = 2

w0 */

11 mnodes(2).Application —> ((nodes(1l).RouteReceive or
nodes (3) . RouteReceive) and data_source == 2)

13 /%
14 When node 3 run the Application, then at a later point either node 2 or
node 4 will run RouteReceive with data_source = 3

*
16 nodes(3).Application —> ((nodes(2).RouteReceive or
nodes (4) . RouteReceive) and data_source == 3)

18 /%

19 When node 4 run the Application, then at a later point base station
will run Collect with data_source = 4

0 *

nodes (4) . Application —> (basestation. Collect and data_source == 4)

/*

Verify that node 1 will always send data messages to base station

[

o s W

*/
A[] (nodes(1l).route == 0 || nodes(1l).Init)

/*

NN NN NN N
5 b el

s

178

ForSyDe-Haskell implementation

Verify that
node 3
*

All

/*
Verify that
node 4

*

All

/*
Verify that
*

/
Al]
/*

*

//NO_QUERY

/*
It is
*

/
Al

/*

Verify that the system does not deadlock,
state of OutOfPower will

in the
*/
All
/*
Check if it
*/
E<>nodes (1) .
/*
Check if it
*/
E<>nodes (2)

/*
Check if it

*/
E<>nodes (3) .
/*

Check if it
*/
E<>nodes (4)

/*

*/
/ /NO_QUERY

/*

(nodes (2) .route

(nodes (3) . route

(nodes (4) . route

forall (n

node 2 will

node 3 will

node 4 will

always true that all

not deadlock

is possible

OutOfPower

is possible

.OutOfPower

is possible

OutOfPower

is possible

.OutOfPower

always

always

always

int [1,Nodes —1])

that

that

that

that

nodes (3) .

nodes never

node

node

node

node

runs

runs

runs

runs

nodes (2) .route ==

nodes (1) .Init)

send data messages

send data messages

route == 4

which
receive any data messages.

out

of

of

of

of

to either

node 1 or

|| nodes(2).Init)

to either

node 2 or

|| nodes(3).Init)

send data messages to base

runs out of power

not nodes(n).OutOfPower

implies

power

power

power

power

station

that no nodes

84

97

99
100
101
102
103
104

105

106
107
108
109
110

112
113
114
115

116

A.5 UPPAAL model code 179

Is it possible that node 2 will send data messages to any other node
than node 17
*/

E<>(nodes(2).route != 1 and nodes(2).RouteSend)

/*
Is it possible that node 3 will send data messages to any other node
than node 47

*/
E<>(nodes(3).route != 4 and nodes(3).RouteSend)
/*
*/

E<> exists (n : int[1,Nodes—1]) nodes(n).route !=
shortestPathNeighbour(n) and nodes(n).RouteSend

/*

j ?NO,QUERY

/*
Verify that node 1 will always optain an optimal route when either task
UpdateEnergy or UpdateNeighbour has been activated.
(nodes (1) .UpdateEnergy or nodes(1).UpdateNeighbour) —>
nodes (1) . hasValidRoute ()

’; ;NO,QUERY

/*
Verify that node 2 will always optain an optimal route when either task
UpdateEnergy or UpdateNeighbour has been activated.
(nodes (2) . UpdateEnergy or nodes(2).UpdateNeighbour) —>
nodes (2) . hasValidRoute ()
*/
/ /NO_QUERY

/*
Verify that node 3 will always optain an optimal route when either task
UpdateEnergy or UpdateNeighbour has been activated.
(nodes (3) . UpdateEnergy or nodes(3).UpdateNeighbour) —>
nodes (3) . hasValidRoute ()
*/
/ /NO_QUERY

/*
Verify that node 4 will always optain an optimal route when either task
UpdateEnergy or UpdateNeighbour has been activated.
(nodes (4) . UpdateEnergy or nodes(4).UpdateNeighbour) —>
nodes (4) . hasValidRoute ()

’; ;NO,QUERY
/*

*

/ /NO_QUERY

146
147

180 ForSyDe-Haskell implementation

/*

*/
A[] globalOptimalRoute(0) == 0

/*

*/
A[] globalOptimalRoute(1l) == 0

/*

*/
E<> globalOptimalRoute (2) = 1

/*

*/
E<> globalOptimalRoute (2) = 3

/*

*/
E<> globalOptimalRoute (3) = 2

/*

*/
E<> globalOptimalRoute (3) == 4

/*

*
A[] globalOptimalRoute(4) == 0

/*

; /NO_QUERY
/*

*/
E<> globalOptimalRoute (2) == 3 and (nodes(3).UpdateEnergy)

/*

*/

/ /NO_QUERY

/*

Any node will always have a route in the set of neighbours or be in the
Init state.

*

A[] forall (n : nodes_-t) exists (s : neighbours_t) ((neighbours[n][s]
= nodes(n).route and s < numNeighbours[n]) or nodes(n).Init)

A.5 UPPAAL model code 181

nodes_t) nodes(n).UpdateEnergy and
isUpdateNeeded ()

nodes_t) nodes(n).UpdateEnergy and not
isUpdateNeeded ()

nodes_t) nodes(n).UpdateNeighbour and
isUpdateNeeded ()

: nodes_t) nodes(n).UpdateNeighbour and not
isUpdateNeeded ()

(T A T A O O O

/*

*/

/ /NO_QUERY

/*

*/

E<> exists(n
nodes (n) .

/*

*/

E<> exists(n
nodes (n).

/*

*/

E<> exists(n
nodes (n) .

/*

*/

E<> exists(n
nodes (n) .

/*

rrrrrrrrrrrn

rrrrrrrrrrrn

rrrrrrrrrrrnd

rrrrrrrrrrrnd

«

/ /NO_QUERY

182 ForSyDe-Haskell implementation

Bibliography

Forsyde graphical editor. http://code.google.com/p/fge/.

The haskell programming language. http://www.haskell.org/.
MathWorks products. http://www.mathworks.com/.

Modelica and the Modelica Association. http://www.modelica.org/.
The official OMG MARTE web site. http://www.omgmarte.org/.
Open SystemC initiative (OSCI). http://www.systemc.org.

GME: Generic Modeling Environment, September 2009. http://www.
isis.vanderbilt.edu/Projects/gne.

UML 2.0 OCL Specification, September 2009. http://www.omg.org/docs/
ptc/03-10-14.pdf.

D. Potter A. Kansal and MB Srivastava. Performance Aware Tasking for
Environmentally Powered Sensor Networks. In ACM Joint Intl. Conf. on
Measurement and Modeling of Computer Systems, 2004.

Kemal Akkaya and Mohamed F. Younis. A survey on routing protocols for
wireless sensor networks. Ad Hoc Networks, 3(3):325 — 349, 2005.

J.N. Al-Karaki and A.E. Kamal. Routing techniques in wireless sensor
networks: a survey. IEEE Wireless Communications Magazine, 11(6):6—
28, 2004.

ANSI S3.46-1997. Methods of measurement of real-ear performance char-
acteristics of hearing aids, 1997.

http://code.google.com/p/fge/
http://www.haskell.org/
http://www.mathworks.com/
http://www.modelica.org/
http://www.omgmarte.org/
http://www.systemc.org
http://www.isis.vanderbilt.edu/Projects/gme
http://www.isis.vanderbilt.edu/Projects/gme
http://www.omg.org/docs/ptc/03-10-14.pdf
http://www.omg.org/docs/ptc/03-10-14.pdf

184 BIBLIOGRAPHY

[13] Gerd Behrmann, Alexandre David, and KimG. Larsen. A tutorial on up-
paal. In Marco Bernardo and Flavio Corradini, editors, Formal Methods
for the Design of Real-Time Systems, volume 3185 of Lecture Notes in
Computer Science, pages 200-236. Springer Berlin Heidelberg, 2004.

[14] Shuvra S. Bhattacharyya, Joseph T. Buck, Soonhoi Ha, and Edward A.
Lee. Generating compact code from dataflow specifications of multirates-
ignal processing algorithms. IFEE Transactions on Circuits and Systems
I: Fundamental Theory and Applications, 42(3):138-150, March 1995.

[15] Shuvra S. Bhattacharyya, Praveen. K. Murthy, and Edward A. Lee. Synthe-
sis of embedded software from synchronous dataflow specifications. Journal
of VLSI Signal Processing Systems, 21(2):151-156, June 1999.

[16] Lawrence A. Bush, Christopher D. Carothers, and Boleslaw K. Szymanski.
Algorithm for Optimizing Energy Use and Path Resilience in Sensor Net-
works. In Wireless Sensor Networks, 2005. Proc. of the Second European
Workshop on, pages 391 — 396, 2005.

[17] Lukai Cai and Daniel Gajski. Transaction level modeling: an overview.
In Proceedings of the 1st IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis, pages 19-24, Newport
Beach, CA, USA, 2003. ACM.

[18] Peter Corke, Philip Valencia, Pavan Sikka, Tim Wark, and Les Overs.
Long-duration solar-powered wireless sensor networks. In Proc. of the jth
workshop on Embedded networked sensors, pages 33-37. ACM, 2007.

[19] Adam Donlin. Transaction level modeling: flows and use models. In Pro-
ceedings of the 2nd IEEE/ACM/IFIP international conference on Hard-
ware/software codesign and system synthesis, pages 75-80, Stockholm, Swe-
den, 2004. ACM.

[20] Johan Eker, Jorn W. Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozsef
Ludvig, Stephen Neuendorffer, Sonia Sachs, and Yuhong Xiong. Taming
heterogeneity - the Ptolemy approach. In Proceedings of the IEEFE, pages
127-144, 2003.

[21] EN 61669. Electroacoustics - equipment for the measurement of real-ear
acoustical characteristics of hearing aids, 2001.

BIBLIOGRAPHY 185

[22]

[27]

(28]

[29]

[31]

Jabed Faruque and Ahmed Helmy. Gradient-based routing in sensor net-
works. SIGMOBILE Mob. Comput. Commun. Rev., 7(4):50-52, 2003.

ForSyDe: Formal System Design. https://forsyde.ict.kth.se/.

H. Hassanein and Jing Luo. Reliable Energy Aware Routing in Wireless
Sensor Networks. In Dependability and Security in Sensor Networks and
Systems, 2006, pages 54-64. IEEE, 2006.

Fernando Herrera and Eugenio Villar. A framework for heterogeneous spec-
ification and design of electronic embedded systems in SystemC. ACM
Trans. Des. Autom. FElectron. Syst., 12(3):1-31, 2007.

Andreas Herrholz, Frank Oppenheimer, Philipp Andreas Hartmann, An-
dreas Schallenberg, Wolfgang Nebel, C. Grimm, M. Damm, F. Herrera,
E. Villar, I. Sander, A. Jantsch, A.-M. Fouilliart, and Mart. The ANDRES
project : Analysis and design of run-time reconfigurable, heterogeneous
systems. In Proceedings of 2007 International Conference on Field Pro-
grammable Logic and Applications. IEEE, aug 2007.

Chalermek Intanagonwiwat, Ramesh Govindan, Deborah Estrin, John Hei-
demann, and Fabio Silva. Directed Diffusion for Wireless Sensor Network-
ing. IEEE/ACM Transactions on Networking, 11(1):2-16, Februar 2002.

Junayed Islam, Muhidul Islam, and Nazrul Islam. A-sLEACH: An Ad-
vanced Solar Aware Leach Protocol for Energy Efficient Routing in Wireless
Sensor Networks. International Conference on Networking, 0:4, 2007.

D. Jagtap, N. Abu-Ghazaleh, and D. Ponomarev. Optimization of parallel
discrete event simulator for multi-core systems. In Parallel Distributed
Processing Symposium (IPDPS), 2012 IEEE 26th International, pages 520
-531, may 2012.

Mikkel Koefoed Jakobsen. Energy harvesting aware routing and scheduling
in wireless sensor networks. Master’s thesis, Technical University of Den-
mark, Department of Informatics and Mathematical Modeling, September
2008.

Mikkel Koefoed Jakobsen, Jan Madsen, and Michael R. Hansen. DEHAR:
A distributed energy harvesting aware routing algorithm for ad-hoc multi-
hop wireless sensor networks. In World of Wireless Mobile and Multimedia
Networks (WoWMoM), 2010 IEEE International Symposium on a, pages
1 -9, june 2010.

https://forsyde.ict.kth.se/

186 BIBLIOGRAPHY

[32] Axel Jantsch. Modeling Embedded Systems and SoCs. Morgan Kaufmann,
2004.

[33] Kenneth E. A. Jensen. Schedulability analysis of embedded applications
modelled using MARTE. Master’s thesis, Technical University of Denmark,
2009.

[34] Xiaofan Jiang, Joseph Polastre, and David Culler. Perpetual environmen-
tally powered sensor networks. In Proc. of the 4th intl. symposium on
Information processing in sensor networks. IEEE Press, 2005.

[35] Aman Kansal, Jason Hsu, Sadaf Zahedi, and Mani B. Srivastava. Power
management in energy harvesting sensor networks. ACM Trans. Embed.
Comput. Syst., 6(4):32, 2007.

[36] H. Kleen, T. Schubert, and C. Grabbe. A tutorial for OSSS. Technical
report, 2006. http://icodes.offis.de.

[37) Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell.
International Journal on Software Tools for Technology Transfer, 1:134—
152, December 1997.

[38] Emanuele Lattanzi, Edoardo Regini, Andrea Acquaviva, and Alessan-
dro Bogliolo. Energetic sustainability of routing algorithms for energy-
harvesting wireless sensor networks. Comput. Commun., 30(14-15):2976—
2986, 2007.

[39] E.A. Lee and D.G. Messerschmitt. Synchronous data flow. Proceedings of
the IEEE, 75(9):1235 — 1245, sept. 1987.

[40] E.A. Lee and D.G. Messerschmitt. Synchronous data flow. Proceedings of
the IEEE, 75(9):1235 — 1245, sept. 1987.

[41] Edward A. Lee and Alberto Sangiovanni-Vincentelli. A framework for com-
paring models of computation. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 17(12):1217-1229, December 1998.

[42] Edward A. Lee and Haiyang Zheng. Leveraging synchronous language prin-
ciples for heterogeneous modeling and design of embedded systems. In EM-
SOFT ’07: Proceedings of the 7th ACM & IEEFE international conference
on Embedded software, pages 114-123, New York, NY, USA, 2007. ACM.

http://icodes.offis.de

BIBLIOGRAPHY 187

[43]

[44]

[45]

[46]

(47]

(48]

[51]

[52]

Edward Ashford Lee and David G. Messerschmitt. Static scheduling of
synchronous data flow programs for digital signal processing. IEEE Trans-
actions on Computers, C-36(1):24-35, January 1987.

Longbi Lin, Ness B. Shroff, and R. Srikant. Asymptotically optimal
energy-aware routing for multihop wireless networks with renewable en-
ergy sources. IEEE/ACM Transactions on Networking, 15(5):1021-1034,
2007.

Chi Ma and Yuanyuan Yang. Battery-aware routing for streaming data
transmissions in wireless sensor networks. Mob. Netw. Appl., 11(5):757—
767, 2006.

J. Madsen, S. Mahadevan, and K. Virk. Network-Centric System-Level
Model for Multiprocessor SoC Simulation. In Interconnect-Centric Design
for Advanced SoC and NoC, pages 341-365. Kluwer Academic, 2004.

J. Madsen, K. Virk, and M. J. Gonzalez. A SystemC-Based Abstract Real-
Time Operating System Model for Multiprocessor System-on-Chip. In Mul-
tiprocessor System-on-Chip, pages 283-312. Morgan Kaufmann, 2004.

Shankar Mahadevan, Michael Storgaard, Jan Madsen, and Kashif Virk.
ARTS: A System-Level Framework for Modeling MPSoC Components and
Analysis of their Causality. In Proceedings of the 13th IEEE Interna-
tional Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS’05), pages 480-483, Washington,
DC, USA, sep 2005. IEEE Computer Society.

Shankar Mahadevan, Kashif Virk, and Jan Madsen. ARTS: A SystemC-
Based Framework for Multiprocessor Systems-on-Chip Modelling. Design
Automation for Embedded Systems, 11(4):285-311, 2007.

S. Mahfoudh and P. Minet. Survey of Energy Efficient Strategies in Wireless
Ad Hoc and Sensor Networks. In Seventh Intl. Conf. on Networking, pages
1-7, 2008.

Raminder P. Mann, Kamesh R. Namuduri, and Ravi Pendse. Energy-Aware
Routing Protocol for Ad Hoc Wireless Sensor Networks. EURASIP Journal
on Wireless Communications and Networking, 2005(5):635-644, 2005.

Deepak Mathaikutty, Hiren Patel, Sandeep Shukla, and Axel Jantsch.
EWD: A metamodeling driven customizable multi-MoC system modeling
framework. ACM Trans. Des. Autom. Electron. Syst., 12(3):1-43, 2007.

188 BIBLIOGRAPHY

[63] S. Mgrk, J.C. Godskesen, Michael R. Hansen, and R. Sharp. A timed se-
mantics for sdl. In R. Gotzhein and J. Bredereke, editors, Formal Descrip-
tion Techniques 1X: Theory, application and tools, pages 295-309. Chap-
man & Hall, 1996.

[54] M. Montoreano. Transaction level modeling using OSCI TLM 2.0. http:
//www . systemc.org, 2007.

[65] C. Moser, L. Thiele, L. Benini, and D. Brunelli. Real-Time Scheduling with
Regenerative Energy. In Proc. of the 18th Furomicro Conf. on Real-Time
Systems, pages 261-270. IEEE Computer Society, 2006.

[56] S.H.A. Niaki, M.K. Jakobsen, T. Sulonen, and I. Sander. Formal het-
erogeneous system modeling with systemc. In Specification and Design
Languages (FDL), 2012 Forum on, pages 160 —~167, sept. 2012.

[57] R. Nikhil. Bluespec System Verilog: efficient, correct RTL from high level
specifications. In Formal Methods and Models for Co-Design, 2004. MEM-
OCODE ’04. Proceedings. Second ACM and IEEE International Confer-
ence on, pages 69-70, 2004.

[68] H.D. Patel and S. K. Shukla. Towards a heterogeneous simulation kernel for
system level models: A SystemC kernel for synchronous data flow models.
IEEFE Trans. on CAD of Integrated Circuits and Systems, 24(8):1261-1271,
2005.

[59] Henrik Pilegaard, Michael R. Hansen, and Robin Sharp. An approach to
analyzing availability properties of security protocols. Nordic Journal of
Computing, 10:337-373, 2003.

[60] D.I. Rich. The evolution of SystemVerilog. Design & Test of Computers,
IFEEE, 20(4):82-84, 2003.

[61] A.Rose, M. Graphics, S. Swan, J. Pierce, and J. M. Fernandez. Transaction
level modeling in SystemC. http://www.systemc.org, 2005.

[62] Ingo Sander. System modeling and design refinement in ForSyDe. PhD the-
sis, LECS/IMIT /Royal Institute of Technology (KTH), Stockholm, 2003.

[63] Ingo Sander and Axel Jantsch. System modeling and transformational de-
sign refinement in ForSyDe. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 23(1):17-32, January 2004.

http://www.systemc.org
http://www.systemc.org
http://www.systemc.org

BIBLIOGRAPHY 189

[64]

(65]

[66]

[67]

(68]

Alberto Sangiovanni-Vincentelli. Quo vadis, SLD? Reasoning about the
trends and challenges of system level design. Proceedings of the IEEE,
95(3):467-506, March 2007.

A. Schallenberg, W. Nebel, and F. Oppenheimer. OSSS+R: Modelling
and simulating self-reconfigurable systems. In Proceedings of International
Conference on Field Programmable Logic and Applications, pages 28-30,
2006.

Muruganathan S.D., Ma D.C.F., Bhasin R.I., and Fapojuwo A.O. A cen-
tralized energy-efficient routing protocol for wireless sensor networks. IEEFE
Communications Magazine, 43(3):S8-13, 2005.

Rahul C. Shah and Jan M. Rabaey. Energy aware routing for low energy ad
hoc sensor networks. In Wireless Communications and Networking Conf.,
2002, volume 1, pages 350 — 355. IEEE, 2002.

Farhan Simjee and Pai H. Chou. Everlast: long-life, supercapacitor-
operated wireless sensor node. In Proc. of the 2006 intl. symposium on
Low power electronics and design, pages 197-202. ACM Press, 2006.

Uppsala University and Aalborg University. UPPAAL.
http://www.uppaal.com/.

A. Vachoux, C. Grimm, and K. Einwich. Towards analog and mixed-signal
SoC design with SystemC-AMS. In IEEE International Workshop on Elec-
tronic Design, Test and Applications (DELTA’ 04), Perth, Australia, 2004.

Dimitrios J. Vergados, Nikolaos A. Pantazis, and Dimitrios D. Vergados.
Energy-efficient route selection strategies for wireless sensor networks. Mob.
Netw. Appl., 13(3-4):285-296, 2008.

T. Voigt, A. Dunkels, J. Alonso, H. Ritter, and J. Schiller. Solar-aware
clustering in wireless sensor networks. IEEE Symp. on Computers and
Communications, 1:238-243, 2004.

Thiemo Voigt, Hartmut Ritter, and Jochen Schiller. Solar-aware Rout-
ing in Wireless Sensor Networks. In Intl. Workshop on Personal Wireless
Communications, pages 847-852. Springer, 2003.

Jinghao Xu, Bojan Peric, and Branimir Vojcic. Performance of energy-
aware and link-adaptive routing metrics for ultra wideband sensor net-
works. Mob. Netw. Appl., 11(4):509-519, 2006.

190 BIBLIOGRAPHY

[75] Kai Zeng, Kui Ren, Wenjing Lou, and Patrick J. Moran. Energy-aware geo-
graphic routing in lossy wireless sensor networks with environmental energy
supply. In Proc. of the 3rd intl. conf. on Quality of service in heterogeneous
wired /wireless networks, page 8. ACM Press, 2006.

[76] Baoxian Zhang and Hussein T. Mouftah. Adaptive Energy-Aware Routing
Protocols for Wireless Ad Hoc Networks. In Proc of the First Intl. Conf.
on Quality of Service in Heterogeneous Wired/Wireless Networks, pages
252-259. IEEE Computer Society, 2004.

	Summary
	Resumé
	Preface
	Papers included in the thesis
	Acknowledgements
	1 Introduction
	1.1 The goal of the thesis
	1.2 Contributions of the thesis
	1.3 Structure of the thesis

	2 Energy harvesting wireless sensor network
	2.1 Introduction
	2.2 Related work
	2.3 Wireless sensor network model
	2.3.1 Environment
	2.3.2 Network
	2.3.3 Energy model

	2.4 Energy harvesting aware routing algorithm
	2.4.1 Shortest path
	2.4.2 Energy information encoding
	2.4.3 Algorithm

	2.5 Results
	2.5.1 Comparing DEHAR with DD

	2.6 Summary

	3 Related frameworks
	3.1 SystemC
	3.1.1 Transaction level modelling
	3.1.2 Heterogeneous SystemC
	3.1.3 ARTS
	3.1.4 SystemC kernel extensions
	3.1.5 SystemC-AMS
	3.1.6 OSSS and OSSS+R

	3.2 SystemVerilog
	3.3 Ptolemy
	3.4 Generic Modeling Environment
	3.5 UML/Marte
	3.6 Modelica
	3.7 MATLAB/Simulink
	3.8 The ForSyDe framework
	3.8.1 System model
	3.8.2 Process constructors
	3.8.3 Implementation of the ForSyDe library

	3.9 The UPPAAL framework
	3.10 Summary

	4 Formal analysis of DEHAR in UPPAAL
	4.1 Introduction
	4.1.1 DEHAR algorithm
	4.1.2 Verification goals

	4.2 Network model
	4.2.1 Node template
	4.2.2 Base station template
	4.2.3 Environment template

	4.3 Verification
	4.3.1 Network structure
	4.3.2 Battery charge and routing performance
	4.3.3 Alternate routes
	4.3.4 Energy change leads to optimal route

	4.4 Summary

	5 Theory of systems modelling
	5.1 Basic concepts
	5.2 Modelling with ForSyDe
	5.2.1 The original ForSyDe
	5.2.2 Generic definition of models of computation
	5.2.3 Domains
	5.2.4 Domain interfaces

	5.3 Models of computation
	5.3.1 Synchronous MoC
	5.3.2 Synchronous data flow MoC
	5.3.3 Discrete event MoC
	5.3.4 Continuous time MoC

	5.4 Structured domain interfaces
	5.4.1 Domain interfaces for the untimed MoCs
	5.4.2 Domain interfaces for the timed MoCs

	5.5 Summary

	6 Static systems
	6.1 Introduction
	6.2 Industry case
	6.2.1 Functional specification
	6.2.2 Non-functional specification

	6.3 Application model
	6.3.1 ForSyDe model
	6.3.2 Simulation
	6.3.3 Verification

	6.4 Platform model
	6.5 Integrated system model
	6.5.1 Simulation

	6.6 Summary

	7 Dynamic systems
	7.1 Introduction
	7.2 A generic modelling framework
	7.2.1 The components of a node
	7.2.2 The identity of a node
	7.2.3 The state of a node
	7.2.4 The computation costs
	7.2.5 Input events of a node
	7.2.6 Input messages
	7.2.7 Output messages and communication
	7.2.8 The cost of sending messages
	7.2.9 An operational model of a node

	7.3 Instantiating the modelling framework
	7.3.1 A definition of the states
	7.3.2 Directed Diffusion – another instantiation

	7.4 Results from simulation of the model
	7.4.1 Energy awareness makes a difference
	7.4.2 Energy awareness consumes and stores more energy
	7.4.3 Increasing the rate of observations costs

	7.5 Summary

	8 Conclusion and perspectives
	8.1 Summary
	8.2 Perspectives

	A ForSyDe-Haskell implementation
	A.1 Synchronous model of computation
	A.2 Synchronous data flow model of computation
	A.3 Discrete event model of computation
	A.4 Continuous time model of computation
	A.5 UPPAAL model code

