
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322407662?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

11

Formal Foundations for the Generation of
Heterogeneous Executable Specifications in

SystemC from UML/MARTE Models

Pablo Peñil, Fernando Herrera and Eugenio Villar
Microelectronics Engineering Group of the University of Cantabria

Spain

1. Introduction

Technological evolution is provoking an increase in the complexity of embedded systems
derived from the capacity to implement a growing number of elements in a single, multi-
processing, system-on-chip (MPSoC).

Embedded system heterogeneity leads to the need to understand the system as an
aggregation of components in which different behavioural semantics should cohabit.
Heterogeneity has two dimensions. On the one hand, during the design process, different
execution semantics, specifically in terms of time (untimed, synchronous, timed) can be
required in order to provide specific behaviour characteristics for the concurrent system
elements. On the other hand, different system components may require different models of
computation (MoCs) in order to better capture their functionality, such as Kahn Process
Networks (KPN), Synchronous Reactive (SR), Communicating Sequential Processes (CSP),
TLM, Discrete Event (DE), etc.

Another aspect affecting the complexity of current embedded systems derives from their
structural concurrency. The system should be conceived as an understandable architecture
of cooperating, concurrent processes. The cooperation among these concurrent processes is
implemented through information exchange and synchronization mechanisms. Therefore, it
is essential to deal with the massive concurrency and parallelism found in current
embedded systems and provide adequate mechanisms to specify and verify the system
functionality, taking into account the effects of the different architectural mappings to the
platform resources.

In this context, the challenge of designing embedded systems is being dealt with by
application of methodologies based on Model Driven Architecture (MDA) (MDA guide,
2003). MDA is a developing framework that enables the description of systems by means of
models at different abstraction levels. MDA separates the specification of the system’s
generic characteristics from the details of the platform where the system will be
implemented. Specifically, in Platform Independent Models (PIMs), designers capture the
relevant properties that characterize the system; the internal structure, the communication
mechanisms, the behavior of the different components, etc. Therefore, PIMs provide a
general, synthetic representation that is independent and, thus, decoupled from the final

www.intechopen.com

Embedded Systems – Theory and Design Methodology

228

system implementation. High-level PIM models are the starting point of ESL methodologies,
and they are crucial for fast validation and Design Space Exploration (DSE). PIMs can be
implemented on different platforms leading to different Platform Specific Models (PSMs).
PSMs enable the analysis of performance characteristics of the system implementation.

The most widely accepted and used language for MDA is the Unified Modelling Language
(UML) (UML, 2010). UML is a standard graphical language to visualize, specify and
document the system. From the first application as object-oriented software system
modelling, the application domain of UML has been extended. Nowadays, UML is used to
deal with electronic system design (Lavagno et al. 2003). Nevertheless, UML lacks the
specific semantics required to support embedded system specification, modelling and
design. This lack of expressivity is dealt with by means of specific profiles that provide the
UML elements with the necessary, precise semantics to apply the UML modelling
capabilities to the corresponding domain.

Specifically in the embedded system domain, UML should be able to deal with design
aspects such as specification, analysis, architectural mapping and implementation of
complex, HW/SW embedded systems. The MARTE UML profile (UML Profile for MARTE,
2009), which was created recently, was developed in order to model and analyze real-time
embedded systems, providing the concepts needed to describe real-time features that
specify the semantics of this kind of systems at different abstraction levels. The MARTE
profile has the necessary concepts to create models of embedded systems and provide the
capabilities that enable the analysis of different aspects of the behaviour of such systems in
the same framework. By using this UML profile, designers will be able to specify the system
both as a generic entity, capturing the high-level system characteristics and, after a
refinement process, as a detailed architecture of heterogeneous components. In this way,
designers will be assisted by design flows with a generic system model as an initial stage.
Then, by means of a refinement process supported by modelling and analysis tools, they
will be able to decide on the most appropriate architectural mapping.

As with any UML profile, MARTE is not associated with any explicit execution semantics.
As a consequence, no executable model can be directly extracted for simulation, functional
verification and performance estimation purposes. In order to address this need, SystemC
(Open SystemC) has been proposed as the specification and simulation framework for
MARTE models. From the MARTE model, an executable model in SystemC can be inferred
establishing a MARTE/SystemC relationship.

The MARTE/SystemC relationship is established in a formal way. The corresponding

formalism should be as general as possible in order to enable the integration of

heterogeneous components interacting in a predictable and well-understood way

(horizontal heterogeneity) and to support the vertical heterogeneity, that is, refinement of

the model from one abstraction level to another. Finally, this formalism should remove the

ambiguity in the execution semantics of the models in order to provide a basis for

supporting methodologies that tackle embedded system design.

For this purpose, the ForSyDe (Formal System Design) meta-model (Jantsch, 2004) was
introduced. ForSyDe was developed to support the design of heterogeneous embedded
systems by means of a formal notation. ForSyDe enables the production of a formal
specification that captures the functionality of the system as a high abstraction-level model.

www.intechopen.com

Formal Foundations for the Generation
of Heterogeneous Executable Specifications in SystemC from UML/MARTE Models

229

From these initial formal specifications, a set of transformations can be applied to refine the
model into the final system model. This refinement process generally involves MoC
transformation.

A system-level modelling and specification methodology based on UML/MARTE is
proposed. A subset of UML and MARTE elements is selected in order to provide a generic
model of the system. This subset of UML/MARTE elements is focused on capturing the
generic concurrency and the communication aspects among concurrent elements. Here,
system-level refers to a PIM able to capture the system structure and functionality
independently of its final implementation on the different platform resources. The internal
system structure is modelled by means of Composite Structure diagrams. MARTE
concurrency resources are used to model the concurrent processes composing the concurrent
structure of the system. The communication elements among the concurrent processes are
modelled using the CommunicationMedia stereotype. The concurrent processes and the
communication media compose the Concurrent&Communication (C&C) structure of the
system. The explicit identification of the concurrent elements facilitates the allocation of the
system application to platforms with multiple processing elements in later design phases.

In order to avoid any restrictions on the designer, the methodology does not impose any
specific functionality modelling of concurrent processes. Nevertheless, with no loss of
generality, UML activity diagrams are used as a meta-model of functionality. The activity
diagram will provide formal support to the C&C structure of the system, explaining when
each concurrent process takes input values, how it computes them and when the
corresponding outputs are delivered.

Fig. 1. ForSyDe formal link between MDA and ESL.

Based on the MARTE/SystemC formal link supported by ForSyDe, the methodology
enables untimed SystemC executable specifications to be obtained from UML/MARTE
models. The untimed SystemC executable specification allows the simulation, validation
and analysis of the corresponding UML/MARTE model based on a clear simulation
semantics provided by the underlying formal model. Although the formal model could be
kept transparent to the user, the model defines clear simulation semantics associated with
the MARTE model and its implementation in the SystemC model, which can be fully
understood by any designer. Therefore, the ForSyDe meta-model formally supports
interoperability between MARTE and SystemC.

In this way, the gap between MDA and ESL is formally bridged by means of a conceptual
mapping. The mapping established among UML/MARTE and SystemC will provide

ForSyDe
UML/MARTE

 MDA ESL

equivalence
Generic Resources

SystemC

www.intechopen.com

Embedded Systems – Theory and Design Methodology

230

consistency in order to ensure that the SystemC executable specification obtained is
equivalent to the original UML/MARTE model. The formal link provided by ForSyDe
enables the abstract executive semantics of both the UML/MARTE model and its
corresponding SystemC executable specification to be reflected (Figure 4.). This
demonstrates the equivalence among the two design flow stages, provides the required
consistency to the mapping established between the two languages and ensures that the
transformation process is correct-by-construction.

2. Related work

Several works have shown the advantages of using the MARTE profile for embedded
system design. For instance, in (Taha et al, 2007) a methodology for modelling hardware by
using the MARTE profile is proposed. In (Vidal et al, 2009), a co-design methodology for
high-quality real-time embedded system design from MARTE is presented.

Several research lines have tackled the problem of providing an executive semantics for
UML. In this context, two main approaches for generating SystemC executable specifications
from UML can be distinguished. One research line is to create a SystemC profile in order to
capture the semantics of SystemC facilities in UML diagrams (Bocchio et al., 2008). In this
case, SystemC is used both as modelling and action language, while UML enables a
graphical capture. A second research line for relating UML and SystemC consists in
establishing mapping rules between the UML metamodel and the SystemC constructs. In
this case, pure UML is used for system modelling, while the SystemC model generated is
used as the action language. Mapping rules enable automatic generation of the executable
SystemC code (Andersson & Höst, 2008). In (Kreku et al., 2007) a mapping between UML
application models and the SystemC platform models is proposed in order to define
transformation rules to enable semi-automatic code generation.

A few works have focused on obtaining SystemC executable models from MARTE.
Gaspard2 (Piel et al. 2008) is a design environment for data-intensive applications which
enables MARTE description of both the application and the hardware platform, including
MPSoC and regular structures. Through model transformations, Gaspard2 is able to
generate an executable TLM SystemC platform at the timed programmers view (PVT) level.
Therefore, Gaspard2 enables flows starting from the MARTE post-partitioning models, and
the generation of their corresponding post-partitioning SystemC executables.

Several works have confronted the challenge of providing a formal basis for UML and
SystemC-based methodologies. Regarding UML formalization, most of the effort has been
focused on providing an understanding of the different UML diagrams under a particular
formalism. In (Störrle & Hausmann, 2005) activity diagrams are understood through the
Petri net formalism. In (Eshuis & Wieringa, 2001) formal execution semantics for the activity
diagrams is defined to support the execution workflow. In the context of MARTE, the Clock
Constraint Specification Language (CCSL) (Mallet, 2008) is a formalism developed for
capturing timing information from MARTE models. However, further formalization effort is
still required.

A significant formalization effort has also been made in the SystemC context. The need to
conceive the whole system in a model has brought about the formalization of abstract and
heterogeneous specifications in SystemC. In (Kroening & Sharygna, 2005) SystemC

www.intechopen.com

Formal Foundations for the Generation
of Heterogeneous Executable Specifications in SystemC from UML/MARTE Models

231

specifications including software and hardware domains are formalized to support
verification. In (Maraninchi et al., 2005) TLM descriptions are related to synchronous systems
are formalized. In (Traulsem et al., 2007) TLM descriptions related to asynchronous systems
are formalized. Comprehensive untimed SystemC specification frameworks have been
proposed, such as SysteMoC (Falk et al., 2006) and HetSC (Herrera & Villar 2006). These
methodologies take advantage of the formal properties of the specific MoCs they support but
do not provide formal support for untimed SystemC specifications in general. Previous work
on the formalization of SystemC was focused on simulation semantics. These approaches were
inspired by previous formalization work carried out for hardware design languages such as
VHDL and Verilog. In (Mueller et al., 2001), SystemC processes were seen as distributed
abstract state machines which consume and produce data in each delta cycle. In this way the
corresponding model is strongly related to the simulation semantics. In (Salem, 2003),
denotation semantics was provided for the synchronous domain. Efforts towards more
abstract levels address the formalization of TLM specifications. In (Ecker et al., 2006), SystemC
specifications including software and hardware functions are formalized. In (Moy et al., 2008)
TLM descriptions are related to synchronous and asynchronous formalisms.

Nevertheless, a formal framework for UML/MARTE-SystemC mapping based on common
formal models of both languages is required. A good candidate to provide this formal
framework is the ForSyDe metamodel (Janstch, 2004). The Formal System Design (ForSyDe)
formalism is able to provide a synthetic notation and understanding of concurrent and
heterogeneous specifications. ForSyDe covers modelling of time at different abstraction
levels, such as untimed, synchronous and timed. Moreover, ForSyDe supports verification
and transformational design (Raudvere et al. 2008).

3. ForSyDe

ForSyDe provides the mechanism to enable a formal description of a system. ForSyDe is
mainly focused on understanding concurrency and time in a formal way representing a
system as a concurrent model, where processes communicate through signals. In this way,
ForSyDe provides the foundations for the formalization of the C&C structure of the system.
Furthermore, ForSyDe formally supports the functionality descriptions associated with each
concurrent process.

Processes and signals are metamodelling concepts with a precise and unambiguous
mathematical definition. A ForSyDe signal is a sequence of events where each event has a
tag and a value. The tag is often given implicitly as the position in the signal and it is used to
denote the partial order of events. In ForSyDe, processes have to be seen as mathematical
relations among signals. The processes are concurrent elements with an internal state
machine. The relation among processes and signals is shown in Figure 2.

Fig. 2. ForSyDe metamodel representation.

www.intechopen.com

Embedded Systems – Theory and Design Methodology

232

From a general point of view; a ForSyDe process p is characterized by the expression:

 1 1(...) ' ... 'n mp s s s s (1)

The process p takes a set of signals (s1…sn) as inputs and produces a set of outputs (s’1…s’m),

where ∀ 1≤i≤n ⋀ 1≤j≤m with n, m ∈ ℕ; si, sj ∈ S where sk are individual signals and S is the
set of all ForSyDe signals.

ForSyDe distinguishes three kinds of signals namely untimed signals, synchronous signals

and timed signals. Each kind of MoC is determined by a set of characteristics which define

it. Based on these generic characteristics, it is possible to define a particular MoC’s specific

semantics.

Expressions (2) and (4) denote an important, relevant aspect that characterizes the ForSyDe
processes, the data consumed/produced.

11 1(,) ()

...

(,) ()
nn n

s a z

s a z

 (2)

() () n q

with

z
 (3)

11 1

ˆ(', ') ' ()

...

ˆ(', ') ' ()
mm m

s a z

s a z

 (4)

'() (' ())

mm

with

z length a z
 (5)

A partition π(ν,s) of a signal s defines an ordered set of signals 極an玉 that “almost” forms the

original signal s. The brackets 極...玉 denote a set of ordered elements (events or signals). The

function ν(z) defines the length of the subsignal an(z); the semantics associated with the ν(z)

function is: νn(0) = length(an(0)); νn(1) = length(an(1)) ... where z denotes the number of the

data partition.

For the input signals, the length of these subsignals depends on which state the process is,

denoted by the expression (3), where γ is the function that determines the number of events

consumed in this state. The internal state of the process is denoted by ωq with q Є ℕ0. In

some cases, νn(z) does not depend on the process state and thus νn(z) is a constant, denoted

by the expression ν(z) = c with c Є ℕ.

For the output signals, the length is denoted by expression (5). The output subsignals

a’1…a’m are determined by the corresponding output function fα that depends on the input

subsignals a1…an and the internal state of the process ωq, expression (6).

www.intechopen.com

Formal Foundations for the Generation
of Heterogeneous Executable Specifications in SystemC from UML/MARTE Models

233

1 1

((...),) (' ... ')
mn qf a a a a (6)

where ∀ 1≤α≤j ⋀ j ∈ ℕ

The next internal state of the process is calculated using the function g:

1 1((...),) n q qg a a (7)

where ∀ 1≤i≤n ⋀ n ∈ ℕ0, ai ∈ S, ∀ q ∈ ℕ0, ωq∈ E. E is the set of all events, that is, untimed

events, synchronous events and timed events respectively.

ForSyDe processes can be characterized by the four tuple TYPEs 極TI, TO, NI, NO玉. TI and
TO are the sets of signal types for the input and output signals respectively. The signal type
is specified by the value type of its corresponding events that made up the signal. NI =
{ν1(i)…νn(i)} is the set of partitioning functions for the n input signals; NO={ν1’(i)…νn’(i)} is
the set of partitioning functions of the m output signals.

The advance of time in ForSyDe processes is understood as a totally ordered sequence of
evaluation cycles. In each evaluation cycle (ec) “a process consumes inputs, computes its
new internal state, and emits outputs” (Jantsch, 2004). After receiving the inputs, the process
reacts and then, it computes the outputs depending on its inputs and the process’s internal
state.

4. AVD system

In order to illustrate the formal foundations between UML/MARTE and SystemC a video
decoder is used, specifically an Adaptive Video decoder (AVD) system. Adaptive software
is a new paradigm in software programming which addresses the need to make the
software more effective and thus reusable for new purposes or situations it was not
originally designed for. Moreover, adaptive software has to deal with a changing
environment and changing goals without the chance of rewriting and recompiling the
program. Therefore, dynamic adaptation is required for these systems. Adaptive software
requires the representation of the set of alternative actions that can be taken, the goals that
the program is trying to achieve and the way in which the program automatically manages
change, including the way the information from the environment and from the system itself
is taken.

Fig. 3. Block diagram of the Adaptive Video decoder.

Specifically, the AVD specification is based on the RVC decoder architecture (Jang et al.,
2008). Figure 3 illustrates a simplified scheme of the AVD architecture. The RVC architecture

www.intechopen.com

Embedded Systems – Theory and Design Methodology

234

divides the decoder functionality into a set of functional units (fu). Each of these functional
units is in charge of a specific video decoding functionality. The frame_decoder functional
unit is in charge of parsing and decoding the incoming MPEG frame. This functional unit is
enabled to parse and extract the forward coding information associated with every frame of
the input video stream. The coding information is provided to the functional units fuIS and
fuIQ. The macroblock generator (fuMGB) is in charge of structuring the frame information
into macroblocks (where a macroblock is a basic video information unit, composed of a
group of blocks). The inverse scan functional unit (fuIS) implements the Inverse zig-zag
scan. The normal process converts a matrix of any size into a one-dimensional array by
implementing the zig-zag scan procedure. The inverse function takes in a one-dimensional
array and by specifying the desired number of rows and columns, it returns a matrix having
the specified dimensions. The inverse scan constructs an array of 8x8 DCT coefficients from
a one-dimensional sequence. The fuIQ functional unit performs the Inverse Quantization.
This functional unit implements a parameter-based adaptive process. The fuIT functional
unit can perform the Inverse Transformation by applying an inverse DCT algorithm (IDCT),
or an inverse Haar algorithm (IHAAR). Finally, the fuVR functional unit is in charge of
video reconstruction.

The frame _source and the YUV_create blocks make up the environment of the AVD system.
The frame_source block provides the frames of a video file that the AVD system decodes
later. The YUV_create block rebuilds the video (in a .YUV video file) and checks the results
obtained.

4.1 UML/MARTE model from the AVD system

The system is designed as a concurrent entity; the functionality of each functional unit is
implemented by concurrent elements. Each one of these concurrent elements is allocated to
an UML component and identified by the MARTE stereotype <<ConcurrencyResource>>.
This MARTE generic resource models the elements that are capable of performing its
associated execution flow concurrently with others. Concurrency resources enable the
functional specification of the system as a set of concurrent processes. The information is
transmitted among the concurrent resources by means of communicating elements identified
by the MARTE stereotype <<CommunicationMedia>>. Both ConcurrencyResource and
CommunicationMedia are included in MARTE subprofile Generic Resource Modelling
(GRM). This gives the designer complete freedom in deciding on the most appropriate
mapping of the different functional components of the system specification to the available
executing resources. These MARTE elements are generic in the sense that they do not
assume a specific platform mapping to HW or to SW. Thus, they are suitable for system-
level pre-partition modelling.

Depending on the parameters defining the communication media, several types of channels
can be identified. Based on the type of channels used, several MoCs can be identified (Peñil
et al, 2009). When a specific MoC is found, the design methodologies associated with it can
be used taking advantage of the properties that that MoC provides. Additional kinds of
channels can be identified, the border channels. A border channel is a communication media
that enables the connections of different MoC domains, which have their own properties
and characteristics. The basic principle of the border channel semantics is that from each
MoC side, the border channel is seen as the channel associated with the MoC. In the case of

www.intechopen.com

Formal Foundations for the Generation
of Heterogeneous Executable Specifications in SystemC from UML/MARTE Models

235

channel_4 of Figure 4, this communication media establishes the connection among the KPN
MoC domains (Kanh,1974) and the CSP MoC domains (Hoare, 1978). This border channel is
inferred from a communication media with a storage capacity provided by the stereotype
<<StorageResource>>. In order to capture the unlimited storage capacity that characterizes
the KPN channels, the tag resMult should not be defined. The communication is carried by
the calls to a set of methods that a communication media provides. These methods are MARTE
<<RtService>>. The RtService associated with the KPN side should be asynchronous and
writer. In the CSP side, the RtService should be delayedSynchronous. This attribute value
expresses synchronization with the invoked service when the invoked service returns a
value. In this RtService the value of concPolicy should be writer so that the data received from
the communication media in the synchronization is consumed and, thus, producing side
effects in the communication media. The RtServices are the methods that should be called by
the concurrency resources in order to obtain/transmit the information.

Another communication (and interaction) mechanisms used for communicating threads is
performed through protected shared objects. The most simple is the shared variable. A
shared variable is inferred from a communication media that requires storage capacity
provided by the MARTE stereotype <<StorageResource>>. Shared variables use the same
memory block to store the value of a variable. In order to model this memory block, the tag
resMult of the StorageResource stereotype should be one. The communication media accesses
that enable the writings are performed using Flowport typed as in. A RtService is provided by
this FlowPort and this RtService is specified as asynchronous and as writer in the tags
synchKind and concPolicy respectively. The tag value writer expresses that a call to this
method produces side effects in the communication media, that is, the stored data is modified
in each writing access. Regarding the reading accesses, they are performed through out flow
ports. The value of the synchKind should be synchronous to denote that the corresponding
concurrency resource waits until receiving the data that should be delivered by the
communication media. The value of concPolicy should be reader to denote that the stored data
is not modified and, thus, several readings of the same data are enabled.

Figure 4 shows a sketch of a complete UML/MARTE PIM that describes the AVD system.
Figure 4 is focused on the MGB component showing the components that are connected to
the MGB component and the channels used for the exchange of information between this
component and its specific environment. Based on this AVD component, a complete
example of the ForSyDe interrelation between UML/MARTE and SystemC will be
presented. However, before introducing this example, it is necessary to describe the
ForSyDe formalization of the subset of UML/MARTE elements selected. For that purpose,
the IS component is used.

4.2 Computation & communication structure

The formalization is done by providing a semantically equivalent ForSyDe model of the
UML/MARTE PIM. Such a model guarantees the determinism of the specification and
enables the application of the formal verification and refinement methodologies associated
with ForSyDe. As was mentioned before, the ForSyDe metamodel is focused on the formal
understanding of the communication and processing structure of a system and the timing
semantics associated with each processing element’s behaviour. Therefore, in order to obtain
a ForSyDe model, all the system information associated with an UML/MARTE model

www.intechopen.com

Embedded Systems – Theory and Design Methodology

236

Fig. 4. Sketch of the UML/MARTE model that describes the AVD system.

related to the system structure has to be ignored. All the model elements that determine the
hierarchy system structure such as UML components, UML ports, etc. have to be removed.
In this way, the resulting abstraction is a model composed of the processing elements
(concurrency resources) and the communicating elements (communication media). This C&C
model determines the abstract semantics associated with the model and, by extension,
determines the system execution semantics. Figure 5 shows the C&C abstraction of Figure 4
where only the concurrency resources and the communication media are presented.

Fig. 5. C&C abstraction of the model in Figure 4.

4.3 ForSyDe representation of C&C structure

While the extraction of the C&C model is maintained in the UML/MARTE domain, the
second step of the formalization consists in the abstraction of this UML/MARTE C&C

www.intechopen.com

Formal Foundations for the Generation
of Heterogeneous Executable Specifications in SystemC from UML/MARTE Models

237

model as the semantically equivalent ForSyDe model. More specifically, the ForSyDe
abstraction means the specification from the UML/MARTE C&C model of the
corresponding processes and signals; the timing abstraction (untimed, synchronous, etc); the
input and output partitions; and the specific type of process constructors, which establish
the relationships between the input partitions and the output partitions. The first step of the
ForSyDe abstraction is to obtain a ForSyDe model in which the different processes and
signals are identified. In order to obtain this abstract model, a direct mapping between
ConcurrencyResource-processes and CommunicationMedia-signals is established. Figure 6
shows the C&C abstract model of Figure 5 using ForSyDe processes and signals. Therefore,
with this first abstraction, the ForSyDe C&C system structure is obtained.

There is a particular case related to the ForSyDe abstraction of the CommunicationMedia-
signal. Assume that in channel_6 of the example in Figure 4 another MARTE stereotype has
been applied, specifically the <<ConcurrencyResource>> stereotype. In this way, the
communicating element has the characteristic of performing a specific functionality. This
combination of concurrency resource and communication media semantics can be used in order
to model system elements that transmit data and, moreover, perform a transformation of
this data. The ForSyDe representation of this kind of channels consists in a process that
represents the functionality associated with the channel and a signal that represents the
output data generated by the channel after the input data is computed.

Fig. 6. ForSyDe representation of the C&C model of the Figure 5.

4.4 Concurrency resource’s behaviour description

A concurrent element can be described by a finite state machine where in each state the
concurrent element receives inputs, computes these inputs and calculates their new state
and the corresponding outputs. The structure of the behaviour of each concurrency resource
is modelled by means of an Activity Diagram. The activity diagram can model the complete
resource behaviour. In this case, there is no clear identification of the class states; the states
executed by the class during its execution are implicit. Activity diagrams represent activity
executions that are composed of single steps to be performed in order to model the complete
behaviour of a particular class. These activities can be composed of single actions that
represent different behaviours, related to method calls or algorithm descriptions. In this
case, the complete behaviour captured in an activity diagram can be structured as a
sequence of states fulfilling the following definition: each state is identified as a stage where

www.intechopen.com

Embedded Systems – Theory and Design Methodology

238

the concurrency resource receives the data from its environment; these data are computed
by an atomic function, producing the corresponding output data. Therefore, in the most
general approach, an implicit state in an activity diagram is determined between two
waiting stages, that is, between two stages that represent input data. In this kind of stages,
the concurrency resource has to wait until the required data are available in all the inputs
associated with the corresponding function. In the same way, if code were directly written,
an equivalent activity diagram could be derived. Additionally, the behavioural modelling of
the concurrent resources can be modelled by an explicit UML finite state machine. This
UML diagram is focused on which states the object covers throughout its execution and the
well-defined conditions that trigger the transitions among these states (the states are
explicitly identified). Each UML state can have an associated behaviour denoted by the label
do. This label identifies the specific behaviour that is performed as long as the concurrent
element is in the particular state. Therefore, in order to describe the functionality in each
state, UML activity diagrams is used.

Figure 7 shows the activity diagram that captures the functionality performed by the

concurrency resource of the IS component. According to the aforementioned internal state

definition, this diagram identifies two states; one state where the concurrency resource is only

initialized and another state where the tuple data-consumption/computation/data

generation is modelled. The data consumption is modelled by a set of AcceptEventAction. In

the general case, this UML action represents a service call owned by a communication media

from which the data are required. Then, these data are computed by the atomic function

Scan. The data generated from this computation (in this case, data3) are sent to another

system component; the sending of data is modelled by SendObjectAction that represents the

corresponding service call for the computing data transmissions.

Apart from the UML elements related to the data transmission and the data computation,

another set of UML elements are used in order completely specify the functionality to be

modelled. The fork node () establishes concurrent flows in order to enable the

modelling of data inputs required from different channels in the same state. The UML

pins (the white squares) associated to the AcceptEventAction, function Scan and

SendObjectAction represent the data received from the communication, the data

required/generated by the atomic function execution and the data sending, respectively.

An important characteristic needed to define the concurrency resource functionality

behaviour is the number of data required/generated by a specific atomic function. This

characteristic is denoted by the multiplicity value. Multiplicity expresses the minimum

and the maximum number of data that can be accepted by or generated from each

invocation of a specific atomic function. Additionally, the minimum multiplicity value

means that some atomic functions cannot be executed until the receipt of the minimum

number of data in all atomic function incoming edges. In Figure 7, the multiplicity values

are annotated in blue UML comments.

As was mentioned, concurrent resource behaviour is composed of pure functionality

represented by atomic functions and communication media accesses; the structure of the

behaviour of a concurrency resource specifies how pure functionality and communication

accesses are interlaced. This structure is as relevant as the C&C structure, since both are

involved in the executive semantics of the process network.

www.intechopen.com

Formal Foundations for the Generation
of Heterogeneous Executable Specifications in SystemC from UML/MARTE Models

239

Fig. 7. Activity diagram that describes the functionality implemented by the IS component.

4.5 ForSyDe representation of concurrency resource functionality modelling

In the behavioural model in Figure 7 two implicit states (S0 and S1) can be indentified. The
activity diagram implicit states are represented as ωj in ForSyDe. A state ωj is understood to
be a state composed of two different states, Pj and Dj. In the general case, Pj denotes
segments of the behavioural description that are between two consecutive waiting stages. In
this case, such waiting stages are identified by two consecutive sets of AcceptEventActions.
Therefore, Pj corresponds to the basic structure described in the previous section. Dj
expresses all internal values that characterize the state. The change in the internal state of a
concurrency resource is denoted by the next state function g((a1…an), ωj) =ωj+1 where ωj

represents the current state and a1…an the input data consumed in this state. The function
g() calculates both Dj+1 and Pj+1.

The atomic function implemented in a state ωj (for instance, in the example in Figure 7 the
function Scan) is represented by the ForSyDe output function fi(). This function generates the
outputs (represented as the subsignals a’1…a’m) as a result of computing the data inputs.

The multiplicity values of the input and output data sequences are abstracted by a partition
function ν:

 Input partition functions
1() ()

...

() ()

i

n i

z p

z q

 (8)

 0, ,z i p q

S0

S1

ev0

ev1

www.intechopen.com

Embedded Systems – Theory and Design Methodology

240

 Output partition functions
1 1

1

' () (')

((...),) ...

' () (')
i n i

M M

z length a a

length f a a

z length a b

 (9)

 0, ,z i a b

A partition function enables a signal partition π(ν,s), that is, the division of a signal s into a
sequence of sub-signals ai. The partition function denotes the amount of data
consumed/produced in each input/output in each ForSyDe process computation, referred
to as evaluation cycle.

The data received by the concurrency resource through the AcceptEventActions are
represented by the ForSyDe signal a1…an. Regarding the data transmitted through
SendObjectActions, they are represented by a’1…a’m.

In addition, the behavioural description has a ForSyDe time interpretation; Figure 7
corresponds to two evaluation cycles (ev0 and ev1) in ForSyDe. The corresponding time
interpretation can be different depending on the specific time domain. These evaluation
cycles will have different meanings depending on which MoC the designer desires to
capture in the models. In this case, the timing semantics of interest is the untimed
semantics.

5. UML/MARTE-SystemC mapping

The UML/MARTE-SystemC mapping enables the generation of SystemC executable code
from UML/MARTE models.

This mapping enables the association of a corresponding SystemC executable code which
reflects the same concurrency and communication structure through processes and
channels. Similarly, the SystemC code can reflect the same hierarchical structure as the
MARTE model by means of modules, ports, and the different types of SystemC binding
schemes (port-port, channel-port, etc). However, other mapping alternatives maintaining
the semantic correspondence, using port- export connections, are feasible thanks to the
ForSyDe formal link. Figure 8 shows the first approach to the UML/MARTE-SystemC
mapping regarding the C&C structure and the system hierarchy. The correspondence
among the system hierarchy elements, component-module and port-port, is straightforward.
In the same way, the correspondence concurrency resource-process is straightforward. A
different case is the communicating elements. As a general approach, a communication
media corresponds to a SystemC channel. However, the type of SystemC channel depends
on the communication semantics captured in the corresponding communication media. As can
be seen in (Peñil et al., 2009), depending on the characteristics allocated to the communication
media, different communication semantics can be identified in UML/MARTE models which
implies that the SystemC channel to be mapped should implement the same communication
semantics.

Regarding the functional description, the AcceptEventActions and SendObjectActions are

mapped to channel accesses. If channel instances are beyond the scope of the module, the

accesses to them become port accesses. The multiplicity value of each data transmission in

www.intechopen.com

Formal Foundations for the Generation
of Heterogeneous Executable Specifications in SystemC from UML/MARTE Models

241

Fig. 8. SystemC representation of the UML/MARTE model in Figure 4.

the activity diagram corresponds to multiple channel accesses (of a single data value) in the
SystemC code. Execution of pure functionality captured as atomic functions represents the
individual functions that compose the complete concurrency resource functionality. The
functions can correspond to a representation of functions to be implemented in a later
design step according to a description attached to this function or pure C/C++ code
allocated to the model. Additionally, loops and conditional structures are considered in
order to complement the behaviour specification of the concurrency resource. Figure 9 shows
the SystemC code structure that corresponds to the functional description of Figure 7. Lines
(2-3-4) are the declarations of the variables typed as Ti used for communication and
computation. Then, an atomic function for initializing some internal aspects of the
concurrency resource is executed. Line 5 denotes the statement that defines the infinite loop.
Line 6 is the data access to the communication media channel_3. In this case, the channel access
is done through the port fromMGB. In the same way, line 7 is the statement for reading the
six data from channel_5 through the port fromDCR. The atomic functions Scan is represented
as a function call, specifying the function parameters (line 9). Finally, the output data
resulting from the Scan computation (data3) are sent through the port toIQ by using the
communication media channel_6.

Fig. 9. SystemC code corresponding to the model in Figure 7.

5.1 UML/MARTE-SystemC mapping: ForSyDe formal foundations

As was described, there are similarities which lead to the conclusion that the link of these
MARTE and SystemC methodologies is feasible. However, there are obvious differences in

(1) void IS::IS_proc(){
(2) T1 data1;
(3) T2 data2[];
(4) T3 data3[];
(5) Init();
(6) while (true) {
(7) data1 = fromMGB.read();
(8) for(int i=0;i<6;i++) data2[i]= fromDCR.read();
(9) Scan (dat1, data2, data3);
(10) for(int i=0;i<6;i++) toIQ.write(data3[i]);
(11) }}

www.intechopen.com

Embedded Systems – Theory and Design Methodology

242

terms of UML and SystemC primitives. Moreover, there is no exact a one to one
correspondence, e.g., in the elements for hierarchical structure. Even when correspondence
seems to be straightforward (e.g. ConcurrencyResource = SystemC Process), doubts can arise
about whether every type of SystemC process can be considered in this relationship. A more
subtle, but important consideration in the relationship is that the SystemC code is executable
over a Discrete Event (DE) timed simulation kernel, which provides the code with low level
execution semantics. SystemC channel implementation internally relies on event
synchronizations, shared variables, etc, which map the abstract communication mechanism
of the channel onto the DE time axis. In contrast, the execution semantics of the MARTE
model relies on the attributes of the communication media (Peñil et al, 2009) and on CCSL
(Mallet, 2008). A common representation of the abstract semantics of the SystemC channel
and of the communication media is required. All these reasons make the proposed formal link
necessary.

The UML/MARTE-SystemC mapping enables the generation of SystemC executable code
from UML/MARTE models. The transformation process should maintain the C&C
structure, the behaviour semantics, and the timing information captured in the
UML/MARTE models in the corresponding SystemC executable model. This information
preservation is supported by ForSyDe, which provides the required semantic consistency.
This consistency is provided by a common formal annotation that captures the previous
relevant information that characterizes the behaviour of a concurrency resource and
additional relevant information such as the internal states of the process, the atomic
functionality performed in each state, the inputs and the number of inputs required for this
atomic functionality to be performed and the resulting data generated outputs from this
atomic function execution.

An important characteristic is the timing domain. This article is focused on high-level
(untimed) UML/MARTE PIMs. In the untimed models, the time modelling is abstracted as
a causality relation; the events communicated by the concurrent elements do not contain any
timing information. An order relation is denoted; the event sent first by a producer is
received first by a consumer, but there is no relation among events that form different
signals. Additionally, the computation and the communication take an arbitrary and
unknown amount of time.

Figure 10 shows the ForSyDe abstract, formal annotation of the IS concurrency resource
behaviour description and the functional specification of the SystemC process IS_proc. Line
1 specifies the type of processor constructor; in this case the processor constructor is a mealyU.
The U suffix denotes untimed execution semantics. The mealyU process constructor defines a
process with internal states that take the output function f(), the next state functions g(), the

function () for defining the signal partitions, and the initial state ω0 as arguments. In general

(), f() and g()are state-dependent functions. In this case, the abstraction splits f(), g() and ()
into state-independent functions. The function () is the function used to calculate the new
partition functions νsk of the inputs signals. Specifically, output function f() of the IS process
is divided into 2 functions corresponding to the two internal state that the concurrency
resource has. The first output function f0() models the Init() function; the output function f1()
models the function Scan(). In this function, the partition functions νsk of each input data
required for the computing of the Scan() (line [7]) are annotated. Line [9] represents the
partition function of the resulting output signal s’1. In the same way as in the case of the

www.intechopen.com

Formal Foundations for the Generation
of Heterogeneous Executable Specifications in SystemC from UML/MARTE Models

243

function f(), next state of the function g() is divided into 2 functions, in order to specify the
state transitions (lines [5] and [10]) identified in the activity diagram. The data
communicated by the IS concurrent resource data1, data2, data3 are represented by the signals
S1 and S2 for the inputs (data1, data2) and S’1 for the output signal data3. The implicit states
identified in the activity diagram St0 and St1 are abstracted as the states ω0 and ω1,
respectively.

Fig. 10. ForSyDe annotation of the UML/MARTE model in Figure 7 and the SystemC code
in Figure 9.

According to the definition of evaluation cycle presented in section 3, both implicit states
that can be identified in the activity diagram shown in Figure 7 correspond to a specific
ForSyDe evaluation cycle (ev0 and ev1).

Therefore, the abstract, formal notation shown in Figure 10 captures the same, common
behaviour semantics modelled in Figure 7 and specified in Figure 9, and, thus, provides
consistency in the mapping between UML/MARTE and SystemC in order to enable the later
code generation (Figure 11).

Fig. 11. Representation of mapping between UML/MARTE and SystemC formally
supported by ForSyDe.

[1] IS = mealyU(,g, f0)
[2] IS (s1, s2) = <s’1>

[3] if (statei = 0) then

[4] f0)i = Init()

[5] statei+1 = g(

[6] elseif (statei = 1)

[7]s1(i) = 6 , (s1, s1) = <a1i>

 s2(i) = 1 , (s1, s1) = <a2i>

[8] a1’i = f1a1i, a2i) = Scan(a1i, a2i)

[9] νs’1(i) = 6. (s’1, s’1) = < a1’i>

[10] statei+1 = g(

www.intechopen.com

Embedded Systems – Theory and Design Methodology

244

5.2 Formal support for untimed UML/MARTE-SystemC models

The main problem when trying to define a formal mapping between MARTE and SystemC
is to define the untimed semantics of a DE simulation language such as SystemC. Under this
untimed semantics, the strict ordering of events imposed by the DE simulation mechanism
of SystemC’s simulation kernel has to be relaxed. In principle, the consecutive events in a
particular SystemC object (a channel, accesses to a shared variable, etc.) should be
considered as totally ordered as they originate from the execution of a sequential algorithm.
Any change in this order in any implementation of the algorithm should be based on a
sound optimization methodology or should be clearly explained by the designer. Events in
objects corresponding to different concurrent processes related by causal dependencies are
also ordered and, again, any change should be fully justified. However, events in objects
corresponding to different concurrent processes without any causal dependency can be
implemented in any order. This is the flexibility required by the design process in order to
ensure optimal implementations under the imposed design constraints.

As was commented previously, SystemC processes and MARTE concurrency resources can be
directly abstracted as ForSyDe processes. Nevertheless, and in the most general case, the
abstraction of a SystemC communication mechanism and the communication media relating
two processes is more complex. The type of communication in this article is addressed
through channels and shared variables. When the communication mechanism fulfils the
required conditions, then, it can be straightforwardly abstracted as a ForSyDe signal.

The MGB component shown in figure 4 is connected to its particular environment through
four communication media. Assuming that in these communication media four different
communication semantics can be identified. The communication media channel_1 represents
an infinite FIFO that implements the semantics associated to the KPN MoC. The channel_3
establishes a rendezvous communication with data transmission. The way to identify the
properties that characterize these communication mechanisms in UML/MARTE models
was presented in (Peñil et al, 2009). The channel_2 represents a shared variable and the
channel_4 is a border channel between the domains KPN-CSP. Therefore, the MGB
concurrency resource is a border process. A border process is a sort of process which channel
accesses are connections to different communication media that captured different
communication semantics. In this way, the AVD system is a heterogeneous entity where
different behaviour semantics can exist.

The data transmission dealt with the MGB concurrency resource is carried out by means of
a different sort of communication media: unlimited FIFO, shared memory, rendezvous and
a KPN-CSP border channel. Those communication media accesses are denoted by the
corresponding AcceptEventActions and SendObjectActions identified by the port or channel
used by the data transmission and the service called for that data transmission (see Figure
1a)). All these communication semantics captured in the UML/MARTE communication
media have to be mapped to specific SystemC communication mechanism ensuring the
semantic preservation. The communication media channel_1, channel_2 and channel_4 can be
mapped to SystemC channels provided by the HetSC methodology (HetSC, 2007). HetSC
is a system methodology based on the ForSyDe foundations for the creation of formal
execution specifications for heterogeneous systems. Additionally, HetSC provides a set of
communications mechanisms required to implement the semantics of several MoCs.
Therefore, the mapping process from the previous communication media to the SystemC

www.intechopen.com

Formal Foundations for the Generation
of Heterogeneous Executable Specifications in SystemC from UML/MARTE Models

245

channels ensures the semantic equivalence since HetSC provides the required SystemC
channels that implement the same communication semantics captured in the
corresponding communication media. Additionally, these communication media fulfil, by
construction, the condition that the data obtained by the consumer process are the same
and in the same order as the data generated by the producer process. In this way, they can
be abstracted as a ForSyDe signal which implies that the communication media-SystemC
channel mapping is correct-by-construction. As an example of SystemC channel accesses,
in Figure 12 b), line (5) denotes a channel access through a port and line (7) specifies a
direct channel access.

An additional application of the extracted ForSyDe model is the generation of some
properties that the SystemC specification should satisfy under any dynamic condition in
any feasible testbench. Note that the ForSyDe model is static in nature and does not
include the synchronization and firing mechanism used by the SystemC model. In the
example of MGB component, a mechanism for communication among processes can be
implemented through a shared variable, specifically the channel_2. Nevertheless, the
communication of concurrent processes through shared variables is a well-known
problem in system engineering. As the SystemC simulation semantics is non-preemptive,
protecting the access to the shared variables does not make any difference. However, this
is an implementation issue when mapping SystemC processes to SW or HW. A variable
shared between two SystemC processes correctly implements a ForSyDe signal when the
following conditions apply:

1. Every data token written by the producer process is read by the consumer process.
2. Every data token written by the producer process is read only once by the consumer

process.

In some cases, in order to simplify the design, the designer may decide to use the shared
variable as local memory. As commented above, this problem can be avoided by renaming.
A new condition can be applied:

1. If a consumer uses a shared variable as local memory, no new data can be written by
the producer until after the last access to local memory by the consumer, that is, during
the local memory lifetime of the shared variable.

Additionally, other conditions have to be considered in order to enable a ForSyDe
abstraction to be obtained which provides properties to be satisfied in the system design.
Another condition to be considered in the concurrent resource behaviour description is the
use of fork nodes and thus, the modelling of the internal concurrency in a concurrent
element. As a design condition, the specification of internal concurrency is not permitted in
the concurrency resource behaviour (except for the previously mentioned modelling of the
data requirements from different inputs). The behaviour description consists of a sequence
of internal states to create a complete activity diagram that models the concurrent resource
behaviour. As a general first approach, it is possible to use the fork node to describe internal
concurrent behaviour of a concurrent element if and only if the corresponding inputs and
outputs of each concurrent flow are univocal. Among several concurrent flows, it is essential
to know from which inputs the data are being taken and to which the outputs are being
sent; in a particular state, only one concurrent flow can access specific communication
media.

www.intechopen.com

Embedded Systems – Theory and Design Methodology

246

Fig. 12. ForSyDe abstraction (c) of the MBG concurrency resource functionality model (a) and
its corresponding SystemC code (b).

S0

S1

S2
S3

S4

S5 S6

S7

www.intechopen.com

Formal Foundations for the Generation
of Heterogeneous Executable Specifications in SystemC from UML/MARTE Models

247

Another modelling condition that can be considered in the concurrency resource behaviour

description is the specification of the multiplicity values of the data inputs and outputs. This

multiplicity specification has to be explicit and unequivocal, that is, expressions such as

[1…3] are not allowed. A previous multiplicity specification is not consistent with the

ForSyDe formalization since ForSyDe defines that in each process state, each input and

output partition is well defined. The multiplicity specification [a…b] presents indeterminacy

in order to define the process behaviour; it is not possible to know univocally the number of

data required/produced by a computation. This fact can yield an inconsistent functionality

and, thus, can present risks of incorrect performance.

As was mentioned before, not only the communication semantics defined in the
communication media is necessary to specify the behaviour semantics of the system, but
the way that each communication access is interlaced with pure functionality is also
required in order to specify the execution semantics of the processes network. The
communication media channel_3 implements a rendezvous communication among the MGB
concurrency resource and the IS concurrency resource which involves a synchronization and,
thus, a partial order in the execution of functions of the two processes. The atomic
function Scan shown in Figure 7 requires a datum provided by the communication media
channel_3. This data is provided when either the function Calculate_AC_coeff_esc has
finished or when the function Calculate_AC_coeff_no_esc has finished, depending on which
internal state the MGB concurrency resource is in. In the same way, the MGB concurrency
resource needs the IS concurrency resource to finish the atomic function Scan() in order to go
on with the block computation. In this way, the two processes synchronize their
independent execution flows, waiting for each other at this point for data exchange.
Therefore, besides the semantics captured in the communication media, the way the calls to
this communication media and the computation stages are established in order to model the
concurrency resource’s behaviour defines its execution semantics, affecting the behaviour of
others concurrency resources.

The ForSyDe model is a formal representation that enables the capture of the relevant
properties that characterize the behaviour of a system. Figure 12 c) shows the ForSyDe
formal annotation of the functional model of the MGB concurrency resource’s behaviour
shown in Figure 12 a) and the SystemC code in Figure 12 b), which is the execution
specification of the previous UML/MARTE model. This ForSyDe model specifies the
different internal states that can be identified in the activity diagram in Figure 12 a) (all of
them identified by a rectangle and the annotation Si). Additionally, ForSyDe formally
describes all data requirements for the computations, the functions executed in each state,
the data generated in each of these computations and the conditions for the state transitions.
This relevant information defines the concurrency resource’s behaviour. Therefore, the
ForSyDe model provides an abstract untimed semantics associated with the UML/MARTE
model which could be used as a reference model for any specification generated from it,
specifically, a SystemC specification, in order to guarantee the equivalence between the two
system representations.

6. Conclusions

This chapter proposes ForSyDe as a formal link between MARTE and SystemC. This link

is necessary to maintain the coherence between MARTE models and their corresponding

www.intechopen.com

Embedded Systems – Theory and Design Methodology

248

SystemC executable specifications, in order to provide safe and productive methodologies

integrating MDA and ESL design methodologies. Moreover, the chapter provides the

formal foundations for enabling this ForSyDe-based link between PIM UML/MARTE

models and their corresponding SystemC executable code. The most immediate

application of the results of this work will be in the automation of the generation of

heterogeneous executable SystemC specifications from untimed UML/MARTE models

which specify the system concurrency and communication structure and the behaviour of

concurrency resources.

7. Acknowledgments

This work was financed by the ICT SATURN (FP7-216807) and COMPLEX (FP7-247999)
European projects and by the Spanish MICyT project TEC 2008-04107.

8. References

[1] Andersson, P. & M.Höst. (2008). "UML and SystemC a Comparison and Mapping Rules

for Automatic Code

[2] Generation", in E. Villar (ed.): "Embedded Systems Specification and Design Languages",

Springer, 2008.

[3] Bocchio, S.; Riccobene, E.; Rosti, A. & Scandurra, P. (2008). "An Enhanced SystemC UML

Profile for Modeling at

[4] Transaction-Level", in E. Villar (ed.): "Embedded Systems Specification and Design

Languages", Springer, 2008.

[5] Ecker, W.; Esen, V. &, Hull, M. (2006). Execution Semantics and Formalisms for Multi-

Abstraction TLM Assertions. In Proc. of MEMOCODES’06. Napa, California. July,

2006.

[6] Eshuis, R. & Wieringa, R. (2001). "A Formal Semantics for UML Activity Diagrams–

Formalizing Workflow Models",

[7] CTIT Technical Reports Series (01-04).

[8] Falk, J.; Haubelt, C. & Teich, J. (2006). "Efficient Representation and Simulation of Model-

Based Designs in SystemC", in proc. of FDL'2006, ECSI, 2006.

[9] Herrera, F & Villar, E. (2006). "A framework for Embedded System Specification under

Different Models of Computation in SystemC", in proc. of the Design Automation

Conference, DAC'2006, ACM, 2006.

[10] Hoare, C. A. R. (1978). Communicating sequential processes. Commun. ACM 21, 8.

1978.

[11] Jang, E. S.; Ohm, J. & Mattavelli, M. (January 2008). Whitepaper on Reconfigurable

Video Coding (RVC). ISO/IEC JTC1/SC29/WG11 N9586. Antalya, Turkey.

Available in http://www.chiariglione.org/mpeg/technologies/mpb-

rvc/index.htm.

[12] Jantsch, A. (2004). Modeling Embedded Systems and SoCs. Morgan Kaufmann Elsevier

Science. ISBN 1558609253.

www.intechopen.com

Formal Foundations for the Generation
of Heterogeneous Executable Specifications in SystemC from UML/MARTE Models

249

[13] Kahn, G. (1974). The semantics of a simple language for parallel programming. In

Proceedings of the International Federation for Information Processing Working

Conference on Data Semantics.

[14] Kreku, J. ; Hoppari, M. & Kestilä, T. (2007). "SystemC workload model generation from

UML for performance simulation", in proc. of FDL’2007, ECSI, 2007.

[15] Kroening, D. & Sharygna, N. (2005). "Formal Verification of SystemC by Automatic

Hardware/Software Partitioning", in

[16] proc. of MEMOCODES’05.

[17] Lavagno, L.; Martin, G. & Selic, B. (2003). UML for real: design of embedded real-time

systems. ISBN 1-4020-7501-4.

[18] Mallet, F. (2008). "Clock constraint specification language: specifying clock constraints

with UML/MARTE", Innovations in Systems and Software Engineering, V.4, N.3,

October, 2008.

[19] Maraninchi, F.; Moy, M. & L. Maillet-Contoz. (2005). "Lussy: An Open Tool for the

Analysis of Systems-on-a-Chip at the Transaction Level", Design Automation of

Embedded Systems, V.10, N.2-3, 2005.

[20] Moy, M.; Maraninchin, F. & Maillet-Contoz, L. (2008). "SystemC/TLM Semantics for

Heterogeneous System-on-Chip Validation", in proc. of NEWCAS and TAISA

Conference, IEEE, 2008.

[21] Mueller, W.; Ruf, J.; Hoffmann, D.; Gerlach, J.; Kropf, T. & W. Rosenstiel. (2001). "The

Simulation Semantics of SystemC", in proc. of Design, Automation and Test in

Europe, DATE’2001, IEEE, 2001.

[22] Peñil, P; Medina, J. & Posadas, H. & Villar, E. (2009). "Generating Heterogeneous

Executable Specifications in SystemC from UML/MARTE Models", in proc. of the

11th Int. Conference on Formal Engineering Methods, IEEE, 2009.

[23] Piel, E.; Attitalah, R. B.; Marquet, P.; Meftali, S. ; Niar, S.; Etien, A.; Dekeyser, J.L. & P.

Boulet. (2008). "Gaspard2: from MARTE to SystemC Simulation", in proc. of

Design, Automation and Test in Europe, DATE'2008, IEEE, 2008.

[24] UML Specification v2.3. (2010).

[25] UML Profile for MARTE, v1.0. (2009).

[26] MDA guide, Version 1.1, June 2003.

[27] Open SystemC Initiative. www.systemc.org.

[28] Raudvere, T.; Sander, I. & Jantsch, A. (2008). "Application and Verification of Local

Non Semantic-Preserving Transformations in System Design", IEEE Trans. on CAD

of ICs and Systems, V.27, N.6, 2008.

[29] Salem, A. (2003). "Formal Semantics of Synchronous SystemC", in proc. of Design,

Automation and Test in Europe, DATE’2003, IEEE, 2003.

[30] Störrle, H. & Hausmann, J.H. (2005). "Towards a Formal Semantics of UML 2.0

Activities", Software Engineering Vol. 64.

[31] Taha, S.; Radermacher, A.; Gerard, S. & Dekeyser, J. L. (2007). "MARTE: UML-based

Hardware Design from Modeling to Simulation", in proc. of FDL’2007, ECSI 2007.

[32] Traulsem, C.; Cornet, J.; Moy, M. & Maraninchi, F. (2007). "A SystemC/TLM semantics

in PROMELA and its possible Applications", in proc. of the Workshop on Model

Checking Software, SPIN’2007, 2007.

www.intechopen.com

Embedded Systems – Theory and Design Methodology

250

[33] Vidal, J.; de Lamotte, F.; Gogniat, G.; Soulard, P. & Diguet, J.P. (2009). "A Code-Design

Approach for Embedded System Modeling and Code Generation with UML and

MARTE", proc. of the Design, Automation & Test in Europe Conference, DATE’09,

IEEE 2009.

www.intechopen.com

Embedded Systems - Theory and Design Methodology

Edited by Dr. Kiyofumi Tanaka

ISBN 978-953-51-0167-3

Hard cover, 430 pages

Publisher InTech

Published online 02, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Nowadays, embedded systems - the computer systems that are embedded in various kinds of devices and

play an important role of specific control functions, have permitted various aspects of industry. Therefore, we

can hardly discuss our life and society from now onwards without referring to embedded systems. For wide-

ranging embedded systems to continue their growth, a number of high-quality fundamental and applied

researches are indispensable. This book contains 19 excellent chapters and addresses a wide spectrum of

research topics on embedded systems, including basic researches, theoretical studies, and practical work.

Embedded systems can be made only after fusing miscellaneous technologies together. Various technologies

condensed in this book will be helpful to researchers and engineers around the world.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Pablo Peñil, Fernando Herrera and Eugenio Villar (2012). Formal Foundations for the Generation of

Heterogeneous Executable Specifications in SystemC from UML/MARTE Models, Embedded Systems -

Theory and Design Methodology, Dr. Kiyofumi Tanaka (Ed.), ISBN: 978-953-51-0167-3, InTech, Available

from: http://www.intechopen.com/books/embedded-systems-theory-and-design-methodology/formal-

foundations-for-the-generation-of-heterogeneous-executable-specifications-in-systemc-from-uml

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

