35,719 research outputs found

    The i* framework for goal-oriented modeling

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-39417-6i* is a widespread framework in the software engineering field that supports goal-oriented modeling of socio-technical systems and organizations. At its heart lies a language offering concepts such as actor, dependency, goal and decomposition. i* models resemble a network of interconnected, autonomous, collaborative and dependable strategic actors. Around this language, several analysis techniques have emerged, e.g. goal satisfaction analysis and metrics computation. In this work, we present a consolidated version of the i* language based on the most adopted versions of the language. We define the main constructs of the language and we articulate them in the form of a metamodel. Then, we implement this version and a concrete technique, goal satisfaction analys is based on goal propagation, using ADOxx. Throughout the chapter, we used an example based on open source software adoption to illustrate the concepts and test the implementation.Peer ReviewedPostprint (author's final draft

    Engineering a static verification tool for GPU kernels

    Get PDF
    We report on practical experiences over the last 2.5 years related to the engineering of GPUVerify, a static verification tool for OpenCL and CUDA GPU kernels, plotting the progress of GPUVerify from a prototype to a fully functional and relatively efficient analysis tool. Our hope is that this experience report will serve the verification community by helping to inform future tooling efforts. © 2014 Springer International Publishing

    Structure and correlates of cognitive aging in a narrow age cohort

    Get PDF
    Aging-related changes occur for multiple domains of cognitive functioning. An accumulating body of research indicates that, rather than representing statistically independent phenomena, aging-related cognitive changes are moderately to strongly correlated across domains. However, previous studies have typically been conducted in age-heterogeneous samples over longitudinal time lags of 6 or more years, and have failed to consider whether results are robust to a comprehensive set of controls. Capitalizing on 3-year longitudinal data from the Lothian Birth Cohort of 1936, we took a longitudinal narrow age cohort approach to examine cross-domain cognitive change interrelations from ages 70 to 73 years. We fit multivariate latent difference score models to factors representing visuospatial ability, processing speed, memory, and crystallized ability. Changes were moderately interrelated, with a general factor of change accounting for 47% of the variance in changes across domains. Change interrelations persisted at close to full strength after controlling for a comprehensive set of demographic, physical, and medical factors including educational attainment, childhood intelligence, physical function, APOE genotype, smoking status, diagnosis of hypertension, diagnosis of cardiovascular disease, and diagnosis of diabetes. Thus, the positive manifold of aging-related cognitive changes is highly robust in that it can be detected in a narrow age cohort followed over a relatively brief longitudinal period, and persists even after controlling for many potential confounders

    Sustainable Design of Buildings using Semantic BIM and Semantic Web Services

    Get PDF
    In response to the growing concerns about climate change and the environment, sustainable design of buildings is increasingly demanded by building owners and users. However, fast evaluation of various design options and identification of the optimized design requires application of design analysis tools such as energy modeling, daylight simulations, and natural ventilation analysis software. Energy analysis requires access to distributed sources of information such as building element material properties provided by designers, mechanical equipment information provided by equipment manufacturers, weather data provided by weather reporting agencies, and energy cost data from energy providers. Gathering energy related information from different sources and inputting the information to an energy analysis application is a time consuming process. This causes delays and increases the time for comparing different design alternatives. This paper discusses how Semantic Web technology can facilitate information collection from several sources for energy analysis. Semantic Web enables sharing, accessing, and combining information over the Internet in a machine process-able format. This would free building designers to concentrate on building design optimization rather than spending time on data preparation and manual entry into energy analysis applications

    Assessing spatiotemporal correlations from data for short-term traffic prediction using multi-task learning

    Get PDF
    Traffic flow prediction is a fundamental problem for efficient transportation control and management. However, most current data-driven traffic prediction work found in the literature have focused on predicting traffic from an individual task perspective, and have not fully leveraged the implicit knowledge present in a road-network through space and time correlations. Such correlations are now far easier to isolate due to the recent profusion of traffic data sources and more specifically their wide geographic spread. In this paper, we take a multi-task learning (MTL) approach whose fundamental aim is to improve the generalization performance by leveraging the domain-specific information contained in related tasks that are jointly learned. In addition, another common factor found in the literature is that a historical dataset is used for the calibration and the assessment of the proposed approach, without dealing in any explicit or implicit way with the frequent challenges found in real-time prediction. In contrast, we adopt a different approach which faces this problem from a point of view of streams of data, and thus the learning procedure is undertaken online, giving greater importance to the most recent data, making data-driven decisions online, and undoing decisions which are no longer optimal. In the experiments presented we achieve a more compact and consistent knowledge in the form of rules automatically extracted from data, while maintaining or even improving, in some cases, the performance over single-task learning (STL).Peer ReviewedPostprint (published version

    A pattern-based approach to a cell tracking ontology

    No full text
    Time-lapse microscopy has thoroughly transformed our understanding of biological motion and developmental dynamics from single cells to entire organisms. The increasing amount of cell tracking data demands the creation of tools to make extracted data searchable and interoperable between experiment and data types. In order to address that problem, the current paper reports on the progress in building the Cell Tracking Ontology (CTO): An ontology framework for describing, querying and integrating data from complementary experimental techniques in the domain of cell tracking experiments. CTO is based on a basic knowledge structure: the cellular genealogy serving as a backbone model to integrate specific biological ontologies into tracking data. As a first step we integrate the Phenotype and Trait Ontology (PATO) as one of the most relevant ontologies to annotate cell tracking experiments. The CTO requires both the integration of data on various levels of generality as well as the proper structuring of collected information. Therefore, in order to provide a sound foundation of the ontology, we have built on the rich body of work on top-level ontologies and established three generic ontology design patterns addressing three modeling challenges for properly representing cellular genealogies, i.e. representing entities existing in time, undergoing changes over time and their organization into more complex structures such as situations

    Drawing OWL 2 ontologies with Eddy the editor

    Get PDF
    In this paper we introduce Eddy, a new open-source tool for the graphical editing of OWL~2 ontologies. Eddy is specifically designed for creating ontologies in Graphol, a completely visual ontology language that is equivalent to OWL~2. Thus, in Eddy ontologies are easily drawn as diagrams, rather than written as sets of formulas, as commonly happens in popular ontology design and engineering environments. This makes Eddy particularly suited for usage by people who are more familiar with diagramatic languages for conceptual modeling rather than with typical ontology formalisms, as is often required in non-academic and industrial contexts. Eddy provides intuitive functionalities for specifying Graphol diagrams, guarantees their syntactic correctness, and allows for exporting them in standard OWL 2 syntax. A user evaluation study we conducted shows that Eddy is perceived as an easy and intuitive tool for ontology specification

    The Bayesian boom: good thing or bad?

    Get PDF
    A series of high-profile critiques of Bayesian models of cognition have recently sparked controversy. These critiques question the contribution of rational, normative considerations in the study of cognition. The present article takes central claims from these critiques and evaluates them in light of specific models. Closer consideration of actual examples of Bayesian treatments of different cognitive phenomena allows one to defuse these critiques showing that they cannot be sustained across the diversity of applications of the Bayesian framework for cognitive modeling. More generally, there is nothing in the Bayesian framework that would inherently give rise to the deficits that these critiques perceive, suggesting they have been framed at the wrong level of generality. At the same time, the examples are used to demonstrate the different ways in which consideration of rationality uniquely benefits both theory and practice in the study of cognition
    corecore