
1

Drawing OWL 2 Ontologies with Eddy the
Editor

Domenico Lemboa,b, Daniele Pantaleonea,
Valerio Santarellia,b, Domenico Fabio Savoa,b

aDipartimento di Ingegneria Informatica,
Automatica e Gestionale “A. Ruberti”
Sapienza Università di Roma
〈lastname〉@dis.uniroma1.it
bOBDA Systems
〈lastname〉@obdasystems.com

In this paper we introduce Eddy, a new open-source tool for
the graphical editing of OWL 2 ontologies. Eddy is specifi-
cally designed for creating ontologies in GRAPHOL, a com-
pletely visual ontology language that is equivalent to OWL 2.
Thus, in Eddy ontologies are easily drawn as diagrams, rather
than written as sets of formulas, as commonly happens in
popular ontology design and engineering environments. This
makes Eddy particularly suited for usage by people who
are more familiar with diagramatic languages for conceptual
modeling rather than with typical ontology formalisms, as is
often required in non-academic and industrial contexts. Eddy
provides intuitive functionalities for specifying GRAPHOL

diagrams, guarantees their syntactic correctness, and allows
for exporting them in standard OWL 2 syntax. A user evalu-
ation study we conducted shows that Eddy is perceived as an
easy and intuitive tool for ontology specification.

Keywords: Ontology Design, Ontology Editors, Description
Logics, OWL 2, Semantic Web

1. Introduction

In computer science, an ontology is commonly de-
fined as a specification of a conceptualization, that is,
a formal description of an abstract, simplified view of
a certain portion or aspect of the world [27,28].

To provide formal representations of such views,
ontologies have to be specified in a well-understood
language, with mathematical-based syntax and seman-
tics. Ontology languages are thus usually rooted in
some kind of logic, which allows for automated rea-
soning over them, i.e., automatic inference of implicit
knowledge from the ontology specification. Among
the main proposals advanced over the years, we recall

those relying on first-order logic [22,34] and its exten-
sions [43], Description Logics (DLs) [7], frames [36,
26], production rules [49], Datalog and rule-based lan-
guages [11,8,35]. In particular, ontology languages
based on DLs have become very popular, especially
in the context of the Semantic Web [55]. Indeed,
OWL 2 [31], which is the current release of the W3C
standard Ontology Web Language, has its logical un-
derpinning in the DL SR OI Q (D) [15,33]. DL and
OWL ontologies allow for representing the domain of
interest in terms of concepts (a.k.a. classes), their at-
tributes (a.k.a. data-properties), and binary relations
between them (a.k.a. object-properties). Formal ax-
ioms involving those elements define the conceptual-
ization by specifying the domain rules at an abstract
level.

Another crucial property of an ontology is that it
is shared, i.e., the representation it provides is agreed
upon by all its users, so that it can act as a reference
model across groups of people, communities, institu-
tions, and applications [60]. Clearly, for an ontology to
be shared, all the ontology users should be able to un-
derstand and exploit it, but this turns out to be not al-
ways easily achievable. In recent years ontologies have
been introduced in several application contexts such
as biomedicine, life and environmental sciences, e-
commerce, e-government, cultural heritage [58]. Typ-
ically, people operating in these contexts are not able
to easily interpret the logic-based formalisms through
which an ontology is usually expressed and to com-
pletely exploit reasoning services over it, which instead
they tend to consider simply a shared vocabulary.

Recently, we have experienced the above problem
in various projects carried out in collaboration with
industrial partners or public organizations (see, e.g,
[5,6,54]). In these projects we have conducted an ex-
tensive ontology modeling activity and we have de-
veloped significantly large and complex ontologies, by
working in collaboration with domain experts, who, in
many cases, interacted with ontologies and languages
like OWL for the first time. Our experience confirmed
that modeling ontologies in contexts such as these can

AI Communications
ISSN 0921-7126, IOS Press. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/158328387?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Drawing OWL 2 Ontologies with Eddy the Editor

be very difficult if the representation is given in terms
of logic formulas and by relying on tools designed
for logicians. This turned out also to be an obstacle
for transferring competences to our industrial counter-
parts, which wanted to take over the ontology devel-
opment and management in the middle/long run, and
to this aim asked for simple and user-friendly mecha-
nisms for ontology representation.

To cope with the above problems, within our project
activities we started the design and development of a
new tool that could guarantee both formal specifica-
tion of ontologies and their easy design and compre-
hension by our industrial counterpart. The result of
our research investigation and implementation effort is
Eddy1, a novel ontology editing environment, which
we present in this paper2.

In Eddy ontologies are specified in GRAPHOL3 [39,
42], a visual ontology language for OWL 2. A dis-
tinguishing feature of this language is that it allows
for drawing ontologies in a completely diagrammatic
way, i.e., GRAPHOL diagrams do not need to be an-
notated with formulas, even to capture complex ax-
ioms, which is instead usually required by other graph-
ical formalisms for ontologies (e.g., [10,29,45]). Fur-
thermore, GRAPHOL is proved to be equivalent to
OWL 2, i.e., every OWL 2 ontology can be specified
in GRAPHOL and vice-versa [42].

The basic elements of our language are borrowed
from the Entity-Relationship (ER) model [14], and our
tool offers services, such as diagramming and code
generation functionalities, which are typical of en-
vironments for database and software design draw-
ings. Thus, both GRAPHOL and Eddy are particularly
suited for engineers, analysts, or designers in general
who are used to describing requirements and design-
ing systems through standard diagramatic conceptual
modeling languages, like, e.g., ER or UML class dia-
grams [61].

At the same time, we notice that the syntax of
GRAPHOL mimics that of DLs, in the sense that, as in
DLs, a GRAPHOL ontology is a set of (graphical) inclu-
sions between atomic or complex predicates, where the
latter are constructed from the former through (graphi-
cal) operators. Thus, GRAPHOL has a very short learn-
ing curve for DL or OWL experts.

An in-depth user evaluation study has shown that
GRAPHOL can be easily adopted by users knowledge-

1http://www.obdasystems.com/eddy
2The present article is an extended version of [40], demo paper

presented at IJCAI 2016.
3http://www.obdasystems.com/graphol

able in conceptual modeling but not necessarily in on-
tologies [42]. In these evaluation tests, GRAPHOL has
been perceived as difficult as classical UML or ER
diagrams for simple ontologies, and has been recog-
nized as more intuitive and simple for ontologies that
require the usage of complex axioms (e.g., that go be-
yond UML or ER), with respect to a language that re-
quires to express them through formulas.

We also note that the above user evaluation study has
been conducted without the support of a tool specifi-
cally tailored to GRAPHOL, since the aim of the test
was to assess the effectiveness of the language, with-
out being affected in this by any tool facility. However,
the indications we have collected during this evalua-
tion study have also highlighted the need of a dedicated
environment for GRAPHOL, and some feed-backs we
obtained have been useful to start the development of
Eddy4. In particular, to help the user in the specifica-
tion of GRAPHOL ontologies and support her in us-
ing logical constructs and operators, Eddy has been
equipped with several functionalities, such as real-time
checks on the syntactic correctness of the realized on-
tology, and automatic composition of some recurring
ontology constructs (which is going to be extended in
the future releases of the tool).

As already mentioned, the idea of using a graphi-
cal tool for knowledge representation is not new, and
several proposals have been made during the years, in
many areas of computer science, but none of them has
succeeded in imposing itself as a reference graphical
language for ontologies. Among them, the closest to
our approach are those presenting UML-inspired lan-
guages and tools for the diagrammatic representation
of OWL [10,21,29,45]. Differently from Eddy, none
of them adopts a completely graphical language, but
all require to complement the diagrammatic represen-
tation with textual formulas, in particular to encode
complex OWL expressions. Other proposals that are
not based on standard conceptual modeling languages,
like [37,59], use structures such as graphs or concept
diagrams to model ontologies. The notation used in
these approaches is quite distant in nature from lan-
guages like ER or UML, and this turns out to be not
completely suited in enterprise contexts. Also, these
proposals have either been discontinued or are not able
to completely capture OWL 2. We finally notice that
popular ontology editing and engineering tools, such

4For a presentation of the GRAPHOL user evaluation study we
refer the reader to [42].



Drawing OWL 2 Ontologies with Eddy the Editor 3

as Protégé5, TopBraid Composer6, or OntoStudio7,
offer ontology visualization services, which provide
overviews of portions of the ontology in some graph-
ical format. However, they have little or no graphical
editing features, and thus basically require the design-
ers to be able to specify ontologies in terms of logic
formulas.

In the rest of the paper, we first briefly describe
the GRAPHOL language and provide an example of a
GRAPHOL ontology. This is the subject of Section 2.
Then, in Section 3, we present Eddy. In particular,
we show the main functionalities offered by our tool
for drawing GRAPHOL ontologies, and provide the al-
gorithms it implements for ensuring that Eddy pro-
duces correct OWL 2 ontologies. Indeed, Eddy al-
lows users to export GRAPHOL ontologies in standard
OWL 2 syntax, which is a crucial functionality to en-
able easy interaction with other OWL-based ontology
editors and with DL reasoners.

In Section 4, we discuss the results of a user eval-
uation study we conducted to verify the effectiveness
of Eddy, in which we involved people from the indus-
trial world with some skills in conceptual modeling
and database design, but without experience in ontol-
ogy construction or engineering. Our tests show that
Eddy has been perceived as an easy tool for ontol-
ogy specification. Then, in Section 5, we illustrate the
ongoing and future directions for the development of
Eddy, whereas in Section 6 we discuss the most rele-
vant related work, and in particular recall the main fea-
tures of most popular ontology editors. We finally con-
clude the paper in Section 7.

2. The Graphol language

In this section we provide an informal general
overview of the GRAPHOL language, whereas for a
complete description of its syntax and semantics we
refer the reader to [42].

GRAPHOL is a graphical formalism which has an in-
herent formal semantics based on DLs and resembles
ER diagrams, but which is in fact able to fully capture
OWL 2. We begin by showing an example in the top
part Figure 1, which models the world of comicbook
characters and their abilities. In words, the ontology in
the figure is saying that, among characters, there are

5http://protege.stanford.edu/
6http://www.topquadrant.com/tools
7http://www.semafora-systems.com/en/products/ontostudio/

Humans, Extraterrestrials, and Metahumans. Humans
and Extraterrestrials are mutually disjoint, i.e., a hu-
man cannot be an extraterrestrial and vice-versa. Every
character has a name, that is a string. Some characters
are Villains, whereas others are Superheroes. A Super-
hero cannot be a Villain and has an archenemy. A char-
acter can have an Ability. Every ability has a name,
which is a string, and some abilities are Superpowers.
Finally, Metahumans are Humans with Superpowers.
In the bottom part of Figure 1 we provide a represen-
tation of the ontology through OWL 2 axioms speci-
fied in Functional-style syntax [47]. We remark that the
two representations are equivalent, i.e., it is possible to
define a transformation function preserving the seman-
tics of the ontology and produce the OWL encoding
from the GRAPHOL diagram, and vice-versa. In partic-
ular, for this example we used Eddy to both draw the
diagram and automatically produce the corresponding
OWL Functional-style syntax specification.

One can see that GRAPHOL’s representation of the
main atomic predicates, i.e., the symbols constituting
the alphabet of the ontology, is analogous to ER. In-
deed, rectangles are used for atomic concepts (called
entities in ER), which denote sets of objects, diamonds
are used for atomic roles, which denote binary relations
between objects (corresponding to binary relationships
in ER), and circles are used for attributes, which de-
note relations between objects and values from value-
domains, e.g., string and integer, represented in
GRAPHOL with rounded rectangles.

We recall that in OWL (and DLs) complex expres-
sions can be built from atomic expressions (i.e., the
atomic predicates) inductively with operators. For ex-
ample, the union of superheroes and villains, denoted
in OWL as ObjectUnionOf(:Superhero :Villain), is a
complex concept expression constructed with the Ob-
jectUnionOf operator applied to :Superhero and :Villain.
Then, statements on how predicates (and expressions)
are related to one another are specified through axioms.
The most general form of an axiom is the inclusion be-
tween expressions. Obviously inclusions can be spec-
ified only between expressions of the same kind, e.g.,
two concept or two role expressions.

The basic idea behind GRAPHOL is to represent the
ontology as a set of inclusions, as in OWL 2, while pre-
serving a graphical representation of it, given in terms
of a directed graph. The nodes of the graph are atomic
predicates or graphical operators, whereas the edges
are solid or dashed arrows. The latter denote input to
operators (as explained below), whereas the former de-
note inclusions.



4 Drawing OWL 2 Ontologies with Eddy the Editor

:Superhero

:is_archenemy_of

exists

exists

:Character

:Extraterrestrial

:name
exists

exists
xsd:string

:has_ability
existsexists

:Ability :Superpower

and

exists
:Villain

:Human

:name
exists

exists
xsd:string

:Metahuman

ObjectPropertyDomain(:is archenemy of :Villain) DisjointClasses(:Extraterrestrial :Human)
InverseFunctionalObjectProperty(:is archenemy of) DisjointClasses(:Superhero :Villain)
SubClassOf(ObjectUnionOf(:Superhero :Villain) :Character) SubClassOf(:Superpower :Ability)
SubClassOf(:Ability DataSomeValuesFrom(:name rdfs:Literal)) DataPropertyRange(:name xsd:string)
SubClassOf(ObjectUnionOf(:Extraterrestrial :Human) :Character) ObjectPropertyRange(:has ability :Ability)
SubClassOf(:Character DataSomeValuesFrom(:name rdfs:Literal)) ObjectPropertyDomain(:has ability :Character)
ObjectPropertyRange(:is archenemy of :Superhero) FunctionalObjectProperty(:is archenemy of)
SubClassOf(:Superhero ObjectSomeValuesFrom(ObjectInverseOf(:is archenemy of) owl:Thing)) FunctionalDataProperty(:name)
SubClassOf(:Metahuman ObjectIntersectionOf(:Human ObjectSomeValuesFrom(:has ability :Superpower)))

Fig. 1. Example of a GRAPHOL ontology and its OWL 2 representation.

For instance, in Figure 1, the inclusion assertion be-
tween :Superpower and :Ability, corresponding to the
OWL 2 axiom SubClassOf(:Superpower :Ability), is
captured by the arrow between these two atomic con-
cepts. For simplicity, inclusion edges between the same
expressions and with inverse directions are denoted
with a single solid edge with an arrow on both ends,
which in fact corresponds to an equivalence between
expressions.

GRAPHOL expressions are either nodes representing
predicates of the ontology (e.g., atomic concepts,
atomic roles, etc.), or a combination of these nodes
with nodes that represent operators. These latter ones
in GRAPHOL are of two kinds. The first are labeled
blank and solid boxes, used for constructing role
or attribute restrictions on the domain and range,
respectively. We recall that the domain (resp., range)
indicates the first (resp., second) component of a role
or of an attribute. Here the label represents the type of
restriction. For example, exists is used for existential
restriction, which denotes the set of objects that occur
in the domain (resp., range) of a role, and (x,y) is
used for cardinality restriction, which denotes the set
of objects in the domain (resp., range) of a role that
occur in at least x and at most y links instantiating the
role (similarly for attributes). In general, in GRAPHOL
we can add as many blank and solid boxes as needed
to predicate appropriately on the domain and range of

a role or attribute. The other operators are hexagons,
which can be solid hexagons, representing a disjoint
union, or blank labeled hexagons. In particular, blank
hexagons can be labeled and, or, not, inv, and chain,
respectively representing intersection, (non-disjoint)
union, complement, inverse of a role (i.e., a role with
inverted domain and range), and composition of roles.
Expressions are built by connecting these nodes with
dashed directed edges ending with a small diamond
(called input edges). For instance, in Figure 1, the
domain of :has ability is denoted via an existential
restriction, i.e., through a dashed directed edge from
the role :has ability to a blank box labeled exists.
In particular this expression is included through an
inclusion edge in the concept :Character, which corre-
sponds to the typing of the first component of the role
:has ability to :Character (i.e., only characters can have
abilities). In OWL 2 this is specified as ObjectProper-
tyDomain(:has ability :Character) (notice however that
this can be specified in OWL Functional syntax also
as SubClassOf(ObjectSomeValuesFrom(:has ability
owl:Thing) :Character), which is similar to the
GRAPHOL specification).

For a more complicated example, let us look
at the inclusion used to specify that metahumans
are humans with superpowers. In OWL 2 this is
given through the axiom SubClassOf(:Metahuman
ObjectIntersectionOf(:Human ObjectSomeValues-



Drawing OWL 2 Ontologies with Eddy the Editor 5

From(:has ability :Superpower))), where Object-
SomeValuesFrom(:has ability :Superpower) expresses
the existential restriction on the domain of :has ability,
qualified to the concept :Superpower (which denotes
the set of objects in the domain of :has ability linked
by this role to some instance of :Superpower). In
GRAPHOL, we construct this qualified existential
restriction by linking through dashed arrows both
:has ability and :Superpower to a blank node labeled
exists. This complex expression is in turn given as
input to an and-labeled hexagon, together with the
concept :Human, to take their intersection. The solid
arrow from the concept :Metahuman to the intersection
node finally depicts the wanted inclusion.

We also note that Eddy uses a special representation
to draw functionality for roles and attributes, or inverse
functionalities for roles. We recall that a role is func-
tional (resp., inverse functional) if every object in its
domain (resp., range) can participate only in one link
instantiating the role (similarly for attributes). In par-
ticular, to represent a functional role (resp., attribute),
Eddy uses a role (resp., attribute) node with a double
blank border, to represent an inverse functional role, it
uses a role node with a double solid border, and to rep-
resent a role that is both functional and inverse func-
tional, as is the case for :is archenemy of in the ex-
ample, it uses a combination of a double blank and
solid border. In OWL 2 this corresponds to the two ax-
ioms FunctionalObjectProperty(:is archenemy of) and
InverseFunctionalObjectProperty(:is archenemy of).

3. Eddy

In this section we introduce Eddy, the editor for the
design and visualization of GRAPHOL ontologies.

GRAPHOL has been and is currently being used in
various industrial and academic projects by teams of
ontology designers for the design and maintenance of
ontologies (see, e.g., [6]). In the absence of a cus-
tom editor, GRAPHOL ontologies were specified with
general-purpose tools for graph drawing. However, in
order to exploit GRAPHOL for ontology design to the
fullest of its potential, it became clear that a tool specif-
ically tailored to GRAPHOL was needed. Furthermore,
this was confirmed by evaluation tests [42] conducted
on GRAPHOL. Indeed, while GRAPHOL proved to be
easily understandable and received positive feedback,
several difficulties were encountered during the edit-
ing tests, where an off-the-shelf editor for graphs was
used, equipped with a special palette providing the

GRAPHOL symbols. These experiences gave way to
the development of Eddy.

While designing the system we have kept in
mind the most widely-accepted recommendations and
principles of usability for human-computer inter-
action [19], e.g., Ben Shneiderman’s eight golden
rules [57] and Jakob Nielsens ten usability heuris-
tics [52]. For instance, we provide shortcuts for
commonly-recurring tasks, support reversal of actions
(undo), provide error handling and prevention, e.g.,
real-time syntactic validation of the ontology, display
graphical and textual feedback for user actions, etc.
Furthermore, to minimize the difficulty of adoption,
the interface and default layout are similar to those of
most popular commercial graphical editors, i.e., a cen-
tral modeling canvas, surrounded by two sidebar areas
where the user can access tools for editing, navigating,
and inspecting the ontology.

Eddy is available as an open source project8 and
is designed around a modular architecture, where the
core component is enriched by additional features
through plugins, which fosters collaboration in extend-
ing Eddy through new functionalities.

In the remainder of this section we will describe
Eddy’s architecture and its features.

3.1. Overview of the system

The GUI, shown in Figure 2, is composed of the
Multiple Document Interface (MDI)9 area, which con-
tains the modeling canvas, and two sidebar areas con-
taining widgets for editing, navigating, and inspect-
ing a GRAPHOL ontology. Each widget is a plugin
which can be installed or uninstalled, and more can be
added, guaranteeing flexibility to the system. The lay-
out of the interface is completely customizable, and is
maintained across multiple working sessions. Further-
more, the toolbar placed on top of the working area
offers quick access to the majority of the operations
provided by Eddy such as creating, opening or saving,
scaling the canvas, and more. Eddy allows to create
and manage multiple diagrams for a single ontology,
for the purpose of easier visualization and comprehen-
sion, particularly in the case of large ontologies. An
ontology predicate can occur as a node in different di-
agrams, and even more than once in the same diagram,
while maintaining a single identity as predicate in the
ontology. The user can access the diagrams of the on-

8http://www.obdasystems.com/eddy
9https://en.wikipedia.org/wiki/Multiple document interface



6 Drawing OWL 2 Ontologies with Eddy the Editor

Fig. 2. Eddy’s user interface with some of the basic plug-ins.

tology from the Project explorer widget, (1) in the fig-
ure, each of which is displayed in a separate tab of the
MDI. The Palette widget, (2) in the figure, provides all
the nodes and edges in the GRAPHOL syntax, and is
used to add elements to the currently active diagram
through drag and drop or select-and-click. In Figure 2
we present a simplified version of the Palette, showing
only the most widely-used symbols, introduced in the
previous sections. The Info widget, (3) in the figure,
shows the properties of the currently selected node. If
no node is selected, it instead gives some general in-
formation of the ontology. Finally, the Explorer wid-
get, (5) in the figure, provides a tree-view structure of
the predicates of the ontology, each of which is iden-
tified by its label and a colored icon which reflects the
type of the predicate. By expanding any predicate in
the tree, Eddy also shows all the nodes in the diagram
that represent it. Furthermore, it provides a search field
to filter the predicates in the tree-view by showing only
those matching the entered (partial) predicate name.

3.2. Drawing functionalities

Eddy offers a wide variety of drawing functional-
ities, from standard basic diagram editing features to
more advanced features that are expressly tailored to

the GRAPHOL language. The former comprise, among
others, bending edges or moving edge anchor points,
resizing nodes, moving or editing labels, and cut-
ting/copying, pasting or dragging portions of diagrams.

GRAPHOL-specific drawing functionalities are pro-
vided by Eddy in order to aid users in rapidly per-
forming commonly recurring tasks. These features are
available through keyboard shortcuts and the contex-
tual menus provided for each node in the diagram.

For instance, as shown in Figure 3, it is possible
to choose the automatic composition of the domain or
range of a role (resp., attribute), which results in a new
blank or solid node labeled ‘exists’ being added in the
diagram, linked to the selected role node through an
appropriate dashed edge. Eddy also allows to switch
the direction of the role, by automatically inverting the
domain and range restriction nodes.

Moreover, it is possible to easily switch the label of
a hexagon or a box from the contextual menu, which
allows to instantly change the kind of operator rep-
resented by that node. This operation is syntactically
controlled in real-time by the system: Eddy is provided
with a context-aware mechanism that prevents the user
from selecting an operator node type that would result
in the composition of an invalid GRAPHOL expression
(e.g., an intersection node whose inputs are concept



Drawing OWL 2 Ontologies with Eddy the Editor 7

Fig. 3. Eddy’s contextual menu for a role node.

expressions cannot be switched to a role inverse, role
chain, or complement node). A similar mechanism is
used to control the automatic switch of the direction
of edges: this can be accomplished only if the result is
syntactically correct in GRAPHOL.

Eddy is also equipped with an advanced feature for
deleting GRAPHOL expressions from the diagram. The
user can select this purge function on the sink node of
an expression, and all nodes that form the expression
and that are not involved in other inclusions or expres-
sions will be deleted from the diagram.

3.3. Separation between predicate and node level

As said, GRAPHOL allows to repeat the same predi-
cate in the ontology through multiple predicate nodes.
This is necessary because predicates that occur in nu-
merous assertions in the ontology would otherwise be
represented by a single node with numerous outgo-
ing or incoming edges, resulting in layout and com-
prehension issues. This is compounded by the fact
that in Eddy an ontology can be composed by several
GRAPHOL diagrams, so this representation through
multiple nodes can occur even across different dia-
grams.

Fig. 4. Eddy’s Info widget for a role node.

Imagine now that the designer wants to change the
name of a predicate, or to impose the functionality
on a role or attribute, which, as said in Section 2, re-
quires the node to be rendered in a special way (by us-
ing a double blank border). Of course these changes
need to be repeated for every occurrence of a node
representing the predicate that is being updated by the
designer. From a practical point of view, having to
perform these tasks singularly is obviously time con-
suming and error-prone. In fact, in Eddy this is not
necessary, since our tool allows the designer to per-
form the above changes only once, since it automati-
cally propagates them throughout the ontology. This is
obtained by virtue of a logical separation realized in
Eddy between the predicate level, the one concerning
with predicates as logical symbols, and the node level,
the one concerning the representations of predicates as
nodes in a GRAPHOL diagrams. In general, seen at the
predicate level a predicate is uniquely identified by its
type and its name, whereas at the node level it might
be represented by several nodes. The above “refactor-
ing” tasks are thus performed at the predicate level, and
propagated automatically at the node level.

In Eddy, this separation is put into effect in the Info
widget, shown in Figure 4 for the case of a role node,
where the properties of the selected node are separated
into predicate properties and node properties. Predi-
cate properties include the name of the predicate and,
in the case of a role or attribute, its properties. Any
change to these properties is reflected in all nodes in
the diagram that represent the predicate. Node proper-
ties instead include the ID of the node and its label.
Changes to node properties are performed on, and lim-
ited to, the specific node. For example, changing the la-



8 Drawing OWL 2 Ontologies with Eddy the Editor

Fig. 5. Eddy’s syntactic check: Invalid inclusion (between a role and
a concept).

bel of the node will modify the name associated to the
node only, and will not affect other nodes representing
the same predicate (if any). After the renaming, two
alternative situations are possible: if no other node of
the same kind and with the same label exists in the di-
agram, the node represents a new ontology predicate,
whereas it represents a new occurrence in the diagram
of an already existing predicate, otherwise (in this case,
if the node denotes a role, it inherits the predicate prop-
erties of the other nodes representing the same predi-
cate).

3.4. Syntactic validation functionalities

Fig. 6. Eddy’s syntactic check: Invalid negative role expression.

Eddy is equipped with validation functionalities to
aid the user during editing, assuring that the con-
structed ontology does not present syntax errors. Since
the expressiveness of GRAPHOL coincides with that of
OWL 2, this feature ensures that a GRAPHOL ontology
can be correctly exported in a standard OWL 2 syntax.

This check takes place in real-time while the user
is modifying the ontology. Given the characteristics of
GRAPHOL, in Eddy a syntactic error can be produced
only when drawing an edge between two nodes. There-
fore, Eddy applies the check only when such an event
takes place, and enables the change only if no errors
are identified by the check.

Roughly, the check performed by Eddy consists in
a simple lookup of the GRAPHOL syntactic rules, to
verify whether they are violated by the update. This
lookup is local, in the sense that Eddy needs to con-

sider only the graphical elements involved in the up-
date. More precisely, to establish whether an edge be-
tween two nodes can be added, Eddy needs to know the
following information: the type of the edge to be in-
serted (i.e., whether it is an input or an inclusion edge);
which are the source and target nodes between which
the edge has to be traced (i.e., their shape and, if they
are operator nodes, the label characterizing the kind of
operator); the number and kinds of inputs to the target
nodes. This last information is applicable only if the
target node is an operator node and if the edge to be in-
serted is an input edge, and is needed to avoid exceed-
ing the number and kind of inputs allowed for a certain
operator node. Furthermore, Eddy needs to know the
“identity” of the target and source nodes, i.e., whether
they are concepts, roles, attributes, or value-domains.

Establishing the identity of a node is the complex as-
pect of the syntactic check. Indeed, while some nodes
have a fixed identity (e.g., those that represent predi-
cates of the ontology such as concept nodes and role
nodes) others can change their identity according to the
nodes they are linked to. We will refer to these nodes as
id-modifiable nodes. For instance, a complement node,
which is an id-modifiable node, can be used to build the
complement of a role or the complement of a concept.
In the first case the complement node assumes the iden-
tity of a role, while in the second, it assumes the iden-
tity of a concept. To denote the identity of a node we
use the letters C, R, A or V, standing for concept, role,
attribute, and value-domain, respectively. A combina-
tion of these letters indicates that the (id-modifiable)
node can assume various identities, i.e., if the identity
of a node is CV, it might become of identity C or V de-
pending on how it will be linked to other nodes through
input or inclusion edges. In fact, only the two combina-
tions CRAV and CV are possible. The table in Figure 7
shows the identities that some of the most common
nodes in Eddy’s palette can assume, together with their
default one, i.e., their identity if they are not linked to
any other node of the ontology.

While the user is tracing an edge between two nodes,
feedback regarding the correctness of the operation is
displayed graphically by color-coding the target node
when the mouse hovers over it. A valid connection
is highlighted by surrounding the target node with a
green frame, while an invalid connection, as shown in
Figure 5, is highlighted by surrounding the target node
with a red frame, and with a message on the status bar
indicating why the connection is not valid. In this sec-
ond scenario, the edge will not be added to the dia-
gram.



Drawing OWL 2 Ontologies with Eddy the Editor 9

Node Supported identities Default identity
Concept {Concept} C

Role {Role} R
Attribute {Attribute} A

Value-domain {Value-domain} V
Domain restriction {Concept} C
Range restriction {Concept, Value-domain} CV

Complement {Concept, Role, Attribute, Value-domain} CRAV
Intersection {Concept, Value-domain} CV

Union / Disjoint union {Concept, Value-domain} CV
Role inverse {Role} R
Role chain {Role} R

Fig. 7. Identities of most common GRAPHOL nodes.

Figure 5 showcases an extremely simple example of
the behavior of Eddy’s real-time syntactic validation,
since both nodes that are being linked by the edge have
a fixed identity. A more complex scenario is the one
in which id-modifiable nodes are involved. Indeed, in
this case to verify the compatibility of the nodes that
the edge is connecting, their identity needs to be com-
puted. For instance, consider the case in Figure 6, in
which a user is attempting to connect a role R to a not-
labeled operator node, which would lead to construct-
ing the union of concept nodes and of the complement
of a role node. Eddy must in this case understand that
the identity of the complement node is Concept, which
is not compatible with the identity of the role node,
which is clearly Role, and the syntax allowed for inclu-
sion edges in GRAPHOL.

In the following we describe (a slightly simplified
version of) the technique used in Eddy for the syntactic
check. Our tool in fact supports a refined and optimized
version of the method described below.

To establish the identity of the nodes in a diagram,
we use Algorithm ComputeNodeID (Algorithm 1). In
the algorithm, n.ID denotes the identity of the node
n in the diagram G , while defineID(n, i) is a function
that determines the identity that the id-modifiable node
n assumes when it is linked to a node with identity
i. Establishing the identity depends on the GRAPHOL
syntax, and thus the function defineID executes some
lookups to the syntax to return the identity of n. For ex-
ample, if n is a union operator node, i.e., an or-labeled
hexagon, and i =C, then defineID(n, i) returns C. No-
tice that the function defineID can even return CRAV or
CV. For example, if n is a complement node with iden-
tity CRAV, and an input edge is traced from n to an in-
tersection node with identity i =CV, then defineID(n, i)
returns CV (indeed the complement node can now only
become a concept or a value-domain node). We also

Input: a GRAPHOL diagram G with node identities;
a node n belonging to G

begin
N ← /0;
T ← /0;
id← n.ID;
if id is different from C, R, A, V
then N ←N ∪{n};

T ← T ∪{n};
while T 6= /0 do

select (and remove) some node ni from T ;
foreach edge (ni,n j) in G do

if n j 6∈N
then if n j.ID is different from C, R, A, V

then N ←N ∪{n j};
T ← T ∪{n j};

if defineID(ni,n j.ID)< id
then id← defineID(ni,n j.ID);

foreach ni ∈N do
ni.ID← id;

end

Algorithm 1. ComputeNodeID

establish a partial order between identities, stating that
CV <CRAV , C <CV , R <CV , A <CV , and V <CV ,
whereas C, R, A, V are incomparable one another.

In essence, ComputeNodeID takes in input a
GRAPHOL diagram, annotated with node identities,
and a node n, considers the GRAPHOL diagram as an
undirected graph (and treats both input and inclusion
nodes in the same way), and performs a visit of the
portion of such graph that is reachable from the node n
by crossing only nodes with identity different from C,
R, A, or V (i.e., when the algorithm reaches a node n
with one such identity, it does not analyse other nodes
reachable from n that have not been previously visited).
To carry out the visit, the algorithm uses two sets of
nodes, N and T , which are initially empty, and also
initializes a variable id to the current identity of the
input node. Starting from node n, the visit is carried



10 Drawing OWL 2 Ontologies with Eddy the Editor

out, and all encountered nodes whose identity is still
not established are collected in the set N . When, dur-
ing the visit, an edge (ni,n j) is crossed, the function
defineID(ni,n j.ID) is used to establish the identity of
ni on the basis of n j.ID. If such identity is lower, i.e.,
more specific, than an identity previously encountered,
id is updated. This check is needed since the algorithm
randomly selects the edge to visit at a certain itera-
tion. For example, if we give, as input to ComputeN-
odeID, an intersection node having a union node and a
concept as inputs, the algorithm might first select the
edge connecting the intersection node to the concept,
thus setting id to C. At the next iteration, the algorithm
visits the edge connecting the intersection node to the
union node, and finds that defineID returns CV (since
it only looks at these two nodes). Without comparing
this identity with that previously computed we would
overwrite the right identity for the nodes belonging to
the visited portion of the diagram.

When the visit is completed, the identity of all nodes
collected in N is set to the value of id (i.e., the input
diagram G has been updated).

As already said, when the user tries to draw an edge
between two nodes in a diagram, Eddy checks the cor-
rectness of this insertion, based on the GRAPHOL syn-
tax and the identity of the two nodes, and adds the
edge only if allowed by the syntax. Then, our tool
executes ComputeNodeID to assign new identities to
nodes, based on the presence of the new edge. In fact,
if the identity of both the source and target node is
different from CRAV or CV, there is no need to com-
pute new identities, since they have been already estab-
lished after a previous change in the diagram and can-
not be modified by an edge insertion. Otherwise, it is
sufficient to invoke ComputeNodeID only once, giving
it as input either the source or the target node whose
identity is not C, R, A, or V.

For our method to work it is also necessary to recom-
pute identities of nodes when elements of the diagram
are removed. In particular, when an edge is cancelled,
ComputeNodeID is executed for both the source and
the target node, i.e., it is invoked once with the source
node as input, and once with the target node as input. If
more elements are dropped together, ComputeNodeID
is executed once for each node that is the source or the
target of a removed edge (notice that in Eddy the re-
moval of a node n causes that all the edges incoming
in and outgoing from n are removed).

We remark that Eddy also supports the standard pro-
files of OWL 210. These profiles are less expressive

10https://www.w3.org/TR/owl2-profiles/

Fig. 8. Pop-up window with feedback from the one-shot syntactic
validation of the ontology.

fragments of OWL 2, and the user can select one of
them from a drop-down menu in the toolbar. When
one of the profiles is selected, the nodes that are out-
side of its expressiveness will not be selectable from
the Palette, and the syntactic validation tool will be run
with respect to the syntax of the chosen profile.

Besides real-time validation, Eddy also provides a
one-shot syntactic validation feature, available through
a button in the toolbar. A pop-up window, shown in
Figure 8, notifies the user of the outcome of the test,
and in case of a malformed expression or assertion, the
user can choose to see the error in the appropriate dia-
gram, ignore it and skip to the next one, or abort. Even
though in principle a diagram designed in Eddy does
not contain errors, situations as those described above
can arise when the user wants to restrict to an OWL
profile the expressiveness of an ontology initially writ-
ten under the OWL 2 modality.

3.5. Semantic validation functionalities

Eddy is also equipped with semantic reasoning ca-
pabilities through the integration of an external OWL
2 reasoner, i.e., HermiT [24]. This allows the user to
semantically validate the ontology by checking its con-
sistency (i.e., whether it admits at least one model) or
identifying unsatisfiable predicates (i.e., predicates that
must have an empty interpretation in every model). If
the ontology is inconsistent or one or more of its pred-
icates are unsatisfiable, then Eddy provides the user
with feedback regarding these malformations through
their explanations, which are given both in graphical
form by highlighting the Graphol axioms, and in tex-
tual form, through the OWL 2 axioms expressed in
Functional Style syntax [47].



Drawing OWL 2 Ontologies with Eddy the Editor 11

	
Overview	plug-in	

	
Ontology	Explorer	

plug-in	

	
Project	Explorer	

plug-in	

																																																												Eddy	Core	System	

Ontology	Reasoning	Module	

Consistency	
Checking	plug-in	

Explana@on	
Explorer	plug-in	

OWL	2	Exporter	
plug-in	

OWL	API	

OWL	Reasoner	(HermiT)	

	
	
	
	

Explorer	Module	

	
PaleJe	
	plug-in	

Importer	Module	
(GraphML,	XML-Graphol)	

Exporter	Module	
(GraphML,	PDF)	

Graphol	Ontology	

Syntac@c	Checking	Module	

	
Info	

	plug-in	

Fig. 9. Eddy’s system architecture.

We finally remark that the implementation of the se-
mantic checks is based on the OWL API11, a popu-
lar library for the creation, manipulation and serializa-
tion of OWL ontologies. Thus, despite the fact that in
its current version Eddy uses the Hermit reasoner, any
other OWL reasoner supporting explanation function-
alities could be easily adopted in its place.

3.6. Export and import functionalities

By default, when saving GRAPHOL diagrams, Eddy
adopts a proprietary XML-based file format, which
we call XML-Graphol. In addition to the default for-
mat, Eddy provides the ability to export GRAPHOL di-
agrams in OWL 2 formats, to support interaction with
third-party tools such as OWL 2 reasoners and edi-
tors like Protégé. Currently supported OWL 2 syntaxes
are: Functional-Style syntax, Manchester OWL syn-
tax [32], RDF/XML syntax for OWL [48] and Turtle
syntax [9]. The user can either choose to export the
whole GRAPHOL ontology into OWL 2, or to export
only specific types of OWL 2 axioms. From a technical
standpoint, the OWL 2 serialization of GRAPHOL on-
tologies has been performed with the help of the OWL
API, which allows us to ensure compatibility between
the OWL 2 serialization of GRAPHOL ontologies pro-
duced by Eddy and the majority of OWL 2 reasoners
and editors.

Additionally, GRAPHOL diagrams can be exported
in PDF or GraphML, an XML-based format for graphs,
which allows to import them in general purpose graph
editing tools, like yEd12.

11http://owlapi.sourceforge.net
12https://www.yworks.com/products/yed

Import functionalities are also available to incorpo-
rate into the ontology GRAPHOL diagrams from exter-
nal projects, which can be originally saved in XML-
Graphol or GraphML.

3.7. Design specifications and distribution

Eddy is written in Python 3.4 [50] and makes use of
the PyQt5 [3] python bindings for the cross-platform
application framework Qt5 [4]. In order to translate
GRAPHOL diagrams into an OWL 2 serialization, we
adopted PyJNIus [2] to interface Python with the OWL
API, which are implemented in Java. In Figure 9 we
show Eddy’s system architecture.

Eddy is licensed under the GNU General Public Li-
cense v3 [1] and its source code is publicly available on
GitHub13. We are currently providing a set of binary
executables for Windows, Mac OS, and Linux, each in-
cluding the redistributable version of the Oracle JVM
(i.e., Oracle JRE 1.8), which is necessary to execute
Eddy.

4. Experimental Evaluation

Many of the functionalities we have developed in
Eddy derive from user interactions with GRAPHOL
during the course of several industrial and academic
projects, but also take into account the indications we
have collected during a first user evaluation that we
conducted on GRAPHOL, described in [42]. These ex-
periences, while confirming GRAPHOL validity as a

13https://github.com/obdasystems/eddy.git



12 Drawing OWL 2 Ontologies with Eddy the Editor

Age Education Ontology Experience (years) Conceptual Modeling Knowledge Ontology Knowledge
min 36 1 0 3 1
max 64 3 5 5 5

median 51 2 1 4 2
mean 50.6 2.1 0.9 4.2 2.2
st.dev. 9.2 0.76 1.2 0.9 1.3

Fig. 10. Statistics of the participants: for Education, 1 = Bachelor Degree, 2 = Master’s Degree, 3 = Ph.D; Conceptual Modeling and Ontology
Knowledge are on a scale from 1 to 5, with 1 indicating no knowledge.

language for ontology design, have also highlighted the
necessity of an ad-hoc editor for GRAPHOL.

Following the previous positive experiences of the
user test conduced on GRAPHOL, we have carried out
an evaluation on Eddy, in order to measure its usability
for ontology editing by users who are already familiar
with the GRAPHOL language, specifically for finding
possible weaknesses in the user interaction with Eddy.

The evaluation test was conduced with 25 users,
chosen among the attendees of advanced academic and
industrial courses on semantic technologies, in which
they acquired some familiarity with methodologies and
languages for ontologies (including GRAPHOL). This
number of participants is compliant with guidelines
given in literature regarding best practices for usability
tests for software tools, which indicate that five users is
generally a sufficient number for qualitative tests, and
roughly twenty is sufficient for a quantitative, or statis-
tic, test [19,51]. All test participants come from the in-
dustrial world, and have some background in concep-
tual design, which is basically the know-how we as-
sume for Eddy’s users. In Figure 10 we recap some de-
scriptive statistics about the participants regarding their
age, highest completed education degree, their years of
experience with ontologies, and their estimated knowl-
edge of conceptual modeling and ontologies.

The structure of the test was the following:

1. Introduction to Eddy: users familiarized with
Eddy by executing some guided simple tasks on
an example ontology, e.g., creating and renam-
ing concept nodes, undoing an operation, moving
a node, drawing an inclusion edge between two
nodes, copying a node, etc.

2. Brief background questionnaire: the participants
had to answer a brief background questionnaire
on their personal experience and expertise.

3. Editing tasks: each user was asked to carry out,
through the Eddy editor, ten editing tasks on
(a variant of) the Pizza ontology14 specified in
GRAPHOL. This ontology was chosen for its pop-
ularity among the Semantic Web community, and

14http://protege.stanford.edu/ontologies/pizza/pizza.owl

Fig. 11. Results of the Eddy user evaluation.

due to its simple and widely-understood domain.
Each user was also asked to indicate the time it
took to complete the task (in minutes), how clear
it was to how to perform the task (on a scale from
0, worst, to 4, best), and how easy it was to carry
out the task (on a scale from 0, worst, to 4, best).

4. Ex-post survey: the users were asked to fill out a
brief survey to rate their experience with Eddy.

In Figure 11 we show a synthesis of the results. The
correctness of each performed task was graded on a
scale from 0 to 4, hence the maximum possible total
score for correctness, as well as clarity and easiness,
for each user was 40. Moreover, the predetermined
benchmark average for time per task was set at 3.5 min-
utes. The figure shows the distribution of the total re-
sults in terms of, from top to bottom, perceived easi-
ness of the tasks, perceived clarity of the tasks, time,
and correctness. Each box plot shows the full range of
variation, from minimum to maximum, indicated by
the whiskers, the median value, and the likely range
of variation, indicated by the two boxes, which repre-
sent the quartiles, i.e., the three points that divide the
dataset into four groups, each comprising a fourth of
the data. The left box is delimited by the first quartile
(middle value between the smallest value and the me-
dian) and the median; the right box by the median and
the third quartile (middle value between median and
highest value).

Clearly, the high correctness scores and the low
times per task, compared to the benchmark time, pro-



Drawing OWL 2 Ontologies with Eddy the Editor 13

Fig. 12. Results of the ex-post survey.

duced by the users show a good ability in performing
the required GRAPHOL modeling tasks through the ed-
itor. The high scores for clarity and easiness also in-
dicate not only that the users were able to understand
what they were required to do in each task, but also that
Eddy allowed them to achieve their goal comfortably.

The average results for the mandatory questions in
the ex-post survey are represented in Figure 12. We
recall that for all four questions the scale is from 0
to 4, with 0 being the best possible value (note that
question 1 involves the difficulty of the required edit-
ing tasks, and does not directly reflect the usability of
Eddy). Clearly, these results reflect the fact that the ex-
perience with Eddy was absolutely positive for the par-
ticipants to the test. Among the optional comments we
collected, users particularly appreciated Eddy’s con-
textual menu and keyboard shortcuts, since they al-
low to easily specify some properties, which are in-
stead perceived as complicated in the GRAPHOL syn-
tax. Suggestions for improvements included, for ex-
ample, the possibility of importing OWL ontologies in
Eddy, and providing more features for improving the
alignment or distribution of the graphical elements in
the diagrams.

Additional user feedback was obtained from the
open questions in the post-test questionnaire and from
a discussion with the users at the end of the test. This
feedback indicated that the advanced drawing func-
tionalities specifically tailored towards the GRAPHOL
language were particularly helpful in quickly carrying
out several of the tasks in the test.

5. Ongoing and Future Work

Eddy is currently under active development and we
envision to extend its functionalities in several different
directions. Some of these upgrades are currently be-

ing developed, and will be released shortly, others pose
more significant challenges, and will require a more in-
depth study. From the technical point of view, adding
new features to Eddy is facilitated by its plugin-based
architecture which guarantees extensibility and clear
development direction.

A first upgrade we envision is the automatic drawing
of some selected graphical patterns that correspond to
classical conceptual modeling constructs, such as con-
cept hierarchies, role typings, or mandatory participa-
tion of concepts into roles or attributes. Such function-
ality will enable the designer to select the pattern from
a menu and thus have it automatically drawn in the on-
tology, ready for further customization.

An additional upgrade we envision for Eddy is the
import of pre-existing OWL 2 ontologies. However,
this problem is quite complex, and requires dealing
with several issues. It will be necessary to develop
a technique that processes the axioms that constitute
an OWL 2 ontology, which do not provide any in-
formation regarding size and placement, and produce
GRAPHOL diagrams. To obtain an optimal result in
terms of the final layout, this technique must consider
not only aspects such as minimal edge intersection or
distances between nodes [18], but also some seman-
tic criteria, which have yet to be devised, that allow
to group together elements of the diagram that have a
high semantic proximity. We feel that this issue, while
particularly challenging, is very important, because it
will allow us to achieve full interoperability with the
OWL 2 language and its tools.

Another interesting aspects we will address is scal-
ability which is particularly significant when dealing
with the representation of very large ontologies. This
is an aspect that must be considered in the perspective
of user comprehension and of ontology manipulation.
It is indeed unfeasible when dealing with very large
ontologies that feature hundreds or thousands of con-
cepts to include them all in a single graphical represen-
tation. In this regard incorporating functionalities for
the support of ontology modularization [25,53] would
be crucial.

Finally, in the long run, we are also investigating
the possibility of expanding Eddy in other directions.
For instance, we envision the possibility of extend-
ing Eddy in order to fully embrace the Ontology-
based Data Management (OBDM) paradigm [44]. This
calls for supporting the design of other elements of an
OBDM specification, and not only the ontology. In-
deed, in Eddy we would need to allow the users to link
GRAPHOL ontologies with pre-existing data sources



14 Drawing OWL 2 Ontologies with Eddy the Editor

by means of mapping assertions. Therefore, we would
need to provide an environment in which to spec-
ify such mappings, and also to validate them [38,41].
Furthermore, we would want users to be able to run
queries over the generated ontologies and so cou-
pling Eddy with external OBDM systems such as Mas-
tro [13] and Ontop [12].

6. Related Work

Certainly, the most widely-used among ontology de-
sign environments is Protégé, a popular open-source
ontology editor and knowledge base framework [23],
created at the Stanford University. It supports a variety
of formats for ontology development, such as OWL 2,
RDF(S), and XML schema, and provides a plug-and-
play environment that favors application development
and the creation of new functionalities through plug-
ins that can change both the behavior and the appear-
ance of the system. Popular reasoners for DLs and
OWL are available as plug-ins for Protégé, which thus
allows for exploiting the standard inference services
offered by such reasoners. Protégé does not provide
graphical functionalities for ontology specification, but
rather its approach is to support the designer in the
writing of the textual logical formulas that constitute
the ontology. In this respect, Protégé is completely dif-
ferent from Eddy, and it is thus mainly devoted to users
who are expert in ontologies and formal languages,
rather than to users without such skills but familiar
with diagrammatic languages for conceptual modeling.

Other well-known ontology design and engineering
environments have been developed within the Eclipse
platform15. Among them, we mention TopBraid Com-
poser16, OntoStudio [63], and the NeOn toolkit [30].
The first two tools are commercial, whereas the last
one is open-source. All of them allow for editing on-
tologies in various formats, such as OWL 2 or RDF(S),
and provide functionalities for several ontology en-
gineering activities, like management, reasoning, and
collaborative development. None of them, however,
enables for full graphical specification of ontologies,
even though some aspects of the ontology can be edited
or visualized through UML-like visual representations.
For example, in NeOn this is realized through the On-
toModel plug-in17, whose development has however
been dismissed to date.

15https://eclipse.org/
16http://www.topquadrant.com/products/TB Composer.html
17http://neon-toolkit.org/wiki/OntoModel

OWLGrEd [45] and VOM (Visual Ontology Mod-
eler)18 are two other recent stand-alone tools for edit-
ing OWL 2 ontologies using UML. In particular,
OWLGrEd adopts a variant of UML which requires to
insert logical formulas in Manchester syntax [32] to
represent complex OWL formulas that go beyond the
expressiveness of UML. As already said, this is not
necessary in GRAPHOL, the language used in Eddy,
which is completely graphical, and in general com-
promises the intuitive understanding of the final on-
tology. VOM instead captures complex constructs in
OWL by using UML stereotypes over classes and de-
pendencies. This somehow flattens the graphical repre-
sentation and hides its semantics in the meaning asso-
ciated to the stereotypes. Also, both such tools do not
provide a formal syntax of the graphical language they
adopt (for a more detailed comparison between the lan-
guage used in OWLGrEd and GRAPHOL we refer the
reader to [42]).

Graffoo is a graphical notation for OWL ontolo-
gies, not based on UML [20]. In Graffoo ontologies
are labeled graphs, which use several shapes for nodes
and edges. Graffoo is specifically designed to capture
OWL 2, but in order to do so, its visual representa-
tion is not completely graphical, as the constructs that
are not directly supported by a native graphical ele-
ment of the language are expressed through axioms in
the OWL Manchester syntax, added as special nodes
in the graph. Therefore the language suffers from the
same difficulties discussed for previous tools regard-
ing the need to embed logical formulas in the graphical
representation. Graffoo currently does not come with
an editing tool, but instead offers a palette for yEd, an
open-source editors for graphs.

GrOWL [37] is a tool for visualizing and editing
ontologies that, like Eddy, does not need to annotate
the graphical representation with formulas. GrOWL,
however, adopts a large number of symbols and distin-
guishes them also on the basis of their color and shad-
ing. Also, it uses DL notations for graph labels. Fur-
thermore, the language did not evolve from OWL to
OWL 2, and the project seems to have been discontin-
ued.

While the above mentioned systems often attempt to
provide some visual representation of ontologies, they
are rarely successful in achieving a balance between
the quantity of information that is provided to the user
and the size and complexity of the overall representa-
tion, which is typically a two-dimensional graph.

18http://thematix.com/tools/vom/



Drawing OWL 2 Ontologies with Eddy the Editor 15

Other tools and graphical notations instead focus
uniquely on ontology visualization, and rely on differ-
ent techniques to attempt to achieve this desired bal-
ance. The ontology models provided by these systems
can be either two-dimensional or three-dimensional,
and rely on visualization solutions such as multi-
ple coordinated views [62], space-filling [56], degree
of interest [16], and context focus [17]. Well-known
examples of such systems are the OntoGraf19 and
OWLViz20 plug-ins for Protégé. The former uses the
layouts library for the Jambalaya plug-in21 to provide
interactive navigation of the relationships in an ontol-
ogy through an incremental and dynamic graph-like
representation. The latter provides a node-link rep-
resentation for viewing and navigating class hierar-
chies, in which the nodes are classes, and the “is-
a”-labeled links represent inclusion relationships be-
tween them. Whereas the above tools allow users to
visualize only some aspects of the ontology, other
works aim at a graphical rendering of the entire on-
tology. This is the case of VOWL [46], a visualiza-
tion language for OWL implemented in two different
tools, i.e., ProtégéVOWL, a Protégé plug-in, and Web-
VOWL, a stand-alone web application.

Because these visualization tools lack any kind of
ontology editing functionalities, they fall slightly out-
side the specific focus of this work, so we will not dis-
cuss them further.

In conclusion, our brief survey on the most popular
ontology design and engineering environments high-
lights that no currently available tool provides fea-
tures and mechanisms for a completely graphical spec-
ification of OWL ontologies through a notation that
is close to standard diagrammatic languages for con-
ceptual modeling used in the enterprise context. In-
deed, some tools do not provide at all functionali-
ties for the graphical editing of ontologies (e.g., [23]),
others give only a partial support to this, requiring
to complement the graphical representation with for-
mulas (e.g., [63,45]), others adopt notations that are
far from conceptual languages such as ER or UML
class diagrams (e.g., [37,20]), and not always have a
clear relationship with OWL (e.g., [59]) (of course,
some tools present various of the above limitations).
We also remark that often no formalized syntax is pro-
vided for the graphical representation adopted in some
tools (e.g., [45]), and that other, more formal, propos-

19http://protegewiki.stanford.edu/wiki/OntoGraf
20http://protegewiki.stanford.edu/wiki/OntoViz
21http://protegewiki.stanford.edu/wiki/Jambalaya

als have been dismissed to date (e.g, [37]). Finally,
many systems only allow for a graphical (in general
partial) visualization of ontologies (e.g., [46]) and not
for the editing thereof. Our tool Eddy is thus specifi-
cally aimed to fill these gaps, by offering a completely
graphical ontology editing environment, based on the
usage of an ER-styled language, called GRAPHOL,
which is equipped with formal syntax and semantics,
and is equivalent to OWL 2 in terms of expressive
power.

7. Conclusions

In this paper we have presented Eddy, an editor that
provides advanced functionalities for designing syn-
tactically and semantically correct OWL ontologies
through their specification in GRAPHOL, a visual on-
tology language equivalent to OWL 2. Eddy is an ef-
fective tool for ontology development, as shown by
the user evaluation study which we have presented in
this paper, and is currently used in several real-world
projects. Eddy is open-source and its latest version can
be downloaded at http://www.obdasystems.com/eddy.

Acknowledgments. We wish to thank Maurizio Lenz-
erini and Giuseppe De Giacomo for many helpful sug-
gestions they provided us for the development of Eddy.

References

[1] Gnu General Public License (GPL). Gnu gpl version 3 Doc-
umentation, 2016. Available at http://www.gnu.org/licenses/
licenses.html#GPL.

[2] Pyjnius. Pyjnius Documentation, 2016. Available at http://
pyjnius.readthedocs.io/en/latest/.

[3] Python 3.4. Pyqt Documentation, 2016. Available at https:
//riverbankcomputing.com/software/pyqt/intro.

[4] Qt 5.7. Qt Documentation, 2016. Available at https://www.qt.
io/.

[5] A. Amoroso, G. Esposito, D. Lembo, P. Urbano, and R. Ver-
tucci. Ontology-based data integration with MASTRO-I for
configuration and data management at SELEX Sistemi Inte-
grati. In Proc. of the 16th Ital. Conf. on Database Systems
(SEBD), pages 81–92, 2008.

[6] N. Antonioli, F. Castanò, S. Coletta, S. Grossi, D. Lembo,
M. Lenzerini, A. Poggi, E. Virardi, and P. Castracane.
Ontology-based data management for the Italian public debt. In
Proc. of the 8th Int. Conf. on Formal Ontology in Information
Systems (FOIS), pages 372–385, 2014.

[7] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F.
Patel-Schneider, editors. The Description Logic Handbook:
Theory, Implementation and Applications. Cambridge Univer-
sity Press, 2nd edition, 2007.



16 Drawing OWL 2 Ontologies with Eddy the Editor

[8] J.-F. Baget, M. Leclère, M.-L. Mugnier, and E. Salvat. On rules
with existential variables: Walking the decidability line. Artifi-
cial Intelligence, 175(9–10):1620–1654, 2011.

[9] D. Beckett, T. Berners-Lee, E. Prud’hommeaux, and
G. Carothers. RDF 1.1 Turtle – Terse RDF Triple Language.
W3C Recommendation, World Wide Web Consortium, Feb.
2014. Available at http://www.w3.org/TR/turtle/.

[10] S. Brockmans, R. Volz, A. Eberhart, and P. Löffler. Visual mod-
eling of OWL DL ontologies using UML. In Proc. of the 3rd
Int. Semantic Web Conf. (ISWC), volume 3298 of Lecture Notes
in Computer Science, pages 198–213. Springer, 2004.

[11] A. Calı̀, G. Gottlob, and T. Lukasiewicz. A general Datalog-
based framework for tractable query answering over ontolo-
gies. J. of Web Semantics, 14:57–83, 2012.

[12] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov,
D. Lanti, M. Rezk, M. Rodriguez-Muro, and G. Xiao. Ontop:
Answering sparql queries over relational databases. Semantic
Web J., 8(3):471–487, 2017.

[13] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini,
A. Poggi, M. Rodriguez-Muro, R. Rosati, M. Ruzzi, and D. F.
Savo. The Mastro system for ontology-based data access. Se-
mantic Web J., 2(1):43–53, 2011.

[14] P. P. Chen. The Entity-Relationship model: Toward a unified
view of data. ACM Trans. on Database Systems, 1(1):9–36,
Mar. 1976.

[15] B. Cuenca Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-
Schneider, and U. Sattler. OWL 2: The next step for OWL. J.
of Web Semantics, 6(4):309–322, 2008.

[16] I. da Silva, G. Santucci, and C. del Sasso Freitas. Ontology
visualization: One size does not fit all. In Proc. of the 3rd Int.
Eurovis Workshop on Visual Analytics (EuroVA), pages 91–95,
2012.

[17] K. X. de Souza, A. D. dos Santos, and S. R. Evangelista. Visu-
alization of ontologies through hypertrees. In Proc. of the 1st
Latin American Conf. on Human-Computer Interaction, pages
251–255. ACM, 2003.

[18] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph
Drawing: Algorithms for the Visualization of Graphs. Prentice-
Hall, 1999.

[19] A. Dix. Human-computer interaction. Springer, 2009.
[20] R. Falco, A. Gangemi, S. Peroni, D. Shotton, and F. Vitali.

Modelling OWL ontologies with Graffoo. In ESWC 2014
Satellite Events, volume 8798 of Lecture Notes in Computer
Science, pages 320–325, 2014.

[21] P. R. Fillottrani, E. Franconi, and S. Tessaris. The ICOM 3.0 in-
telligent conceptual modelling tool and methodology. Semantic
Web J., 3(3):293–306, 2012.

[22] M. R. Genesereth. Knowledge Interchange Format. In Proc. of
the 2nd Int. Conf. on the Principles of Knowledge Representa-
tion and Reasoning (KR), pages 599–600, 1991.

[23] J. H. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso,
M. Crubézy, H. Eriksson, N. F. Noy, and S. W. Tu. The evolu-
tion of Protégé: an environment for knowledge-based systems
development. Int. J. of Human-computer Studies, 58(1):89–
123, 2003.

[24] B. Glimm, I. Horrocks, B. Motik, G. Stoilos, and Z. Wang.
Hermit: an OWL 2 reasoner. J. of Automated Reasoning,
53(3):245–269, 2014.

[25] B. C. Grau and B. Motik. Reasoning over ontologies
with hidden content: The import-by-query approach. CoRR,
abs/1401.5853, 2014.

[26] T. R. Gruber. Ontolingua: A mechanism to support portable
ontologies. Technical report, Stanford University Knowledge
Systems Laboratory, 1992.

[27] T. R. Gruber. Towards principles for the design of ontologies
used for knowledge sharing. In N. Guarino and R. Poli, edi-
tors, Formal Ontology in Conceptual Analysis and Knowledge
Representation. Kluwer Academic Publishers, 1993.

[28] N. Guarino, D. Oberle, and S. Staab. What is an ontology? In
Handbook on Ontologies, pages 1–17. Springer, 2009.

[29] G. Guizzardi. Ontological Foundations for Structural Concep-
tual Models. PhD thesis, University of Twente, The Nether-
lands, 2005.

[30] P. Haase, H. Lewen, R. Studer, D. T. Tran, M. Erdmann,
M. d’Aquin, and E. Motta. The NeOn ontology engineering
toolkit. In the 17th Int. World Wide Web Conf. – Developers
Track, 2008.

[31] P. Hitzler, M. Krötzsch, B. Parsia, P. F. Patel-Schneider, and
S. Rudolph. OWL 2 Web Ontology Language: Primer (sec-
ond edition). W3C Recommendation, World Wide Web Con-
sortium, Dec. 2012. Available at http://www.w3.org/TR/
owl2-primer/.

[32] M. Horridge and P. F. Patel-Schneider. OWL 2 Web Ontology
Language Manchester Syntax (second edition). W3C Working
group note, World Wide Web Consortium, Dec. 2012. Avail-
able at https://www.w3.org/TR/owl2-manchester-syntax/.

[33] I. Horrocks, O. Kutz, and U. Sattler. The even more irresistible
SR OI Q . In Proc. of the 10th Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR), pages 57–67,
2006.

[34] ISO/IEC, CH-1211 Geneva 20, Switzerland. ISO/IEC 24707:
Information technology–Common Logic (CL): A Framework
for a Family of Logic-Based Languages, 2nd edition, 2007.

[35] M. Kifer. Rule Interchange Format: The framework. In Proc.
of the 2nd Int. Conf. on Web Reasoning and Rule Systems (RR),
volume 5341 of Lecture Notes in Computer Science, pages 1–
11. Springer, 2008.

[36] M. Kifer, G. Lausen, and J. Wu. Logical foundations of
Object-Oriented and frame-based languages. J. of the ACM,
42(4):741–843, 1995.

[37] S. Krivov, R. Williams, and F. Villa. GrOWL: A tool for visu-
alization and editing of OWL ontologies. J. of Web Semantics,
5(2):54–57, 2007.

[38] D. Lembo, J. Mora, R. Rosati, D. F. Savo, and E. Thorstensen.
Mapping analysis in ontology-based data access: Algorithms
and complexity. In Proc. of the 14th Int. Semantic Web Conf.
(ISWC), volume 9366 of Lecture Notes in Computer Science,
pages 217–234. Springer, 2015.

[39] D. Lembo, D. Pantaleone, V. Santarelli, and D. F. Savo. Easy
OWL drawing with the Graphol visual ontology language. In
Proc. of the 15th Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR), pages 573–576, 2016.

[40] D. Lembo, D. Pantaleone, V. Santarelli, and D. F. Savo. Eddy:
A graphical editor for OWL 2 ontologies. In Proc. of the 25th
Int. Joint Conf. on Artificial Intelligence (IJCAI), pages 4252–
4253, 2016.



Drawing OWL 2 Ontologies with Eddy the Editor 17

[41] D. Lembo, R. Rosati, M. Ruzzi, D. F. Savo, and E. Tocci. Vi-
sualization and management of mappings in ontology-based
data access (progress report). In Proc. of the 27th Int. Work-
shop on Description Logic (DL), volume 1193 of CEUR Elec-
tronic Workshop Proceedings, http://ceur-ws.org/, pages 595–
607, 2014.

[42] D. Lembo, V. Santarelli, and D. F. Savo. The Graphol lan-
guage for OWL 2 ontology editing and visualization, 2017.
Manuscript. Available at http://obdasystems.com/sites/default/
files/graphol.pdf.

[43] D. B. Lenat and R. V. Guha. Building Large Knowledge-Based
Systems: Representation and Inference in the Cyc Project. Ad-
dison Wesley Publ. Co., 1990.

[44] M. Lenzerini. Ontology-based data management. In Proc. of
the 20th Int. Conf. on Information and Knowledge Management
(CIKM), pages 5–6, 2011.

[45] R. Liepins, M. Grasmanis, and U. Bojars. OWLGrEd ontol-
ogy visualizer. In Proc. of ISWC Developers Workshop, vol-
ume 1268 of CEUR Electronic Workshop Proceedings, http:
//ceur-ws.org/, pages 37–42, 2014.

[46] S. Lohmann, S. Negru, F. Haag, and T. Ertl. Visualizing on-
tologies with VOWL. Semantic Web J., 7(4):399–419, 2015.

[47] B. Motik, B. Parsia, and P. F. Patel-Schneider. OWL 2 Web On-
tology Language structural specification and functional-style
syntax (second edition). W3C Recommendation, World Wide
Web Consortium, Dec. 2012. Available at http://www.w3.org/
TR/owl2-syntax/.

[48] B. Motik, B. Parsia, and P. F. Patel-Schneider. OWL 2
Web Ontology Language XML Serialization (second edi-
tion). W3C Recommendation, World Wide Web Consor-
tium, Dec. 2012. Available at https://www.w3.org/TR/2012/
REC-owl2-xml-serialization-20121211/.

[49] E. Motta. An overview of the OCML modelling language. In
Proc. of the 8th Workshop on Knowledge Engineering Methods
and Languages (KEML), 1998.

[50] R. D. Murray. Python 3.4. Python Documentation, Mar. 2014.
Available at https://docs.python.org/3.4/whatsnew/3.4.html.

[51] J. Nielsen. Usability engineering. Academic Press, 1993.
[52] J. Nielsen. Enhancing the explanatory power of usability

heuristics. In In Proc. of the ACM Conference on Human Fac-
tors in Computing Systems (CHI), pages 152–158. ACM Press,
1994.

[53] A. A. Romero, M. Kaminski, B. C. Grau, and I. Horrocks.
Module extraction in expressive ontology languages via data-
log reasoning. J. of Artificial Intelligence Research, 55:499–
564, 2016.

[54] D. F. Savo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodrı́guez-
Muro, V. Romagnoli, M. Ruzzi, and G. Stella. MASTRO at
work: Experiences on ontology-based data access. In Proc.
of the 23rd Int. Workshop on Description Logic (DL), vol-
ume 573 of CEUR Electronic Workshop Proceedings, http:
//ceur-ws.org/, pages 20–31, 2010.

[55] N. Shadbolt, W. Hall, and T. Berners-Lee. The Semantic Web
revisited. IEEE Intelligent Systems, 21(3):96–101, 2006.

[56] B. Shneiderman. Tree visualization with tree-maps: 2-d space-
filling approach. ACM Trans. on Graphics, 11(1):92–99, 1992.

[57] B. Shneiderman. Designing the user interface: strategies for
effective human-computer interaction. Pearson Education In-
dia, 2010.

[58] S. Staab and R. Studer, editors. Handbook on Ontologies. In-
ternational Handbooks on Information Systems. Springer, 2nd
edition, 2009.

[59] G. Stapleton, J. Howse, K. Taylor, A. Delaney, J. Burton, and
P. Chapman. Towards diagrammatic ontology patterns. In Proc.
of the 4th Workshop on Ontology and Semantic Web Patterns
(WOP), 2013.

[60] R. Studer, V. R. Benjamins, and D. Fensel. Knowledge engi-
neering: Principles and methods. Data and Knowledge Engi-
neering, 25(1-2):161–197, 1998.

[61] Unified Modeling Language (UML) superstructure, version
2.0. Available at http://www.uml.org/, Aug. 2005.

[62] M. Q. Wang Baldonado, A. Woodruff, and A. Kuchinsky.
Guidelines for using multiple views in information visualiza-
tion. In Proc. of the 1st Working Conf. on Advanced Visual
Interfaces (AVI), pages 110–119. ACM, 2000.

[63] M. Weiten. Ontostudio R© as a ontology engineering environ-
ment. In Semantic Knowledge Management, pages 51–60.
Springer, 2009.


