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Structure and Correlates of Cognitive Aging in a Narrow Age Cohort

Elliot M. Tucker-Drob and Daniel A. Briley
University of Texas at Austin

John M. Starr and Ian J. Deary
University of Edinburgh

Aging-related changes occur for multiple domains of cognitive functioning. An accumulating body of
research indicates that, rather than representing statistically independent phenomena, aging-related
cognitive changes are moderately to strongly correlated across domains. However, previous studies have
typically been conducted in age-heterogeneous samples over longitudinal time lags of 6 or more years,
and have failed to consider whether results are robust to a comprehensive set of controls. Capitalizing on
3-year longitudinal data from the Lothian Birth Cohort of 1936, we took a longitudinal narrow age cohort
approach to examine cross-domain cognitive change interrelations from ages 70 to 73 years. We fit
multivariate latent difference score models to factors representing visuospatial ability, processing speed,
memory, and crystallized ability. Changes were moderately interrelated, with a general factor of change
accounting for 47% of the variance in changes across domains. Change interrelations persisted at close
to full strength after controlling for a comprehensive set of demographic, physical, and medical factors
including educational attainment, childhood intelligence, physical function, APOE genotype, smoking
status, diagnosis of hypertension, diagnosis of cardiovascular disease, and diagnosis of diabetes. Thus,
the positive manifold of aging-related cognitive changes is highly robust in that it can be detected in a
narrow age cohort followed over a relatively brief longitudinal period, and persists even after controlling
for many potential confounders.

Keywords: cognitive aging, common cause hypothesis, latent difference score model, longitudinal change

In the general population of older adults, aging-related declines
are well documented for a variety of domains of cognitive function
(Harris & Deary, 2011). Although such declines are normative,
there is nevertheless notable between-persons heterogeneity in
rates of decline, with some individuals evincing comparatively
little change and others evincing dramatic change over time
(Tucker-Drob & Salthouse, 2011). An important question, then,
has been how these individual differences interrelate across cog-
nitive domains (Tucker-Drob, 2011a, 2011b): Do individual dif-
ferences in cognitive decline reflect synchronous within-person
changes across a broad range of cognitive domains (potentially
structured along a single common dimension), or are individual
differences in change independent across domains, with some

individuals declining more dramatically in some cognitive do-
mains and others declining more dramatically in others? Rabbitt
(1993) phrased this research question succinctly when he asked,
“Does it all go together when it goes?” (p. 385). Furthermore, to
the extent that synchronous within-person changes across different
domains occur, can these interrelations be attributed to “third
variable effects” of demographic characteristics, physical consti-
tution, or medical or other risk factors?

Two major methodological impediments have historically made
addressing these basic questions difficult. First, because single-
occasion data can be collected relatively easily from large age-
heterogeneous samples during a short period of time, the over-
whelming majority of research within the field of cognitive aging
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has typically employed cross-sectional approaches. These ap-
proaches are well suited for investigating patterns of mean age-
related differences within a multivariate system of cognitive vari-
ables (see, e.g., Salthouse, 2004). However, cross-sectional data
are not directly informative about the dimensionality of longitudi-
nal changes. For instance, using formal mathematical proof, Lin-
denberger, von Oertzen, Ghisletta, and Hertzog (2011; also see
Hofer, Flaherty, & Hoffman, 2006) concluded that

Given its brittle and volatile link to correlated change, [the cross-
sectional mediation approach] is more of a hindrance than a help in
the quest to delineate the temporal ordering and causal structure of
behavioral change . . . . It is generally not known whether multivariate
structures based on between-person differences are valid approxima-
tions to the structure of change within a given individual. (p. 40)

Second, even when longitudinal data are available, conventional
approaches to estimating or factor analyzing correlations among
individual differences in change have methodological problems
that severely bias results. As Cronbach and Furby (1970) warned
over 40 years ago, “‘Raw change’ or ‘raw gain’ scores formed by
subtracting pretest scores from posttest scores lead to fallacious
conclusions, primarily because such scores are systematically re-
lated to any random error of measurement” (p. 68).

Only recently have researchers begun to examine the interrela-
tions among, and structure of, aging-related longitudinal cognitive
changes by applying statistical approaches that are capable of
eliminating bias by separating systematic changes from unsystem-
atic sources of error (McArdle & Nesselroade, 2003). Such statis-
tical approaches can generally be classified as growth curve mod-
els (which can be specified using structural equation modeling,
multilevel modeling, random effects modeling, and hierarchical
linear modeling frameworks) and latent difference score models
(which are typically specified using a structural equation modeling
framework, as was the case for the current project). Results from
all such major studies that we have been able to identify are
summarized in Table 1. It can be seen that individual differences
in longitudinal cognitive changes have consistently been found to
be moderately interrelated, with a common factor accounting for
between approximately 30% and 70% of the variance. Samples
have tended to be composed of middle-aged and older adults, with
only a few studies including younger adults, and all samples
included a fairly broad range of ages rather than a single narrow
age cohort, with maximum longitudinal time lags ranging between
approximately 4 and 20 years. Finally, it is of note that the studies
listed have examined control variables to a very limited extent,
generally limiting themselves to age, retest interval, and dementia
status.

Here, we build on previous research in a number of important
respects. First, we analyzed data from a single narrow age cohort
of 70-year-old individuals (ages 67.7 –71.4 years at baseline, SD �
0.83). By minimizing age heterogeneity in our sample, we ensured
that nearly all changes observed reflect individual differences in
change over time rather than age-related differences in levels of
performance or the magnitude of longitudinal change (Hofer &
Sliwinski, 2001). This is of particular note because many previous
studies have employed age-based growth modeling of longitudinal
data, which blends longitudinal information regarding within-
person changes with cross-sectional information regarding
between-persons differences. Second, we examined changes over a

relatively short duration: approximately 3 years of aging (range �
1.8–4.8 years, SD � 0.28). Detecting interrelations among vari-
ables over this relatively short period of time would speak to the
robustness of the phenomenon of correlated change. Third, we
examined whether interrelated changes persist after controlling for
a number of key variables previously implicated in differences in
age-related cognitive decline, including age, time interval, early
life intelligence, educational attainment, and a number of key
indices of physical and mental health (for a systematic review of
evidence for putative risk and protective factors for cognitive
decline in older adults, see Plassman, Williams, Burke, Holsinger,
& Benjamin, 2010). If the correlations among longitudinal changes
are robust to these controls, this would indicate that they are not
artifacts or epiphenomena of different abilities being predicted by
the same set of risk and protective factors (Baltes, Nesselroade, &
Cornelius, 1978).

Method

Participants

Data were derived from the Lothian Birth Cohort of 1936
(LBC1936) study, which began tracking 1,091 independently liv-
ing Scottish adults between 2004 and 2008 (i.e., at approximately
age 70 years), with the intent to follow them longitudinally (Deary
et al., 2007). All were born in 1936. The LBC1936 study was
designed to take advantage of the fact that on June 4, 1947, nearly
all children born in 1936 and attending school in Scotland sat for
a group-administered cognitive ability test (Deary, Whalley, &
Starr, 2009). For practical reasons, participants were required to be
living in the Edinburgh area, where the LBC1936 study took place.
Further details about the tracing, recruitment, testing of, and pub-
lications from the LBC1936 study can be found in previous pub-
lications (Deary, Gow, Pattie, & Starr, 2012; Deary et al., 2007).
Mean age at baseline was 69.58 years (SD � 0.83, n � 1,091)
and mean age at follow-up was 72.54 years (SD � 0.71, n � 866).
Mean longitudinal time lag was 2.98 years (SD � 0.28, n � 866).
Men composed 50.2% of the sample at baseline and 51.7% at
follow-up.

Longitudinal Cognitive Ability Measures

We constructed latent variables based on three to four indicators
of visuospatial ability, processing speed, memory, and crystallized
ability, which were taken at baseline (age 70) and 3-year follow-up
(age 73).

Visuospatial ability was measured with Matrix Reasoning and
Block Design from the Wechsler Adult Intelligence Scale—Third
Edition (WAIS–III; Wechsler, 1998a) and Spatial Span Forward
and Spatial Span Backward from the Wechsler Memory Scale—
Third Edition (WMS–III; Wechsler, 1998b). Previous studies (e.g.,
Johnson & Deary, 2011; Salthouse, Pink, & Tucker-Drob, 2008)
have indicated that measures of spatial memory (e.g., Spatial Span)
and fluid reasoning (e.g., Matrix Reasoning and Block Design)
load strongly on a common underlying dimension of individual
differences.

Processing speed was measured with Symbol Search and Digit
Symbol from the WAIS–III, and Inspection Time, and Choice
Reaction Time. Inspection Time is described in detail in Deary,

237STRUCTURE AND CORRELATES OF COGNITIVE AGING



Simonotto et al. (2004), and Choice Reaction Time is described in
detail in Deary, Der, and Ford (2001). In brief, inspection time
contains items requiring participants to indicate by unspeeded
button press which of two vertical lines is longer, with the stimuli
being presented at a number of different durations. Choice Reac-
tion Time requires participants to press labeled buttons that cor-
respond to digits presented (1 to 4).

Memory was measured with Logical Memory, Verbal Paired
Associates, and Digit Span Backwards, all from the WMS–III.

Crystallized ability was measured with National Adult Read-
ing Test (NART; Nelson & Willison, 1991), Wechsler Test of
Adult Reading (WTAR; Wechsler, 2001), and Verbal Fluency
(Lezak, 2004). Both the NART and WTAR involve participants
reading aloud lists of words and are scored based on correct
pronunciation. Verbal Fluency contains three trials in which
participants are asked to name as many words as possible
beginning with the letters C, F, and L, respectively, in 1 min per
letter.

Table 1
Findings From Past Studies Reporting Relations Among Rates of Change in Two or More Cognitive Variables

Study
n (for

occasions � 2)
Age range

(years)
Maximum time

span (years)
Maximum

assessments Variable
Shared

variance (%)

Anstey, Hofer, & Luszcz
(2003)

1,423 65–85� 8 3 Memory factor, speed factor 62

Ferrer Salthouse, McArdle, &
Stewart (2005) ALEND data

717 40–70 4 4 Processing speed composite, verbal
memory composite

63

Ferrer Salthouse, McArdle, &
Stewart (2005) NGCS data

381 30–80 10� 3 Processing speed composite, verbal
memory composite

58

Hertzog et al. (2003) 303 61–91 6 2 Working memory factor, reaction
time factor, processing speed
factor, induction factor, fact recall
factor, word recall factor, story
recall factor, vocabulary factor

41

Ghisletta et al. (2012) 4,458 43–93 20 7 Multiple individual tests of fluid
intelligence, crystallized
intelligence, perceptual speed, and
memory

66

Lindenberger & Ghisletta
(2009)

361 70–103 13 6 Digit letter, identical pictures; paired
associates; memory for text,
categories

60

Sliwinski & Buschke (2004) 244 65� 6.5� 6 Memory variable, speed variable 33
4 Speed variable, fluency variable 33

Fluency variable, memory variable 16
Sliwinski, Hofer, & Hall (2003) 467 73–92 7 12 Fluency variable, memory variable 61 [42]

Memory variable, speed variable 56 [48]
Fluency variable, speed variable 56 [34]

Tucker-Drob (2011a) 1,281 18–95 7 2 Abstract reasoning, spatial
visualization, episodic memory,
processing speed

63

Tucker-Drob (2011b) 639 65–94 6 6 Reasoning composite, processing
speed composite, episodic memory
composite, everyday problem-
solving variable, observed tasks of
daily living variable, timed
instrumental activities of daily
living variable

66

Tucker-Drob, Briley, Starr, &
Deary (Current Report)

866 67–71 4.8 2 Visuospatial ability, processing
speed, memory, crystallized ability

48

Tucker-Drob, Reynolds, Finkel,
& Pedersen (2014)

747 50–96 16 5 Verbal ability composite, spatial
ability composite, memory
composite, processing speed
composite

78

Wilson et al. (2002) 596 65–90� 6 6 Story retention, word retention, word
generation, word knowledge,
working memory, perceptual
speed, visuospatial ability

61.8

Zimprich & Martin (2002) 417 62–64 4 2 Fluid intelligence factor, processing
speed factor

53

Note. In constructing this table, if we identified multiple relevant papers based on data from the same sample, we included results from only one paper
(typically the paper with the largest sample size, greatest number of occasions, and/or the largest number of cognitive abilities). Shared variance reflects
communalities for factor models when more than two indices are listed and bivariate correlations when only two indices are listed. It can be shown that,
in the bivariate case, correlations are equivalent to factor communalities. Terms in brackets are after probable preclinical cases of dementia were excluded.
ALEND � Age, Lead Exposure, and Neurobehavioral Decline; NGCS � National Growth and Change Study.
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Covariates

We selected a number of covariates that have previously been
implicated in individual differences in cognitive decline (Plassman
et al., 2010) and could therefore potentially account for correlated
longitudinal changes across cognitive domains. Broadly, these
covariates related to demographics, physical health, and medical
risk factors.

Demographic characteristics included age at baseline, longitu-
dinal time lag, childhood intelligence, educational attainment, and
sex. Age at baseline and longitudinal time lag were measured as
days from birth and days from the initial assessment (and subse-
quently divided by 365 such that they were scaled in years) and are
described above in the Participants section. Childhood intelligence
was measured as part of the Scottish Mental Survey of 1947, when
participants were age 11 years. This was measured using a group
test called the Moray House Test No. 12, which has a preponder-
ance of verbal reasoning items and had a correlation of about .8
with the Stanford–Binet Test (Deary et al., 2009). Educational
attainment was self-reported at baseline in terms of years of
completed full-time education. Sex was coded as 0 � female and
1 � male.

Physical health included aspects of general health not specifi-
cally associated with medical problems. Forced expiratory volume
in 1 s was measured with a microspirometer at baseline. Six-meter
walk time was measured at baseline as the amount of time taken to
walk 6 m at a normal pace, was log transformed to better approx-
imate a normal distribution, and then reflected (by multiplying
by �1) such that high scores would indicate faster walking. Grip
strength was assessed with a Jamar hydraulic hand dynamometer
for the right and left hands three times each. The best strength for
each hand were then averaged together.

Medical risk factors known to be associated with cognitive aging
were included. Apolipoprotein E (APOE) genotype was determined
based on DNA extracted from whole blood samples collected at
baseline. The ε4 allele is implicated as a risk variant for cognitive
aging (Harris & Deary, 2011). Individuals with at least one copy of
the ε4 allele were coded as 1 (n � 306), and individuals without any
copies of the ε4 allele were coded as 0 (n � 722). Smoking status at
baseline was coded as 0 for nonsmokers or former smokers (n � 966)
and as 1 for current smokers (n � 125) based on self-report. Cardio-
vascular disease status at baseline was coded as 0 for no diagnosis of
cardiovascular disease (n � 823) and as 1 for an affirmative diagnosis
of cardiovascular disease (n � 268) based on interview. Hypertension
diagnosis was coded as 0 for no diagnosis (n � 658) and as 1 for an
affirmative diagnosis (n � 433) based on interview. Diabetes diag-
nosis was made based on a combination of self-report of diagnosis
and glycated hemoglobin (HbA1c) levels determined from blood
samples taken at baseline (World Health Organization, 2011). The
variable was coded dichotomously to reflect HbA1c levels less than
6.5% and no self-report of diabetes diagnosis (no diagnosis coded 0,
n � 922) compared with HbA1c levels greater than or equal to 6.5%
or affirmative self-report of diabetes diagnosis (diagnosis coded 1,
n � 139).

Analytic Approach

We made use of a latent difference score modeling approach
(McArdle, 2009), a univariate version of which is represented as a
path diagram in Figure 1. The measurement portion of this approach

specifies a latent factor, y, measured by multiple tests (e.g., Ya, Yb, and
Yc) on two occasions separated in time. The brackets [0] and [1]
denote baseline and follow-up occasions, respectively. Each test is
specified to load on the occasion-specific latent variable with a load-
ing (�), and each test is allowed to have an intercept (�) and a residual
variance (�2). Cross-time residual autocorrelations (�12) are allowed
for each test. The baseline factor is set to the z-metric (M � 0, SD �
1), and the mean and the variance of the difference score can therefore
be interpreted relative to this metric.

In the higher order difference score portion of the model, the
latent factor at follow-up (y[1]) is regressed onto the latent factor
at baseline (y[0]) at a fixed value of 1, and allowed to have a
residual (�y). This portion of the model is a simple linear regres-
sion, written as

y�1� � 1 � y�0� � �y.

Rearranging the regression equation demonstrates that the re-
sidual (�y) represents a difference score between the latent factor
scores at baseline and follow-up:

�y � y�1� � y�0�.

Note that because the difference score occurs between two latent
factors, each of which has been purged of measurement error, it is
itself measurement error free. This latent difference score is al-
lowed to have a mean, a variance, and a covariance with the
baseline factor score. Covariates can be added to the model, onto
which the latent difference score can be regressed.

In the multivariate version of the latent difference score model
depicted in the top panel of Figure 2, relations among baseline
factors, among difference scores, and between baseline factors and

y[0] y[1]

Δy

σ2
FΔ

Y[0]a Y[0]b Y[1]a Y[1]b

σ2
a σ2

b σ2
a σ2

b

μΔy

λb λb

σ0,Δ

υa

υb

υa

υb

1

1

1

σa12
σb12

1

Y[1]c

σ2
c

λc

Y[0]c

σ2
c

λc

σc12

υc

υc

λa λa

Figure 1. Path diagram for a single factor (y) measured by three indica-
tors (Ya, Yb, and Yc) at baseline [0] and follow-up [1] occasions.
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difference scores for factors representing different cognitive abil-
ities and changes therein are estimated. In the model depicted in
the bottom panel of Figure 2, higher order common factors are
specified for the baseline factors and the changes. We report
results from both of these multivariate approaches in the current
article. We also report results for models that do and do not include
controls for a host of covariates.

Results

Structural equation modeling was performed using Mplus Ver-
sion 7.1 (Muthén & Muthén, 1998–2012). Descriptive statistics
for the cognitive variables are presented in Table 2. Measurement
invariance of the latent visuospatial, processing speed, memory,
and crystallized ability factors was tested using the general proce-
dure described by Widaman, Ferrer, and Conger (2010). We began
with a baseline model (configural invariance) in which the same
factor loading pattern was specified at baseline and follow-up
occasions, and progressively imposed cross-time invariance of
factor loadings (weak factorial invariance), intercepts (strong fac-
torial invariance), and residual variances (strict factorial invari-
ance) in successive models. The metric of the common factors at
baseline was set to a z-scale (M � 0, SD � 1). To identify the
metrics of the common factors at the follow-up occasion, we
constrained the loading and intercept of the first indicator of each

factor to be equal across time. Fit statistics for the four models
used to examine measurement invariance are presented in Table 3.
Nested 	2 comparisons indicated a significant increase for each
model relative to the preceding model. However, the fit of each
model was excellent as assessed by root mean square error of
approximation (RMSEA), and the model constraints did not
worsen RMSEA appreciably. Bayesian information criterion com-
parisons indicated that strict invariance (equal loadings, intercepts,
and residual variances) was preferred. Akaike information crite-
rion comparisons favored configural invariance, but these values
were fairly similar across the models. To evaluate potential sources
of misfit, we examined the loadings, intercepts, and residual vari-
ances of the indicators in the baseline (configural invariance) and
final (strict invariance) models. These results are presented in
Table 4. As can be seen, there were only very small differences
between the loading, intercepts, and residual variances across the
two time points in the baseline (configural invariance) model, and
the parameters in the final (strict invariance) model that imposed
equivalence were very similar to the estimates from the baseline
model at both time points. Based on these observations, we chose
to adopt strict factorial invariance for all further analyses.

Focusing on the parameter estimates from the measurement
portion of the multivariable latent difference score model, which
imposed strict invariance (see the right portion of Table 4), it can
be seen in Table 4 that all standardized loadings were moderate to
large in magnitude, ranging in absolute magnitude from .45 to .95.
The mean and variance of each of the four latent difference scores
are presented in Table 5. It can be seen that there was statistically
significant variance in each of the latent difference scores, except
for visuospatial ability change, for which there was marginally
significant variance. It can also be seen that there was significantly
negative mean change for all latent difference scores except for
memory change, for which the mean change was positive. The
positive change in memory is likely attributable to a practice effect
driven by participants having some memory or familiarity with the
memory stimuli, superimposed over an effect of aging-related
memory decline. Importantly, there was substantial variability in
the amount and direction of change in memory as indicated by a
slope standard deviation nearly 7 times as large as the slope mean.
In addition, previous studies have indicated that there are little if
any individual differences in the impact of practice effects on test
scores (Salthouse & Tucker-Drob, 2008; Tucker-Drob, 2011a).
Therefore, we later interpret correlates of individual differences in
memory change in terms of a correlate being associated with more
or less decline (as opposed to less or more gain).

Correlations among level factors, among latent difference scores,
and between levels and latent difference scores are presented in Table
6. Also provided are factor loadings from an alternative model in
which, rather than allowing for factor intercorrelations, a higher order
general factor of levels and a separate higher order general factor of
changes are fit (as in the bottom panel of Figure 2). This model fit well
(RMSEA � .044, comparative fit index � .958, Tucker–Lewis in-
dex � .956). Consistent with Spearman’s (1904) positive manifold, it
can be seen that levels of performance in each of the four abilities
were correlated at moderate to large magnitudes, such that when a g
factor of levels was fit, factor loadings ranged from approximately .70
to nearly .87. An average of 64% of the variance in the levels was
accounted for by the g factor. However, the g factor accounted for a
relatively larger amount of variance in visuospatial ability, processing

Gf

g

Gs Gm Gc ∆ Gf

g∆

∆ Gs ∆ Gm ∆ Gc

Gf Gs Gm Gc ∆ Gf ∆ Gs ∆ Gm ∆ Gc

Full Level and Change Correla�on Matrix

General Level and General Change Factor Model

Figure 2. Representation of two complementary approaches to modeling
baseline level and change correlations in a multivariate latent difference
score model. The top panel represents a model in which all correlations
between and among levels and changes are correlated. The bottom panel
represents a model in which a common general intelligence (g) factor is fit
to the baseline levels and a separate common general change (g�) factor is
fit to the rates of change. Gv � visuospatial ability; Gs � processing speed;
Gm � memory; Gc � crystallized ability; � � change. Measurement
portions of the models and details (i.e., variances and residual variances,
mean structure, and parameter labels) have been omitted for ease of
presentation.
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speed, and memory (69% on average) than it did in crystallized ability
(50%) by the general factor.

Of particular note is that a similar positive manifold of moderate
in magnitude change interrelations was evident. All change inter-
correlations were statistically significant, with the exception of the
processing speed change–visuospatial ability change correlation,
which was marginally significant. When the latent difference
scores were specified to load on a common factor of changes (as
in the bottom panel of Figure 2), factor loadings ranged from
approximately .55 to .83 and all were statistically significant. An
average of 48% of the variance in the changes was accounted for
by this general change factor. As was the case for the g factor of
levels, a relatively larger amount of variance was accounted for by
the general factor of changes for visuospatial ability, processing
speed, and memory (54%) compared with crystallized ability
(30%). Furthermore, the average proportion of variance (48%)
accounted for by the common change factor was noticeably

smaller than the proportion of variance in levels accounted for by
the g factor (64%), but it was sizable nevertheless, accounting for
nearly half of the total variance in change.

Next, we examined whether the positive manifolds of level and
change intercorrelations persisted after controlling for the exten-
sive set of covariates described earlier. All levels and changes were
simultaneously regressed onto the covariates and the residual
intercorrelations estimated.

Table 7 reports the unique associations between the covari-
ates and the level and change of cognitive abilities estimated by
a multiple regression that included all covariates. A number of
consistent patterns emerged with respect to levels of perfor-
mance. First, even within this very narrow age cohort, older age
was associated with lower performance across all four abilities.
Second, both childhood intelligence and ultimate educational
attainment uniquely predicted each of the four abilities. Child-
hood intelligence predicted each of the four abilities at nearly

Table 3
Model Fit Comparison for Tests of Measurement Invariance

Invariance 	2 df p RMSEA AIC BIC �	2 p

Configural 893.534 308 
.000 .042 141976.274 142605.509
Weak factorial 930.548 318 
.000 .042 141993.288 142572.584 37.014 
.000
Strong factorial 961.437 328 
.000 .042 142004.177 142533.534 30.889 .001
Strict factorial 991.426 342 
.000 .042 142006.166 142465.608 29.989 .008

Note. RMSEA � root mean square error of approximation; AIC � Akaike information criterion; BIC � Bayesian information criterion. All �	2 tests
are based on the model immediately preceding the specified model.

Table 4
Parameter Estimates for Tests of Measurement Invariance

Cognitive indicator

Baseline model: configural invariance Final model: strict factorial invariance

� � �u
2 � �(std) � �u

2

Time 1 Time 2 Time 1 Time 2 Time 1 Time 2 � � �

Visuospatial
Matrix
Reasoning

3.675 3.675 13.490 13.490 12.711 13.281 3.630 0.710 13.407 12.936

Block Design 7.691 8.136 33.768 34.367 47.070 45.793 7.725 0.749 33.831 46.701
Spatial Span
Forward

0.680 0.894 7.677 7.720 2.241 2.081 0.750 0.452 7.673 2.183

Spatial Span
Backward

1.010 0.983 7.041 7.152 2.016 1.766 0.982 0.579 7.066 1.909

Processing speed
Symbol Search 5.105 5.105 24.698 24.698 14.679 14.260 4.996 0.795 24.786 14.535
Digit Symbol 9.841 10.160 56.600 56.470 69.765 57.636 9.751 0.771 56.706 64.759
Inspection Time 4.871 6.392 111.980 111.054 98.117 103.947 5.442 0.476 111.682 101.010
Choice RT mean �0.055 �0.062 0.642 0.649 0.004 0.005 �0.057 �0.647 0.644 0.005

Memory
Logical Memory 6.560 6.560 44.057 44.057 66.809 58.206 6.739 0.647 44.253 63.053
Verbal PA 4.099 4.417 20.120 19.597 39.110 37.083 4.324 0.572 20.051 38.396
Digits
Backwards

1.275 1.078 7.735 7.574 3.399 3.677 1.208 0.542 7.693 3.511

Crystallized
NART 7.708 7.708 34.481 34.481 6.947 5.886 7.765 0.950 34.455 6.507
WTAR 6.776 6.574 41.020 41.077 5.513 5.007 6.741 0.946 41.020 5.314
Verbal Fluency 6.311 6.192 42.404 43.195 118.043 126.181 6.273 0.494 42.705 121.624

Note. RT � reaction time; PA � Paired Associates; NART � National Adult Reading Test; WTAR � Wechsler Test of Adult Reading. “�” indicates
that the parameter was constrained to be equal across time. All loadings, intercepts, and residual variances are significant at p 
 .001 in each model. All
parameters are unstandardized except for column labeled “�(std),” which presents standardized loadings for the final model. The unstandardized loading and
intercept of the first indicator of each factor were constrained to be equal across time.
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identical magnitudes (.240 –.274), whereas educational attain-
ment had noticeably stronger associations with crystallized
ability and memory than with visuospatial ability and process-
ing speed (.407 and .304 compared with .219 and .163, respec-
tively). Third, being male was uniquely associated with lower
performance across multiple domains. Fourth, higher forced
expiratory volume and faster walk time were specifically re-
lated to processing speed and weakly with visuospatial ability,
whereas stronger grip strength had more general associations
with all abilities except for memory. Fifth, APOE genotype was
significantly uniquely associated with visuospatial ability and
processing speed, but not memory or crystallized ability, with
presence of the ε4 allele conferring risk for lower performance.

Finally, being a smoker was significantly associated with lower
visuospatial ability and processing speed and marginally asso-
ciated with lower memory performance. Cardiovascular dis-
ease, hypertension status, and diabetes diagnosis tended to not
be uniquely associated with performance beyond the other
predictors in the regression model at statistically significant
levels. Minor exceptions were small associations between car-
diovascular disease and slower processing speed and between
diabetes diagnosis and crystallized ability performance.

Relations between the covariates and changes in performance
tended to be smaller in magnitude, and fewer were statistically
significant. For memory and crystallized ability, being older
was actually associated with significantly less decline, a some-

Table 5
Means and Variances of Latent Difference Scores

Factor Slope mean �	2 p Slope variance �	2 p

1. Visuospatial �.112 (.023) 24.580 
.000 .048 (.025) 3.639 .056
2. Processing Speed �.137 (.019) 52.406 
.000 .073 (.017) 22.633 
.000
3. Memory .072 (.030) 5.747 .017 .257 (.048) 37.383 
.000
4. Crystallized �.048 (.010) 24.871 
.000 .022 (.005) 25.141 
.000

Note. Standard errors are reported in parentheses. Nested 	2 comparisons were used to test the significance of
each parameter. This entailed comparing the fit of a model in which the parameter was freely estimated with a
model with the parameter constrained to zero. The baseline model has a 	2 value of 991.426 and 342 df. The
comparison models differed from the baseline model by 1 df and a 	2 value by the amount listed in the table.
Because they were calculated from a conventional 	2 distribution, the p values reported above for the slopes are
likely to be conservative, as a number of methodological articles have indicated that, to account for the fact that
variances are bounded at zero, the conventionally calculated p value should be divided by 2 (Stoel, Garre, Dolan,
& van den Wittenboer, 2006; Dominicus, Skrondal, Gjessing, Pedersen, & Palmgren, 2006).

Table 6
Correlations Among Levels and Changes

Factor

Parameter estimates and SEs from full level and change correlation matrix

Parameter estimates
and SEs from

general level and
change factor model

Visuospatial Processing Speed Memory Crystallized
Standardized loading

on level factor

Level-Level
Visuospatial — .849 (.023)���

Processing Speed .751 (.023)��� — .782 (.022)���

Memory .705 (.034)��� .598 (.034)��� — .866 (.031)���

Crystallized .554 (.027)��� .503 (.027)��� .741 (.027)��� — .704 (.023)���

� Visuospatial � Processing Speed � Memory � Crystallized
Standardized loading

on change factor

Change-Change
� Visuospatial — .834 (.271)��

� Processing Speed .451 (.235)† — .735 (.148)���

� Memory .595 (.232)� .475 (.128)��� — .614 (.123)���

� Crystallized .497 (.229)� .385 (.135)�� .362 (.119)� — .547 (.129)���

� Visuospatial � Processing Speed � Memory � Crystallized

Level-Change
Visuospatial �.236 (.110)� .055 (.080) .027 (.069) �.038 (.075)
Processing Speed �.190 (.123) �.060 (.078) .054 (.067) .037 (.072)
Memory �.388 (.160)� �.021 (.089) �.094 (.078) �.054 (.084)
Crystallized �.320 (.128)� .000 (.071) �.038 (.061) �.073 (.066)

† p � .06. � p 
 .05. �� p 
 .01. ��� p 
 .001.
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what unexpected finding that may be attributable to idiosyncra-
sies associated with the very narrow age range of our sample.
Childhood intelligence was not associated with change in any of
the abilities except for processing speed, for which the effect
was negative, indicating that higher childhood intelligence was
associated with faster aging-related declines in processing
speed. Men appeared to experience somewhat steeper declines
than women, but the association between sex and change was
only significant for crystallized ability. Faster walk time was
marginally associated with less memory decline and processing
speed decline. Grip strength was marginally associated with
crystallized ability change, in the direction of less decline for
those with stronger grip strength. APOE genotype was margin-
ally associated with memory change, with carriers of the ε4
allele showing greater decline. Cardiovascular disease status,
hypertension status, being a smoker, and diabetes diagnosis
were not uniquely associated with decline beyond the other
predictors in the model.

Table 8 reports correlations among level factors, among
latent difference scores, and between levels and latent differ-
ence scores after controlling for all of the above-described
covariates. Also provided are factor loadings from an alterna-

tive model in which, rather than allowing for factor intercorre-
lations, a higher order general factor of levels and a separate
higher order general factor of changes were fit, again control-
ling for all covariates. It can be seen that the positive manifolds
of both level and change intercorrelations persisted at nearly
full strength. Level correlations were attenuated by an average
of .126 correlation units (a 20% reduction), and change corre-
lations were attenuated by an average of .008 correlation units
(a 2% reduction). The average proportions of covariate-
independent variance accounted for by the general factors of
levels and change were 52% and 43%, respectively, compared
with 64% and 48% in models that did not control for covariates.
Alternatively put, the proportion of variance in levels accounted
for by the general level factor was attenuated by only 18% (i.e.,
[64% � 52%]/64%) after controlling for the covariates, and the
proportion of variance in the changes accounted for by the
general change factor was attenuated by only 10% (i.e., [48% �
43%]/48%) after controlling for the covariates. These results
indicate that the general factor of cognitive change is not simply
an epiphenomenon of changes in different cognitive abilities
being similarly related to the common set of risk factors exam-
ined. Again, differences persisted in terms of the variance

Table 7
Demographic, Physical Health, and Medical Risk Predictors of Levels and Change

Predictor

Standardized multiple regression coefficients

Visuospatial Processing Speed Memory Crystallized

Level
Age (baseline) �.141 (.038)��� �.190 (.037)��� �.248 (.044)��� �.122 (.031)���

Time lag .015 (.041) �.027 (.040) �.036 (.048) .012 (.033)
Age 11 intelligence .260 (.032)��� .240 (.031)��� .247 (.037)��� .274 (.026)���

Educational attainment .219 (.032)��� .163 (.031)��� .304 (.037)��� .407 (.025)���

Malea �.020 (.103) �.516 (.099)��� �.385 (.119)�� �.349 (.083)���

Forced expiratory volume (baseline) .080 (.043)† .141 (.042)�� �.006 (.050) .041 (.035)
–1�Log 6-m walk time (baseline) .075 (.033)� .133 (.033)��� .025 (.039) .052 (.027)†

Grip strength (baseline) .225 (.053)��� .151 (.052)�� .082 (.062) .118 (.043)��

APOE genotype (ε4 allele)a �.216 (.067)�� �.202 (.065)�� �.079 (.078) �.011 (.055)
Smoking status (baseline)a �.267 (.098)�� �.260 (.095)�� �.191 (.113)† �.012 (.080)
Cardiovascular disease status (baseline)a �.084 (.072) �.191 (.070)�� .056 (.083) �.005 (.059)
Hypertension status (baseline)a �.047 (.064) �.046 (.062) �.006 (.074) �.065 (.052)
Diabetes diagnosis (baseline)a �.154 (.093)† �.142 (.091) �.145 (.108) �.159 (.076)�

� Visuospatial � Processing Speed � Memory � Crystallized

Changes
Age (baseline) .194 (.139) .103 (.083) .230 (.071)�� .268 (.080)��

Time lag �.077 (.131) �.143 (.083)† �.050 (.071) �.116 (.077)
Age 11 intelligence �.189 (.122) �.171 (.073)� .022 (.062) .003 (.068)
Educational attainment �.072 (.115) �.001 (.073) �.052 (.062) .039 (.068)
Malea �.108 (.363) �.375 (.234) �.236 (.200) �.515 (.220)�

Forced expiratory volume (baseline) .090 (.152) .000 (.096) .033 (.082) .048 (.090)
–1�Log 6-m walk time (baseline) .142 (.125) .134 (.077)† .126 (.066)† �.094 (.073)
Grip strength (baseline) .069 (.188) .188 (.120) .161 (.103) .200 (.113)†

APOE genotype (ε4 allele)a �.073 (.236) �.153 (.151) �.250 (.129)† .223 (.142)
Smoking status (baseline)a �.218 (.380) �.268 (.242) .210 (.208) �.223 (.229)
Cardiovascular disease status (baseline)a �.322 (.267) .003 (.165) �.022 (.141) �.047 (.155)
Hypertension status (baseline)a .017 (.227) .060 (.146) .015 (.125) .157 (.137)
Diabetes diagnosis (baseline)a .190 (.327) �.115 (.206) �.074 (.176) .092 (.194)

Note. Standardized multiple regression coefficients represent the unique effect of each predictor. Standard errors are reported in parentheses.
a Predictor was dichotomous. Parameter estimates for dichotomous predictors were standardized with respect to the outcome (but not the predictor) such
that they can be interpreted as Cohen’s d effect sizes. All other parameters estimates were standardized with respect to both the predictor and the outcome.
† p 
 .10. � p 
 .05. �� p 
 .01. ��� p 
 .001.
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accounted for by the general factor for crystallized ability
compared with the other abilities. For initial levels, the general
factor accounted for 26% of the variance in crystallized ability,
compared with an average of 61% for the other three domains.
The pattern was similar, but smaller, for amount of variance in
change accounted for by the general factor (33% for crystallized
ability change compared with 46% on average for the other
three domains).

Discussion

In a population-based, narrow-age cohort sample of 70-year-old
adults, we found moderate to strong correlations between 3-year
longitudinal changes in visuospatial ability, processing speed,
memory, and crystallized ability. A common factor fit to the
longitudinal change factors accounted for nearly 50% of the vari-
ation in longitudinal changes. Importantly, this pattern was robust
to controls for a host of variables implicated in previous research
as possible risk or protective factors in cognitive aging, including
educational attainment, childhood intelligence, physical function,
APOE genotype, smoking status, diagnosis of hypertension, diag-
nosis of cardiovascular disease, and diagnosis of diabetes (Plass-
man et al., 2010). These results suggest that concomitant changes
in multiple domains of cognitive function are a core feature of
cognitive aging.

The longitudinal interval for the current study was fairly
short compared with typical longitudinal studies of cognitive
aging. Had we reported null results, it would have been sensible
to question whether failures to detect change interrelations
derived from the relatively short time lag, over which there was
limited opportunity for substantial heterogeneity in changes to

accrue. However, given that we detected change interrelations
that were not only statistically significant but moderate to large
in magnitude, the relatively short time lag of our study can be
considered a strength that speaks to the robustness of the
phenomenon uncovered. Moreover, that our study was based on
a narrow-age cohort of 70-year-olds followed over time ensured
that the intercorrelations between rates of change were driven
by the passage of time, rather than age-based heterogeneity.
Although a potential limitation of narrow-age cohort studies is
that results may not generalize to individuals from other co-
horts, the results of the prior studies indexed in Table 1 indicate
that shared variance in cognitive change is likely to be a rule
rather than an exception in normal cognitive aging.

Our success at detecting systematic correlations among rates
of change can also be attributable to the implementation of
latent difference score models. Latent difference score models,
along with growth curve models, belong to a class of quantita-
tive models that separate systematic change from measurement
error. Our study adds to the growing body of research, indexed
in Table 1, that has implemented multivariate versions of this
powerful class of models to examine interrelations among
changes in multiple cognitive variables. Without implementing
such models (i.e., if observed difference scores were to be
implemented), the ratio of true change to error (what might be
termed a signal-to-noise ratio) is typically so vast that correla-
tions are obscured to the point of being undetectable. In such
instances, more prolonged longitudinal intervals would be nec-
essary for systematic changes to accumulate to the degree that
correlations become detectable. Indeed, based on previous sim-
ple difference score analyses of single cognitive tests and other

Table 8
Correlations Among Levels and Changes Controlling for Demographic, Physical Health, and Medical Risk Factors

Factor

Parameter estimates and SEs from full level and change correlation matrix

Parameter estimates
and SEs from

general level and
change factor model

Visuospatial Processing Speed Memory Crystallized
Standardized loading

on level factor

Level-Level
Visuospatial — .849 (.034)���

Processing Speed .678 (.031)��� — .705 (.031)���

Memory .665 (.044)��� .463 (.044)��� — .785 (.046)���

Crystallized .377 (.035)��� .296 (.034)��� .615 (.036)��� — .509 (.034)���

� Visuospatial � Processing Speed � Memory � Crystallized
Standardized loading

on change factor

Change-Change
� Visuospatial — .710 (.306)�

� Processing Speed .425 (.274) — .742 (.171)���

� Memory .599 (.277)� .437 (.137)�� — .582 (.135)���

� Crystallized .537 (.286)† .371 (.152)� .347 (.131)�� — .577 (.149)���

� Visuospatial � Processing Speed � Memory � Crystallized

Level-Change
Visuospatial �.214 (.127) .116 (.088) .025 (.075) .032 (.085)
Processing Speed �.161 (.140) �.049 (.085) .072 (.071) .020 (.080)
Memory �.317 (.185) .060 (.100) �.060 (.089) �.023 (.097)
Crystallized �.259 (.141) .086 (.075) �.022 (.064) �.073 (.072)

† p � .06. � p 
 .05. �� p 
 .01. ��� p 
 .001.
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single variables in these LBC1936 data, Johnson et al. (2012)
concluded that “two waves of longitudinal data were not suffi-
cient to assess meaningful patterns of ageing” (p. 312).

Although we view the latent difference score approach im-
plemented in the current study and growth curve approaches
implemented in previous articles as being similar in their ca-
pabilities to separate systematic change variance from error
variance, there are some important distinctions between these
two classes of models that one should keep in mind when
interpreting the current results. The distinction largely sur-
rounds the meaning of the term error (see Crocker & Algina,
1986). Under a classical test theory perspective, measurement
error reflects a failure of the measurement instrument to per-
fectly capture the true score of the individual during the period
of cognitive testing. Under more dynamic longitudinal perspec-
tives, state error reflects a fairly short-term, reversible, devia-
tion from an individual’s more stable trait-level ability. Impor-
tantly, a measurement error-free index of a sample of
individuals’ true scores during a circumscribed testing period
represents a mixture of variation attributable to those individ-
uals’ trait levels and their momentary states (see Nesselroade,
1991). Indeed, when the research question is focused on trait
change, as it was here, latent difference score approaches may
undercorrect for error by eliminating measurement error but not
state error, and growth curve approaches may overcorrect for
error by eliminating measurement error, state error, and (often
nonlinear) developmental change that does not conform to the
(often linear) function chosen. The implications of these nu-
anced differences for examining correlated aging-related
changes are complex. On the one hand, if variation in state error
is small relative to variation in trait change, then latent differ-
ence score models and properly specified growth curve models
should largely capture the same components of change and
produce very similar results with respect to the magnitude of
change intercorrelations. On the other hand, if variation in state
error is nontrivial, latent difference score approaches may either
underestimate change intercorrelations (if states are uncorre-
lated across abilities, i.e., if individuals’ “good days” for pro-
cessing speed are not particularly likely to coincide with their
“good days” for memory) or overestimate change intercorrela-
tions (if states are correlated across abilities, i.e., if individuals’
‘“good days” for processing speed are likely to coincide with
their “good days” for memory). Although more work will be
necessary to directly compare growth curve and latent differ-
ence score approaches to cognitive aging in the same data set,
results from different approaches have largely been consistent
with one another. For instance, Tucker-Drob (2011a) found
similar solutions for an exploratory factor analysis of latent
difference scores of cognitive variables and a confirmatory
factor analysis of growth curve slopes of the same variables.
Moreover, Hertzog, Dixon, Hultsch, and MacDonald (2003)
and Zimprich and Martin (2002), whose studies were based on
latent difference scores, produced estimates of shared variance
that were very similar to estimates produced by the other
articles summarized in Table 1, which were based on growth
curve approaches.

Whereas a strength of our study is that we were able to examine
the key phenomenon of interest both before and after accounting
for a host of covariates, it is important to keep in mind that the

covariates were much more consistent in accounting for individual
differences in levels of cognitive performance than individual
differences in cognitive change. This observation is not unique to
the current study. For instance, our results agree with many pre-
vious rigorous studies (e.g., Tucker-Drob, Johnson, & Jones, 2009;
Van Dijk, Van Gerven, Van Boxtel, Van der Elst, & Jolles, 2008;
Wilson, Barnes, Mendes de Leon, & Evans, 2009; Zahodne et al.,
2011) in indicating that educational attainment was related to
levels of cognitive abilities but was unrelated to rates of longitu-
dinal cognitive change, despite theoretical speculations to the
contrary (e.g., Stern, 2002). Identifying systematic correlates of
aging-related cognitive changes has been an ongoing challenge in
the cognitive aging literature (Salthouse, 2006; although see Hert-
zog, Kramer, Wilson, & Lindenberger, 2008, for a more optimistic
review of the literature). Future research should continue to ex-
amine correlates of longitudinal changes rather than simple levels
of performance. As is the case that concurrent (cross-sectional)
correlations among cognitive tasks are ambiguous with respect to
the codependency in late life, concurrent correlations among risk
factors and levels of performance are ambiguous with respect to
direction and timing of causation (for empirical examples and
solutions, see Corley et al., 2011, and Luciano, Marioni, Gow,
Starr, & Deary, 2009).

We consistently found that longitudinal changes in crystal-
lized ability were less coupled with general change found for
other abilities. In fact, latent difference scores for this domain
had means that were closest to zero and displayed the least
amount variance of all the domains examined. Ghisletta, Rab-
bitt, Lunn, and Lindenberger (2012) and Lindenberger and
Ghisletta (2009) have reported similar results. These results are
together consistent with theoretical propositions that the aging
of crystallized abilities, to a considerable extent, represents a
mechanistically distinct process from that of other cognitive
domains. For instance, Baltes and Staudinger (1993) described
this type of divergent trend as evidence for somewhat distinct
processes of “the ‘biological’ cognitive mechanics and the
‘cultural’ cognitive pragmatics” (p. 75). On the whole, how-
ever, that longitudinal changes in all four domains were signif-
icantly correlated with one another suggests the operation of a
common domain-general dimension of cognitive aging.

Our finding that a single broad dimension could statistically
account for sizable proportions of variation in aging-related
changes in more specific cognitive abilities does not undermine
the clear evidence that cognitive aging is a highly multideter-
mined phenomenon. Although there may be many individual
causal factors contributing to variation in cognitive aging, our
results indicate that there is a tendency either for these factors
to themselves be correlated and/or for their effects to operate on
a broad range of cognitive abilities. Plomin and Spinath (2002)
provide a similar discussion with respect to the interpretation of
the g factor of individual differences in levels of cognitive
abilities.

Deary (2000) described the g factor of individual differences
in intelligence to be “arguably the most replicated result in all
psychology” (p. 6). The current findings add to a very consis-
tent body of work, indexed in Table 1, indicating a perhaps
similarly robust factor of cognitive change in adulthood. More-
over, an investigation of developmental change in early child-
hood also produced strong evidence for a general factor of
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longitudinal change (Rhemtulla & Tucker-Drob, 2011). A ques-
tion that therefore arises is whether the common factor of levels
and the common factor of changes reflect the same underlying
phenomenon. Juan-Espinosa et al. (2002), for instance, have
posited that the structure of individual differences in cognition
is inherent to the human system, arguing that “basic structure
does not change at all, although, like the human bones, the
cognitive abilities grow up and decline at different periods of
life” (p. 407). If the human cognitive system is indeed struc-
tured along invariant intrinsic dimensions, then it may be the
case that individual differences in longitudinal cognitive
changes are necessarily structured to change in concert. Alter-
native views of the mechanisms underlying the g factor, how-
ever, make no such presumption of basic immutable structure.
For instance, van der Maas et al. (2006) argued that the struc-
ture of cognitive abilities is an emergent property of mutually
reinforcing dependencies between different abilities (see Dick-
ens, 2007, for a similar perspective, and Tucker-Drob, 2009, for
further discussion of multiple perspectives on the etiology of
factor structure). If these dependencies change or subside in old
age, then the same positive manifold as is typically observed for
levels might not be expected to necessarily occur for rates of
change. However, if the dependencies between different abili-
ties are maintained, then a positive manifold of changes would
be evident in spite of not having been caused by a single
underlying factor or an otherwise immutable structure.

In conclusion, our results add to the growing body of literature
indicating strong codependencies between individual differences
in rates of longitudinal cognitive changes. We demonstrate that a
positive manifold of cognitive change intercorrelations can be
detected over a relatively short period of time (3 years) in a
narrow-age cohort and persists even after controlling for a variety
of covariates. Future work will be needed to understand the mech-
anisms that give rise to these statistical codependencies.
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