2,537 research outputs found

    Quantifying Dynamics in Tropical Peat Swamp Forest Biomass with Multi- Temporal LiDAR Datasets

    Get PDF
    Tropical peat swamp forests in Indonesia store huge amounts of carbon and are responsible for enormous carbon emissions every year due to forest degradation and deforestation. These forest areas are in the focus of REDD+ (reducing emissions from deforestation, forest degradation, and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks) projects, which require an accurate monitoring of their carbon stocks or aboveground biomass (AGB). Our study objective was to evaluate multi-temporal LiDAR measurements of a tropical forested peatland area in Central Kalimantan on Borneo. Canopy height and AGB dynamics were quantified with a special focus on unaffected, selective logged and burned forests. More than 11,000 ha were surveyed with airborne LiDAR in 2007 and 2011. In a first step, the comparability of these datasets was examined and canopy height models were created. Novel AGB regression models were developed on the basis of field inventory measurements and LiDAR derived height histograms for 2007 (r(2) = 0.77, n = 79) and 2011 (r(2) = 0.81, n = 53), taking the different point densities into account. Changes in peat swamp forests were identified by analyzing multispectral imagery. Unaffected forests accumulated on average 20 t/ha AGB with a canopy height increase of 2.3 m over the four year time period. Selective logged forests experienced an average AGB loss of 55 t/ha within 30 m and 42 t/ha within 50 m of detected logging trails, although the mean canopy height increased by 0.5 m and 1.0 m, respectively. Burned forests lost 92% of the initial biomass. These results demonstrate the great potential of repetitive airborne LiDAR surveys to precisely quantify even small scale AGB and canopy height dynamics in remote tropical forests, thereby featuring the needs of REDD+

    Examination of the Potential of Structure-from-Motion Photogrammetry and Terrestrial Laser Scanning for Rapid Nondestructive Field Measurement of Grass Biomass

    Get PDF
    Above ground biomass (AGB) is a parameter commonly used for assessment of grassland systems. While destructive sampling of AGB is highly accurate, it is time consuming and often precludes repeat temporal sampling or sampling in sensitive ecosystems. Consequently, a number of nondestructive techniques that relate grass structural properties to AGB have been developed. This study investigated the application of two recent technologies, Terrestrial Laser Scanning (TLS) and Structurefrom- Motion (SfM), in the development of rapid nondestructive AGB estimation of grassland plots. TLS and SfM volume metrics generated using a rasterized surface differencing method were linearly related to destructively measured total AGB and grass AGB excluding all litter, and results were compared to the conventional disc pasture meter. The linear models were assessed using a leave-one-out cross validation scheme. The disc pasture meter was found to be the least reliable method in assessing total AGB (r2 = 0.32, RMSELOOCV = 269 g/m2). SfM (r2 = 0.74, RMSELOOCV = 169 g/m2) outperformed TLS (r2 = 0.56, RMSELOOCV = 219 g/m2), though a much larger slope in SfM regressions suggests an increased sensitivity to error. Litter removal decreased the effectiveness of AGB estimation for both TLS (r2 = 0.49) and SfM (r2 = 0.51) but increased the fit of disc pasture meter estimations (r2 = 0.42), highlighting the complex relationship between litter accumulation and AGB. TLS and SfM derived volumes were shown to be insensitive to cell dimensions when calculating volume provided cell dimensions were large enough to ensure no empty cells occurred. Using observed ground surfaces in volumetric calculations rather than an estimated ground plane increased r2 to 0.63 for TLS and 0.77 for SfM. Though the disc pasture meter was found to be the most rapid of the three methods, TLS and SfM both out performed it and have clearly demonstrated their potential utility for AGB estimation of grass systems. Their ability to systematically collect measurements over larger spatial extents than those investigated here could greatly outpace the disc pasture meter’s predictive capabilities and speed

    Carbon Stocks and Fluxes in Kenyan Forests and Wooded Grasslands Derived from Earth Observation and Model-Data Fusion

    Get PDF
    The characterization of carbon stocks and dynamics at the national level is critical for countries engaging in climate change mitigation and adaptation strategies. However, several tropical countries, including Kenya, lack the essential information typically provided by a complete national forest inventory. Here we present the most detailed and rigorous national-scale assessment of aboveground woody biomass carbon stocks and dynamics for Kenya to date. A non-parametric random forest algorithm was trained to retrieve aboveground woody biomass carbon (AGBC) for the year 2014 ± 1 and forest disturbances for the 2014–2017 period using in situ forest inventory plot data and satellite Earth Observation (EO) data. The ecosystem carbon cycling of Kenya’s forests and wooded grassland were assessed using a model-data fusion framework, CARDAMOM, constrained by the woody biomass datasets from this study as well as time series information on leaf area, fire events and soil organic carbon. Our EO-derived AGBC stocks were estimated as 140 Mt C for forests and 199 Mt C for wooded grasslands. The total AGBC loss during the study period was estimated as 1.89 Mt C with a dispersion below 1%. The CARDAMOM analysis estimated woody productivity to be three times larger in forests (mean = 1.9 t C ha−1 yr−1) than wooded grasslands (0.6 t C ha−1 yr−1), and the mean residence time of woody C in forests (16 years) to be greater than in wooded grasslands (10 years). This study stresses the importance of carbon sequestration by forests in the international climate mitigation efforts under the Paris Agreement, but emphasizes the need to include non-forest ecosystems such as wooded grasslands in international greenhouse gas accounting frameworks

    The agricultural impact of the 2015–2016 floods in Ireland as mapped through Sentinel 1 satellite imagery

    Get PDF
    peer-reviewedIrish Journal of Agricultural and Food Research | Volume 58: Issue 1 The agricultural impact of the 2015–2016 floods in Ireland as mapped through Sentinel 1 satellite imagery R. O’Haraemail , S. Green and T. McCarthy DOI: https://doi.org/10.2478/ijafr-2019-0006 | Published online: 11 Oct 2019 PDF Abstract Article PDF References Recommendations Abstract The capability of Sentinel 1 C-band (5 cm wavelength) synthetic aperture radio detection and ranging (RADAR) (abbreviated as SAR) for flood mapping is demonstrated, and this approach is used to map the extent of the extensive floods that occurred throughout the Republic of Ireland in the winter of 2015–2016. Thirty-three Sentinel 1 images were used to map the area and duration of floods over a 6-mo period from November 2015 to April 2016. Flood maps for 11 separate dates charted the development and persistence of floods nationally. The maximum flood extent during this period was estimated to be ~24,356 ha. The depth of rainfall influenced the magnitude of flood in the preceding 5 d and over more extended periods to a lesser degree. Reduced photosynthetic activity on farms affected by flooding was observed in Landsat 8 vegetation index difference images compared to the previous spring. The accuracy of the flood map was assessed against reports of flooding from affected farms, as well as other satellite-derived maps from Copernicus Emergency Management Service and Sentinel 2. Monte Carlo simulated elevation data (20 m resolution, 2.5 m root mean square error [RMSE]) were used to estimate the flood’s depth and volume. Although the modelled flood height showed a strong correlation with the measured river heights, differences of several metres were observed. Future mapping strategies are discussed, which include high–temporal-resolution soil moisture data, as part of an integrated multisensor approach to flood response over a range of spatial scales

    The Fire and Smoke Model Evaluation Experiment—A Plan for Integrated, Large Fire–Atmosphere Field Campaigns

    Get PDF
    The Fire and Smoke Model Evaluation Experiment (FASMEE) is designed to collect integrated observations from large wildland fires and provide evaluation datasets for new models and operational systems. Wildland fire, smoke dispersion, and atmospheric chemistry models have become more sophisticated, and next-generation operational models will require evaluation datasets that are coordinated and comprehensive for their evaluation and advancement. Integrated measurements are required, including ground-based observations of fuels and fire behavior, estimates of fire-emitted heat and emissions fluxes, and observations of near-source micrometeorology, plume properties, smoke dispersion, and atmospheric chemistry. To address these requirements the FASMEE campaign design includes a study plan to guide the suite of required measurements in forested sites representative of many prescribed burning programs in the southeastern United States and increasingly common high-intensity fires in the western United States. Here we provide an overview of the proposed experiment and recommendations for key measurements. The FASMEE study provides a template for additional large-scale experimental campaigns to advance fire science and operational fire and smoke models

    Grassland vertical height heterogeneity predicts flower and bee diversity: an UAV photogrammetric approach

    Get PDF
    The ecosystem services offered by pollinators are vital for supporting agriculture and ecosystem functioning, with bees standing out as especially valuable contributors among these insects. Threats such as habitat fragmentation, intensive agriculture, and climate change are contributing to the decline of natural bee populations. Remote sensing could be a useful tool to identify sites of high diversity before investing into more expensive field survey. In this study, the ability of Unoccupied Aerial Vehicles (UAV) images to estimate biodiversity at a local scale has been assessed while testing the concept of the Height Variation Hypothesis (HVH). This hypothesis states that the higher the vegetation height heterogeneity (HH) measured by remote sensing information, the higher the vegetation vertical complexity and the associated species diversity. In this study, the concept has been further developed to understand if vegetation HH can also be considered a proxy for bee diversity and abundance. We tested this approach in 30 grasslands in the South of the Netherlands, where an intensive field data campaign (collection of flower and bee diversity and abundance) was carried out in 2021, along with a UAV campaign (collection of true color-RGB-images at high spatial resolution). Canopy Height Models (CHM) of the grasslands were derived using the photogrammetry technique "Structure from Motion" (SfM) with horizontal resolution (spatial) of 10 cm, 25 cm, and 50 cm. The accuracy of the CHM derived from UAV photogrammetry was assessed by comparing them through linear regression against local CHM LiDAR (Light Detection and Ranging) data derived from an Airborne Laser Scanner campaign completed in 2020/2021, yielding an [Formula: see text] of 0.71. Subsequently, the HH assessed on the CHMs at the three spatial resolutions, using four different heterogeneity indices (Rao's Q, Coefficient of Variation, Berger-Parker index, and Simpson's D index), was correlated with the ground-based flower and bee diversity and bee abundance data. The Rao's Q index was the most effective heterogeneity index, reaching high correlations with the ground-based data (0.44 for flower diversity, 0.47 for bee diversity, and 0.34 for bee abundance). Interestingly, the correlations were not significantly influenced by the spatial resolution of the CHM derived from UAV photogrammetry. Our results suggest that vegetation height heterogeneity can be used as a proxy for large-scale, standardized, and cost-effective inference of flower diversity and habitat quality for bees
    • …
    corecore